IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

2022-540303光学アーチファクト低減のためのアポダイズド光学素子
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-09-15
(54)【発明の名称】光学アーチファクト低減のためのアポダイズド光学素子
(51)【国際特許分類】
   G02B 27/02 20060101AFI20220908BHJP
   G02B 5/32 20060101ALI20220908BHJP
   H04N 5/64 20060101ALI20220908BHJP
【FI】
G02B27/02 Z
G02B5/32
H04N5/64 511A
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2021571040
(86)(22)【出願日】2020-07-04
(85)【翻訳文提出日】2022-01-26
(86)【国際出願番号】 US2020040839
(87)【国際公開番号】W WO2021007134
(87)【国際公開日】2021-01-14
(31)【優先権主張番号】16/505,412
(32)【優先日】2019-07-08
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/505,462
(32)【優先日】2019-07-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】515046968
【氏名又は名称】メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー
【氏名又は名称原語表記】META PLATFORMS TECHNOLOGIES, LLC
(74)【代理人】
【識別番号】110002974
【氏名又は名称】弁理士法人World IP
(72)【発明者】
【氏名】アンドレーフ, グレゴリー オレゴビッチ
(72)【発明者】
【氏名】リー, カン
(72)【発明者】
【氏名】シプトン, エリク
(72)【発明者】
【氏名】チアン, インフェイ
(72)【発明者】
【氏名】チー, ワンリー
(72)【発明者】
【氏名】アウダーカーク, アンドリュー ジョン
【テーマコード(参考)】
2H199
2H249
【Fターム(参考)】
2H199CA04
2H199CA12
2H199CA23
2H199CA25
2H199CA29
2H199CA30
2H199CA48
2H199CA54
2H199CA67
2H199CA68
2H199CA86
2H199CA91
2H199CA92
2H199CA96
2H249CA04
2H249CA15
2H249CA22
(57)【要約】
本明細書に開示された技術は、ニアアイディスプレイシステムに関する。ニアアイディスプレイの光学デバイスの一例は、基板と、この基板の表面に等角に結合されたホログラフィック回折格子とを含む。基板は、可視光および赤外光を透過させ、ニアアイディスプレイのユーザの眼の正面に置かれるように構成される。ホログラフィック回折格子の屈折率変調は、可視光における光学アーチファクトを低減するように基板の面法線方向にアポダイズされる。
【選択図】図4
【特許請求の範囲】
【請求項1】
ニアアイディスプレイのための光学デバイスであって、
可視光および赤外光を透過させ、前記ニアアイディスプレイのユーザの眼の正面に置かれるように構成される基板と、
前記基板の表面に等角に結合されたホログラフィック回折格子と、を備え、前記ホログラフィック回折格子の屈折率変調は、前記可視光における光学アーチファクトを低減するように前記基板の面法線方向にアポダイズされる、光学デバイス。
【請求項2】
前記基板の前記面法線方向の前記ホログラフィック回折格子の前記屈折率変調の大きさは、ベル形曲線によって特徴付けられる、請求項1に記載の光学デバイス。
【請求項3】
前記ホログラフィック回折格子の前記屈折率変調の大きさは、前記基板の前記面法線方向に非対称である、請求項1に記載の光学デバイス。
【請求項4】
前記ホログラフィック回折格子は、前記可視光を伝達するとともに視標追跡のために第1の波長範囲内の赤外光を反射により回折させるように構成される反射ホログラフィック回折格子を含む、請求項1に記載の光学デバイス。
【請求項5】
前記ホログラフィック回折格子は、赤外光源から前記ユーザの前記眼へ、または前記ユーザの前記眼から赤外線カメラへ、前記第1の波長範囲内の前記赤外光を反射により回折させるように構成される、請求項4に記載の光学デバイス。
【請求項6】
前記基板は、全反射によって前記基板内でディスプレイ光を案内するように構成され、
前記ホログラフィック回折格子は、前記基板から外への前記ディスプレイ光の少なくとも一部を結合するように構成される回折格子結合器を含む
請求項1から3のいずれか一項に記載の光学デバイス。
【請求項7】
前記ホログラフィック回折格子は、前記基板の前記表面上に積層されるように構成されるフォトポリマー層を含む、請求項1に記載の光学デバイス。
【請求項8】
前記フォトポリマー層の厚さは、15μmよりも大きく、
前記ホログラフィック回折格子の最大屈折率変調は、少なくとも0.035である、
請求項7に記載の光学デバイス。
【請求項9】
ニアアイディスプレイのための光学デバイスを製造する方法であって、
第1の波長範囲内の光に対して感度の良いフォトポリマー層を支持基板上に得ることと、
前記フォトポリマー層の第1の側から前記第1の波長範囲内の第1の光ビームを前記フォトポリマー層上に投影することと、を含み、
前記第1の光ビームの第1の波長、前記第1の光ビームの第1の強度、および前記フォトポリマー層の光吸収率は、前記第1の光ビームの前記第1の強度が、前記フォトポリマー層の厚さに沿った方向に前記フォトポリマー層をアポダイズするように所定の光強度プロファイルに従って前記第1の側から前記フォトポリマー層の前記厚さに沿った前記方向に前記フォトポリマー層内で徐々に減少するように構成される、方法。
【請求項10】
前記第1の光ビームを前記フォトポリマー層上に投影することは、
前記フォトポリマー層に隣接してプリズムを配置することであって、前記プリズムの屈折率が1.33よりも大きい、プリズムを配置することと、
前記第1の光ビームを前記プリズム上に投影することと、を含み、
前記プリズムは、前記第1の光ビームを前記フォトポリマー層上に屈折させる、請求項9に記載の方法。
【請求項11】
ホログラフィック回折格子をアポダイズされた前記フォトポリマー層に記録することをさらに含み、
前記ホログラフィック回折格子は、前記フォトポリマー層の前記厚さに沿った前記方向にアポダイズされ、
前記ホログラフィック回折格子は、視標追跡のために前記第1の波長範囲内の光を伝達するとともに赤外光を反射により回折させるように構成される、請求項9に記載の方法。
【請求項12】
前記フォトポリマー層の第2の側から、前記第1の波長範囲内の第2の光ビームを、前記フォトポリマー層上に投影することをさらに含み、
前記第2の光ビームの第2の波長、前記第2の光ビームの第2の強度、および前記フォトポリマー層の前記光吸収率は、前記第2の光ビームの前記第2の強度が、前記フォトポリマー層の前記厚さに沿った前記方向に前記フォトポリマー層をアポダイズするように前記第2の側から前記フォトポリマー層の前記厚さに沿った前記方向に前記フォトポリマー層内で徐々に減少するように構成される、請求項9に記載の方法。
【請求項13】
前記第1の波長および前記第2の波長は、同一であるまたは異なる、請求項12に記載の方法。
【請求項14】
可視光および赤外光を透過させる基板と、
前記基板の表面に等角に結合された反射ホログラフィック回折格子と、
を備える視標追跡システムであって、
前記反射ホログラフィック回折格子は、前記可視光を伝達するとともに視標追跡のために第1の波長範囲内の赤外光を反射により回折させるように構成され、
前記反射ホログラフィック回折格子の屈折率変調は、前記可視光における光学アーチファクトを低減するように前記反射ホログラフィック回折格子の厚さに沿った方向にアポダイズされる、視標追跡システム。
【請求項15】
ニアアイディスプレイのための光学デバイスを製造する方法であって、
第1の波長範囲内の光に対して感度の良いフォトポリマー層を前記光学デバイスの基板上に形成することと、
前記フォトポリマー層の感度を選択的に下げるように前記フォトポリマー層内に前記第1の波長範囲内で不均一な強度を有する光パターンを形成することと、
アポダイズされたホログラフィック回折格子を、前記第1の波長範囲内のコヒーレント光を使用して前記感度を選択的に下げられたフォトポリマー層に記録することと、を含み、前記アポダイズされたホログラフィック回折格子は、前記ニアアイディスプレイのユーザの眼へのまたは前記ニアアイディスプレイのユーザの眼からの前記第1の波長範囲外にある赤外光を反射により回折させるように構成される、光学デバイスを製造する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、人工現実システムに使用するためのニアアイディスプレイシステムに関する。
【背景技術】
【0002】
ヘッドマウントディスプレイ(HMD)またはヘッドアップディスプレイ(HUD)システム人工現実システムは、一般に、ヘッドセットまたは眼鏡の形態であり、例えば、電子または光ディスプレイによってユーザの眼の正面約10~20mm以内でユーザにコンテンツを提示するように構成されたニアアイディスプレイシステムを含む。ニアアイディスプレイシステムは、仮想現実(VR)アプリケーション、拡張現実(AR)アプリケーション、または複合現実(MR)アプリケーションにあるように、仮想オブジェクトを表示することができ、または実物体の画像と仮想オブジェクトの画像を組み合わせることができる。例えば、ARシステムにおいて、ユーザは、例えば、透明ディスプレイのガラスまたはレンズを通して見ること(しばしば光学シースルーと呼ばれる)、あるいはカメラによって取り込まれた周囲環境の表示画像を見ること(しばしばビデオシースルーと呼ばれる)によって仮想オブジェクトの画像(例えば、コンピュータ生成画像(CGI))と周囲環境の画像を共に見ることができる。
【0003】
より実体験のように感じる人工現実体験を提供するために、一部の人工現実システムは、手および/または指の動きなどのユーザ入力を受信する入力デバイスを含んでよい。さらにまたは代替的に、人工現実システムは、ユーザの眼(例えば、視線方向)を追跡可能な視標追跡システムを用いてよい。そして、人工現実システムは、視線方向情報および/または入力デバイスから得られた情報を用いて、ユーザが見ている方向に基づいてコンテンツを修正するまたは生成することができ、それによってより実体験のように感じる体験をユーザに提供することができる。視標追跡システムは、フォービエイテッドレンダリング、画像データのフォービエイテッド圧縮および送信、覚醒監視などに使用することもできる。
【発明の概要】
【0004】
本発明は、全体的に、ニアアイディスプレイシステムに関する。ある特定の実施形態によれば、視標追跡システムは、可視光および赤外光を透過させる基板と、基板の表面に等角に結合された反射ホログラフィック回折格子とを含む。反射ホログラフィック回折格子は、可視光を伝達するとともに視標追跡のために第1の波長範囲内の赤外光を反射により回折させるように構成されてよい。反射ホログラフィック回折格子の屈折率変調は、可視光における光学アーチファクトを低減するように反射ホログラフィック回折格子の厚さ方向に沿った方向にアポダイズされてよい。
【0005】
視標追跡システムのいくつかの実施形態では、反射ホログラフィック回折格子の屈折率変調の大きさは、反射ホログラフィック回折格子の厚さに沿った方向にベル形曲線によって特徴付けられてよい。
【0006】
いくつかの実施形態では、反射ホログラフィック回折格子の屈折率変調は、反射ホログラフィック回折格子の厚さに沿った方向に反射ホログラフィック回折格子中央領域内で最大大きさを有する。
【0007】
いくつかの実施形態では、反射ホログラフィック回折格子の厚さは、少なくとも15μmであり、屈折率変調の最大大きさは、少なくとも0.035である。
【0008】
いくつかの実施形態では、反射ホログラフィック回折格子の屈折率変調は、基板の表面に隣接した領域内でゼロである。
【0009】
いくつかの実施形態では、反射ホログラフィック回折格子は、反射ホログラフィック回折格子の厚さに沿った方向に反射ホログラフィック回折格子の中心に対して非対称にアポダイズされる。
【0010】
いくつかの実施形態では、反射ホログラフィック回折格子は、基板の表面上に積層されるように構成されるフォトポリマー層を含んでよい。
【0011】
いくつかの実施形態では、フォトポリマー層は、屈折率変調の異なる振幅を有する異なるフォトポリマーの複数の層を含んでよい。
【0012】
いくつかの実施形態では、視標追跡システムはまた、視標追跡のために第1の波長範囲内の赤外光を放出するように構成される光源を含んでよく、反射ホログラフィック回折格子は、光源からユーザの眼へ第1の波長範囲内の赤外光を反射により回折させるように構成されてよい。
【0013】
いくつかの実施形態では、視標追跡システムはまた、赤外線カメラを含んでよく、反射ホログラフィック回折格子は、ユーザの眼から赤外線カメラへ第1の波長範囲内の赤外光を反射により回折させるように構成されてよい。
【0014】
いくつかの実施形態では、基板は、ガラス、石英、プラスチック、ポリマー、セラミック、または水晶基板のうちの少なくとも1つを含んでよく、基板の表面は、曲面または平面を含んでよい。
【0015】
いくつかの実施形態では、可視光における光学アーチファクトは、レインボーゴースト像を含み得る。
【0016】
いくつかの実施形態によれば、ニアアイディスプレイのための光学デバイスは、基板と、基板の表面に等角に結合されたホログラフィック回折格子とを含んでよい。基板は、可視光および赤外光を透過させ、ニアアイディスプレイのユーザの眼の正面に置かれるように構成されてよい。ホログラフィック回折格子の屈折率変調は、可視光における光学アーチファクトを低減するように基板の面法線方向にアポダイズされてよい。
【0017】
いくつかの実施形態では、基板の面法線方向のホログラフィック回折格子の屈折率変調の大きさは、ベル形曲線によって特徴付けられる。
【0018】
いくつかの実施形態では、ホログラフィック回折格子の屈折率変調の大きさは、基板の面法線方向に非対称である。
【0019】
いくつかの実施形態では、ホログラフィック回折格子は、基板の表面上に積層されるように構成されるフォトポリマー層を含む。
【0020】
いくつかの実施形態では、フォトポリマー層の厚さは、15μmよりも大きくてよく、ホログラフィック回折格子の最大屈折率変調は、少なくとも0.035であってよい。
【0021】
光学デバイスのいくつかの実施形態では、ホログラフィック回折格子は、可視光を伝達するとともに視標追跡のために第1の波長範囲内の赤外光を反射により回折させるように構成される反射ホログラフィック回折格子を含んでよい。
【0022】
いくつかの実施形態では、ホログラフィック回折格子は、赤外光源からユーザの眼へ、またはユーザの眼から赤外線カメラへ、第1の波長範囲内の赤外光を反射により回折させるように構成されてよい。
【0023】
いくつかの実施形態では、基板は、全反射によって基板内でディスプレイ光を案内するように構成され、ホログラフィック回折格子は、基板から外へのディスプレイ光の少なくとも一部を結合するように構成される回折格子結合器を含む。
【0024】
ある特定の実施形態によれば、ニアアイディスプレイのための光学デバイスを製造する方法は、第1の波長範囲内の光に対して感度の良いフォトポリマー層を支持基板上に得ることと、フォトポリマー層の第1の側から第1の波長範囲内の第1の光ビームをフォトポリマー層上に投影することと、を含むことができる。第1の光ビームの第1の波長、第1の光ビームの第1の強度、およびフォトポリマー層の光吸収率は、第1の光ビームの第1の強度が、フォトポリマー層の厚さに沿った方向にフォトポリマー層をアポダイズするように所定の光強度プロファイルに従って第1の側からフォトポリマー層の厚さに沿った方向にフォトポリマー層内で徐々に減少するように構成されてよい。
【0025】
いくつかの実施形態では、第1の光ビームをフォトポリマー層上に投影することは、フォトポリマー層に隣接してプリズムを配置することであって、プリズムの屈折率が1.33よりも大きい、プリズムを配置することと、第1の光ビームをプリズム上に投影することと、を含んでよく、プリズムは、第1の光ビームをフォトポリマー層上に屈折させる。
【0026】
いくつかの実施形態では、方法はまた、ホログラフィック回折格子を、アポダイズされたフォトポリマー層に記録することを含んでよく、ホログラフィック回折格子は、フォトポリマー層の厚さに沿った方向にアポダイズされてよく、視標追跡のために第1の波長範囲内の光を伝達するとともに赤外光を反射により回折させるように構成されてよい。
【0027】
いくつかの実施形態では、方法はまた、フォトポリマー層の第2の側から、第1の波長範囲内の第2の光ビームを、フォトポリマー層上に投影することを含んでよい。第2の光ビームの第2の波長、第2の光ビームの第2の強度、およびフォトポリマー層の光吸収率は、第2の光ビームの第2の強度が、フォトポリマー層の厚さに沿った方向にフォトポリマー層をアポダイズするように第2の側からフォトポリマー層の厚さに沿った方向にフォトポリマー層内で徐々に減少するように構成されてよい。
【0028】
第1の波長および第2の波長は、同一であってよくまたは異なってよい。
【0029】
フォトポリマー層は、フォトポリマー層の厚さに沿った方向に非対称にアポダイズされてよい。
【0030】
いくつかの実施形態では、第1の光ビームおよび第2の光ビームは、コヒーレントであってよく、第1の光ビームおよび第2の光ビームは、フォトポリマー層にアポダイズされたホログラフィック回折格子を形成するようにフォトポリマー層内で干渉してよい。
【0031】
いくつかの実施形態では、フォトポリマー層の厚さに沿った方向のアポダイズされたホログラフィック回折格子の屈折率変調の大きさは、ベル形曲線によって特徴付けられてよい。
【0032】
いくつかの実施形態では、アポダイズされたホログラフィック回折格子の屈折率変調は、支持基板に隣接した領域内でゼロであってよい。
【0033】
いくつかの実施形態では、アポダイズされたホログラフィック回折格子は、視標追跡のために赤外光を反射により回折させること、または可視光における光学アーチファクトを低減することのうちの少なくとも1つを実行するように構成されてよい。
【0034】
いくつかの実施形態では、方法はまた、ホログラフィック回折格子を、アポダイズされたフォトポリマー層に記録することを含んでよい。いくつかの実施形態では、方法はまた、フォトポリマー層が第1の波長範囲内の光に対して感光性でないようにフォトポリマー層の感度を下げることを含んでよい。
【0035】
いくつかの実施形態では、フォトポリマー層は、フォトポリマー層内で重合を開始するように第1の光ビームを吸収するように構成される感光性材料、およびフォトポリマー層内の重合を開始することなく第1の光ビームを吸収するように構成される光吸収材料を含んでよい。
【0036】
いくつかの実施形態では、フォトポリマー層は、屈折率変調の異なる最大達成可能振幅を有する異なるフォトポリマーの複数の層を含んでよい。
【0037】
ある特定の実施形態によれば、ニアアイディスプレイのための光学デバイスを製造する方法は、第1の波長範囲内の光に対して感度の良いフォトポリマー層を光学デバイスの基板上に形成することと、フォトポリマー層の感度を選択的に下げるようにフォトポリマー層内に第1の波長範囲内で不均一な強度を有する光パターンを形成することと、アポダイズされたホログラフィック回折格子を、第1の波長範囲内のコヒーレント光を使用して感度を選択的に下げられたフォトポリマー層に記録することと、を含んでよい。アポダイズされたホログラフィック回折格子は、ニアアイディスプレイのユーザの眼へのまたはニアアイディスプレイのユーザの眼からの第1の波長範囲外にある赤外光を反射により回折させるように構成されてよい。
【0038】
いくつかの実施形態では、フォトポリマー層内に第1の波長範囲内で不均一な強度を有する光パターンを形成することは、フォトポリマー層の第1の側から第1の波長範囲内の第1の光ビームをフォトポリマー層上に投影することと、フォトポリマー層の第2の側から、第1の波長範囲内の第2の光ビームを、フォトポリマー層上に投影することとを含んでよい。第1の光ビームの第1の波長、第2の光ビームの第2の波長、第1の光ビームの第1の強度、第2の光ビームの第2の強度、およびフォトポリマー層の光吸収率は、第1の光ビームの第1の強度が、第1の光強度プロファイルに従って第1の側からフォトポリマー層内で徐々に減少し、第2の光ビームの第2の強度が、第2の光強度プロファイルに従って第2の側からフォトポリマー層内で徐々に減少するように構成されてよい。
【0039】
いくつかの実施形態では、フォトポリマー層内に不均一な強度を有する光パターンの強度は、フォトポリマー層の厚さに沿った方向にベル形曲線によって特徴付けられてよい。
【0040】
いくつかの実施形態では、アポダイズされたホログラフィック回折格子の屈折率変調は、フォトポリマー層の厚さに沿った方向に垂直であるフォトポリマー層表面に隣接した領域内でゼロである。
【0041】
いくつかの実施形態では、第1の光ビームおよび第2の光ビームは、コヒーレントであり、アポダイズされたホログラフィック回折格子を記録するためのコヒーレント光は、第1の光ビームおよび第2の光ビームを含む。
【0042】
いくつかの実施形態では、第1の光ビームおよび第2の光ビームは、異なる波長を有する。
【0043】
いくつかの実施形態では、第1の光ビーム、およびアポダイズされたホログラフィック回折格子を記録するためのコヒーレント光は、異なる波長を有する。
【0044】
この要約は、特許請求される主題の重要なまたは本質的な特徴を特定することを意図するものでもないし、特許請求される主題の範囲を判断するために分離して使用されることも意図されていない。主題は、本発明の明細書全体の適切な部分、全ての図面またはいずれかの図面、およびそれぞれの特許請求項を参照することにより理解されるものとする。前述の事項については、他の特徴および例とともに、以下の明細書、特許請求の範囲、および添付の図面においてより詳細に後述される。
【0045】
例示的な実施形態について、以下の図を参照して詳細に後述する。
【図面の簡単な説明】
【0046】
図1】ある特定の実施形態によるニアアイディスプレイシステムを含む人工現実システム環境の一例の簡略化されたブロック図である。
図2】本明細書に開示された例のいくつかを実装するためのヘッドマウントディスプレイ(HMD)デバイスの形態のニアアイディスプレイシステムの一例の斜視図である。
図3】本明細書に開示された例のいくつかを実装するための1組の眼鏡の形態のニアアイディスプレイシステムの一例の斜視図である。
図4】ある特定の実施形態による光コンバイナを含む導波管ディスプレイを使用する光学シースルー拡張現実システムの一例を示す図である。
図5】視標追跡中の眼による光の反射および散乱を示す図である。
図6】ある特定の実施形態によるニアアイディスプレイシステムのユーザの眼を追跡する方法の一例を示す簡略化されたフローチャートである。
図7A】ある特定の実施形態による視標追跡のためのカメラによって取り込まれるユーザの眼の画像の一例を示す図である。
図7B】ある特定の実施形態による特定された虹彩領域の一例、特定された瞳領域の一例、およびユーザの眼の画像内で特定されたグリント領域の一例を示す図である。
図8】ある特定の実施形態によるニアアイディスプレイシステムにおける視標追跡システムの一例の断面図である。
図9A】ホログラフィックデフレクタの一例を示す図である。
図9B】ホログラフィックデフレクタの厚さ方向に沿った図9Aのホログラフィックデフレクタの屈折率を示す図である。
図9C】入射光の波長の関数としてホログラフィックデフレクタの透過率および反射率を示す図である。
図10】導波管ディスプレイの一例における光学アーチファクトの例を示す図である。
図11A】ある特定の実施形態によるアポダイズされた反射ホログラフィック回折格子を含むホログラフィックデフレクタの一例を示す図である。
図11B】ホログラフィックデフレクタの厚さ方向に沿った図11Aのホログラフィックデフレクタの屈折率を示す図である。
図11C図11Aに示された反射ホログラフィック回折格子のために入射光の波長の関数として透過率および反射率を示す図である。
図12】ある特定の実施形態によるホログラフィック記録材料の一例の吸収スペクトルを示す図である。
図13A】ある特定の実施形態による反射ホログラフィック回折格子のための記録および再構成光ビームを示す図である。
図13B】ある特定の実施形態による記録ビームおよび再構成ビームの波動ベクトル、ならびに記録された反射ホログラフィック回折格子の格子ベクトルを示す例示のホログラフィ運動量図である。
図14A】ある特定の実施形態による反射ホログラフィック回折格子を記録するホログラフィック記録用システムの一例を示す図である。
図14B】ある特定の実施形態によるホログラフィック記録材料における2つの記録ビームの干渉を示す図である。
図15A】ある特定の実施形態による記録ビームを使用してホログラフィック回折格子をアポダイズする方法の一例を示す図である。
図15B】ある特定の実施形態による図15Aに説明された方法を使用して製造されるアポダイズされたホログラフィック回折格子の一例を示す図である。
図15C】アポダイズされたホログラフィック回折格子の厚さ方向に沿ったアポダイズされたホログラフィック回折格子の屈折率を示す図である。
図16A】ある特定の実施形態によるコヒーレント光またはインコヒーレント光を使用してホログラフィック記録材料の感度が下げられるアポダイズされたホログラフィック回折格子を記録する方法の一例を示す図であり、ある特定の実施形態によるインコヒーレント光を使用してホログラフィック記録材料の感度を下げる方法の一例を示す図である。
図16B】ある特定の実施形態によるコヒーレント光またはインコヒーレント光を使用してホログラフィック記録材料の感度が下げられるアポダイズされたホログラフィック回折格子を記録する方法の一例を示す図であり、ある特定の実施形態による感度を下げられたホログラフィック記録材料にアポダイズされたホログラフィック回折格子を記録する方法の一例を示す図である。
図16C】ある特定の実施形態によるコヒーレント光またはインコヒーレント光を使用してホログラフィック記録材料の感度が下げられるアポダイズされたホログラフィック回折格子を記録する方法の一例を示す図であり、ある特定の実施形態による図16Aおよび図16Bに関して説明される方法を使用して製造されるアポダイズされたホログラフィック回折格子の一例を示す図である。
図17】ある特定の実施形態による反射ホログラフィック回折格子の一例の透過スペクトルを示す図である。
図18A】ある特定の実施形態による反射ホログラフィック回折格子の一例のスペクトル帯域幅を示す図である。
図18B】ある特定の実施形態による反射ホログラフィック回折格子の例の角度帯域幅を示す図である。
図19A】入射光の波長の関数として反射ホログラフィック回折格子の一例の透過率および反射率を示す図である。
図19B】ある特定の実施形態によるアポダイズされた反射ホログラフィック回折格子の一例についての入射光の波長の関数として透過率および反射率を示す図である。
図20】ある特定の実施形態による視標追跡のためのアポダイズされたホログラフィック回折格子を製造する方法の一例を示す簡略化されたフローチャートである。
図21】本明細書に開示された例のいくつかを実装するためのある特定の実施形態によるニアアイディスプレイシステム(例えば、HMDデバイス)の電子システム2100の一例の簡略化されたブロック図である。
【発明を実施するための形態】
【0047】
図は、もっぱら例示のために本発明の実施形態を示す。当業者は例示された構造および方法の代替実施形態が本発明の大いに推奨される原理または利益から逸脱することなく用いられ得るということを、以下の説明から容易に認識するであろう。
【0048】
添付の図では、同様の構成要素および/または特徴は同じ参照符号を有し得る。さらに、同じタイプのさまざまな構成要素は、以下のダッシュによる参照符号および同様の構成要素を区別する第2の符号によって区別されてよい。第1の参照符号のみが、本明細書中で使用される場合、説明は、第2の参照符号にかかわりなく同じ第1の参照符号を有する同様の構成要素のいずれか1つに適用可能である。
【0049】
本明細書に開示された技術は、全体的に、人工現実システムに関し、より具体的には、人工現実システムのための視標追跡サブシステムに関する。ある特定の実施形態によれば、人工現実システムの光コンバイナは、視標追跡のために光を反射するように構成されるホログラフィック光学素子を含む。ホログラフィック光学素子の屈折率変調は、その他の場合、ホログラフィック光学素子によって引き起こされる場合がある光学アーチファクトを低減するようにアポダイズされる。システム、モジュール、デバイス、コンポーネント、方法等を含むさまざまな発明の実施形態が、本明細書に説明される。
【0050】
仮想現実(VR)、拡張現実(AR)、または複合現実(MR)システムなどの人工現実システムでは、提示されたコンテンツとのユーザの対話を改善するために、人工現実システムは、ユーザが見ている場所または方向に基づいて、ユーザの眼を追跡し、ンテンツを修正するまたは生成することができる。眼を追跡することは、眼の瞳および/または角膜の位置および/または形状を追跡し、眼の回転位置または視線方向を決定することを含んでよい。眼を追跡するために、ニアアイディスプレイシステムの視標追跡システムは、人工現実システムに装着されるまたは人工現実システム内の光源を使用してユーザの眼を照射することができる照射サブシステムを含んでよい。視標追跡システムはまた、ユーザの眼のさまざまな表面に反射する光を取り込むための撮像デバイス(例えば、カメラ)を含む画像サブシステムを含んでよい。例えば、ユーザの眼の虹彩によって拡散的に反射される(例えば、散乱される)光は、虹彩または瞳領域内の取り込まれた画像のコントラストに影響を及ぼす場合があり、これは、虹彩または瞳のエッジ、および瞳の中心を決定するために使用されてよい。ユーザの眼の角膜から鏡面反射した光は、取り込まれた画像に「グリント」をもたらし得る。グリントは、第1のプルキニェ画像または角膜反射とも呼ばれ得る。質量中心アルゴリズムなどの技法を使用して取り込まれた画像における眼のグリントの場所を判断することができる。例えば、質量中心アルゴリズムは、局所近傍における最も大きいエネルギーを用いて画素の場所を見つけることによってグリントの中心を判断してよい。眼の回転位置(例えば、視線方向)はさらにまた、取り込まれた画像内の眼(例えば、瞳の中心)の既知の特徴に対するグリントの場所に基づいて判断されてよい。
【0051】
照射サブシステムにおいて、1つまたは複数の光源(例えば、LED)が、ユーザの眼を照射するために光を与えるために、ユーザの視野の周辺に(例えば、ビュー光学系の周囲に沿って、またはニアアイディスプレイシステムのフレーム上に)配置されてよい。いくつかの実施形態では、1つまたは複数の小型光源が、ユーザの視野内に配置されてよい。撮像サブシステムでは、1つまたは複数の撮像デバイス(例えば、カメラ)はまた、ユーザの視野の周辺に置かれてよい。多くのアプリケーションでは見ている方向(例えば、視線の方向)は、5°未満、1°未満、またはそれよりもよいもののように高精度で判断される必要があり得る。視標追跡システムは、見ている方向の極端な変化、および虹彩または瞳の一部を含む眼の部分が、例えば、まぶたまたはまつ毛によって覆い隠され得る場合などに、ユーザの眼を取り囲む顔の特徴の変化に対処するためにロバストである必要もあり得る。
【0052】
本明細書に開示されたある特定の実施形態によれば、人工現実システムのための視標追跡サブシステムは、照射光を放出するように構成される1つまたは複数の光源と、ユーザの眼の画像を取り込む1つまたは複数の撮像デバイス(例えば、カメラ)と、ユーザの眼の視野にありかつ1つまたは複数の光源からユーザの眼へ照射光を向ける、および/あるいはユーザの眼によって反射または拡散される照射光を1つまたは複数の撮像デバイスへ向けるように構成される、1つまたは複数の反射ホログラフィック回折格子を含む基板とを含んでよい。反射ホログラフィック回折格子は、可視光を透過させ、これにより拡張現実アプリケーションのためにディスプレイ光と環境光を組み合わせることができる導波管ベースのディスプレイとして使用される基板上に適合して積層されるようにユーザの眼の視野内に置くことができる。反射ホログラフィック回折格子は、光掩蔽を回避し、視標追跡の精度および信頼性を改善するのを助けることができる。反射ホログラフィック回折格子は、視標追跡光(例えば、赤外光)を反射により回折させることができる。反射ホログラフィック回折格子は、その他の場合、光の回折および分散による回折格子によって引き起こされ得る光学アーチファクト(例えば、レインボー効果)を低減するように厚さ方向にアポダイズされ得る。
【0053】
いくつかの実施形態では、アポダイズされた反射ホログラフィック回折格子は、視標追跡に使用される光とは異なる第1の波長の光を使用して記録されてよい。ホログラフィック回折格子材料(例えば、フォトポリマー)は、ある特定の光吸収特性を有してよく、コヒーレントな記録用光ビームは、ホログラフィック回折格子材料の内部のコヒーレントな記録用光ビームの強度がホログラフィック回折格子材料の内部の所望の深さの関数であり得るようにある特定の強度を有してよい。いくつかの実施形態では、ホログラフィック回折格子材料内に所望の記録用光強度関数を実現するために、ホログラフィック回折格子材料は、記録用光ビームを吸収することができるある特定の量の光吸収材料を含んでよいが、ホログラフィック回折格子材料中で光重合を開始しなくてよい。従って、干渉パターンの強度、および従ってホログラフィック記録材料の屈折率変調は、ホログラフィック記録材料の内部の深さの関数であってもよく、反射ホログラフィック回折格子における屈折率変調の大きさがホログラフィック記録中にアポダイズされ得るようになっている。いくつかの実施形態では、ホログラフィック回折格子材料は、反射ホログラフィック回折格子をアポダイズするようにホログラフィック回折格子が記録する前または後にコヒーレント光またはインコヒーレント光に露出されてよい。いくつかの実施形態では、アポダイゼーションの程度またはプロファイルは、アポダイゼーションに使用される光の波長および/または強度を変えることによって調節することができる。
【0054】
本明細書で使用されるように、可視光は、約380nm~約750nmの波長を有する光を指す場合がある。近赤外(NIR)光は、近赤外(NIR)光は、約750nm~約2500nmの波長を有する光を指す場合がある。所望の赤外(IR)波長範囲は、830nm~860nm、930nm~980nm、約750nm~約1000nmなど、適したIRセンサ(例えば、相補的金属酸化物半導体(CMOS)、または電荷結合素子(CCD)センサ、またはInGaAsセンサ)によって検出することができるIR光の波長範囲を指す場合がある。
【0055】
本明細書でまた使用されるように、基板は、光が内部を伝播することができる媒体を指す場合がある。基板は、ガラス、石英、プラスチック、ポリマー、ポリ(メタクリル酸メチル)(PMMA)、水晶、またはセラミックなど、1つまたは複数のタイプの誘電材料を含んでよい。基板の材料の少なくとも1つのタイプは、可視光およびNIR光を透過させてよい。基板の厚さは、例えば、約1mm未満から約10mm未満までの範囲であり得る。本明細書で使用されるように、光ビームが、60%、75%、80%、90%、95%、98%、99%以上よりも大きいような高透過度を有する材料を通過することができ、(例えば、40%、25%、20%、10%、5%、2%、1%以下よりも少ない)ほんの一部の光ビームが材料によって散乱、反射、または吸収され得る場合、材料は、光ビームを「透過」させることができる。透過度(すなわち、透過率)は、波長の範囲にわたる明所視で重み付けされた平均透過度または重み付けがない平均透過度、あるいは可視波長範囲などの波長の範囲にわたる最低透過度のいずれかによって表されてよい。
【0056】
本明細書で使用されるように、ホログラフィック回折格子は、ホロ屈折率変調を伴うグラフィック材料層(例えば、フォトポリマー層)を含んでよく、基板を含んでよくまたは含まなくてよい。例えば、いくつかの実施形態では、ホログラフィック回折格子は、屈折率変調を伴うフォトポリマー層を指す場合がある。いくつかの実施形態では、ホログラフィック回折格子はまた、フォトポリマー層を支持する基板を含んでよい。いくつかの実施形態では、ホログラフィック回折格子は、2つの基板を含み、この2つの基板の間にフォトポリマー層を伴ってよい。
【0057】
本明細書で使用されるように、アポダイズされた回折格子は、屈折率変調の振幅が異なる領域で変わり得る回折格子を指す場合がある。アポダイゼーションは、1次元、2次元、または3次元であってよく、屈折率変調の振幅は、回折格子の厚さ方向、幅方向、または長さ方向の任意の組合せなどの1つの方向、2つの方向、または3つの方向に変わり得る。アポダイズされた回折格子は、ある方向に対称にまたは非対称にアポダイズされてよく、屈折率変調の振幅は、任意の所望の曲線またはプロファイルに従って変わり得る。
【0058】
以下の説明には、解説の目的で、本発明の例を十分理解してもらうために具体的詳細が示されている。しかしながら、さまざまな例がこれら具体的詳細なく実践可能であることは明らかであろう。例えば、デバイス、システム、構造、アセンブリ、方法、および他の構成要素は、不必要な詳細で例を不明瞭にしないためにブロック図の形態の構成要素として示される場合がある。他の事例では、周知のデバイス、プロセス、システム、構造、および技法は、例を不明瞭にすることを回避するために必要な詳細なく示される場合がある。図および説明は制限することを意図するものではない。本発明で用いられている用語および表現は、説明の条件として使用され、限定するものではなく、示されかつ説明される特徴またはこの一部のいずれの同義語も除外するような用語および表現の使用を意図するものではない。「例」という単語は、「一例、例え、または例示として働くこと」を意味するように本明細書に使用される。「例」として本明細書に説明される任意の実施形態または設計は、必ずしも他の実施形態または設計よりも好ましいまたは有利と解釈されるものではない。
【0059】
図1は、ある特定の実施形態による、ニアアイディスプレイシステム120を含む人工現実システム環境100の一例の簡略化されたブロック図である。図1に示される人工現実システム環境100は、それぞれが適宜のコンソール110に結合され得る、ニアアイディスプレイシステム120、適宜の外部撮像デバイス150、および適宜の入力/出力インターフェース140を含んでよい。図1は、1つのニアアイディスプレイシステム120、1つの外部撮像デバイス150、および1つの入力/出力インターフェース140を含む例示の人工現実システム環境100を示すが、これらの構成要素の任意の数が人工現実システム環境100に含まれてよい、または該構成要素のいずれかが省略されてよい。例えば、コンソール110と通信する1つまたは複数の外部撮像デバイス150によって監視される複数のニアアイディスプレイシステム120があってよい。いくつかの構成では、人工現実システム環境100は、外部撮像デバイス150、適宜の入力/出力インターフェース140、および適宜のコンソール110を含まなくてよい。代替的な構成では、異なるまたは追加の構成要素が人工現実システム環境100に含まれてよい。
【0060】
ニアアイディスプレイシステム120は、ユーザにコンテンツを提示するヘッドマウントディスプレイであってよい。ニアアイディスプレイシステム120によって提示されるコンテンツの例には、1つまたは複数の画像、ビデオ、オーディオ、またはこれらの何らかの組合せが挙げられる。いくつかの実施形態では、オーディオは、ニアアイディスプレイシステム120、コンソール110、またはこの両方からオーディオ情報を受信し、かつオーディオ情報に基づくオーディオデータを提示する外部デバイス(例えば、スピーカおよび/またはヘッドホン)を介して提示されてよい。ニアアイディスプレイシステム120は、互いに強固にまたは柔軟に結合され得る1つまたは複数の剛体を含んでよい。剛体間の剛結によって、結合された剛体は単一の剛性エンティティとしての機能を果たすことができる。剛体間の非剛結によって、剛体は互いに対して移動可能になり得る。さまざまな実施形態では、1組の眼鏡を含む、ニアアイディスプレイシステム120は、任意の適した形状因子で実装可能である。ニアアイディスプレイシステム120のいくつかの実施形態は、さらに後述される。さらに、さまざまな実施形態では、本明細書に説明される機能性は、ニアアイディスプレイシステム120の外部の環境の画像と人工現実コンテンツ(例えば、コンピュータ生成画像)を組み合わせるヘッドセットに使用されてよい。従って、ニアアイディスプレイシステム120は、ユーザに拡張現実を提示するために生成されたコンテンツ(例えば、画像、ビデオ、音声など)によってニアアイディスプレイシステム120の外部の物理的な現実世界環境の画像を増大させることができる。
【0061】
さまざまな実施形態では、ニアアイディスプレイシステム120は、ディスプレイエレクトロニクス122、ディスプレイ光学系124、および視標追跡システム130の1つまたは複数を含んでよい。いくつかの実施形態では、ニアアイディスプレイシステム120は、1つまたは複数のロケータ126、1つまたは複数の位置センサ128、および慣性計測装置(IMU)132を含んでよい。ニアアイディスプレイシステム120は、さまざまな実施形態では、これらの要素のいずれかを省略してよい、または追加の要素を含んでよい。さらに、いくつかの実施形態では、ニアアイディスプレイシステム120は、図1と併せて説明されるさまざまな要素の機能を組み合わせた要素を含んでよい。
【0062】
ディスプレイエレクトロニクス122は、例えば、コンソール110から受信されたデータに従ってユーザに画像を表示し得るまたは表示を助け得る。さまざまな実施形態では、ディスプレイエレクトロニクス122は、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、無機発光ダイオード(ILED)ディスプレイ、マイクロ発光ダイオード(μLED)ディスプレイ、アクティブマトリックス式OLEDディスプレイ(AMOLED)、透明OLEDディスプレイ(TOLED)、またはいくつかの他のディスプレイなどの1つまたは複数のディスプレイパネルを含んでよい。例えば、ニアアイディスプレイシステム120の1つの実装形態では、ディスプレイエレクトロニクス122は、前面TOLEDパネル、後面表示パネル、および前面表示パネルと後面表示パネルとの間の光学部品(例えば、減衰器、偏光子、または回析膜もしくはスペクトル膜)を含んでよい。ディスプレイエレクトロニクス122は、赤、緑、青、白、または黄色などの主色の光を放出するための画素を含むことができる。いくつかの実装形態では、ディスプレイエレクトロニクス122は、画像奥行の主観的知覚をもたらすために2次元パネルによって生じたステレオ効果によって3次元(3D)画像を表示可能である。例えば、ディスプレイエレクトロニクス122は、それぞれ、ユーザの左眼および右眼の正面に位置付けられた左ディスプレイおよび右ディスプレイを含んでよい。左ディスプレイおよび右ディスプレイは、立体感(すなわち、画像を見るユーザによる画像奥行の知覚)をもたらすために互いに対して水平に移行させた画像の複写を提示することができる。
【0063】
ある特定の実施形態では、ディスプレイ光学系124は、光学的に(例えば、光導波管および結合器を使用して)画像コンテンツを表示する、ディスプレイエレクトロニクス122から受信された画像光を拡大する、画像光と関係がある光学誤差を補正する、およびニアアイディスプレイシステム120のユーザに補正された画像光を提示することができる。さまざまな実施形態では、ディスプレイ光学系124は、入力/出力結合器、またはディスプレイエレクトロニクス122から放出される画像光に影響し得る任意の他の適した光学素子など、1つまたは複数の光学素子を含んでよい。ディスプレイ光学系124は、組み合わせた光学素子の対応する間隔および向きを維持するために異なる光学素子および機械的結合の組合せを含んでよい。ディスプレイ光学系124における1つまたは複数の光学素子は、反射防止膜、反射コーティング、フィルタ用コーティング、または種々の光学コーティングの組合せなどの光学コーティングを有することができる。
【0064】
ディスプレイ光学系124による画像光の拡大によって、ディスプレイエレクトロニクス122を、より大きいディスプレイよりも、物理的に小さくし、軽くし、および電力消費を少なくすることが可能になる。さらに、拡大によって表示されたコンテンツの視野は増大し得る。ディスプレイ光学系124による画像光の拡大量は、ディスプレイ光学系124から光学素子を調節する、追加する、または除去することによって変更可能である。いくつかの実施形態では、ディスプレイ光学系124は、ニアアイディスプレイシステム120よりもユーザの眼から遠く離れている場合がある1つまたは複数の像平面へ表示された像を投影することができる。
【0065】
ディスプレイ光学系124はまた、2次元光学誤差、3次元光学誤差、またはこれらの組合せなどの1つまたは複数のタイプの光学誤差を補正するように設計されてよい。2次元誤差は、2次元で生じる光学収差を含み得る。2次元誤差の例示のタイプには、たる形歪み、糸巻き形歪み、軸上色収差、および横色収差が挙げられ得る。3次元誤差は3次元で生じる光学誤差を含み得る。3次元誤差の例示のタイプには、球面収差、コマ収差、像面湾曲、および非点収差が挙げられ得る。
【0066】
ロケータ126は、互いに対して、およびニアアイディスプレイシステム120上の基準点に対して、ニアアイディスプレイシステム120上の特定の位置に位置する物体であってよい。いくつかの実装形態では、コンソール110は、人工現実ヘッドセットの位置、向き、またはこの両方を判断するために外部撮像デバイス150によって取り込まれた画像におけるロケータ126を特定し得る。ロケータ126は、発光ダイオード(LED)、コーナーキューブリフレクタ、反射マーカ、ニアアイディスプレイシステム120が動作する環境と対照をなす光源のタイプ、またはこれらの何らかの組合せであってよい。ロケータ126が能動素子(例えば、LED、または他のタイプの発光デバイス)である実施形態では、ロケータ126は、可視帯(例えば、約380nm~750nm)において、赤外(IR)帯(例えば、約750nm~1mm)において、紫外帯(例えば、約10nm~約380nm)において、電磁スペクトルの別の一部において、または電磁スペクトルの一部の任意の組合せにおいて、光を放出してよい。
【0067】
外部撮像デバイス150は、コンソール110から受信した較正パラメータに基づいて低速較正データを生成してよい。低速較正データは、外部撮像デバイス150によって検出可能なロケータ126の観測された位置を示す1つまたは複数の画像を含んでよい。外部撮像デバイス150は、1つもしくは複数のカメラ、1つもしくは複数のビデオカメラ、ロケータ126の1つまたは複数を含む画像を取り込むことが可能な任意の他のデバイス、またはこれらの何らかの組合せを含むことができる。さらに、外部撮像デバイス150は、(例えば、信号対雑音比を高めるために)1つまたは複数のフィルタを含んでよい。外部撮像デバイス150は、ロケータ126から放出または反射した光を外部撮像デバイス150の視野において検出するように構成されてよい。ロケータ126が受動素子(例えば、再帰反射器)を含む実施形態では、外部撮像デバイス150は、ロケータ126のうちのいくつかまたは全てを照射する光源を含んでよく、ロケータ126は、外部撮像デバイス150における光源に光を再帰反射し得る。低速較正データは、外部撮像デバイス150からコンソール110に通信されてよく、外部撮像デバイス150は、コンソール110から1つまたは複数の較正パラメータを受信して、1つまたは複数の画像パラメータ(例えば、焦点距離、焦点、フレームレート、センサ温度、シャッタ速度、開口など)を調節可能である。
【0068】
位置センサ128は、ニアアイディスプレイシステム120の動きに応答して1つまたは複数の測定信号を生成してよい。位置センサ128の例には、加速度計、ジャイロスコープ、磁力計、他の動き検出もしくは誤差補正センサ、またはこれらの何らかの組合せが挙げられ得る。例えば、いくつかの実施形態では、位置センサ128は、並進運動(例えば、前方/後方、上/下、または左/右)を測定するための複数の加速度計、および回転運動(例えば、ピッチ、ヨー、または横揺れ)を測定するための複数のジャイロスコープを含むことができる。いくつかの実施形態では、さまざまな位置センサは互いに直角に配向されてよい。
【0069】
IMU132は、位置センサ128の1つまたは複数から受信された測定信号に基づいて高速較正データを生成する電子デバイスであってよい。位置センサ128は、IMU132の外部に、IMU132の内部に、またはこの何らかの組合せで位置してよい。1つまたは複数の位置センサ128からの1つまたは複数の測定信号に基づいて、IMU132は、ニアアイディスプレイシステム120の初期位置に対するニアアイディスプレイシステム120の推定位置を指示する高速較正データを生成することができる。例えば、IMU132は、速度ベクトルを推定するために加速度計から受信される測定信号を経時的に統合し、かつニアアイディスプレイシステム120上の基準点の推定位置を判断するために速度ベクトルを経時的に統合することができる。代替的には、IMU132は、サンプリングされた測定信号をコンソール110に提供してよく、コンソール110は、高速較正データを判断することができる。基準点は一般的に、空間のある点として定められ得、さまざまな実施形態では、基準点はニアアイディスプレイシステム120内のある点(IMU132の中心)として定められてもよい。
【0070】
視標追跡システム130は、1つまたは複数の視標追跡システムを含んでよい。視標追跡は、ニアアイディスプレイシステム120に対する眼の向きおよび場所を含む眼の位置を判断することを指す場合がある。視標追跡システムは、1つまたは複数の眼を映し出す画像システムを含んでよく、一般的に、眼に反射する光が画像システムによって取り込み可能であるように眼に向けられる光を生成することができる発光体を含んでよい。例えば、視標追跡システム130は、可視スペクトルまたは赤外スペクトルにおいて光を放出する非コヒーレントまたはコヒーレント光源(例えば、レーザダイオード)、およびユーザの眼に反射する光を取り込むカメラを含んでよい。別の例として、視標追跡システム130は、小型レーダユニットによって放出された、反射した電波を取り込むことができる。視標追跡システム130は、眼を傷つけないまたは身体的不快感を引き起こさない周波数および強度で光を放出する低電力発光体を使用し得る。視標追跡システム130は、視標追跡システム130によって取り込まれた眼の画像におけるコントラストを高めながら、視標追跡システム130によって消費される電力全体を低減する(例えば、視標追跡システム130に含まれる発光体および画像システムによって消費される電力を低減する)ように配置されてよい。例えば、いくつかの実装形態では、視標追跡システム130は100ミリワット未満の電力を消費し得る。
【0071】
いくつかの実施形態では、視標追跡システム130は、ユーザの眼のそれぞれを追跡するために1つの発光体および1つのカメラを含んでよい。視標追跡システム130は、視標追跡精度および応答性を改善させるように共に動作する種々の視標追跡システムを含んでもよい。例えば、視標追跡システム130は、高速応答時間による高速視標追跡システム、およびより遅い応答時間による低速視標追跡システムを含んでよい。高速視標追跡システムは、基準眼位に対する眼の位置を判断するために視標追跡モジュール118によって使用されるデータを取り込むために眼を頻繁に測定し得る。低速視標追跡システムは、先に判断された眼位と無関係に基準眼位を判断するように視標追跡モジュール118によって使用されるデータを取り込むために単独で眼を測定してよい。低速視標追跡システムによって取り込まれたデータによって、視標追跡モジュール118は、高速視標追跡システムによって取り込まれたデータから判断される眼の位置よりも高い精度で基準眼位を判断できるようにしてよい。さまざまな実施形態では、低速視標追跡システムは、高速視標追跡システムより低い周波数で視標追跡モジュール118に視標追跡データを提供し得る。例えば、低速視標追跡システムは、少ない頻度で動作してよい、または電力を保存するためにより遅い応答時間を有してよい。
【0072】
視標追跡システム130は、ユーザの眼の向きを推定するように構成されてよい。眼の向きは、ニアアイディスプレイシステム120内のユーザの視線の方向に対応し得る。ユーザの眼の向きは、窩(光受容体が最も集中した眼の網膜上の領域)と、眼の瞳の中心との間の軸である中心窩軸の方向として定められてよい。一般に、ユーザの眼がある点に固定される時、ユーザの眼の中心窩軸はその点を交差する。眼の瞳孔軸は、瞳の中心を通過し、かつ角膜表面に垂直である軸として定められ得る。一般に、瞳孔軸および中心窩軸が瞳の中心で交差しても、瞳孔軸は中心窩軸と直接整列しない場合がある。例えば、中心窩軸の向きは、瞳孔軸から、横におよそ-1°~8°、縦に約±4°オフセットされ得る(これはカッパ角と呼ばれ得るものであり、これは人ごとに変わり得る)。中心窩軸は、眼の後ろに位置する窩に従って定められるため、中心窩軸はいくつかの視標追跡実施形態において直接測定することが困難であるまたは不可能である場合がある。それ故に、いくつかの実施形態では、瞳孔軸の向きは検出可能であり、中心窩軸は検出された瞳孔軸に基づいて推定され得る。
【0073】
一般に、眼の移動は、眼の角回転だけでなく、眼の並進、眼の捻転の変化、および/または眼の形状の変化にも対応する。視標追跡システム130はまた、眼窩に対する眼の位置の変化であり得る眼の並進を検出するように構成されてよい。いくつかの実施形態では、眼の並進は、直接検出されるのではなく、検出される角度配向からのマッピングに基づいて概算されてよい。例えば、ユーザの頭上のニアアイディスプレイシステム120の位置の移行による、視標追跡システムに対する眼の位置の変化に対応する眼の並進も検出可能である。視標追跡システム130はまた、眼の捻転および瞳孔軸周りの眼の回転を検出することができる。視標追跡システム130は、瞳孔軸から中心窩軸の向きを推定するために検出された眼の捻転を使用してよい。いくつかの実施形態では、視標追跡システム130はまた、スキュー、またはスケーリング線形変換、または(例えば、ねじれ変形による)捻り変形として概算され得る眼の形状の変化を追跡してよい。いくつかの実施形態では、視標追跡システム130は、瞳孔軸の角度配向、眼の並進、眼の捻転、および眼の現在の形状のいくつかの組合せに基づいて中心窩軸を推定してよい。
【0074】
いくつかの実施形態では、視標追跡システム130は、眼の全ての部または一部上に構造化された光パターンを投影することができる複数のエミッタまたは少なくとも1つのエミッタを含んでよい。構造化された光パターンは、オフセット角から見られる時の眼の形状により歪む場合がある。視標追跡システム130はまた、眼に投影される構造化された光パターンの歪み(ある場合)を検出することができる少なくとも1つのカメラを含んでよい。カメラは、エミッタと異なる眼に対する軸において配向されてよい。眼の表面上の構造化された光パターンの変形を検出することによって、視標追跡システム130は、構造化された光パターンによって照射される眼の一部の形状を判断してよい。従って、取り込まれた歪んだ光パターンは眼の照射された一部の3D形状を指示するものであってよい。眼の向きは、そのように、眼の照射された一部の3D形状から導出可能である。視標追跡システム130はまた、カメラによって取り込まれた歪んだ構造化された光パターンの画像に基づいて、瞳孔軸、眼の並進、眼の捻転、および眼の現在の形状を推定できる。
【0075】
ニアアイディスプレイシステム120は、眼の向きを使用して、例えば、ユーザの瞳孔間距離(IPD)を判断する、視線方向を判断する、奥行手掛かり(例えば、ユーザの主要な視線の外側のボケ画像)を取り入れる、VRメディアにおけるユーザの対話での発見的方法を収集する(例えば、受けた刺激に応じて任意の特定の被写体、物体、またはフレームにおいて費やされた時間)、ユーザの眼の少なくとも1つの向きに部分的に基づくいくつかの他の機能、またはこれらの何らかの組合せを行うことができる。ユーザの両眼に対する向きが判断され得るため、視標追跡システム130はユーザがどこを見ているかを判断可能にし得る。例えば、ユーザの視線の方向を判断することは、ユーザの左眼および右眼の判断された向きに基づいて集束点を判断することを含んでよい。集束点は、ユーザの眼の2つの中心窩軸が交差する点であってよい。ユーザの視線の方向は、ユーザの眼の瞳の間の集束点および中間点を通過する線方向であってよい。
【0076】
入力/出力インターフェース140は、ユーザがコンソール110へのアクション要求を送ることができるデバイスであってよい。アクション要求は特定のアクションを行うための要求であってよい。例えば、アクション要求は、アプリケーションを開始もしくは終了すること、またはアプリケーション内の特定のアクションを行うことであってよい。入力/出力インターフェース140は1つまたは複数の入力デバイスを含んでよい。例示の入力デバイスには、キーボード、マウス、ゲームコントローラ、グローブ、ボタン、タッチスクリーン、またはアクション要求を受信しかつ受信したアクション要求をコンソール110に通信するための任意の他の適したデバイスが挙げられ得る。入力/出力インターフェース140によって受信されるアクション要求はコンソール110に通信されてよく、コンソール110は要求されたアクションに対応するアクションを行うことができる。いくつかの実施形態では、入力/出力インターフェース140は、コンソール110から受信された命令に従ってユーザに触覚フィードバックを提供することができる。例えば、入力/出力インターフェース140は、アクション要求が受信される時、またはコンソール110が要求されたアクションを行い、かつ入力/出力インターフェース140に命令を通信する時、触覚フィードバックを提供し得る。
【0077】
コンソール110は、外部撮像デバイス150、ニアアイディスプレイシステム120、および入力/出力インターフェース140のうちの1つまたは複数から受信される情報に従ってユーザに提示するためのコンテンツをニアアイディスプレイシステム120に提供してよい。図1に示される例では、コンソール110は、アプリケーションストア112、ヘッドセット追跡モジュール114、人工現実エンジン116、および視標追跡モジュール118を含んでよい。コンソール110のいくつかの実施形態は、図1と併せて説明されるものと異なるまたは追加のモジュールを含んでよい。さらに後述される機能は、ここで説明されるのとは異なるやり方でコンソール110の構成要素の間で分布させてよい。
【0078】
いくつかの実施形態では、コンソール110は、プロセッサ、および、プロセッサによって実行可能な命令を記憶する非一時的なコンピュータ可読記憶媒体を含んでよい。プロセッサは、命令を並列に実行する複数の処理ユニットを含んでよい。コンピュータ可読記憶媒体は、ハードディスクドライブ、取り外し可能メモリ、またはソリッドステートドライブ(例えば、フラッシュメモリまたはダイナミックランダムアクセスメモリ(DRAM))などの任意のメモリであってよい。さまざまな実施形態では、図1と併せて説明されるコンソール110のモジュールは、プロセッサによって実行される時、プロセッサにさらに後述される機能を実行させる、非一時的なコンピュータ可読記憶媒体における命令として符号化されてよい。
【0079】
アプリケーションストア112はコンソール110による実行のための1つまたは複数のアプリケーションを記憶してよい。アプリケーションは、プロセッサによって実行される時、ユーザへの提示のためのコンテンツを生成する命令群を含んでよい。アプリケーションによって生成されるコンテンツは、ユーザの眼の移動によってユーザから受信される入力、または入力/出力インターフェース140から受信される入力に応答するものであってよい。アプリケーションの例には、ゲームアプリケーション、会議アプリケーション、ビデオ再生アプリケーション、または他の適したアプリケーションが挙げられ得る。
【0080】
ヘッドセット追跡モジュール114は、外部撮像デバイス150からの低速較正情報を使用してニアアイディスプレイシステム120の移動を追跡し得る。例えば、ヘッドセット追跡モジュール114は、低速較正情報からの観測されるロケータおよびニアアイディスプレイシステム120のモデルを使用してニアアイディスプレイシステム120の基準点の位置を判断してよい。ヘッドセット追跡モジュール114はまた、高速較正情報からの位置情報を使用してニアアイディスプレイシステム120の基準点の位置を判断してよい。さらに、いくつかの実施形態では、ヘッドセット追跡モジュール114は、高速較正情報、低速較正情報、またはこれらの何らかの組合せの一部を使用して、ニアアイディスプレイシステム120の今後の場所を予測し得る。ヘッドセット追跡モジュール114は、ニアアイディスプレイシステム120の推定されたまたは予測された今後の位置を人工現実エンジン116に提供してよい。
【0081】
ヘッドセット追跡モジュール114は、1つまたは複数の較正パラメータを使用して人工現実システム環境100を較正してよく、かつ、ニアアイディスプレイシステム120の位置を判断する際の誤差を低減するために1つまたは複数の較正パラメータを調節し得る。例えば、ヘッドセット追跡モジュール114は、ニアアイディスプレイシステム120上の観測されるロケータに対してより精確な位置を得るために外部撮像デバイス150の焦点を調節可能である。さらに、ヘッドセット追跡モジュール114によって行われる較正は、IMU132から受信される情報も考慮し得る。さらに、ニアアイディスプレイシステム120の追跡が失われる(例えば、外部撮像デバイス150が少なくとも閾値の数のロケータ126の見通し線を失う)場合、ヘッドセット追跡モジュール114は較正パラメータの一部または全てを再較正してよい。
【0082】
人工現実エンジン116は、人工現実システム環境100内のアプリケーションを実行し、かつニアアイディスプレイシステム120の位置情報、ニアアイディスプレイシステム120の加速情報、ニアアイディスプレイシステム120の速度情報、ニアアイディスプレイシステム120の予測される今後の位置、またはこれらの何らかの組合せをヘッドセット追跡モジュール114から受信してよい。人工現実エンジン116はまた、推定眼位および配向情報を視標追跡モジュール118から受信してよい。受信した情報に基づいて、人工現実エンジン116は、ユーザへの提示のためにニアアイディスプレイシステム120に提供するためのコンテンツを判断してよい。例えば、受信した情報が、ユーザが左を見たことを指示する場合、人工現実エンジン116は、仮想環境におけるユーザの眼の移動を反映するニアアイディスプレイシステム120に対するコンテンツを生成してよい。さらに、人工現実エンジン116は、入力/出力インターフェース140から受信されたアクション要求に応答してコンソール110上で実行するアプリケーション内のアクションを行い、かつアクションが行われていることを指示するフィードバックをユーザに提供してよい。フィードバックは、ニアアイディスプレイシステム120を介した視覚フィードバックもしくは音声フィードバック、または入力/出力インターフェース140を介した触覚フィードバックであってよい。
【0083】
視標追跡モジュール118は、視標追跡システム130から視標追跡データを受信し、かつ視標追跡データに基づいてユーザの眼の位置を判断してよい。眼の位置は、ニアアイディスプレイシステム120またはこの任意の要素に対する眼の向き、場所、またはこの両方を含んでよい。眼の回転軸はこの眼窩の眼の場所に応じて変化するため、眼窩における眼の場所を判断することによって、視標追跡モジュール118は眼の向きをより精確に判断することができる。
【0084】
いくつかの実施形態では、視標追跡モジュール118は、視標追跡システム130によって取り込まれた画像と眼の位置との間のマッピングを記憶して、視標追跡システム130によって取り込まれた画像から基準眼位を判断することができる。代替的にはまたはさらに、視標追跡モジュール118は、基準眼位が判断される画像を、更新済み眼位が判断される画像と比較することによって、基準眼位に対する更新済み眼位を判断してよい。視標追跡モジュール118は、種々の撮像デバイスまたは他のセンサからの測定値を使用して眼位を判断してよい。例えば、視標追跡モジュール118は、低速視標追跡システムからの測定値を使用して、基準眼位を判断した後、低速視標追跡システムからの測定値に基づいて次の基準眼位が判断されるまで、高速視標追跡システムからの基準眼位に対する更新済み位置を判断してよい。
【0085】
視標追跡モジュール118はまた、視標追跡の精密さおよび精度を改善するために眼較正パラメータを判断してよい。眼較正パラメータは、ユーザがニアアイディスプレイシステム120を身につけるまたは調節する時はいつでも変化し得るパラメータを含んでよい。例示の眼較正パラメータには、視標追跡システム130の構成要素と、眼の中心、瞳、角膜境界、または眼の表面上のある点など、眼の1つまたは複数の部分との間の推定される距離が挙げられ得る。他の例示の眼較正パラメータは、特定のユーザに固有のものであってよく、かつ、推定される平均眼半径、平均角膜半径、平均強膜半径、眼表面上の特徴のマップ、および推定される眼表面輪郭を含んでよい。(いくつかの拡張現実アプリケーションのように)ニアアイディスプレイシステム120からの光が眼に達し得る実施形態では、較正パラメータはニアアイディスプレイシステム120の外部からの光の変動による強度および色バランスに対する補正因子を含んでよい。視標追跡モジュール118は、視標追跡システム130によって取り込まれる測定値によって視標追跡モジュール118が精確な眼位を判断可能になるかどうかを判断するために眼較正パラメータを使用してよい(本明細書では「有効測定」ともいう)。視標追跡モジュール118が精確な眼位を判断できない場合がある無効な測定は、ユーザのまばたき、ヘッドセットの調節、またはヘッドセットの除去によって引き起こされる場合がある、および/またはニアアイディスプレイシステム120が外部光による照射の閾値変化よりも多く体験することによって引き起こされる場合がある。いくつかの実施形態では、視標追跡モジュール118の機能の少なくとも一部は、視標追跡システム130によって実行されてよい。
【0086】
図2は、本明細書に開示された例のいくつかを実装するためのヘッドマウントディスプレイ(HMD)デバイス200の形態のニアアイディスプレイシステムの一例の斜視図である。HMDデバイス200は、例えば、仮想現実(VR)システム、拡張現実(AR)システム、複合現実(MR)システム、またはこれらのいくつかの組合せの一部分であってよい。HMDデバイス200は、本体220およびヘッドストラップ230を含んでよい。図2は、斜視図において、本体220の上側223、前側225、および右側227を示す。ヘッドストラップ230は調節可能なまたは拡張可能な長さを有してよい。ユーザがユーザの頭上にHMDデバイス200を装着できるようにするためにHMDデバイス200の本体220とヘッドストラップ230との間に十分な空間があってよい。さまざまな実施形態では、HMDデバイス200は、追加の、さらなる、より少ない、または異なる構成要素を含んでよい。例えば、いくつかの実施形態では、HMDデバイス200は、ヘッドストラップ230ではなく、例えば、図2に示されるように、眼鏡のテンプルおよびテンプル先端を含んでよい。
【0087】
HMDデバイス200は、コンピュータ生成要素による、物理的な現実世界環境の仮想ビューおよび/または拡張ビューを含む媒体をユーザに提示することができる。HMDデバイス200によって提示される媒体の例には、画像(例えば、2次元(2D)または3次元(3D)画像)、ビデオ(例えば、2Dまたは3Dビデオ)、オーディオ、またはこれらの何らかの組合せが挙げられ得る。画像およびビデオは、HMDデバイス200の本体220に収納される1つまたは複数のディスプレイアセンブリ(図2には図示せず)によってユーザのそれぞれの眼に提示可能である。さまざまな実施形態では、1つまたは複数のディスプレイアセンブリは、単一の電子表示パネルまたは複数の電子表示パネル(例えば、ユーザのそれぞれの眼用の1つの表示パネル)を含むことができる。電子ディスプレイパネルの例は、例えば、液晶ディスプレイ(LCD)、有機発光ダイオード(OLED)ディスプレイ、無機発光ダイオード(ILED)ディスプレイ、マイクロ発光ダイオード(mLED)ディスプレイ、アクティブマトリックス式有機発光ダイオード(AMOLED)ディスプレイ、透明有機発光ダイオード(TOLED)ディスプレイ、いくつかの他のディスプレイ、またはそれらのいくつかの組合せを含んでよい。HMDデバイス200は、2つのアイボックス領域を含んでよい。
【0088】
いくつかの実装形態では、HMDデバイス200は、深度センサ、運動センサ、位置センサ、および視標追跡センサなどのさまざまなセンサ(図示せず)を含んでよい。これらのセンサのいくつかは検知するための構造化された光パターンを使用してよい。いくつかの実装形態では、HMDデバイス200は、コンソールと通信するための入力/出力インターフェースを含んでよい。いくつかの実装形態では、HMDデバイス200は、HMDデバイス200内のアプリケーションを実行し、かつHMDデバイス200の、深度情報、位置情報、加速情報、速度情報、予測される今後の位置、またはこれらの何らかの組合せをさまざまなセンサから受信可能である仮想現実エンジン(図示せず)を含んでよい。いくつかの実装形態では、仮想現実エンジンによって受信される情報は、1つまたは複数のディスプレイアセンブリへの信号(例えば、表示命令)を生じさせるために使用されてよい。いくつかの実装形態では、HMDデバイス200は、互いに対するおよび基準点に対する本体220上の固定位置に位置するロケータ(図示せず、ロケータ126など)を含んでよい。ロケータのそれぞれは、外部撮像デバイスによって検出可能な光を放出してよい。
【0089】
図3は、本明細書に開示された例のいくつかを実装するための1組の眼鏡の形態のニアアイディスプレイシステム300の一例の斜視図である。ニアアイディスプレイシステム300は図1のニアアイディスプレイシステム120の具体的な実装形態であってよく、仮想現実ディスプレイ、拡張現実ディスプレイ、および/または複合現実ディスプレイとして動作するように構成されてよい。ニアアイディスプレイシステム300は、フレーム305およびディスプレイ310を含んでよい。ディスプレイ310は、ユーザにコンテンツを提示するように構成されてよい。いくつかの実施形態では、ディスプレイ310はディスプレイエレクトロニクスおよび/またはディスプレイ光学系を含んでよい。例えば、図1のニアアイディスプレイシステム120に関して上述されるように、ディスプレイ310は、LCD表示パネル、LED表示パネル、または光表示パネル(例えば、導波管ディスプレイアセンブリ)を含んでよい。
【0090】
ニアアイディスプレイシステム300はさらに、フレーム305上にまたは内にさまざまなセンサ350a、350b、350c、350d、および350eを含んでよい。いくつかの実施形態では、センサ350a~350eは、1つまたは複数の深度センサ、運動センサ、位置センサ、慣性センサ、または環境光センサを含んでよい。いくつかの実施形態では、センサ350a~350eは、異なる方向における異なる視野を表す画像データを生成するように構成される1つまたは複数の画像センサを含んでよい。いくつかの実施形態では、センサ350a~350eは、ニアアイディスプレイシステム300の表示されたコンテンツを制御するまたはこれに影響を与えるための、および/またはインタラクティブなVR/AR/MR体験をニアアイディスプレイシステム300のユーザに提供するための入力デバイスとして使用可能である。いくつかの実施形態では、センサ350a~350eはまた、立体映像に使用されてよい。
【0091】
いくつかの実施形態では、ニアアイディスプレイシステム300は、光を物理的環境に投影するための1つまたは複数の照明器330をさらに含んでよい。投影された光は、種々の周波数帯(例えば、可視光、赤外光、紫外光など)と関係がある場合があり、さまざまな目的にかなう場合がある。例えば、照明器330は、暗い環境で(または、低強度の赤外光、紫外光などによる環境で)光を投影して、暗い環境内の異なる物体の画像を取り込む際にセンサ350a~350eを支援することができる。いくつかの実施形態では、照明器330は、環境内の物体上にある特定の光パターンを投影するために使用可能である。いくつかの実施形態では、照明器330は、図1に関して上述されるロケータ126などのロケータとして使用されてよい。
【0092】
いくつかの実施形態では、ニアアイディスプレイシステム300は、高解像度カメラ340も含んでよい。カメラ340は、視野における物理的環境の画像を取り込むことができる。取り込まれた画像は、例えば、取り込まれた画像に仮想オブジェクトを追加する、または取り込まれた画像における物体を修正するために仮想現実エンジン(例えば、図1の人工現実エンジン116)によって処理されてよく、処理された画像はARまたはMRアプリケーションのためにディスプレイ310によってユーザに表示可能である。
【0093】
図4はある特定の実施形態による導波管ディスプレイを使用した光学シースルー拡張現実システム400の一例を示す。拡張現実システム400は、プロジェクタ410およびコンバイナ415を含むことができる。プロジェクタ410は、光源または画像ソース412と、プロジェクタ光学系414とを含んでよい。いくつかの実施形態では、画像ソース412は、LCDディスプレイパネルまたはLEDディスプレイパネルなど、仮想オブジェクトを表示する複数の画素を含んでよい。いくつかの実施形態では、画像ソース412は、コヒーレント光または部分的なコヒーレント光を生成する光源を含んでよい。例えば、画像ソース412は、レーザダイオード、垂直共振器型面発光レーザ、および/または発光ダイオードを含んでよい。いくつかの実施形態では、画像ソース412は、原色に対応する単色の画像光(例えば、赤、緑、または青)をそれぞれ放出する複数の光源を含んでよい。いくつかの実施形態では、画像ソース412は、空間光変調器などの光パターン生成器を含んでよい。プロジェクタ光学系414は、画像ソース412からコンバイナ415へ光を拡大、コリメート、走査、または投影などして画像ソース412からの光を調整することができる1つまたは複数の光学部品を含んでよい。1つまたは複数の光学部品は、例えば、1つまたは複数のレンズ、液体レンズ、ミラー、開口、および/または回折格子を含んでよい。いくつかの実施形態では、プロジェクタ光学系414は、画像ソース412からの光の走査を可能にする複数の電極を備えた液体レンズ(例えば、液体水晶レンズ)を含んでよい。
【0094】
コンバイナ415は、プロジェクタ410からの光をコンバイナ415の基板420に結合する入力結合器430を含んでよい。コンバイナ415は、第1の波長範囲内の光の少なくとも50%を伝達し、第2の波長範囲内の光の少なくとも25%を反射することができる。例えば、第1の波長範囲は、約400nmから約650nmまでの可視光であってよく、第2の波長範囲は、赤外帯域内、例えば、約800nmから約1000nmであってよい。入力結合器430は、体積ホログラフィック回折格子、回折光学素子(DOE)(例えば、表面レリーフ回折格子)、基板420の斜面、または屈折結合器(例えば、くさびまたはプリズム)を含んでよい。入力結合器430は、可視光の場合、30%、50%、75%、90%以上よりも大きい結合効率を有してよい。基板420に結合された光は、例えば、全反射(TIR)によって、基板420内を伝播することができる。基板420は、一対のアイグラスのレンズの形態でよい。基板420は、平面または曲面を有してよく、ガラス、石英、プラスチック、ポリマー、ポリ(メタクリル酸メチル)(PMMA)、水晶、またはセラミックなどの1つまたは複数のタイプの誘電材料を含んでよい。基板の厚さは、例えば、約1mm未満から約10mm以上までの範囲であってよい。基板420は、可視光を透過させることができる。
【0095】
基板420は、基板420によって案内されるとともに基板420から基板420内を伝播する光の少なくとも一部を抽出し、抽出された光460を拡張現実システム400のユーザの眼490へ向けるように構成される複数の出力結合器440を含んでもよく、または複数の出力結合器440に結合されてよい。入力結合器430のように、出力結合器440は、回折格子結合器(例えば、体積ホログラフィック回折格子、または表面レリーフ回折格子)、他のDOE、プリズなどを含んでよい。出力結合器440は、異なる場所で異なる結合(例えば、回折)効率を有してよい。基板420は、コンバイナ415の正面の環境からの光450がほとんどまたは全く損失なしで通過することを可能することもできる。出力結合器440は、光450がほとんど損失なしで通過することを可能にすることもできる。例えば、いくつかの実装形態では、出力結合器440は、光450が、屈折させられ得るように、またはその他の場合ほとんど損失なしで出力結合器440を通過し、従って抽出された光460よりも高い強度を有することができるように、光450について低回折効率を有することができる。いくつかの実装形態では、出力結合器440は、光450に対して高い回折効率を有してよく、ほとんど損失なしで光450をある特定の所望の向き(すなわち、回折角)へ回折させることができる。結果として、ユーザは、コンバイナ415の正面の環境の画像とプロジェクタ410によって投影される仮想オブジェクトとの組み合わされた画像を見ることができる。
【0096】
ユーザの意図、認識過程、行動、注意などを判断するいくつかのタイプの眼球測定が存在し得る。これらの測定は、例えば、眼が運動の間に静止して視覚入力が行われ得る視線固定に関連した測定を含んでよい。視線固定関連測定の変数は、例えば、総視線固定期間、平均視線固定期間、視線固定空間密度、固定されたエリア数、視線固定シークエンス、および視線固定率を含み得る。眼球測定は、視線固定間に起こる急速な眼球運動であるサッカードの測定も含んでよい。サッカードに関連したパラメータは、例えば、サッカード数、振幅、速度、加速度、および視線固定-サッカード比を含み得る。眼球測定はまた、スキャンパスの測定を含んでよく、スキャンパスは、眼がディスプレイ画面上の標的の場所に到達する前に交互に起こる一連の短い視線固定およびサッカードを含み得る。スキャンパスから得られる運動の度合いは、例えば、スキャンパスの方向、期間、長さ、およびカバーされる面積を含み得る。眼球運動測定は、眼が関心のエリアを離れる前のそのエリアで行われる全ての視線固定の総数、または各エリア内でかかる時間の割合を測定することをさらに含んでよい。眼球測定は、認知的作業負荷を調べるために使用され得る瞳孔のサイズおよびまばたき率を測定することも含み得る。
【0097】
さらに、上述したように、人工現実システムでは、提示されたコンテンツとのユーザの対話を改善するために、人工現実システムは、ユーザの眼を追跡し、ユーザが見ている場所または方向に基づいてコンテンツを修正するまたは生成することができる。眼を追跡することは、眼の瞳および/または角膜の位置および/または形状を追跡することと、眼の回転位置または視線方向を判断することとを含んでよい。(瞳中心角膜反射またはPCCR方法と呼ばれる)ある技法は、眼の角膜表面上にグリントを生じさせるためにNIR LEDを使用すること、および次いで眼の領域の画像/映像を取り込むことを含む。視線方向は、瞳中心とグリントの間の相対移動から推定することができる。
【0098】
図5は、視標追跡システム130などの視標追跡システム510を使用した視標追跡中の眼550による光の反射および散乱を示す。上述したように、視標追跡システム510は、光源512およびカメラ514を含んでよい。他の実施形態では、視標追跡システム510は、図5に示されたもの以外に、異なる構成要素および/またはさらなる構成要素を含んでよい。光源512は、例えば、レーザ、LED、またはVCSELを含んでよく、眼550の面法線ベクトル520に対してレーザ角度522で装着されてよい。面法線ベクトル520は、光源512によって照射される眼550の表面(例えば、角膜552)の部分に垂直である。図5に示された例では、面法線ベクトル520は、眼550の瞳孔軸(光軸とも呼ばれ、これは瞳556の中心および角膜552の中心を通過する線であり得る)と同じであり得る。レーザ角度522は、面法線ベクトル520と光源512によって照射される眼550の表面の部分の中心から光源512の出力開口の出力開口の中心への線との間で測定することができる。カメラ514は、眼550の面法線ベクトル520に対してカメラ角度524で装着することができる。カメラ角度524は、面法線ベクトル520と光源512によって照射される眼550の表面の部分の中心からカメラ514の画像センサまたは光入力開口の中心への線との間で測定されてよい。いくつかの実施形態では、レーザ角度522とカメラ角度524の間の差は、カメラ514が眼550の角膜552に対して入射した光の鏡面反射によって像を取り込むことができるように閾値未満であり、これにより結果として得られる像のコントラストを有益に高め、光出力損失および消費電力を最小にすることができる。
【0099】
光源512によって放出された光は、眼表面(例えば、角膜552)の部分をほぼ均一に照射してよい。放出された光の一部は、眼550の角膜552によって鏡面反射され、カメラ514によって取り込まれ得る。場合によっては、眼550に入射した光は、反射する前にわずかな距離にわたって眼の中に伝播する。例えば、光の少なくともいくらかの部分は、角膜552を通って眼550に入り、眼550の虹彩554、瞳556、水晶体558、または網膜560に到達することができる。眼550内の一部の境界面(例えば、虹彩554の表面)は、(例えば、毛細管または隆起などの特徴により)粗い場合があるので、眼550内の境界面は、複数の方向に入射光を散乱し得る。眼550内の眼表面および境界面の異なる一部は、特徴に関して異なるパターンを有してよい。従って、眼550によって反射された光の強度パターンは、眼550の照射された部分内の特徴のパターンに依存し得るものであり、これにより、強度パターンから眼の部分(例えば、虹彩554または瞳556)の特定を可能にし得る。
【0100】
カメラ514は、眼550の照射された部分によって反射された光を集め、カメラ514の画像センサ上へ投影することができる。カメラ514は、カメラ514の画像センサによって取り込まれる画像のコントラストおよび他の特性を改善するために、1つまたは複数の光学誤差(例えば、ディスプレイ光学系124に関して説明される光学誤差)を補正することもできる。いくつかの実施形態では、カメラ514は、反射光を拡大することもできる。いくつかの実施形態では、カメラ514は、画像を拡大することができる。カメラ514の画像センサは、カメラ514のレンズアセンブリによって集光された入射光を取り込むことができる。従って、カメラ514は、眼によって反射された(その放出された光は眼の角膜によって鏡面反射される)光源512の画像を有効に取り込むことができ、取り込まれた画像に「グリント」をもたらし得る。眼の一部の境界面における散乱(拡散反射)のために、画像センサのある点に入射した光は、眼550の照射された部分内の複数の点から反射した光を含んでよく、従って、複数の点から反射した光の干渉の結果であり得る。従って、いくつかの実施形態では、カメラ514の画像センサは、眼550の表面の複数の点から反射した光の組合せによって形成される回折またはスペックルパターンを取り込むこともできる。
【0101】
画像センサの各画素は、画素に入射した光の強度に対応する電流または電圧信号を出力することができる光感知回路を含んでよい。いくつかの実施形態では、画像センサの画素は、狭い波長帯の光に対して感度が良くてよい。いくつかの他の実施形態では、画像センサの画素は、ワイドバンドまたはマルチバンドの感度を有してよい。例えば、カメラ514の画像センサは、約750nm未満の波長を有する光を有する光とともに使用され得る相補的金属酸化物半導体(CMOS)画素配列を含んでよい。別の例として、カメラ514の画像センサは、インジウムガリウムヒ化物(InGaAs)合金の画素配列または電荷結合素子(CCD)を含むことができる。そのような画像センサは、約900nm~約1160nmの波長を有するレーザ発光とともに使用されてよい。
【0102】
いくつかの実施形態では、眼550の位置変化を判断するために、視標追跡モジュール(例えば、図1の視標追跡システム130または視標追跡モジュール118)は、画像間の画素シフトを判断してよい。画素ごとに画素シフトに較正した距離を乗じることによって、視標追跡モジュールが眼550の表面(例えば、角膜552)がシフトした距離を判断することを可能にし得る。例えば、ある画像に取り込まれたグリントが以前の画像に取り込まれたグリントに対して2画素だけシフトし、各画素が眼550の表面で10マイクロメートルの距離に対応する場合、眼550の表面は、約20マイクロメートルだけ移動した可能性がある。
【0103】
いくつかの実施形態では、ヘッドマウントデバイスに使用される視標追跡技法は、ビデオベースであってよく、外観または特徴に基づいて実行され得る。例えば、外観ベースの技法は、ある特定のマッピング機能を使用して眼画像全体または眼画像の関心領域を視線方向または凝視点にマップすることができる。マッピング機能は、高次元の入力(例えば、画像画素の強度)、および低次元の出力(例えば、視線方向、凝視点など)を有し得る。これらのマッピング機能は、畳み込みニューラルネットワーク(CNN)などの機械学習モデルに基づいてよい。
【0104】
特徴ベースの技法は、特徴抽出、および抽出された特徴を使用する視線推定を実行することができる。特徴は、以下のうちの任意の1つまたは複数であってよく、すなわち、瞳中心、虹彩中心、瞳と虹彩の境界、虹彩と強膜の境界、第1のプルキニェ画像(角膜反射またはグリントとして知られる角膜の前面からの反射)、第4のプルキニェ画像(水晶レンズの後面の反射)、目尻などのうちの任意の1つまたは複数であってよい。これらの特徴は、コンピュータビジョン技法(例えば、強度ヒストグラム分析、閾値処理、エッジ検出、blobセグメンテーション、凸包、形態学的操作、形状フィッティング、可変テンプレート、重心計算など)、または機械学習技法、あるいは任意の組合せを使用して抽出されてよい。視線推定技法は、補間ベースまたはモデルベースであり得る。補間ベース技法は、ある特定のマッピング機能(例えば、二次2変数多項式)を使用して眼の特徴(例えば、強膜、または強膜角膜反射(PCCR)ベクトル)を視線方向へマップすることができる。これらのマッピング機能の係数は、知られている材料を用いてユーザが一連の視線固定ターゲットに視線を定める間にデータを集めることを含み得る個人較正法によって得ることができる。較正は頭に対してのヘッドマウントデバイスのすべりに対して感度の良いものであり得るので、この較正は、被験者ごとにおよびセッションごとに実行されてよく、時として、各セッションにおいて複数回実行されてもよい。次いで、マッピング機能は、較正データ点および補間技法を使用して視線方向を判断することができる。モデルベースの方法は、システム(例えば、カメラおよび/または光源)のモデル、および実際の物理系パラメータおよび解剖学上の眼のパラメータを含み得る眼のモデルを使用して、3Dジオメトリに従って一組の眼の特徴(例えば、瞳境界および複数の角膜反射)から3D視線を判断することができる。モデルベースの技法は、ユーザごとに一度のシステム較正と一度の個人較正の両方を実行することができる。個人較正のためのデータ収集手順は、補間ベースの方法の手順と同様であり得る。
【0105】
代替的にまたはさらに、視標追跡モジュールは、取り込まれた画像と眼の知られている位置を有する1つまたは複数の以前の画像とを比較することによって、取り込まれた画像における眼の位置を判断することができる。例えば、視標追跡モジュールは、基準眼位にそれぞれ関連している画像のデータベースを含んでよい。取り込まれた画像と記憶された画像をマッチングさせることによって、視標追跡モジュールは、眼が、記憶された画像に関連した基準眼位にあることを判断することができる。いくつかの実施形態では、視標追跡モジュールは、取り込まれた画像の一部における特徴を特定することができる。特徴は、瞳または虹彩などの眼550の特定の部分に関連した回折またはオプティカルフローパターンを含み得る。例えば、視標追跡モジュールは、上述したように、(基準画像内にやはり取り込まれた)特徴に関連した基準眼位を取り出し、取り込まれた画像における特徴と基準画像における特徴の間の画素シフトを判断し、画素ごとに基準眼位および較正した距離に対しての判断された画素シフトに基づいて眼位を判断することによって眼位を判断することができる。
【0106】
上で論じられるように、カメラ514は、眼550の角膜552が反射した光源512の像を有効に取り込むことができる。いくつかの実施形態では、視標追跡モジュールは、取り込まれた画像内の角膜552上の光源(例えば、グリント)の像の場所に基づいてユーザの眼の視線方向を判断してよい。視線方向は、ユーザの眼の中心窩軸526によって判断されてよく、ただし、(「視軸」と呼ばれる)中心窩軸526は、瞳556の中心および窩562の中心を通過する線であり得る。
【0107】
図6は、ある特定の実施形態によるニアアイディスプレイシステムのユーザの眼を追跡する方法の一例を示す簡略化されたフローチャート600である。フローチャート600の動作は、例えば、上述した視標追跡システム130または510によって実行することができる。ブロック610において、1つまたは複数の光源は、ユーザの眼を照射することができる。さまざまな実施形態では、光源は、ユーザの眼の視野内またはユーザの眼の視野の周辺に位置してよい。いくつかの実施形態では、光源は、ユーザの眼の視野の周辺に位置してよく、光源からの光は、ユーザの眼の視野内の場所からユーザの眼へ案内されおよび向けられてよい。
【0108】
ブロック620において、撮像デバイス(例えば、カメラ)は、ユーザの眼によって反射された光を集め、ユーザの眼の1つまたは複数の画像を生成することができる。上述したように、ユーザの眼の角膜は、照射光を鏡面反射し得る一方、ユーザの眼のいくつかの部分(例えば、虹彩)は、照射光を拡散的に散乱し得る。ユーザの眼の画像は、照射光の散乱によりコントラストが異なり得る部分(例えば、虹彩領域および/または瞳部分)を含んでよい。ユーザの眼の画像はまた、ユーザの角膜による照射光の鏡面反射によって引き起こされるグリントを含んでよい。
【0109】
図7Aは、ある特定の実施形態によるカメラによって取り込まれるユーザの眼の画像700の一例を示す。画像700は、虹彩領域710、瞳領域720、および複数のグリント730を含む。グリント730は、ユーザの眼の角膜に鏡面反射される照射光によって引き起こされ得る。
【0110】
適宜、ブロック630において、視標追跡システムは、視標追跡モジュール118に関連して上述したように視標追跡の精密さおよび精度を改善するためにシステム較正を実行してよい。システム較正は、例えば、視標追跡光路(例えば、固有でないパラメータ(例えば、場所または向き)、および固有のカメラパラメータ)の較正、光源の場所、ディスプレイ光路(例えば、ディスプレイの場所、ディスプレイ光学系の固有でないパラメータおよび固有のパラメータなど)を含んでよい。
【0111】
ブロック640において、ユーザの眼の瞳の中心の場所は、例えば、ユーザの眼の虹彩によって、照射光の散乱に基づいて判断されてよい。上述したように、図7Aに示されるように、瞳および/または虹彩の境界は、取り込まれた画像における瞳領域の画像セグメンテーションに基づいて判断されてよい。瞳の境界に基づいて、瞳の中心の場所は、判断され得る。
【0112】
ブロック650において、ユーザの眼の角膜の位置は、図7Aに示されるように、ユーザの眼の取り込まれた画像におけるグリントの場所に基づいて判断されてよい。上述したように、グリントの場所は、例えば、ガウス重心法を使用して判断されてよい。グリントの判断された場所の精度および精密さは、光源(または仮想光源または有効な光源)の場所に基づき得る。2つ以上のグリントの場所に基づいて、角膜の位置は、例えば、非線形最適化を使用して、および角膜(特に、角膜頂点)が球面に近いという仮定に基づいて、判断され得る。
【0113】
図7Bは、ある特定の実施形態によるユーザの眼の画像700中で特定された、特定された虹彩領域740の一例、特定された瞳領域750の一例、およびグリント領域760の例を示す。示されるように、虹彩領域740および瞳領域750のエッジが特定される。次いで、瞳領域720の中心が、瞳領域750および/または虹彩領域740のエッジに基づいて判断されてよい。グリント730の場所も、画像700において特定されたグリント領域760の場所に基づいて判断されてよい。グリント領域760の場所に基づいて、角膜の中心の位置が判断されてよい。
【0114】
適宜、ブロック660において、視標追跡システムは、視標追跡モジュール118および図5に関して上述したように、視標追跡の精密さおよび精度を改善するために眼較正パラメータを判断するようにユーザ較正を実行してよい。ユーザ較正は、例えば、眼モデルパラメータ(例えば、解剖学上の眼パラメータ)または特定の眼パラメータに依存しなくてよいいくつかのマッピング機能の係数を判断することを含んでよい。眼較正パラメータの他の例は、推定される平均眼半径、平均角膜半径、平均強膜半径、眼表面上の特徴のマップ、および推定される眼表面輪郭を含み得る。上述したように、ユーザの眼瞳孔軸(光軸)と中心窩軸(視軸)の間のカッパ角は、異なるユーザについて異なっていてよく、従って較正中に較正される必要があり得る。いくつかの実施形態では、較正は、ある特定のパターンに従ってディスプレイ画面にわたって分散した一組のターゲット点を表示することによって実行されてよく、ユーザは、ある特定の量の時間にわたってターゲット点ごとに凝視するように求められる。カメラは、ターゲット点についての対応する眼位を取り込んでよく、次いで、ターゲット点は、対応する視線座標または方向へマップされ、次いで、視標追跡システムは、マッピング機能またはモデルパラメータを学習してよい。いくつかの実施形態では、ブロック630および660における較正は、ニアアイディスプレイシステムが身につけられるまたは移動される時に、一度だけ実行されてよい。
【0115】
ブロック670において、ユーザの眼の視線方向は、例えば、瞳の中心の場所および角膜の中心の位置に基づいて判断されてよい。いくつかの実施形態では、まず、ユーザの眼の瞳孔軸が決定され、次いで、例えば、瞳孔軸と中心窩軸の間の角度に基づいて、ユーザの眼の中心窩軸(または視線、視線方向、または視軸)を決定するために使用され得る。
【0116】
上述したように、多くの場合に、見ている方向は、例えば、5°未満で、1°未満で、またはより良いように高精度で判断される必要があり得る。光源の周辺の場所は、例えば、光源から眼へ光を照射する角度により、視標追跡の精度に負の影響を及ぼし得る。視標追跡システムは、例えば、虹彩または瞳の部分を含む眼の部分が、まぶたまたはまつ毛によって覆い隠され得る場合など、見ている方向の極端な変化およびユーザの眼を取り囲む顔の特徴の変化に対処するためにロバストである必要もあり得る。覆い隠しは、例えば、眼のまばたき中にまぶたが再び開いた後に、ユーザが下向きで見る時、またはユーザが見ている方向を急ぎ再取得する時に、起こり得る。さらに、2つ以上の図を用いて、たった1つの点の較正は、視線方向を判断するのに十分であり得る。従って、さまざまな眺めからユーザの眼の複数の図を取り込むことがやはり望ましいものであり得る。
【0117】
ユーザの視野の周辺におけるより多数の光源が視標追跡の精度を高めるのを助けることができるが、光源の個数を増加させることにより、拡張使用のために設計されたデバイスのために特に望ましくない多数の消費電力を生じさせる可能性がある。インフィールド照射は、より高い視標追跡精度をもたらすことができる。例えば、眼の凝視角全体にわたる角膜からグリントを取り込む確率が、光源がユーザのフィールド内に位置する時により高くなる。しかしながら、インフィールド照射は、いくつかの問題を有し得る。例えば、ユーザの視野内の光源(例えば、LED)は、現実世界の画像および表示された画像のシースルー品質に影響を及ぼし得る。同様に、ユーザの視野の周辺内のより多数のカメラは眼の複数のビューを提供することができ、視標追跡の精度およびロバストを高めるとともに、較正要件を下げるのを助けるが、カメラの個数を増加させることで追跡システムのコストおよび重量ならびに大量の消費電力がより高くなり、このことは拡張使用のために設計されたウェアラブルデバイスに適し得ない。
【0118】
ある特定の実施形態によれば、視標追跡に関する既存の技法に関連したこれらの課題を克服するために、視標追跡光(例えば、IR光またはNIR光)を偏向させ、可視光を屈折させる(すなわち、伝達する)ことができる複数のホログラフィックデフレクタが、眼の照射および撮像のためにニアアイディスプレイの透明基板上に形成される(例えば、コーティングされるまたは積層される)ことが可能であり、基板はユーザの正面にかつユーザの視野内に配置され得る。ホログラフィックデフレクタは、光源から眼へ光を偏向させ、および/または眼によって反射される光をカメラへ偏向させるために使用されてよい。ホログラフィックデフレクタは、IR光の少なくとも20%、少なくとも50%、または少なくとも80%を偏向させることができ、可視光に対して20%未満、5%未満、または1%未満の反射率を有することができる。可視光は、ほとんどまたは全く損失なしでホログラフィックデフレクタおよび基板を通過することが許容されるので、ホログラフィックデフレクタは、ユーザの視野を妨げることなくユーザの眼の正面に配置することができ、それによってユーザは、外側の世界または表示されるコンテンツを見るために基板およびホログラフィックデフレクタを通して見ることができる。同時に、眼の照射のための光源からの光(例えば、NIR光)は、1つまたは複数のホログラフィックデフレクタによって所望の方向に偏向され、ユーザの眼に到達してグリントを形成することができ、眼によって反射される光は、1つまたは複数のホログラフィックデフレクタによってカメラへ偏向されて視標追跡のための眼の画像を形成することができる。ホログラフィックデフレクタは、入射光を鏡面反射するだけでなく、所望の方向へ光を反射により回折させることができる。いくつかの実施形態では、ホログラフィックデフレクタは、その他の場合回折格子によって引き起こされ得るサイドローブおよび他の光学アーチファクト(例えば、レインボー効果)を低減させるようにアポダイズされる反射ホログラフィック回折格子を含んでよい。
【0119】
図8は、ある特定の実施形態によるニアアイディスプレイシステム800中の視標追跡システムの一例の断面図である。ニアアイディスプレイシステム800は、フレーム805、およびフレーム805に結合されたまたは埋め込まれたディスプレイ光学系を含んでよい。フレーム805は、例えば、アイグラスの形態であってよい。ディスプレイ光学系は、基板810と、基板810上に形成された1つまたは複数のホログラフィックデフレクタとを含んでよい。視標追跡システムは、基板810上に、1つまたは複数の光源830と、1つまたは複数のカメラ840と、1つまたは複数のホログラフィックデフレクタ820、822、824、および826とを含んでよい。
【0120】
基板810は、上述した基板420と同様であってよく、不可視光(例えば、IRまたはNIR光)と可視光の両方を透過させることができる平坦なまたは湾曲した基板を含んでよい。光源830は、フレーム805に取り付けられるまたは埋め込められるようにユーザの眼の視野の周辺に配置されてよい。光源830は、赤外光などの可視帯域の外側で光を放出することができる。いくつかの実施形態では、1つまたは複数の光源830は、発光デバイス(例えば、発光ダイオード(LED)、レーザダイオード、または垂直共振器型面発光レーザ(VCSEL))、および発光デバイスによって放出される光をコリメートするその他の場合修正する平行光学系を含んでよい。カメラ840は、フレーム805に取り付けられるまたは埋め込められるようにユーザの眼の視野の周辺に配置されてよい。カメラ840は、不可視光(例えば、IR光)に対して感度の良くてよく、上述したカメラ514に類似してよい。
【0121】
図8に示されるように、ホログラフィックデフレクタ824は、ユーザの眼890を照射するために、照射光832を光源830から照射光834としてユーザの眼890の方へ向けることができる。ホログラフィックデフレクタ824は、基板810上に適合して形成されてよく(例えば、積層されるまたはコーティングされてよく)、回折によって入射照射光832を偏向させることができ、偏向された照射光834の角度が鏡面反射におけるように入射角に等しくなくてよいようになっており、従ってユーザの眼に対して所与の入射角を有する照射光832を偏向させるように設計することができる。照射光は、照射光842が基板810へ戻るように角膜892、虹彩894、およびユーザの眼890の他の部分によって偏向されてよい。
【0122】
ユーザの眼890によって反射される照射光842は、1つまたは複数のカメラ840の方へ基板810上の(ホログラフィックデフレクタ820および822などの)1つまたは複数のホログラフィックデフレクタによって反射されてよい。1つまたは複数のホログラフィックデフレクタは、(照射光842および846によって示されるように)ユーザの眼によって反射される照射光の異なる部分を受けることができ、(光線844および848によって示されるように)1つまたは複数のカメラ840の方へ異なる方向にユーザの眼によって反射される照射光の異なる部分を偏向させることができる。カメラ840は、(光線844および848によって示されるように)1つまたは複数のホログラフィックデフレクタによって反射される照射光の異なる部分を使用して異なる眺めからユーザの眼890の1つまたは複数の画像を生成することができる。
【0123】
従って、カメラ840によって生成される1つまたは複数の画像フレームは、ユーザの眼8901つまたは複数の画像を含んでよく、それぞれは異なる眺めに対応し、画像フレーム上の異なる場所に形成される。各画像フレームは、ユーザの眼の角膜上の1つまたは複数の(例えば、2つ以上の)グリントを含むことができ、グリントは、異なる光源および/または異なるホログラフィックデフレクタ(例えば、ホログラフィックデフレクタ824および826)に対応し得る。ユーザの眼890の2つ以上の画像、および2つ以上の画像を形成するために使用される1つまたは複数のホログラフィックデフレクタの構成に基づいて、ユーザの眼890の位置および視線方向は、上述したように判断されてよい。
【0124】
上述したホログラフィックデフレクタは、ホログラフィック材料(例えば、フォトポリマー)層に記録された反射ホログラフィック回折格子を含んでよい。いくつかの実施形態では、反射ホログラフィック回折格子は、まず、ニアアイディスプレイシステムの基板(例えば、基板810)上に記録することができ、次いで積層することができる。いくつかの実施形態では、ホログラフィック材料層は、基板上にコーティングまたは積層されてよく、次いで、反射ホログラフィック回折格子が、ホログラフィック材料層に記録されてよい。屈折率変調がホログラフィック回折格子において均一である時、入射光の入射角または波長の関数としてのホログラフィック回折格子の回折効率の曲線は、ホログラフィック回折格子と他の材料層の間の境界面における屈折率変調の突然の変化による高いサイドローブを含み得る。
【0125】
図9Aは、ホログラフィックデフレクタ900の一例を示す。例に示されるように、ホログラフィックデフレクタ900は、反射ホログラフィック回折格子905を含んでよい。反射ホログラフィック回折格子905は厚さdを有してよく、複数の格子間隔を含んでよく、格子縞は、格子ベクトルがホログラフィックデフレクタ900の面法線に平行または垂直でなくてよいように傾斜していてよい。反射ホログラフィック回折格子905は、厚さd以内で均一な屈折率変調を有してよい。例えば、反射ホログラフィック回折格子905の屈折率は、正弦波などの形態で周期的に変化してよい。支持体またはカバーシート(例えば、マイラー)などのホログラフィックデフレクタ900の他の部分の屈折率変調は、ゼロであってよい。従って、反射ホログラフィック回折格子905とホログラフィックデフレクタ900の他の部分の間の境界面に屈折率変調の突然の変化がある。
【0126】
図9Bは、ホログラフィックデフレクタ900の厚さ方向に沿った(すなわち、線A-Aに沿ったz方向の)ホログラフィックデフレクタ900の屈折率nを示す。図示されるように、ホログラフィックデフレクタ900は、反射ホログラフィック回折格子905内に一定の振幅の正弦屈折率変調を有してよく、反射ホログラフィック回折格子905の外側に一定の屈折率を有してよい。
【0127】
図9Cは、入射光の波長の関数としてホログラフィックデフレクタ(例えば、ホログラフィックデフレクタ900)のシミュレートされた透過率および反射率を示す。ホログラフィックデフレクタ900の透過率は、曲線910によって示されてよく、一方、ホログラフィックデフレクタ900の反射率は、曲線920によって示すことができる。曲線910の部分912および曲線920の部分922によって示されるように、ホログラフィックデフレクタ900は、940nmあたりで赤外光に対して高い反射率(および従って低透過率)を有してよい。理論的には、厚さdが無限であり、屈折率が正弦関数によって変調される場合、透過率および反射率スペクトルは、フーリエ変換に基づいて単一の高い反射率波長を示す。しかしながら、ホログラフィックデフレクタ900の屈折率変調の矩形窓により、場合によっては、格子縞の非正弦屈折率変調の矩形窓により、曲線910および曲線920は、(時としてスペクトル漏れと呼ばれる)いくつかの比較的高いサイドローブ914および924を踏んでよい。場合によっては、曲線910の一部916および曲線920の一部926によって示されるように、ホログラフィックデフレクタ900は、図9Cに示されるように、例えば、より高度の回折によって引き起こされる(最大反射率波長940nmの約2分の1である)470nmあたりの青色光などの可視光に対して比較的高い反射率を有することもできる。
【0128】
図示されていないが、入射角の関数としてのホログラフィックデフレクタ(例えば、ホログラフィックデフレクタ900)の透過率曲線および反射率曲線は、比較的高いサイドローブを有することもできる。さらに、図4に示された入力結合器430および出力結合器440などのニアアイディスプレイシステムに使用される他の回折格子については、波長または入射角に対しての回折効率曲線は、他のオーダのかなりのサイドローブおよび/または回折を同様に示し得る。
【0129】
回折を生じさせる回折格子によって引き起こされる可視帯域内および/またはIR帯域内のサイドローブおよび他の望ましくない回折は、ユーザが見られる画像内のゴースト像およびブレ、および/または視標追跡のための取り込み画像内のグリントブレなど、いくらかの光学アーチファクトを引き起こし得る。例えば、外部光源(例えば、太陽またはランプ)からのおよびある特定の可視波長範囲内の外部光は、ユーザの眼に到達するようにホログラフィックデフレクタによって回折させられてもよい。さらに、回折格子の色分散により、異なる色の光が、ゼロより大きいまたはゼロより小さい回折オーダを有する回折に対して異なる角度で回折され得る。従って、ユーザの眼に到達することができる異なる色の外部光の回折が、異なる場所(または方向)に位置するゴースト像として現れる可能性があり、これは、ゴースト像は、レインボーアーチファクトまたはレインボーゴーストと呼ばれる場合がある。レインボーゴーストは、表示された画像または環境の画像の上に現れ、表示された画像または環境の画像を中断させ得る。レインボーゴーストは、ユーザ体験にかなり大きな影響を与える可能性がある。
【0130】
図10は、導波管ディスプレイ1000の一例におけるレインボーアーチファクトを示す。上述したように、導波管ディスプレイ1000は、導波管1010、回折格子結合器1020(例えば、出力結合器440)、プロジェクタ1005、およびIR光デフレクタ1030(例えば、ホログラフィックデフレクタ820、822、824、または826)を含んでよい。プロジェクタ1005からのディスプレイ光は、導波管1010に結合されてよく、ユーザの眼1090に到達するように回折格子結合器1020によって異なる場所で導波管1010から部分的に結合されてよい。IR光デフレクタ1030は、反射ホログラフィック回折格子を含んでよく、視標追跡光を光源(図10に図示せず)からユーザの眼1090へ反射するように使用されてよく、またはユーザの眼1090によって反射された視標追跡光をカメラ(図10に図示せず)へ反射するように使用されてよい。回折格子結合器1020およびIR光デフレクタ1030は、導波管1010の同じ側にあってよく、または導波管1010の反対側にあってよい。
【0131】
太陽またはランプなどの外部光源1040からの外部光1042は、導波管1010を通過してユーザの眼1090に到達することができる。上述したように、回折格子結合器1020およびIR光デフレクタ1030は、外部光を回折させることもできる。さらに、回折格子の色分散により、異なる色の光は、ゼロよりも大きいまたはゼロよりも小さい回折オーダを有する回折について異なる角度で回折され得る。従って、異なる色の外部光の回折は、ユーザの眼に到達することができ、異なる場所(または方向)に位置するゴースト像として現れることができ、ゴースト像は、レインボーアーチファクトまたはレインボーゴースト1044と呼ばれる場合がある。レインボーゴースト1044は、表示された画像または環境の画像の上に現れ、表示された画像または環境の画像を中断させ得る。レインボーゴースト1044は、ユーザ体験にかなり大きな影響を与える可能性がある。場合によっては、レインボーゴースト1044は、外部光源1040(例えば、太陽)からの光が、高い効率でユーザの眼1090へ向けられる時に、ユーザの眼1090に危険である場合もある。
【0132】
本明細書に開示された技術は、導波管ディスプレイに、回折格子による外部光の回折によって引き起こされるレインボーゴーストを低減させるように使用することができる。ある特定の実施形態によれば、回折格子結合器およびホログラフィックデフレクタなどの回折格子よって引き起こされる光学アーチファクトを低減するために、アポダイゼーション関数(または窓関数またはテーパリング関数)は、回折格子における屈折率変調の突然の変化を回避するように回折格子(例えば、反射ホログラフィック回折格子905または出力結合器440)に適用されてよい。アポダイゼーション関数は、ベル形曲線、例えば、正弦関数または余弦関数、ガウス関数、ハン関数、ブラックマン関数、ナットール関数、ブラックマン・ハリス関数などを有してよい。アポダイゼーション関数は、回折格子の中心における最大値から回折格子の表面におけるゼロへ屈折率変調の徐々の変化を引き起こすことができ、これにより回折スペクトル中のサイドローブを低減し、従ってゴースト像などの光学アーチファクトを低減させることができる。
【0133】
図11Aは、ある特定の実施形態によるアポダイズされた反射ホログラフィック回折格子1105を含むホログラフィックデフレクタ1100の一例を示す。反射ホログラフィック回折格子1105は、厚さdを有してよく、複数の格子間隔を含んでよく、格子縞は、格子ベクトルがホログラフィックデフレクタ1100の面法線に平行または垂直でなくてよいように傾斜していてよい。各格子間隔内で、反射ホログラフィック回折格子1105の屈折率は、ほぼ正弦関数であってよい。反射ホログラフィック回折格子1105は、厚さd内で可変屈折率変調を有してよい。例えば、屈折率変調は、反射ホログラフィック回折格子1105の中央で最高であってよく、徐々に減少して反射ホログラフィック回折格子1105のエッジまたはホログラフィックデフレクタ1100の表面でゼロになってよい。
【0134】
図11Bは、ホログラフィックデフレクタ1100の厚さ方向に沿って(すなわち、線A-Aに沿ったz方向に)ホログラフィックデフレクタ1100の屈折率nを示す。図11Bの屈折率曲線1150によって示されるように、ホログラフィックデフレクタ1100は、反射ホログラフィック回折格子1105内に可変振幅正弦屈折率変調を有することができ、反射ホログラフィック回折格子1105の外側に一定の屈折率を有することができる。z方向の正弦屈折率変調の振幅は、ベル形曲線1160によって示すことができる。
【0135】
図11Cは、入射光の波長の関数としてホログラフィックデフレクタ(例えば、ホログラフィックデフレクタ1100)の透過率および反射率曲線を示す図である。ホログラフィックデフレクタ1100の透過率は、曲線1110によって示すことができ、一方、ホログラフィックデフレクタ1100の反射率は、曲線1120によって示すことができる。曲線1110の一部1112および曲線1120の一部1122によって示されるように、ホログラフィックデフレクタ1100は、940nmあたりで赤外光に対して高い反射率(および従って低透過率)を有し得る。曲線910および曲線920と比較して、曲線1110および曲線1120は、ずっと低いサイドローブを有し得る。さらに、図11Cに示されるように、曲線1110の一部1114および曲線1120の一部1124によって示されるように、ホログラフィックデフレクタ1100は、470nmあたりで青色光などの可視光に対してより低い反射率を有することもできる。従って、ホログラフィックデフレクタ1100によって引き起こされる光学アーチファクトは、かなり大きく低減され得る。
【0136】
一般に、ホログラフィック回折格子を記録するために、2本のコヒーレントビームは、ある特定の角度で互いに干渉して感光性材料層に固有の干渉パターンを生成することができ、干渉パターンは、感光性材料層に固有の屈折率変調パターンを生成することができ、屈折率変調パターンは、干渉パターンの光強度パターンに対応することができる。一例では、感光性材料層は、高分子結合剤、モノマー(例えば、アクリルモノマー)、および起爆剤、例えば、開始剤、連鎖移動剤、または感光色素を含み得る。高分子結合剤は、支持マトリックスとして働くことができる。モノマーは、屈折率変調器として役立ち得る。感光色素は、光を吸収し、開始剤と相互作用してモノマーを重合することができる。従って、干渉パターンは、モノマーの重合および拡散を引き起こして縞を輝かせることができ、従って重合の濃度および密度の勾配を生成し、これにより屈折率変調という結果になり得る。例えば、より高い重合濃度を有するエリアは、高い屈折率を有し得る。露出および重合が進むにつれて、重合に利用可能なモノマーはより少なくなり得、拡散が抑制され得る。全てまたは実質的に全てのモノマーが重合した後、もはや新しい回折格子は、感光性材料層に記録されなくてよい。いくつかの実施形態では、感光性材料層上の記録されたホログラフィック回折格子は、例えば、染料の漂白、重合の完了、記録されたパターンの恒久的な固定、および屈折率変調の強化のために、UV硬化されてよく、または熱的に硬化されるもしくは強化されてよい。プロセスの終わりに、ホログラムまたはホログラフィック回折格子が形成されてよい。ホログラフィック回折格子は、例えば、数ミクロン、もしくは数十ミクロン、または数百ミクロンなどの厚さを有する体積ブラッグ回折格子であり得る。赤外光に対して感度の良いホログラフィック記録材料がごくわずか存在してよい。従って、赤外光を反射により回折させることができるホログラフィック回折格子を記録するために、より短い波長の記録用光が使用されてよい。
【0137】
図12は、ある特定の実施形態によるホログラフィック記録材料の一例の吸収スペクトル1210を示す。例に示されるように、ホログラフィック記録材料は、700nmよりも長いまたは440nmよりも短い波長を有する光に対してとても低い吸収を有してよい。ホログラフィック記録材料は、最小透過点1220によって示されるように660nmでピーク光吸収を有してよい。ホログラフィック記録材料は、約515nmで局所最小透過点1230(すなわち、局所最大吸収点)を有してよい。従って、ホログラフィック回折格子は、約440nm~約670nmの波長を有するコヒーレント光ビーム、例えば、約660nmまたは約515nmにおけるコヒーレント光ビームを使用してホログラフィック記録材料に記録されてよい。
【0138】
図13Aは、ある特定の実施形態による反射ホログラフィック回折格子の一例のための記録用(または構成)および再構成の光ビームを示す。示された例では、ホログラフィックデフレクタ1300は、ガラスまたはプラスチック材料をそれぞれ含んでよい2つ以上の支持層1305に取り付けられるホログラフィック材料層1310を含んでよい。ホログラフィック材料層1310および支持層1305は、約1.52などの同様の屈折率を有してよい。反射ホログラフィック回折格子は、660nmなどの第1の波長でコヒーレント記録用ビーム1320および1330を使用してホログラフィック材料層1310に記録されてよい。第2の波長(例えば、940nm)における光ビーム1340がホログラフィックデフレクタに0°の入射角で入射する時、光ビーム1340は、偏向された光ビーム1350によって示されるように反射ホログラフィック回折格子によって偏向されて(例えば、反射により回折されて)よい。偏向された光ビーム1350の回折角θが、臨界角θc未満である場合、偏向された光ビーム1350は、光ビーム1352によって示されるようにホログラフィックデフレクタ1300から屈折させられてよい。
【0139】
図13Bは、ある特定の実施形態による図13Aに示された反射ホログラフィック回折格子についてのブラッグ縮退を示すホログラフィ運動量図の一例である。図13Bは、ホログラフィック回折格子の記録および再構成中にブラッグマッチング条件を示す。記録用ビーム1320および1330の波動ベクトル1320’および1330’の長さは、2πn/λに従って記録用光波長λに基づいて判断されよく、ただし、nは、ホログラフィック材料層1310の平均屈折率である。記録用ビーム1320および1330の波動ベクトル1320’および1330’の方向は、図13Bに示されるように、波動ベクトル1320’および1330’、ならびに格子ベクトルKが二等辺三角形を形成することができるように、所望格子ベクトルK(1212)に基づいて判断されてよい。格子ベクトルKは、振幅2π/Λを有してよく、ただし、Λは格子間隔である。格子ベクトルKは、所望の再構成条件に基づいて判断されてよい。例えば、所望の再構成波長λ、ならびに入射光ビームおよび回折された光ビームの方向に基づいて、反射ホログラフィック回折格子の格子ベクトルK(1212)は、ブラッグ条件に基づいて判断されてよく、入射光ビーム1340の波動ベクトル1340’、および回折された光ビーム1350の波動ベクトル1350’は、振幅2πn/λを有することができ、図13Bに示されるように、格子ベクトルK(1212)を有する二等辺三角形を形成してよい。
【0140】
所与の波長について、ブラッグ条件を完全に満たす一対の入射角および回折角だけがあってよい。同様に、所与の入射角について、ブラッグ条件を完全に満たす1つの波長だけがあってよい。再構成光ビームの入射角が反射ホログラフィック回折格子のブラッグ条件を満たす入射角とは異なる時、または再構成光ビームの波長が反射ホログラフィック回折格子のブラッグ条件を満たす時、回折効率は、ブラッグ条件からの角度または波長の離調によって引き起こされるブラッグミスマッチファクタの関数として低下され得る。従って、回折は、小さい波長範囲内および小さい入射角範囲内でのみ起こり得る。
【0141】
図14Aは、ある特定の実施形態による反射ホログラフィック回折格子を記録するホログラフィック記録用システム1400の一例を示す。ホログラフィック記録用システム1400は、ビームスプリッタ1410(例えば、ビームスプリッタキューブ)を含み、ビームスプリッタ1410は、入射レーザビーム1402をコヒーレントであるともにより小さい強度を有し得る2つの光ビーム1412および1414に分割することができる。光ビーム1412は、反射したビーム1422によって示されるように、第1のミラー1420によって第2のミラー1430の方へ反射されてよい。次いで、反射したビーム1422は、第2のミラー1430によって第1の三角プリズム1450の方へ反射されてよく、反射したビーム1432は、(記録用ビーム1434によって示されるように)第1の三角プリズム1450によって屈折されてよく、ホログラフィック記録材料1460に到達する。別の経路では、光ビーム1414は、第3のミラー1440によって反射されてよい。反射したビーム1442は、第2の三角プリズム1455の方へ向けられてよく、(記録用ビーム1444によって示されるように)第2の三角プリズム1455によって屈折されてよく、ホログラフィック記録材料1460に到達する。第1の三角プリズム1450および第2の三角プリズム1455は、屈折率マッチングに使用されてよい。ミラー、第1の三角プリズム1450、および/または第2の三角プリズム1455は、記録用光ビームのうちの少なくとも1つ入射角が臨界角を超えてよく、プリズムが使用されない場合、全反射することができるように構成されてよい。記録用ビーム1434および記録用ビーム1444は、ホログラフィック記録材料1460内で互いに干渉することができ、それによって干渉パターンを形成し、従ってホログラフィック回折格子をホログラフィック記録材料1460に形成する。
【0142】
図14Bは、ある特定の実施形態によるホログラフィック記録材料1460における2つの記録用ビーム1434および1444の干渉を示す。上述したように、第2のミラー1430からの反射したビーム1432、および第3のミラー1440からの反射したビーム1442は、記録用ビーム1434および1444として第1の三角プリズム1450および第2の三角プリズム1455に屈折されてよい。2つの記録用ビーム1434および1444は、ホログラフィック記録材料1460に入射してよく、ホログラフィック記録材料1460内で互いに干渉することができる。第1の三角プリズム1450および第2の三角プリズム1455は、ホログラフィック記録材料1460の屈折率に近い屈折率をそれぞれ有してよく、ホログラフィック記録材料1460における記録用ビームの大きい入射角をプリズムにおける比較的小さい入射角に変更するために使用されてよい。従って、記録用ビーム1434または1444は、ホログラフィック記録材料1460と空気などの他の媒体の間の境界面で全反射されなくてよい。いくつかの実施形態では、プリズムの一部の表面は、これらの面における迷光および/または光反射を低減させるように光吸収材料でコーティングされてよい。
【0143】
上述したように、ホログラフィックデフレクタによって引き起こされる光学アーチファクを低減させるために反射ホログラフィック回折格子は、ホログラフィック記録の前または後にアポダイズされてよい。いくつかの実施形態によれば、ホログラフィック記録およびアポダイゼーションは、記録用ビームを使用して同じプロセスで実行することができる。いくつかの実施形態では、ホログラフィック記録およびアポダイゼーションは、2つの別々のプロセスで実行されてよく、ホログラフィック記録材料は、コヒーレント光またはインコヒーレント光を使用してホログラフィック記録前に事前調整されてよく、またはホログラフィック記録後にコヒーレント光またはインコヒーレント光を使用して後露光されてよい。
【0144】
図15Aは、ある特定の実施形態による記録用ビームを使用してホログラフィック回折格子をアポダイズする方法の一例を示す。示されるように、ホログラフィック記録材料層1500は、両側からホログラフィック記録材料層1500に入射する記録用ビーム1510および1520に露出されてよい。ホログラフィック記録材料層1500は、図12に示されるように、約440nmから約670nmまでなどのある特定の波長の光に対して感度の良いフォトポリマーを含んでよい。フォトポリマーは、低いコントラストを有するとともに、暴露量に応じて線形または非線形を有し得る。フォトポリマーは、記録用光を吸収した後に自己現像することができる。記録用ビーム1510および1520の波長および入射角は、所望の格子ベクトルを有するホログラフィック回折格子が記録用ビーム1510および1520の干渉によって実現できるように、例えば、図13Aおよび図13Bに関して上述したように選択されてよい。
【0145】
ホログラフィック記録材料の光吸収により、ホログラフィック記録材料における(z方向または厚さ方向の)異なる深さにおける記録用光の強度は、異なってよい。例えば、ホログラフィック記録材料層1500内の記録用ビーム1510の光強度は、曲線1512によって示すことができ、記録用ビーム1510の光強度は、記録用ビーム1510がホログラフィック記録材料層1500内を伝播し、ホログラフィック記録材料によって吸収される時に減少し得るように構成されてよい。同様に、ホログラフィック記録材料層1500内の記録用ビーム1520の光強度は、曲線1522によって示すことができ、記録用ビーム1520の光強度が、記録用ビーム1520がホログラフィック記録材料層1500内を伝播し、ホログラフィック記録材料によって吸収される時に減少し得るように構成されてよい。記録用ビーム1510および記録用ビーム1520が反対方向に伝播するので、2つの記録用ビームの干渉パターンの強度変化は、記録用ビーム1510および1520の強度がおおよそ等しくなり得るホログラフィック記録材料層1500の中心近くで最大になり得る。従って、ホログラフィック記録材料層1500の中心近くの屈折率変調は、高くなり得る。ホログラフィック記録材料層1500のエッジ1502および1504の近くで、一方の記録用ビームは、他方の記録用ビームよりも高い強度を有してよく、従って、2つの記録用ビームの干渉パターンの強度変化が小さくなり得る。従って、ホログラフィック記録材料層1500のエッジ1502および1504近くの屈折率変調は、小さいものであり得る。結果として、ホログラフィック記録材料層1500に形成されるホログラフィック回折格子は、z方向にアポダイズされ得る。
【0146】
いくつかの実装形態では、感光色素および開始剤などのホログラフィック記録材料層1500内の起爆剤(例えば、光開始剤)は、ホログラフィック記録材料層1500内に記録用光の所望の強度プロファイルを達成するために(例えば、約440nm~約670nm、例えば660nmで)記録用光に対して所望の光吸収特性を有さなくてよい。いくつかの実施形態によれば、記録用光を吸収することができるが、モノマーの重合を開始することができない(例えば、ある特定の濃度比に従った)ある量の光吸収材料が、ホログラフィック記録材料層1500の吸収特性を調節するようにホログラフィック記録材料に追加されてよく、ホログラフィック記録材料層1500は、記録用光の所望の強度プロファイルを実現するために所望の全体の光吸収特性を有するようになっている。例えば、図15Aに示されるように、1つまたは複数の光吸収材料は、ホログラフィック記録材料層1500により記録用光の吸収を増加させるためにホログラフィック記録材料へ追加されてよい。従って、ホログラフィック記録材料層1500内の記録用ビーム1510の光強度は、追加の光吸収材料なしでホログラフィック記録材料層1500内の記録用ビーム1510の光強度を表す曲線1512よりも低い曲線1514によって示されてよい。同様に、ホログラフィック記録材料層1500内の記録用ビーム1520の光強度は、追加の光吸収材料なしでホログラフィック記録材料層1500内の記録用ビーム1520の光強度を表す曲線1522よりも低い曲線1524によって示されてよい。
【0147】
図15Bは、ある特定の実施形態による図15Aに示された方法を使用して製造されるアポダイズされたホログラフィック回折格子1550の一例を示す。例に示されるように、アポダイズされたホログラフィック回折格子1550は、アポダイズされたホログラフィック回折格子1550の中心により高い屈折率変調を有してよい。アポダイズされたホログラフィック回折格子1550のエッジ1552および1554における屈折率変調は、例えば、入射記録用ビームの強度、ホログラフィック記録材料の吸収率、およびホログラフィック記録材料層の厚さに応じてとても低いまたはゼロに近くてよい。従って、アポダイズされたホログラフィック回折格子1550のアポダイゼーションプロファイルは、例えば、入射記録用ビームの強度、ホログラフィック記録材料の吸収率、およびホログラフィック記録材料層の厚さに依存し得る。
【0148】
図15Cは、ある特定の実施形態によるアポダイズされたホログラフィック回折格子1550の厚さ方向(すなわち、z方向)に沿ったアポダイズされたホログラフィック回折格子1550の屈折率を示す。図11Bにおけるように、アポダイズされたホログラフィック回折格子1550の屈折率1560は、反射ホログラフィック回折格子1105の中央に可変振幅正弦屈折率変調を有してよく、アポダイズされたホログラフィック回折格子1550のエッジ1552および1554近くで一定の屈折率を有してよい。z方向の正弦屈折率変調の振幅は、ベル形曲線1570によって示され得る。
【0149】
図16A図16Cは、ある特定の実施形態による、ホログラフィック記録材料がコヒーレント光またはインコヒーレント光を使用して感度が下げられるアポダイズされたホログラフィック回折格子を記録する方法の別の例を示す。図16Aは、ある特定の実施形態による、ホログラフィック記録の前にインコヒーレント光を使用してホログラフィック記録材料の感度を下げる方法の一例を示す。示されるように、ホログラフィック記録材料層1600は、両側からホログラフィック記録材料層1600に入射する1つまたは複数のインコヒーレント感度下げ光ビーム1610および1620に露出されてよい。ホログラフィック記録材料層1600は、図12に示されるように、約440nmから約670nmまでなどのある特定の波長の光に対して感度の良いフォトポリマーを含んでよい。光ビーム1610および1620は、ホログラフィック記録材料の吸収帯域幅内の同じ波長または異なる波長を有してよい。フォトポリマーは、低いコントラストを有するとともに、暴露量に応じて線形または非線形を有し得る。フォトポリマーは、記録用光を吸収した後に自己現像することができる。
【0150】
ホログラフィック記録材料の光吸収により、ホログラフィック記録材料内の(z方向または厚さ方向の)異なる深さで光ビーム1610および1620の強度は、異なってよい。例えば、ホログラフィック記録材料層1600内の光ビーム1610の光強度は、曲線1612によって示すことができ、光ビーム1610がホログラフィック記録材料層1600内で伝播し、ホログラフィック記録材料によって吸収されるにつれて減少し得る。同様に、ホログラフィック記録材料層1600内の光ビーム1620の光強度は、曲線1622によって示すことができ、光ビーム1620がホログラフィック記録材料層1600内で伝播し、ホログラフィック記録材料によって吸収されるにつれて減少し得る。光ビーム1610および1620がインコヒーレントであるので、光ビーム1610および1620は、ホログラフィック記録材料層1600内に干渉パターンを形成するために干渉しなくてよく、従って、回折格子構造は、光ビーム1610および1620によってホログラフィック記録材料層1600内に形成され得ない。しかしながら、ホログラフィック記録材料内の感光色素は、光ビーム1610および1620を吸収し、モノマーを重合するために開始剤と相互作用することができる。従って、光ビームの強度が高いホログラフィック記録材料層1600のエッジ1602および1604で、大部分または全てのモノマーが、より少ないモノマーがさらなる重合に利用可能であり得るように重合され得る。ホログラフィック記録材料層1600の略中心で、光ビーム1610または1620が相対的に低い強度のため、より多くのモノマーがさらなる重合のためにいまだに利用可能であり得る。結果として、ホログラフィック記録材料層1600の感度プロファイルは、アポダイズされ得る。
【0151】
いくつかの実施形態では、ホログラフィック記録材料層1600は、記録用光ビームとは異なる波長を有するような記録用光ビームとは異なり得る1つまたは複数のコヒーレント光ビームに露出することによってやはり感度が下げられ得る。例えば、コヒーレント光ビームの強度は、光ビームがホログラフィック記録材料層1600の中心に到達する前に光ビームが吸収され得るように選択されてもよい。
【0152】
いくつかの実施形態では、ホログラフィック記録材料層1600は、異なる組成、異なる感度、および/または異なる最大達成可能屈折率変調を有する材料など異なる材料の複数の層を含んでよい。例えば、ホログラフィック記録材料層1600は、ホログラフィック記録材料層1600の最大達成可能屈折率変調がホログラフィック記録材料層1600のz方向のベル形関数であり得るように、異なる最大達成可能屈折率変調を有する感光性材料の薄層を堆積することによって形成されてよい。
【0153】
上述したようにいくつかの実装形態では、感光色素および開始剤などのホログラフィック記録材料層1600内の起爆剤(例えば、光開始剤)は、ホログラフィック記録材料層1600内で感度を下げる光の所望の強度プロファイルを実現するために、(例えば、約440nm~約670nm、例えば660nmで)光ビームの感度を下げる所望の光吸収特性を有さなくてよい。いくつかの実施形態によれば、感度を下げる光を吸収することができるが、モノマーの重合を開始することができない(例えば、ある特定の濃度比に従った)ある量の光吸収材料が、ホログラフィック記録材料層1600の吸収特性を調節するようにホログラフィック記録材料に追加されてよく、それによってホログラフィック記録材料層1600は、感度を下げる光の所望の強度プロファイルを達成するように所望の全体の光吸収特性を有することができる。例えば、図16Aに示されるように、1つまたは複数の光吸収材料は、ホログラフィック記録材料層1600による感度を下げる光の吸収を増加させるためにホログラフィック記録材料に追加されてよい。従って、ホログラフィック記録材料層1600内の光ビーム1610の感度を下げる光強度は、追加の光吸収材料なしでホログラフィック記録材料層1600内の光ビーム1610の感度を下げる光強度を表す曲線1612よりも低い曲線1614によって示すことができる。同様に、ホログラフィック記録材料層1600内の光ビーム1620の感度を下げる光強度は、追加の光吸収材料なしでホログラフィック記録材料層1600内の光ビーム1620の感度を下げる光強度を表す曲線1622よりも低い曲線1624によって示すことができる。
【0154】
図16Bは、ある特定の実施形態による感度を下げられたホログラフィック記録材料層1630にアポダイズされたホログラフィック回折格子を記録する方法の一例を示す。感度を下げられたホログラフィック記録材料層1630は、図16Aに関して上述したように作製されてよく、曲線1660によって示されたアポダイズされた感度プロファイル(または最大達成可能屈折率変調プロファイル)を有してよい。コヒーレント記録用ビーム1640および1650は、感度を下げられたホログラフィック記録材料層1630に入射してよい。コヒーレント記録用ビーム1640および1650の波長および入射角は、例えば、所望の格子ベクトルを有するホログラフィック回折格子がコヒーレント記録用ビーム1640および1650の干渉によって実現できるように図13Aおよび図13Bに関して上述したように選択されてよい。いくつかの実施形態では、コヒーレント記録用ビーム1640および1650は、ホログラフィック記録材料による吸収による損失は無視してよく、感度を下げられたホログラフィック記録材料層1630内で強度がほぼ一定のままであるように高い強度を有してよい。
【0155】
図16Cは、ある特定の実施形態による図16Aおよび図16Bに関して説明される方法を使用して製造されるアポダイズされたホログラフィック回折格子1670の一例を示す。アポダイズされたホログラフィック回折格子1670は、図16Aに示された感度下げプロセス、および図16Bに示されたホログラフィック記録プロセスによって製造されてよい。アポダイズされたホログラフィック回折格子1550のように、アポダイズされたホログラフィック回折格子1670は、中心により高い屈折率変調を有する。アポダイズされたホログラフィック回折格子1670のエッジ1672および1674における屈折率変調は、とても低いまたはゼロに近くてよい。
【0156】
いくつかの実施形態では、アポダイズされたホログラフィック回折格子は、硬化中にホログラフィック回折格子がアポダイズされ得る全てのモノマーを重合するように、まず、ホログラフィック回折格子を記録し、次いでコヒーレント光またはインコヒーレント光を使用してホログラフィック回折格子を硬化することによって製造されてよい。
【0157】
いくつかの実施形態では、上述した感光色素および他の吸収材料などのホログラフィック記録材料における感光性または光吸収材料が、ホログラフィック光学素子が記録された後にホログラフィック記録材料の感度を下げるように、非活性化され、変換され、または除去されてよい。例えば、いくつかの実施形態では、感光色素(例えば、赤色光吸収色素)は、酸素の存在を用いてまたは用いずに、溶媒抽出、熱分解、(例えば、酸化剤を用いた)化学反応、UV光を使用した光退色、またはその任意の組合せによって除去されてもよい。
【0158】
図17は、ある特定の実施形態によるアポダイズされた反射ホログラフィック回折格子の一例の透過スペクトル1710を示す。アポダイズされた反射ホログラフィック回折格子は、上述したように製造されてよい。アポダイズされた反射ホログラフィック回折格子のためのブラッグ条件は、約940nmで赤外光に対して満たされてよく、従って、940nmあたりを中心として波長範囲1712内で低透過率を有してよい。赤外光は、光源(例えば、VCSELまたはLED)によって放出されてよく、視標追跡中の眼の照射に使用されてよい。図17によって示されるように、可視光範囲内(例えば、ブラッグ条件のための波長の約2分の1である470nmあたりなどの波長範囲1714内)の940nmあたりのサイドローブおよび反射率は、図9Bに示されたものよりもずっと低い。
【0159】
図18Aは、ある特定の実施形態による反射ホログラフィック回折格子の一例のスペクトル帯域幅を示す。反射ホログラフィック回折格子は、上述したようにアポダイズされてよく、透過率スペクトルは、曲線1810によって示すことができる。反射ホログラフィック回折格子は、最大回折効率940nmおよび半値全幅帯域幅約25nmを有してよい。
【0160】
図18Bは、ある特定の実施形態による図18Aの反射ホログラフィック回折格子の一例の角度帯域幅を示す。入射角の関数としての反射ホログラフィック回折格子の回折効率は、曲線1820によって示される。曲線1820は、入射角の半値全幅範囲が約7.5°であることを示す。
【0161】
図19Aは、入射光の波長の関数としての反射ホログラフィック回折格子の一例の透過率および反射率の拡大図である。例では、反射ホログラフィック回折格子の透過率は、透過率曲線1910によって示され、反射ホログラフィック回折格子の反射率は、反射率曲線1920によって示される。図19Aは、それぞれ、透過率曲線1910および反射率曲線1920における高いサイドローブ1912および1922を示す。
【0162】
図19Bは、ある特定の実施形態による入射光の波長の関数としてアポダイズされた反射ホログラフィック回折格子の一例の透過率および反射率の拡大図である。アポダイズされた反射ホログラフィック回折格子は、上述した技法を使用して製造されてよい。反射ホログラフィック回折格子の透過率は、透過率曲線1930によって示され、反射ホログラフィック回折格子の反射率は、反射率曲線1940によって示される。図19Aに示された透過率曲線1910および反射率曲線1920と比較して、図19Bは、透過率曲線1930および反射率曲線1940に見えるサイドローブがないこと、またはサイドローブの少なくとも10dBの抑制を示す。
【0163】
図20は、ある特定の実施形態による視標追跡のためのアポダイズされたホログラフィック回折格子を製造する方法の一例を示す簡略化されたフローチャート2000である。フローチャート2000に説明される動作は、例示のためにすぎず、限定している意図はない。さまざまな実施では、追加の動作の追加、いくつかの動作の省略、いくつかの動作の組合せ、いくつかの動作の分割、またはいくつかの動作の並び替えをするために、フローチャート2000に修正が行われてよい。
【0164】
ブロック2010において、フォトポリマー層は、ガラス、石英、ポリマー、セラミック、水晶、半導体、またはプラスチック基板などの基板上に形成されてよい。フォトポリマー層は、可視光またはUV光に対して感度の良くてよく、赤外光を透過させることができる。いくつかの実施形態では、フォトポリマー層は、事前作製されてよく、基板上に等角に積層されてよい。例えば、いくつかの実施形態では、フォトポリマー層は、2つの可撓性カバー層によって挟まれてよく、2つの可撓性カバー層の第1のカバー層は剥離されてよく、フォトポリマー層および第2のカバー層は、ローラを使用して基板上に積層されてよい。いくつかの実施形態では、フォトポリマー層は、基板上にコーティングされてよく、または堆積されてよい。いくつかの実施形態では、フォトポリマー層は、10μm、15μm、20μm、25μm、30μm、40μm、50μm以上よりも大きい厚さを有することができる。いくつかの実施形態では、フォトポリマー層の最大達成可能屈折率変調は、少なくとも0.02または少なくとも0.03である。いくつかの実施形態では、フォトポリマー層は、異なる組成および異なる感度(および従って異なる最大達成可能屈折率変調)を使用してフォトポリマーの複数の薄層を含んでよい。いくつかの実施形態では、基板は、ニアアイディスプレイの導波管であってよく、ニアアイディスプレイのためのコンバイナとして使用されてよい。基板は、平面または曲面を有してよい。いくつかの実施形態では、基板は、フォトポリマー層のためのカバーまたはサポートとして働く可撓性基板を含んでよい。
【0165】
適宜、ブロック2020において、フォトポリマー層は、例えば、図16Aに関して上述したように、コヒーレント光またはインコヒーレント光を使用して感度が選択的に下げられてもよい。フォトポリマー層は、フォトポリマー層の内側の深さに関して、ベル形曲線などの所望の感度プロファイル(または最大達成可能屈折率変調プロファイル)を実現するために感度が選択的に下げられてよい。いくつかの実施形態では、フォトポリマー層は、第1の光ビームを使用して感度が選択的に下げられてよく、第1の光ビームの第1の強度、第1の光ビームの第1の波長、およびフォトポリマー層の光吸収率は、フォトポリマー層をアポダイズするため、またはフォトポリマー層の感度を下げるために、第1の光ビームの第1の強度が第1の光強度プロファイルに従って第1の側からフォトポリマー層内で徐々に減少するように構成されてよい。いくつかの実施形態では、フォトポリマー層は、フォトポリマー層の第1の側からの第1の光ビーム、およびフォトポリマー層の第2の側からの第2の光ビームを使用して、感度が選択的に下げられてよい。第1の光ビームの波長、第2の光ビームの波長、第1の光ビームの第1の強度、第2の光ビームの第2の強度、およびフォトポリマー層の光吸収率は、第1の光ビームの第1の強度が、第1の光強度プロファイルに従って第1の側からフォトポリマー層内で徐々に減少するとともに、第2の光ビームの第2の強度が、第2の光強度プロファイルに従って第2の側から徐々にフォトポリマー層内で減少するように構成されよい。いくつかの実施形態では、第1の光強度プロファイルおよび第2の光強度プロファイルは、対称的であり、フォトポリマー層が厚さ方向に対称的にアポダイズされ得るようになっている。いくつかの実施形態では、第1の光強度プロファイルおよび第2の光強度プロファイルは、フォトポリマー層が厚さ方向に非対称にアポダイズされるようにフォトポリマー層の中心に対して厚さ方向に非対称である。いくつかの実施形態では、第1の光ビームおよび第2の光ビームは、コヒーレントである。いくつかの実施形態では、第1の光ビームおよび第2の光ビームは、非コヒーレントである。いくつかの実施形態では、第1の光ビームの波長および第2の光ビームの波長は、同一である。いくつかの実施形態では、第1の光ビームの波長、および第2の光ビームの波長が異なる。
【0166】
ブロック2030において、ホログラフィック回折格子は、例えば、図13A図13B図14A図14B図15A、および図16Bに関して上述したように2つのコヒーレントビームを使用してフォトポリマー層に記録されてよい。ホログラフィック回折格子は、透過回路格子または反射回折格子であり得る。例えば、反射ホログラフィック回折格子を記録するために、2つのコヒーレント記録用ビームが、フォトポリマー層の2つの側からフォトポリマー層上に投影されてよい。いくつかの実施形態では、フォトポリマー層は、感度が下げられてよく、またはブロック2020に関して上述したように事前アポダイズされる。いくつかの実施形態では、2つの記録用ビームの強度は、フォトポリマー層内で徐々に減少してよく、従って2つのコヒーレント記録用ビームの干渉パターンは、フォトポリマー層の中心近くで最高の屈折率変調を引き起こすように、厚さ方向にフォトポリマー層の中心近くに最高の強度変調を有してよい。コントラストにおいて、2つのコヒーレント記録用ビームの干渉パターンは、フォトポリマー層の表面近くで低い強度変調を有してよく、従ってフォトポリマー層の表面近くの屈折率変調は、低いまたはゼロに近いものであり得る。このようにして、ホログラフィック回折格子は、フォトポリマー層内でアポダイズされ、同時に記録される。いくつかの実施形態では、フォトポリマー層および基板は、フォトポリマー層上に記録用ビームの所望の入射角を実現するために2つのプリズムによって挟まれてよい。フォトポリマー層の感度を下げられるいくつか実施形態では、2つの記録用ビームは、実質的に均一な強度変調を用いてフォトポリマー層内で干渉パターンを形成するように高い強度を有してよい。
【0167】
適宜、いくつかの実施形態では、ブロック2040において、ホログラフィック回折格子は、コヒーレント光またはインコヒーレント光を使用して後アポダイズされてもよい。適宜、ブロック2050において、フォトポリマー層は、基板から層間剥離され、導波管基板上に積層されてよい。
【0168】
本発明の実施形態は、人工現実システムの構成要素を製造するために使用することができ、または人工現実システムと併せて実施されてよい。人工現実は、例えば、仮想現実(VR)、拡張現実(AR)、複合現実(MR)、混成現実、または、これらの何らかの組合せおよび/もしくは派生形を含んでよい、ユーザへの提示前に何らかのやり方で調節されている現実の形態である。人工現実コンテンツは、完全に生成されたコンテンツ、または取り込まれた(例えば、実世界の)コンテンツと組み合わせて生成されたコンテンツを含んでよい。人工現実コンテンツは、ビデオ、オーディオ、触覚フィードバック、もしくはこれらの何らかの組合せ、および(見る人に対して3次元効果を生じさせるステレオビデオなど)単一のチャネルまたは複数のチャネルにおいて提示されてよいもののいずれかを含んでよい。さらに、いくつかの実施形態では、人工現実はまた、例えば、人工現実においてコンテンツを作成するために使用される、および/または、その他の場合、人工現実において使用される(例えば、人工現実においてアクティビティを行う)、アプリケーション、製品、アクセサリ、サービス、またはこれらの何らかの組合せと関連していてよい。人工現実コンテンツを提供する人工現実システムは、ホストコンピュータシステムに接続されるヘッドマウントディスプレイ(HMD)、スタンドアロンHMD、モバイル機器もしくはコンピューティングシステム、または、一人または複数人の見る人に人工現実コンテンツを提供することが可能な任意の他のハードウェアプラットフォームを含む、さまざまなプラットフォーム上で実装されてよい。
【0169】
図21は、本明細書に開示される例のいくつかを実装するためのニアアイディスプレイシステム(例えば、HMDデバイス)の電子システム2100の一例の簡略ブロック図である。電子システム2100は、HMDデバイスの電子システムとしてまたは上述される他のニアアイディスプレイとして使用されてよい。この例では、電子システム2100は、1つまたは複数のプロセッサ2110およびメモリ2120を含んでよい。プロセッサ2110は、いくつかの構成要素において動作を行うための命令を実行するように構成されてよく、例えば、ポータブル電子デバイス内の実装に適した汎用プロセッサまたはマイクロプロセッサとすることができる。プロセッサ2110は、電子システム2100内の複数の構成要素と通信可能に結合されてよい。この通信結合を実現するために、プロセッサ2110はバス2140にわたって他の例証される構成要素と通信してよい。バス2140は電子システム2100内のデータを転送するように適応される任意のサブシステムであってよい。バス2140は、データを転送するために、複数のコンピュータバスと、追加の回路構成とを含んでよい。
【0170】
メモリ2120はプロセッサ2110に結合されてよい。いくつかの実施形態では、メモリ2120は、短期記憶と長期記憶の両方を与えてよく、いくつかのユニットに分割されてよい。メモリ2120は、スタティックランダムアクセスメモリ(SRAM)および/またはダイナミックランダムアクセスメモリ(DRAM)といった揮発性、および/または、読み出し専用メモリ(ROM)およびフラッシュメモリなどといった不揮発性であってよい。さらに、メモリ2120は、セキュアデジタル(SD)カードなどの取り外し可能記憶デバイスを含んでよい。メモリ2120は、コンピュータ可読命令、データ構造、プログラムモジュール、および電子システム2100に対する他のデータの記憶を提供してよい。いくつかの実施形態では、メモリ2120は種々のハードウェアモジュール内に分散されてよい。命令セットおよび/またはコードはメモリ2120上に記憶され得る。命令は、電子システム2100によって実行可能であってよい実行可能コードの形を成す場合がある、および/または(例えば、さまざまな一般に入手可能なコンパイラ、インストールプログラム、圧縮/展開ユーティリティなどのいずれかを使用して)電子システム2100上にコンパイルおよび/またはインストールされると、実行可能コードの形を成してよい、ソースコードおよび/またはインストール可能コードの形を成す場合がある。
【0171】
いくつかの実施形態では、メモリ2120は、任意の数のアプリケーションを含んでよい、複数のアプリケーションモジュール2122~2124を記憶してよい。アプリケーションの例は、ゲームアプリケーション、会議アプリケーション、ビデオ再生アプリケーション、または他の適したアプリケーションを含んでよい。アプリケーションは、深さ検知機能または視標追跡機能を含んでよい。アプリケーションモジュール2122~2124は、プロセッサ2110によって実行される特定の命令を含んでよい。いくつかの実施形態では、ある特定のアプリケーションまたはアプリケーションモジュール2122~2124の一部は、他のハードウェアモジュール2180によって実行可能であってよい。ある特定の実施形態では、メモリ2120は、セキュア情報に対する複写または他の不正アクセスを防止するための追加のセキュリティ制御を含んでよいセキュアメモリをさらに含んでよい。
【0172】
いくつかの実施形態では、メモリ2120は、ロードされるオペレーティングシステム2125を含んでよい。オペレーティングシステム2125は、アプリケーションモジュール2122~2124によって提供される命令の実行を開始する、および/または他のハードウェアモジュール2180のみならず、1つまたは複数の無線トランシーバを含んでよい無線通信サブシステム2130とのインターフェースを管理するように動作可能であってよい。オペレーティングシステム2125は、スレッディング、リソース管理、データ記憶制御、および他の同様の機能性を含む電子システム2100の構成要素にわたって他の動作を行うように適応されてよい。
【0173】
無線通信サブシステム2130は、例えば、赤外線通信デバイス、無線通信デバイスおよび/もしくはチップセット(Bluetooth(登録商標)デバイス、IEEE802.11デバイス、Wi-Fiデバイス、WiMaxデバイス、セルラー通信設備など)、ならびに/または同様の通信インターフェースを含んでよい。電子システム2100は、無線通信サブシステム2130の一部として、または該システムの任意の部分に結合される別個の構成要素としての無線通信のための1つまたは複数のアンテナ2134を含んでよい。所望の機能性に応じて、無線通信サブシステム2130は、無線広域ネットワーク(WWAN)、無線ローカルエリアネットワーク(WLAN)、または無線パーソナルエリアネットワーク(WPAN)などの種々のデータネットワークおよび/またはネットワークタイプと通信することを含んでよい、無線基地局装置、および他の無線デバイス、およびアクセスポイントと通信するための別個のトランシーバを含んでよい。WWANは、例えば、WiMax(IEEE802.16)ネットワークであってよい。WLANは、例えば、IEEE802.11xネットワークであってよい。WPANは、例えば、Bluetoothネットワーク、IEEE802.15x、または何らかの他のタイプのネットワークであってよい。本明細書に説明される技法は、WWAN、WLAN、および/またはWPANの任意の組合せに使用されてもよい。無線通信サブシステム2130は、データが、ネットワーク、他のコンピュータシステム、および/または本明細書に説明される任意の他のデバイスと交換されることを可能にしてよい。無線通信サブシステム2130は、アンテナ2134および無線リンク2132を使用して、HMDデバイスの識別子、位置データ、地図、ヒートマップ、写真、またはビデオなどのデータを送信または受信するための手段を含んでよい。無線通信サブシステム2130、プロセッサ2110、およびメモリ2120は共に、本明細書に開示されるいくつかの機能を行うための手段の1つまたは複数の少なくとも一部を含んでよい。
【0174】
電子システム2100の実施形態はまた、1つまたは複数のセンサ2190を含んでよい。センサ2190は、例えば、画像センサ、加速度計、圧力センサ、温度センサ、近接センサ、磁力計、ジャイロスコープ、慣性センサ(例えば、加速度計およびジャイロスコープを組み合わせるモジュール)、環境光センサ、または深さセンサまたは位置センサなど、感覚出力を提供するおよび/または感覚入力を受信するように動作可能な任意の他の同様のモジュールを含んでよい。例えば、いくつかの実装形態では、センサ2190は、1つまたは複数の慣性計測装置(IMU)および/または1つまたは複数の位置センサを含んでよい。IMUは、位置センサの1つまたは複数から受信される測定信号に基づいて、HMDデバイスの初期位置に対するHMDデバイスの推定位置を指示する較正データを生成してよい。位置センサは、HMDデバイスの動きに応答して1つまたは複数の測定信号を生成してよい。位置センサの例には、1つまたは複数の加速度計、1つまたは複数のジャイロスコープ、1つまたは複数の磁力計、動きを検出する別の適したタイプのセンサ、IMUのエラー訂正に使用されるあるタイプのセンサ、またはこれらの何らかの組合せが挙げられ得るが、これらに限定されない。位置センサは、IMUの外部に、IMUの内部に、またはこれらの何らかの組合せで位置してよい。少なくともいくつかのセンサは検知するための構造化された光パターンを使用してよい。
【0175】
電子システム2100は、ディスプレイモジュール2160を含んでよい。ディスプレイモジュール2160は、ニアアイディスプレイであってよく、電子システム2100からの画像、ビデオ、およびさまざまな命令などの情報を、ユーザに図で提示してよい。このような情報は、1つまたは複数のアプリケーションモジュール2122~2124、仮想現実エンジン2126、1つまたは複数の他のハードウェアモジュール2180、これらの組合せ、または、(例えば、オペレーティングシステム2125によって)ユーザに対してグラフィックコンテンツを解釈するための任意の他の適した手段から導出されてよい。ディスプレイモジュール2160は、液晶ディスプレイ(LCD)技術、(例えば、OLED、ILED、mLED、AMOLED、TOLEDなどを含む)発光ダイオード(LED)技術、発光ポリマーディスプレイ(LPD)技術、または何らかの他のディスプレイ技術を使用することができる。
【0176】
電子システム2100はユーザ入力/出力モジュール2170を含んでよい。ユーザ入力/出力モジュール2170は、ユーザが、電子システム2100にアクション要求を送ることを可能にしてよい。アクション要求は、特定のアクションを行うための要求であってよい。例えば、アクション要求は、アプリケーションを開始または終了すること、またはアプリケーション内の特定のアクションを行うことであってよい。ユーザ入力/出力モジュール2170は、1つまたは複数の入力デバイスを含んでよい。例示の入力デバイスは、タッチスクリーン、タッチパッド、マイクロホン、ボタン、ダイアル、スイッチ、キーボード、マウス、ゲームコントローラ、または、アクション要求を受信し、かつ受信したアクション要求を電子システム2100に通信するための任意の他の適したデバイスを含み得る。いくつかの実施形態では、ユーザ入力/出力モジュール2170は、電子システム2100から受信された命令に従ってユーザに触覚フィードバックを提供することができる。例えば、触覚フィードバックは、アクション要求が受信されるまたは実行された時に提供されてよい。
【0177】
電子システム2100は、例えば、ユーザの眼の位置を追跡するために、ユーザの写真またはビデオを撮るために使用可能であるカメラ2150を含んでよい。カメラ2150はまた、例えば、VR、AR、またはMRアプリケーションに対して、環境の写真またはビデオを撮るために使用されてよい。カメラ2150は、例えば、数百万または数千万の画素を有する相補的金属酸化物半導体(CMOS)画像センサを含んでよい。いくつかの実装形態では、カメラ2150は3-D画像を取り込むために使用されてよい2つ以上のカメラを含んでよい。
【0178】
いくつかの実施形態では、電子システム2100は、複数の他のハードウェアモジュール2180を含んでよい。他のハードウェアモジュール2180のそれぞれは、電子システム2100内の物理モジュールであってよい。他のハードウェアモジュール2180のそれぞれは構造として恒久的に構成可能であるが、他のハードウェアモジュール2180のいくつかは、具体的な機能を行うように一時的に構成されてよいまたは一時的にアクティブ化されてよい。他のハードウェアモジュール2180の例には、例えば、オーディオ出力および/または入力モジュール(例えば、マイクロホンまたはスピーカ)、近距離無線通信(NFC)モジュール、再充電バッテリ、バッテリ管理システム、有線/無線バッテリ充電システムなどが挙げられ得る。いくつかの実施形態では、他のハードウェアモジュール2180の1つまたは複数の機能はソフトウェアで実装されてよい。
【0179】
いくつかの実施形態では、電子システム2100のメモリ2120はまた、仮想現実エンジン2126を記憶してよい。仮想現実エンジン2126は、電子システム2100内のアプリケーションを実行し、かつ、さまざまなセンサからのHMDデバイスの、位置情報、加速情報、速度情報、予測される今後の位置、または、これらの何らかの組合せを受信してよい。いくつかの実施形態では、仮想現実エンジン2126によって受信される情報は、ディスプレイモジュール2160に対して信号(例えば、表示命令)を生じさせるために使用されてよい。例えば、受信した情報が、ユーザが左を見ていることを指示する場合、仮想現実エンジン2126は、HMDデバイスが、仮想環境におけるユーザの移動をミラーリングするようにコンテンツを生成してよい。さらに、仮想現実エンジン2126は、ユーザ入力/出力モジュール2170から受信されたアクション要求に応答してアプリケーション内のアクションを行い、かつフィードバックをユーザに提供してよい。提供されたフィードバックは、可視、可聴、または触覚フィードバックであってよい。いくつかの実装形態では、プロセッサ2110は、仮想現実エンジン2126を実行することができる1つまたは複数のGPUを含んでよい。
【0180】
さまざまな実装形態では、上述されるハードウェアおよびモジュールは、有線接続または無線接続を使用して互いに通信可能である単一のデバイス上でまたは複数のデバイス上で実装されてよい。例えば、いくつかの実装形態では、GPU、仮想現実エンジン2126、およびアプリケーション(例えば、追跡アプリケーション)などのいくつかの構成要素またはモジュールは、ヘッドマウントディスプレイデバイスと別個のコンソール上に実装されてよい。いくつかの実装形態では、1つのコンソールは複数のHMDに接続されてよいまたはこれをサポートしてよい。
【0181】
代替的な構成では、種々のおよび/または追加の構成要素は電子システム2100に含まれてよい。同様に、構成要素の1つまたは複数の機能性は、上述されるやり方と異なるやり方で構成要素の間で分散可能である。例えば、いくつかの実施形態では、電子システム2100は、ARシステム環境および/またはMR環境などの他のシステム環境を含むように改良されてよい。
【0182】
上に開示される方法、システム、およびデバイスは例である。さまざまな実施形態は、必要に応じてさまざまな手順または構成要素を、省略、代用、または追加可能である。例えば、代替的な構成では、説明した方法は、説明したものと異なる順序で行われてよい、および/またはさまざまな段階は、追加、省略、および/または組合せ可能である。また、ある特定の実施形態に関して説明される特徴は、さまざまな他の実施形態で組み合わせられてよい。実施形態の種々の態様および要素は同様のやり方で組み合わせられてよい。また、技術は発展しているため、要素の多くは、本発明の範囲をこれらの具体的な例に限定しない例である。
【0183】
実施形態を十分に理解してもらうために本明細書に具体的詳細を挙げている。しかしながら、実施形態はこれら具体的詳細なく実践可能である。例えば、周知の回路、プロセス、システム、構造、および技法は、実施形態を不明瞭にすることを回避するために不必要な詳細なしで示されている。本明細書は例示の実施形態のみを提供しており、本発明の範囲、応用性、または構成を限定することを意図するものではない。もっと正確に言えば、実施形態の前述の説明は、当業者に、さまざまな実施形態を実施するための実施可能な説明を提供するであろう。本発明の範囲から逸脱することなく、要素の機能および配置においてさまざまな変更がなされてよい。
【0184】
また、いくつかの実施形態はフロー図またはブロック図として描写されるプロセスとして説明された。それぞれは、動作を逐次プロセスとして説明するものであり得るが、動作の多くは並列にまたは同時に行われてよい。さらに、動作の順序は再編成されてよい。プロセスは図に含まれない追加のステップを有する場合がある。また、方法の実施形態は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはこれらの任意の組合せによって実装されてよい。ソフトウェア、ファームウェア、ミドルウェア、またはマイクロコードで実装される時、関連しているタスクを行うためのプログラムコードまたはコードセグメントは、記憶媒体などのコンピュータ可読媒体に記憶されてよい。プロセッサは関連しているタスクを行ってよい。
【0185】
具体的な要件に従って大きく変化させてもよいことは、当業者には明らかであろう。例えば、カスタマイズされたまたは専用のハードウェアも使用されてよい、および/または特定の要素は、ハードウェア、(アプレットなどのポータブルソフトウェアを含む)ソフトウェア、またはこの両方で実装される場合がある。さらに、ネットワーク入力/出力デバイスなどの他のコンピューティングデバイスへの接続が用いられてよい。
【0186】
添付の図を参照すると、メモリを含むことができる構成要素は、非一時的な機械可読媒体を含むことができる。「機械可読媒体」および「コンピュータ可読媒体」という用語は、機械を具体的なやり方で動作させるデータを提供する際に関与する任意の記憶媒体を指す。以上に提供される実施形態において、さまざまな機械可読媒体は、命令/コードを処理ユニットおよび/または実行するための他のデバイスに提供する際に関与し得る。さらにまたは代替的に、機械可読媒体は、このような命令/コードを記憶するおよび/または伝えるために使用され得る。多くの実装形態では、コンピュータ可読媒体は物理記憶媒体および/または有形記憶媒体である。このような媒体は、不揮発性媒体、揮発性媒体、および伝送媒体を含むがこれらに限定されない多くの形を成してよい。コンピュータ可読媒体の一般的な形態は、例えば、コンパクトディスク(CD)もしくはデジタル多用途ディスク(DVD)などの磁気媒体および/または光媒体、パンチカード、紙テープ、穴のパターンを有する任意の他の物理媒体、RAM、プログラム可能読み出し専用メモリ(PROM)、消去可能プログラム可能読み出し専用メモリ(EPROM)、フラッシュEPROM、任意の他のメモリチップもしくはカートリッジ、以降で説明されるような搬送波、または、コンピュータが命令および/またはコードを読み出すことができる任意の他の媒体を含む。コンピュータプログラム製品は、手順、関数、サブプログラム、プログラム、ルーチン、アプリケーション(アプリ)、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、または、命令、データ構造、またはプログラム文の任意の組合せを表すことができるコードおよび/または機械実行可能命令を含んでよい。
【0187】
本明細書に説明されるメッセージを通信するために使用される情報および信号がさまざまな種々の技術および技法のいずれかを使用して表され得ることを、当業者は理解するであろう。例えば、上記の説明全体を通して言及され得る、データ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光学粒子、またはこれらの任意の組合せによって表され得る。
【0188】
本明細書で使用されるような用語、「および(and)」および「または(or)」は、このような用語が使用される文脈に少なくとも部分的に左右されることも予想されるさまざまな意味を含み得る。典型的には、A、B、また、Cのようなリストを関連付けるために使用される場合の「または(or)」は、本明細書において排他的な意味で使用されるA、B、またはCと共に、本明細書において包含的な意味で使用されるA、B、およびCを意味することが意図されている。さらに、本明細書で使用されるような「1つまたは複数の」という用語は、単数形の任意の特徴、構造、または特性を説明するために使用され得る、または、特徴、構造、または特性の何らかの組合せを説明するために使用され得る。しかしながら、これは単に例示的な例であり、特許請求される主題はこの例に限定されないことは留意されるべきである。さらに、A、B、または、Cのようなリストを関連付けるために使用される場合の「少なくとも1つの」という用語は、A、AB、AC、BC、AA、ABC、AAB、AABBCCCなどのようなA、B、および/またはCの任意の組合せを意味するように解釈可能である。
【0189】
さらに、ある特定の実施形態がハードウェアおよびソフトウェアの特定の組合せを使用して説明されているが、ハードウェアおよびソフトウェアの他の組合せも可能であることは認識されるべきである。ある特定の実施形態は、ハードウェアのみで、またはソフトウェアのみで、またはこれらの組合せを使用して実装されてよい。1つの例では、ソフトウェアは、本発明に説明されるステップ、動作、またはプロセスのいずれかまたは全てを行うために1つまたは複数のプロセッサによって実行可能なコンピュータプログラムコードまたは命令を含有するコンピュータプログラム製品で実装されてよく、ここで、コンピュータプログラムは非一時的なコンピュータ可読媒体上に記憶されてよい。本明細書に説明されるさまざまなプロセスは、同じプロセッサ上に、または種々のプロセッサの任意の組合せで実装可能である。
【0190】
デバイス、システム、構成要素、またはモジュールがある特定の動作または機能を行うように構成されるとして説明される場合、このような構成は、例えば、動作を行うように電子回路を設計することによって、コンピュータ命令またはコードを実行するなどによって動作を行うための(マイクロプロセッサなどの)プログラム可能電子回路、または非一時的なメモリ媒体上に記憶されるコードまたは命令を実行するようにプログラミングされるプロセッサもしくはコアをプログラミングすることによって、またはこれらの任意の組合せによって、成し遂げられ得る。プロセスは、プロセス間通信のための従来の技法を含むがこれに限定されないさまざまな技法を使用して通信でき、異なるプロセス対が異なる技法を使用してよい、または、同じプロセス対がその時々で異なる技術を使用してよい。
【0191】
本明細書および図面は、それに応じて、限定的意味ではなく例示的意味でみなされるべきである。しかしながら、特許請求の範囲に示されるようなより広範な範囲から逸脱することなく、追加、代用、削除、ならびに他の改良および変更がなされてよいことは明らかであろう。よって、具体的な実施形態が説明されているが、これらは限定することを意図するものではない。さまざまな改良および等価物は以下の特許請求の範囲内にあるとする。
図1
図2
図3
図4
図5
図6
図7A-B】
図8
図9A-B】
図9C
図10
図11A-B】
図11C
図12
図13A
図13B
図14A
図14B
図15A
図15B
図15C
図16A
図16B
図16C
図17
図18A
図18B
図19A
図19B
図20
図21
【国際調査報告】