IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ マジック リープ, インコーポレイテッドの特許一覧

特表2022-543363眼追跡のための角度的にセグメント化されたホットミラー
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-10-12
(54)【発明の名称】眼追跡のための角度的にセグメント化されたホットミラー
(51)【国際特許分類】
   G02B 5/08 20060101AFI20221004BHJP
   G02B 27/02 20060101ALI20221004BHJP
   A61B 3/113 20060101ALI20221004BHJP
   A61B 3/10 20060101ALI20221004BHJP
   A61B 3/103 20060101ALI20221004BHJP
   G02B 5/18 20060101ALI20221004BHJP
   G02B 5/32 20060101ALI20221004BHJP
【FI】
G02B5/08 C
G02B27/02 Z
A61B3/113
A61B3/10
A61B3/103
G02B5/18
G02B5/32
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022506147
(86)(22)【出願日】2020-07-29
(85)【翻訳文提出日】2022-03-25
(86)【国際出願番号】 US2020044107
(87)【国際公開番号】W WO2021021957
(87)【国際公開日】2021-02-04
(31)【優先権主張番号】62/880,499
(32)【優先日】2019-07-30
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】コーエン, デイビッド
【テーマコード(参考)】
2H042
2H199
2H249
4C316
【Fターム(参考)】
2H042DA01
2H042DA21
2H042DB02
2H042DB07
2H042DC01
2H042DE00
2H042DE08
2H199CA30
2H199CA42
2H199CA45
2H199CA50
2H199CA54
2H199CA55
2H199CA66
2H199CA67
2H199CA68
2H199CA69
2H199CA92
2H199CA93
2H199CA94
2H199CA95
2H199CA96
2H249AA07
2H249AA13
2H249AA39
2H249AA43
2H249AA45
2H249AA50
2H249AA60
2H249AA62
2H249AA65
2H249CA01
2H249CA04
2H249CA08
2H249CA15
2H249CA22
2H249CA28
4C316AA03
4C316AA06
4C316AA07
4C316AA09
4C316AA13
4C316AA21
4C316AA24
4C316AB16
4C316FA19
4C316FB11
(57)【要約】
頭部搭載型ディスプレイ(HMD)と併用するための結像システムの実施例が、開示される。結像システムは、前向きに向いた結像カメラを含むことができ、HMDのディスプレイの表面は、光を結像カメラに反射させるように構成される、軸外回折光学要素(DOE)またはホットミラーを含むことができる。DOEまたはホットミラーは、例えば、異なる角度または異なる屈折力を有する異なるセグメントを用いて、セグメント化されることができる。結像システムは、眼追跡、バイオメトリック識別、眼の3次元形状の多視点再構築等のために使用されることができる。角度的にセグメント化された光学要素を製造するための方法もまた、提供される。本方法は、射出成型を含むことができる。
【特許請求の範囲】
【請求項1】
セグメント化されたホットミラーを製造する方法であって、前記方法は、
第1の空洞を有する第1の金型を提供するステップであって、前記第1の空洞は、第2の部分に対して非ゼロ角度である第1の部分を有する第1の表面を備える、ステップと、
ホットミラーフィルムを前記第1の空洞の第1の表面の少なくとも前記第1の部分および前記第2の部分に隣接して配置するステップと、
第1のポリマー材料を前記第1の金型の第1の空洞の中に投入し、第1の成型されたコンポーネントを形成するステップと、
前記第1の成型されたコンポーネントを前記第1の金型から除去するステップであって、前記第1の成型されたコンポーネントは、前記ホットミラーフィルムの少なくとも一部を含む、ステップと、
前記第1の成型されたコンポーネントを、第2の空洞を有する第2の金型内に配置するステップと、
第2のポリマー材料を前記第2の空洞の中に投入し、第2の成型されたコンポーネントを形成するステップであって、前記第2のポリマー材料は、前記ホットミラーフィルムの少なくとも一部を被覆する、ステップと、
前記第2の成型されたコンポーネントを前記第2の金型から除去するステップと
を含む、方法。
【請求項2】
前記非ゼロ角度は、2度~25度の範囲内である、請求項1に記載の方法。
【請求項3】
前記非ゼロ角度は、5度~20度の範囲内である、請求項1に記載の方法。
【請求項4】
前記ホットミラーフィルムは、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性である、請求項1-3のいずれか1項に記載の方法。
【請求項5】
前記ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、請求項1-4のいずれか1項に記載の方法。
【請求項6】
前記第1のポリマーは、前記第2のポリマーと同一である、請求項1-5のいずれか1項に記載の方法。
【請求項7】
前記第1のポリマーまたは前記第2のポリマーは、可視光および赤外線光に対して実質的に透過性である、請求項1-6のいずれか1項に記載の方法。
【請求項8】
前記第1のポリマーまたは前記第2のポリマーは、熱可塑性ポリマーを含む、請求項1-7のいずれか1項に記載の方法。
【請求項9】
前記第1のポリマーまたは前記第2のポリマーは、ポリカーボネートまたはポリメチルメタアクリレート(PMMA)を含む、請求項1-8のいずれか1項に記載の方法。
【請求項10】
前記第1の成型されたコンポーネントまたは前記第2の成型されたコンポーネントの外側に延在する前記ホットフィルムの一部を除去するステップをさらに含む、請求項1-9のいずれか1項に記載の方法。
【請求項11】
前記第1の成型されたコンポーネントを、第2の空洞を有する第2の金型内に配置するステップは、前記ホットミラーフィルムが前記第2の空洞の中心領域に向かって配置されるように、前記第1の成型されたコンポーネントを配向するステップを含む、請求項1-10のいずれか1項に記載の方法。
【請求項12】
前記第1の金型は、通気口を前記第1の部分と前記第2の部分との間に備える、請求項1-11のいずれか1項に記載の方法。
【請求項13】
少なくとも1つの赤外線光源を前記第2の金型の第2の空洞内に配置するステップをさらに含む、請求項1-12のいずれか1項に記載の方法。
【請求項14】
前記少なくとも1つの赤外線光源は、ポリマーフィルム上に配置され、前記方法は、前記ポリマーフィルムを前記第2の金型の第2の空洞内に配置するステップを含む、請求項13に記載の方法。
【請求項15】
前記ポリマーフィルムは、ポリエチレンテレフタレート(PET)を含む、請求項14に記載の方法。
【請求項16】
前記第1の金型の第1の表面は、前記第2の部分に隣接する第3の部分を備え、前記第3の部分は、前記第2の部分に対して第2の非ゼロ角度にある、請求項1-15のいずれか1項に記載の方法。
【請求項17】
前記第1の表面の第1の部分または第2の部分は、湾曲領域を備える、請求項1-16のいずれか1項に記載の方法。
【請求項18】
前記第2の成型されたコンポーネントを拡張、複合、または仮想現実デバイスのためのディスプレイに取り付けるステップをさらに含む、請求項1-17のいずれか1項に記載の方法。
【請求項19】
光学要素を形成する方法であって、前記方法は、
光学フィルムを第1の金型のセグメント化された表面に隣接して配置するステップであって、前記セグメント化された表面は、第1の部分と、前記第1の部分に対して非ゼロ角度にある第2の部分とを備え、前記光学フィルムは、第1の波長範囲内において実質的に透明であり、前記第1の波長範囲と異なる第2の波長範囲内において、実質的に反射性である、ステップと、
第1のポリマーを前記第1の金型の第1の空洞の中に投入し、第1の光学要素を形成するステップであって、前記第1のポリマーは、前記第1の波長範囲および前記第2の波長範囲内において実質的に透明であり、前記第1の光学要素は、前記光学フィルムの少なくとも一部を備える、ステップと、
前記第1の光学要素を第2の金型内に配置するステップと、
第2のポリマーを前記第2の金型の中に投入し、第2の光学要素を形成するステップであって、前記第2のポリマーは、前記第1の光学要素の光学フィルムの少なくとも一部を被覆する、ステップと、
前記第2の光学要素を前記第2の金型から除去するステップと
を含む、方法。
【請求項20】
前記第1の波長範囲は、可視波長範囲の少なくとも一部を含み、前記第2の波長範囲は、赤外線波長範囲の少なくとも一部を含む、請求項19に記載の方法。
【請求項21】
前記第1の金型は、通気口を前記第1の部分と前記第2の部分との間に備える、請求項19または請求項20に記載の方法。
【請求項22】
前記セグメント化された表面の第1の部分または第2の部分は、略平坦である、請求項19-21のいずれか1項に記載の方法。
【請求項23】
前記光学フィルムを前記第1の光学要素の第1の縁または前記第2の光学要素の第2の縁で終端させるステップをさらに含む、請求項19-22のいずれか1項に記載の方法。
【請求項24】
光源を前記第2の金型内に配置するステップをさらに含む、請求項19-23のいずれか1項に記載の方法。
【請求項25】
前記非ゼロ角度は、2度~25度の範囲内である、請求項19-24のいずれか1項に記載の方法。
【請求項26】
前記光学フィルムは、回折要素またはホログラフィック要素を備える、請求項19-25のいずれか1項に記載の方法。
【請求項27】
光学要素を形成するための方法であって、前記方法は、
光学フィルムを第1の光学要素の第1の表面に適用するステップであって、前記第1の表面は、第1のセクションと、第2のセクションとを備え、前記第2のセクションは、前記第1のセクションに対して非ゼロ角度にある、ステップと、
前記光学フィルムが前記第1の光学要素と第2の光学要素との間に配置されるように、第2の光学要素を前記第1の光学要素に適用し、前記光学要素を形成するステップと
を含む、方法。
【請求項28】
前記第1の光学要素、前記第2の光学要素、および前記光学フィルムは、可視内で光学的に透過性である、請求項27に記載の方法。
【請求項29】
前記光学フィルムは、赤外線内で光学的に反射性であり、前記第1の光学要素および前記第2の光学要素は、前記赤外線内で光学的に透過性である、請求項28に記載の方法。
【請求項30】
前記光学フィルムを適用するステップは、前記光学フィルムを前記第1の表面上に接着するステップを含む、請求項27-29のいずれか1項に記載の方法。
【請求項31】
前記光学フィルムを適用するステップは、前記光学フィルムを前記第1の表面上に堆積させるステップを含む、請求項27-29のいずれか1項に記載の方法。
【請求項32】
前記第1の光学要素を射出成型するステップをさらに含む、請求項27-31のいずれか1項に記載の方法。
【請求項33】
前記第2の光学要素を適用するステップは、射出成型するステップを含む、請求項27-32のいずれか1項に記載の方法。
【請求項34】
請求項1-18に記載の方法のいずれか1つに従って形成される、セグメント化されたホットミラー。
【請求項35】
請求項19-33に記載の方法のいずれか1つに従って形成される、光学要素。
【請求項36】
請求項34に記載のセグメント化されたホットミラーまたは請求項35に記載の光学要素を備える、ディスプレイ。
【請求項37】
請求項36に記載のディスプレイを備える、拡張、仮想、または複合現実ディスプレイデバイス。
【請求項38】
ディスプレイ要素と結合するために構成されるホットミラーを製造する方法であって、前記方法は、
ホットミラー層を第1の金型の第1および第2の表面に沿って配置するステップであって、前記第1の表面は、前記第2の表面の平面と立ち上がり角度を形成し、前記第1の金型の第1および第2の表面は、反射性材料の層の第1の表面と整合し、前記ホットミラー層は、可視光をそれを通して透過させ、赤外線光を反射させるように構成される、ステップと、
第1の透明材料を前記金型の内部の中に投入し、前記反射性材料の層の第1の表面と整合させることによって、中間構造を形成するステップと、
第2の透明材料を第2の金型の内部の中に投入し、前記反射性材料の層の第2の表面と整合させることによって、光学要素を形成するステップであって、前記第2の金型は、前記中間構造を格納し、前記反射性材料の層の第1の表面は、前記反射性材料の層の第2の表面に対向する、ステップと
を含む、方法。
【請求項39】
前記光学要素を、ユーザによって装着されるように構成されるフレームの中への挿入のために構成されるディスプレイ要素に結合するステップをさらに含む、請求項38に記載の方法。
【請求項40】
前記第1の金型は、前記第2の金型の形状と異なる形状を有する、請求項38-39のいずれか1項に記載の方法。
【請求項41】
前記第1の金型は、前記第2の金型の形状と異なる形状を有する、請求項38-40のいずれか1項に記載の方法。
【請求項42】
前記第1および第2の透明材料は、同一である、請求項38-41のいずれか1項に記載の方法。
【請求項43】
前記第1および第2の透明材料のうちの少なくとも1つは、ガラスまたはプラスチックを含む、請求項38-42のいずれか1項に記載の方法。
【請求項44】
前記立ち上がり角度は、約3~35である、請求項38-43のいずれか1項に記載の方法。
【請求項45】
前記中間構造の外部表面は、前記反射性材料の層の第2の表面を備える、請求項38-44のいずれか1項に記載の方法。
【請求項46】
第2の透明材料を第2の金型の内部の中に投入するステップは、前記第2の透明材料の層を前記反射性材料の第2の表面上に形成するステップを含む、請求項38-45のいずれか1項に記載の方法。
【請求項47】
前記光学要素を、ユーザの頭部上に装着されるように構成されるフレームの中に挿入するステップをさらに含む、請求項38-46のいずれか1項に記載の方法。
【請求項48】
カメラを前記フレームに取り付けるステップをさらに含み、前記カメラは、前記ユーザの眼を結像するように構成される、請求項47に記載の方法。
【請求項49】
請求項38-48のいずれか1項に記載の方法に従って製造される、ホットミラー。
【請求項50】
頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成されるフレームと、
画像をユーザに表示するように構成される光学要素であって、前記光学要素は、環境からの光を前記ユーザの眼に透過させ、前記環境の一部のビューを前記ユーザに提供するように構成される、光学要素と、
前記光学要素からの光を受け取るように構成される前向きに向いた結像機と、
少なくとも部分的に、前記光学要素内に配置される反射性要素であって、前記反射性要素は、第1および第2のセグメントを備え、前記第1のセグメントは、前記第2のセグメントに対して非ゼロ角度で角度付けられ、前記第1のセグメントは、前記前向きに向いた結像機によって捕捉されるように構成される前記眼の第1の画像を生産するように構成され、前記第2のセグメントは、前記前向きに向いた結像機によって捕捉されるように構成される前記眼の第2の画像を生産するように構成される、反射性要素と
を備える、頭部搭載型ディスプレイシステム。
【請求項51】
前記反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、請求項50に記載の頭部搭載型ディスプレイシステム。
【請求項52】
前記第1のセグメントは、前記第2のセグメントと異なる屈折力を有する、請求項50-51のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項53】
前記非ゼロ角度は、2度~25度の範囲内である、請求項50-52のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項54】
前記反射性要素は、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性であるホットミラーフィルムを備える、請求項50-53のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項55】
前記ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、請求項54に記載の頭部搭載型ディスプレイシステム。
【請求項56】
前記光学要素は、その上または少なくとも部分的にその中に配置される少なくとも1つの赤外線光源を備える、請求項50-55のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項57】
前記光学要素は、ポリエチレンテレフタレート(PET)を含む、請求項50-56のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項58】
前記前向きに向いた結像機によって取得される前記ユーザの眼の画像を記憶するように構成される非一過性メモリと、
前記非一過性メモリと通信するハードウェアプロセッサであって、前記ハードウェアプロセッサは、
前記眼の画像にアクセスすることと、
以下、すなわち、
前記ユーザの眼を追跡すること、
前記ユーザの眼と関連付けられるバイオメトリック情報を抽出すること、
前記ユーザの眼の一部の形状を再構築すること、
前記ユーザの眼の遠近調節状態を推定すること、または
前記ユーザの眼の網膜、虹彩、または他の要素を結像すること
のうちの1つまたはそれを上回るものを実施することと
を行うようにプログラムされる、ハードウェアプロセッサと
をさらに備える、請求項50-57のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項59】
前記ハードウェアプロセッサは、前記ユーザの眼の一部の形状を利用して、前記眼の配向を推定するようにプログラムされる、請求項58に記載の頭部搭載型ディスプレイシステム。
【請求項60】
前記光学要素は、前記ユーザの第1の眼の前方に位置付けられる、請求項50-59のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項61】
前記フレームは、複数の反射性セグメントを有する第2の反射性要素を支持し、前記第2の光学要素は、前記ユーザの第2の眼の前方に位置付けられる、請求項50-60のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項62】
前記第1または第2のセグメントのうちの少なくとも1つは、無限遠において前記眼を結像する個別の仮想カメラを生成するように構成される、請求項50-61のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項63】
前記眼を結像するために、前記結像機は、前記ユーザが上向きに見ているとき、前記第1のセグメントを、前記ユーザが下向きに見ているとき、前記第2のセグメントを使用する、請求項62に記載の頭部搭載型ディスプレイシステム。
【請求項64】
前記眼を結像するために、前記ディスプレイシステムは、前記ユーザの睫毛または眼瞼によるより少ないオクルージョンを有する前記第1または第2のセグメントのセグメントを選択する、請求項62-63のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項65】
頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成されるフレームと、
前記フレーム上に配置されるディスプレイと、
接眼レンズであって、前記接眼レンズは、前記ディスプレイからの光を受け取り、光を前記ユーザの眼の中に投影し、仮想画像コンテンツを前記ユーザの視野に表示するように構成され、前記接眼レンズは、前記ユーザおよび前記頭部搭載型ディスプレイの正面の環境の一部からの光を前記ユーザの眼に透過させ、前記ユーザおよび前記頭部搭載型ディスプレイの正面の環境の前記一部のビューを提供するように配置される透明部分を含み、前記接眼レンズは、少なくとも1つの層を備える、接眼レンズと、
少なくとも1つの光源であって、前記少なくとも1つの光源は、少なくとも部分的に、前記少なくとも1つの層に埋め込まれ、光を前記ユーザの眼に指向する、少なくとも1つの光源と
を備える、頭部搭載型ディスプレイシステム。
【請求項66】
前記ユーザの眼を結像するように構成される結像機をさらに備える、請求項65に記載の頭部搭載型ディスプレイシステム。
【請求項67】
前記ユーザの眼を結像するように構成される前向きに向いた結像機をさらに備える、請求項65に記載の頭部搭載型ディスプレイシステム。
【請求項68】
反射性要素が、第1および第2のセグメントを備え、前記第1のセグメントは、前記第2のセグメントに対して非ゼロ角度で角度付けられ、前記第1のセグメントは、前記前向きに向いた結像機によって捕捉されるべき前記眼の第1の画像を生産するように構成され、前記第2のセグメントは、前記前向きに向いた結像機によって捕捉されるべき前記眼の第2の画像を生産するように構成される、請求項67に記載の頭部搭載型ディスプレイシステム。
【請求項69】
前記反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、請求項68に記載の頭部搭載型ディスプレイシステム。
【請求項70】
前記第1のセグメントは、前記第2のセグメントと異なる屈折力を有する、請求項68-69のいずれかに記載の光学接眼レンズ。
【請求項71】
前記非ゼロ角度は、2度~25度の範囲内である、請求項68-70のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項72】
前記反射性要素は、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性であるホットミラーフィルムを備える、請求項68-71のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項73】
前記ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、請求項72に記載の頭部搭載型ディスプレイシステム。
【請求項74】
前記接眼レンズは、少なくとも1つの導波管を備える、請求項65-73のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項75】
前記接眼レンズは、層のスタックを備える、請求項65-74のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項76】
前記層のスタックは、少なくとも1つの導波管を備える、請求項75に記載の頭部搭載型ディスプレイシステム。
【請求項77】
前記層のスタックは、複数の導波管を備える、請求項75に記載の頭部搭載型ディスプレイシステム。
【請求項78】
第1および第2のセグメントを備える反射性要素が、前記層のスタック内に含まれ、前記第1のセグメントは、前記第2のセグメントに対して非ゼロ角度で角度付けられ、前記第1のセグメントは、前記前向きに向いた結像機によって捕捉されるべき前記眼の第1の画像を生産するように構成され、前記第2のセグメントは、前記前向きに向いた結像機によって捕捉されるように構成される前記眼の第2の画像を生産するように構成される、請求項75-77のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項79】
前記反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、請求項78に記載の頭部搭載型ディスプレイシステム。
【請求項80】
前記少なくとも1つの光源は、赤外線光源を備える、請求項65-79のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項81】
前記少なくとも1つの光源は、閃光を前記ユーザの眼上に形成するように構成される、請求項65-80のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項82】
前記少なくとも1つの光源は、ソリッドステートエミッタを備える、請求項65-81のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項83】
少なくとも部分的に、前記少なくとも1つの層に埋め込まれる前記少なくとも1つの光源は、少なくとも1つのLEDを備える、請求項65-82のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項84】
電力を前記少なくとも1つの光源に提供するための伝導性材料をさらに備え、前記伝導性材料は、可視光に対して透過性である、請求項65-83のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項85】
前記伝導性材料は、酸化インジウムスズを含む、請求項84に記載の頭部搭載型ディスプレイシステム。
【請求項86】
前記少なくとも1つの層は、透明層を備える、請求項65-85のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項87】
前記少なくとも1つの層は、ポリマーを含む、請求項65-86のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項88】
光学要素を形成する方法であって、前記方法は、
光学フィルムを第1の透明本体の第1の表面に適用するステップであって、前記第1の表面は、第1のセクションと、第2のセクションとを備え、前記第2のセクションは、前記第1のセクションに対して非ゼロ角度にある、ステップと、
前記光学フィルムが前記第1の透明本体と前記第2の透明本体との間に配置されるように、第2の透明本体を前記第1の透明本体に適用するステップと、
少なくとも1つの光源を備える層を、前記第1または第2の透明本体のうちの少なくとも1つ上に配置するステップと
を含む、方法。
【請求項89】
前記光学フィルムは、可視内で光学的に透過性である、請求項88に記載の方法。
【請求項90】
前記光学フィルムは、赤外線内で光学的に反射性であり、前記第1の光学要素および前記第2の光学要素は、前記赤外線内で光学的に透過性である、請求項89に記載の方法。
【請求項91】
前記光学フィルムを適用するステップは、前記光学フィルムを前記第1の表面上に接着するステップを含む、請求項88-90のいずれか1項に記載の方法。
【請求項92】
前記光学フィルムを適用するステップは、前記光学フィルムを前記第1の表面上に堆積させるステップを含む、請求項88-91のいずれか1項に記載の方法。
【請求項93】
前記第1の透明本体を射出成型するステップをさらに含む、請求項88-92のいずれか1項に記載の方法。
【請求項94】
前記第2の光学要素を適用するステップは、射出成型するステップを含む、請求項88-93のいずれか1項に記載の方法。
【請求項95】
前記少なくとも1つの光源を備える前記層は、前記第1の透明本体上に配置される、請求項88-94のいずれかに記載の方法。
【請求項96】
前記少なくとも1つの光源を備える前記層は、前記第2の透明本体上に配置される、請求項88-95のいずれかに記載の方法。
【請求項97】
前記少なくとも1つの光源を前記第1の透明本体内に配置するステップをさらに含む、請求項88-96のいずれか1項に記載の方法。
【請求項98】
前記少なくとも1つの光源を前記第2の透明本体内に配置するステップをさらに含む、請求項88-97のいずれか1項に記載の方法。
【請求項99】
少なくとも部分的に、前記少なくとも1つの光源を前記第1の透明本体内に埋め込むステップをさらに含む、請求項88-98のいずれかに記載の方法。
【請求項100】
少なくとも部分的に、前記少なくとも1つの光源を前記第2の透明本体内に埋め込むステップをさらに含む、請求項88-99のいずれかに記載の方法。
【請求項101】
前記少なくとも1つの光源を備える前記層は、透明層を備える、請求項88-100のいずれかに記載の方法。
【請求項102】
前記少なくとも1つの光源は、ソリッドステートエミッタを備える、請求項88-101のいずれかに記載の方法。
【請求項103】
前記少なくとも1つの光源は、LEDを備える、請求項88-102のいずれかに記載の方法。
【請求項104】
請求項88-103に記載の方法のいずれか1つに従って形成される、セグメント化されたホットミラー。
【請求項105】
請求項88-103に記載の方法のいずれか1つに従って形成される、光学要素。
【請求項106】
請求項104に記載のセグメント化されたホットミラーまたは請求項105に記載の光学要素を備える、ディスプレイ。
【請求項107】
請求項106に記載のディスプレイを備える、拡張、仮想、または複合現実ディスプレイデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、35 U.S.C. §119(e)(米国特許法第119条(e))下、参照することによってその全体として本明細書に組み込まれる、2019年7月30日に出願され、「ANGULARLY SEGMENTED HOT MIRROR FOR EYE TRACKING」と題された、米国仮出願第62/880,499号の優先権の利益を主張する。
【0002】
本開示は、仮想現実および拡張現実結像ならびに可視化システム、眼の画像を取得するための結像システム、およびこれらの結像システムのための光学要素を製造するための方法に関する。
【背景技術】
【0003】
現代のコンピューティングおよびディスプレイ技術は、デジタル的に再現された画像またはその一部が、本物であるように見える、またはそのように知覚され得る様式で、ユーザに提示される、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進している。仮想現実、すなわち、「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対して透明性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実、すなわち、「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化の拡張としてデジタルもしくは仮想画像情報の提示を伴い、または複合現実「MR」は、物理的および仮想オブジェクトが、共存し、リアルタイムで相互作用する、新しい環境を生成するための実世界と仮想世界の融合に関連する。結論から述べると、ヒトの視知覚系は、非常に複雑であって、他の仮想または実世界画像要素の中で仮想画像要素の快適で、自然な感覚で、かつ豊かな提示を促進する、VR、AR、またはMR技術を生産することは、困難である。本明細書に開示されるシステムおよび方法は、VR、AR、およびMR技術に関連する種々の課題に対処する。
【発明の概要】
【課題を解決するための手段】
【0004】
ユーザの頭部上に装着されるように構成される、頭部搭載型ディスプレイ(HMD)の実施形態が、開示される。HMDは、一対の耳掛けつるを備える、フレームと、対の光学要素のそれぞれがユーザの眼の前方に配置されることが可能であるように、フレームによって支持される、一対の光学要素と、対の耳掛けつるのうちの1つに搭載される、前向きに向いた結像機と、対の光学要素のうちの1つ内または上に配置される、反射性要素であって、赤外線光を、反射性要素によって反射された赤外線光を受け取るように構成される、前向きに向いた結像機に向かって反射させるように構成される、反射性要素とを備える。対の光学要素はそれぞれ、可視光に対して透明であることができる。反射性要素は、同一または異なる光学性質を有する、複数のセグメントを含むことができる。結像機は、HMDの装着者の眼の像を入手するように構成されることができる。HMDは、眼追跡、バイオメトリック識別、眼の形状の多視点再構築、眼の遠近調節状態の推定、または眼の網膜の結像のために、結像機によって入手された像を分析する、プロセッサを含むことができる。反射性要素は、異なる角度または異なる屈折力を有する異なるセグメントを用いて、セグメント化されることができる。
【0005】
頭部搭載型ディスプレイ(HMD)と併用するための結像システムの実施例が、開示される。結像システムは、前向きに向いた結像カメラを含むことができ、HMDのディスプレイの表面は、光を結像カメラに反射させるように構成される、軸外回折光学要素(DOE)またはホットミラーを含むことができる。DOEまたはホットミラーは、例えば、異なる角度または異なる屈折力を有する異なるセグメントを用いて、セグメント化されることができる。結像システムは、眼追跡、バイオメトリック識別、眼の3次元形状の多視点再構築等のために使用されることができる。角度的にセグメント化された光学要素を製造するための方法もまた、提供される。本方法は、射出成型を含むことができる。いくつかの実施例が、下記に提供される。
【0006】
実施例1:セグメント化されたホットミラーを製造する方法であって、第1の空洞を有する第1の金型を提供するステップであって、第1の空洞は、第2の部分に対して非ゼロ角度である、第1の部分を有する、第1の表面を備える、ステップと、ホットミラーフィルムを第1の空洞の第1の表面の少なくとも第1の部分および第2の部分に隣接して配置するステップと、第1のポリマー材料を第1の金型の第1の空洞の中に投入し、第1の成型されたコンポーネントを形成するステップと、第1の成型されたコンポーネントを第1の金型から除去するステップであって、第1の成型されたコンポーネントは、ホットミラーフィルムの少なくとも一部を含む、ステップと、第1の成型されたコンポーネントを、第2の空洞を有する第2の金型内に配置するステップと、第2のポリマー材料を第2の空洞の中に投入し、第2の成型されたコンポーネントを形成するステップであって、第2のポリマー材料は、ホットミラーフィルムの少なくとも一部を被覆する、ステップと、第2の成型されたコンポーネントを第2の金型から除去するステップとを含む、方法。
【0007】
実施例2:非ゼロ角度は、2度~25度の範囲内である、実施例1に記載の方法。
【0008】
実施例3:非ゼロ角度は、5度~20度の範囲内である、実施例1に記載の方法。
【0009】
実施例4:ホットミラーフィルムは、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性である、実施例1-3のいずれか1項に記載の方法。
【0010】
実施例5:ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、実施例1-4のいずれか1項に記載の方法。
【0011】
実施例6:第1のポリマーは、第2のポリマーと同一である、実施例1-5のいずれか1項に記載の方法。
【0012】
実施例7:第1のポリマーまたは第2のポリマーは、可視光および赤外線光に対して実質的に透過性である、実施例1-6のいずれか1項に記載の方法。
【0013】
実施例8:第1のポリマーまたは第2のポリマーは、熱可塑性ポリマーを含む、実施例1-7のいずれか1項に記載の方法。
【0014】
実施例9:第1のポリマーまたは第2のポリマーは、ポリカーボネートまたはポリメチルメタアクリレート(PMMA)を含む、実施例1-8のいずれか1項に記載の方法。
【0015】
実施例10:第1の成型されたコンポーネントまたは第2の成型されたコンポーネントの外側に延在する、ホットフィルムの一部を除去するステップをさらに含む、実施例1-9のいずれか1項に記載の方法。
【0016】
実施例11:第1の成型されたコンポーネントを、第2の空洞を有する第2の金型内に配置するステップは、ホットミラーフィルムが第2の空洞の中心領域に向かって配置されるように、第1の成型されたコンポーネントを配向するステップを含む、実施例1-10のいずれか1項に記載の方法。
【0017】
実施例12:第1の金型は、通気口を第1の部分と第2の部分との間に備える、実施例1-11のいずれか1項に記載の方法。
【0018】
実施例13:少なくとも1つの赤外線光源を第2の金型の第2の空洞内に配置するステップをさらに含む、実施例1-12のいずれか1項に記載の方法。
【0019】
実施例14:少なくとも1つの赤外線光源は、ポリマーフィルム上に配置され、本方法は、ポリマーフィルムを第2の金型の第2の空洞内に配置するステップを含む、実施例13に記載の方法。
【0020】
実施例15:ポリマーフィルムは、ポリエチレンテレフタレート(PET)を含む、実施例14に記載の方法。
【0021】
実施例16:第1の金型の第1の表面は、第2の部分に隣接する第3の部分を備え、第3の部分は、第2の部分に対して第2の非ゼロ角度にある、実施例1-15のいずれか1項に記載の方法。
【0022】
実施例17:第1の表面の第1の部分または第2の部分は、湾曲領域を備える、実施例1-16のいずれか1項に記載の方法。
【0023】
実施例18:第2の成型されたコンポーネントを拡張、複合、または仮想現実デバイスのためのディスプレイに取り付けるステップをさらに含む、実施例1-17のいずれか1項に記載の方法。
【0024】
実施例19:光学要素を形成する方法であって、光学フィルムを第1の金型のセグメント化された表面に隣接して配置するステップであって、セグメント化された表面は、第1の部分と、第1の部分に対して非ゼロ角度にある、第2の部分とを備え、光学フィルムは、第1の波長範囲内において実質的に透明であって、第1の波長範囲と異なる、第2の波長範囲内において、実質的に反射性である、ステップと、第1のポリマーを第1の金型の第1の空洞の中に投入し、第1の光学要素を形成するステップであって、第1のポリマーは、第1の波長範囲および第2の波長範囲内において実質的に透明であって、第1の光学要素は、光学フィルムの少なくとも一部を備える、ステップと、第1の光学要素を第2の金型内に配置するステップと、第2のポリマーを第2の金型の中に投入し、第2の光学要素を形成するステップであって、第2のポリマーは、第1の光学要素の光学フィルムの少なくとも一部を被覆する、ステップと、第2の光学要素を第2の金型から除去するステップとを含む、方法。
【0025】
実施例20:第1の波長範囲は、可視波長範囲の少なくとも一部を含み、第2の波長範囲は、赤外線波長範囲の少なくとも一部を含む、実施例19に記載の方法。
【0026】
実施例21:第1の金型は、通気口を第1の部分と第2の部分との間に備える、実施例19または実施例20に記載の方法。
【0027】
実施例22:セグメント化された表面の第1の部分または第2の部分は、略平坦である、実施例19-21のいずれか1項に記載の方法。
【0028】
実施例23:光学フィルムを第1の光学要素の第1の縁または第2の光学要素の第2の縁で終端させるステップをさらに含む、実施例19-22のいずれか1項に記載の方法。
【0029】
実施例24:光源を第2の金型内に配置するステップをさらに含む、実施例19-23のいずれか1項に記載の方法。
【0030】
実施例25:非ゼロ角度は、2度~25度の範囲内である、実施例19-24のいずれか1項に記載の方法。
【0031】
実施例26:光学フィルムは、回折要素またはホログラフィック要素を備える、実施例19-25のいずれか1項に記載の方法。
【0032】
実施例27:光学要素を形成するための方法であって、光学フィルムを第1の光学要素の第1の表面に適用するステップであって、第1の表面は、第1のセクションと、第2のセクションとを備え、第2のセクションは、第1のセクションに対して非ゼロ角度にある、ステップと、光学フィルムが第1の光学要素と第2の光学要素との間に配置されるように、第2の光学要素を第1の光学要素に適用し、光学要素を形成するステップとを含む、方法。
【0033】
実施例28:第1の光学要素、第2の光学要素、および光学フィルムは、可視内で光学的に透過性である、実施例27に記載の方法。
【0034】
実施例29:光学フィルムは、赤外線内で光学的に反射性であって、第1の光学要素および第2の光学要素は、赤外線内で光学的に透過性である、実施例28に記載の方法。
【0035】
実施例30:光学フィルムを適用するステップは、光学フィルムを第1の表面上に接着するステップを含む、実施例27-29のいずれか1項に記載の方法。
【0036】
実施例31:光学フィルムを適用するステップは、光学フィルムを第1の表面上に堆積させるステップを含む、実施例27-29のいずれか1項に記載の方法。
【0037】
実施例32:第1の光学要素を射出成型するステップをさらに含む、実施例27-31のいずれか1項に記載の方法。
【0038】
実施例33:第2の光学要素を適用するステップは、射出成型するステップを含む、実施例27-32のいずれか1項に記載の方法。
【0039】
実施例34:実施例1-33に記載の方法のいずれか1項に従って形成される、セグメント化されたホットミラー。
【0040】
実施例35:実施例1-34の方法のいずれか1項に従って形成される、光学要素。
【0041】
実施例36:実施例34に記載のセグメント化されたホットミラーまたは実施例35に記載の光学要素を備える、ディスプレイ。
【0042】
実施例37:実施例36に記載のディスプレイを備える、拡張、仮想、または複合現実ディスプレイデバイス。
【0043】
実施例38:ディスプレイ要素と結合するために構成される、ホットミラーを製造する方法であって、ホットミラー層を第1の金型の第1および第2の表面に沿って配置するステップであって、第1の表面は、第2の表面の平面と立ち上がり角度を形成し、第1の金型の第1および第2の表面は、反射性材料の層の第1の表面と整合し、ホットミラー層は、可視光をそれを通して透過させ、赤外線光を反射させるように構成される、ステップと、第1の透明材料を金型の内部の中に投入し、反射性材料の層の第1の表面と整合させることによって、中間構造を形成するステップと、第2の透明材料を第2の金型の内部の中に投入し、反射性材料の層の第2の表面と整合させることによって、光学要素を形成するステップであって、第2の金型は、中間構造を格納し、反射性材料の層の第1の表面は、反射性材料の層の第2の表面に対向する、ステップとを含む、方法。
【0044】
実施例39:光学要素を、ユーザによって装着されるように構成されるフレームの中への挿入のために構成される、ディスプレイ要素に結合するステップをさらに含む、実施例38に記載の方法。
【0045】
実施例40:第1の金型は、第2の金型の形状と異なる、形状を有する、実施例38-39のいずれか1項に記載の方法。
【0046】
実施例41:第1の金型は、第2の金型の形状と異なる、形状を有する、実施例38-40のいずれか1項に記載の方法。
【0047】
実施例42:第1および第2の透明材料は、同一である、実施例38-41のいずれか1項に記載の方法。
【0048】
実施例43:第1および第2の透明材料のうちの少なくとも1つは、ガラスまたはプラスチックを含む、実施例38-42のいずれか1項に記載の方法。
【0049】
実施例44:立ち上がり角度は、約3~35である、実施例38-43のいずれか1項に記載の方法。
【0050】
実施例45:中間構造の外部表面は、反射性材料の層の第2の表面を備える、実施例38-44のいずれか1項に記載の方法。
【0051】
実施例46:第2の透明材料を第2の金型の内部の中に投入するステップは、第2の透明材料の層を反射性材料の第2の表面上に形成するステップを含む、実施例38-45のいずれか1項に記載の方法。
【0052】
実施例47:光学要素を、ユーザの頭部上に装着されるように構成される、フレームの中に挿入するステップをさらに含む、実施例38-46のいずれか1項に記載の方法。
【0053】
実施例48:カメラをフレームに取り付けるステップをさらに含み、カメラは、ユーザの眼を結像するように構成される、実施例47に記載の方法。
【0054】
実施例49:実施例38-48のいずれか1項に記載の方法に従って製造される、ホットミラー。
【0055】
実施例50:頭部搭載型ディスプレイシステムであって、ユーザの頭部上に支持されるように構成される、フレームと、画像をユーザに表示するように構成される、光学要素であって、環境からの光をユーザの眼に透過させ、環境の一部のビューをユーザに提供するように構成される、光学要素と、光学要素からの光を受け取るように構成される、前向きに向いた結像機と、少なくとも部分的に、光学要素内に配置される、反射性要素であって、反射性要素は、第1および第2のセグメントを備え、第1のセグメントは、第2のセグメントに対して非ゼロ角度で角度付けられ、第1のセグメントは、前向きに向いた結像機によって捕捉されるように構成される、眼の第1の画像を生産するように構成され、第2のセグメントは、前向きに向いた結像機によって捕捉されるように構成される、眼の第2の画像を生産するように構成される、反射性要素とを備える、頭部搭載型ディスプレイシステム。
【0056】
実施例51:反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、実施例50に記載の頭部搭載型ディスプレイシステム。
【0057】
実施例52:第1のセグメントは、第2のセグメントと異なる屈折力を有する、実施例50-51のいずれかに記載の頭部搭載型ディスプレイシステム。
【0058】
実施例53:非ゼロ角度は、2度~25度の範囲内である、実施例50-52のいずれかに記載の頭部搭載型ディスプレイシステム。
【0059】
実施例54:反射性要素は、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性である、ホットミラーフィルムを備える、実施例50-53のいずれかに記載の頭部搭載型ディスプレイシステム。
【0060】
実施例55:ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、実施例54に記載の頭部搭載型ディスプレイシステム。
【0061】
実施例56:光学要素は、その上または少なくとも部分的にその中に配置される、少なくとも1つの赤外線光源を備える、実施例50-55のいずれかに記載の頭部搭載型ディスプレイシステム。
【0062】
実施例57:光学要素は、ポリエチレンテレフタレート(PET)を含む、実施例50-56のいずれかに記載の頭部搭載型ディスプレイシステム。
【0063】
実施例58:前向きに向いた結像機によって取得されるユーザの眼の画像を記憶するように構成される、非一過性メモリと、非一過性メモリと通信する、ハードウェアプロセッサであって、眼の画像にアクセスし、以下、すなわち、ユーザの眼を追跡する、ユーザの眼と関連付けられる、バイオメトリック情報を抽出する、ユーザの眼の一部の形状を再構築する、ユーザの眼の遠近調節状態を推定する、またはユーザの眼の網膜、虹彩、もしくは他の要素を結像することのうちの1つまたはそれを上回るものを実施するようにプログラムされる、ハードウェアプロセッサとをさらに備える、実施例50-57のいずれかに記載の頭部搭載型ディスプレイシステム。
【0064】
実施例59:ハードウェアプロセッサは、ユーザの眼の一部の形状を利用して、眼の配向を推定するようにプログラムされる、実施例58に記載の頭部搭載型ディスプレイシステム。
【0065】
実施例60:光学要素は、ユーザの第1の眼の前方に位置付けられる、実施例50-59のいずれかに記載の頭部搭載型ディスプレイシステム。
【0066】
実施例61:フレームは、複数の反射性セグメントを有する、第2の反射性要素を支持し、第2の光学要素は、ユーザの第2の眼の前方に位置付けられる、実施例50-60のいずれかに記載の頭部搭載型ディスプレイシステム。
【0067】
実施例62:第1または第2のセグメントのうちの少なくとも1つは、無限遠において眼を結像する、個別の仮想カメラを生成するように構成される、実施例50-61のいずれかに記載の頭部搭載型ディスプレイシステム。
【0068】
実施例63:眼を結像するために、結像機は、ユーザが上向きに見ているとき、第1のセグメントを、ユーザが下向きに見ているとき、第2のセグメントを使用する、実施例62に記載の頭部搭載型ディスプレイシステム。
【0069】
実施例64:眼を結像するために、ディスプレイシステムは、ユーザの睫毛または眼瞼によるより少ないオクルージョンを有する、第1または第2のセグメントのセグメントを選択する、実施例62-63のいずれかに記載の頭部搭載型ディスプレイシステム。
【0070】
実施例65:頭部搭載型ディスプレイシステムであって、ユーザの頭部上に支持されるように構成される、フレームと、フレーム上に配置される、ディスプレイと、該ディスプレイからの光を受け取り、光を該ユーザの眼の中に投影し、仮想画像コンテンツをユーザの視野に表示するように構成される、接眼レンズであって、該接眼レンズは、ユーザおよび該頭部搭載型ディスプレイの正面の環境の一部からの光をユーザの眼に透過させ、ユーザおよび該頭部搭載型ディスプレイの正面の環境の該一部のビューを提供するように配置される、透明部分を含み、該接眼レンズは、少なくとも1つの層を備える、接眼レンズと、少なくとも部分的に、該少なくとも1つの層に埋め込まれ、光をユーザの眼に指向する、少なくとも1つの光源とを備える、頭部搭載型ディスプレイシステム。
【0071】
実施例66:ユーザの眼を結像するように構成される、結像機をさらに備える、実施例65に記載の頭部搭載型ディスプレイシステム。
【0072】
実施例67:ユーザの眼を結像するように構成される、前向きに向いた結像機をさらに備える、実施例65に記載の頭部搭載型ディスプレイシステム。
【0073】
実施例68:反射性要素が、第1および第2のセグメントを備え、第1のセグメントは、第2のセグメントに対して非ゼロ角度で角度付けられ、第1のセグメントは、前向きに向いた結像機によって捕捉されるべき眼の第1の画像を生産するように構成され、第2のセグメントは、前向きに向いた結像機によって捕捉されるべき眼の第2の画像を生産するように構成される、実施例67に記載の頭部搭載型ディスプレイシステム。
【0074】
実施例69:反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、実施例68に記載の頭部搭載型ディスプレイシステム。
【0075】
実施例70:第1のセグメントは、第2のセグメントと異なる屈折力を有する、実施例68-69のいずれかに記載の光学接眼レンズ。
【0076】
実施例71:非ゼロ角度は、2度~25度の範囲内である、実施例68-70のいずれかに記載の頭部搭載型ディスプレイシステム。
【0077】
実施例72:反射性要素は、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性である、ホットミラーフィルムを備える、実施例68-71のいずれかに記載の頭部搭載型ディスプレイシステム。
【0078】
実施例73:ホットミラーフィルムは、400nm~700nmの第1の波長範囲内の光に対して実質的に透過性であり、約800nm~900nmの第2の波長範囲内の光に対して実質的に反射性である、実施例72に記載の頭部搭載型ディスプレイシステム。
【0079】
実施例74:該接眼レンズは、少なくとも1つの導波管を備える、実施例65-73のいずれかに記載の頭部搭載型ディスプレイシステム。
【0080】
実施例75:該接眼レンズは、層のスタックを備える、実施例65-74のいずれかに記載の頭部搭載型ディスプレイシステム。
【0081】
実施例76:層のスタックは、少なくとも1つの導波管を備える、実施例75に記載の頭部搭載型ディスプレイシステム。
【0082】
実施例77:層のスタックは、複数の導波管を備える、実施例75に記載の頭部搭載型ディスプレイシステム。
【0083】
実施例78:第1および第2のセグメントを備える、反射性要素が、該層のスタック内に含まれ、第1のセグメントは、第2のセグメントに対して非ゼロ角度で角度付けられ、第1のセグメントは、前向きに向いた結像機によって捕捉されるべき眼の第1の画像を生産するように構成され、第2のセグメントは、前向きに向いた結像機によって捕捉されるように構成される、眼の第2の画像を生産するように構成される、実施例75-77のいずれかに記載の頭部搭載型ディスプレイシステム。
【0084】
実施例79:反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、実施例78に記載の頭部搭載型ディスプレイシステム。
【0085】
実施例80:該少なくとも1つの光源は、赤外線光源を備える、実施例65-79のいずれかに記載の頭部搭載型ディスプレイシステム。
【0086】
実施例81:該少なくとも1つの光源は、閃光をユーザの眼上に形成するように構成される、実施例65-80のいずれかに記載の頭部搭載型ディスプレイシステム。
【0087】
実施例82:該少なくとも1つの光源は、ソリッドステートエミッタを備える、請求項65-81のいずれかに記載の頭部搭載型ディスプレイシステム。
【0088】
実施例83:少なくとも部分的に、該少なくとも1つの層に埋め込まれる該少なくとも1つの光源は、少なくとも1つのLEDを備える、実施例65-82のいずれかに記載の頭部搭載型ディスプレイシステム。
【0089】
実施例84:電力を該少なくとも1つの光源に提供するための伝導性材料をさらに備え、該伝導性材料は、可視光に対して透過性である、実施例65-83のいずれかに記載の頭部搭載型ディスプレイシステム。
【0090】
実施例85:該伝導性材料は、酸化インジウムスズを含む、実施例84に記載の頭部搭載型ディスプレイシステム。
【0091】
実施例86:該少なくとも1つの層は、透明層を備える、実施例65-85のいずれかに記載の頭部搭載型ディスプレイシステム。
【0092】
実施例87:該少なくとも1つの層は、ポリマーを含む、実施例65-86のいずれかに記載の頭部搭載型ディスプレイシステム。
【0093】
実施例88:光学要素を形成する方法であって、光学フィルムを第1の透明本体の第1の表面に適用するステップであって、第1の表面は、第1のセクションと、第2のセクションとを備え、第2のセクションは、第1のセクションに対して非ゼロ角度にある、ステップと、光学フィルムが第1の透明本体と第2透明本体との間に配置されるように、第2の透明本体を第1の透明本体に適用するステップと、少なくとも1つの光源を備える層を、第1または第2の透明本体のうちの少なくとも1つ上に配置するステップとを含む、方法。
【0094】
実施例89:光学フィルムは、可視内で光学的に透過性である、実施例88に記載の方法。
【0095】
実施例90:光学フィルムは、赤外線内で光学的に反射性であり、第1の光学要素および第2の光学要素は、赤外線内で光学的に透過性である、実施例89に記載の方法。
【0096】
実施例91:光学フィルムを適用するステップは、光学フィルムを第1の表面上に接着するステップを含む、実施例88-90のいずれか1項に記載の方法。
【0097】
実施例92:光学フィルムを適用するステップは、光学フィルムを第1の表面上に堆積させるステップを含む、実施例88-91のいずれか1項に記載の方法。
【0098】
実施例93:第1の透明本体を射出成型するステップをさらに含む、実施例88-92のいずれか1項に記載の方法。
【0099】
実施例94:第2の光学要素を適用するステップは、射出成型するステップを含む、実施例88-93のいずれか1項に記載の方法。
【0100】
実施例95:少なくとも1つの光源を備える、該層は、該第1の透明本体上に配置される、実施例88-94のいずれかに記載の方法。
【0101】
実施例96:少なくとも1つの光源を備える、該層は、該第2の透明本体上に配置される、実施例88-95のいずれかに記載の方法。
【0102】
実施例97:少なくとも1つの光源を第1の透明本体内に配置するステップをさらに含む、実施例88-96のいずれか1項に記載の方法。
【0103】
実施例98:少なくとも1つの光源を第2の透明本体内に配置するステップをさらに含む、実施例88-97のいずれか1項に記載の方法。
【0104】
実施例99:少なくとも部分的に、該少なくとも1つの光源を該第1の透明本体内に埋め込むステップをさらに含む、実施例88-98のいずれかに記載の方法。
【0105】
実施例100:少なくとも部分的に、該少なくとも1つの光源を該第2の透明本体内に埋め込むステップをさらに含む、実施例88-99のいずれかに記載の方法。
【0106】
実施例101:該少なくとも1つの光源を備える、該層は、透明層を備える、実施例88-100のいずれかに記載の方法。
【0107】
実施例102:該少なくとも1つの光源は、ソリッドステートエミッタを備える、実施例88-101のいずれかに記載の方法。
【0108】
実施例103:該少なくとも1つの光源は、LEDを備える、実施例88-102のいずれかに記載の方法。
【0109】
実施例104:実施例88-103に記載の方法のいずれか1つに従って形成される、セグメント化されたホットミラー。
【0110】
実施例105:実施例88-103の方法のいずれか1つに従って形成される、光学要素。
【0111】
実施例106:実施例104に記載のセグメント化されたホットミラーまたは実施例105に記載の光学要素を備える、ディスプレイ。
【0112】
実施例107:実施例106に記載のディスプレイを備える、拡張、仮想、または複合現実ディスプレイデバイス。
【0113】
本明細書に説明される主題の1つまたはそれを上回る実装の詳細が、付随の図面および下記の説明に記載される。他の特徴、側面、および利点は、説明、図面、ならびに請求項から明白となるであろう。本概要または以下の詳細な説明のいずれも、本発明の主題の範囲を定義または限定することを主張するものではない。
【図面の簡単な説明】
【0114】
図1図1は、人物によって視認されるある仮想現実オブジェクトおよびある実際の現実オブジェクトを伴う、拡張現実シナリオの例証を描写する。
【0115】
図2図2は、ウェアラブルディスプレイシステムの実施例を図式的に図示する。
【0116】
図3図3は、複数の深度面を使用して3次元画像をシミュレートするためのアプローチの側面を図式的に図示する。
【0117】
図4図4は、画像情報をユーザに出力するための導波管スタックの実施例を図式的に図示する。
【0118】
図5図5は、導波管によって出力され得る、例示的出射ビームを示す。
【0119】
図6図6は、導波管装置と、光を導波管装置へまたはそこから光学的に結合するための光学結合器サブシステムと、多焦点立体ディスプレイ、画像、またはライトフィールドの生成において使用される、制御サブシステムとを含む、ディスプレイシステムを示す、概略図である。
【0120】
図7A図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
図7B図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
図7C図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
図7D図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
図7E図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
図7F図7A-7Fは、反射軸外回折光学要素(DOE)を使用して装着者の眼を結像する前向きカメラを備える、結像システムの実施例を図式的に図示する。
【0121】
図7G図7Gおよび7Hは、それぞれ異なる光学性質(例えば、反射角度、屈折力等)を有し得る複数のセグメントを有する、DOEの実施例を図式的に示す。
図7H図7Gおよび7Hは、それぞれ異なる光学性質(例えば、反射角度、屈折力等)を有し得る複数のセグメントを有する、DOEの実施例を図式的に示す。
【0122】
図8図8は、眼追跡のための光学システムの別の実施例を示す。
【0123】
図9図9は、瞳孔間距離(IPD)の異なる示差および/または軸方向(z-軸)に沿った異なるアイボックスオフセットに関連する、ホットミラーの種々の構成の水平視線角度(度単位)にわたる視線感度(度あたりピクセル単位)の実施例を表す、一連のプロットを示す。
【0124】
図10図10は、セグメント化された反射性要素を有する、例示的光学システムを示す。
【0125】
図11図11は、角度的にセグメント化されたホットミラーの実施形態から反射された例示的眼画像を示す。
【0126】
図12図12A-12Eは、光学要素(例えば、角度的にセグメント化されたホットミラーを備える)のための例示的製造プロセスの種々の段階を示す。
【0127】
図13図13A-13Cは、光源(例えば、赤外線LED)を含むように光学要素を製造するための随意の段階を示す。
【0128】
図14図14は、角度的にセグメント化されたホットミラー等の光学要素を製造するための例示的方法を示す。
【0129】
図面全体を通して、参照番号は、参照される要素間の対応を示すために再使用され得る。図面は、本明細書に説明される例示的実施形態を図示するために提供され、本開示の範囲を限定することを意図するものではない。
【発明を実施するための形態】
【0130】
詳細な説明
概要
頭部搭載型ディスプレイ(HMD)の装着者の眼は、反射軸外回折光学要素(DOE)を使用して結像されることができる。いくつかの実装では、DOEは、ホログラフィック光学要素(HOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)であってもよい。装着者の眼は、加えて、または代替として、ホットミラー(例えば、可視に対して透過性であり、赤外線内において反射性である)を使用して、結像されることができる。結果として生じる画像は、片眼または両眼を追跡する、網膜を結像する、眼形状を3次元において再構築する、バイオメトリック情報(例えば、虹彩識別)を眼から抽出する等のために使用されることができる。
【0131】
頭部搭載型ディスプレイ(HMD)は、種々の目的のために、装着者の眼の状態についての情報を使用し得る。例えば、本情報は、装着者の視線方向を推定するため、またはバイオメトリック識別のために使用されることができる。しかしながら、HMDの装着者の眼の結像は、困難であり得る。HMDと装着者の眼との間の距離は、短い。さらに、視線追跡は、より大きい視野を要求する一方、バイオメトリック識別は、虹彩上の標的に比較的に高ピクセル数を要求する。これらの目的の両方の遂行を試みるであろう、結像システムに関して、2つのタスクの要件は、著しく対立する。さらに、両問題は、眼瞼および睫毛による閉塞によってさらに複雑になり得る。
【0132】
本明細書に説明される結像システムの実施形態は、これらの問題の一部または全部に対処する。例えば、結像システムは、装着者の眼を視認するように構成される、結像機を備えることができる。結像システムは、装着者のこめかみに近接して(例えば、ウェアラブルディスプレイシステムのフレーム、例えば、耳掛けつる上に)搭載されることができる。いくつかの実施形態では、第2の結像機が、各眼が別個に結像されるように、装着者の他方の眼のために使用されることができる。結像機は、赤外線放射に敏感である、赤外線デジタルカメラを含むことができる。結像機は、後向きではなく、前向きであって(装着者の視覚の方向に)、眼に指向されるように、搭載されることができる。結像機を装着者の耳により近づけて配置することによって、結像機の重量もまた、耳により近づき得、HMDは、結像機が後向きであって、HMDの正面により近づけて配置される、HMDと比較して、より装着が容易となり得る。加えて、前向きに向いた結像機を装着者のこめかみの近傍に設置することによって、装着者の眼から結像機までの距離は、HMDの正面の近傍に配置される後向きに向いた結像機と比較して、約2倍となる。画像の被写界深度は、本距離にほぼ比例するため、前向きに向いた結像機のための被写界深度は、後向きに向いた結像機と比較して約2倍となる。結像機のためのより大きい被写界深度は、大きいまたは突出する鼻、眉弓等を有する、装着者の眼領域を結像するために有利となり得る。
【0133】
結像機は、その他の点では透明である光学要素の内面を視認するように位置付けられることができる。光学要素は、HMD(または一対の眼鏡内のレンズ)のディスプレイの一部であることができる。光学要素は、第1の範囲の波長を反射させるが、第2の範囲の波長(第1の範囲の波長と異なる)に対して実質的に透過性である、表面を備えることができる。第1の範囲の波長は、赤外線内にあることができ、第2の範囲の波長は、可視内にあることができる。例えば、光学要素は、赤外線光を反射させるが、可視光を透過させる、ホットミラーを備えることができる。外側世界からの可視光は、光学要素を通して透過されることができ、装着者によって知覚されることができる。実際、結像システムは、装着者の眼に向かって逆指向される仮想結像機のように作用する。仮想結像機は、装着者の眼から光学要素を通して伝搬される仮想赤外線光を結像することができる。ホットミラー(または本明細書に説明される他のDOE)は、光学要素の内面上、光学要素の外面上、または光学要素(例えば、立体HOE)内に配置されることができる。
【0134】
いくつかの実施形態では、光学要素は、異なる光学性質、例えば、角度または屈折力を伴う、複数のセグメントを備える。光学要素の異なるセグメントは、有利なこととして、装着者が異なる方向を見ているとき、光を結像機に反射させることができる。
【0135】
セグメント化された光学要素を製造するための製造プロセスの実施例が、提供される。製造プロセスは、射出成型を含むことができる。射出金型は、異なる角度(または屈折力)を有する異なるセグメントを伴う、セグメント化された表面を含むことができる。
【0136】
赤外線放射は、700nm~10μmの範囲内の波長を伴う放射を含むことができる。赤外線放射は、700nm~1.5μmの範囲内の波長を伴う近赤外線放射を含むことができる。多くの実装では、眼結像は、700nm~900nmの波長における近赤外線内で行われる。
3Dディスプレイ
【0137】
図1は、人物によって視認される、ある仮想現実オブジェクトおよびある実際の現実オブジェクトを伴う、拡張現実シナリオの例証を描写する。図1は、拡張現実場面100を描写し、AR技術のユーザには、人々、木々、背景内の建物、およびコンクリートプラットフォーム120を特徴とする、実世界公園状設定110が見える。これらのアイテムに加え、AR技術のユーザはまた、実世界プラットフォーム120上に立っているロボット像130と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ140とが「見える」と知覚するが、これらの要素は、実世界には存在しない。
【0138】
3次元(3D)ディスプレイが、真の深度感覚、より具体的には、表面深度のシミュレートされた感覚を生成するために、ディスプレイの視野内の点毎に、その仮想深度に対応する遠近調節応答を生成することが望ましい。ディスプレイ点に対する遠近調節応答が、収束および立体視の両眼深度キューによって決定されるようなその点の仮想深度に対応しない場合、ヒトの眼は、遠近調節衝突を体験し、不安定な結像、有害な眼精疲労、頭痛、および遠近調節情報の不在下では、表面深度のほぼ完全な欠如をもたらし得る。
【0139】
VR、AR、およびMR体験は、複数の深度面に対応する画像が視認者に提供されるディスプレイを有する、ディスプレイシステムによって提供されることができる。画像は、深度面毎に異なってもよく(例えば、場面またはオブジェクトの若干異なる提示を提供する)、視認者の眼によって別個に集束され、それによって、異なる深度面上に位置する場面に関する異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または合焦からずれている異なる深度面上の異なる画像特徴を観察することに基づいて、ユーザに深度キューを提供することに役立ち得る。本明細書のいずれかに議論されるように、そのような深度キューは、信用できる深度の知覚を提供する。
【0140】
図2は、VR、AR、またはMR体験をディスプレイシステム装着者または視認者204に提示するために使用され得る、ウェアラブルディスプレイシステム200の実施例を図示する。ディスプレイシステム200は、ディスプレイ208と、ディスプレイ208の機能をサポートするための種々の機械的ならびに電子的モジュールおよびシステムとを含む。ディスプレイ208は、フレーム212に結合されてもよく、これは、ディスプレイシステムユーザ、装着者、または視認者204によって装着可能であって、ディスプレイ208を装着者204の眼の正面に位置付けるように構成される。ディスプレイ208は、ライトフィールドディスプレイであってもよい。いくつかの実施形態では、スピーカ216が、フレーム212に結合され、ユーザの外耳道に隣接して位置付けられる(いくつかの実施形態では、示されない別のスピーカが、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供する)。ディスプレイ208は、有線導線または無線接続等によって、ローカルデータ処理モジュール224に動作可能に結合され220、これは、フレーム212に固定して取り付けられる、ユーザによって装着されるヘルメットもしくは帽子に固定して取り付けられる、ヘッドホンに埋め込まれる、または別様にユーザ204に(例えば、バックパック式構成において、ベルト結合式構成において)除去可能に取り付けられる等、種々の構成において搭載されてもよい。
【0141】
ローカル処理およびデータモジュール224は、ハードウェアプロセッサならびに不揮発性メモリ(例えば、フラッシュメモリ)等の非一過性デジタルメモリを備えてもよく、その両方とも、データの処理、キャッシング、および記憶を補助するために利用され得る。データは、(a)画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープ等の(例えば、フレーム212に動作可能に結合される、または別様にユーザ204に取り付けられ得る)センサから捕捉されるデータ、および/または(b)可能性として、そのような処理もしくは読出後にディスプレイ208への通過のために、遠隔処理モジュール228および/または遠隔データリポジトリ232を使用して入手ならびに/もしくは処理されるデータを含んでもよい。ローカル処理およびデータモジュール224は、これらの遠隔モジュール228、232が、ローカル処理およびデータモジュール224へのリソースとして利用可能であるように、有線または無線通信リンクを介して等、通信リンク236および/または240によって、遠隔処理モジュール228および遠隔データリポジトリ232に動作可能に結合されてもよい。加えて、遠隔処理モジュール228および遠隔データリポジトリ232は、相互に動作可能に結合されてもよい。
【0142】
いくつかの実施形態では、遠隔処理モジュール228は、画像捕捉デバイスによって捕捉されたビデオ情報等のデータおよび/または画像情報を分析ならびに処理するように構成される、1つまたはそれを上回るプロセッサを備えてもよい。ビデオデータは、ローカル処理およびデータモジュール224および/または遠隔データリポジトリ232内でローカルで記憶されてもよい。いくつかの実施形態では、遠隔データリポジトリ232は、デジタルデータ記憶設備を備えてもよく、これは、「クラウド」リソース構成におけるインターネットまたは他のネットワーキング構成を通して利用可能であってもよい。いくつかの実施形態では、全てのデータが、記憶され、全ての算出が、ローカル処理およびデータモジュール224において実施され、遠隔モジュールからの完全に自律的な使用を可能にする。
【0143】
ヒト視覚系は、複雑であって、深度の現実的知覚を提供することは、困難である。理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散運動および遠近調節の組み合わせに起因して、オブジェクトを3次元として知覚し得ると考えられる。相互に対する2つの眼の輻輳・開散運動(すなわち、眼の視線を収束させ、オブジェクトを固視するための相互に向かった、またはそこから離れる瞳孔の回転運動)は、眼の水晶体の集束(または「遠近調節」)と密接に関連付けられる。通常条件下、焦点を1つのオブジェクトから異なる距離における別のオブジェクトに変化させるための眼の水晶体の焦点の変化または眼の遠近調節は、「遠近調節-輻輳・開散運動反射」として知られる関係下、同一距離への輻輳・開散運動の合致する変化を自動的に生じさせるであろう。同様に、輻輳・開散運動の変化は、通常条件下、遠近調節の合致する変化を誘起するであろう。遠近調節と輻輳・開散運動との間のより良好な合致を提供するディスプレイシステムが、3次元画像のより現実的または快適なシミュレーションを形成し得る。
【0144】
図3は、複数の深度面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。図3を参照すると、z-軸上の眼302および304からの種々の距離におけるオブジェクトは、それらのオブジェクトが合焦するように、眼302および304によって遠近調節される。眼302および304は、特定の遠近調節された状態をとり、オブジェクトをz-軸に沿った異なる距離に合焦させる。その結果、特定の遠近調節された状態は、特定の深度面におけるオブジェクトまたはオブジェクトの一部が、眼がその深度面に対して遠近調節された状態にあるときに合焦するように、関連付けられる焦点距離を有して、深度面306のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3次元画像が、眼302および304毎に、画像の異なる提示を提供することによって、また、深度面のそれぞれに対応する画像の異なる提示を提供することによって、シミュレートされてもよい。例証を明確にするために別個であるものとして示されるが、眼302および304の視野は、例えば、z-軸に沿った距離が増加するにつれて、重複し得ることを理解されたい。加えて、例証を容易にするために平坦であるものとして示されるが、深度面の輪郭は、深度面内の全ての特徴が特定の遠近調節された状態において眼と合焦するように、物理的空間内で湾曲されてもよいことを理解されたい。理論によって限定されるわけではないが、人間の眼は、典型的には、深度知覚を提供するために、有限数深度面を解釈し得ると考えられる。その結果、知覚される深度の高度に真実味のあるシミュレーションが、これらの限定された数の深度面のそれぞれに対応する画像の異なる表現を眼に提供することによって達成され得る。
導波管スタックアセンブリ
【0145】
図4は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム400は、複数の導波管420、422、424、426、428を使用して、3次元知覚を眼410または脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ405を含む。いくつかの実施形態では、ディスプレイシステム400は、図2のシステム200に対応し得、図4は、そのシステム200のいくつかの部分をより詳細に図式的に示す。例えば、いくつかの実施形態では、導波管アセンブリ405は、図2のディスプレイ208の中に統合されてもよい。
【0146】
図4を継続して参照すると、導波管アセンブリ405はまた、複数の特徴430、432、434、436を導波管の間に含んでもよい。いくつかの実施形態では、特徴430、432、434、436は、レンズであってもよい。いくつかの実施形態では、特徴430、432、434、436は、レンズではなくてもよい。むしろ、それらは、スペーサであってもよい(例えば、空気間隙を形成するためのクラッディング層および/または構造)。
【0147】
導波管420、422、424、426、428および/または複数のレンズ430、432、434、436は、種々のレベルの波面曲率または光線発散を用いて、画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度面と関連付けられてもよく、その深度面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス440、442、444、446、448は、それぞれ、眼410に向かって出力するために、各個別の導波管を横断して入射光を分散させるように構成され得る、導波管420、422、424、426、428の中に画像情報を投入するために利用されてもよい。光は、画像投入デバイス440、442、444、446、448の出力表面から出射し、導波管420、422、424、426、428の対応する入力縁の中に投入される。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、特定の導波管と関連付けられる深度面に対応する特定の角度(および発散量)において眼410に向かって指向される、クローン化されるコリメートされたビームの場全体を出力してもよい。
【0148】
いくつかの実施形態では、画像投入デバイス440、442、444、446、442はそれぞれ、対応する導波管420、422、424、426、428の中に投入するための画像情報をそれぞれ生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス440、442、444、446、448は、例えば、1つまたはそれを上回る光学導管(光ファイバケーブル等)を介して、画像情報を画像投入デバイス440、442、444、446、448のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。
【0149】
コントローラ450が、スタックされた導波管アセンブリ405および画像投入デバイス440、442、444、446、448の動作を制御する。いくつかの実施形態では、コントローラ450は、導波管420、422、424、426、428への画像情報のタイミングおよび提供を調整する、プログラミング(例えば、非一過性コンピュータ可読媒体内の命令)を含む。いくつかの実施形態では、コントローラ450は、単一一体型デバイスまたは有線もしくは無線通信チャネルによって接続される分散型システムであってもよい。コントローラ450は、いくつかの実施形態では、処理モジュール224または228(図2に図示される)の一部であってもよい。いくつかの実施形態では、コントローラは、内向きに向いた結像システム452(例えば、デジタルカメラ)、外向きに向いた結像システム454(例えば、デジタルカメラ)、および/またはユーザ入力デバイス466と通信してもよい。内向きに向いた結像システム452(例えば、デジタルカメラ)は、眼410の画像を捕捉し、例えば、眼410の瞳孔のサイズおよび/または配向を決定するために使用されることができる。外向きに向いた結像システム454は、世界456の一部を結像するために使用されることができる。ユーザは、ユーザ入力デバイス466を介して、コマンドをコントローラ450に入力し、ディスプレイシステム400と相互作用することができる。
【0150】
導波管420、422、424、426、428は、全内部反射(TIR)によって、光を各個別の導波管内で伝搬させるように構成されてもよい。導波管420、422、424、426、428はそれぞれ、主要上部および底部表面と、それらの主要上部と底部表面との間に延在する縁とを伴う、平面である、または別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管420、422、424、426、428はそれぞれ、各個別の導波管内で伝搬する光を導波管から外に再指向し、画像情報を眼410に出力することによって、光を導波管から抽出するように構成される、光抽出光学要素460、462、464、466、468を含んでもよい。抽出された光はまた、外部結合光と称され得、光抽出光学要素はまた、外部結合光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内で伝搬する光が光再指向要素に衝打する場所に出力される。光抽出光学要素(460、462、464、466、468)は、例えば、反射および/または回折光学特徴であってもよい。説明を容易にし、図面を明確にするために、導波管420、422、424、426、428の底部主要表面に配置されて図示されるが、いくつかの実施形態では、光抽出光学要素460、462、464、466、468は、上部および/または底部主要表面に配置されてもよく、ならびに/もしくは直接導波管420、422、424、426、428の容積内に配置されてもよい。いくつかの実施形態では、光抽出光学要素460、462、464、466、468は、透明基板に取り付けられ、導波管420、422、424、426、428を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管420、422、424、426、428は、材料のモノリシック片であってもよく、光抽出光学要素460、462、464、466、468は、その材料片の表面上および/または内部に形成されてもよい。
【0151】
図4を継続して参照すると、本明細書に議論されるように、各導波管420、422、424、426、428は、光を出力し、特定の深度面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管420は、そのような導波管420の中に投入されるにつれて、コリメートされた光を眼410に送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の導波管422は、眼410に到達し得る前に、第1のレンズ430(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。第1のレンズ430は、眼/脳が、その次の導波管422から生じる光が光学無限遠から眼410に向かって内向きにより近い第1の焦点面から生じるものとして解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の導波管424は、眼410に到達する前に、その出力光を第1のレンズ430および第2のレンズ432の両方を通して通過させる。第1および第2のレンズ430および432の組み合わせられた屈折力は、眼/脳が、第3の導波管424から生じる光が次の導波管422からの光であったよりも光学無限遠から人物に向かって内向きにさらにより近い第2の焦点面から生じるものとして解釈するように、波面曲率の別の増分量を生成するように構成されてもよい。
【0152】
他の導波管層(例えば、導波管426、428)およびレンズ(例えば、レンズ434、436)も同様に構成され、スタック内の最高導波管428が、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出する。スタックされた導波管アセンブリ405の他側の世界456から生じる光を視認/解釈するとき、レンズ430、432、434、436のスタックを補償するために、補償レンズ層438が、スタックの上部に配置され、下方のレンズスタック430、432、434、436の集約パワーを補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管420、422、424、426、428の光抽出光学要素460、462、464、466、468およびレンズ430、432、434、436の集束側面は両方とも、静的であってもよい(例えば、動的または電気アクティブではない)。いくつかの代替実施形態では、いずれかまたは両方とも、電気アクティブ特徴を使用して、動的であってもよい。
【0153】
図4を継続して参照すると、光抽出光学要素460、462、464、466、468は、導波管と関連付けられる特定の深度面のために、光をそれらの個別の導波管から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられる深度面を有する導波管は、関連付けられる深度面に応じて異なる量の発散を伴う光を出力する、異なる構成の光抽出光学要素を有してもよい。いくつかの実施形態では、本明細書に議論されるように、光抽出光学要素460、462、464、466、468は、光を具体的角度で出力するように構成され得る、立体または表面特徴であってもよい。例えば、光抽出光学要素460、462、464、466、468は、立体ホログラム、表面ホログラム、および/または回折格子であってもよい。回折格子等の光抽出光学要素は、2015年6月25日に公開された米国特許公開第2015/0178939号(参照することによってその全体として本明細書に組み込まれる)に説明される。いくつかの実施形態では、特徴430、432、434、436は、レンズではなくてもよい。むしろ、それらは、単に、スペーサであってもよい(例えば、空気間隙を形成するためのクラッディング層および/または構造)。
【0154】
いくつかの実施形態では、光抽出光学要素460、462、464、466、468は、回折パターンを形成する回折特徴、すなわち、「回折光学要素」(本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみが、DOEの各交差部で眼410に向かって偏向される一方、残りが、全内部反射を介して、導波管を通して移動し続けるように、比較的に低回折効率を有する。画像情報を搬送する光は、したがって、複数の場所において導波管から出射する、いくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼410に向かって非常に均一なパターンの出射放出となる。
【0155】
いくつかの実施形態では、1つまたはそれを上回るDOEは、それらが能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であり得る。例えば、切替可能なDOEは、微小液滴がホスト媒体中に回折パターンを備える、ポリマー分散液晶の層を備えてもよく、微小液滴の屈折率は、ホスト材料の屈折率と実質的に合致するように切り替えられることができる(その場合、パターンは、入射光を著しく回折しない)、または微小液滴は、ホスト媒体のものに合致しない屈折率に切り替えられることができる(その場合、パターンは、入射光を能動的に回折する)。
【0156】
いくつかの実施形態では、深度面および/または被写界深度の数および分布は、視認者の眼の瞳孔サイズおよび/または配向に基づいて、動的に変動されてもよい。いくつかの実施形態では、内向きに向いた結像システム452(例えば、デジタルカメラ)が、眼410の画像を捕捉し、眼410の瞳孔のサイズおよび/または配向を決定するために使用されてもよい。いくつかの実施形態では、内向きに向いた結像システム452は、フレーム212(図2に図示されるように)に取り付けられてもよく、内向きに向いた結像システム452からの画像情報を処理し、例えば、ユーザの眼204の瞳孔直径および/または配向を決定し得る、処理モジュール224および/または228と電気通信してもよい。
【0157】
いくつかの実施形態では、内向きに向いた結像システム452(例えば、デジタルカメラ)は、眼移動および顔移動等、ユーザの移動を観察することができる。内向きに向いた結像システム452は、眼410の画像を捕捉し、眼410の瞳孔のサイズおよび/または配向を決定するために使用されてもよい。内向きに向いた結像システム452は、ユーザが見ている方向(例えば、眼姿勢)を決定する際に使用するため、またはユーザのバイオメトリック識別のため(例えば、虹彩識別を介して)の画像を得るために使用されることができる。内向きに向いた結像システム452によって得られる画像は、ユーザに提示されるべきオーディオまたは視覚的コンテンツを決定するためにディスプレイシステム400によって使用され得る、ユーザの眼姿勢および/または気分を決定するために分析されてもよい。ディスプレイシステム400はまた、慣性測定ユニット(IMU)、加速度計、ジャイロスコープ等のセンサを使用して、頭部姿勢(例えば、頭部位置または頭部配向)を決定してもよい。頭部の姿勢は、単独で、または眼姿勢と組み合わせて、支え追跡と相互作用する、および/またはオーディオコンテンツを提示するために使用されてもよい。
【0158】
いくつかの実施形態では、1つのカメラが、眼毎に利用され、各眼の瞳孔サイズおよび/または配向を別個に決定し、それによって、各眼への画像情報の提示がその眼に動的に調整されることを可能にしてもよい。いくつかの実施形態では、少なくとも1つのカメラが、眼毎に利用され、独立して、各眼の瞳孔サイズおよび/または眼姿勢を別個に決定し、それによって、各眼への画像情報の提示がその眼に動的に調整されることを可能にしてもよい。いくつかの他の実施形態では、片眼410のみの瞳孔直径および/または配向が、(例えば、対の眼あたり単一カメラのみを使用して)決定され、視認者204の両眼に対して類似すると仮定される。
【0159】
例えば、被写界深度は、視認者の瞳孔サイズと反比例して変化してもよい。その結果、視認者の眼の瞳孔のサイズが減少するにつれて、被写界深度は、その平面の場所が眼の焦点深度を越えるため判別不能である1つの平面が、判別可能となり、瞳孔サイズの低減および被写界深度の相当する増加に伴って、より合焦して現れ得るように増加する。同様に、異なる画像を視認者に提示するために使用される、離間された深度面の数は、減少された瞳孔サイズに伴って減少され得る。例えば、視認者は、一方の深度面から他方の深度面への眼の遠近調節を調節することなく、第1の深度面および第2の深度面の両方の詳細を1つの瞳孔サイズにおいて明確に知覚することが可能ではない場合がある。しかしながら、これらの2つの深度面は、同時に、遠近調節を変化させることなく、別の瞳孔サイズにおいてユーザにとって十分に合焦し得る。
【0160】
いくつかの実施形態では、ディスプレイシステムは、瞳孔サイズおよび/または配向の決定に基づいて、もしくは特定の瞳孔サイズおよび/または配向を示す電気信号の受信に応じて、画像情報を受信する導波管の数を変動させてもよい。例えば、ユーザの眼が、2つの導波管と関連付けられる2つの深度面間を区別不能である場合、コントローラ450は、これらの導波管のうちの1つへの画像情報の提供を停止するように構成またはプログラムされてもよい。有利なこととして、これは、システムへの処理負担を低減させ、それによって、システムの応答性を増加させ得る。導波管のためのDOEがオンおよびオフ状態間で切替可能である実施形態では、DOEは、導波管が画像情報を受信するとき、オフ状態に切り替えられてもよい。
【0161】
いくつかの実施形態では、出射ビームに視認者の眼の直径未満の直径を有するという条件を満たさせることが望ましくあり得る。しかしながら、本条件を満たすことは、視認者の瞳孔のサイズの変動性に照らして、困難であり得る。いくつかの実施形態では、本条件は、視認者の瞳孔のサイズの決定に応答して出射ビームのサイズを変動させることによって、広範囲の瞳孔サイズにわたって満たされる。例えば、瞳孔サイズが減少するにつれて、出射ビームのサイズもまた、減少し得る。いくつかの実施形態では、出射ビームサイズは、可変開口を使用して変動されてもよい。
【0162】
ディスプレイシステム400は、世界456の一部を結像する、外向きに向いた結像システム454(例えば、デジタルカメラ)を含むことができる。世界456の本部分は、時として、視野(FOV)と称され得、結像システム454は、FOVカメラとも称される。視認者204による視認または結像のために利用可能な領域全体は、動眼視野(FOR)と称され得る。FORは、ディスプレイシステム400を囲繞する4πステラジアンの立体角を含んでもよい。ディスプレイシステム400のいくつかの実装では、FORは、ユーザ204が、ユーザを囲繞するオブジェクトを見るためにその頭部および眼を移動させ得るため、ディスプレイシステム400のユーザ204の周囲の立体角の実質的に全てを含んでもよい(ユーザの正面、背面、上方、下方、または側面)。外向きに向いた結像システム454から得られた画像は、ユーザによって行われるジェスチャ(例えば、手または指のジェスチャ)を追跡し、ユーザの正面における世界456内のオブジェクトを検出する等のために、使用されることができる。
【0163】
ディスプレイシステム400は、ユーザが、コマンドをコントローラ450に入力し、ディスプレイシステム400と相互作用し得る、ユーザ入力デバイス466を含むことができる。例えば、ユーザ入力デバイス466は、トラックパッド、タッチスクリーン、ジョイスティック、多自由度(DOF)コントローラ、容量感知デバイス、ゲームコントローラ、キーボード、マウス、指向性パッド(Dパッド)、ワンド、触知デバイス、トーテム(例えば、仮想ユーザ入力デバイスとして機能する)等を含むことができる。ある場合には、ユーザは、指(例えば、親指)を使用して、タッチセンサ式入力デバイスを押下またはその上でスワイプし、入力をディスプレイシステム400に提供してもよい(例えば、ユーザ入力をディスプレイシステム400によって提供されるユーザインターフェースに提供するために)。ユーザ入力デバイス466は、ディスプレイシステム400の使用の間、ユーザの手によって保持されてもよい。ユーザ入力デバイス466は、ディスプレイシステム400と有線または無線通信することができる。
【0164】
図5は、導波管によって出力された出射ビームの実施例を示す。1つの導波管が、図示されるが、導波管アセンブリ405内の他の導波管も、同様に機能してもよく、導波管アセンブリ405は、複数の導波管を含むことを理解されたい。光505が、導波管420の入力縁510において導波管420の中に投入され、TIRによって導波管420内を伝搬する。光505がDOE460に衝突する点において、光の一部が、出射ビーム515として導波管から出射する。出射ビーム515は、略平行として図示されるが、それらはまた、導波管420と関連付けられる深度面に応じて、(例えば、発散出射ビームを形成する)ある角度で眼410に伝搬するように再指向されてもよい。略平行出射ビームは、光を外部結合し、眼410から長距離(例えば、光学無限遠)において深度面上に設定されるように現れる画像を形成する光抽出光学要素を伴う、導波管を示し得ることを理解されたい。他の導波管または他の光抽出光学要素のセットが、眼410がより近い距離に遠近調節し、網膜上に合焦させることを要求し、光学無限遠より眼410に近い距離からの光として脳によって解釈されるであろう、より多く発散する出射ビームパターンを出力してもよい。
【0165】
図6は、導波管装置と、光を導波管装置へまたはそこから光学的に結合するための光学結合器サブシステムと、制御サブシステムとを含む、ディスプレイシステム400の別の実施例を示す。ディスプレイシステム400は、多焦点立体、画像、またはライトフィールドを生成するために使用されることができる。ディスプレイシステム400は、1つまたはそれを上回る一次平面導波管604(1つだけが図6に示される)と、一次導波管604のうちの少なくともいくつかのそれぞれと関連付けられる、1つまたはそれを上回るDOE608とを含むことができる。平面導波管604は、図4を参照して議論される導波管420、422、424、426、428に類似することができる。光学システムは、分散導波管装置を採用し、光を第1の軸(図6の図では、垂直またはY-軸)に沿って中継し、第1の軸(例えば、Y-軸)に沿って光の有効射出瞳を拡張させてもよい。分散導波管装置は、例えば、分散平面導波管612と、分散平面導波管612と関連付けられる少なくとも1つのDOE616(二重破線によって図示される)とを含んでもよい。分散平面導波管612は、少なくともいくつかの点において、それと異なる配向を有する一次平面導波管604と類似する、または同じであり得る。同様に、少なくとも1つのDOE616は、少なくともいくつかの点において、DOE608と類似する、または同じであり得る。例えば、分散平面導波管612および/またはDOE616は、それぞれ、一次平面導波管604および/またはDOE608と同一材料から成ってもよい。図6に示される光学システムは、図2に示されるウェアラブルディスプレイシステム200の中に統合されることができる。
【0166】
中継され、射出瞳が拡張された光は、分散導波管装置から1つまたはそれを上回る一次平面導波管604の中に光学的に結合される。一次平面導波管662は、好ましくは、第1の軸に直交する、第2の軸(例えば、図6の図では、水平またはX-軸)に沿って、光を中継する。着目すべきこととして、第2の軸は、第1の軸に対して非直交軸であることができる。一次平面導波管604は、その第2の軸(例えば、X-軸)に沿って、光の有効射出経路を拡張させる。例えば、分散平面導波管612は、光を垂直またはY-軸に沿って中継および拡張させ、光を水平またはX-軸に沿って中継および拡張させる、一次平面導波管604にその光を通過させることができる。
【0167】
ディスプレイシステム400は、単一モード光ファイバ624の近位端の中に光学的に結合され得る、1つまたはそれを上回る着色光源(例えば、赤色、緑色、および青色レーザ光)620を含んでもよい。光ファイバ624の遠位端が、圧電材料の中空管628を通して螺合または受容されてもよい。遠位端は、固定されない可撓性カンチレバー632として、管628から突出する。圧電管628は、4つの象限電極(図示せず)と関連付けられることができる。電極は、例えば、管628の外側、外面もしくは外周、または直径に鍍着されてもよい。コア電極(図示せず)もまた、管628のコア、中心、内周、または内径に位置する。
【0168】
例えば、ワイヤ640を介して電気的に結合される、駆動電子機器636が、対向する対の電極を駆動し、圧電管628を独立して2つの軸において屈曲させる。光ファイバ624の突出する遠位先端は、機械的共鳴モードを有する。共鳴の周波数は、光ファイバ624の直径、長さ、および材料性質に依存し得る。圧電管628をファイバカンチレバー632の第1の機械的共鳴モードの近傍で振動させることによって、ファイバカンチレバー632は、振動させられ、大偏向を通して掃引し得る。
【0169】
2つの軸において共振振動を刺激することによって、ファイバカンチレバー632の先端は、2次元(2-D)走査を充填する面積内において2軸方向に走査される。光源620の強度をファイバカンチレバー632の走査と同期して変調させることによって、ファイバカンチレバー632から発せられる光が、画像を形成する。そのような設定の説明は、米国特許公開第2014/0003762号(参照することによってその全体として本明細書に組み込まれる)に提供されている。
【0170】
光学結合器サブシステムのコンポーネント644が、走査ファイバカンチレバー632から発せられる光をコリメートする。コリメートされた光は、ミラー付き表面648によって、少なくとも1つの回折光学要素(DOE)616を含有する、狭分散平面導波管612の中に反射される。コリメートされた光は、全内部反射によって分散平面導波管612に沿って(図6の図に対して)垂直に伝搬し、そうすることによって、DOE616と繰り返し交差する。DOE616は、好ましくは、低回折効率を有する。これは、光の一部(例えば、10%)をDOE616との交差部の各点においてより大きい一次平面導波管604の縁に向かって回折させ、TIRを介して、光の一部を分散平面導波管612の長さを辿ってそのオリジナル軌道上で継続させる。
【0171】
DOE616との交差部の各点において、付加的光が、一次導波管612の入口に向かって回折される。入射光を複数の外部結合セットに分割することによって、光の射出瞳は、分散平面導波管612内のDOE616によって垂直に拡張される。分散平面導波管612から外部結合される、本垂直拡張された光は、一次平面導波管604の縁に入射する。
【0172】
一次導波管604に進入する光は、TIRを介して、一次導波管604に沿って(図6の図に対して)水平に伝搬する。光は、複数の点においてDOE608と交差するにつれて、TIRを介して、一次導波管604の長さの少なくとも一部に沿って水平に伝搬する。DOE608は、有利なこととして、線形回折パターンおよび半径方向対称回折パターンの総和である、位相プロファイルを有し、光の偏向および集束の両方を生成するように設計または構成され得る。DOE608は、有利なこととして、ビームの光の一部のみが、DOE608の各交差部において視認者の眼に向かって偏向される一方、光の残りが、TIRを介して、導波管604を通して伝搬し続けるように、低回折効率(例えば、10%)を有し得る。
【0173】
伝搬する光とDOE608との間の交差部の各点において、光の一部は、一次導波管604の隣接面に向かって回折され、光がTIRから逃散し、一次導波管604の面から発せられることを可能にする。いくつかの実施形態では、DOE608の半径方向対称回折パターンは、加えて、ある焦点レベルを回折された光に付与し、個々のビームの光波面を成形(例えば、曲率を付与する)し、そしてビームを設計される焦点レベルに合致する角度に操向することの両方を行う。
【0174】
故に、これらの異なる経路は、異なる角度におけるDOE608の多重度、焦点レベル、および/または射出瞳において異なる充填パターンをもたらすことによって、光を一次平面導波管604の外部で結合させることができる。射出瞳における異なる充填パターンは、有益なこととして、複数の深度面を伴うライトフィールドディスプレイを生成するために使用されることができる。導波管アセンブリ内の各層またはスタック内の層のセット(例えば、3層)が、個別の色(例えば、赤色、青色、緑色)を生成するために採用されてもよい。したがって、例えば、第1の3つの隣接する層のセットが、それぞれ、赤色、青色、および緑色光を第1の焦点深度において生成するために採用されてもよい。第2の3つの隣接する層のセットが、それぞれ、赤色、青色、および緑色光を第2の焦点深度において生成するために採用されてもよい。複数のセットが、種々の焦点深度を伴うフル3Dまたは4Dカラー画像ライトフィールドを生成するために採用されてもよい。
軸外結像機を用いた眼結像のための例示的光学システム
【0175】
頭部搭載型ディスプレイ(HMD)(例えば、図2に示されるウェアラブルディスプレイシステム200)の装着者の眼が、反射軸外回折光学要素(DOE)(いくつかの実装では、ホログラフィック光学要素(HOE)であってもよい)を使用して結像されることができる。結果として生じる画像は、片眼または両眼を追跡する、網膜を結像する、眼形状を3次元において再構築する、バイオメトリック情報を眼から抽出する(例えば、虹彩識別)等のために使用されることができる。
【0176】
頭部搭載型ディスプレイ(HMD)が装着者の眼の状態についての情報を使用し得る、種々の理由がある。例えば、本情報は、装着者の視線方向を推定するため、またはバイオメトリック識別のために使用されることができる。しかしながら、本問題は、HMDと装着者の眼との間の短距離のため、困難である。これはさらに、視線追跡がより大きい視野を要求する一方、バイオメトリック識別が虹彩上の標的に比較的に高ピクセル数を要求するという事実によって複雑になる。これらの目的の両方の遂行を試みるであろう、結像システムに関して、2つのタスクの要件は、著しく対立する。最後に、両問題はさらに、眼瞼および睫毛による閉塞によって複雑になる。本明細書に説明される結像システムの実施形態は、これらの問題の一部または全部に対処する。図7A-7Hを参照して本明細書に説明される結像システム700の種々の実施形態は、本明細書に説明されるディスプレイデバイス(例えば、図2に示されるウェアラブルディスプレイシステム200、図4および6に示されるディスプレイシステム400)を含む、HMDと併用されることができる。
【0177】
図7Aは、眼304を視認するために使用され、装着者のこめかみに近接して(例えば、ウェアラブルディスプレイシステム200のフレーム212、例えば、耳掛けつる上に)搭載される、結像機702bを備える、結像システム700の実施例を図式的に図示する。他の実施形態では、第2の結像機が、各眼が別個に結像されるように、装着者の他方の眼302のために使用される。結像機702bは、赤外線放射に敏感である、赤外線デジタルカメラを含むことができる。結像機702bは、後向きではなく、前向きであって(装着者の視覚の方向に)、眼304に指向されるように搭載される(図4に示されるカメラ452のように)。結像機702bを装着者の耳により近づけて配置することによって、結像機702bの重量もまた、耳により近づき、HMDは、結像機が、後向きであって、HMDの正面により近づいて配置される(例えば、ディスプレイ208に近接する)、HMDと比較して、より装着が容易となり得る。加えて、前向きに向いた結像機702bを装着者のこめかみの近傍に設置することによって、装着者の眼304から結像機までの距離は、HMDの正面の近傍に配置される後向きに向いた結像機と比較して、約2倍となる(例えば、図4に示されるカメラ452と比較して)。画像の被写界深度は、本距離にほぼ比例するため、前向きに向いた結像機702bのための被写界深度は、後向きに向いた結像機と比較して約2倍となる。結像機702bのより大きい被写界深度は、大きいまたは突出する鼻、眉弓等を有する、装着者の眼領域を結像するために有利となり得る。
【0178】
結像機702bは、その他の点では透明である光学要素706の内面704を視認するために位置付けられる。光学要素706は、HMD(または一対の眼鏡内のレンズ)のディスプレイ208の一部であることができる。光学要素は、光学要素に入射する可視光の少なくとも10%、20%、30%、40%、50%、またはそれを上回るものに対して透過性であることができる。他の実施形態では、光学要素706は、透明である必要はない(例えば、仮想現実ディスプレイでは)。光学要素706は、反射要素708を備えることができる。反射要素708は、第1の範囲の波長を反射させるが、第2の範囲の波長(第1の範囲の波長と異なる)に実質的に透過性である、表面であることができる。第1の範囲の波長は、赤外線内であることができ、第2の範囲の波長は、可視内であることができる。例えば、反射要素708は、赤外線光を反射させるが、可視光を透過させる、ホットミラーを備えることができる。そのような実施形態では、装着者からの赤外線光710a、712a、714aは、光学要素706に伝搬し、そこから反射し、反射された赤外線光710b、712b、714bをもたらし、これは、結像機702bによって結像されることができる。いくつかの実施形態では、結像機702bは、反射要素708によって反射された第1の範囲の波長の少なくともサブセット(非空サブセットおよび/または全部未満のサブセット等)に敏感である、またはそれを捕捉可能であることができる。例えば、反射要素708は、700nm~1.5μmの範囲内の赤外線光を反射させてもよく、結像機702bは、700nm~900nmの波長における近赤外線光に敏感である、またはそれを捕捉可能であってもよい。別の実施例として、反射要素708は、700nm~1.5μmの範囲内の赤外線光を反射させてもよく、結像機702bは、結像機702bが700nm~900nmの波長における近赤外線光を捕捉し得るように、900nm~1.5μmの範囲内である赤外線光をフィルタ除去する、フィルタを含んでもよい。
【0179】
外側世界456からの可視光は、光学要素706を通して透過され、装着者によって知覚されることができる。実際、図7Aに示される結像システム700は、装着者の眼304に向かって逆指向される仮想結像機702cのように作用する。仮想結像機702cは、装着者の眼304から光学要素706を通して伝搬される、仮想赤外線光710c、712c、714c(点線として示される)を結像することができる。ホットミラー(または本明細書に説明される他のDOE)は、光学要素706の内面704上に配置されることができるが、これは、限定ではない。他の実施形態では、ホットミラーまたはDOEは、光学要素706の外面上または光学要素706(例えば、立体HOE)内に配置されることができる。
【0180】
図7Bは、結像システム700の別の実施例を図式的に図示する。本実施形態では、遠近歪曲が、遠近制御レンズアセンブリ716b(例えば、偏移レンズアセンブリ、傾斜レンズアセンブリ、または傾斜-偏移レンズアセンブリ)と結像機702bの併用によって低減または排除され得る。いくつかの実施形態では、遠近制御レンズアセンブリ716bは、結像機702bのレンズの一部であってもよい。遠近制御レンズ716bは、結像機702bに対する法線が、DOE(またはHOE)またはホットミラーを含む、表面704の領域に対する法線と略平行であるように構成されることができる。実際、図7Bに示される結像システム700は、装着者の眼304に向かって逆指向される、仮想遠近制御レンズアセンブリ716cを伴う仮想結像機702cのように作用する。
【0181】
加えて、または代替として、図7Cに図式的に示されるように、光学要素706の反射要素708は、その表面704上に、光710a、712a、714aを反射させ、反射された光710b、712b、714bを捕捉するカメラ結像機702bによる眼304の視認を促進するために使用される、軸外ホログラフィックミラー(OAHM)を有してもよい。OAHM708は、屈折力も同様に有してもよく、その場合、図7Dに図式的に示されるように、軸外立体回折光学要素(OAVDOE)であることができる。図7Dに示される実施例では、仮想カメラ702cの有効場所は、無限遠(図7Dに図示せず)にある。
【0182】
いくつかの実施形態では、HOE(例えば、OAHMまたはOAVDOE)またはホットミラーは、複数のセグメントに分割されることができる。これらのセグメントはそれぞれ、例えば、セグメントが入射(赤外線)光を反射させる反射角度または屈折力を含む、異なる光学性質または特性を有することができる。セグメントは、光が各セグメントから結像機702bに向かって反射されるように構成されることができる。その結果、結像機702bによって取得された画像もまた、対応する数のセグメントに分割され、それぞれ、異なる角度から眼を効果的に視認するであろう。図7Eは、それぞれ、眼304を異なる角度場所において結像する個別の仮想カメラ702c1、702c2、702c3として作用する、3つのセグメント718a1、718a2、718a3を伴うOAHMまたはホットミラーを有する、ディスプレイシステム700の実施例を図式的に図示する。セグメント化された光学要素を伴うディスプレイシステムの付加的実施例は、図8および10を参照して説明される。
【0183】
図7Fは、それぞれ、屈折力(例えば、セグメント化されたOAVDOE)またはホットミラーを有し、各セグメントが、仮想カメラを無限遠に発生させ、眼304を異なる角度場所において結像する、3つのセグメント718a1、718a2、718a3を伴うOAHMまたは異なる反射角度を有する、ディスプレイシステム700の別の実施例を図式的に図示する。3つのセグメントが、図7Eおよび7Fに図式的に図示されるが、これは、例証であって、限定ではない。他の実施形態では、2つ、4つ、5つ、6つ、7つ、8つ、9つまたはそれを上回るセグメントが、利用されることができる。HOEまたはホットミラーのこれらのセグメントのいずれも、屈折力を有していない、またはその一部もしくは全てが、屈折力を有することができる。
【0184】
3つのセグメント718a1、718a2、718a3は、図7Eおよび7Fでは、光学要素706を水平に横断して離間されて示される。他の実施形態では、セグメントは、光学要素706上に垂直に離間されることができる。例えば、図7Gは、2つの垂直に離間されたセグメント718a1および718a2を有する、DOEまたはホットミラー718を図式的に示し、セグメント718a1は、光を結像機702b(セグメント718a1と同一略水平平面にあってもよい)に向かって逆反射させるように構成され、セグメント718a2は、光を結像機702bに向かって上向きに反射させるように構成される。二焦点レンズと同様に、図7Gに示される配列は、結像システム700が、装着者がHMDの上側部分を通して正面を見ているとき、上側セグメント718a1から結像機702bによって取得された反射画像(実線矢印線を介して図式的に示される)を使用し、装着者がHMDの下側部分を通して下向きに見ているとき、下側セグメント718a2からの反射画像(破線矢印線を介して図式的に示される)を使用することを可能にする際に有利となり得る。
【0185】
図8-10を参照して説明されるように、別の配列は、結像システム700が、装着者が前方または鼻から離れるように見ているとき、結像機702bによって入手された外側セグメントからの反射像を使用し、装着者が鼻方向に向かって見ているとき、内側セグメントからの反射像を使用することを可能にすることができる。
【0186】
水平に離間されたセグメントと垂直に離間されたセグメントの混合も、他の実施形態では使用されることができる。例えば、図7Hは、3×3アレイのセグメントを伴う、HOEまたはホットミラー718の別の実施例を示す。結像機702bは、これらの9つのセグメントのそれぞれから、眼領域の異なる面積および角度方向から生じる光線を表す反射データを取得することができる。眼領域からHOEまたはホットミラー718まで伝搬し、結像機702bに逆反射する、2つの例示的光線が、実線および破線として示される。結像システム700(または処理モジュール224または228)は、複数のセグメントからの反射データを分析し、眼の3次元形状または眼の視線方向(例えば、眼姿勢)を多焦点的に計算することができる。
【0187】
セグメントを利用する光学システム700の実施形態は、複数の利点を有し得る。例えば、セグメントは、特定のタスクに最良に適した特定のセグメントを選択することによって、個々に使用されることができる、またはそれらは、眼の3次元形状または姿勢を多焦点的に推定するために集合的に使用されることができる。前者の場合、本選択性は、例えば、眼瞼または睫毛によって最も少ない閉塞されていない、装着者の虹彩の画像を選択するために使用されることができる。後者の場合、眼の3次元再構成が、配向(例えば、角膜の膨隆の場所の推定によって)または遠近調節状態(例えば、瞳孔の見掛け場所上のレンズ誘発歪曲の推定によって)を推定するために使用されることができる。
角度セグメント化
【0188】
ある実装では、それにわたってユーザの眼が本明細書に説明される実施形態を使用して追跡され得る、より広い角度の範囲を提供することが有利であり得る。例えば、眼の視線配向の少なくとも一部に沿って、任意の眼追跡結像デバイス(例えば、カメラ)の視線感度を増加させることが有利であり得る。
【0189】
図8は、眼追跡を実施し得る、光学システム700の別の実施例を示す。図8の光学システムは、多くの共通特徴を図7Aに示される光学システム700の特徴と共有する。図8は、ユーザの眼304を結像するように構成される、結像デバイス702bを示す。光が、ユーザの眼304またはその一部(例えば、角膜、網膜、虹彩、強膜等)から反射するにつれて、光は、少なくとも部分反射性要素708の反射性表面から反射し得る。反射性要素708は、基板804上に配置されてもよく、これは、安定性を反射性表面(例えば、薄膜またはコーティングの一部を備えてもよい)に提供し得る。基板804は、プラスチック等のポリマー材料を含んでもよい。基板804に対向して(ユーザの眼304に対して)配置されるものは、光学要素706であり得る。光学要素706は、仮想コンテンツをユーザの眼に投影するように構成される、可変焦点要素(VFE)またはライトフィールドディスプレイもしくは他のディスプレイ要素であってもよい。例えば、光学要素706は、図4の導波管アセンブリ405または図4-6を参照して説明される導波管装置を含んでもよい。いくつかの実施形態では、基板804および光学要素706は、単一要素であってもよい。
【0190】
反射性要素708は、ある波長の範囲の光を実質的に反射させ、および/または第2の波長の範囲の光を実質的に透過させるように構成されてもよい。第1および第2の波長の範囲は、相互に異なってもよい。第1の波長の範囲は、実質的に赤外線波長またはその中の特定の下位範囲(例えば、近赤外線)を含んでもよい。例えば、第1の範囲は、約700nm、750nm、800nm、850nm、900nm、950nm、1000nm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当する、波長を含んでもよい。第2の波長の範囲は、実質的に可視波長またはその中の特定の下位範囲を含んでもよい。例えば、第2の範囲は、約390nm、450nm、500nm、550nm、600nm、650nm、700nm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当する、波長を含んでもよい。反射性要素708は、ホットミラーを備えてもよい。反射性要素708は、反射性材料、コーティング、回折光学要素(DOE)、および/またはホログラフィック光学要素(例えば、上記に説明されるHOE718、OAHMを含んでもよい)。いくつかの実施形態では、第1および第2の波長範囲は、相互に少なくとも部分的重複を有してもよい。
【0191】
図7A-7Gを参照して説明されるように、眼からの光は、反射性要素708から反射し、(例えば、ユーザのこめかみの近くの)物理的カメラ702bによって結像される。本光学配列は、ユーザの眼の正面に位置付けられる、仮想カメラ702cが、直接眼から生じるかのように、光709cを結像するかのように機能する。
【0192】
ユーザの眼304の視線角度812は、光学軸810とユーザの眼304の視線方向との間で定義されることができる。光学軸810は、(例えば、前方に向いている)眼の自然静置姿勢の方向にあってもよい。視線角度812は、ユーザの視線が光学軸810の方向にあるとき、ゼロであって、ユーザの視線がユーザの鼻705に向かっている(例えば、鼻方向にある)とき、負であって、ユーザの視線がユーザの最も近くのこめかみに向かっている(例えば、こめかみ方向に、鼻705から離れるように、対応する結像デバイス702bに向かってある)とき、正である。示されるように、物理的結像機702bによって結像される、アイボックスは、プリズム710bによって表され、仮想結像機702cのアイボックスは、プリズム710cによって表される。
【0193】
図9は、瞳孔間距離(IPD)の異なる示差または軸方向(z-軸)に沿った異なるアイボックスオフセットに関連する、ホットミラーの種々の構成のための水平視線角度(度単位)にわたる視線感度(度あたりピクセル単位)を表す、一連のプロット904a-904eを示す。これらの実施例では、ホットミラーは、セグメント化されず、概して、図8に示される配列に類似した。アイボックスは、光学要素706までの眼の距離によって限定され得る、水平および垂直寸法を含む、着目領域を定義し得る。アイボックスは、例えば、約30mm×30mm×13mmの寸法を有してもよい。瞳孔間距離(IPD)は、両眼間の最大約9.5mmの範囲内であってもよい。視線角度812は、約±22度(水平)~±55度(垂直)の範囲内であることができる。他の寸法も、可能性として考えられる。
【0194】
視線感度は、結像機(ピクセル単位)によって結像される眼特徴(例えば、閃光または瞳孔)の測定された移動と眼特徴の移動(度単位)との間の比率として定義されることができる。図9における実施例から分かるように、視線感度は、正の角度(例えば、鼻から離れるようにこめかみに向かった視線)より負の角度(例えば、鼻に向かった視線)において低くあり得る。鼻視線方向(負の視線角度)に関する本より低い感度は、視線方向と仮想カメラ702cとの間のより大きい角度に起因する可能性が高い(ユーザが直接鼻に向かって見ているとき、90度に接近し得る)。対照的に、ユーザの視線が、よりこめかみ側(正の視線角度)にあるとき、ユーザは、より直接、仮想カメラ702cの仮想位置を見ている。
【0195】
故に、負の視線角度(例えば、鼻側に配向された視線)に対する結像デバイスの視線感度を増加させることが有益であり得る。本明細書に説明されるように、鼻視線感度を改良することは、仮想結像機702cが、鼻側を見ているとき、ユーザの眼をより良好に結像し得るように、反射性要素708の第1のセグメントを第2のセグメントに対して非ゼロ角度に配向することによって遂行され得る。
【0196】
図10は、角度的にセグメント化された反射性要素708を有する、例示的光学システム700を示す。反射性要素708は、第1のセグメント708aと、第2のセグメント708bとを含んでもよい。第2のセグメント708bは、第1のセグメント708aに対して角度付けられてもよい。立ち上がり角度728は、第2のセグメント708bと、第1のセグメント708aを含む、平面または表面との間で定義されてもよい。角度728は、示されるように、急峻であってもよい。例えば、角度728は、約2°~約35°の範囲内、約5°~約20°の範囲内、またはある他の範囲内であってもよい。角度728は、約3、5、7、10、12、15、18、20、25、30、33、35、40、50、60、70、80、その間の任意の値、またはその中の任意の端点を有する範囲内に該当してもよい。2つのセグメント708a、708bが、図10に示されるが、これは、例証のためのものであって、限定ではない。例えば、図7E-7Hを参照して説明されるように、セグメントの任意の好適な数または配列が、他の実施形態内で使用されることができる。さらに、第1のセグメント708aは、0の立ち上がり角度を伴って(例えば、図10に示されるような基板804の主要な面と略平行に)配置されてもよい。しかしながら、いくつかの実施形態では、第1のセグメント708aは、基板804および/または光学要素706の主要な面に対して傾けられてもよい。
【0197】
図10に示されるように、反射性要素708の2つのセグメント708a、708bの角度付けられた性質は、それぞれ、対応する仮想結像デバイス702c1、702c2をもたらす。第1の仮想結像デバイス702c1は、第1のセグメント708aからの結像を表し、第2の仮想結像デバイス702c2は、第2のセグメント708bからの結像を表す。ユーザの眼視線が、より鼻側に(例えば、図10に示される鼻705に向かって)あるとき、眼追跡結像システムの視線感度は、仮想カメラ702c2がより鼻領域に向かって位置する(第1の仮想カメラ702c1の場所と比較して)ため、改良される。鼻視線方向と仮想結像機702c2との間の角度は、例えば、図8に示される光学システム700のための対応する角度と比較して低減される。したがって、角度的にセグメント化された反射性要素708の使用は、眼追跡システムが、鼻(例えば、仮想結像機702c2を用いて)およびこめかみ(例えば、仮想結像機702c1を用いて)側にある、視線角度のための改良された視線感度を提供することを可能にする。
【0198】
より大きな立ち上がり角度728は、より厚い厚さの基板804を要求し得る。故に、鼻角度における比較的に高視線感度を提供しながら、比較的に薄い基板804を達成することの効果的平衡を保つ、種々の実施形態が、使用されることができる。いくつかのそのような実施形態では、角度728は、約15°であって、基板804の厚さは、約2mmである。
【0199】
離散した直線の角度付けられたセグメントが、例証目的のために説明されているが、反射性要素708の角度付けられた部分は、例えば、二次曲面(例えば、球体、楕円体、放物面、または双曲面)の表面の一部等、少なくとも部分的に、湾曲されてもよい。セグメントのうちの1つまたはそれを上回るものは、屈折力を有することができる。加えて、または代替として、複数のセグメントは、水平に(例えば、図10に示されるように)または垂直に(例えば、図10の平面の内外に)、角度付けられてもよい。多くの代替も、可能性として考えられる。
【0200】
図11は、角度的にセグメント化された反射性要素からの眼の例示的画像1100を示す。本実験では、反射性要素は、平坦セグメントと、15°に角度付けられたセグメントとを含む、ホットミラー(HM)である。画像1100は、境界線1112によって分離される、第1の画像部分1108aと、第2の画像部分1108bとを含む。境界線1112の画像は、反射性要素708(例えば、図10に示される)が本実験のために形成される方法のアーチファクトであり得る。画像1100は、眼と、眼の角膜から反射された光源の閃光1116a、1116bとを示す。閃光1116aおよび1116bは、それぞれ、画像部分1108a、1108b内に見られ得ることに留意されたい。
角度的にセグメント化された反射性要素を製造するための例示的方法
【0201】
図12A-12Eは、光学要素1224(例えば、角度的にセグメント化されたホットミラー)のための例示的製造プロセスの種々の段階を示す。製造プロセスは、射出成型を備えることができ、2つの射出成型段階(例えば図12Aを参照して下記に説明される、第1の射出成型段階と、図12Dを参照して下記に説明される第2の射出成型段階と)を含んでもよい。
【0202】
図12Aは、第1の透明材料1208が第1の金型1212の中に投入される、第1の射出成型段階を示す。第1の金型1212は、示されるように、ともに継合され、その中に第1の透明材料1208が投入される、空洞1270を形成する、第1の部分1212aおよび第2の部分1212b等の複数の部分を含むことができる。光学要素1224の角度付けられたセグメントを形成するために、第2の表面1214bは、立ち上がり角度1228によって、第1の表面1214aに対して角度付けられてもよい。立ち上がり角度1228は、図10を参照して説明される、第2のセグメント708bの立ち上がり角度728を提供するように選択されることができる。立ち上がり角度1228は、第2の表面1214bと、第1の表面1214aの少なくとも一部を含む、平面または表面との間で定義されてもよい。角度は、示されるように、急峻であってもよい。立ち上がり角度1228は、約2°~約35°の範囲内、約5°~約20°の範囲内、またはある他の範囲内であってもよい。例えば、角度1228は、約3、5、7、10、12、15、18、20、25、30、33、35、40、50、60、70、80、その間の任意の値、またはその中の任意の端点を有する範囲内に該当してもよい。
【0203】
反射性材料1204は、第1の部分1212aの第1の表面1214aおよび第2の部分1212bの第2の表面1214b上またはそれに隣接して配置されることができる。反射性材料1204は、ホットミラーフィルムを含むことができる。例えば、反射性材料1204は、電磁スペクトルの可視部分内において実質的に透過性であって、電磁スペクトルの赤外線部分内において実質的に反射性であることができる。例えば、反射性材料1204は、その上に入射する可視光の少なくとも50%、60%、70%、80%、90%、またはそれを上回る%に対して透過性であってもよい。反射性材料1204は、その上に入射する赤外線光の少なくとも30%、40%、50%、60%、70%、80%、90%、またはそれを上回る%の反射性であってもよい。実施例として、ホットミラーフィルムは、3M Corporationから利用可能な3MHM-825nmフィルムを含んでもよい。
【0204】
反射性材料1204は、ある波長の範囲の光を実質的に反射させる、または第2の波長の範囲の光を実質的に透過させるように構成されてもよい。第1および第2の波長の範囲は、相互に異なってもよい。第1の波長の範囲は、赤外線波長または赤外線波長の特定の下位範囲を含んでもよい。例えば、第1の範囲は、約700nm、750nm、800nm、850nm、900nm、950nm、1000nm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当する、波長を含んでもよい。第2の波長の範囲は、実質的に可視波長または可視波長の特定の下位範囲を含んでもよい。例えば、第2の範囲は、約390nm、450nm、500nm、550nm、600nm、650nm、700nm、その間の任意の値の波長、またはその中の任意の端点を有する範囲内に該当する、波長を含んでもよい。反射性材料1204は、反射性材料、コーティング、および/またはホログラフィックもしくは回折光学要素(例えば、上記に説明されるHOE718、OAHM)を含んでもよい。いくつかの実施形態では、第1および第2の波長範囲は、相互にある程度の重複を有してもよい。反射性材料1204は、2mm未満の厚さを有してもよい。例えば、厚さは、約0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1mm、1.2mm、1.5mm、1.7mm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当してもよい。
【0205】
1つまたはそれを上回る流体(例えば、空気またはガス)通気口が、第1の表面1214a、第2の表面1214bに沿って、または表面1214a、1214b間の合流点1222に配置されてもよい。そのような通気口の使用は、材料1208が第1の金型1212の中に投入されると、反射性材料1204が、透明材料1208の圧力によって、表面1214a、1214bに対して押圧されることを可能にする際に有利であり得る。例えば、材料1208が空洞1270の中に投入されるにつれて、最初に空洞1270内にある、ガス(例えば、空気)が通気することを可能にすることは、反射性材料1204(薄膜の形態にあり得る)が、鋭的角を2つのセグメント間の合流点1222に形成することを可能にし得る。
【0206】
第1の透明材料1208は、可視および赤外線光が、材料1208を通して通過し、反射性要素1204に到達することを可能にするために、可視および赤外線スペクトル領域内において透明であることができる。上記に説明されるように、反射性要素1204は、次いで、入射光の赤外線成分を反射させ得る。第1の透明材料1208は、ポリマーまたはプラスチックを含んでもよい。例えば、第1の透明材料1208は、エラストマ、熱可塑性材、熱硬化性樹脂、または他のポリマーを含んでもよい。例示的材料は、ポリアミド、ポリプロピレン、高密度ポリエチレン、アクリロニトリルブタジエンスチレン、ポリカーボネート、ポリメチルメタアクリレート(PMMA)、または任意のこれらの組み合わせを含む。
【0207】
図12Aを参照して説明される射出成型段階は、第1の金型1212から除去され得る、中間構造1216aの形成をもたらす。中間構造1216aは、図12Dを参照して説明される第2の射出成型段階内で使用されるであろうため、第1の成型されたコンポーネントと称され得る。図12Bは、第1の金型1212の外側の中間構造1216aを示す。いくつかの方法では、反射性材料1204の部片は、中間構造1216aの本体1217を越えて延在し得、これらの部片は、1つまたはそれを上回る終端点1218a、1218bにおいて除去され(例えば、切断、トリミング、研磨等によって)、中間構造1216を形成し得る。
【0208】
中間構造1216は、上記に説明されるように形成され得るが、これは、反射性材料1208は、第1の金型1212内に含まれ、他の実施形態では、中間構造1216の本体1217が、最初に、形成されることができ(例えば、射出成型を介して)、次いで、反射性材料1204が、本体1217に接着される、または取り付けられる、もしくはその上にコーティングまたは堆積されることができる。
【0209】
製造方法は、随意に、第2の本体1219が、中間構造上に形成され、光学要素1224を提供する、第2の射出成型段階を含むことができる。図12Dは、本第2の射出成型段階の実施例を示す。中間構造1216は、第2の金型1220内に配置されてもよい。第2の金型1220は、示されるように、第1の部分1220aおよび第2の部分1220b等の2つまたはそれを上回る部分を含んでもよく、空洞1280がそれらの間に形成される。第2の金型1220の第1および第2の部分1220a、1220bは、略平坦である、2つの主要表面を形成するように成形されてもよい。2つの主要表面は、終端された光学要素が略平坦外面を有するように、相互に略平行であってもよい。他の関係も、可能性として考えられる、例えば、第1または第2の部分1220a、1220bの内面は、湾曲されることができ、これは、屈折力を光学要素に提供する、またはディスプレイ要素706に取り付けられるとき、より良好に嵌合する。
【0210】
第2の透明材料1230が、第2の金型1220の第2の空洞1280の中に投入されてもよい。第2の透明材料1230は、反射性材料1208が第1の本体1217と空洞1280との間に配置されるように、投入されてもよい。第2の透明材料1230は、第1の透明材料1208と実質的に同一であってもよい。他の材料も、可能性として考えられ、例えば、第1および第2の材料は、異なる屈折率または異なる可視もしくは赤外線透過性を有することができる。
【0211】
射出成型の第2の段階は、光学要素1224を形成し、これは、図12Eに示され、第2の金型1220から除去される。そこから分かるように、反射性要素1208は、第1の本体1217(第1の射出成型段階の間に形成される)と第2の本体1219(第2の射出成型段階の間に形成される)との間に配置される。2つの透明本体1217、1219は、それによって、反射性要素1204を、環境条件(例えば、粉塵、湿度等)への暴露から、またはウェアラブルシステム200のユーザによるタッチから保護する。光学要素1224は、図10を参照して説明される、角度セグメント化された反射性要素(例えば、反射性要素708および基板804)として使用されることができる。例えば、光学要素1224は、光学ディスプレイ要素706に接着される、または取り付けられることができる。
【0212】
光学要素1224は、上記に説明されるように形成されてもよいが、他の実施形態では、第2の本体1219は、別個に形成されることができ(例えば、射出成型を介して)、次いで、中間構造1216に接着される、または取り付けられることができる。
【0213】
光学要素のための製造プロセスは、付加的、随意の、または異なる段階を含むことができる。例えば、図13A-13Bは、光学要素1224が1つまたはそれを上回る光源を含むように形成される、実施例を示す。
【0214】
図13Aは、2つの光源1236aおよび1236bを備える、ポリマー層1232の実施例を示す。電子回路網が、ポリマー層1232上または内に含まれ、電力を光源1236a、1236bに提供してもよい。回路網は、例えば、酸化インジウムスズ(ITO)等の可視光に対して透過性である、伝導性材料から形成されてもよい。光源1236a、1236bの一方または両方は、約700nm、750nm、800nm、850nm、900nm、950nm、1000nm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当する波長等の赤外線光を放出するように構成されてもよい。いくつかの実施形態では、光源1236a、1236bは、SFH4055赤外線発光ダイオード(LED)(Osram Opto Semiconductorsから利用可能)を備える。2つの光源が、図13Aに示されるが、1、3、4、5、6、またはそれを上回る光源が、他の実施形態内で使用されることができる。
【0215】
ポリマー層1232は、プラスチック等の任意のポリマーを備えてもよい。例えば、ポリマー層1232は、ポリエチレンテレフタレート(PET)を含んでもよい。ポリマー層1232は、剛性材料であってもよい。ポリマー層1232は、1mm未満の厚さを有してもよい。例えば、厚さは、0.05mm、0.1mm、0.15mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、その間の任意の値、またはその中の任意の端点を有する範囲内に該当してもよい。
【0216】
図13Bは、図12Dを参照して説明される第2の射出成型段階の間のポリマー層1232を含むための例示的プロセスを示す。示されるように、ポリマー層1232は、第2の透明材料1230の投入に先立って、第2の金型1220内に配置されてもよい。光源1236a、1236bは、光源1236a、1236bが第2の本体1219の内側に配置された状態になるように、反射性材料1204に面するように配向されてもよい。本体1217、1219の外側に延在する、ポリマー層1232の部分は、除去されてもよい。図13Cは、離型後の光学要素1224を示す。光源1236a、1236bは、放出される光が、最初に、反射性材料1204(源によって放出される光の波長に反射性であり得る)上に入射せずに、光学要素1224を通して通過するように配列されてもよい。光源1236a、1236bからの光は、眼追跡のために使用される、角膜閃光を提供するために使用されることができる。
例示的製造方法
【0217】
図14は、角度的にセグメント化されたホットミラー等の光学要素を製造するための例示的方法1400のためのフローチャートである。セグメント化されたホットミラーは、図12A-13Cを参照して上記に説明されるように、射出成型されてもよい。
【0218】
ブロック1404では、第1の空洞を有する第1の金型が、提供され得る。第1の空洞は、第2の部分に対して非ゼロ角度である、第1の部分を有する、第1の表面を含むことができる。角度は、上記に説明される任意の角度、例えば、立ち上がり角度728または1228であってもよい。例えば、角度は、2~25度または5~20度に及んでもよい。
【0219】
ブロック1408では、方法1400は、ホットミラーフィルムを第1の空洞の第1の表面の少なくとも第1の部分および第2の部分に隣接して配置するステップを含んでもよい。ホットミラーフィルムは、上記に説明されるように、可視光に対して実質的に透過性であり、赤外線光に対して実質的に反射性であることができる。第1の金型は、通気口を第1の部分と第2の部分との間に含んでもよく、これは、ホットミラーフィルムが鋭的角1232を形成し得るように、空気が金型から通気されることを可能にし得る。
【0220】
ブロック1412では、第1のポリマー材料が、第1の金型の第1の空洞の中に投入され、第1の成型されたコンポーネント(例えば、図12Bおよび12Cを参照して説明される、中間構造1216aまたは1216)を形成し得る。ブロック1416では、第1の成型されたコンポーネントが、第1の金型から除去され得る。第1の成型されたコンポーネントは、例えば、図12Bおよび12Cに示されるように、ホットミラーフィルムの少なくとも一部を含んでもよい。
【0221】
ブロック1420では、方法1400は、第1の成型されたコンポーネントを、第2の空洞を有する第2の金型内に配置するステップを含んでもよい。第1の成型されたコンポーネントは、ホットミラーフィルムが第2の空洞の中心領域に向かって配置されるように、配向されることができる(例えば、図12D参照)。ブロック1424では、方法1400は、第2のポリマー材料がホットミラーフィルムの少なくとも一部を被覆するように、第2のポリマー材料を第2の空洞の中に投入し、第2の成型されたコンポーネントを形成するステップを含んでもよい(例えば、図12D参照)。第1のポリマー材料は、第2のポリマー材料と同一であってもよい。ポリマーの一方または両方は、可視光および赤外線光に対して実質的に透過性であってもよい。第1のポリマーまたは第2のポリマーの一方または両方は、熱可塑性ポリマーを含んでもよい。例示的ポリマーは、ポリカーボネート、ポリメチルメタアクリレート(PMMA)、および/または投入可能材料に関連して本明細書に説明される任意の他の材料を含んでもよい。ブロック1428では、第2の成型されたコンポーネントは、第2の金型から除去され得る。
【0222】
方法1400は、随意に、第1の成型されたコンポーネントまたは第2の成型されたコンポーネントの外側に延在する、ホットフィルムの一部を除去するステップを含んでもよい(例えば、図12B、12C参照)。加えて、または代替として、方法1400は、少なくとも1つの赤外線光源を第2の金型の第2の空洞内に配置するステップを含んでもよい(例えば、図13A、13B参照)。例えば、少なくとも1つの赤外線光源は、ポリマーフィルム上に配置されてもよい。ポリマーフィルムは、ポリエチレンテレフタレート(PET)および/または任意の他のポリマーを含んでもよい。方法1400は、ポリマーフィルムを第2の金型の第2の空洞内に配置するステップを含んでもよい。
【0223】
反射性要素は、相互に対して角付けられた2つの部分を含むことができるが、他の実施形態では、付加的角度付けられた部分が、形成されることができる。例えば、第1の金型の第1の表面は、例えば、第3の部分が第2の部分に対して第2の非ゼロ角度にあるように、第3の部分を第2の部分に隣接して含んでもよい。第1の表面の第1の部分および/または第2の部分は、1つまたはそれを上回る湾曲領域等の曲率を含んでもよい。1つまたはそれを上回る湾曲領域は、ある実施形態では、相互に対して異なる曲率および/または配向を含んでもよい。本明細書に説明されるように、方法1400は、第2の成型されたコンポーネントを拡張、複合、または仮想現実デバイスのためのディスプレイに取り付けるステップを含むことができる。
【0224】
ある実施形態では、光学要素を製造するための方法は、光学フィルムを第1の光学要素の第1の表面に適用するステップを含むことができ、第1の表面は、第1のセクションと、第2のセクションとを含む。第2のセクションは、第1のセクションに対して非ゼロ角度に配置されてもよい。本方法はさらに、光学フィルムが第1の光学要素と第2の光学要素との間に配置されるように、第2の光学要素を第1の光学要素に適用し、光学要素を形成するステップを含んでもよい。光学フィルムは、本明細書に説明されるホットミラーフィルム、反射性要素708、および/または反射性材料1204の1つまたはそれを上回る特徴を含んでもよい。
付加的側面
【0225】
第1の側面では、ユーザの頭部上に装着されるように構成される、頭部搭載型ディスプレイ(HMD)が、開示される。HMDは、一対の耳掛けつるを備える、フレームと、対の光学要素のそれぞれがユーザの眼の前方に配置されることが可能であるように、フレームによって支持される、一対の光学要素と、対の耳掛けつるのうちの1つに搭載される、前向きに向いた結像機と、対の光学要素のうちの1つ内または上に配置される、反射性要素と、赤外線光を、反射性要素によって反射された赤外線光を受け取るように構成される、前向きに向いた結像機に向かって反射させるように構成される、反射性要素とを備える。
【0226】
第2の側面では、対の光学要素はそれぞれ、可視光に対して透明である、側面1に記載のHMD。
【0227】
第3の側面では、対の光学要素はそれぞれ、画像をユーザに表示するように構成される、側面1または側面2に記載のHMD。
【0228】
第4の側面では、対の光学要素はそれぞれ、ライトフィールドディスプレイを備える、側面3に記載のHMD。
【0229】
第5の側面では、ライトフィールドディスプレイは、画像をユーザに出力するように構成される、導波管スタックを備える、側面4に記載のHMD。
【0230】
第6の側面では、反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、側面1-5のいずれか1項に記載のHMD。
【0231】
第7の側面では、反射性要素は、可視光に対して透過性である、側面1-6のいずれか1項に記載のHMD。
【0232】
第8の側面では、反射性要素は、複数のセグメントを備え、複数のセグメント内の各セグメントは、複数のセグメント内の少なくとも1つの他のセグメントの光学性質と異なる、光学性質を有する、側面1-7のいずれか1項に記載のHMD。
【0233】
第9の側面では、光学性質は、反射角度または屈折力を含む、側面8に記載のHMD。
【0234】
第10の側面では、複数のセグメントは、2、3、4、5、6、7、8、または9つのセグメントを備える、側面8または側面9に記載のHMD。
【0235】
第11の側面では、前向きに向いた結像機は、対の耳掛けつるのうちの1つのこめかみ部分に搭載される、側面1-10のいずれか1項に記載のHMD。
【0236】
第12の側面では、結像機は、目線制御レンズアセンブリを備える、側面1-11のいずれか1項に記載のHMD。
【0237】
第13の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面12に記載のHMD。
【0238】
第14の側面では、ディスプレイシステムが、開示される。ディスプレイシステムは、画像をユーザに表示するように構成される、光学要素であって、ユーザの眼の前方に位置付けられるように構成される、光学要素と、前向きに向いた結像機と、光学要素内または上に配置される、反射性要素であって、前向きに向いた結像機に向かってユーザの眼から受け取られた赤外線光を反射させるように構成される、反射性要素とを備える。
【0239】
第15の側面では、光学要素は、ライトフィールドディスプレイを備える、側面14に記載のディスプレイシステム。
【0240】
第16の側面では、反射性要素は、ホットミラー、軸外回折光学要素(DOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、側面14または15に記載のディスプレイシステム。
【0241】
第17の側面では、反射性要素は、異なる屈折力または異なる反射角度を有する、複数のセグメントを備える、側面14-16のいずれか1項に記載のディスプレイシステム。
【0242】
第18の側面では、前向きに向いた結像機によって取得されるユーザの眼の画像を記憶するように構成される、非一過性メモリと、非一過性メモリと通信する、ハードウェアプロセッサであって、眼の画像にアクセスし、以下、すなわち、ユーザの眼を追跡する、ユーザの眼と関連付けられる、バイオメトリック情報を抽出する、ユーザの眼の一部の形状を再構築する、ユーザの眼の遠近調節状態を推定する、またはユーザの眼の網膜、虹彩、もしくは他の要素を結像することのうちの1つまたはそれを上回るものを実施するようにプログラムされる、ハードウェアプロセッサとをさらに備える、側面14-17のいずれか1項に記載のディスプレイシステム。
【0243】
第19の側面では、頭部搭載型ディスプレイシステムが、開示される。HDMは、光学要素がユーザの第1の眼の前方に位置付けられるように、側面14-18のいずれか1項に記載のディスプレイシステムを支持するように構成される、フレームを備える。
【0244】
第20の側面では、フレームは、第2のディスプレイシステムの光学要素がユーザの第2の眼の前方に位置付けられるように、側面14-18のいずれか1項に記載の第2のディスプレイシステムを支持する、側面19に記載の頭部搭載型ディスプレイシステム。
【0245】
第21の側面では、結像システムが、開示される。結像システムは、第1の波長範囲内の光を反射させる、反射性要素と、第1の波長範囲の全て未満の非空サブセット内の光に敏感である、結像機であって、反射性要素によって反射された光を捕捉するように配向されるように構成される、結像機とを備える。
【0246】
第22の側面では、反射性要素は、ホットミラー、ホログラフィック光学要素(HOE)、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、側面21に記載の結像システム。
【0247】
第23の側面では、第1の波長範囲は、赤外線波長範囲を含む、側面21-22のいずれか1項に記載の結像システム。
【0248】
第24の側面では、結像システムは、光学要素を備え、光学要素は、反射性要素を備え、光学要素は、光学要素上に入射する可視光の少なくとも50%に対して透過性である、側面21-23のいずれか1項に記載の結像システム。
【0249】
第25の側面では、反射性要素は、複数のセグメントを備える、側面21-24のいずれか1項に記載の結像システム。
【0250】
第26の側面では、複数のセグメント内の第1のセグメントは、複数のセグメント内の第2のセグメントの光学性質と異なる、光学性質を有する、側面25に記載の結像システム。
【0251】
第27の側面では、複数のセグメント内の第1のセグメントの光学性質または複数のセグメント内の第2のセグメントの光学性質は、反射角度または屈折力を含む、側面26に記載の結像システム。
【0252】
第28の側面では、複数のセグメントは、少なくとも2つのセグメントを備える、側面25-27のいずれか1項に記載の結像システム。
【0253】
第29の側面では、複数のセグメントのうちの2つのものは、水平に配列される、側面25-28のいずれか1項に記載の結像システム。
【0254】
第30の側面では、複数のセグメントのうちの2つのものは、垂直に配列される、側面25-29のいずれか1項に記載の結像システム。
【0255】
第31の側面では、複数のセグメントのうちのいくつかは、グリッド内に配列される、側面25-30のいずれか1項に記載の結像システム。
【0256】
第32の側面では、結像機はさらに、目線制御レンズアセンブリを備える、側面21-31のいずれか1項に記載の結像システム。
【0257】
第33の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面32に記載の結像システム。
【0258】
第34の側面では、ユーザの眼の画像を間接的に捕捉するための結像システムが、開示される。結像システムは、第1の波長範囲内の光を反射させる、反射性要素であって、反射性要素は、軸外ホログラフィックミラー(OAHM)または軸外立体回折光学要素(OAVDOE)を含み、反射性要素は、結像システムがユーザの眼の正面に設置されると、ユーザの眼から伝搬する光を反射させるように配向される、反射性要素と、第1の波長範囲の全て未満の非空サブセット内の光に敏感である、結像機であって、反射性要素によって反射されたユーザの眼から伝搬する光を捕捉することによって、ユーザの眼の画像を結像するように配向される、結像機とを備える。
【0259】
第35の側面では、結像機によって結像されるユーザの眼の画像およびユーザの眼の正面に設置されたカメラによって結像されるユーザの眼の画像は、区別不能である、側面34に記載の結像システム。
【0260】
第36の側面では、結像機によって結像されるユーザの眼の画像は、事実上、ユーザの眼の正面に設置されたカメラによって結像される、側面35に記載の結像システム。
【0261】
第37の側面では、ユーザの眼の正面に設置されたカメラの効果的場所は、無限遠である、側面35-36のいずれか1項に記載の結像システム。
【0262】
第38の側面では、第1の波長範囲は、赤外線波長範囲を含む、側面35-37のいずれか1項に記載の結像システム。
【0263】
第39の側面では、結像システムは、光学要素を備え、光学要素は、反射性要素を備え、光学要素は、学要素上に入射する可視光の少なくとも50%に対して透過性である、側面35-38のいずれか1項に記載の結像システム。
【0264】
第40の側面では、反射性要素は、複数のセグメントを備える、側面35-39のいずれか1項に記載の結像システム。
【0265】
第41の側面では、複数のセグメント内の第1のセグメントは、複数のセグメント内の第2のセグメントの光学性質と異なる、光学性質を有する、側面40に記載の結像システム。
【0266】
第42の側面では、複数のセグメント内の第1のセグメントの光学性質または複数のセグメント内の第2のセグメントの光学性質は、反射角度または屈折力を含む、側面41に記載の結像システム。
【0267】
第43の側面では、複数のセグメントは、少なくとも2つのセグメントを備える、側面40-42のいずれか1項に記載の結像システム。
【0268】
第44の側面では、複数のセグメントのうちの2つのものは、水平に配列される、側面40-43のいずれか1項に記載の結像システム。
【0269】
第45の側面では、複数のセグメントのうちの2つのものは、垂直に配列される、側面40-44のいずれか1項に記載の結像システム。
【0270】
第46の側面では、複数のセグメントのうちのいくつかは、グリッド内に配列される、側面40-45のいずれか1項に記載の結像システム。
【0271】
第47の側面では、結像機はさらに、目線制御レンズアセンブリを備える、側面34-46のいずれか1項に記載の結像システム。
【0272】
第48の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面47に記載の結像システム。
【0273】
第49の側面では、結像システムが、開示される。結像システムは、第1の波長範囲内の光を反射させる、反射性要素であって、ホットミラー、軸外ホログラフィックミラー(OAHM)、または軸外立体回折光学要素(OAVDOE)を含む、反射性要素を備える、ディスプレイと、第1の波長範囲内の光に敏感である、結像機であって、少なくとも反射性要素によって反射された光を捕捉するように配向されるように構成される、結像機とを備える。
【0274】
第50の側面では、第1の波長範囲は、赤外線波長範囲を含む、側面49に記載の結像システム。
【0275】
第51の側面では、ディスプレイは、可視光に対して実質的に透過性である、側面49または側面50に記載の結像システム。
【0276】
第52の側面では、反射性要素は、複数のセグメントを備え、複数のセグメント内の各セグメントは、複数のセグメント内の少なくとも1つの他のセグメントの光学性質と異なる、光学性質を有する、側面49-51のいずれか1項に記載の結像システム。
【0277】
第53の側面では、光学性質は、反射角度または屈折力を含む、側面52に記載の結像システム。
【0278】
第54の側面では、複数のセグメントは、2、3、4、5、6、7、8、または9つのセグメントを備える、側面52または側面53に記載の結像システム。
【0279】
第55の側面では、結像機はさらに、目線制御レンズアセンブリを備える、側面49-54のいずれか1項に記載の結像システム。
【0280】
第56の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面55に記載の結像システム。
【0281】
第57の側面では、結像機によって入手された像を記憶するように構成される、非一過性データ記憶装置と、非一過性データ記憶装置と通信する、ハードウェアプロセッサであって、像を分析し、眼追跡、バイオメトリック識別、眼の形状の多視点再構築、眼の遠近調節状態の推定、または眼の網膜、虹彩、もしくは他の区別するパターンの結像のうちの1つまたはそれを上回るものを実施するための実行可能命令でプログラムされる、ハードウェアプロセッサとをさらに備える、側面21-56のいずれか1項に記載の結像システム。
【0282】
第58の側面では、頭部搭載型ディスプレイ(HMD)が、開示される。HMDは、側面21-57のいずれか1項に記載の結像システムを備える。
【0283】
第59の側面では、HMDは、耳の近傍に装着されるように構成される部分を有する、フレームと、その部分の近傍に配置される、結像機とを備える、側面58に記載のHMD。
【0284】
第60の側面では、結像システムは、装着者の第1の眼を結像するように構成され、HMDは、側面21-57のいずれか1項に記載の第2の結像システムを備え、第2の結像システムは、装着者の第2の眼を結像するように構成される、側面58または側面59に記載のHMD。
【0285】
第61の側面では、HMDは、拡張現実デバイス(ARD)である、側面58-60のいずれか1項に記載のHMD。
【0286】
第62の側面では、仮想カメラを作成する方法が、開示される。本方法は、結像システムを結像されるべきオブジェクトの正面に提供し、仮想カメラをオブジェクトの正面に作成するステップを含み、結像システムは、第1の波長範囲内の光を反射させる、反射性要素であって、反射性要素は、軸外ホログラフィックミラー(OAHM)または軸外立体回折光学要素(OAVDOE)を含む、反射性要素は、結像システムがオブジェクトの正面に設置されると、オブジェクトから伝搬する光を反射させるように配向される、反射性要素と、第1の波長範囲の全て未満の非空サブセット内の光に敏感である、結像機であって、結像機は、反射性要素によって反射されたオブジェクトから伝搬する光を捕捉することによって、オブジェクトの画像を結像するように配向され、結像機によって結像されるオブジェクトの画像およびオブジェクトの正面のカメラによって結像されるオブジェクトの画像は、区別不能である、結像機とを備える。
【0287】
第63の側面では、第1の波長範囲は、赤外線波長範囲を含む、側面62に記載の方法。
【0288】
第64の側面では、結像システムは、光学要素を備え、光学要素は、反射性要素を備え、光学要素は、学要素上に入射する可視光の少なくとも50%に対して透過性である、側面62-63のいずれか1項に記載の方法。
【0289】
第65の側面では、反射性要素は、複数のセグメントを備える、側面62-64のいずれか1項に記載の方法。
【0290】
第66の側面では、複数のセグメント内の第1のセグメントは、複数のセグメント内の第2のセグメントの光学性質と異なる、光学性質を有する、側面65に記載の方法。
【0291】
第67の側面では、複数のセグメント内の第1のセグメントの光学性質または複数のセグメント内の第2のセグメントの光学性質は、反射角度または屈折力を含む、側面66に記載の方法。
【0292】
第68の側面では、複数のセグメントは、少なくとも2つのセグメントを備える、側面65-67のいずれか1項に記載の方法。
【0293】
第69の側面では、複数のセグメントのうちの2つのものは、水平に配列される、側面65-68のいずれか1項に記載の方法。
【0294】
第70の側面では、複数のセグメントのうちの2つのものは、垂直に配列される、側面65-69のいずれか1項に記載の方法。
【0295】
第71の側面では、複数のセグメントのうちのいくつかは、グリッド内に配列される、側面65-70のいずれか1項に記載の方法。
【0296】
第72の側面では、結像機はさらに、目線制御レンズアセンブリを備える、側面62-71のいずれか1項に記載の方法。
【0297】
第73の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面72に記載の方法。
【0298】
第74の側面では、仮想カメラを使用してオブジェクトを結像する方法が、開示される。本方法は、結像システムを結像されるべきオブジェクトの正面に提供し、仮想カメラをオブジェクトの正面に作成するステップであって、結像システムは、第1の波長範囲内の光を反射させる、反射性要素であって、反射性要素は、軸外ホログラフィックミラー(OAHM)または軸外立体回折光学要素(OAVDOE)を含む、反射性要素は、結像システムがオブジェクトの正面に設置されると、オブジェクトから伝搬する光を反射させるように配向される、反射性要素と、第1の波長範囲の全て未満の非空サブセット内の光に敏感である、結像機であって、反射性要素によって反射されたオブジェクトから伝搬する光を捕捉することによって、オブジェクトの画像を結像するように配向される、結像機とを備える、ステップと、反射性要素によって反射されたオブジェクトから伝搬する光を捕捉することによって、オブジェクトの画像を結像するステップであって、結像機によって結像されるオブジェクトの画像およびオブジェクトの正面のカメラによって結像されるオブジェクトの画像は、区別不能である、ステップを含む、仮想カメラを使用して、オブジェクトを結像するステップを含む。
【0299】
第75の側面では、第1の波長範囲は、赤外線波長範囲を含む、側面74に記載の方法。
【0300】
第76の側面では、結像システムは、光学要素を備え、光学要素は、反射性要素を備え、光学要素は、学要素上に入射する可視光の少なくとも50%に対して透過性である、側面74-75のいずれか1項に記載の方法。
【0301】
第77の側面では、反射性要素は、複数のセグメントを備える、側面74-76のいずれか1項に記載の方法。
【0302】
第78の側面では、複数のセグメント内の第1のセグメントは、複数のセグメント内の第2のセグメントの光学性質と異なる、光学性質を有する、側面77に記載の方法。
【0303】
第79の側面では、複数のセグメント内の第1のセグメントの光学性質または複数のセグメント内の第2のセグメントの光学性質は、反射角度または屈折力を含む、側面78に記載の方法。
【0304】
第80の側面では、複数のセグメントは、少なくとも2つのセグメントを備える、側面77-79のいずれか1項に記載の方法。
【0305】
第81の側面では、複数のセグメントのうちの2つのものは、水平に配列される、側面77-80のいずれか1項に記載の方法。
【0306】
第82の側面では、複数のセグメントのうちの2つのものは、垂直に配列される、側面77-81のいずれか1項に記載の方法。
【0307】
第83の側面では、複数のセグメントのうちのいくつかは、グリッド内に配列される、側面77-82のいずれか1項に記載の方法。
【0308】
第84の側面では、結像機はさらに、目線制御レンズアセンブリを備える、側面74-83のいずれか1項に記載の方法。
【0309】
第85の側面では、目線制御レンズアセンブリは、偏移レンズ、傾斜レンズ、または偏移-傾斜レンズを備える、側面84に記載の方法。
【0310】
第86の側面では、結像アセンブリが、開示される。結像アセンブリは、シースルー要素(例えば、ディスプレイ)と、ディスプレイを視認するように設置される、視認カメラと、そのカメラと関連付けられる、レンズと、ディスプレイを、それに対してディスプレイが敏感である波長の全てまたは一部に対して反射性にする、ディスプレイ上の反射性要素とを備える。
【0311】
第87の側面では、反射性要素は、ホットミラー、軸外ホログラフィックミラー(OAHM)または軸外立体回折光学要素(OAVDOE)を含む、側面86に記載のアセンブリ。
【0312】
第88の側面では、アセンブリは、一対の眼鏡またはヘルメット等のウェアラブル構造の中に統合される、側面86-87のいずれか1項に記載のアセンブリ。
【0313】
第89の側面では、反射性要素は、セグメント化される、側面86-88のいずれかに記載のアセンブリ。
【0314】
第90の側面では、アセンブリは、特定のタスク(例えば、視線追跡またはバイオメトリック識別)のための最良可能視認角度を選択するためにセグメント化されたOAHMの使用のために構成される、側面89に記載のアセンブリ。
【0315】
第91の側面では、アセンブリは、眼の形状の立体視または多視点3次元再構築のための多数のセグメントサブ画像の使用のために構成される、側面89-90のいずれか1項に記載のアセンブリ。
【0316】
第92の側面では、眼の形状の3次元再構築は、眼の遠近調節状態を推定するために使用される、側面91に記載のアセンブリ。
【0317】
第93の側面では、眼の遠近調節状態を推定するステップは、アセンブリの同一装着者の複数の画像を横断して眼の瞳孔および虹彩の見掛け場所ならびに形状を比較するステップを含む、側面92に記載のアセンブリ。
【0318】
第94の側面では、眼の遠近調節状態を推定するステップは、水晶体の拡大状態を決定するために使用される、側面92-93のいずれか1項に記載のアセンブリ。
【0319】
第95の側面では、アセンブリは、情報融合アルゴリズムへの入力としての画像セグメントの使用のために構成される、側面86-94のいずれか1項に記載のアセンブリ。
【0320】
第96の側面では、情報融合アルゴリズムは、眼の見掛け分解能またはそこからの情報抽出の品質を改良するために使用される、側面95に記載のアセンブリ。
【0321】
第97の側面では、情報融合アルゴリズムは、画像超解像技法を含む、側面95-96のいずれか1項に記載のアセンブリ。
【0322】
第98の側面では、情報融合アルゴリズムは、眼の虹彩の画像を改良するために使用される、側面95-97のいずれか1項に記載のアセンブリ。
【0323】
第99の側面では、情報融合アルゴリズムは、虹彩コード抽出(例えば、John Daugman, et al.2006)と、装着者の虹彩コードの単一推定値を形成するための結果として生じる虹彩コードの後続融合とを含む、側面95-98のいずれか1項に記載のアセンブリ。
【0324】
第100の側面では、アセンブリは、眼姿勢推定または追跡を改良するための画像セグメントの使用のために構成される、側面86-99のいずれかに記載のアセンブリ。
【0325】
第101の側面では、眼、虹彩、瞳孔、および角膜(またはこれらの任意のサブセット)の3次元再構築は、姿勢推定における眼の被覆率を改良するために、直接、画像セグメントと併用される、側面100に記載のアセンブリ。
【0326】
第102の側面では、反射性要素は、ビーム発散を追加または低減させるための屈折力を含む、OAVDOEを含む、側面86-101のいずれか1項に記載のアセンブリ。
【0327】
第103の側面では、反射性要素は、任意の数のセグメント(例えば、2つ、3つ、6つ、または9つのセグメント)を含む、側面86-102のいずれか1項に記載のアセンブリ。
【0328】
第104の側面では、反射性要素は、赤外線光を反射させるように構成され、視認カメラは、赤外線光に敏感である、側面86-103のいずれか1項に記載のアセンブリ。
【0329】
第105の側面では、反射性要素は、赤外線内で反射するが、そうでなければ、可視光に対して透明であるように構成される、ホットミラーを含む、側面104に記載のアセンブリ。
【0330】
第106の側面では、反射性要素を備える表面の法線と平行な視認カメラに対して法線を伴う、(例えば、傾斜-偏移写真撮影におけるような)オフセットレンズをさらに備える、側面86-105のいずれか1項に記載のアセンブリ。
【0331】
第107の側面では、頭部搭載型ディスプレイ(HMD)が、開示される。HMDは、一対のディスプレイを備え、各ディスプレイは、側面86-106のいずれか1項に記載の結像アセンブリを備え、対の1つのアセンブリは、装着者の眼毎に構成される。
結論
【0332】
本明細書に説明される、ならびに/または添付される図に描写されるプロセス、方法、およびアルゴリズムはそれぞれ、具体的かつ特定のコンピュータ命令を実行するように構成される、1つまたはそれを上回る物理的コンピューティングシステム、ハードウェアコンピュータプロセッサ、特定用途向け回路、および/または電子ハードウェアによって実行される、コードモジュールにおいて具現化され、それによって完全もしくは部分的に自動化され得る。例えば、コンピューティングシステムは、具体的コンピュータ命令とともにプログラムされた汎用コンピュータ(例えば、サーバ)または専用コンピュータ、専用回路等を含むことができる。コードモジュールは、実行可能プログラムにコンパイルおよびリンクされる、動的リンクライブラリ内にインストールされ得る、またはインタープリタ型プログラミング言語において書き込まれ得る。いくつかの実装では、特定の動作および方法が、所与の機能に特有の回路によって実施され得る。
【0333】
さらに、本開示の機能性のある実装は、十分に数学的、コンピュータ的、または技術的に複雑であるため、(適切な特殊化された実行可能命令を利用する)特定用途向けハードウェアもしくは1つまたはそれを上回る物理的コンピューティングデバイスは、例えば、関与する計算の量もしくは複雑性に起因して、または結果を実質的にリアルタイムで提供するために、機能性を実施する必要があり得る。例えば、ビデオは、多くのフレームを含み、各フレームは、数百万のピクセルを有し得、具体的にプログラムされたコンピュータハードウェアは、商業的に妥当な時間量において所望の画像処理タスクまたは用途を提供するようにビデオデータを処理する必要がある。
【0334】
コードモジュールまたは任意のタイプのデータは、ハードドライブ、ソリッドステートメモリ、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、光学ディスク、揮発性もしくは不揮発性記憶装置、同一物の組み合わせ、および/または同等物を含む、物理的コンピュータ記憶装置等の任意のタイプの非一過性コンピュータ可読媒体上に記憶され得る。本方法およびモジュール(またはデータ)はまた、無線ベースおよび有線/ケーブルベースの媒体を含む、種々のコンピュータ可読伝送媒体上で生成されたデータ信号として(例えば、搬送波または他のアナログもしくはデジタル伝搬信号の一部として)伝送され得、種々の形態(例えば、単一もしくは多重化アナログ信号の一部として、または複数の離散デジタルパケットもしくはフレームとして)をとり得る。開示されるプロセスまたはプロセスステップの結果は、任意のタイプの非一過性有形コンピュータ記憶装置内に持続的もしくは別様に記憶され得る、またはコンピュータ可読伝送媒体を介して通信され得る。
【0335】
本明細書に説明される、および/または添付される図に描写されるフロー図における任意のプロセス、ブロック、状態、ステップ、もしくは機能性は、プロセスにおいて具体的機能(例えば、論理もしくは算術)またはステップを実装するための1つまたはそれを上回る実行可能命令を含む、コードモジュール、セグメント、またはコードの一部を潜在的に表すものとして理解されたい。種々のプロセス、ブロック、状態、ステップ、または機能性は、組み合わせられる、再配列される、本明細書に提供される例証的実施例に追加される、そこから削除される、修正される、または別様にそこから変更されることができる。いくつかの実施形態では、付加的または異なるコンピューティングシステムもしくはコードモジュールが、本明細書に説明される機能性のいくつかまたは全てを実施し得る。本明細書に説明される方法およびプロセスはまた、いずれの特定のシーケンスにも限定されず、それに関連するブロック、ステップ、または状態は、適切な他のシーケンスで、例えば、連続して、並行して、またはある他の様式で実施されることができる。タスクまたはイベントが、開示される例示的実施形態に追加される、またはそこから除去され得る。さらに、本明細書に説明される実装における種々のシステムコンポーネントの分離は、例証目的のためであり、全ての実装においてそのような分離を要求するものとして理解されるべきではない。説明されるプログラムコンポーネント、方法、およびシステムは、概して、単一のコンピュータ製品においてともに統合される、または複数のコンピュータ製品にパッケージ化され得ることを理解されたい。多くの実装変形例が、可能である。
【0336】
本プロセス、方法、およびシステムは、ネットワーク(または分散)コンピューティング環境において実装され得る。ネットワーク環境は、企業全体コンピュータネットワーク、イントラネット、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、パーソナルエリアネットワーク(PAN)、クラウドコンピューティングネットワーク、クラウドソースコンピューティングネットワーク、インターネット、およびワールドワイドウェブを含む。ネットワークは、有線もしくは無線ネットワークまたは任意の他のタイプの通信ネットワークであり得る。
【0337】
本開示のシステムおよび方法は、それぞれ、いくつかの革新的側面を有し、そのうちのいかなるものも、本明細書に開示される望ましい属性に単独で関与しない、またはそのために要求されない。上記に説明される種々の特徴およびプロセスは、相互に独立して使用され得る、または種々の方法で組み合わせられ得る。全ての可能性として考えられる組み合わせおよび副次的組み合わせが、本開示の範囲内に該当することが意図される。本開示に説明される実装の種々の修正が、当業者に容易に明白であり得、本明細書に定義される一般原理は、本開示の精神または範囲から逸脱することなく、他の実装に適用され得る。したがって、請求項は、本明細書に示される実装に限定されることを意図されず、本明細書に開示される本開示、原理、および新規の特徴と一貫する最も広い範囲を与えられるべきである。
【0338】
別個の実装の文脈において本明細書に説明されるある特徴はまた、単一の実装における組み合わせにおいて実装されることができる。逆に、単一の実装の文脈において説明される種々の特徴もまた、複数の実装において別個に、または任意の好適な副次的組み合わせにおいて実装されることができる。さらに、特徴がある組み合わせにおいて作用するものとして上記に説明され、さらに、そのようなものとして最初に請求され得るが、請求される組み合わせからの1つまたはそれを上回る特徴は、いくつかの場合では、組み合わせから削除されることができ、請求される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象とし得る。いかなる単一の特徴または特徴の群も、あらゆる実施形態に必要もしくは必須ではない。
【0339】
とりわけ、「~できる(can)」、「~し得る(could)」、「~し得る(might)」、「~し得る(may)」、「例えば(e.g.)」、および同等物等の本明細書で使用される条件文は、別様に具体的に記載されない限り、または使用されるような文脈内で別様に理解されない限り、概して、ある実施形態がある特徴、要素、および/またはステップを含む一方、他の実施形態がそれらを含まないことを伝えることが意図される。したがって、そのような条件文は、概して、特徴、要素、および/またはステップが、1つまたはそれを上回る実施形態に対していかようにも要求されること、もしくは1つまたはそれを上回る実施形態が、著者の入力または促しの有無を問わず、これらの特徴、要素、および/またはステップが任意の特定の実施形態において含まれる、もしくは実施されるべきかどうかを決定するための論理を必然的に含むことを含意することを意図されない。用語「~を備える(comprising)」、「~を含む(including)」、「~を有する(having)」、および同等物は、同義語であり、非限定的方式で包括的に使用され、付加的要素、特徴、行為、動作等を除外しない。また、用語「または」は、例えば、要素のリストを接続するために使用されると、用語「または」が、リスト内の要素のうちの1つ、いくつか、または全てを意味するように、その包括的意味において使用される(およびその排他的意味において使用されない)。加えて、本願および添付される請求項で使用されるような冠詞「a」、「an」、および「the」は、別様に規定されない限り、「1つまたはそれを上回る」もしくは「少なくとも1つ」を意味するように解釈されるべきである。
【0340】
本明細書で使用されるように、項目のリスト「~のうちの少なくとも1つ」を指す語句は、単一の要素を含む、それらの項目の任意の組み合わせを指す。ある実施例として、「A、B、またはCのうちの少なくとも1つ」は、A、B、C、AおよびB、AおよびC、BおよびC、ならびにA、B、およびCを網羅することが意図される。語句「X、Y、およびZのうちの少なくとも1つ」等の接続文は、別様に具体的に記載されない限り、概して、項目、用語等がX、Y、またはZのうちの少なくとも1つであり得ることを伝えるために使用されるような文脈で別様に理解される。したがって、そのような接続文は、概して、ある実施形態が、Xのうちの少なくとも1つ、Yのうちの少なくとも1つ、およびZのうちの少なくとも1つがそれぞれ存在するように要求することを示唆することを意図するものではない。
【0341】
同様に、動作は、特定の順序で図面に描写され得るが、これは、望ましい結果を達成するために、そのような動作が、示される特定の順序で、または連続的順序で実施される必要がない、もしくは全ての図示される動作が実施される必要はないことを認識されたい。さらに、図面は、フローチャートの形態で1つまたはそれを上回る例示的プロセスを図式的に描写し得る。しかしながら、描写されない他の動作も、図式的に図示される例示的方法およびプロセス内に組み込まれることができる。例えば、1つまたはそれを上回る付加的動作が、図示される動作のいずれかの前に、その後に、それと同時に、またはその間に実施されることができる。加えて、動作は、他の実装において再配列される、または再順序付けられ得る。ある状況では、マルチタスクおよび並列処理が、有利であり得る。さらに、上記に説明される実装における種々のシステムコンポーネントの分離は、全ての実装におけるそのような分離を要求するものとして理解されるべきではなく、説明されるプログラムコンポーネントおよびシステムは、概して、単一のソフトウェア製品においてともに統合される、または複数のソフトウェア製品にパッケージ化され得ることを理解されたい。加えて、他の実装も、以下の請求項の範囲内である。いくつかの場合では、請求項に列挙されるアクションは、異なる順序で実施され、依然として、望ましい結果を達成することができる。
図1
図2
図3
図4
図5
図6
図7A
図7B
図7C
図7D
図7E
図7F
図7G
図7H
図8
図9
図10
図11
図12A
図12B
図12C
図12D
図12E
図13A
図13B
図13C
図14
【国際調査報告】