IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レイセオン カンパニーの特許一覧

特表2022-543428オブジェクトの深度を決定する方法及びシステム
<>
  • 特表-オブジェクトの深度を決定する方法及びシステム 図1
  • 特表-オブジェクトの深度を決定する方法及びシステム 図1A
  • 特表-オブジェクトの深度を決定する方法及びシステム 図1B
  • 特表-オブジェクトの深度を決定する方法及びシステム 図2
  • 特表-オブジェクトの深度を決定する方法及びシステム 図2A
  • 特表-オブジェクトの深度を決定する方法及びシステム 図2B
  • 特表-オブジェクトの深度を決定する方法及びシステム 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-10-12
(54)【発明の名称】オブジェクトの深度を決定する方法及びシステム
(51)【国際特許分類】
   G05D 1/12 20060101AFI20221004BHJP
   G01S 15/89 20060101ALI20221004BHJP
   G01V 1/00 20060101ALI20221004BHJP
   G05D 1/00 20060101ALI20221004BHJP
【FI】
G05D1/12
G01S15/89 Z
G01V1/00 A
G05D1/00 A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022507342
(86)(22)【出願日】2020-05-27
(85)【翻訳文提出日】2022-03-03
(86)【国際出願番号】 US2020034632
(87)【国際公開番号】W WO2021034366
(87)【国際公開日】2021-02-25
(31)【優先権主張番号】16/534,038
(32)【優先日】2019-08-07
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.BLUETOOTH
(71)【出願人】
【識別番号】503455363
【氏名又は名称】レイセオン カンパニー
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ウッド,トーマス,イー.
(72)【発明者】
【氏名】ショート,ジョン,アール.
【テーマコード(参考)】
2G105
5H301
5J083
【Fターム(参考)】
2G105AA01
2G105AA02
2G105BB02
2G105CC01
2G105DD02
2G105EE01
2G105FF16
2G105GG03
2G105HH06
2G105KK06
2G105LL02
5H301AA05
5H301BB10
5H301CC03
5H301CC04
5H301CC06
5H301CC07
5H301CC10
5H301GG07
5H301GG09
5H301GG10
5J083AA02
5J083AB12
5J083AD01
5J083AD04
5J083AD09
5J083AD15
5J083AE10
5J083AF18
5J083BC01
5J083BD10
5J083BE08
5J083BE54
5J083CA03
5J083CA12
(57)【要約】
自律車両(AV)に目標の第1推定位置を提供するステップと、前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示するステップと、送信されたソナー信号のエコー信号を受信するステップであって、前記エコー信号は前記目標の距離及び方位を示す、ステップと、前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップであって、前記深度差は、時間に渡る前記目標の前記距離及び方位に対する変化に基づき決定される、ステップと、深度差が存在することに応答して、前記AVに、前記深度差から生成された前記目標の第2推定位置に向かうよう再指示するステップと、を含む方法。
【特許請求の範囲】
【請求項1】
自律車両(AV)に目標の第1推定位置を提供するステップと、
前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示するステップと、
前記AVの2次元センサを使用して、送信されたソナー信号のエコー信号を受信するステップであって、前記エコー信号は前記目標の距離及び方位を示す、ステップと、
前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップであって、前記深度差は、時間に渡る前記目標の前記距離及び方位に対する変化に基づき決定される、ステップと、
深度差が存在することに応答して、前記AVに、前記深度差から生成された前記目標の第2推定位置に向かうよう再指示するステップと、
を含む方法。
【請求項2】
目標捜索ソナーシステムから、前記目標の前記第1推定位置を取得するステップを更に含む請求項1に記載の方法。
【請求項3】
前記目標は地雷であり、前記目標捜索ソナーシステムは地雷捜索ソナーシステムである、請求項2に記載の方法。
【請求項4】
前記AVに、前記第1推定位置に基づき第1深度において移動するよう指示するステップと、
前記AVに、前記第2推定位置に応答して第2深度において移動するよう指示するステップと、
を更に含む請求項1に記載の方法。
【請求項5】
前記深度差は、マルチモデルカルマンフィルタを用いて決定される、請求項1に記載の方法。
【請求項6】
前記マルチモデルカルマンフィルタは、複数の仮説曲線のうちの1つに対する距離及び方位測定の最適適合を見付けるよう構成され、前記仮説曲線の各々は、前記AVと前記目標との間の所与の深度差について生じることが期待されるソナー距離測定値の変化をモデル化するよう構成される、請求項1に記載の方法。
【請求項7】
前記AVと前記目標との間の前記深度差を決定するステップは、以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定するステップを含む、請求項5に記載の方法。
【請求項8】
前記AVに再指示するステップは、前記AVに、以下:
完全停止ホバリング、
ホバリング及びピッチアップ、
ホバリング及びピッチダウン、
ホバリング及びより高い深度への移動、
ホバリング及びより低い深度への移動、
のうちの1つを再指示するステップを含む、請求項1に記載の方法。
【請求項9】
(a)一定速度で第1位置へ向かって移動している車両から、送信信号を発信するステップと、
(b)返信信号を受信するステップと、
(c)以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定するステップと、
(d)ゼロでない加速度値が存在することに応答して、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう前記車両に指示するステップと、
を含む方法。
【請求項10】
前記第1位置は、目標捜索ソナーシステムから取得される所定の位置である、請求項9に記載の方法。
【請求項11】
前記送信信号はソナー信号であり、前記返信信号は前記送信されたソナー信号のエコーである、請求項9に記載の方法。
【請求項12】
第1一定深度において前記第1位置へ向かって移動するよう、前記車両を制御するステップ、を更に含む請求項9に記載の方法。
【請求項13】
第2一定深度において前記第2位置へ向かって移動するよう、前記車両を制御するステップ、を更に含む請求項9に記載の方法。
【請求項14】
ゼロでない加速度値が存在するかどうかを決定するステップは、前記車両と前記静止オブジェクトとの間の深度差を決定するステップを含む、請求項9に記載の方法。
【請求項15】
前記深度差は、マルチモデルカルマンフィルタを用いて決定される、請求項14に記載の方法。
【請求項16】
前記車両に再指示するステップは、前記車両に、以下:
完全停止ホバリング、
ホバリング及びピッチアップ、
ホバリング及びピッチダウン、
ホバリング及びより高い深度への移動、
ホバリング及びより低い深度への移動、
のうちの1つを再指示するステップを含む、請求項9に記載の方法。
【請求項17】
目標に向かって移動するよう構成される自律車両(AV)であって、前記AVは、
(a)前記目標の第1推定位置を格納する手段と、
(b)前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示する手段と、
(c)ソナー信号を送信する手段と、
(d)送信されたソナー信号のエコー信号を受信する手段と、
(e)前記受信したエコー信号に基づき前記AVと前記目標との間の深度差を決定する手段と、
(f)深度差が存在することに応答して、前記深度差から生成される前記目標の第2推定位置を決定する手段と、
(g)前記AVに、前記目標の前記第2推定位置に向かうよう再指示する手段と、
を含むAV。
【請求項18】
自律車両(AV)を目標に向かって推進させる方法であって、前記方法は、
(a)前記AVに、一定速度で第1推定目標位置に向かうよう指示するステップと、
(b)前記第1推定位置へ向けてソナー信号を送信するステップと、
(c)前記送信したソナー信号のエコー信号を受信するステップと、
(d)前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップと、
(e)深度差が存在することに応答して、前記目標の第2推定位置を決定するステップと、
(f)前記AVに、少なくとも前記深度差を用いて決定された前記第2推定目標位置に向かうよう再指示するステップと、
を含む方法。
【請求項19】
システムであって、
一定速度で第1位置へ向かって移動している車両から、信号を送信するよう構成される送信機と、
返信信号を受信するよう構成される受信機と、
プロセッサであって、以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定し、
ゼロでない加速度値が存在することに応答して、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう前記車両に指示する、よう構成されるプロセッサと、
を含むシステム。
【請求項20】
前記プロセッサは、前記加速度に基づき、前記車両と前記静止オブジェクトとの間の深度差を決定するよう更に構成される、請求項19に記載のシステム。
【発明の詳細な説明】
【背景技術】
【0001】
地雷探査器(Mine Countermeasures (MCM))のような無人水中車両(Unmanned underwater vehicle (UUV))は、目標捕捉及び誘導のためにソナーを利用する。そのようなUUVは、役目の特性を考えると、使い捨てであり、非常に低コストを有するよう設計される。そのような低コストを達成するために、UUVは、通常、距離(range)及び方位(azimuth)(又は「方角(bearing)」)の前向きソナーソリューションのみを利用する。
【発明の概要】
【0002】
この概要は、詳細な説明において更に後述される概念の選択を簡単な形式で紹介するために提供される。この概要は、請求される主題の主要な又は基本的な特徴又は組合せを特定することを意図せず、或いは、請求される主題の範囲を限定するために使用されることを意図しない。
【0003】
全体的な概要では、2次元(2D)ソナーによる測定値から(例えば、距離及び方位測定値から)深度差を決定するシステム及び技術が記載される。そのようなシステム及び技術は、例えば、自律車両(autonomous vehicle (AV))において使用される。例えば、そのようなシステム及び技術は、AVを目標に向かってナビゲートする又は向けるのを支援するために使用されてよい。
【0004】
本開示の態様によると、方法であって、自律車両(AV)に目標の第1推定位置を提供するステップと、
前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示するステップと、
送信されたソナー信号のエコー信号を受信するステップであって、前記エコー信号は前記目標の距離及び方位を示す、ステップと、
前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップであって、前記深度差は、時間に渡る前記目標の前記距離及び方位に対する変化に基づき決定される、ステップと、
深度差が存在することに応答して、前記AVに、前記深度差から生成された前記目標の第2推定位置に向かうよう再指示するステップと、
を含む方法が提供される。
【0005】
本開示の態様によると、方法であって、(a)一定速度で第1位置へ向かって移動している車両から、送信信号を発信するステップと、
(b)返信信号を受信するステップと、
(c)以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定するステップと、
(d)ゼロでない加速度値が存在することに応答して、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう前記車両に指示するステップと、
を含む方法が提供される。
【0006】
本開示の態様によると、目標に向かって移動するよう構成される自律車両(AV)であって、前記AVは、
(a)前記目標の第1推定位置を格納する手段と、
(b)前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示する手段と、
(c)ソナー信号を送信する手段と、
(d)送信されたソナー信号のエコー信号を受信する手段と、
(e)前記受信したエコー信号に基づき前記AVと前記目標との間の深度差を決定する手段と、
(f)深度差が存在することに応答して、前記深度差から生成される前記目標の第2推定位置を決定する手段と、
(g)前記AVに、前記目標の前記第2推定位置に向かうよう再指示する手段と、
を含むAVが提供される。
【0007】
本開示の態様によると、自律車両(AV)を目標に向かって推進させる方法であって、前記方法は、
(a)前記AVに、一定速度で第1推定目標位置に向かうよう指示するステップと、
(b)前記第1推定位置へ向けてソナー信号を送信するステップと、
(c)前記送信したソナー信号のエコー信号を受信するステップと、
(d)前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップと、
(e)深度差が存在することに応答して、前記目標の第2推定位置を決定するステップと、
(f)前記AVに、少なくとも前記深度差を用いて決定された前記第2推定目標位置に向かうよう再指示するステップと、
を含む。
【0008】
本開示の態様によると、システムであって、
一定速度で第1位置へ向かって移動している車両から、信号を送信するよう構成される送信機と、
返信信号を受信するよう構成される受信機と、
誘導制御システムプロセッサであって、以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定し、
ゼロでない加速度値が存在することに応答して、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう前記車両に指示する、よう構成される誘導制御システムプロセッサと、
を含むシステムが提供される。
【0009】
一態様では、方法は、自律車両(AV)に、目標の第1推定位置を提供するステップを含む。前記方法は、前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示するステップを更に含む。前記方法は、送信したソナー信号のエコー信号を受信するステップであって、前記エコー信号は距離及び方位情報を提供する、ステップを更に含む。更に、前記方法は、前記受信したエコー信号に基づき、前記AVと前記目標との深度差を決定するステップと、
深度差が存在することに応答して、前記AVに、前記深度差から生成される前記目標の第2推定位置へ向かうよう再指示するステップと、
を含む。
【0010】
実施形態では、前記方法は、目標捜索ソナーシステムから、前記目標の前記第1推定位置を取得するステップを更に含む。前記目標は地雷であることができ、前記目標捜索システムは地雷捜索ソナーシステムであることができる。
【0011】
更なる実施形態では、前記方法は、前記AVに、前記第1推定位置に基づき第1深度において移動するよう指示するステップと、
前記AVに、前記第2推定位置に応答して第2深度において移動するよう指示するステップと、
を含むことができる。
【0012】
実施形態では、前記方法は、前記AVに、以下:
完全停止ホバリング、
ホバリング及びピッチアップ、
ホバリング及びピッチダウン、
ホバリング及びより高い深度への移動、
ホバリング及びより低い深度への移動、
のうちの1つを再指示することにより、前記AVに再指示するステップを含むことができる。
【0013】
別の態様では、方法は、
一定速度で第1位置に向かって移動している車両から送信信号を送信するステップと、
返信信号を受信するステップと、
を含む。前記方法は、以下:
ドップラ測定値、又は、
目標距離及び方位測定値、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定するステップを更に含む。ゼロでない加速度値が存在することに応答して、前記方法は、前記車両に、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう再指示するステップ含む。
【0014】
実施形態では、前記第1位置は、目標捜索ソナーシステムから取得される所定の位置である。前記送信信号はソナー信号であることができ、前記返信信号は前記送信されたソナー信号のエコーであることができる。
【0015】
更なる実施形態では、前記方法は、第1一定深度において前記第1位置へ向かって移動するよう、前記車両を制御するステップ、を更に含むことができる。他の例では、前記方法は、第2一定深度において前記第2位置へ向かって移動するよう、前記車両を制御するステップ、を更に含むことができる。
【0016】
更なる実施形態では、前記方法は、前記車両と前記静止オブジェクトとの間の深度差を決定することにより、ゼロでない加速度値が存在するかどうかを決定するステップを含むことができる。
【0017】
実施形態では、前記方法は、前記AVに、以下:
完全停止ホバリング、
ホバリング及びピッチアップ、
ホバリング及びピッチダウン、
ホバリング及びより高い深度への移動、
ホバリング及びより低い深度への移動、
のうちの1つを再指示することにより、前記AVに再指示するステップを含むことができる。
【0018】
更に別の態様では、目標に向かって移動するよう構成される自律車両(AV)は、
前記目標の第1推定位置を格納する手段と、
前記AVに、一定速度で前記第1推定位置に向かって移動するよう指示する手段と、
ソナー信号を送信する手段と、
送信されたソナー信号のエコー信号を受信する手段と、
前記受信したエコー信号に基づき前記AVと前記目標との間の深度差を決定する手段と、
深度差が存在することに応答して、前記深度差から生成される前記目標の第2推定位置を決定する手段と、
前記AVに、前記目標の前記第2推定位置に向かうよう再指示する手段と、
を含む。
【0019】
別の態様では、自律車両(AV)に目標に向かうよう指示する方法は、
前記AVに、一定速度で第1推定目標位置に向かうよう指示するステップと、
前記第1推定位置へ向けて2次元(2D)ソナーによりソナー信号を送信するステップと、
前記送信したソナー信号の2次元(2D)エコー信号を受信するステップと、
前記受信した2Dエコー信号に基づき、前記AVと前記目標との深度差を決定するステップと、
深度差が存在することに応答して、前記目標の第2推定位置を決定するステップと、
前記AVに、少なくとも前記深度差を用いて決定された前記第2推定目標位置に向かうよう再指示するステップと、
を含む。
【0020】
実施形態では、前記2Dソナーは、距離及び方位測定値を提供し、前記AVと前記目標との間の深度差を決定するステップは、距離及び方位測定値を利用して前記AVと前記目標との間の深度差を決定するステップを含む。
【0021】
更なる態様では、システムは、一定速度で第1位置へ向かって移動している車両から信号を送信するよう構成される送信機を含む。前記システムは、返信信号を受信するよう構成される受信機を更に含む。前記システムは、以下:
時間に渡る複数のドップラ測定値の変化、又は、
時間に渡る目標距離及び方位測定値の変化、
のうちの1つ又は組合せにより、前記車両と静止オブジェクトとの間にゼロでない加速度値が存在するかどうかを決定するよう構成されるプロセッサを更に含む。ゼロでない加速度値が存在することに応答して、前記プロセッサは、前記車両に、前記ゼロでない加速度値から決定される第2位置に向かって移動するよう再指示するよう更に構成される。実施形態では、前記システムは、幾つかの測定値(例えば、ドップラ測定値、又は距離/方位測定値)の記憶、及び/又は時間に渡るそのような測定値の記憶/フィルタリングのための手段を含む。実施形態では、そのような記憶のための手段はメモリとして設けられてよい。
【0022】
実施形態では、前記プロセッサは、前記車両と前記静止目標との間の深度差が存在するかどうかを決定するよう更に構成されることができ、前記深度差は、AVの相対速度が一定になるよう制御されるとき、測定されたゼロでない加速値を説明し得る。
【図面の簡単な説明】
【0023】
前述の及び他の目的、特徴及び利点は、異なる図面を通じて同様の参照符号が同じ部分を表す添付の図面に図示されたような、以下の実施形態のより特定の説明から明らかになるだろう。図面は、必ずしも縮尺通りではなく、むしろ、実施形態の原理を説明する際に強調される。
【0024】
図1】自律車両(AV)がソナーを利用して目標を検出し、目標に従事するための位置へとAVを誘導する実施形態を示す。
図1A】自律車両(AV)がソナーを利用して目標を検出し、目標に従事するための位置へとAVを誘導する実施形態を示す。
【0025】
図1B】異なる深度にあるAV及び目標を示すコンテキスト図である。
【0026】
図2】AV内で使用され得る目標検出及び誘導のブロック図である。
【0027】
図2A】目標距離曲線が、一定速度で移動しているAVと静止目標との間の深度差の複数の初期仮説の下で時間に渡りどのように変化し得るかを示すグラフである。
【0028】
図2B】3次元(3D)座標で目標の位置を決定するために、2次元(2D)ソナー測定値を処理するシステムのブロック図である。
【0029】
図3】2Dソナー測定値を取得する装置の眺望である。
【発明を実施するための形態】
【0030】
図1を参照すると、自律車両(autonomous vehicle (AV))10は、目標14を探しながら環境100をトラバースしている。この例示的な実施形態では、AV10は、地雷14を探しながら水域100(例えば、海)をトラバースしている水中AVである。当業者は、本開示の実施形態が、航空機AV又は陸上AVを用いて陸上及び空中に基づく捜索システムにも適用できることを理解する。幾つかの形態では、AV10は、無人水中車両(arrayed waveguide grating:UUV)であってよい。
【0031】
実施形態では、AV10は、ソナーシステム及び誘導制御システム(例えば、図2に示されるソナーシステム11及び誘導制御システム54)を備えることができる。ソナーシステムは、本願明細書に記載される技術のうちの1つ以上を用いて、目標14の位置を決定するために、ソナー信号を送信及び受信するよう構成される。ソナーシステムは、AV10と目標14との間の深度差ではなく、2D位置情報(例えば、距離及び方位)を決定するよう構成される2次元(2D)ソナーを含むことができる。2Dソナーは、目標14の位置を完全に特定するために(例えば、AV10に対する目標14の球座標を完成させるために)必要とされ得る3次元の位置情報(例えば、距離、方位、及び仰角(elevation angle))を決定することができなくてよい。
【0032】
実施形態では、ソナーシステムは、AV10と目標14との間の深度差を決定するために2D位置情報を処理するよう構成される誘導制御システム(例えば、図2の誘導制御システム54)に動作可能に結合されることができる。本願明細書で更に詳述されるように、2D位置情報及び深度差を決定することに応答して、誘導制御システムは、AV10に、目標14に向かうよう指示できる。
【0033】
図1Aを参照すると、AV10は、通信装置12にテザリングされ(tethered to)得る。実施形態では、AV10は、任意の知られている又は未だ知られていない技術に従い、物理的に又は無線で通信装置12にテザリングされ得る。通信装置12は、AV10と通信するよう構成される回路を含むブイであることができる。実施形態では、通信装置12は、コマンドセンタ(図示しない)と通信でき、コマンドセンタから、通信装置12はAV10を制御するための信号を受信する。例えば、信号は、目標14の位置の所定の推定を含むことができ、その結果、AV10は、通信装置12の位置又はAV10の初期位置のような原点から目標14に向かってトラバースし始めることができる。実施形態では、AV10は、目標14がAV10の上又は下にあることを保証する原点を有するように位置付けられる。例えば、AV10は、海面又は海底の近くに位置付けられる。
【0034】
更に、信号は、限定ではないが、全地球測位システム(Global Positioning System (GPS))衛星からの測地緯度及び経度のような位置情報、及び通信装置12とAV10との間の距離及び方位情報、のような位置情報を含むことができる。幾つかの実装では、通信装置12の測地位置、及びAV10から通信装置12までの距離及び方位を用いて、AV10は、目標14がAV10上にあるソナーの範囲内になるときまで、知られている目標14位置に対する自身の相対位置を決定できる。目標14がソナーの範囲内になると、ソナーによる検出は、通信装置12による確認のために、AV10からコマンドセンタにいる監視オペレータへと通信され得る。更に、AV10は、通信装置12を介して、状態情報をコマンドセンタへ送信し、作戦停止コマンドをコマンドセンタから受信できる。
【0035】
図1Bを参照すると、AV10は、目標14の位置を決定するためにソナー信号を送信及び受信するよう構成される2Dソナー(例えば、図2のソナー11)を有する目標検出及び誘導システム(例えば、図1のシステム13)を含む。2Dソナーは、送信機及び受信機(例えば、図2の送信機34及び受信機42)を含むことができる。送信機及び受信機は、ソナーの視界を共に定義する上限及び下限センサ高度範囲105a-bを有する。より具体的には、上限及び下限センサ高度範囲105a-bは、送信機(例えば、図2の送信機34)により送信されたソナー音響信号の結果として生じる目標エコーが背景の中の他の信号に勝り検出するのに十分強い可能性の高い空間を定める。
【0036】
ソナーは、最大感度の方向を表すボアサイト(boresight)110aを有する。幾つかの実施形態では、ソナーは、ミルズクロス(Mills Cross)アレイ構造を有してよく、ボアサイト110aは、ミルズクロスアレイの平面に垂直であってよい。ボアサイト110aは、目標14の方位角の測定の基準軸である。幾つかの実施形態では、目標14に対する方位角は、ビームフォーミング処理を用いて測定できる。ビームフォーミングは、最大目標信号振幅が達成されるまで、受信機アレイの各要素における信号位相を調整する。幾つかの実施形態では、ビームフォーミング処理は、ボアサイト110aから+/-60度の視界を提供するよう位相を調整してよい。幾つかの実施形態では、ソナーは、信号対雑音比に依存して、1度より小さい方位分解能を達成できる。
【0037】
2Dソナーは、ローカルレベル平面112上で、目標14の距離及び方位を測定できる。方位角111は、ボアサイト110aと、AV10から目標14へと延びるローカルレベル平面112上の(つまり、AV10と同じ深度に投影された場合に、目標14がローカルレベル平面112上にある位置への)直線110bと、の間の角度として定義される。
【0038】
ソナーから取得された2D位置情報を用いて、AV10は、目標14が静止していると仮定し、及び目標の方位角111、目標の距離115(「真の距離」又はRとも呼ばれる)、及び時間に渡る距離の変化(「距離レート」)を分析することにより、目標14の深度を決定する。実施形態では、AV10は、(ベクトル125により示されるように)一定深度及び速度で移動し、その結果、AV10が一定深度125において移動したとしても、距離レート測定値は、AV10の加速度を示すことができる。3次元で一定である相対速度の成分はローカルレベル平面112に投影され、ローカルレベル平面112では、ソナーがAVと目標との間の深度120の差分を測定できないために、AV10と目標14との間の見通し線の変化はソナーにより完全に測定されないので、距離レート測定値は、加速度を示すことができる。距離レートを決定することに応答して、AV10は、AV10と目標14との間の深度差120を決定する。AV10が深度差120を決定すると、AV10は、深度差120の方向(つまり、上又は下)を決定する。実施形態では、深度差120の方向は、AV10の動作モード(例えば、海面近くにある地雷の浅い捜索は、車両を下へと移動することを提案し、大量の地雷の深い捜索は、車両を上へと移動することを提案する)、又は(目標信号強度はAVのピッチに依存して変化し得るので)AV10のピッチのような動作上のバイアスにより提案され得る。
【0039】
図2は、AV上に設けられてよい、説明のための目標検出及び誘導システム13を示す。システム13は、2Dソナーシステム11、ナビジェーションセンサ64、誘導制御システム54、及びメモリ56を含む。幾つかの実施形態では、ソナー13は、高キロヘルツ範囲(500~900KHz)のキャリア(中心)周波数、9~100KHzの間の帯域幅、及び数ミリ秒、例えば3~10ミリ秒の範囲の時間期間を有する波形32aを生成するよう適応される回路を含む波形生成器30を含んでよい。しかしながら、本開示は、任意の特定の種類のソナーシステムに限定されないことが理解される。ソナー送信機34は、波形32aを受信し、波形32aに従い音声信号194を水中へと送信するよう適応される。ソナー送信機34は、波形32aを受信するよう構成される電力増幅器36を含み得る。電力増幅器36は、音声信号194を生成するよう適応される1つ以上の送信要素40に結合される。図3に示すように、幾つかの実施形態でじゃ、送信要素40は、ミルズクロスアレイ構成に配置され得る。これは、精細な方位測定を達成するために、送信要素がビームフォーミングされることを可能にする(Principles of Underwater Sound, Revised Edition, McGraw-Hill, 1975を参照)。他の実施形態では、送信要素40は、送信ソナーアレイに配置されることができ(図示しない)、音声信号194はビームフォーミングされた音声信号である。
【0040】
ソナーシステム11は、送信された音声信号194に関連付けられた音声信号198を受信し、及び受信した音声信号198に従い条件付き信号50を生成するよう適応されるソナー受信機42も含む。受信した音声信号198は、目標14(例えば、地雷)からの送信した音声信号194のエコーにより生成されてよい。
【0041】
ソナー受信機42は、音声信号198を受信するよう適応される1つ以上の受信要素48を含むことができる。幾つかの実施形態では、受信要素48は、(例えば、図3に示されるような)受信ソナーアレイに配置される。受信要素48は、限定ではないが増幅、時変利得、キャリア復調、帯域通過フィルタ、及びビームフォーミングを含み得る種々の機能を提供するよう適応され並びにそれに関連した調整済み信号50を生成するよう適応される信号調整モジュール44に、音声信号198を表す電子信号46を供給するよう結合され得る。
【0042】
ソナーシステム11は、調整済み信号50を処理するよう適応される1つ以上のプロセッサを更に含むことができる。図2の実施形態では、ソナーは、相関プロセッサ212、検出プロセッサ216、ローカライズプロセッサ220、及び分類プロセッサ222を含む。幾つかの実施形態では、プロセッサ212、216、220、222のうちの1つ以上は、省略されるか、又は他のプロセッサのうちの1つ以上と結合されることができる。
【0043】
図示のように、相関プロセッサ212は、調整済み信号50を受信し、出力として、他のプロセッサのうちの1つ以上に結合され得る相関信号214を提供するよう結合されてよい。相関プロセッサ212は、受信した波形208を、波形32aの1つ以上のバージョン32bと相関させるよう適応される。幾つかの実施形態では、波形32aの1つ以上のバージョン32bは、ソナーシステム11と目標14との間の相対的な動きに従い、受信した音声信号198の複数の期待されるドップラシフトを表すことができる。相関プロセッサ212は、往々して、相関済み波形214を提供する。
【0044】
検出プロセッサ216は、時間の関数として相関済み波形214から導出される信号エネルギ対雑音エネルギの推定を用いて、及び予め確立された雑音モデル及び一定誤り警報レート(constant false alarm rate (CFAR))基準に基づく閾値を使用して、相関済み波形214から目標14を検出するよう適応される。検出信号218が提供され、これは、目標14の検出を示す。
【0045】
分類プロセッサ222は、検出信号218及び相関済み波形214を受信するよう適応され、また、出力として、目標14の種類を示す分類信号226を供給するよう適応される。
【0046】
ローカライズプロセッサ220は、検出信号218及び相関波形214及び相関済み波形214を受信し、検出した目標14の、距離、深度、方位角、及び/又は俯角におけるローカライズを示すローカライズ信号224を提供するよう適応される。ローカライズプロセッサ220は、分類信号226を受信するよう結合され、信号226を用いてローカライズ信号224を生成するよう適応されてもよい。例えば、ローカライズプロセッサ220は、分類プロセッサ222により決定される目標14の種類を用いて、目標14の位置をより正確に特定できる。幾つかの実施形態では、ローカライズプロセッサ220は、分類信号226を用いて、検出プロセッサ216により決定された誤ったターゲットとの接触(contacts)を除去できる。
【0047】
誘導制御システム54は、初期捜索中に車両の深度及び速度を一定に保つよう、そして次に、深度差及び方向が決定されると、目標に向かって操舵するよう構成されてよい。誘導制御システム54は、ローカライズ信号224を受信し及び処理して、AV10を目標14に向けて操舵できる。従って、誘導制御システム54は、AV10を操舵するために、AVの推進要素(図示しない)のうちの1つ以上に制御信号を送信するよう構成される回路を含む。1つ以上の推進要素は、AV10が水域(例えば、図1の海100)をトラバースすることを可能にする任意の知られている機械的要素(例えば、1つ以上のプロペラ)を含むことができる。利用され得る種々の推進要素及び関連技術は、参照により全体がここに組み込まれる米国特許第9,174,713号明細書に記載されている。図2に示されるように、幾つかの実施形態では、誘導制御システム54は、ナビジェーションセンサ64から情報を受信するように結合されてもよい。
【0048】
使命の開始のような任意の都合のよいときに、AV10は、目標の位置の初期推定を受信できる。AV10は、例えば通信インタフェース80を介して、初期推定を受信できる。通信インタフェース80は、通信装置(例えば、図1Aの通信装置12)と通信可能に結合するよう構成される。例えば、通信インタフェース80は、AV10が通信装置との双方向通信に従事することを可能にする無線トランシーバであることができる。他の例では、通信インタフェース80は、テザー(tether)を介して通信装置との双方向通信を可能にする、通信装置に接続された物理的テザーに結合されるよう構成される。
【0049】
誘導制御システム54は、入力として目標14のローカライズされた/相対位置情報を受信し及び本願明細書に開示された技術を用いて目標の深度差を計算する目標深度プロセッサ55を含むことができる。幾つかの実施形態では、目標深度プロセッサ55は、深度差関数をハードウェア、ソフトウェア、又はそれらの組合せで実装する。目標深度プロセッサ55の説明のための実装は、図2Bに示され、それに関連して以下に詳述される。誘導制御システム54は、初期捜索中に、AVの一定速度及び深度を維持できる。次に、目標の深度差が決定された後に、誘導制御システム54は、目標の3D位置(つまり、距離、方位、及び深度)を使用して、目標に的を絞ることができる。
【0050】
誘導制御システム54は、目標の位置(例えば、深度)の初期推定を、(ソナー11の部分として提供されてよく又はそうではなくてよい)メモリ56に格納する。初期推定は、世界測地系(World Geodetic System 1984 (WGS 84))準拠楕円体より上の測地緯度、経度、及び高度のようなフォーマットであることができる(楕円対より上の負の高度は海中の深度であることに留意する)。勿論、他のフォーマットが使用されてもよい。初期推定を用いて、AV10は、本願明細書で更に詳述されるように、水域をトラバースする。
【0051】
実施形態では、誘導制御システム54は、通信装置12から、目標14の位置の指示を受信してよいが、目標14は、AV10のソナーの検出範囲外に位置する。最初に、誘導制御システム54は、通信装置12により中継されたGPSデータを使用して、AV10を目標14に向けてナビゲートしてよい。AV10がソナーにより目標14を検出するために十分近くになると、目標及び方位のソナー測定値が端末が的を絞るのをサポートできる。しかしながら、深度差測定値がないと、AV10は、自身の無効化装薬(neutralizing charge)を発射するための発砲線上に存在することなく、泳いで目標14を過ぎてしまう。目標14を通過してしまうのを回避するために、誘導制御システム54は、本願明細書に記載されている技術を用いて、距離及び方位のソナー測定値に基づき深度差推定を計算し又は決定してよい。決定された深度差推定は、目標14に向かう端末誘導のために使用されてよい。
【0052】
例えば、誘導制御システム54は、ローカルの北、東、下(north, east, down (NED))座標を使用するローカル座標系を確立する。誘導制御システム54は、座標系の中で、AV10の初期位置も確立する。幾つかの実施形態では、AV10は、座標系の原点、例えばNEDにおける(0,0,0)に位置付けられる。NEDにおけるAV10の位置に基づき、誘導制御システム54は、目標の位置の初期推定を、第1フォーマットから、AV10に関するNED内の座標のような第2フォーマットへと変換する。議論を目的として、目標の位置(T)は、NEDにおいてT=(667.654,420.0,250)であると推定できる。
【0053】
NEDにおける目標の位置を決定することに応答して、誘導制御システム54は、AV10を、目標14に向かって一定速度(V)及び一定深度で移動するよう制御する。従って、任意の時間(t)において、AV10の位置は、S(t)=(x,y,z)として定義でき、ここで、(x,y,z)はAV10の開始位置(例えば、NEDにおける(0,0,0))である。更に、AV10と目標14との間の見通し線(L)は、L(t)=T-S(t)=L(0)-Vtとして定義され、ここで、L(t)は時間tにおける見通し線であり、Tは目標の位置であり、L(0)は時間0における見通し線である。実施形態では、ソナーは最初は長距離から目標に向かって移動していて、従って、L(0)とVとの間の角度は小さいと仮定される。
【0054】
AV10が目標に向かって移動するにつれ、ソナープロセッサ52は、周期的時間(t)において、AV10から目標14までの距離R(t)、及び相対方位(t)を測定する。ソナープロセッサ52は、次式に従い距離Rを時間tの関数(R(t))と示される)として計算するロジック及び/又はASIC(application-specific integrated circuit)を含むことができる:
【数1】
ここで、
Tは、目標の位置であり;
Vは、AVが目標に向かって移動するときのAVの速度であり;
Vtは、時間tの期間に渡る、AVの位置の変化であり;
xoは、AVの初期(又は開始)位置の第1座標であり;
xTは、目標位置の第1座標であり;
vxは、AVが目標に向かって移動するときの、デカルト座標系のAVのX方向の速度であり;
yoは、AVの初期(又は開始)位置の第2座標であり;
yTは、目標位置の第2座標であり;
vyは、AVが目標に向かって移動するときの、デカルト座標系のAVのY方向の速度であり;
zoは、AVの初期(又は開始)位置の第3座標であり;
zTは、目標位置の第3座標であり(留意すべきことに、zTはソナー測定により決定されず、記載される処理アプローチでは、複数の仮説が使用されてよく、それにより、仮説毎にR(t)がフィルタリングされる);
L(t)は、時間tにおける、AVと目標との間の見通し線である。
【0055】
更に、ソナープロセッサ52は、次式に従い、(t)を計算するロジック及び/又はASICを含むことができる:
【数2】
【0056】
相対方位を決定することに応答して、ソナープロセッサ52は、次式に従い、AVの地上コースξを相対方位に加算することにより真の方位(つまり、方位(α))を計算するロジック及び/又はASICを含むことができる:
【数3】
ここで、
α(t)は、時間tにおけるAVの真の方位位置であり(つまり、北からの、ソナーの頂点にある目標位置への角度);
(t)は、時間tにおけるAVから目標への相対方位であり(つまり、ソナーの速度ベクトルから目標への角度);
ξは、AVの地上コースである。
【0057】
真の方位を決定すると、ソナープロセッサ52は、誘導制御システム54にローカライズ信号224を提供する。この信号は、距離、相対方位、及び真の方位の計算値を含む。ローカライズ信号224を用いて、誘導制御システム54は、次式に従い、距離レートR(t)を決定する。
【数4】
【0058】
距離レートを用いて、誘導制御システム54は、目標深度プロセッサ55を用いて、AV10と目標14との間の深度差(本願明細書で|dz|とも示される)を決定する。実施形態では、AV10は、目標14から長距離にある初期位置を有することができる。そのような例では、円錐角θが深度差の全ての妥当な値に対して非常に小さいので、距離レートは深度差の判別式として不十分であり得る。実施形態では、誘導制御システム54は、図2Aに示したグラフ200と同様に、目標距離が一定速度で移動しているAVと静止目標との間の深度差の複数の初期仮説の下で時間に渡りどのように変化し得るかを示すグラフを生成できる。
【0059】
図2Aに関して、グラフ200は、曲線205、225、及び235のような複数の曲線を含む。図2Aの各曲線は、目標14の実際の深度がAV10の深度と仮定される量だけ異なった場合に、ソナー距離測定値が時間とともにどのように変化するかを示す。曲線の多様性は、目標14の深度差の複数の仮説を反映する。下側の曲線225は、深度差が比較的小さい場合に(例えば、ゼロ又はゼロに近い)、時間に渡る距離を示す。上側の曲線205は、深度差が比較的大きい場合に、時間に渡る距離を示す。点線の曲線230は、集合の中の曲線のうちの1つに測定値が最も適合することに基づき深度差推定を選択するために使用される実際の距離測定値を表す。図2Aでは、水平軸215は時間(例えば、単位:秒)を表し、垂直軸210は距離(例えば、単位:メートル)を表す。
【0060】
誘導制御システム54は、例えば10単位だけ離れた間隔で異なる深度の仮説を設けることにより、曲線205を生成する。この図示された例では、測定値225は、50の深度差|dz|において、追加の曲線205と揃う。時間に渡る実際の距離測定値の点線の曲線230は、下から5番目の曲線と最も適合する。仮説当たり10単位の間隔を開けて、深度差|dz|は50に近づく。本発明の例では、曲線205、225、及び230は、目標14が移動の方向から外れた方位にあることを示すことに留意する。特に、目標が車両のコース上で同じ深度にあった場合、曲線225は、0において最小値を有するだろう(何故なら、車両と目標が同じ深度にあるとき、つまり|dz|=0のとき、曲線225の最小値は、アプローチの最近接点に対応するからである)。目標14のそのような位置決めは、目標14を捕らえるために、AV10が、その深度を変更し向きを変えることも要求し得る。
【0061】
図2に戻ると、深度差が決定されると、誘導制御システム54は、深度差の方向を決定する(つまり、目標14がAV10の上又は下にあるか)。実施形態では、目標14がAV10の下又は上のいずれかにあることを保証するために、AV10の真の開始深度は、水域の表面近く又は水域の底面近くであることができる。他の実施形態では、誘導制御システム54は、AVのピッチに基づき深度の方向を決定してよい。例えば、AV10がピッチアップし、目標信号が強くなる場合、AV誘導は、目標の深度に向けて上に移動する。その他の場合、AV10は、目標に向けて下に移動する。
【0062】
図2Bは、幾つかの実施形態による、目標深度プロセッサ55の例を示す。プロセッサ55は、複数の深度差仮説の下でナビジェーションセンサにより車両の動きを補償され及び3次元デカルト座標に変換された2Dソナー測定値を処理できる。これらの仮説の各々の下で、雑音低減(カルマン)フィルタが適用されてよい。深度選択ロジックは、フィルタ残差(期待値とセンサ測定値との間の差)を最小化する深度差の仮説を選択できる。
【0063】
説明のための目標深度プロセッサ55は、マルチモデルフィルタを含んでよく、ここでは1つ以上のフィルタ84を含んでよい。複数のモデルは別個の深度差仮定に対応する。深度選択ロジック74は、より大きな「残差」を有するフィルタを除去する。フィルタ84は、ソナー11又はナビジェーションセンサ64のようなセンサにより導入され得る雑音も除去する。センサ11、64は、音速に対する温度の影響、測定値に対する量子化雑音、及びデジタルコンピュータにより実施されるアルゴリズムにおける数値的雑音を含む、環境の変動に起因する雑音を導入し得る。
【0064】
実施形態では、目標深度プロセッサ55はナビジェーションセンサ64からナビジェーションセンサ情報を及びソナーシステム11からソナー情報を受信する座標変換プロセッサ94を含む。ナビジェーションセンサ情報は、AV10の速度及び位置を含むことができる。ソナー情報は、距離及び方位角における目標14のローカライズを含むことができる。留意すべきことに、ソナーシステム11は、深度又は高度角を直接測定しない2次元センサとして提供される。しかしながら、上述のように、ソナーシステム11は、2次元測定値に基づき、深度差の推定を導出し又は決定してよい。例えば、深度差は、距離及び方位角測定値、及び/又は距離及び方位測定値に基づき、決定されてよい。
【0065】
ナビジェーション情報及びソナー情報を用いて、座標変換プロセッサ94は、目標の深度の幾つかの仮説、及びNEDにおける目標の対応する仮定された固定位置を生成する深度仮説の各々は、所望の深度分解能の整数倍であることができ、仮説の数は、目標14の所与の位置における起こり得る深度誤差をカバーするよう選択される。
【0066】
実施形態では、仮説の深度の各々は、本例ではカルマンフィルタ84を有するマルチモデルフィルタに適用される。言い換えると、カルマンフィルタは、仮説毎に実行される。各カルマンフィルタ84は、センサ11、64の各測定の後に、状態平均ベクトルXi(n)、及び共分散行列Pi(n)を生成する。
【0067】
生成された状態平均ベクトル及び共分散行列を用いて、フィルタ84に結合された深度選択ロジックプロセッサ74は、仮説の目標位置とフィルタリング済み状態との間の差の大きさを、次式に従い決定する:
【数5】
ここで、
iは、処理中のフィルタを表すインデックスであり;
Residula(i)は、仮説の目標位置とフィルタリング済み状態との間の差の大きさであり;
nは、フィルタ出力の時間インデックスであり;
Tiは、i番目のフィルタで使用された仮説目標位置であり;
Xi(n)は、フィルタのn番目の反復の後の、i番目のフィルタ状態平均ベクトルである。
【0068】
深度差は、(N-1)|dz|の値として決定される。ここで、Nは、最小のResidualのインデックスであり、|dz|は、1つの仮説から次の仮説に変更するために使用される深度差の量である。
【0069】
マルチモデルカルマンフィルタは、従って、複数の仮説曲線のうちの1つに対する距離及び方位測定の最適適合を見付けるよう構成され、仮説曲線の各々は、AVと目標との間の所与の深度差について生じることが期待されるソナー範囲測定値の変化をモデル化するよう構成される。つまり、カルマンフィルタリングは、直接検知されない状態の状態推定(例えば、速度又は加速度状態)のためのフィルタリングにより、目標追跡及び動きモデル選択の両方で使用される。
【0070】
深度差を用いて、誘導制御システム54(図2)は、AV10を目標14に向けて操舵する。実施形態では、誘導制御システム54は、目標14を無効にするために、AV10を目標14に向けて操舵する。ここで、目標14は敵の地雷又は他の敵の武器である。例えば、誘導制御システム54は、AV10に、以下のナビジェーションタスク:完全停止ホバリング、ホバリング及びピッチアップ、ホバリング及びピッチダウン、ホバリング及びより高い深度への移動、ホバリング及びより低い深度への移動、のうちの1つ以上を実行させることができる。AV10が目標14の近傍に近くなると、誘導制御システム54は、目標14を破壊するために、AV10を爆発させることができる。
【0071】
理解されるべきことに、幾つかの実施形態では目標深度プロセッサ55のうちの一部又は全部は、誘導制御システム(例えば、図2の誘導制御システム54)の部分として設けられてよいが、一方で、他の実施形態では、目標深度プロセッサ55はソナー(例えば、ソナー11)の部分として設けられてよい。
【0072】
図3は、2Dソナー測定値を取得する装置300の例を示す。説明のための装置300は、例えば、AV(例えば、図1のAV10)の「突出部」に位置付けられてよい。装置300は、アレイ40、48の直ぐ後ろに配置された送信機34及び受信機42の電子機器に加えて、ソナーアレイ40、48を含む(又はハウジングする)ことができる。本例では、アレイ40、48は、目標に対する正確な距離及び方位測定に適するミルズクロスアレイに配置される。装置300は、地雷探査器(Mine Countermeasures (MCM))車両のような、使い捨て用途に適する小型パッケージとして提供されてよい。
【0073】
上述のシステム及び方法は、デジタル電子回路で、コンピュータハードウェアで、ファームウェアで、及び/又はソフトウェアで実装されることができる。実装は、コンピュータプログラムプロダクトであることができる。実装は、例えば、データ処理機器による実行のために又はその動作を制御するために、機械可読記憶装置であることができる。実装は、例えば、プログラマブルプロセッサ、コンピュータ、及び/又は複数のコンピュータであることができる。
【0074】
コンピュータプログラムは、コンパイルされた及び/又はインタープリットされた言語を含む任意の形式のプログラミング言語で記述されることができ、コンピュータプログラムは、スタンドアロンプログラム又はサブルーチン、要素、/又はコンピューティング環境内での使用に適する他のユニットを含む任意の形式で展開されることができる。コンピュータプログラムは、1つのコンピュータ上で、又は1つの場所にある複数のコンピュータ上で実行されるよう展開されることができる。
【0075】
処理は、入力データに作用し及び出力を生成することにより本願明細書に記載された実施形態の機能を実行するためにコンピュータプログラムを実行する1つ以上のプログラマブルプロセッサにより実行されることができる。処理は、専用論理回路として実装できる機器により実行されることもできる。回路は、例えば、FPGA(field programmable gate array)及び/又はASIC(application-specific integrated circuit)であることができる。サブルーチン及びソフトウェアエージェントは、機能を実装するコンピュータプログラム、プロセッサ、専用回路、ソフトウェア、及び/又はハードウェアの部分を表すことができる。
【0076】
コンピュータプログラムの実行に適するプロセッサは、例えば、汎用及び特定用途向けマイクロプロセッサの両方、及び任意の種類のデジタルコンピュータの任意の1つ以上のプロセッサを含む。通常、プロセッサは、命令及びデータを読み出し専用メモリ又はランダムアクセスメモリ又は両者から受信する。コンピュータの基本的要素は、命令を実行するプロセッサ、及び命令及びデータを格納する1つ以上のメモリである。通常、コンピュータは、データを格納する1つ以上の大容量記憶装置(例えば、磁気、光磁気ディスク、又は光ディスク)からデータを受信し及び/又はそれらへデータを転送するために動作可能に結合されることができる。
【0077】
データ送信及び命令は、通信ネットワークを介して生じることもできる。コンピュータプログラム命令及びデータを具現化するために適する情報担体は、例として半導体メモリ装置を含むあらゆる形式の不揮発性メモリを含む。情報担体は、例えば、EPROM、EEPROM、フラッシュメモリ装置、磁気ディスク、内部ハードディスク、取り外し可能ディスク、光磁気ディスク、CD-ROM、及び/又はDVD-ROMディスクであることができる。プロセッサ及びメモリは、専用論理回路により補足され、/又はその中に組み込まれることができる。
【0078】
ユーザとの相互作用を提供するために、上述の技術は、ディスプレイ装置を備えるコンピュータで実施されることができる。ディスプレイ装置は、例えば、液晶ディスプレイ(LCD)モニタであることができる。ユーザとの相互作用は、例えば、ユーザへの情報の表示、ユーザがコンピュータに入力を提供できる(例えば、ユーザインタフェース要素と相互作用する)キーボード及びポインティングデバイス(例えば、マウス又はトラックボール)であることができる。他の種類の装置は、ユーザとの相互作用を提供するために使用されることができる。他の装置は、例えば、任意の形式の知覚フィードバック(例えば、視覚フィードバック、聴覚フィードバック、又は触覚フィードバック)でユーザに提供されるフィードバックであることができる。ユーザからの入力は、例えば、音響、会話、及び/又は触覚入力を含む任意の形式で受信されることができる。
【0079】
上述の技術は、分散型処理システム(つまり、複数のプロセッサを含む処理システム)で実装されることができ、例えばバックエンドコンポーネントを含んでよい。バックエンドコンポーネントは、例えば、データサーバ、ミドルウェアコンポーネント、及び/又はアプリケーションサーバであることができる。上述の技術は、フロントエンドコンポーネントを含む分散型コンピューティングシステムで実装されることができる。フロントエンドコンポーネントは、例えば、グラフィカルユーザインタフェース、ユーザが例示的な実装と相互作用できるウェブブラウザ、及び/又は送信装置のための他のグラフィカルユーザインタフェースを有するクライアントコンピュータであることができる。システムのコンポーネントは、任意の形式の又は媒体のデジタルデータ通信(例えば、通信ネットワーク)により相互接続されることができる。通信ネットワークの例は、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、インターネット、有線ネットワーク、及び/又は無線ネットワークを含む。
【0080】
システムは、クライアント及びサーバを含むことができる。クライアント及びサーバは、通常、互いにリモートにあり、標準的に通信ネットワークを通じて相互作用する。クライアント及びサーバの関係は、それぞれのコンピュータ上で実行するコンピュータプログラムに起因して生じ、互いにクライアント-サーバ関係を有する。
【0081】
パケットに基づくネットワークは、例えば、インターネット、キャリアインターネットプロトコル(IP)ネットワーク(例えば、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、キャンパス域ネットワーク(CAN)、都市域ネットワーク(MAN)、ホームエリアネットワーク(HAN)、構内IPネットワーク、IP構内交換機(IP private branch exchange (IPBX))、無線ネットワーク(例えば、無線アクセスネットワーク(RAN)、802.11ネットワーク、802.16ネットワーク、汎用パケット無線サービス(general packet radio service (GPRS))ネットワーク、HiperLAN)、及び/又は他のパケットに基づくネットワークを含むことができる。回線に基づくネットワークは、例えば、公衆交換電話ネットワーク(public switched telephone network (PSTN))、構内交換機(private branch exchange (PBX))、無線ネットワーク(例えば、RAN、Bluetooth、符号分割多重アクセス(CDMA)ネットワーク、時分割多重アクセス(TDMA)ネットワーク、グローバルシステムフォーモバイルコミュニケーションズ(GSM)ネットワーク)、及び/又は他の回線に基づくネットワークを含むことができる。
【0082】
送信装置は、例えば、コンピュータ、ブラウザ装置を備えるコンピュータ、電話機、IP電話機、モバイル装置(例えば、セルラ電話機、パーソナルデジタルアシスタント(PDA)装置、ラップトップコンピュータ、電子メール装置)、及び/又は他の通信装置を含むことができる。ブラウザ装置は、例えば、ワールドワイドウェブブラウザを備えるコンピュータ(例えば、デスクトップコンピュータ、ラップトップコンピュータ)(例えば、Microsoft CorporationのMicrosoft(登録商標)Internet Explorer(登録商標)、Mozilla CorporationのMozilla(登録商標)Firefox)を含むことができる。モバイルコンピューティング装置は、例えば、Blackberry(登録商標)を含むことができる。
【0083】
含む、有する、及び/又はそれらの複数の形式は、広義であり、列挙された部分を含み、列挙されていない追加部分を含むことができる。「及び/又は」は、広義であり、列挙された部分のうちの1つ以上、及び列挙された部分の組合せを含む。
【0084】
当業者は、精神又はその基本的特性から逸脱することなく、記載された概念が他の特定の形式で具現化されてよいことを理解する。前述の実施形態は、従って、本願明細書に記載された概念の制限ではなく、全ての側面において説明であると考えられる。概念の範囲は、従って、前述の説明によってではなく、添付の特許請求の範囲により示され、特許請求の範囲の均等な意味及び範囲内に含まれる全ての変更がここに包含されるべきである。
図1
図1A
図1B
図2
図2A
図2B
図3
【国際調査報告】