(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-13
(54)【発明の名称】ガラス成形デバイスおよび方法
(51)【国際特許分類】
C03B 17/06 20060101AFI20220906BHJP
【FI】
C03B17/06
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021576610
(86)(22)【出願日】2020-06-18
(85)【翻訳文提出日】2022-02-22
(86)【国際出願番号】 US2020038340
(87)【国際公開番号】W WO2021003025
(87)【国際公開日】2021-01-07
(32)【優先日】2019-07-01
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100175042
【氏名又は名称】高橋 秀明
(72)【発明者】
【氏名】ニクーリン,イリヤ アンドレイエヴィッチ
(72)【発明者】
【氏名】スヴャトゴロフ,イリヤ
(72)【発明者】
【氏名】ウェドン,ウイリアム アンソニー
(57)【要約】
ガラス成形デバイスは、第1の壁の第1の外面、第2の壁の第2の外面、およびヒータを備えることができる。ガラス成形方法は、第1の壁の第1の外面の上に溶融材料の第1の流れを流す工程、および第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程を含むことができる。この方法は、ガラスリボンを延伸する工程をさらに含むことができる。この方法は、第1の壁をヒータで加熱して、第1の壁の第1の外面と接触する溶融材料の第1の流れの内側部分を加熱して、その溶融材料の第1の流れの内側部分の粘度を、その溶融材料の第1の流れの液相粘度より低く維持する工程も含むことができる。
【特許請求の範囲】
【請求項1】
ガラスリボンを成形するための成形デバイスにおいて、
第1の外面、第1の内面、および該第1の外面と該第1の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第1の厚さを有する第1の壁、
第2の外面、第2の内面、および該第2の外面と該第2の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第2の厚さを有する第2の壁、
前記第1の外面と前記第2の外面の集束部の一体接合部であって、前記成形デバイスの基部を構成する一体接合部、および
前記第1の内面および前記第2の内面により少なくとも部分的に画成される空洞内に位置付けられたヒータ、
を備えた成形デバイス。
【請求項2】
前記ヒータが、前記第1の壁および前記第2の壁により支持されている、請求項1記載の成形デバイス。
【請求項3】
前記ヒータを少なくとも部分的に取り囲む電気絶縁材料をさらに備える、請求項1または2記載の成形デバイス。
【請求項4】
前記電気絶縁材料は、前記第1の壁の内面および前記第2の壁の内面と接触している、請求項3記載の成形デバイス。
【請求項5】
前記第1の壁が導電性材料から作られ、前記第2の壁が導電性材料から作られている、請求項1から4いずれか1項記載の成形デバイス。
【請求項6】
前記第1の壁の導電性材料が白金または白金合金を含み、前記第2の壁の導電性材料が白金または白金合金を含む、請求項5記載の成形デバイス。
【請求項7】
流路を少なくとも部分的に取り囲む管壁および該管壁を通って延在するスロットを有する管と、前記管壁の外面の第1の周辺位置に取り付けられた前記第1の壁の上流端と、前記管壁の外面の第2の周辺位置に取り付けられた前記第2の壁の上流端とを備え、前記スロットは、前記第1の周辺位置と前記第2の周辺位置との間の円周方向に位置している、請求項1から6いずれか1項記載の成形デバイス。
【請求項8】
前記管が、白金または白金合金から作られている、請求項7記載の成形デバイス。
【請求項9】
前記管を支持する支持梁をさらに備え、該支持梁は、該管と前記ヒータとの間の空洞内に位置付けられたセグメントを含む、請求項7または8記載の成形デバイス。
【請求項10】
前記第1の外面に面する第1の冷却装置および前記第2の外面に面する第2の冷却装置をさらに備える、請求項1から9いずれか1項記載の成形デバイス。
【請求項11】
請求項1から10いずれか1項記載に成形デバイスでガラスリボンを成形する方法において、
前記第1の壁の第1の外面の上に溶融材料の第1の流れを流し、前記第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程であって、該溶融材料の第1の流れと該溶融材料の第2の流れは、前記基部で集束して、ガラスリボンを成形し、該溶融材料の第1の流れの液相粘度および該溶融材料の第2の流れの液相粘度の各々は、約5,000ポアズから約30,000ポアズの範囲にある、工程、
前記第1の壁を前記ヒータで加熱して、該第1の壁の第1の外面と接触する前記溶融材料の第1の流れの内側部分を加熱し、該溶融材料の第1の流れの内側部分の粘度を、該溶融材料の第1の流れの液相粘度より低く維持し、前記第2の壁を前記ヒータで加熱して、該第2の壁の第2の外面と接触する前記溶融材料の第2の流れの内側部分を加熱し、該溶融材料の第2の流れの内側部分の粘度を、該溶融材料の第2の流れの液相粘度より低く維持する工程、および
前記ガラスリボンを前記基部から延伸する工程であって、該ガラスリボンは、約100マイクロメートルから約2ミリメートルの厚さ範囲にある厚さを有する工程、
を有してなる方法。
【請求項12】
前記基部の加熱速度を調節して、該基部の温度を、前記溶融材料の第1の流れの液相温度より高く、かつ前記溶融材料の第2の流れの液相温度より高く維持する工程をさらに含む、請求項11記載の方法。
【発明の詳細な説明】
【優先権】
【0001】
本出願は、その内容が依拠され、ここに全て引用される、2019年7月1日に出願された米国仮特許出願第62/869190号の米国法典第35編第119条の下での優先権の恩恵を主張するものである。
【技術分野】
【0002】
本開示は、ガラス成形デバイスおよび方法に関する。
【背景技術】
【0003】
溶融材料を成形装置でガラスリボンに加工することが知られている。従来の成形装置は、ある量の溶融材料を成形装置からガラスリボンとして下方に延伸するように作動することが公知である。ガラスリボンは、ガラスシートに分割することができる。ガラスシートは、例えば、ディスプレイ用途に、例えば、液晶ディスプレイ(LCD)、電気泳動ディスプレイ(EPD)、有機発光ダイオードディスプレイ(OLED)、プラズマディスプレイパネル(PDP)、タッチセンサ、太陽光発電装置などに、一般に使用されている。
【発明の概要】
【0004】
以下は、詳細な説明に記載されたいくつかの例示の実施の形態の基本的な理解を与えるための本開示の簡単な概要を提示する。
【0005】
本開示は、広く、ガラス成形デバイスおよび方法に関し、より詳しくは、ヒータを含むガラス成形デバイスおよび方法に関する。
【0006】
いくつかの実施の形態において、ガラスリボンを成形するための成形デバイスは、第1の外面、第1の内面、および第1の外面と第1の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第1の厚さを有する第1の壁を備えることができる。この成形デバイスは、第2の外面、第2の内面、および第2の外面と第2の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第2の厚さを有する第2の壁をさらに備えることができる。この成形デバイスは、第1の外面と第2の外面の集束部の一体接合部であって、成形デバイスの基部を構成する一体接合部も備えることができる。この成形デバイスは、加えて、第1の内面および第2の内面により少なくとも部分的に画成される空洞内に位置付けられたヒータを備えることができる。
【0007】
さらなる実施の形態において、そのヒータは、第1の壁および第2の壁により支持することができる。
【0008】
さらなる実施の形態において、その成形デバイスは、そのヒータを少なくとも部分的に取り囲む電気絶縁材料をさらに備えることができる。
【0009】
またさらなる実施の形態において、その電気絶縁材料は、第1の壁の内面および第2の壁の内面と接触することができる。
【0010】
さらなる実施の形態において、その第1の壁は導電性材料から作ることができ、第2の壁は導電性材料から作ることができる。
【0011】
またさらなる実施の形態において、その第1の壁の導電性材料は、白金または白金合金を含むことができ、第2の壁の導電性材料は、白金または白金合金を含むことができる。
【0012】
さらなる実施の形態において、前記成形デバイスは、流路を少なくとも部分的に取り囲む管壁およびスロットを有する管をさらに備えることができる。そのスロットは、管壁を通って延在し得る。第1の壁の上流端は、管壁の外面の第1の周辺位置で管に取り付けることができる。第2の壁の上流端は、管壁の外面の第2の周辺位置で管に取り付けることができる。そのスロットは、第1の周辺位置と第2の周辺位置との間の円周方向に位置することがある。
【0013】
またさらなる実施の形態において、その管は、白金または白金合金から作ることができる。
【0014】
またさらなる実施の形態において、前記成形デバイスは、管を支持する支持梁をさらに備えることができる。その支持梁は、管とヒータとの間の空洞内に位置付けられたセグメントを含み得る。
【0015】
さらなる実施の形態において、前記成形デバイスは、第1の外面に面する第1の冷却装置および第2の外面に面する第2の冷却装置をさらに備えることができる。
【0016】
さらなる実施の形態において、前記成形デバイスでガラスリボンを成形する方法は、第1の壁の第1の外面の上に溶融材料の第1の流れを流す工程を含み得る。この方法は、第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程を含み得る。溶融材料の第1の流れと溶融材料の第2の流れは、基部で集束して、ガラスリボンを成形することができる。溶融材料の第1の流れの液相粘度および溶融材料の第2の流れの液相粘度の各々は、約5,000ポアズから約30,000ポアズの範囲にあり得る。その方法は、第1の壁をヒータで加熱して、第1の壁の第1の外面と接触する溶融材料の第1の流れの内側部分を加熱し、これにより、溶融材料の第1の流れの内側部分の粘度を、溶融材料の第1の流れの液相粘度より低く維持できる工程をさらに含み得る。その方法は、第2の壁をヒータで加熱して、第2の壁の第2の外面と接触する溶融材料の第2の流れの内側部分を加熱し、これにより、溶融材料の第2の流れの内側部分の粘度を、溶融材料の第2の流れの液相粘度より低く維持できる工程をさらに含み得る。その方法は、基部からガラスリボンを延伸する工程もさらに含み得る。そのガラスリボンは、約100マイクロメートルから約2ミリメートルの厚さ範囲にある厚さを有し得る。
【0017】
またさらなる実施の形態において、その方法は、基部の加熱速度を調節して、その基部の温度を、溶融材料の第1の流れの液相温度より高く、かつ溶融材料の第2の流れの液相温度より高く維持する工程をさらに含み得る。
【0018】
いくつかの実施の形態において、ガラスリボンを成形する方法は、第1の壁の第1の外面の上に溶融材料の第1の流れを流す工程を含み得る。この方法は、第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程を含み得る。溶融材料の第1の流れと溶融材料の第2の流れは、集束して、ガラスリボンを成形することができる。溶融材料の第1の流れの液相粘度および溶融材料の第2の流れの液相粘度の各々は、約5,000ポアズから約30,000ポアズの範囲にあり得る。その方法は、第1の壁を加熱して、第1の壁の第1の外面と接触する溶融材料の第1の流れの内側部分を加熱し、これにより、溶融材料の第1の流れの内側部分の粘度を、溶融材料の第1の流れの液相粘度より低く維持できる工程をさらに含み得る。その方法は、第2の壁を加熱して、第2の壁の第2の外面と接触する溶融材料の第2の流れの内側部分を加熱し、これにより、溶融材料の第2の流れの内側部分の粘度を、溶融材料の第2の流れの液相粘度より低く維持できる工程をさらに含み得る。その方法は、ガラスリボンを延伸する工程もさらに含み得る。そのガラスリボンは、約100マイクロメートルから約2ミリメートルの厚さ範囲にある厚さを有し得る。
【0019】
さらなる実施の形態において、その方法は、基部を構成する第1の外面と第2の外面の集束部に一体接合部をさらに含むことができる。その方法は、基部の加熱速度を調節し、それによって、その基部の温度を、溶融材料の第1の流れの液相温度より高く、かつ溶融材料の第2の流れの液相温度より高く維持することができる工程をさらに含み得る。
【0020】
さらなる実施の形態において、溶融材料の第1と第2の流れの液相粘度が、約5,000ポアズから約20,000ポアズの範囲にあり得る。
【0021】
さらなる実施の形態において、その厚さ範囲は、約100マイクロメートルから約1.5ミリメートルであり得る。
【0022】
さらなる実施の形態において、溶融材料の第1の流れおよび溶融材料の第2の流れが集束するところのガラスリボンの粘度が、約8,000ポアズから約35,000ポアズの範囲にあり得る。
【0023】
さらなる実施の形態において、その方法は、溶融材料の第1の流れの内側部分と反対の溶融材料の第1の流れの外側部分を冷却し、これにより、溶融材料の第1の流れの外側部分の粘度を溶融材料の第1の流れの液相粘度より高く増加させることができる工程をさらに含み得る。その方法は、溶融材料の第2の流れの内側部分と反対の溶融材料の第2の流れの外側部分を冷却し、これにより、溶融材料の第2の流れの外側部分の粘度を溶融材料の第2の流れの液相粘度より高く増加させることができる工程をさらに含み得る。
【0024】
またさらなる実施の形態において、その方法は、溶融材料の第1の流れの外側部分の冷却速度を調節して、ガラスリボンの厚さを厚さ範囲内に維持することを促進する工程をさらに含み得る。
【0025】
またさらなる実施の形態において、その方法は、溶融材料の第1の流れの内側部分の加熱速度を調節して、ガラスリボンの厚さを厚さ範囲内に維持することを促進する工程をさらに含み得る。
【0026】
またさらなる実施の形態において、その方法は、溶融材料の第2の流れの外側部分の冷却速度を調節して、ガラスリボンの厚さを厚さ範囲内に維持することを促進する工程をさらに含み得る。
【0027】
またさらなる実施の形態において、その方法は、溶融材料の第2の流れの内側部分の加熱速度を調節して、ガラスリボンの厚さを厚さ範囲内に維持することを促進する工程をさらに含み得る。
【0028】
ここに開示された実施の形態の追加の特徴および利点が、以下の詳細な説明に述べられており、一部は、その説明から当業者に明白となるか、または以下の詳細な説明、特許請求の範囲、並びに添付図面を含む、ここに記載された実施の形態を実施することによって、認識されるであろう。先の一般的な説明および以下の詳細な説明の両方とも、ここに開示された実施の形態の性質および特徴を理解するための概要または骨子を提供する意図がある実施の形態を提示していることを理解すべきである。添付図面は、さらなる理解を与えるために含まれ、本明細書に包含され、その一部を構成する。図面は、本開示の様々な実施の形態を示し、説明と共に、その原理および作動を説明する働きをする。
【図面の簡単な説明】
【0029】
本開示のこれらと他の特徴、実施の形態および利点が、添付図面を参照して読んだときに、さらに理解することができる。
【
図1】本開示の実施の形態による、ガラス製造装置の例示の実施の形態を示す概略図
【
図2】
図1の線2-2に沿った成形デバイスの断面図
【
図3】本開示の実施の形態による成形デバイスの例示の実施の形態の概略図
【
図4】
図3の線4-4に沿った成形デバイスの断面図
【発明を実施するための形態】
【0030】
ここで、例示の実施の形態が示されている添付図面を参照して、実施の形態を以下により詳しく説明する。できるときはいつでも、同じまたは同様の部分を称するために、図面に亘り、同じ参照番号が使用される。しかしながら、本開示は、多くの異なる形態で具体化されることがあり、ここに述べられた実施の形態に限定されると解釈すべきではない。特に明記のない限り、本開示の1つの実施の形態の特徴の議論は、本開示の他の実施の形態の対応する特徴に等しく適応し得る。ひいては、これらの実施の形態のいずれかからのガラスリボンも、その後、分割されて、用途(例えば、ディスプレイ用途)のためにさらに加工するのに適した複数のガラス物品(例えば、分割されたガラスリボン)を提供することがある。例えば、ガラス物品(例えば、分割されたガラスリボン)は、液晶ディスプレイ(LCD)、電気泳動ディスプレイ(EPD)、有機発光ダイオードディスプレイ(OLED)、プラズマディスプレイパネル(PDP)、タッチセンサ、太陽光発電装置などを含む幅広い用途に使用することができる。
【0031】
ここでの開示の実施の形態は、溶融材料の失透および/またはガラスリボンのたるんだゆがみに遭遇せずに、所定の厚さ範囲内のガラスリボンとして基部から液相粘度の低い溶融材料を延伸する(例えば、フュージョンドローする)技術的利点を提供することができる。失透は、溶融材料が、十分に長い期間に亘りその液相温度より低く冷却されたときに生じ得る。本開示の実施の形態は、成形デバイスの壁(例えば、第1の壁、第2の壁)を加熱して、溶融材料の流れ(例えば、第1の流れ、第2の流れ)の内側部分の温度を、溶融材料の液相温度(例えば、溶融材料の対応する流れの液相温度)より高く維持することによって、失透を避けることができる。たるんだゆがみは、延伸されたガラスリボンが、重力、牽引ローラの力、またはその両方のいずれかの下で、その厚さ、位置合わせ、および/または形状を維持できないほど、成形デバイスから延伸された溶融材料の粘度が低すぎる場合に生じ得る。本開示の実施の形態は、溶融材料の流れ(例えば、第1の流れ、第2の流れ)の内側部分の反対の溶融材料のそれぞれの流れの外側部分を積極的に冷却して、ガラスリボンが延伸されるところの有効粘度を増加させることによって、たるんだゆがみを避けることができる。さらに別の技術的利点は、本開示の実施の形態は、失透およびたるんだゆがみを同時に減少させられる(例えば、避けられる)ことである。それに加え、本開示の実施の形態は、例えば、最終厚さを得るおよび/またはローラ(例えば、牽引ローラ)で取り扱うのに十分に剛性になり始めるためのガラスリボンの延伸長さを最小にすることによって、ガラスリボンをより効率的に延伸することができる。
【0032】
図1に概略示されるように、いくつかの実施の形態において、ガラス製造装置100は、ガラス溶融および供給装置102と、ある量の溶融材料121からガラスリボン103を製造するように設計された成形デバイス140を含む成形装置101とを備えることができる。ここに用いられているように、「ガラスリボン」という用語は、材料がガラス状態にない(すなわち、ガラス転移温度より高い)場合でさえ、成形デバイス140から延伸された後の材料を称する。いくつかの実施の形態において、ガラスリボン103は、ガラスリボン103の第1の外縁153および第2の外縁155に沿って形成された互いに反対のエッジビードの間に位置付けられた中央部分152を有し得る。それに加え、いくつかの実施の形態において、分割ガラスリボン104は、ガラス分割機149(例えば、スクライバ、罫書きホイール、ダイヤモンドチップ、レーザ)により分割路151に沿ってガラスリボン103から分割することができる。いくつかの実施の形態において、ガラスリボン103から分割ガラスリボン104の分割の前または後に、第1の外縁153および第2の外縁155に沿って形成されたエッジビードを除去して、より均一な厚さを有する分割ガラスリボン104として中央部分152を提供することができる。
【0033】
いくつかの実施の形態において、ガラス溶融および供給装置102は、貯蔵容器109からバッチ材料107を受け取るように方向付けられた溶融槽105を備えることができる。バッチ材料107は、モータ113により駆動されたバッチ供給デバイス111によって導入することができる。いくつかの実施の形態において、モータ113を始動させて、矢印117で示されるように、ある量のバッチ材料107を溶融槽105に導入するために、制御装置115を必要に応じて作動させることができる。溶融槽105は、バッチ材料107を加熱して、溶融材料121を提供することができる。いくつかの実施の形態において、ガラス溶融物プローブ119を用いて、直立管123内の溶融材料121のレベルを測定し、測定した情報を通信回線125によって制御装置115に通信することができる。
【0034】
それに加え、いくつかの実施の形態において、ガラス溶融および供給装置102は、溶融槽105の下流に位置し、第1の接続導管129によって溶融槽105に結合された清澄槽127を含む第1の状態調節ステーションを備えることができる。いくつかの実施の形態において、溶融材料121は、第1の接続導管129によって溶融槽105から清澄槽127に重力送りすることができる。例えば、いくつかの実施の形態において、重力が、溶融材料121を溶融槽105から清澄槽127へと第1の接続導管129の内部通路に押し通すことができる。それに加え、いくつかの実施の形態において、様々な技術によって、清澄槽127内の溶融材料121から気泡を除去することができる。
【0035】
いくつかの実施の形態において、ガラス溶融および供給装置102は、清澄槽127の下流に配置することができる混合槽131を含む第2の状態調節ステーションをさらに備えることができる。混合槽131は、溶融材料121の均一な組成物を提供し、それによって、清澄槽127から出る溶融材料121内に、そうしなければあるかもしれない不均一性を減少させるまたはなくすために用いることができる。図から分かるように、清澄槽127は、第2の接続導管135によって混合槽131に結合することができる。いくつかの実施の形態において、溶融材料121は、第2の接続導管135によって清澄槽127から混合槽131に重力送りすることができる。例えば、いくつかの実施の形態において、重力が、溶融材料121を清澄槽127から混合槽131へと第2の接続導管135の内部通路に押し通すことができる。
【0036】
それに加え、いくつかの実施の形態において、ガラス溶融および供給装置102は、混合槽131の下流に配置することができる供給槽133を含む第3の状態調節ステーションを備えることができる。いくつかの実施の形態において、供給槽133は、入口導管141中に供給すべき溶融材料121の状態を調節することができる。例えば、供給槽133は、入口導管141への溶融材料121を調節し、その一貫した流れを提供するためのアキュムレータおよび/または流量調整器として機能することができる。図から分かるように、混合槽131は、第3の接続導管137によって、供給槽133に結合することができる。いくつかの実施の形態において、溶融材料121は、第3の接続導管137によって混合槽131から供給槽133に重力送りすることができる。例えば、いくつかの実施の形態において、重力が、溶融材料121を混合槽131から供給槽133へとの第3の接続導管137に押し通すことができる。さらに示されるように、いくつかの実施の形態において、溶融材料121を成形装置101に、例えば、成形デバイス140の入口導管141に供給するために、供給管139を位置付けることができる。
【0037】
成形装置101は、ガラスリボンを延伸する(例えば、フュージョンドローする)ための成形楔を有する成形デバイスを備えることができる。実例として、図示され、下記に開示される成形デバイス140は、ガラスリボン103に延伸できる溶融材料121のリボンを製造するための成形楔209の、基部145として画成される底縁から離れて溶融材料121を延伸する(例えば、フュージョンドローする)ために設けることができる。例えば、いくつかの実施の形態において、溶融材料121は、入口導管141から成形デバイス140に供給することができる。次に、溶融材料121は、少なくとも一部は成形デバイス140の構造に基づいて、ガラスリボン103に成形することができる。例えば、図から分かるように、溶融材料121は、ガラス成形装置100の延伸方向154に延在する延伸経路に沿って成形デバイス140の底縁(例えば、基部145)から離れて延伸することができる。いくつかの実施の形態において、エッジディレクタ163、165が、成形デバイス140から離れて溶融材料121を方向付け、少なくとも一部には、ガラスリボン103の幅「W」を画成することができる。いくつかの実施の形態において、ガラスリボン103の幅「W」は、ガラスリボン103の第1の外縁153とガラスリボン103の第2の外縁155との間に延在し得る。いくつかの実施の形態において、ガラスリボン103の幅「W」は、約20ミリメートル(mm)以上、約50mm以上、約100mm以上、約500mm以上、約1,000mm以上、約2,000mm以上、約3,000mm以上、約4,000mm以上であり得るが、さらに別の実施の形態において、他の幅を設けることができる。いくつかの実施の形態において、ガラスリボン103の幅「W」は、約20mmから約4,000mm、約50mmから約4,000mm、約100mmから約4,000mm、約500mmから約4,000mm、約1,000mmから約4,000mm、約2,000mmから約4,000mm、約3,000mmから約4,000mm、約20mmから約3,000mm、約50mmから約3,000mm、約100mmから約3,000mm、約500mmから約3,000mm、約1,000mmから約3,000mm、約2,000mmから約3,000mm、約2,000mmから約2,500mmの範囲、およびそれらの間の全ての範囲と部分的範囲にあり得る。
【0038】
図2は、
図1の線2-2に沿った成形装置101(例えば、成形デバイス140)の断面図を示す。いくつかの実施の形態において、成形デバイス140は、入口導管141から溶融材料121を受け取るように方向付けられた管201を備えることができる。成形デバイス140は、成形楔209の互いに反対の端部161、162(
図1参照)の間に延在する一対の下方に傾斜した集束表面部分を有する第1の壁213および第2の壁214を含む成形楔209をさらに備えることができる。第1の壁213および第2の壁214は、延伸方向154に沿って集束して、成形デバイス140の基部145に沿って交差する、成形楔209の一対の下方に傾斜した集束表面部分を構成することができる。ここに用いられているように、本開示の成形デバイス140、301およびその中に部品上の位置は、延伸方向に基づいて別の位置に対して上流または下流と称されることがある。それに加え、いくつかの実施の形態において、溶融材料121は、成形デバイス140の管201に流入し、それに沿って流れることができる。
図2に示されるように、管201は、領域207を画成する内面206を有する管壁205を含むことができる。図から分かるように、管壁205は、領域207を構成する流路を少なくとも部分的に取り囲む。図から分かるように、管壁205の外面204は、スロット203を構成することができる。スロット203は、1つの連続スロットを構成してもよいが、
図2に示された図に垂直に揃えられた複数のスロットが設けられてもよい。いくつかの実施の形態において、スロット203は、拡大端部を含むことがある。いくつかの実施の形態において、図示されていないが、スロット203は、減少することにより、例えば、中間部分から第1の外端部分および第2の外端部分まで断続的にまたは連続的に減少することにより、
図2に示された図に垂直な方向に沿って変動しても差し支えない。さらに、図示されていないが、スロット203は、
図2に示された図に垂直かつ、互いに平行に延在することがある複数の列のスロットを含んでも差し支えない。
【0039】
図2および4に示されるように、スロット203は、管壁205を通って延在する貫通スロットを含むことができる。図から分かるように、いくつかの実施の形態において、スロット203は、管壁205の外面204および内面206に開かれて、領域207と管壁205の外面204との間に流体連通を提供することができる。
図2および4から分かるように、本開示の実施の形態のいずれかにおいて、スロット203(必要に応じて、複数のスロットを含む)を、管201の頂点で管壁205の外面204内に設けることができる。さらに別の実施の形態において、スロット(必要に応じて、複数のスロットを含む)は、管201および/または基部145を2等分することがある。理論によって束縛されるものではないが、頂点に沿ってスロット(必要に応じて、複数のスロットを含む)で管201および/または基部145を2等分することは、スロットから出た溶融材料を反対に流れる流れ(例えば、溶融材料121の第1の流れ211、溶融材料121の第2の流れ212)に均一に分割するのに役立つことができる。
【0040】
管201の管壁205は、導電性材料から作られることがある。ここに用いられているように、材料は、約0.0001オーム・メートル(Ωm)以下の20℃での抵抗率(例えば、約10,000ジーメンス毎メートル(S/m)以上の導電率)を有する場合、導電性である。導電性材料の実施の形態として、マンガン、ニッケルクロム合金(例えば、ニクロム)、鋼鉄、チタン、鉄、ニッケル、亜鉛、タングステン、金、銅、銀、白金、ロジウム、イリジウム、オスミウム、パラジウム、ルテニウムおよびその組合せが挙げられる。さらに別の実施の形態において、管201の管壁205は、白金または白金合金から作られることがあるが、溶融材料に適合し、高温で構造的完全性を与える他の材料が提供されてもよい。いくつかの実施の形態において、白金合金は、白金ロジウム、白金イリジウム、白金パラジウム、白金金、白金オスミウム、白金ルテニウム、およびその組合せを含むことがある。いくつかの実施の形態において、白金または白金合金は、耐火金属、例えば、モリブデン、レニウム、タンタル、チタン、タングステン、ルテニウム、オスミウム、ジルコニウム、二酸化ジルコニウム(ジルコニア)、および/またはその合金も含むことがある。さらに別の実施の形態において、白金または白金合金は、酸化物分散強化材料を含むことができる。さらなる実施の形態において、管壁205全体は、白金または白金合金を含むまたはそれらから実質的になることがある。それゆえ、いくつかの実施の形態において、前記導管は、領域207を画成する管壁205を含む白金管201を構成することができる。いくつかの実施の形態において、その壁は、白金を含まない上述した材料の内の1つ以上から作られることがある。管201(例えば、白金管)の材料費を減少させるために、導管の管壁205の厚さは、約0.5ミリメートル(mm)から約10mm、約0.5mmから約7mm、約0.5mmから約3mm、約1mmから約10mm、約1mmから約7mm、約3mmから約10mm、約3mmから約7mmの範囲、もしくはそれらの間の任意の範囲または部分的範囲にあり得る。上述した範囲の内のいずれかの範囲内の管壁205の厚さを有する管201を提供することによって、管201にとって所望のレベルの構造的完全性を提供するのに十分に大きい厚さを提供しつつ、管201(例えば、白金管)を製造するための材料費を減少させるために最小にできる厚さも提供することができる。
【0041】
管201の管壁205は、管201の製造費および/または組立費を減少させるために、および/または管201の機能性を増すために、幅広い範囲のサイズ、形状、および構造を有することができる。例えば、図から分かるように、管壁205の外面204および/または内面206は、円形を構成することがあるが、さらに別の実施の形態において、他の曲線のある形状(例えば、長円)または多角形の形状が設けられてもよい。外面204と内面206の両方に曲線のある形状(例えば、円形)を提供することによって、管壁205に一定の厚さを与えることができ、管壁205に高い構造強度を与え、管201の領域207を通る溶融材料121の一貫した流れを促進するのに役立つことができる。さらに、
図2および4から分かるように、管201の外面204および/または内面206は、
図2および4に示された図に垂直な方向の長さに沿って幾何学的に類似の円形(または他の形状)を含み得る。そのような実施の形態において、スロット203を通る流量は、スロット203の幅を変えることによって、制御する(例えば、実質的に同じに維持する)ことができる。
【0042】
本開示の実施の形態のいずれかの管201は、連続管からなり得るが、さらに別の実施の形態において、分割管が設けられてもよい。例えば、管201は、その長さに沿って分割されていない連続管からなり得る。そのような連続管は、構造強度が増加したシームレス管を提供するために有益であろう。いくつかの実施の形態において、分割管が提供されることがある。例えば、成形デバイス140、301の管201は、必要に応じて、隣接する管セグメントの対の隣接端部の間の継手で直列に互い接続できる管セグメントを含むことができる。いくつかの実施の形態において、その継手は、管セグメントを一体管として一体接合するための溶接継手からなることがある。いくつかの実施の形態において、継手は、拡散結合継手、雄雌継手、またはネジ継手からなることがある。管201を一連の管セグメントとして提供すると、いくつかの用途において、管201の製造が簡単になることがある。
【0043】
いくつかの実施の形態において、図示されていないが、成形デバイスは、管の代わりに樋を含むことがある。そのような実施の形態において、溶融材料121は、成形デバイスの樋に流れ込み、それに沿って流れることができる。次に、溶融材料121は、対応する堰を越え、対応する堰の外面を下方に同時に流れることによって、樋から溢れることができる。
【0044】
図2および4に示されるように、成形楔209は、第1の外面223を画成する第1の壁213および第2の外面224を画成する第2の壁214を備えることができる。
図2および4に示されるように、いくつかの実施の形態において、第1の壁213(例えば、白金壁)の上流端は、管201の外面204の第1の周辺位置208aで第1の界面により管201(例えば、白金管)の管壁205に取り付けることができる。同様に、第2の壁214(例えば、白金壁)の上流端は、管201の外面204の第2の周辺位置208bで第2の界面により管201(例えば、白金管)の管壁205に取り付けることができる。図から分かるように、第1の周辺位置208aおよび第2の周辺位置208bの各々は、管201のスロット203から下流に位置することができる。その結果、スロット203は、第1の周辺位置208aと第2の周辺位置208bとの間の円周方向に位置することができる。いくつかの実施の形態において、第1の壁213の上流端および第2の壁214の上流端は、管201の管壁205に一体接合し、機械加工して、管201の外面204と壁の外面(例えば、第1の壁213の第1の外面223、第2の壁214の第2の外面224)との間に滑らかな対応界面を有することができる。いくつかの実施の形態において、第1の壁213の上流端と第2の壁214の上流端を管壁205に一体接合することは、継手、例えば、溶接継手、拡散結合継手、雄雌継手、またはネジ継手を形成することを含み得る。
【0045】
いくつかの実施の形態において、
図2および4に示されるように、第1の壁213の上流部分と第2の壁214の上流部分は、管201との対応する界面から延伸方向154に沿って互いから離れるように最初に広がることができる。理論によって束縛されるものではないが、第1の壁と第2の壁を互いから離れるように広げることにより、延伸方向に沿った溶融材料の流れを促進しつつ、いくつかの実施の形態において、支持梁のための空間を増加させることもできる。いくつかの実施の形態において、図示されていないが、第1の壁と第2の壁の上流部分は、互いに平行であり得る。
【0046】
いくつかの実施の形態において、
図2および4に示されるように、第1の外面223および第2の外面224は、延伸方向154に集束して、成形楔209の基部145を形成することができる。いくつかの実施の形態において、基部145は、第1の外面223および第2の外面224の集束部で一体継手を構成することがある。いくつかの実施の形態において、その一体継手は、単一(例えば、モノリス)材料から作られることがある、または継手を構成することがある。さらに別の実施の形態において、継手は、拡散結合継手、雄雌継手、またはネジ継手を構成することがある。
【0047】
いくつかの実施の形態において、成形デバイス140、301の第1の壁213および/または第2の壁214は、先に定義されたように、導電性材料から作ることができる。さらに別の実施の形態において、第1の壁213および/または第2の壁214は、上述した管201の組成と似ているかまたは同じ白金および/または白金合金から作られることがあるが、さらに別の実施の形態において、異なる組成が用いられてもよい。またさらなる実施の形態において、第1の壁213および第2の壁214の各々は、白金から作ることができる。さらなる実施の形態において、第1の壁213および/または第2の壁214は、白金を含有しない、管201について先に述べられた材料の内の1つ以上から作られることがある。第1の壁213の厚さ225は、第1の外面223と第1の内面233との間に規定することができる。第2の壁214の厚さ226は、第2の外面224と第2の内面234との間に規定することができる。材料費を減少させるために、第1の壁213の厚さ225および/または第2の壁214(例えば、白金壁)の厚さ226は、例えば、約0.5mmから約10mm、約0.5mmから約7mm、約0.5mmから約3mm、約1mmから約10mm、約1mmから約7mm、約3mmから約10mm、約3mmから約7mmの範囲内、もしくはそれらの間の任意の範囲または部分的範囲内にあり得る。厚さの減少は、材料費全体の減少をもたらすことができる。
【0048】
図2および4に示されるように、第1の壁213は、第1の壁213の第1の外面223と反対の第1の内面233を有することがある。図から分かるように、第2の壁214は、第2の壁214の第2の外面224と反対の第2の内面234を有することがある。第1の内面233および第2の内面234は、
図2および4に示されるように、成形デバイス140、301内に空洞220を少なくとも部分的に画成することがある。いくつかの実施の形態において、空洞220は、管201の管壁205によりさらに画成されることがある。先に述べたように、支持梁157および/またはヒータ241、303が、第1の内面233および第2の内面234により少なくとも部分的に画成された空洞220内に配置されることがある。
【0049】
図2および4に示されるように、空洞220内に配置された支持梁157は、管201および領域207内の溶融材料121の質量を支持することができる。さらに別の実施の形態において、支持梁157は、管201および管201に関連する溶融材料121の質量に加え、管201の形状および/または寸法、例えば、スロット203の形状と寸法を維持するのに役立つように作られることがある。いくつかの実施の形態において、支持梁157は、
図1および3に示されるように、互いに反対の位置158a、158bで、支持される(例えば、単に支持される)べき基部145の幅の外側に横方向に延在することができる。それゆえ、支持梁157は、形成されたガラスリボン103の幅「W」よりも長くあり得、成形デバイス140、301を完全に支持するために、成形デバイス140、301を横方向に延在する空洞220を通って延在することができる。それに加え、
図2および4に示されるように、支持梁157は、成形デバイス140、301の空洞220内の第1の壁213と第2の壁214との間に配置することができ、これにより、これらの壁に、第1の壁213および/または第2の壁214の小さい厚さにもかかわらず、使用中の変形に抵抗するのに十分な構造的完全性を与えることができる。それゆえ、第1の壁213および第2の壁214の構造は、それらの間に配置された支持梁157によって維持することができる。さらに、第1の壁213および第2の壁214は、延伸方向154に集束して、基部145を形成し、ここで、第1の壁213および第2の壁214によって、強力な三角構造を形成することができる。このように、先に規定された範囲内の薄壁により、構造的に剛性の構造を達成することができる。
【0050】
本開示の支持梁は、例えば、1つのモノリス支持梁として設けることができる。いくつかの実施の形態において、図示されていないが、支持梁は、必要に応じて、第1の支持梁およびその第1の支持梁を支持する第2の支持梁を含むことができる。さらに別の実施の形態において、その第1の支持梁および第2の支持梁は、第1の支持梁が第2の支持梁の上に重ねられている支持梁の積層体を構成することができる。支持梁の積層体を設けることによって、製造を簡単にするおよび/または製造費を減少させることができる。例えば、いくつかの実施の形態において、第2の支持梁は、第2の支持梁の互いに反対の端部分が、互いに反対の位置(例えば、位置158a、158b)で、支持される(例えば、単に支持される)べき基部145の幅の外側に横方向に延在できるように第1の支持梁よりも長いことがあり得る。それゆえ、第2の支持梁は、形成されたガラスリボン103の幅「W」よりも長くあり得、成形デバイス140、301を完全に支持するために、成形デバイス140、301を横方向に延在する空洞220を通って延在することができる。さらに、第2の支持梁は、形状、例えば、図示された長方形の形状を有することがあるが、材料費を減少させつつ、それでも、支持梁に高い慣性の曲げモーメントを与えるために、中空形状、I形梁の形状、または別の形状が設けられてもよい。さらに、第1の支持梁は、先に述べたような導管の形状および寸法を維持するのに役立つように導管を支持する形状で製造することができる。
【0051】
いくつかの実施の形態において、支持梁157は、1種類以上のセラミックを含む支持材料から作ることができる。支持梁のセラミック材料の例示の実施の形態は、炭化ケイ素(SiC)を含むことができる。いくつかの実施の形態において、支持梁に、他のセラミック(例えば、酸化物、炭化物、窒化物、酸窒化物)が使用されることがある。いくつかの実施の形態において、支持材料は、約1200℃以上、約1300℃以上、約1400℃以上、約1500℃以上、約1600℃以上、または約1700℃以上の温度でその機械的性質および寸法安定性を維持するように設計することができる。さらに別の実施の形態において、支持梁157は、約1400℃以上の温度で約1メガパスカル(MPa)から5MPaの範囲の圧力下で、1×10-12/sから1×10-14/sのクリープ速度を有する支持材料から製造することができる。そのような支持材料は、クリープを最小にして、高温(例えば、1400℃)で導管により運ばれる溶融材料および管を十分に支持して、溶融材料を汚染せずに、溶融材料と物理的に接触するのに理想的な白金または他の高価な耐火材料の使用を最小にする成形デバイス140、301を提供しつつ、成形槽および成形デバイス140、301により運ばれる溶融材料の質量下の大きい応力に耐えることのできる安価な材料から製造された支持梁157を提供することができる。それと同時に、上述した材料から製造された支持梁157は、高い応力および温度の下でクリープに耐えて、導管およびその導管に関連する壁(例えば、白金壁)の位置と形状を維持することができる。さらに別の実施の形態において、支持梁157は、第1の支持梁および第2の支持梁からなることがあり、その第1の支持梁および第2の支持梁は、実質的に同じまたは同一の材料から製造されてもよいが、さらなる実施の形態において、代わりの材料が設けられることがある。
【0052】
いくつかの実施の形態において、第1の壁213および/または第2の壁214の材料は、支持梁157の材料と物理的接触するのに不適合であることがある。例えば、いくつかの実施の形態において、第1の壁213および/または第2の壁214は、白金(例えば、白金または白金合金)から作られ得、支持梁157は、その白金が支持梁157と接触し得た場合、第1の壁213および/または第2の壁214の白金を腐食させるか、または他のやり方で化学的に反応することのある支持材料(例えば、炭化ケイ素)から作られ得る。それゆえ、いくつかの実施の形態において、不適合な材料の間の接触を避けるために、壁(例えば、第1の壁213、第2の壁214)のいずれの部分および管201のいずれの部分も、支持梁157のいずれの部分と物理的に接触するのが妨げられるであろう。図から分かるように、例えば、
図2および4において、第1の壁213および第2の壁214の各々は、支持梁157のどの部分とも物理的に接触しないように間隔が空けられている。さらに、管201は、支持梁157のどの部分とも物理的に接触しないように間隔を空けることができる。支持梁157から壁の間隔を空けるために、様々な技術を使用することができる。例えば、間隔を設けるために、支柱または肋材が設けられることがある。
【0053】
いくつかの実施の形態において、図から分かるように、壁(例えば、第1の壁213、第2の壁214)と支持梁157との間に中間材料210の層を設けて、支持梁157と接触しないように、対応する壁(例えば、第1の壁213、第2の壁214)の間隔を空けることがある。さらなる実施の形態において、第1の壁213および/または第2の壁214の全ての部分と、支持梁157の隣接して間隔が空けられた部分との間に、中間材料210の層が連続的に設けられることがある。いくつかの実施の形態において、図から分かるように、支持梁157と接触しないように管201から間隔を空けるために、管201と支持梁157との間に、中間材料210の層が設けられることがある。さらに別の実施の形態において、管201の全ての部分と、支持梁157の隣接して間隔が空けられた部分との間に、中間材料210の層が連続的に設けられることがある。理論によって束縛されるものではないが、中間材料210の連続層を設けることにより、第1の壁213、第2の壁214、および管201の全ての部分に亘り、上述した構造から間隔が空けられた支持梁157によって、均一な支持を促進することができる。壁(例えば、第1の壁213、第2の壁214)および支持梁157の材料に応じて、様々な材料を中間材料210として使用することができる。例えば、中間材料210は、成形デバイス140、301で溶融材料121を収容し、導くことに関連する高い温度および圧力の条件下で、管201、第1の壁213、および/または第2の壁214(例えば、白金)、並びに支持部材(例えば、炭化ケイ素)と接触するのに適合する材料を含むことができる。いくつかの実施の形態において、中間材料210は、耐火材料を含むことができる。適切な耐火材料の例示の実施の形態に、ジルコニアおよびアルミナがある。いくつかの実施の形態において、他の耐火材料(例えば、酸化物、石英、ムライト)を使用してもよい。それゆえ、さらなる実施の形態において、白金または白金合金壁(例えば、第1の壁213、第2の壁214)および白金管(例えば、管201)を、中間材料210(例えば、アルミナ)の層によって、支持梁157(例えば、炭化ケイ素から作られた)のどの部分とも物理的に接触しないように間隔を空けることができる。
【0054】
図2および4に示されるように、成形デバイス140、301は、成形デバイス140、301の空洞220内に配置されたヒータ241、303をさらに備えることができる。
図2に示されるような、いくつかの実施の形態において、ヒータ241は、成形デバイス140の第1の壁213および/または第2の壁214により支持することができる。図示されたような、いくつかの実施の形態において、ヒータ241は、空洞220の最下部分を画成する第1の壁213の第1の内面233および第2の壁214の第2の内面234の最下部分によって支持することができる。
図3~4に示されるような、いくつかの実施の形態において、ヒータ303は、成形体の残りから独立して支持することができる。例えば、
図3に示されるように、ヒータ303は、互いに反対の位置304a、304bで支持される(例えば、単に支持される)べき基部145の幅の外側に横方向に延在することができる。それゆえ、ヒータ303は、形成されたガラスリボン103の幅「W」よりも長くあり得、成形デバイス301を横方向に延在する空洞220を通って延在することができる。
図2に示されるような、いくつかの実施の形態において、ヒータ241の断面は多角形を有することがある。ヒータ241の多角形は、空洞220の最下部分内のヒータ241の設置を容易にすることができる。図示されたような、さらなる実施の形態において、ヒータ241の断面は、三角形を有することがある。さらなる実施の形態において、図示されていないが、ヒータの断面は、四辺形、五角形、六角形などの形状を有することがある。
図4に示されるような、いくつかの実施の形態において、ヒータ303の断面は、曲線のある形状を有することがある。
図4に示されるような、さらなる実施の形態において、ヒータ303の断面は、実質的に円形を有することがある。さらなる実施の形態において、図示されていないが、ヒータの断面は、非球面形状(例えば、楕円)を有することがある。いくつかの実施の形態において、図示されていないが、ヒータの断面は、多角形と曲線のある形状の組合せを有することがある。
【0055】
ヒータ241、303は、金属または耐火材料(例えば、セラミック)から作られることがある。金属の例示の実施の形態に、クロム、モリブデン、タングステン、白金、ロジウム、イリジウム、オスミウム、パラジウム、ルテニウム、金、およびそれらの組合せ(例えば、合金)がある。金属(例えば、合金)の追加の例示の実施の形態に、ニッケルクロム合金(例えば、ニクロム)、鉄クロムアルミニウム合金、および上述したような白金合金がある。セラミックの例示の実施の形態としては、炭化ケイ素、二ケイ化クロム(CrSi
2)、二ケイ化モリブデン(MoSi
2)、二ケイ化タングステン(WSi
2)、アルミナ、チタン酸バリウム、チタン酸鉛、ジルコニア、酸化イットリウム、およびその組合せが挙げられる。いくつかの実施の形態において、ヒータ241、303は、白金または白金合金から作ることができる。いくつかの実施の形態において、ヒータ241、303は、炭化ケイ素(例えば、Globar(登録商標))から作ることができる。いくつかの実施の形態において、ヒータ241、303は、二ケイ化モリブデンから作ることができる。
図2および4に示されるような、いくつかの実施の形態において、ヒータ241、303は、単一(例えば、モノリス)材料から作ることができる。いくつかの実施の形態において、図示されていないが、ヒータは、材料の外周の内部の空洞を構成することがある。さらなる実施の形態において、ヒータ内部の空洞に流体(例えば、空気、蒸気)が循環されることがある。
【0056】
図2および4に示されるような、いくつかの実施の形態において、電気絶縁材料243、401は、ヒータ241、303を少なくとも部分的に取り囲むことがある。ここに用いられているように、材料は、約10,000Ωm以上の抵抗率(例えば、約0.0001S/m以下の導電率)を有する場合、電気絶縁性である。本開示を通じて、第1の材料は、この第1の材料が第2の材料を少なくとも部分的に取り囲むために、第2の材料と接触する必要はない;そうではなく、第1の材料は、デバイスの断面において、第2の材料の周囲から離れて延在する線が、第2の材料の周囲(例えば、外周)の約10%以上について第1の材料と遭遇する場合、第2の材料を少なくとも部分的に取り囲んでいる。例えば、
図2を参照すると、図示された断面において、ヒータ241の周囲(例えば、外周面)から延在する線が、その周囲の約10%以上について電気絶縁材料と遭遇するであろうから、電気絶縁材料243はヒータ241を少なくとも部分的に取り囲んでいる。
図4において、電気絶縁材料401はヒータ303と接触していないが、図示された断面において、ヒータ241の周囲(例えば、外周)から延在する線が、その周囲の約10%以上について電気絶縁材料401と遭遇するであろうから、電気絶縁材料401はヒータ303を少なくとも部分的に取り囲でいる。
図2に示されるような、いくつかの実施の形態において、電気絶縁材料243は、ヒータ241の周囲の約25%以上、または約50%以上について、ヒータ241を少なくとも部分的に取り囲むことがある。さらなる実施の形態において、図示されていないが、電気絶縁材料は、ヒータを完全に取り囲むことによって、ヒータを少なくとも部分的に取り囲むことがある。
図2に示されるような、いくつかの実施の形態において、ヒータ241は、電気絶縁材料243と接触することがある。
図2および4に示されるような、いくつかの実施の形態において、電気絶縁材料は、成形デバイス140、301の第1の内面233および第2の内面234と接触することによって、第1の壁213および第2の壁214と接触することがある。
図2および4に示されるような、いくつかの実施の形態において、ヒータ241、303は、、電気絶縁材料243、401と支持梁157との間に配置されることがある。図示されたような、いくつかの実施の形態において、ヒータ241、303を対応する壁(例えば、第1の壁213、第2の壁214)から電気的に絶縁し、対応する壁がヒータ241、303またはそのヒータからの微粒子(例えば、落下する微粒子)と接触するのを防ぐために、壁(例えば、第1の壁213、第2の壁214)とヒータ241、303との間に電気絶縁材料が設けられることがある。さらなる実施の形態において、電気絶縁材料243、401は、第1の壁213および/または第2の壁214の全ての部分と、ヒータ241、303の隣接して間隔が空けられた部分との間に連続的に設けられることがある。電気絶縁材料243、401は、電気絶縁性である中間材料210について先に列挙された材料のいずれを含んでも差し支えないが、さらなる実施の形態において、電気絶縁材料に他の材料が設けられてもよい。
【0057】
図2および4に示されるように、成形デバイス140、301は、第1の冷却装置251および/または第2の冷却装置252をさらに備えることができる。ここに用いられているように、冷却装置は、溶融材料の温度を低下させることのできる任意の装置を称する。いくつかの実施の形態において、第1の冷却装置251および/または第2の冷却装置252は、冷却された液体が循環するのに通る配管を備えることがある。いくつかの実施の形態において、第1の冷却装置251および/または第2の冷却装置252は、加熱された流体が循環するのに通る配管または電気抵抗ヒータを含むことがあり、この場合、冷却装置は、溶融材料121の温度を低下させる働きをする。第1の冷却装置251は第1の壁213の第1の外面223に面することができる。第2の冷却装置252は、第2の壁214の第2の外面224に面することができる。
【0058】
いくつかの実施の形態において、第1のカバー253が、第1の冷却装置251と溶融材料121の第1の流れ211との間に配置されることがある。いくつかの実施の形態において、第2のカバー254が、第2の冷却装置252と溶融材料121の第2の流れ212との間に配置されることがある。第1のカバー253および/または第2のカバー254は、それぞれの冷却装置の冷却効果を拡散し、それによって、その冷却効果を、溶融材料121のそれぞれの流れの幅に亘りより均一に分布させることができる。いくつかの実施の形態において、第1の冷却装置251は、溶融材料121の第1の流れ211の幅に亘り配置された複数の冷却装置を含むことがある。いくつかの実施の形態において、第2の冷却装置252は、溶融材料121の第2の流れ212の幅に亘り配置された複数の冷却装置を含むことがある。いくつかの実施の形態において、第1の冷却装置251は、延伸方向154に沿って配置された複数の冷却装置を含むことがある。いくつかの実施の形態において、第2の冷却装置252は、延伸方向154に沿って配置された複数の冷却装置を含むことがある。
【0059】
先に述べられた成形デバイス140、301のいずれかで、ある量の溶融材料121からガラスリボン103を製造する方法は、管201の領域207内の溶融材料121を流す工程を含むことができる。この方法は、管201の領域207からスロット203を通じて溶融材料121を、溶融材料121の第1の流れ211および溶融材料121の第2の流れ212として流す工程をさらに含むことができる。この方法は、延伸方向154に沿って第1の壁213の第1の外面223の上に溶融材料121の第1の流れ211を、そして延伸方向154に沿って第2の外面224の上に溶融材料121の第2の流れ212を流す工程をさらに含むことができる。溶融材料121の第1の流れ211および溶融材料121の第2の流れ212は、延伸方向154において集束することができる。いくつかの実施の形態において、溶融材料121の第1の流れ211および溶融材料121の第2の流れ212は、基部145で集束して、ガラスリボン103を形成することができる。この方法は、次に、成形楔209の基部145からガラスリボン103を延伸する工程を含むことができる。
【0060】
いくつかの実施の形態において、ガラスリボン103は、約1ミリメートル毎秒(mm/s)以上、約10mm/s以上、約50mm/s以上、約100mm/s以上、または約500mm/s以上、例えば、約1mm/sから約500mm/s、約10mm/sから約500mm/s、約50mm/sから約500mm/s、約100mm/sから約500mm/sの範囲、およびそれらの間の全ての範囲と部分的範囲の速度で、延伸方向154に沿って横断することができる。いくつかの実施の形態において、ガラス分割機149(
図1参照)が、次に、分割路151に沿ってガラスリボン103からガラスシートを分割することができる。図示されているように、いくつかの実施の形態において、分割路151は、第1の外縁153と第2の外縁155との間のガラスリボン103の幅「W」に沿って延在することができる。それに加え、いくつかの実施の形態において、分割路151は、ガラスリボン103の延伸方向154に対して垂直に延在することができる。さらに、いくつかの実施の形態において、延伸方向154は、ガラスリボン103を成形デバイス140からそれに沿って延伸できる方向を規定することができる。
【0061】
図2および4に示されるように、ガラスリボン103は、基部145から延伸することができ、ガラスリボン103の第1の主面215およびガラスリボン103の第2の主面216は、互いに反対方向を向き、ガラスリボン103の厚さ227(例えば、平均厚さ)を規定する。いくつかの実施の形態において、ガラスリボン103の厚さ227は、約2ミリメートル(mm)以下、約1.5mm以下、約1.2mm以下、約1mm以下、約0.5mm以下、約300マイクロメートル(μm)以下、または約200μm以下であり得るが、さらなる実施の形態において、他の厚さが設けられてもよい。いくつかの実施の形態において、ガラスリボン103の厚さ227は、約100μm以上、約200μm以上、約300μm以上、約600μm以上、約1mm以上、約1.2mm以上、または約1.5mm以上であり得るが、さらなる実施の形態において、他の厚さが設けられてもよい。例えば、いくつかの実施の形態において、ガラスリボン103の厚さ227は、約100μmから約2mm、約200μmから約2mm、約300μmから約2mm、約600μmから約2mm、約1mmから約2mm、約100μmから約1.5mm、約200μmから約1.5mm、約300μmから約1.5mm、約600μmから約1.5mm、約1mmから約1.5mm、約100μmから約1.2mm、約200μmから約1.2mm、約600μmから約1.2mmの厚さ範囲、もしくはそれらの間の任意の範囲または部分的範囲にあり得る。
【0062】
例示の溶融材料は、リチアを含まなくても、含んでもよく、その例に、ソーダ石灰溶融材料、アルミノケイ酸塩溶融材料、アルカリアルミノケイ酸塩溶融材料、ホウケイ酸塩溶融材料、アルカリホウケイ酸塩溶融材料、アルカリアルミノリンケイ酸塩溶融材料、およびアルカリアルミノホウケイ酸塩ガラス溶融材料がある。1つ以上の実施の形態において、溶融材料121は、モルパーセント(モル%)で、約40モル%から約80モル%の範囲のSiO2、約10モル%から約30モル%の範囲のAl2O3、約0モル%から約10モル%の範囲のB2O3、約0モル%から約5モル%の範囲のZrO2、約0モル%から約15モル%の範囲のP2O5、約0モル%から約2モル%の範囲のTiO2、約0モル%から約20モル%の範囲のR2O、および約0モル%から約15モル%の範囲のROを含むことがある。ここに用いられているように、R2Oは、アルカリ金属酸化物、例えば、Li2O、Na2O、K2O、Rb2O、およびCs2Oを称することができる。ここに用いられているように、ROは、MgO、CaO、SrO、BaO、およびZnOを称することができる。いくつかの実施の形態において、溶融材料121は、必要に応じて、約0モル%から約2モル%の範囲で、Na2SO4、NaCl、NaF、NaBr、K2SO4、KCl、KF、KBr、As2O3、Sb2O3、SnO2、Fe2O3、MnO、MnO2、MnO3、Mn2O3、Mn3O4、Mn2O7の各々をさらに含むことがある。いくつかの実施の形態において、ガラスリボン103および/またはガラスリボン103から形成されたガラスシートは透明であることがあり、これは、溶融材料121から延伸されたガラスリボン103が、400ナノメートル(nm)から700nmの可視光に亘り、約85%以上、約86%以上、約87%以上、約88%以上、約89%以上、約90%以上、約91%以上、または約92%以上の平均光透過率を有し得ることを意味する。
【0063】
本開示を通じて、溶融材料の液相温度は、それより高いと結晶が溶融材料(例えば、溶融材料は完全に液体である)内に存在できない最低温度である。言い換えると、液相温度は、熱力学的平衡で、結晶が溶融材料の液(例えば、溶解物、溶融物)相と共存できる最高温度である。本開示を通じて、溶融材料の液相粘度は、溶融材料が液相温度にあるときの溶融材料の粘度である。いくつかの実施の形態において、溶融材料121の液相粘度は、溶融材料121の第1の流れ211の液相粘度および/または溶融材料121の第2の流れ212の液相粘度と実質的に同じであり得る。いくつかの実施の形態において、溶融材料121の液相粘度(例えば、溶融材料121の第1の流れ211の液相粘度、溶融材料121の第2の流れ212の液相粘度)は、約5,000ポアズ以上、約8,000ポアズ以上、約10,000ポアズ以上、約15,000ポアズ以上、または約20,000ポアズ以上であり得る。いくつかの実施の形態において、溶融材料121の液相粘度(例えば、溶融材料121の第1の流れ211の液相粘度、溶融材料121の第2の流れ212の液相粘度)は、約200,000ポアズ以下、約100,000ポアズ以下、約50,000ポアズ以下、約35,000ポアズ以下、約30,000ポアズ以下、約25,000ポアズ以下、または約20,000ポアズ以下であり得る。いくつかの実施の形態において、溶融材料121の液相粘度(例えば、溶融材料121の第1の流れ211の液相粘度、溶融材料121の第2の流れ212の液相粘度)は、約5,000ポアズから約200,000ポアズ、約5,000ポアズから約100,000ポアズ、約5,000ポアズから約50,000ポアズ、約5,000ポアズから約35,000ポアズ、約5,000ポアズから約30,000ポアズ、約5,000ポアズから約25,000ポアズ、約5,000ポアズから約20,000ポアズ、約8,000ポアズから約100,000ポアズ、約8,000ポアズから約50,000ポアズ、約8,000ポアズから約30,000ポアズ、約8,000ポアズから約25,000ポアズ、約8,000ポアズから約20,000ポアズ、約10,000ポアズから約100,000ポアズ、約10,000ポアズから約50,000ポアズ、約10,000ポアズから約30,000ポアズ、約10,000ポアズから約25,000ポアズ、約10,000ポアズから約20,000ポアズ、約15,000ポアズから約30,000ポアズ、約15,000ポアズから約25,000ポアズ、約15,000ポアズから約20,000ポアズ、約20,000ポアズから約30,000ポアズの範囲、もしくはそれらの間の任意の範囲または部分的範囲にあり得る。
【0064】
前記方法は、成形デバイス140、301の第1の壁213を加熱して、溶融材料121の第1の流れ211の内側部分231を加熱する工程をさらに含むことができる。いくつかの実施の形態において、第1の壁213を加熱して、溶融材料121の第1の流れ211の内側部分231を加熱する工程は、溶融材料121の第1の流れ211の内側部分231の粘度を、溶融材料121の第1の流れ211の液相温度より低く維持することができる。さらなる実施の形態において、溶融材料121の第1の流れ211の内側部分231の粘度を維持する工程は、溶融材料121の第1の流れ211の内側部分231の温度を上昇させることによって、溶融材料121の第1の流れ211の内側部分231の粘度を減少させる工程を含むことができる。いくつかの実施の形態において、ヒータ241、303は、第1の壁213を加熱して、溶融材料121の第1の流れ211の内側部分231を加熱することができ、これにより、溶融材料121の第1の流れ211の内側部分231の粘度を、溶融材料121の第1の流れ211の液相温度より低く維持することができる。いくつかの実施の形態において、その方法は、溶融材料121の第1の流れ211の内側部分231の加熱速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程をさらに含むことができる。さらなる実施の形態において、溶融材料121の第1の流れ211の内側部分231の加熱速度を調節する工程は、ヒータ241、303の加熱速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程を含むことができる。
【0065】
前記方法は、成形デバイス140、301の第2の壁214を加熱して、溶融材料121の第2の流れ212の内側部分232を加熱する工程をさらに含むことができる。いくつかの実施の形態において、第2の壁214を加熱して、溶融材料121の第2の流れ212の内側部分232を加熱する工程は、溶融材料121の第2の流れ212の内側部分232の粘度を、溶融材料121の第2の流れ212の液相温度より低く維持することができる。さらなる実施の形態において、溶融材料121の第2の流れ212の内側部分232の粘度を維持する工程は、溶融材料121の第2の流れ212の内側部分232の温度を上昇させることによって、溶融材料121の第2の流れ212の内側部分232の粘度を減少させる工程を含むことができる。いくつかの実施の形態において、ヒータ241、303は、第2の壁214を加熱して、溶融材料121の第2の流れ212の内側部分232を加熱することができ、これにより、溶融材料121の第2の流れ212の内側部分232の粘度を、溶融材料121の第2の流れ212の液相温度より低く維持することができる。いくつかの実施の形態において、その方法は、溶融材料121の第2の流れ212の内側部分232の加熱速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程をさらに含むことができる。さらなる実施の形態において、溶融材料121の第2の流れ212の内側部分232の加熱速度を調節する工程は、ヒータ241、303の加熱速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程を含むことができる。
【0066】
前記方法は、第1の壁213の第1の外面223を加熱する工程および第2の壁214の第2の外面224を加熱する工程をさらに含むことができ、ここで、第1の壁213および第2の壁214は、延伸方向154に集束して、基部145を含む一体接合部を形成する。いくつかの実施の形態において、第1の壁213の第1の外面223を加熱する工程および第2の壁214の第2の外面224を加熱する工程は、基部145を加熱する工程をさらに含むことができる。さらなる実施の形態において、基部145を加熱する工程は、基部145の温度を、溶融材料121の第1の流れ211の液相温度より高く、また溶融材料121の第2の流れ212の液相温度より高く、維持することができる。さらに別の実施の形態において、その方法は、基部145の加熱速度を調節して、基部145の温度を、溶融材料121の第1の流れ211の液相温度より高く、また溶融材料121の第2の流れ212の液相温度より高く、維持する工程をさらに含むことができる。いくつかの実施の形態において、溶融材料121の第1の流れ211および溶融材料121の第2の流れ212が延伸されるところのガラスリボン103の粘度は、約8,000ポアズ以上、約10,000ポアズ以上、約15,000ポアズ以上、約20,000ポアズ以上、約35,000ポアズ以下、約30,000ポアズ以下、約25,000ポアズ以下、または約20,000ポアズ以下であり得る。いくつかの実施の形態において、溶融材料121の第1の流れ211および溶融材料121の第2の流れ212が集束するところのガラスリボン103の粘度は、約8,000ポアズから約35,000ポアズ、約8,000ポアズから約30,000ポアズ、約8,000ポアズから約25,000ポアズ、約8,000ポアズから約20,000ポアズ、約10,000ポアズから約35,000ポアズ、約10,000ポアズから約30,000ポアズ、約10,000ポアズから約25,000ポアズ、約10,000ポアズから約20,000ポアズ、約15,000ポアズから約35,000ポアズ、約15,000ポアズから約30,000ポアズ、約15,000ポアズから約25,000ポアズの範囲、もしくはそれらの間の任意の範囲または部分的範囲にあり得る。
【0067】
前記方法は、溶融材料121の第1の流れ211の外側部分221を冷却して、溶融材料121の第1の流れ211の外側部分221の粘度を、溶融材料121の第1の流れ211の液相粘度より高く増加させる工程をさらに含むことができる。いくつかの実施の形態において、その方法は、溶融材料121の第1の流れ211の外側部分221の冷却速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程をさらに含むことができる。
【0068】
前記方法は、溶融材料121の第2の流れ212の外側部分222を冷却して、溶融材料121の第2の流れ212の外側部分222の粘度を、溶融材料121の第2の流れ212の液相粘度より高く増加させる工程をさらに含むことができる。いくつかの実施の形態において、その方法は、溶融材料121の第2の流れ212の外側部分222の冷却速度を調節して、上述した厚さ範囲内のガラスリボン103の厚さ227の維持を促進する工程をさらに含むことができる。
【0069】
前記方法は、本開示の実施の形態の技術的利点を達成するために、溶融材料121の第1の流れ211の外側部分221を冷却する工程および/または溶融材料121の第2の流れ212の外側部分222を冷却する工程と組み合わせて、溶融材料121の第1の流れ211の内側部分231を加熱する工程および/または溶融材料121の第2の流れ212の内側部分232を加熱する工程を含むことができる。その方法は、本開示の実施の形態の技術的利点を達成するために、溶融材料121の第1の流れ211の外側部分221の冷却速度を調節する工程および/または溶融材料121の第2の流れ212の外側部分222の冷却速度を調節する工程と組み合わせて、溶融材料121の第1の流れ211の内側部分231の加熱速度を調節する工程および/または溶融材料121の第2の流れ212の内側部分232の加熱速度を調節する工程をさらに含むことができる。それに加え、上述した加熱工程、冷却工程、およびその調節工程は、上述した厚さ範囲内にあり得る、ガラスリボン103の所定の厚さ(例えば、厚さ227)を得るために、エッジローラ171a、171bの下流に位置する牽引ローラ173a、173bと組み合わせて作動させることができる。
【0070】
本開示の実施の形態の技術的利点は、前記所定の厚さが、溶融材料121の失透および/またはガラスリボン103のたるんだゆがみの発生率が減少した(例えば、遭遇しない)状態で得られることである。別の技術的利点は、その所定の厚さが、低い液相粘度(例えば、約5,000ポアズから約30,000ポアズの範囲にある、または約5,000ポアズから約20,000ポアズの範囲にある)を有する溶融材料について、溶融材料121の失透および/またはガラスリボン103のたるんだゆがみの発生率が減少した(例えば、遭遇しない)状態で得られることである。
【0071】
第1の壁213を加熱して、溶融材料121の第1の流れ211の内側部分231を加熱および/またはその加熱速度を調節して、溶融材料121の第1の流れ211の内側部分231の粘度を維持する工程は、失透を低減させる(例えば、なくす)のに役立ち得る。理論によって束縛されるものではないが、成形槽上で最長の滞在時間を有する溶融材料の流れの部分は、その溶融材料の流れの内側部分である。溶融材料121の第1の流れ211の内側部分231の粘度を、溶融材料121の第1の流れ211の液相粘度より高く維持する工程は、液相粘度より低い(例えば、液相温度より高い)材料に失透は生じ得ないので、失透を低下させる(例えば、防ぐ)ことができる。さらに、本開示の実施の形態は、例えば、最終厚さを得るための、および/またはローラ(例えば、牽引ローラ)で取り扱うのに十分に剛性になり始めるためのガラスリボンの延伸長さを最小にすることによって、ガラスリボンのより効率的な延伸(例えば、フュージョンドロー法)の技術的利点を提供することができる。
【0072】
第2の壁214を加熱して、溶融材料121の第2の流れ212の内側部分232を加熱および/またはその加熱速度を調節して、溶融材料121の第2の流れ212の内側部分232の粘度を維持する工程は、失透を低減させる(例えば、なくす)のに役立ち得る。溶融材料121の第2の流れ212の内側部分232の粘度を、溶融材料121の第2の流れ212の液相粘度より高く維持する工程は、液相粘度より低い(例えば、液相温度より高い)材料に失透は生じ得ないので、失透を低下させる(例えば、防ぐ)ことができる。
【0073】
両方とも先に開示された厚さ範囲内にある、第1の壁213および第2の壁214により少なくとも部分的に画成された空洞220内に配置されたヒータ241、303は、溶融材料121の第1の流れ211の内側部分231および/または溶融材料121の第2の流れ212の内側部分232の所定の領域に加熱を限定するという追加の技術的利点を提供することができる。第1の壁213および第2の壁214により少なくとも部分的に画成された空洞220は、成形デバイス140、301の上部(例えば、管201、支持梁157)からのヒータ241、303の熱的分離を提供する。それに加え、上述した厚さ範囲内にある第1の壁213および第2の壁214は、熱が第1の壁213および/または第2の壁214を通じて伝導されるときに、ヒータ241、303からの加熱の垂直の広がりを最小にし、これにより、溶融材料121の流れの内側部分(例えば、第1の流れ211の内側部分231、第2の流れ212の内側部分232)の領域の所定の部分の加熱を局部に限定することができる。加熱が局部化されるので、加熱を溶融材料の流れ211、212の内側部分231、232に限定して、たるんだゆがみをもたらすことのある過熱を避けると同時に、溶融材料の流れ211、212の内側部分231、232での溶融材料の流れの失透を防ぐことができる。
【0074】
溶融材料121の第1の流れ211の外側部分221を冷却する工程および/または溶融材料121の第1の流れ211の外側部分221の冷却速度を調節する工程は、溶融材料121の第1の流れ211の外側部分221の粘度を、溶融材料121の第1の流れ211の液相粘度より高く増加させるおよび/または維持することができる。理論によって束縛されるものではないが、粘度が液相粘度より高いように冷却される材料は、その後、短期間で失透しそうにない。理論によって束縛されるものではないが、溶融材料の流れの外側部分を積極的に冷却すると、その流れから延伸されたガラスリボンの有効(例えば、平均)粘度を増加させることができる。それゆえ、溶融材料121の第1の流れ211の外側部分221を冷却する工程および/またはその冷却速度を調節する工程は、基部145から延伸されるガラスリボン103の有効粘度を増加させることができ、それにより、たるんだゆがみを減少させる(例えば、なくす)ことができる。さらに、そのような冷却により、たるんだゆがみに遭遇せずに、牽引ローラ173a、173bからの牽引力をより大きくすることが促進される。さらに、基部145から延伸されるときにより高い粘度を有するガラスリボン103は、延伸されるときにより低い粘度を有するガラスリボンと比べて、延伸方向154により短い距離の後に、および/またはより迅速に、ローラ(例えば、牽引ローラ173a、173b)を使用して取り扱うことができる。
【0075】
溶融材料121の第2の流れ212の外側部分222を冷却する工程および/または溶融材料121の第2の流れ212の外側部分222の冷却速度を調節する工程は、溶融材料121の第2の流れ212の外側部分222の粘度を、溶融材料121の第2の流れ212の液相粘度より高く増加させるおよび/または維持することができる。第1の流れ211に関して先に述べたように、溶融材料121の第2の流れ212の外側部分222を冷却する工程および/またはその冷却速度を調節する工程は、基部145から延伸されるガラスリボン103の有効粘度を増加させることができ、それにより、たるんだゆがみを減少させる(例えば、なくす)ことができる。さらに、そのような冷却により、たるんだゆがみに遭遇せずに、牽引ローラ173a、173bからの牽引力をより大きくすることが促進される。さらに、基部145から延伸されるときにより高い粘度を有するガラスリボン103は、延伸されるときにより低い粘度を有するガラスリボンと比べて、延伸方向154により短い距離の後に、および/またはより迅速に、ローラ(例えば、牽引ローラ173a、173b)を使用して取り扱うことができる。
【0076】
様々な開示された実施の形態は、その特定の実施の形態に関連して記載された特定の特徴、要素、または工程を含むことがあるのが認識されよう。特定の特徴、要素、または工程は、1つの特定の実施の形態に関して記載されているが、様々な説明されていない組合せまたは順序で代わりの実施の形態と交換されても、組み合わされてもよいことも認識されよう。
【0077】
ここに用いられているように、名詞は、「少なくとも1つ」の対象を指し、明白に反対であると示唆されてない限り、「ただ1つ」の対象に限定されるべきではないことも理解されよう。例えば、「成分」への言及は、文脈上明白に他の意味に解釈される場合を除いて、そのような成分を2つ以上有する実施の形態を含む。同様に、「複数」は、「1つより多い」ことを示す意図がある。
【0078】
ここに用いられているように、「約」という用語は、量、サイズ、配合、パラメータ、および他の数量と特徴は、正確ではなく、正確である必要はないが、必要に応じて、許容差、変換係数、丸め、測定誤差など、並びに当業者に公知の他の要因を反映して、近似であるおよび/またはそれより大きいか小さいことがある。範囲は、「約」1つの特定値から、および/または「約」別の特定値までと、ここに表すことができる。そのような範囲が表された場合、実施の形態は、その1つの特定値から、および/または他方の特定値までを含む。同様に、値が、「約」という先行詞を使用して、近似として表されている場合、その特定値は別の実施の形態を形成することが理解されよう。範囲の各々の端点は、他方の端点に関してと、他方の端点とは関係なくの両方において有意であることがさらに理解されよう。
【0079】
ここに用いられている「実質的」、「実質的に」という用語、およびその変形は、記載された特徴が、ある値または記載と等しいか、またはほぼ等しいことを留意することが意図されている。例えば、「実質的に平らな」表面は、平らなまたはほぼ平らな表面を示すことが意図されている。さらに、先に定義したように、「実質的に類似」は、2つの値が等しいかまたはほぼ等しいことを示すことが意図されている。いくつかの実施の形態において、「実質的に類似」とは、互いに約10%以内、例えば、互いに約5%以内、または互いに約2%以内の値を示すことがある。
【0080】
特に明記のない限り、ここに述べられたどの方法も、その工程が特定の順序で行われることを要求していると解釈されることは、決して意図されていない。したがって、方法の請求項が、その工程がしたがうべき順序を実際に列挙していないか、またはその工程が特定の順序に限定されるべきことが、請求項または説明に他の様式で具体的に述べられていない場合、どの特定の順序も暗示されることは決して意図されていない。
【0081】
特定の実施の形態の様々な特徴、要素または工程が、移行句「含む」を使用して開示されることがあるが、移行句「からなる」または「から実質的になる」を使用して記載されることのあるものを含む代わりの実施の形態が暗示されることを理解すべきである。それゆえ、例えば、A+B+Cを含む装置に対して暗示される代わりの実施の形態は、装置がA+B+Cからなる実施の形態、および装置がA+B+Cから実質的になる実施の形態を含む。ここに用いられているように、「含む」および「含んでいる」という用語、並びにその変形は、特に明記のない限り、同意語であり、制約がないと解釈されるものとする。
【0082】
付随の請求項の精神および範囲から逸脱せずに、本開示に様々な改変および変更を行えることが、当業者に明白であろう。それゆえ、本開示は、この中の実施の形態の改変および変更を、それらが付随の請求項およびその同等物に含まれるという条件で、包含することが意図されている。
【0083】
以下、本発明の好ましい実施形態を項分け記載する。
【0084】
実施形態1
ガラスリボンを成形するための成形デバイスにおいて、
第1の外面、第1の内面、および該第1の外面と該第1の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第1の厚さを有する第1の壁、
第2の外面、第2の内面、および該第2の外面と該第2の内面との間に規定される、約0.5ミリメートルから約10ミリメートルの範囲の第2の厚さを有する第2の壁、
前記第1の外面と前記第2の外面の集束部の一体接合部であって、前記成形デバイスの基部を構成する一体接合部、および
前記第1の内面および前記第2の内面により少なくとも部分的に画成される空洞内に位置付けられたヒータ、
を備えた成形デバイス。
【0085】
実施形態2
前記ヒータが、前記第1の壁および前記第2の壁により支持されている、実施形態1に記載の成形デバイス。
【0086】
実施形態3
前記ヒータを少なくとも部分的に取り囲む電気絶縁材料をさらに備える、実施形態1または2に記載の成形デバイス。
【0087】
実施形態4
前記電気絶縁材料は、前記第1の壁の内面および前記第2の壁の内面と接触している、実施形態3に記載の成形デバイス。
【0088】
実施形態5
前記第1の壁が導電性材料から作られ、前記第2の壁が導電性材料から作られている、実施形態1から4のいずれか1つに記載の成形デバイス。
【0089】
実施形態6
前記第1の壁の導電性材料が白金または白金合金を含み、前記第2の壁の導電性材料が白金または白金合金を含む、実施形態5に記載の成形デバイス。
【0090】
実施形態7
流路を少なくとも部分的に取り囲む管壁および該管壁を通って延在するスロットを有する管と、前記管壁の外面の第1の周辺位置に取り付けられた前記第1の壁の上流端と、前記管壁の外面の第2の周辺位置に取り付けられた前記第2の壁の上流端とを備え、前記スロットは、前記第1の周辺位置と前記第2の周辺位置との間の円周方向に位置している、実施形態1から6のいずれか1つに記載の成形デバイス。
【0091】
実施形態8
前記管が、白金または白金合金から作られている、実施形態7に記載の成形デバイス。
【0092】
実施形態9
前記管を支持する支持梁をさらに備え、該支持梁は、該管と前記ヒータとの間の空洞内に位置付けられたセグメントを含む、実施形態7または8に記載の成形デバイス。
【0093】
実施形態10
前記第1の外面に面する第1の冷却装置および前記第2の外面に面する第2の冷却装置をさらに備える、実施形態1から9のいずれか1つに記載の成形デバイス。
【0094】
実施形態11
実施形態1から10のいずれか1つに記載に成形デバイスでガラスリボンを成形する方法において、
前記第1の壁の第1の外面の上に溶融材料の第1の流れを流し、前記第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程であって、該溶融材料の第1の流れと該溶融材料の第2の流れは、前記基部で集束して、ガラスリボンを成形し、該溶融材料の第1の流れの液相粘度および該溶融材料の第2の流れの液相粘度の各々は、約5,000ポアズから約30,000ポアズの範囲にある、工程、
前記第1の壁を前記ヒータで加熱して、該第1の壁の第1の外面と接触する前記溶融材料の第1の流れの内側部分を加熱し、該溶融材料の第1の流れの内側部分の粘度を、該溶融材料の第1の流れの液相粘度より低く維持し、前記第2の壁を前記ヒータで加熱して、該第2の壁の第2の外面と接触する前記溶融材料の第2の流れの内側部分を加熱し、該溶融材料の第2の流れの内側部分の粘度を、該溶融材料の第2の流れの液相粘度より低く維持する工程、および
前記ガラスリボンを前記基部から延伸する工程であって、該ガラスリボンは、約100マイクロメートルから約2ミリメートルの厚さ範囲にある厚さを有する工程、
を有してなる方法。
【0095】
実施形態12
前記基部の加熱速度を調節して、該基部の温度を、前記溶融材料の第1の流れの液相温度より高く、かつ前記溶融材料の第2の流れの液相温度より高く維持する工程をさらに含む、実施形態11に記載の方法。
【0096】
実施形態13
ガラスリボンを成形する方法において、
第1の壁の第1の外面の上に溶融材料の第1の流れを流し、第2の壁の第2の外面の上に溶融材料の第2の流れを流す工程であって、該溶融材料の第1の流れと該溶融材料の第2の流れは、集束して、ガラスリボンを成形し、該溶融材料の第1の流れの液相粘度および該溶融材料の第2の流れの液相粘度の各々は、約5,000ポアズから約30,000ポアズの範囲にある、工程、
前記第1の壁を加熱して、前記第1の壁の第1の外面と接触する前記溶融材料の第1の流れの内側部分を加熱し、該溶融材料の第1の流れの内側部分の粘度を、該溶融材料の第1の流れの液相粘度より低く維持し、前記第2の壁を加熱して、該第2の壁の第2の外面と接触する前記溶融材料の第2の流れの内側部分を加熱し、該溶融材料の第2の流れの内側部分の粘度を、該溶融材料の第2の流れの液相粘度より低く維持する工程、および
約100マイクロメートルから約2ミリメートルの厚さ範囲にある厚さを有する前記ガラスリボンを延伸する工程、
を有してなる方法。
【0097】
実施形態14
前記第1の外面と前記第2の外面の集束部にある一体接合部が基部を構成し、前記方法が、前記基部の加熱速度を調節して、該基部の温度を、前記溶融材料の第1の流れの液相温度より高く、かつ前記溶融材料の第2の流れの液相温度より高く維持する工程をさらに含む、実施形態13に記載の方法。
【0098】
実施形態15
前記溶融材料の第1の流れの液相粘度および前記溶融材料の第2の流れの液相粘度が、約5,000ポアズから約20,000ポアズの範囲にある、実施形態11から14のいずれか1つに記載の方法。
【0099】
実施形態16
前記厚さ範囲が、約100マイクロメートルから約1.5ミリメートルである、実施形態11から15のいずれか1つに記載の方法。
【0100】
実施形態17
前記溶融材料の第1の流れおよび前記溶融材料の第2の流れが集束するところの前記ガラスリボンの粘度が、約8,000ポアズから約35,000ポアズの範囲にある、実施形態11から16のいずれか1つに記載の方法。
【0101】
実施形態18
前記溶融材料の第1の流れの内側部分と反対の該溶融材料の第1の流れの外側部分を冷却して、該溶融材料の第1の流れの外側部分の粘度を該溶融材料の第1の流れの液相粘度より高く増加させる工程、および
前記溶融材料の第2の流れの内側部分と反対の該溶融材料の第2の流れの外側部分を冷却して、該溶融材料の第2の流れの外側部分の粘度を該溶融材料の第2の流れの液相粘度より高く増加させる工程、
をさらに含む、実施形態11から17のいずれか1つに記載の方法。
【0102】
実施形態19
前記溶融材料の第1の流れの外側部分の冷却速度を調節して、前記ガラスリボンの厚さを前記厚さ範囲内に維持することを促進する工程をさらに含む、実施形態18に記載の方法。
【0103】
実施形態20
前記溶融材料の第1の流れの内側部分の加熱速度を調節して、前記ガラスリボンの厚さを前記厚さ範囲内に維持することを促進する工程をさらに含む、実施形態18または19に記載の方法。
【0104】
実施形態21
前記溶融材料の第2の流れの外側部分の冷却速度を調節して、前記ガラスリボンの厚さを前記厚さ範囲内に維持することを促進する工程をさらに含む、実施形態18から20のいずれか1つに記載の方法。
【0105】
実施形態22
前記溶融材料の第2の流れの内側部分の加熱速度を調節して、前記ガラスリボンの厚さを前記厚さ範囲内に維持することを促進する工程をさらに含む、実施形態18から21のいずれか1つに記載の方法。
【符号の説明】
【0106】
100 ガラス製造装置
101 成形装置
102 ガラス溶融および供給装置
103 ガラスリボン
104 分割ガラスリボン
107 バッチ材料
109 貯蔵容器
111 バッチ供給デバイス
113 モータ
115 制御装置
119 ガラス溶融物プローブ
121 溶融材料
125 通信回線
127 清澄槽
129 第1の接続導管
131 混合槽
133 供給槽
135 第2の接続導管
137 第3の接続導管
140、301 成形デバイス
141 入口導管
145 基部
151 分割路
152 中央部分
153 第1の外縁
155 第2の外縁
157 支持梁
163、165 エッジディレクタ
201 管
203 スロット
205 管壁
207 領域
209 成形楔
210 中間材料
213 第1の壁
214 第2の壁
220 空洞
223 第1の外面
224 第2の外面
233 第1の内面
234 第2の内面
241、303 ヒータ
243、401 電気絶縁材料
251 第1の冷却装置
252 第2の冷却装置
253 第1のカバー
254 第2のカバー
【国際調査報告】