IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マイクロ モーション インコーポレイテッドの特許一覧

<>
  • 特表-合計検定時間の決定方法 図1
  • 特表-合計検定時間の決定方法 図2
  • 特表-合計検定時間の決定方法 図3
  • 特表-合計検定時間の決定方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-13
(54)【発明の名称】合計検定時間の決定方法
(51)【国際特許分類】
   G01F 1/84 20060101AFI20220906BHJP
   G01F 1/00 20220101ALI20220906BHJP
【FI】
G01F1/84
G01F1/00 W
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022500812
(86)(22)【出願日】2020-03-09
(85)【翻訳文提出日】2022-03-04
(86)【国際出願番号】 US2020021656
(87)【国際公開番号】W WO2021006934
(87)【国際公開日】2021-01-14
(31)【優先権主張番号】PCT/US2019/040840
(32)【優先日】2019-07-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】500205770
【氏名又は名称】マイクロ モーション インコーポレイテッド
(74)【代理人】
【識別番号】110000556
【氏名又は名称】特許業務法人 有古特許事務所
(72)【発明者】
【氏名】バトラー, マーク アラン
(72)【発明者】
【氏名】パッテン, アンドリュー ティモシー
(72)【発明者】
【氏名】ディーシー, ジェイムズ エス.
【テーマコード(参考)】
2F030
2F035
【Fターム(参考)】
2F030CC03
2F030CD08
2F035JA02
(57)【要約】
診断ツールをフローメータ(5)センサアセンブリ(10)とインターフェース接続することを含む、フローメータ診断ツールを動作させるための方法が提供される。基本プルーバボリューム(BPV)、実施ごとの所望の合格数、および/または最大許容実施数を診断ツールに入力することができる。フローメータデータが受信される。所定の再現性要件に合格するために必要な推定合計検定時間(TPT)、計算済みTPTを得るために必要な推定最小実施数、および/または推定最小BPVが計算され得る。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σの計算に使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【特許請求の範囲】
【請求項1】
フローメータ診断ツールを動作させるための方法であって、
前記診断ツールをフローメータセンサアセンブリとインターフェース接続することと、
前記診断ツールに基本プルーバボリューム(BPV)を入力することと、
実施ごとの所望の合格数を前記診断ツールに入力することと、
フローメータデータを受信することと、
所定の再現性要件に合格するために必要な推定合計検定時間(TPT)を計算することと、
前記計算済みTPTを得るために必要な推定最小実施数を計算することと、
フローメータセンサアセンブリフローレート(σ)の標準偏差を計算することと、
σを計算するために使用されるサンプル数を決定することと、
メータ固有係数(MSF)を計算することと、を含む方法。
【請求項2】
フローメータ診断ツールを動作させるための方法であって、
前記診断ツールをフローメータセンサアセンブリとインターフェース接続することと、
最大許容実施数を前記診断ツールに入力することと、
実施ごとに所望の合格数を前記診断ツールに入力することと、
フローメータデータを受信することと、
所定の再現性要件に合格するために必要な推定合計検定時間(TPT)を計算することと、
推定最小基本プルーバボリューム(BPV)を計算することと、
フローメータセンサアセンブリフローレート(σ)の標準偏差を計算することと、
σの計算に使用されるサンプル数を決定することと、
メータ固有係数(MSF)を計算することと、を含む方法。
【請求項3】
前記MSFは、前記TPT計算のためのサンプリングレートを含む、請求項1および2に記載の方法。
【請求項4】
前記MSFは、σを計算するために使用されるサンプル数をサンプル収集継続時間で除算することによって計算される、請求項3に記載の方法。
【請求項5】
フローメータシステムを構成するための診断ツールであって、
フローメータ(5)とインターフェース接続し、フローメータデータを受信するように構成された電子機器と、
ユーザ入力を受け入れるように構成された前記電子機器とのユーザインターフェースであって、前記入力が、基本プルーバボリューム(BPV)、実施ごとの所望の合格数、および許容される実施最大数のうちの少なくとも1つを含む、ユーザインターフェースと、
プルービングルーチン(315)を実施するように構成された処理システム(303)であって、前記プルービングルーチン(315)が、所定の再現性要件に合格するのに必要な推定合計検定時間(TPT)を計算すること、前記計算済みTPTを得るために必要な推定最小実施数を計算すること、および推定最小基本プルーバボリューム(BPV)を計算すること、のうちの少なくとも1つを行うように構成される、処理システムと、を含み、
フローメータセンサアセンブリフローレート(σ)の標準偏差を計算し、
σの計算に使用されるサンプル数を決定し、
メータ固有係数(MSF)を計算する、診断ツール。
【請求項6】
前記MSFは、前記TPT計算のためのサンプリングレートを含む、請求項5に記載の診断ツール。
【請求項7】
前記MSFは、σを計算するために使用されるサンプル数をサンプル収集継続時間で除算することによって計算される、請求項6に記載の診断ツール。
【請求項8】
前記電子機器は、前記フローメータ(5)用のメータ電子機器(20)を備える、請求項5に記載の診断ツール。
【請求項9】
前記TPTの計算は、不確かさ包含係数を利用することを含む、請求項5に記載の診断ツール。
【請求項10】
前記計算済みTPTを得るために必要な前記推定最小実施数の計算は、測定されたフローレートおよびBPVを利用することを含む、請求項5に記載の診断ツール。
【発明の詳細な説明】
【技術分野】
【0001】
以下に記述する実施形態は、再現性要件に必要な合計検定時間を決定する方法に関する。
【背景技術】
【0002】
体積単位または質量単位の合計測定量で販売される液体製品の管理輸送および他の財政的な測定値は、一般にメータプルービングと呼ばれるプロセスによって現場で確認するよう要求されることが多い。メータプルービングの慣例は、一般に、業界において十分に確立されている。メータプルービングを記載している周知の規格の1つに、限定はしないが例として、米国石油協会(API)石油測定標準マニュアル(MPMS)第4.8章がある。
【0003】
取引契約およびその他の拘束力のある慣例の中の特定の規格に帰する組織が成功するためには、管理輸送利用の液体流を測定するために使用する機器が、合意した規格内に記載されている再現性の基準を一貫して満たしているか上回っているということが重要である。そうすることで、プルービング事象からのデータによって、最終平均メータ係数の不確かさが許容可能なレベルになるであろう。
【0004】
合計検定時間(TPT)は、上記のように、再現性要件のプルービングに合格するのに必要な時間である。TPTはまた、架設の設計段階中に、プルーバをサイジングし選択するためのツールとしても使用される。
【0005】
コリオリフローメータは、質量フローレート、密度、および流動材料に関する他の情報を測定するために使用されることが多い。流動材料は、液体、気体、液体と気体の組み合わせ、液体に懸濁された固体、気体および懸濁固体を含有する液体とを含み得る。例えば、フローメータは、石油および石油生成物の坑井生産および精製に広く使用されている。フローメータは、フローレートを測定することによって(すなわち、フローメータを通る質量フローを測定することによって)、坑井生産を決定するために使用することができ、さらには、フローの気体成分と液体成分の相対的な割合を決定するために使用することもできる。
【0006】
プルービングを実施するという用途でコリオリフローメータが使用されている場合、またフローメータが不安定なフローレートおよび「ノイズの多い」フローを経験している場合、問題が発生する可能性がある。稼働中に発生する騒音のレベルは、代表的な架設の過去の観察をもとに、ある程度予測することができるが、フローノイズと不安定性とに影響を与える可能性のある全体的なシステム設計変数が多すぎるため、架設が完了し、様々な条件とフローレートの組合せのもとでシステムが稼働し動作した時点で、実際のフローレートの変動がどうなるかはよくわからない。
【0007】
さらに、稼働中に測定が開始されて、プルービングの問題が発生した場合、および特にプルービング再現性規格に合致しない慢性的な障害が発生した場合、真の根本的原因を改善すべきかどうかを検討するべき潜在的原因は多い。多数の予期しない要因により、再現性要件に合格するために必要な予想フローノイズレベルおよび対応するTPTは、設計段階で予測したTPTとはかなり異なる場合がある。
【0008】
サイジングおよび選択のためのツールとして、TPTは、予想される処理条件下における潜在的なメータフローノイズについての仮定と推定のみをベースにしてきた。しかしながら、本実施形態は、稼働中にフローメータからの連続的なライブフローレート測定値を分析して、実際の現在状態に基づいて必要なTPTを決定し表示するための方法および装置を提供するものであり、これにより当技術分野の進歩が実現される。
【発明の概要】
【0009】
一実施形態によってフローメータ診断ツールを動作させるための方法が提供される。診断ツールはフローメータセンサアセンブリとインターフェース接続し、基本プルーバボリューム(BPV)が診断ツールに入力される。実施ごとに所望の合格数が診断ツールに入力される。フローメータデータが受信され、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)が計算される。計算済みTPTを得るために必要な推定最小実施数が計算される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0010】
一実施形態によってフローメータ診断ツールを動作させるための方法が提供される。診断ツールはフローメータセンサアセンブリとインターフェース接続し、許容最大実施数が診断ツールに入力される。実施ごとに所望の合格数が診断ツールに入力される。フローメータデータが受信され、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)が計算される。推定最小基本プルーバボリューム(BPV)が計算される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0011】
一実施形態によれば、フローメータシステムを構成する診断ツールが提供される。電子機器は、フローメータ(5)とインターフェース接続し、フローメータデータを受信するように構成される。電子機器とのユーザインターフェースは、ユーザ入力を受け入れるように構成され、入力は、基本プルーバボリューム(BPV)、実施ごとに所望の合格数、および許容される最大実施数のうちの少なくとも1つを含む。処理システム(303)は、プルービングルーチン(315)を実施するように構成され、プルービングルーチン(315)は、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)を計算すること、計算済みTPTを得るために必要な推定最小実施数を計算すること、および推定最小基本プルーバボリューム(BPV)を計算すること、のうちの少なくとも1つを行うように構成される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0012】
[態様]
一実施形態によれば、フローメータ診断ツールを動作させるための方法が提供される。診断ツールはフローメータセンサアセンブリとインターフェース接続し、基本プルーバボリューム(BPV)が診断ツールに入力される。実施ごとに所望の合格数が診断ツールに入力される。フローメータデータが受信され、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)が計算される。計算済みTPTを得るために必要な推定最小実施数が計算される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0013】
一実施形態によれば、フローメータ診断ツールを動作させるための方法が提供される。診断ツールはフローメータセンサアセンブリとインターフェース接続し、許容最大実施数が診断ツールに入力される。実施ごとに所望の合格数が診断ツールに入力される。フローメータデータが受信され、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)が計算される。推定最小基本プルーバボリューム(BPV)が計算される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0014】
好ましくは、MSFは、TPT計算のためのサンプリングレートを含む。
【0015】
好ましくは、MSFは、σを計算するために使用されるサンプル数をサンプル収集継続時間で除算することによって計算される。
【0016】
一態様によれば、フローメータシステムを構成する診断ツールが提供される。電子機器は、フローメータ(5)とインターフェース接続し、フローメータデータを受信するように構成される。電子機器とのユーザインターフェースは、ユーザ入力を受け入れるように構成され、入力は、基本プルーバボリューム(BPV)、実施ごとに所望の合格数、および許容される最大実施数のうちの少なくとも1つを含む。処理システム(303)は、プルービングルーチン(315)を実施するように構成され、プルービングルーチン(315)は、所定の再現性要件に合格するために必要な推定合計検定時間(TPT)を計算すること、計算済みTPTを得るために必要な推定最小実施数を計算すること、および推定最小基本プルーバボリューム(BPV)を計算すること、のうちの少なくとも1つを行うように構成される。フローメータセンサアセンブリフローレート(σ)の標準偏差が計算され、σを計算するために使用されるサンプル数が決定される。メータ固有係数(MSF)が計算される。
【0017】
好ましくは、MSFは、TPT計算のためのサンプリングレートを含む。
【0018】
好ましくは、MSFは、σを計算するために使用されるサンプル数をサンプル収集継続時間で除算することによって計算される。
【0019】
好ましくは、電子機器は、フローメータ(5)のためのメータ電子機器(20)を備える。
【0020】
好ましくは、TPTの計算は、不確かさ包含係数を利用することを含む。
【0021】
好ましくは、計算済みTPTを得るために必要な推定最小実施数の計算は、測定されたフローレートおよびBPVを利用することを含む。
【図面の簡単な説明】
【0022】
同じ参照番号は、すべての図面において同じ要素を表す。図面は必ずしも縮尺通りではないことを理解されたい。
図1】一実施形態によるフローメータを示す図である。
図2】一実施形態による診断電子機器の一例を示す図である。
図3】一実施形態によるフローメータ診断ツールの動作方法を示すフローチャートである。
図4】別の実施形態によるフローメータ診断ツールの動作方法を示すフローチャートである。
【発明を実施するための形態】
【0023】
図1図4および以下の記述は、下記に開示される実施形態の最良の形態を作成し使用する方法を当業者に教示するための特定の例を示す。本発明の原理を教示するために、いくつかの従来的態様は簡略化されているか、または省略されている。当業者は、本明細書の範囲内にあるこれらの例からの変形を理解するであろう。当業者は、以下に記載する特徴を様々な方法で組み合わせて、開示した方法からの複数の変形方法を形成できることを理解されるであろう。よって、以下に記載する実施形態は、以下に記載する具体例に限定されるものではない。
【0024】
本明細書に記載の方法は、フローメータに組み入れられてもよいし、あるいはフローメータおよびフローシステムとインターフェース接続する専用の診断ツールを使用して実施されてもよい。図1は、フローメータ5を説明しており、フローメータ5は例えば、限定はしないが、コリオリフローメータ/密度メータなどの任意の振動式メータであり得る。フローメータ5は、センサアセンブリ10とメータ電子機器20とを備える。センサアセンブリ10は、処理材料の質量フローレートおよび密度に応答する。メータ電子機器20は、リード線100を介してセンサアセンブリ10に接続され、経路26を介して密度、質量フローレート、および温度情報、ならびに他の情報を提供する。センサアセンブリ10は、フランジ101および101’と、一対のマニホールド102および102’と、一対の平行導管103(第1導管)および103’(第2導管)と、ドライバ104と、抵抗温度検出器(RTD)などの温度センサ106と、一対のピックオフ105および105’とを含み、ピックオフは例えば、磁石/コイルピックオフ、ひずみゲージ、光学センサ、または当技術分野で知られている任意の他のピックオフなどである。導管103と103’は、それぞれ、入口脚部107と107’、および出口脚部108と108’を有する。導管103と103’は、それらの長さに沿って少なくとも1つの対称位置で湾曲し、それらの長さ全体にわたって実質的に平行である。各導管103と103’は、それぞれ、軸WおよびW’を中心に振動する。
【0025】
導管103と103’の脚部107、107’、108、108’は、導管取り付けブロック109と109’に固定して取り付けられ、これらのブロックは、マニホールド102と102’に固定して取り付けられる。これにより、センサアセンブリ10を通る連続的な閉鎖型材料経路が提供される。
【0026】
フランジ101と101’が、測定済みの加工材料を運ぶ加工ライン(図示せず)に接続されると、材料は、フランジ101の第1オリフィス(図1の画面では見えない)を通ってフローメータ5の第1端部110に入り、マニホールド102を通って導管取り付けブロック109に導かれる。マニホールド102内で、材料が分割され、導管103と103’を通って送り出される。導管103と103’を出ると、加工材料は、マニホールド102’内で1つの流れに再結合され、その後、フランジ101’によって加工ライン(図示せず)に接続された第2端部112を出るように送り出される。
【0027】
導管103と103’が選択され、湾曲軸W-WとW’-W’を中心として、それぞれ実質的に同一の、質量分布、慣性モーメント、およびヤング率となるように、導管取り付けブロック109と109’に適切に取り付けられる。導管103と103’のヤング率が温度と共に変化し、この変化がフローおよび密度の計算に影響を及ぼすので、温度センサ106が導管103と103’の少なくとも1つに取り付けられ、導管の温度を連続的に測定する。導管の温度、ひいては温度センサ106を通る所与の電流に対してその温度センサを渡って現れる電圧は、主に導管を通過する材料の温度に左右される。温度センサ106を渡って現れる温度依存電圧は、導管103と103’の温度の変化に起因する導管103と103’の弾性率の変化を補償するために、メータ電子機器20によって周知の方法で使用される。温度センサ106は、メータ電子機器20に接続される。
【0028】
両方の導管103と103’は、フローメータの第1位相不一致湾曲モードと呼ばれるモードで、それぞれの湾曲軸WとW’を中心として反対方向にドライバ104によって駆動される。このドライバ104は、導管103’に取り付けられた磁石、および導管103に取り付けられた対向するコイルなど、多くの周知の構成のいずれかを含むことができ、両方の導管を振動させるために交流電流が流れる。適切な駆動信号が、メータ電子機器20によって、リード線113を介してドライバ104に印加される。2つの導管103と103’に関して議論しているが、他の実施形態では、1つのみの導管があり得ること、または2つ以上の導管があり得ることを理解されたい。複数のドライバに対して複数の駆動信号を生成すること、およびドライバが第1位相不一致湾曲モード以外のモードで導管を駆動することも本発明の範囲内である。
【0029】
メータ電子機器20は、経路26または他の通信リンクに結合されてもよい。メータ電子機器20は、経路26を介して密度測定値を伝えることができる。メータ電子機器20はまた、経路26を介して任意の様式の他の信号、測定値、またはデータを送信することができる。さらに、メータ電子機器20は、経路26を介して命令、プログラミング、他のデータ、またはコマンドを受信することができる。
【0030】
メータ電子機器20は、リード線114上の温度信号と、リード線115と115’上にそれぞれ現れる左右の速度信号とを受信する。メータ電子機器20は、リード線113上に現れる駆動信号を生成してドライバ104に送り、導管103と103’を振動させる。メータ電子機器20は、左右の速度信号および温度信号を処理して、センサアセンブリ10を通過する材料の質量フローレートおよび密度を計算する。この情報は、他の情報と共に、メータ電子機器20によって経路26を介して利用手段に適用される。メータ電子機器20の回路の説明は、本発明の理解には不要であり、この説明を簡略化するために省略する。
【0031】
図1の説明は、1つの考えられる振動メータの動作の単なる一例として示しており、本発明の教示を限定することを意図するものではないことを理解されたい。例えば、コリオリフローメータの構造を記載しているが、本発明は、コリオリ質量フローメータによってもたらされる追加の測定能力がなくても、振動管またはフォーク形密度メータ上で実施できることは当業者には明らかであろう。
【0032】
図2は、一実施形態によるメータ電子機器20の全体ブロック図である。スタンドアロン診断ツールの電子機器は、同様のアーキテクチャであり得ることに留意されたい。動作中、フローメータ5は、密度、質量フローレート、体積フローレート、多相流の個々のフロー成分の質量と体積のフローレート、および合計フローレート、の1つ以上の測定値または平均値を含めて、出力され得る様々な測定値を提供するものであり、合計フローレートは、例えば、個々のフロー成分の体積と質量の両方のフローを含む。メータ電子機器20およびスタンドアロン電子機器は、ユーザがデータを入力すること、および/または出力データを受信すること、ができるユーザインターフェースを備えることができる。
【0033】
フローメータ5は振動応答を生成する。振動応答は、メータ電子機器20によって受信され処理されて、1つまたは複数の流体測定値を生成する。値は、監視、記録、保存、合計、および/または出力され得る。
【0034】
メータ電子機器20は、インターフェース301と、インターフェース301と通信する処理システム303と、処理システム303と通信するストレージシステム304とを含む。これらの構成要素は別個のブロックとして示されているが、メータ電子機器20は、一体化された構成要素および/または別個の構成要素の様々な組み合わせで構成され得ることを理解されたい。
【0035】
インターフェース301は、リード線100に連結して構成されてもよいし、例えば、ドライバ104、ピックオフセンサ105と105’、および温度センサ106と信号を交換するように構成されてもよい。インターフェース301はさらに、通信経路26を介して、例えば外部デバイスと通信するように構成することができる。
【0036】
処理システム303は、任意の方法の処理システムを含むことができる。処理システム303は、フローメータ5を動作させるために、格納されたルーチンを読み出し、実行するように構成される。ストレージシステム304は、一般的なメータルーチン305および駆動ゲインルーチン313を含む、ルーチンを格納することができる。ストレージシステム304は、測定値、受信値、作業値、および他の情報を格納することができる。いくつかの実施形態では、ストレージシステムは、質量フロー(m)321、密度(ρ)325、粘度(μ)323、温度(T)324、圧力309、駆動ゲイン306、および当技術分野で知られている任意の他の変数を格納する。ルーチン305と313は、記載された任意の信号、ならびに当技術分野で知られている他の変数を含むことができる。他の測定/処理ルーチンが考えられ、本明細書および特許請求の範囲の範囲内にある。
【0037】
一般的なメータルーチン305は、流体定量化および流量測定値を生成し格納することができる。これらの値は、実質的に瞬間的な測定値を含むことができるか、または合計値、累積値、および/または平均値を含むことができる。例えば、一般的なメータルーチン305は、質量フロー測定値を生成することができ、それらを、例えばストレージシステム304の質量フロー321ストレージに格納することができる。同様に、一般的なメータルーチン305は、密度測定値を生成することができ、それらを、例えばストレージシステム304の密度325ストレージに格納することができる。質量フロー321および密度325の値は、前述したように、また当技術分野で知られているように、振動応答から決定される。質量フローおよび他の測定値は、実質的に瞬時値を含むことができるか、サンプルを含むことができるか、時間間隔にわたる平均値を含むことができるか、または時間間隔にわたる累積値を含むことができる。時間間隔は、特定の流体状態が検出される時間ブロックに対応するように選択することができ、特定の流体状態には例えば、液体のみの流体状態、あるいは液体、同伴ガス、および/または固体、溶質、およびそれらの組み合わせが含まれる。さらに、他の質量と体積のフローおよび関連する定量化が考えられ、これらは説明および特許請求の範囲の範囲内である。
【0038】
提示の実施形態は、実際に観察された稼働中の状態に基づいてフローメータの推定最小TPT必要性を示すことができる診断ツールを含んでおり、したがって、根本原因を決定する際に、およびプルービング障害を解決するために取るべき最善の行動方針を決定する際に、有用である。一実施形態では、診断ツールは、最小TPTを決定するプルービングルーチン315を有するメータ電子機器20を含む。診断ツールの他の実施形態は、メータ電子機器とは分離しているが、インターフェース301によってフローメータシステムメータ電子機器20と通信することができる。
【0039】
実際の動作条件に基づいて示された最小のTPT必要性が何かによっては、最も簡単な解決策は、実施数および/または合格数を増やして、示されたTPT目標を達成することであってもよい。対照的に、診断ツールが、TPT目標を達成するために必要なTPTの増加が非常に劇的であって実施が現実的ではないことを示す場合、システムフローノイズを引き起こして、それにより、示されたTPT目標を達成可能なレベルおよび/または現実的なレベルまで減少させるという、他の解決策を求めることができる。フローノイズを低減するために変更が行われると、TPT診断ツールは、様々な改善が適用されたときにそれらの有効性に関するフィードバックを瞬時に提供するよう監視され、これにより是正措置が実施されたときにそれらの措置を確認することができる。
【0040】
診断ツールはまた、可搬式プルーバで検定するよう契約するとき、または固定プルーバをより大きなサイズにアップグレードして容量を増加させることを計画するときに、特に有益である。フローメータが設置され動作している状態で、TPT診断は、プルーバが到着する前に、以前にテストされていないフローで観察され、プルービング再現性要件が、新しいフローレートで満たされるかどうか、または計画されているプルーバサイズを使用して実際の合格数および/または実施数の新しい条件下で満たされるかどうかについて、合理的な予想をその場で検定することができる。TPT診断によって示された場合、プルービング請負業者は、適切なサイズのプルーバを持ってくるように事前に指示される可能性があるか、または計画された容量アップグレード設計がデータに応じて調整される可能性がある。
【0041】
現場経験およびテストによって、TPTと、API MPMS第4.8章の再現性要件を首尾よく満たす確率との間に、特定のコリオリフローメータの設計に関して高い相関関係があることを実証している。TPTは式1で定義される。
TPT=BPV/(フローレート)×PPR×n (1)
ここで、
TPT=合計検定時間。
フローレート=検定中のシステムの平均のフローレートまたはセットポイントのフローレート。
BPV=基本プルーバボリューム。
PPR=実施ごとの合格。
n=合計実施数。
【0042】
TPTは、検定中にメータからのパルスが蓄積されている間に、プルーバのディスプレーサがプルーバ検出器スイッチ間を移動していた合計累積時間である。
BPVは、メータからのパルスが蓄積されている間に、プルーバディスプレーサをそれぞれ通過中にプルーバによって変位される合計較正ボリュームである。
PPRは、検定中のプルービング実施ごとの合格の合計数である。実施ごとに複数の合格が測定される場合、その実施の結果として得られる体積測定値は、その実施中に獲得されたすべての合格の平均である。
合計実施数(n)は、検定結果を決定するために分析される実施数である。実施数はまた、選択された規格に従って検定に適用される再現性許容度を決定する。
【0043】
一実施形態では、診断ツールは、フローメータによって示される瞬時フローレートの変動を測定するための標準的な統計分析を適用することによって、TPTターゲットを決定する。統計的計算を使用して、直近のサンプルウィンドウ上で記録された現在進行中のフローレートデータの標準偏差を計算する。サンプルプロセスを継続的に繰り返し、後続の各サンプルウィンドウが完了するたびに新しい標準偏差を計算することによって、標準偏差値が連続的に更新される。サンプルウィンドウ持続時間は設定可能な値であるため、TPT診断のパフォーマンスを最適化するように調整することができる。例えば、サンプル期持続時間が5秒に設定されている場合、標準偏差値は常に、トランスミッタの標準サンプリングレートで最後の5秒間に収集されたフローレートサンプルのフルセットの標準偏差を表す。サンプリングウィンドウは、オペレータによって予め決定された時間値であってもよい。
【0044】
プルービングを成功させるための最小TPT目標は、式2に示すように標準偏差から計算される。
【数1】
ここで、
TPT=推定最短合計検定時間(秒)。
k=不確かさ包含係数(例えば、k=2は95%の信頼度に相当する)。
σ=ライブメータフローレート表示の観測電流(短期)標準偏差(%)。
MF=ターゲットメータ係数不確かさ(%)。
MSF=メータ固有係数。
【0045】
TPTはメータ係数kを用いて不確かさUMFを得るために所定の再現性規格に合格するのに必要な推定最短検定時間であり、メータ連続フローレートサンプリングが瞬時フローレートの標準偏差σを示すときにプルービングする。
【0046】
MSFは、見かけのサンプル数(n)をメータσサンプリングレートからプルービング時間の秒数に変換するのに必要な係数である。従来の教示では、MSFは、診断ツールまたはフローメータの中に予めプログラムされた固定値である。この値は、特定のメータに固有であり、製造中および較正中に個別に導出されなければならない。各診断ツールまたはフローメータにはパーソナライズされたMSFが必要であるという前提条件によって、時間、コスト、および複雑さが製造プロセスに付加される。一実施形態では、MSFは診断ツールまたはフローメータ自体によって計算され、これにより、製造中または較正中に個々のMSFを特定のメータに合わせる必要がなくなる。一実施形態では、MSFは、TPT測定のサンプリングレートを含む。一実施形態では、MSFは、式3のように計算される。
【数2】
【0047】
したがって、式3を利用するために、診断ツールまたはフローメータは、フローメータセンサアセンブリフローレート(σ)の標準偏差を計算し、MSFを計算する前にσを計算するのに使用するサンプル数も決定しなければならない。
【0048】
単なる例として、API MPMS第4.8章によれば、UMFは0.027%に設定され、MSFは、いくつかのコリオリフローメータでは26.5に設定され得る。したがって、式2は以下のように計算される。
【数3】
【0049】
診断ツールの実施形態は、再現性要件を満たすために必要な、TPT(秒)、合格合計数(カウントによる)、合計実施数(カウントによる)のいずれかの単位、および/またはいずれの単位も表示する。
【0050】
必要な合格合計数を表示するために、BPV値をデバイスに記録する必要がある。合格合計数は、式4に示すように、BPVおよび測定済みフローレートから計算される。
【数4】
ここで、
合計合格=必要とされる合格合計数であり、それらがグループ化され平均化されて複数合格実施となろうと、または実施として個別のままであろうと関係はない。
TPTDiag=本発明によって計算される合計検定時間診断値。
BPV=メータ構造体で記録された基本プルーバボリューム値。
フローレート=メータによって測定された瞬時フローレート。
【0051】
必要な合計実施数を表示するために、BPV値および実施ごとの合格値をデバイスに記録しなければならない。必要な合計実施数は、式5に示すように、BPV、実施ごとの合格値、および測定済みフローレートから計算される。
【数5】
ここで、
合計実施数=再現性に合格すると期待するのに必要な実施数の合計。
TPTDiag=本発明によって計算される合計検定時間診断値。
BPV=メータ構造体で記録された基本プルーバボリューム値。
実施ごとの合格=検定中のプルービング実施ごとに平均化された合格数。
【0052】
図3は、診断ツールを操作する実施形態を示しており、診断ツールによってオペレータは、基本プルーバボリューム(BPV)(400)と、実施ごとの合格数とを入力することが可能になる(402)。診断ツールによってフローメータデータが受信される(404)。フローメータデータは、フローレート、動作条件、流体特性、および他のメータデータを含むことができる。フローメータデータのいくつかの例には、質量流量、体積流量、密度、粘度、温度、圧力、駆動ゲイン、および不確かさ包含係数が含まれるが、これらに限定されない。これらの値は、瞬間的であってもよいし、またはサンプル範囲および/または時限を通して平均化されてもよい。次に、診断ツールは、現在の状態と、入力されたBPV値および実施ごとの合格値とが与えられると、推定TPTのライブ表示を計算し(406)、TPTを得るために必要な最小実施を計算する(408)。これらのデータもまた出力され得る。
【0053】
図4は、診断ツールを操作する実施形態を示しており、診断ツールによって、オペレータは最大許容実施数(500)と、実施ごとの合格数とを入力することが可能になる(502)。診断ツールによってフローメータデータが受信される(504)。フローメータデータは、フローレート、動作条件、流体特性、および他のメータデータを含むことができる。フローメータデータのいくつかの例には、質量流量、体積流量、密度、粘度、温度、圧力、駆動ゲイン、および不確かさ包含係数が含まれるが、これらに限定されない。これらの値は、瞬間的であってもよいし、またはサンプル範囲および/または時限を通して平均化されてもよい。次に、診断ツールは、現在の状態と、入力されたBPV値および実施ごとの合格とが与えられると、推定TPTのライブ表示を計算し(506)、TPTを得るために必要な最小実施を計算する(508)。これらのデータもまた出力され得る。
【0054】
上記の実施形態では、フローメータは、メータ電子機器を備えた診断ツールを含み得る。一実施形態では、診断ツールは、フローメータとは別のデバイスであってもよい。
【0055】
上記で詳述したように、TPT診断は、プルービング問題が発生した際のトラブルシューティングを強化して、フローメータの使いやすさを向上させる。TPT診断ツールはまた、コリオリフローメータのプルービング中にパフォーマンスを最適化するために将来のシステム設計で使用が可能なフィードバックも提供する。これらのライブ表示では、図3および図4に示すように、オペレータはフローレートと、システム設定および条件とを、たとえそれらがプルービングしていない場合であっても、変更して、システム設定の変更がライブTPTおよび他の表示値に及ぼす影響を観察することができる。これにより、プルービング結果の改善を目的として検討されている様々なシステム操作術の有効性をテストするための単純で直接的かつ瞬間的なフィードバックが提供される。
【0056】
上記の実施形態の詳細な説明は、本発明者らが本明細書の範囲内であると考えているすべての実施形態を網羅して説明するものではない。実際のところ、当業者であれば、上述の実施形態の特定の要素を様々に組み合わせたり排除したりして、さらなる実施形態を作成することができ、そのようなさらなる実施形態は本明細書の範囲および教示に含まれることを認識するであろう。当業者にはまた、上述の実施形態を全体的または部分的に組み合わせて、本明細書の範囲および教示の中で追加の実施形態を作成することができることも明らかであろう。
図1
図2
図3
図4
【国際調査報告】