(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-10-27
(54)【発明の名称】電気油圧駆動システムのための二重構成
(51)【国際特許分類】
F15B 11/08 20060101AFI20221020BHJP
F15B 11/17 20060101ALI20221020BHJP
F15B 11/02 20060101ALI20221020BHJP
E02F 9/24 20060101ALI20221020BHJP
【FI】
F15B11/08 C
F15B11/17
F15B11/02 F
E02F9/24 K
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022512796
(86)(22)【出願日】2020-06-09
(85)【翻訳文提出日】2022-02-24
(86)【国際出願番号】 US2020036780
(87)【国際公開番号】W WO2021066892
(87)【国際公開日】2021-04-08
(32)【優先日】2019-10-01
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】513307933
【氏名又は名称】パーカー-ハネフィン コーポレーション
【氏名又は名称原語表記】PARKER-HANNIFIN CORPORATION
【住所又は居所原語表記】6035 Parkland Blvd. Cleveland, OH 44124 U.S.A.
(74)【代理人】
【識別番号】100098394
【氏名又は名称】山川 茂樹
(72)【発明者】
【氏名】ヴァンダーラーン,デイル
(72)【発明者】
【氏名】カール・ブレイク
(72)【発明者】
【氏名】チャン,ハオ
【テーマコード(参考)】
2D015
3H089
【Fターム(参考)】
2D015BA01
2D015BA04
3H089AA25
3H089AA80
3H089AA86
3H089AA87
3H089BB01
3H089CC01
3H089CC08
3H089CC11
3H089DA02
3H089DA06
3H089DA14
3H089DB13
3H089DB44
3H089DB46
3H089DB48
3H089DB49
3H089EE31
3H089GG02
3H089JJ02
(57)【要約】
例示的油圧システムは、油圧アクチュエータと、電気モータによって駆動され、入口ポート及び出口ポートを有するポンプと、増幅流体流を供給するか又は過剰流体流を受け入れるように構成した増幅流ラインと、槽に流体結合する槽流体ラインと、弁組立体とを含み、弁組立体は、複数の状態で動作するように構成され、ポンプが、油圧アクチュエータから排出された流体がポンプの入口ポートに供給される閉回路構成、又は油圧アクチュエータから排出された流体が槽に供給される開回路構成で動作することを可能にする。
【選択図】
図2
【特許請求の範囲】
【請求項1】
油圧システムであって、前記油圧システムは、
ピストン又は油圧モータを移動させるため、流体流を受け入れ、排出するように構成した油圧アクチュエータと、
流体流を前記油圧アクチュエータに供給するため、電気モータによって駆動する流体流源であるように構成したポンプであって、入口ポート及び出口ポートを有するポンプと、
増幅流体流を供給するか又は過剰流体流を受け入れるように構成した増幅流ラインと、
槽に流体結合する槽流体ラインと、
複数の状態で動作するように構成した弁組立体と
を備え、前記複数の状態は、少なくとも、(i)前記弁組立体が前記ポンプの前記入口ポートと前記槽との間の流路を遮断し、これにより、前記ポンプが、前記油圧アクチュエータから排出された流体を前記ポンプの前記入口ポートに供給する閉回路構成で動作することを可能にする第1の状態、及び(ii)前記弁組立体が前記ポンプの前記入口ポートと前記槽との間の流路を開放し、前記ポンプが、前記槽からの流体を引き込むことを可能にし、前記ポンプの前記出口ポートから前記増幅流ラインまでの流路を開放し、これにより、前記ポンプが、前記油圧アクチュエータから排出された流体を前記槽に供給する開回路構成で動作することを可能にする第2の状態を含む、油圧システム。
【請求項2】
前記油圧アクチュエータは、シリンダと、前記シリンダ内に摺動可能に収容されるピストンとを備える油圧シリンダ・アクチュエータであり、前記ピストンは、ピストン・ヘッドと、前記ピストン・ヘッドから延在するロッドとを備え、前記ピストン・ヘッドは、前記シリンダの内部空間を第1のチャンバ及び第2のチャンバに分割し、前記油圧シリンダ・アクチュエータは、前記ピストンを所与の方向で駆動するために前記ポンプによって前記第1のチャンバ又は前記第2のチャンバに供給される第1の流体流量が、前記ピストンが移動する際にもう一方のチャンバから排出される第2の流体流量とは異なるため、不平衡であり、
前記増幅流ラインは、前記第1の流体流量と前記第2の流体流量との間の差を含む増幅流体流を供給するか又は過剰流体流を受け入れるように構成し、
前記弁組立体は、前記増幅流ラインから前記ポンプの前記入口ポートへの流路を開放する一方で、前記ポンプが前記閉回路構成で動作する前記第1の状態で動作するように更に構成する、請求項1に記載の油圧システム。
【請求項3】
前記弁組立体は、
前記ポンプの前記出口ポートに流体結合する第1のポート、第2のポート、第3のポート、及び前記ポンプの前記入口ポートに流体結合する第4のポートを有するモード切替え弁と、
前記槽流体ラインに流体結合する第1のポート、及び前記モード切替え弁の前記第1のポートに流体結合する第2のポートを有する槽流弁と、
前記増幅流ラインに流体結合する第1のポート、及び前記モード切替え弁の前記第2のポートに流体結合する第2のポートを有する増幅流弁と
を備える、請求項1に記載の油圧システム。
【請求項4】
前記弁組立体が前記第1の状態にある場合、前記モード切替え弁は、前記モード切替え弁が、前記ポンプの前記出口ポートを前記槽流弁に流体結合し、前記ポンプの前記入口ポートを前記増幅流弁に流体結合するそれぞれの第1の状態で動作し、
前記弁組立体が前記第2の状態にある場合、前記モード切替え弁は、前記モード切替え弁が、前記ポンプの前記出口ポートを前記増幅流弁に流体結合し、前記ポンプの前記入口ポートを前記槽流弁に流体結合するそれぞれの第2の状態で動作する、請求項3に記載の油圧システム。
【請求項5】
前記弁組立体が前記第1の状態にある場合、前記槽流弁は、前記槽流体ラインへの流体流を遮断する一方で、前記増幅流弁は、前記増幅流ラインから前記モード切替え弁の前記第2のポートへの流体流を可能にし、
前記弁組立体が前記第2の状態にある場合、前記槽流弁は、前記槽流体ラインから前記モード切替え弁の前記第1のポートへの流体流を可能にする一方で、前記増幅流弁は、前記モード切替え弁の前記第2のポートから前記増幅流ラインへの流体流を可能にする、請求項4に記載の油圧システム。
【請求項6】
前記ポンプの前記入口ポートは、第1の流体流ラインを介して前記油圧アクチュエータの第1のポートに流体結合し、前記ポンプの前記出口ポートは、第2の流体流ラインを介して前記油圧アクチュエータの第2のポートに流体結合し、前記油圧システムは、
前記第1の流体流ライン内で前記ポンプの前記入口ポートと前記油圧アクチュエータの前記第1のポートとの間に配設した負荷保持弁
を更に備え、前記負荷保持弁は、少なくとも2つの状態:(i)前記負荷保持弁が、前記油圧アクチュエータの前記第1のポートを通じて排出された流体を前記ポンプの前記入口ポートに流すことを可能にし、前記ポンプが前記閉回路構成で動作するのを可能にするそれぞれの第1の状態、及び(ii)前記負荷保持弁が、前記油圧アクチュエータの前記第1のポートから排出された流体を前記槽流体ラインに流すことを可能にし、前記ポンプが前記開回路構成で動作するのを可能にするそれぞれの第2の状態のうち、1つの状態で動作するように構成する、請求項1に記載の油圧システム。
【請求項7】
前記負荷保持弁は、前記負荷保持弁が前記油圧アクチュエータから排出された流体を遮断するニュートラル状態で動作するように更に構成する、請求項6に記載の油圧システム。
【請求項8】
機械であって、前記機械は、
増幅流体流を供給するか又は過剰流体流を受け入れるように構成した増幅流ラインと、
槽に流体結合する槽流体ラインと、
複数の油圧アクチュエータと
を備え、前記複数の油圧アクチュエータの各油圧アクチュエータは、ピストン又は油圧モータを移動させるため、流体流を受け入れ、排出するように構成し、前記各油圧アクチュエータは、
(i)流体流をそれぞれの油圧アクチュエータに供給し、前記それぞれの油圧アクチュエータを駆動するため、電気モータによって駆動する流体流源であるように構成したポンプであって、入口ポート及び出口ポートを有するポンプと、
(ii)複数の状態で動作するように構成した弁組立体と
を備え、前記複数の状態は、少なくとも、(a)前記弁組立体が前記ポンプの前記入口ポートと前記槽との間の流路を遮断し、これにより、前記ポンプが、前記それぞれの油圧アクチュエータから排出された流体を前記ポンプの前記入口ポートに供給する閉回路構成で動作することを可能にする第1の状態、及び(b)前記弁組立体が前記ポンプの前記入口ポートと前記槽との間の流路を開放し、前記ポンプが、前記槽からの流体を引き込むことを可能にし、前記ポンプの前記出口ポートから前記増幅流ラインまでの流路を開放し、これにより、前記ポンプが、前記それぞれの油圧アクチュエータから排出された流体を前記槽に供給する開回路構成で動作することを可能にする第2の状態を含む、機械。
【請求項9】
前記機械は、ブームと、アームと、バケットと、回転プラットフォームとを有する掘削機であり、前記複数の油圧アクチュエータは、ブーム油圧シリンダ・アクチュエータと、アーム油圧シリンダ・アクチュエータと、バケット油圧シリンダ・アクチュエータと、前記回転プラットフォームを回転させるように構成した回転油圧モータ・アクチュエータとを備える、請求項8に記載の機械。
【請求項10】
前記複数の油圧アクチュエータの第1の油圧アクチュエータは、シリンダと、前記シリンダ内に摺動可能に収容したピストンとを備える油圧シリンダ・アクチュエータであり、前記ピストンは、ピストン・ヘッドと、前記ピストン・ヘッドから延在するロッドとを備え、前記ピストン・ヘッドは、前記シリンダの内部空間を第1のチャンバ及び第2のチャンバに分割し、前記油圧シリンダ・アクチュエータは、前記ピストンを所与の方向で駆動するために前記第1の油圧アクチュエータの前記第1のポンプによって前記第1のチャンバ又は前記第2のチャンバに供給される第1の流体流量が、前記ピストンが移動する際に他方のチャンバから排出される第2の流体流量とは異なるため、不平衡であり、
前記増幅流ラインは、前記第1の流体流量と前記第2の流体流量との間の差を含む増幅流体流を供給するか又は過剰流体流を受け入れるように構成し、
前記第1の油圧アクチュエータの第1の弁組立体は、前記第1の状態で動作し、前記第1の状態において、前記第1の弁組立体は、前記増幅流ラインから前記第1のポンプの前記入口ポートへの流路を開放するように更に構成し、
前記複数の油圧アクチュエータの第2の油圧アクチュエータの第2の弁組立体は、前記第2の状態で動作するため、前記第2の弁組立体は、前記第2の油圧アクチュエータの第2のポンプの前記出口ポートから前記増幅流ラインへの流路を開放し、これにより、前記第1の油圧アクチュエータに対して前記第1の流体流量と前記第2の流体流量との間の差を含む前記増幅流体流を供給する、請求項8に記載の機械。
【請求項11】
前記複数の油圧アクチュエータの第1の油圧アクチュエータの第1の弁組立体は、前記第1の状態で動作し、前記第1の状態において、前記第1の弁組立体は、前記増幅流ラインから前記第1の油圧アクチュエータの第1のポンプの前記入口ポートへの流路を開放するように更に構成し、前記機械は、前記第1の油圧アクチュエータから前記槽流体ラインへ流体を供給するように構成した負荷保持弁を更に備え、
前記複数の油圧アクチュエータの第2の油圧アクチュエータの第2の弁組立体は、前記第2の状態で動作するため、前記第2の弁組立体は、前記第2の油圧アクチュエータの第2のポンプの出口ポートから前記増幅流ラインへの流路を開放し、これにより、前記第2のポンプの前記出口ポートから前記第1のポンプの前記入口ポートに流体流を供給する、請求項8に記載の機械。
【請求項12】
前記複数の油圧アクチュエータの第1の油圧アクチュエータの第1の弁組立体は、前記第2の状態で動作し、前記第2の状態において、前記第1の弁組立体は、前記第1の油圧アクチュエータの第1のポンプの第1の出口ポートから前記増幅流ラインへの流路を開放するように更に構成し、
前記複数の油圧アクチュエータの第2の油圧アクチュエータの第2の弁組立体は、前記第2の状態で動作し、前記第2の状態において、前記第2の弁組立体は、前記第2の油圧アクチュエータの第2のポンプの第2の出口ポートから前記増幅流ラインへの流路を開放するように更に構成し、これにより、前記第1のポンプ及び前記第2のポンプを並列に接続し、前記第1のポンプの前記第1の出口ポートは、前記増幅流ラインを介して前記第2のポンプの前記第2の出口ポートに流体結合する、請求項8に記載の機械。
【請求項13】
前記弁組立体は、
前記ポンプの前記出口ポートに流体結合する第1のポート、第2のポート、第3のポート、及び前記ポンプの前記入口ポートに流体結合する第4のポートを有するモード切替え弁と、
前記槽流体ラインに流体結合する第1のポート、及び前記モード切替え弁の前記第1のポートに流体結合する第2のポートを有する槽流弁と、
前記増幅流ラインに流体結合する第1のポート、及び前記モード切替え弁の前記第2のポートに流体結合する第2のポートを有する増幅流弁と
を備える、請求項8に記載の機械。
【請求項14】
前記弁組立体が前記第1の状態にある場合、前記モード切替え弁は、前記モード切替え弁が、前記ポンプの前記出口ポートを前記槽流弁に流体結合し、前記ポンプの前記入口ポートを前記増幅流弁に流体結合するそれぞれの第1の状態で動作し、
前記弁組立体が前記第2の状態にある場合、前記モード切替え弁は、前記モード切替え弁が、前記ポンプの前記出口ポートを前記増幅流弁に流体結合し、前記ポンプの前記入口ポートを前記槽流弁に流体結合するそれぞれの第2の状態で動作する、請求項13に記載の機械。
【請求項15】
前記弁組立体が前記第1の状態にある場合、前記槽流弁は、前記槽流体ラインへの流体流を遮断する一方で、前記増幅流弁は、前記増幅流ラインから前記モード切替え弁の前記第2のポートへの流体流を可能にし、
前記弁組立体が前記第2の状態にある場合、前記槽流弁は、前記槽流体ラインから前記モード切替え弁の前記第1のポートへの流体流を可能にする一方で、前記増幅流弁は、前記モード切替え弁の前記第2のポートから前記増幅流ラインへの流体流を可能にする、請求項14に記載の機械。
【請求項16】
前記ポンプの前記入口ポートは、第1の流体流ラインを介して前記複数の油圧アクチュエータの前記それぞれの油圧アクチュエータの第1のポートに流体結合し、前記ポンプの前記出口ポートは、第2の流体流ラインを介して前記それぞれの油圧アクチュエータの第2のポートに流体結合し、前記機械は、
前記第1の流体流ライン内で前記ポンプの前記入口ポートと、前記それぞれの油圧アクチュエータの前記第1のポートとの間に配設した負荷保持弁
を更に備え、前記負荷保持弁は、少なくとも2つの状態:(i)前記負荷保持弁が、前記それぞれの油圧アクチュエータの前記第1のポートを通じて排出された流体を前記ポンプの前記入口ポートに流すことを可能にし、前記ポンプが前記閉回路構成で動作するのを可能にするそれぞれの第1の状態、及び(ii)前記負荷保持弁が、前記それぞれの油圧アクチュエータの前記第1のポートから排出された流体を前記槽流体ラインに流すことを可能にし、前記ポンプが前記開回路構成で動作するのを可能にするそれぞれの第2の状態のうち、1つの状態で動作するように構成する、請求項8に記載の機械。
【請求項17】
前記負荷保持弁は、前記負荷保持弁が前記それぞれの油圧アクチュエータから排出された流体を遮断するニュートラル状態で動作するように更に構成する、請求項16に記載の機械。
【請求項18】
方法であって、前記方法は、
油圧システムの制御器で、第1の油圧アクチュエータを作動させる要求を受信することであって、前記油圧システムは、(i)流体流を前記第1の油圧アクチュエータに供給するため、第1の電気モータによって駆動するように構成した第1のポンプであって、第1の入口ポート及び第1の出口ポートを有する第1のポンプと、(ii)前記第1のポンプを増幅流ライン、及び槽に流体結合する槽流体ラインに流体結合するように構成した第1の弁組立体と、(iii)流体流を第2の油圧アクチュエータに供給するため、第2の電気モータによって駆動するように構成した第2のポンプであって、第2の入口ポート及び第2の出口ポートを有する第2のポンプと、(iv)前記第2のポンプを前記増幅流ライン及び前記槽流体ラインに流体結合するように構成した第2の弁組立体とを備える、受信することと、
応答して、(i)流体流を供給する前記第1のポンプを駆動し、前記第1の油圧アクチュエータを駆動するため、第1の指令信号を前記第1の電気モータに送信することと、(ii)前記第1の弁組立体を、(a)前記第1の弁組立体が前記第1のポンプの前記第1の入口ポートと前記槽との間の流路を遮断し、これにより、前記第1のポンプが、前記第1の油圧アクチュエータから排出された流体が前記第1のポンプの前記第1の入口ポートに供給される閉回路構成で動作するのを可能にし、(b)前記増幅流ラインから前記第1のポンプの前記第1の入口ポートへの流路を開放する第1の状態で動作させることと、
前記第2のポンプを駆動するため、第2の指令信号を前記第2の電気モータに送信することと、
前記第2の弁組立体を、前記第2の弁組立体が前記第2のポンプの前記第2の入口ポートと前記槽との間の流路を開放し、前記第2のポンプの前記第2の出口ポートから前記増幅流ラインまでの流路を開放し、これにより、前記第2のポンプが、前記第2のポンプが前記槽から前記第2のポンプの前記第2の入口ポートに流体を引き込む開回路構成で動作することを可能にする第2の状態で動作させることと
を含む、方法。
【請求項19】
前記油圧システムは、前記第1の油圧アクチュエータと前記第1のポンプの前記第1の入口ポートとの間に配設した負荷保持弁を更に備え、前記方法は、
前記第1の油圧アクチュエータから排出された流体を前記槽流体ラインに供給するため、前記負荷保持弁を作動すること
を更に含み、前記第2の弁組立体は、前記第2の状態において、前記第2のポンプの前記第2の出口ポートから前記増幅流ラインへの流路を開放し、これにより、前記第2のポンプの前記第2の出口ポートから前記第1のポンプの前記第1の入口ポートへの流体流を供給する、請求項18に記載の方法。
【請求項20】
それぞれの第2の状態で動作させるため、前記第1の弁組立体を切り替えること
を更に含み、前記それぞれの第2の状態において、前記第1の弁組立体は、前記第1の油圧アクチュエータの前記第1のポンプの前記第1の出口ポートから前記増幅流ラインへの流路を開放するように構成し、前記第2の弁組立体は、前記第2の状態において、第2のポンプの前記第2の出口ポートから前記増幅流ラインへの流路を開放し、これにより、前記第1のポンプ及び前記第2のポンプを並列に接続し、前記第1のポンプの前記第1の入口ポートは、前記増幅流ラインを介して前記第2のポンプの前記第2の出口ポートに流体結合する、請求項18に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、作業機械(例えば、掘削機、ホイール・ローダ、バックホー等)のアクチュエータを動作させる油圧作動システムに関する。詳細には、本開示は、機械のそれぞれのアクチュエータのための、電気モータにより駆動される静油圧ポンプの使用、及びそれぞれのポンプの閉回路動作と開回路動作との間の切替えを可能にする二重システム構成に関する。
【背景技術】
【0002】
限定はしないが、油圧掘削機、ホイール・ローダ、ローディング・ショベル、バックホー・ショベル、採鉱機器、産業用機械等の作業機械では、上昇アーム及び/又は傾動アーム、ブーム、バケット、操舵機能及び旋回機能、走行手段等の1つ又は複数の作動構成要素を有することが一般的である。一般的に、そのような機械において、原動機は、流体をアクチュエータに供給する油圧ポンプを駆動する。オープンセンタ弁又はクローズドセンタ弁は、アクチュエータへの流体の流れを制御することができる。そのような弁は、弁を通る絞流のために多大な動力損失を特徴とする。更に、そのような従来のシステムは、何個のアクチュエータを使用しているかに関わらず、ポンプから一定流量の供給を伴うことがある。したがって、そのようなシステムは、乏しい効率を特徴とする。
【0003】
したがって、作業機械の効率を向上させる油圧システムを有することが望ましい場合がある。本明細書で行う開示が提示されるのは、これら及び他の考慮事項に対してである。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、電気油圧駆動システムのための二重構成に関する実装形態を記載する。
【課題を解決するための手段】
【0005】
第1の例示的実装形態では、本開示は、油圧システムを記載する。油圧システムは、(i)ピストン又は油圧モータを移動させるため、流体流を受け入れ、排出するように構成した油圧アクチュエータと、(ii)電気モータによって駆動される流体流源であるように構成し、油圧アクチュエータに流体流を供給するポンプであって、入口ポート及び出口ポートを有するポンプと、(iii)増幅流体流を供給するか又は過剰流体流を受け入れるように構成した増幅流ラインと、(iv)槽に流体結合する槽流体ラインと、(v)複数の状態で動作するように構成した弁組立体とを備え、複数の状態は、少なくとも、(a)弁組立体がポンプの入口ポートと槽との間の流路を遮断し、これにより、ポンプが、油圧アクチュエータから排出された流体をポンプの入口ポートに供給する閉回路構成で動作することを可能にする第1の状態、及び(b)弁組立体がポンプの入口ポートと槽との間の流路を開放し、ポンプが、槽から流体を引き込むことを可能にし、ポンプの出口ポートから増幅流ラインまでの流路を開放し、これにより、ポンプが、油圧アクチュエータから排出された流体を槽に供給する開回路構成で動作することを可能にする第2の状態を含む。
【0006】
第2の例示的実装形態では、本開示は、機械を記載する。機械は、(i)増幅流体流を供給するか又は過剰流体流を受け入れるように構成した増幅流ラインと、槽に流体結合する槽流体ラインと、複数の油圧アクチュエータとを含み、複数の油圧アクチュエータの各油圧アクチュエータは、ピストン又は油圧モータを移動させるため、流体流を受け入れ、排出するように構成し、各油圧アクチュエータは、(a)流体流をそれぞれの油圧アクチュエータに供給し、それぞれの油圧アクチュエータを駆動するため、電気モータによって駆動する流体流源であるように構成したポンプであって、入口ポート及び出口ポートを有するポンプと、(b)複数の状態で動作するように構成した弁組立体とを備える。複数の状態の第1の状態において、弁組立体は、ポンプの入口ポートと槽との間の流路を遮断し、これにより、ポンプが、それぞれの油圧アクチュエータから排出された流体をポンプの入口ポートに供給する閉回路構成で動作することを可能にする。複数の状態の第2の状態において、弁組立体は、ポンプの入口ポートと槽との間の流路を開放し、ポンプが、槽から流体を引き込むことを可能にし、ポンプの出口ポートから増幅流ラインまでの流路を開放し、これにより、ポンプが、それぞれの油圧アクチュエータから排出された流体を槽に供給する開回路構成で動作することを可能にする。
【0007】
第3の例示的実装形態では、本開示は、方法を記載する。方法は、油圧システムの制御器において、第1の油圧アクチュエータを作動させる要求を受信することを含み、油圧システムは、(a)流体流を第1の油圧アクチュエータに供給するため、第1の電気モータによって駆動するように構成した第1のポンプであって、第1の入口ポート及び第1の出口ポートを有する第1のポンプと、(b)第1のポンプを、増幅流ライン及び槽に結合する槽流体ラインに流体結合するように構成した第1の弁組立体と、(c)流体流を第2の油圧アクチュエータに供給するため、第2の電気モータによって駆動するように構成した第2のポンプであって、第2の入口ポート及び第2の出口ポートを有する第2のポンプと、(d)第2のポンプを増幅流ライン及び槽流体ラインに流体結合するように構成した第2の弁組立体とを備える。また、方法は、応答して、(a)第1のポンプを駆動し、流体流を供給し、第1の油圧アクチュエータを駆動するため、第1の指令信号を第1の電気モータに送信することと、(b)第1の弁組立体を第1の状態で動作させることとを含む。第1の状態において、第1の弁組立体は、第1のポンプの第1の入口ポートと槽との間の流路を遮断し、これにより、第1のポンプが、第1の油圧アクチュエータから排出された流体を第1のポンプの第1の入口ポートに供給する閉回路構成で動作することを可能にする。また、第1の状態において、第1の弁組立体は、増幅流ラインから第1のポンプの第1の入口ポートへの流路を開放する。方法は、第2のポンプを駆動するため、第2の指令信号を第2の電気モータに送信することを更に含む。方法は、第2の状態で第2の弁組立体を動作させることも含み、第2の状態では、第2の弁組立体は、第2のポンプの第2の入口ポートと槽との間の流路を開放し、第2のポンプの第2の出口ポートから増幅流ラインまでの流路を開放し、これにより、第2のポンプが、第2のポンプが槽から第2のポンプの第2の入口ポートに流体を引き込む開回路構成で動作することを可能にする。
【0008】
上記の概要は、例示にすぎず、決して限定を意図するものではない。上記した例示的態様、実装形態及び特徴に加えて、更なる態様、実装形態及び特徴が、図面及び以下の詳細な説明を参照すれば明らかになるであろう。
【0009】
例示的な例の新規特徴と考えられる特徴を添付の特許請求の範囲に示す。しかし、例示的な例、並びに好ましい使用モード、更なる目的及びそれらの説明は、添付の図面と共に読む際、本開示の例示的な例に関する以下の詳細な説明を参照すれば最良に理解されるであろう。
【図面の簡単な説明】
【0010】
【
図2】例示的実装形態による油圧システムの図である。
【
図3】例示的実装形態による、流れの総和を可能にする開回路構成を有する油圧システムの図である。
【
図4】例示的実装形態による、圧力の総和を可能にする開回路構成を有する油圧システムの図である。
【
図5】例示的実装形態による、閉回路構成と開回路構成との間の切替えを可能にする構成を有する油圧システムの図である。
【
図6】例示的実装形態による
図5の油圧システムの図であり、旋回油圧モータ・アクチュエータの電気静油圧アクチュエータ・システム(EHA)は、開回路動作モードにある。
【
図7】例示的実装形態による
図5の油圧システムの図であり、油圧シリンダ・アクチュエータのEHAは、開回路動作モードにある。
【
図8】例示的実装形態による、圧力総和動作モードで動作する
図5の油圧システムの図である。
【
図9】例示的実装形態による、流れ総和動作モードで動作する
図5の油圧システムの図である。
【
図10】例示的実装形態による、油圧システムを動作させる方法のフローチャートである。
【発明を実施するための形態】
【0011】
掘削機等の例示的油圧機械は、様々な任務を達成するため、複数の油圧アクチュエータを使用することができる。多くの電気ハイブリッド機械及び電池駆動機械は、様々な任務を達成するため、複数の油圧シリンダ及びモータを使用する。ハイブリッド内燃機関及び/又は電池のサイズを低減する一方で、電池の熱管理費用の低減を可能にすることによって、機械の効率を向上させることが望ましい。
【0012】
下記のように、効率を向上させる例示的システムの手法は、機械の各アクチュエータに対して専用静油圧ポンプ及び電気モータを有するオンデマンド閉回路システムを含む。この手法は、弁の計測を特徴とする従来のシステム、圧力の過剰生産、及び待機損失をなくす一方で、油圧-電気エネルギーの回収を可能にすることによって、効率を向上させることができる。しかし、各機械アクチュエータのための専用閉回路が、アクチュエータ間で流れの共有が可能ではない場合、過剰流容量及び過大構成要素を有するシステムにすることがある。更に、専用増幅回路又は充電回路が、以下で説明するロッド体積の補償を必要とする不平衡シリンダで使用されることがあり、システムを費用のかかるものにする。
【0013】
本明細書で開示する例の範囲内にあるのは、動力がオンデマンドの閉回路システムの費用を低減する一方で、効率に対する影響を低減可能にするシステム及び方法である。開示するシステムは、アクチュエータの負荷サイクルに応じて、アクチュエータの閉回路動作モードと開回路動作モードとの間で動的切替えを可能にする構成を有することによって、過剰流容量に対処する。開示するシステムは、ポンプが、要求がある場合に増幅流を他のアクチュエータに供給するように機械のアクチュエータを駆動することも可能にし、これにより、別個の高容量増幅ポンプの必要性をなくす。
【0014】
図1は、例示的実装形態による掘削機100を示す。掘削機100は、ブーム102と、アーム104と、バケット106と、回転プラットフォーム110に組み付けられる運転台108とを含むことができる。回転プラットフォーム110は、車輪付き車台又は軌道112等の軌道の上に置くことができる。アーム104は、ディッパ又はスティックと呼ぶこともできる。
【0015】
ブーム102、アーム104、バケット106及び回転プラットフォーム110の動きは、油圧流体の使用を通じて、油圧シリンダ及び油圧モータにより達成することができる。特に、ブーム102は、ブーム油圧シリンダ・アクチュエータ114により動かすことができ、アーム104は、アーム油圧シリンダ・アクチュエータ116により動かすことができ、バケット106は、バケット油圧シリンダ・アクチュエータ118により動かすことができる。
【0016】
回転プラットフォーム110は、旋回駆動装置により回転させることができる。旋回駆動装置は、回転プラットフォーム110を組み付ける旋回輪又は旋回歯車を含むことができる。旋回駆動装置は、旋回油圧モータ・アクチュエータ120を含むこともでき(
図5~
図9の回転油圧モータ・アクチュエータ506も参照)、旋回油圧モータ・アクチュエータ120は、回転プラットフォーム110の下に配設され、歯車箱に結合される。歯車箱は、旋回歯車の歯と係合する小歯車を有するように構成することができる。したがって、加圧流体により旋回油圧モータ・アクチュエータ120を作動すると、旋回油圧モータ・アクチュエータ120が歯車箱の小歯車を回転させ、これにより、回転プラットフォーム110を回転させる。
【0017】
運転台108は、掘削機100のオペレータのための制御ツールを含むことができる。例えば、掘削機100は、右ジョイスティック122と左ジョイスティック124とを有するドライブバイワイヤ・システムを含むことができ、右ジョイスティック122及び左ジョイスティック124は、電気信号を掘削機100の制御器にもたらすためにオペレータが使用することができる。次に、制御器は、上述の様々なアクチュエータを駆動し、掘削機械100を動作させるため、電気指令信号を掘削機械100の様々な電気作動構成要素に供給する。一例として、左ジョイスティック124は、アーム油圧シリンダ・アクチュエータ116及び旋回油圧モータ・アクチュエータ120を動作し得る一方で、右ジョイスティック122は、ブーム油圧シリンダ・アクチュエータ114及びバケット油圧シリンダ・アクチュエータ118を動作し得る。
【0018】
掘削機100は、開示するシステムの動作を示す例示的機械として本明細書では使用される。しかし、他の機械(ホイール・ローダ、バックホー、テレハンドラー等)を本明細書で開示するシステム及び方法によって制御し得ることを理解されたい。
【0019】
従来の機械において、エンジンは、1つ又は複数のポンプを駆動し、1つ又は複数のポンプは、次に、加圧流体を機械のアクチュエータ内のチャンバに供給する。アクチュエータ(例えば、ピストン)面上に作用する加圧流体の力は、アクチュエータ、及び接続した作業ツールを移動させる。油圧エネルギーが利用されると、流体は、チャンバから排出され、低圧槽に戻される。
【0020】
従来の油圧システムは、アクチュエータに供給される流体及びアクチュエータから槽に戻る流体を絞る弁を含むことができる。弁を通じて流体を絞ることにより、エネルギー損失が生じ、機械負荷サイクルの過程にわたり油圧システムの効率を低減させる。流体絞りに対する別の望ましくない影響は、油圧流体を加熱し、冷却要件及び冷却費用を増大させることである。更に、オープンセンタ弁を伴ういくつかの従来のシステムにおいて、1つ又は複数のポンプは、負荷サイクルの特定の時点で、機械オペレータが何個のアクチュエータを使用しているかに関わらず、全てのアクチュエータを移動させるのに十分であるような多量の流体流をもたらす。アクチュエータによって消費されなかった過剰流体は、槽に「捨てられる」。
【0021】
一例として、そのような油圧システムの効率は、20%程の低さであることがある。油圧機械が負荷サイクルごとに使用する燃料をより少なくすることを可能にするには、油圧機械の効率を向上させることが望ましい場合がある。より効率的な油圧機械を有すると、従来の内燃機関により駆動される油圧機械ではなく、充電可能な電池を有する電気システムを使用することも可能にする。油圧機械の効率を向上させるため、上記した従来の油圧システムを、オンデマンド閉回路電気静油圧アクチュエータ・システムに代えることができ、このシステムは、各機械アクチュエータのための専用静油圧ポンプと双方向可変速度電気モータとを有する。
【0022】
図2は、例示的実装形態による油圧システム200の図である。油圧システム200は、第1の油圧シリンダ・アクチュエータ204を制御する電気静油圧アクチュエータ・システム(EHA)202と、第2の油圧シリンダ・アクチュエータ208を制御するEHA206とを含む。油圧シリンダ・アクチュエータ204、208は、例えば、掘削機100のシリンダ・アクチュエータのいずれかを表すことができる。しかし、油圧システム200は、任意の数のアクチュエータ及び他の種類のアクチュエータ(例えば、油圧モータ)を含み得ることを理解されたい。
【0023】
油圧シリンダ・アクチュエータ204は、シリンダ210と、ピストン212とを含み、ピストン212は、シリンダ210内に摺動可能に収容され、線形方向で中を移動するように構成される。ピストン212は、ピストン・ヘッド214と、ロッド216とを含み、ロッド216は、ピストン・ヘッド214からシリンダ210の中心長手方向軸方向に沿って延在する。ロッド216は、負荷218(例えば、ブーム102、アーム104又はバケット106及びロッドに加えられるあらゆる力を表す)に結合される。ピストン・ヘッド214は、シリンダ210の内部空間を第1のチャンバ220及び第2のチャンバ222に分割する。
【0024】
第1のチャンバ220は、チャンバ内の流体がピストン・ヘッド214と相互作用するため、ヘッド側チャンバと呼ぶことができ、第2のチャンバ222は、ロッド216が部分的に中に配設されるため、ロッド側チャンバと呼ぶことができる。流体は、ワークポート215を通じて第1のチャンバ220間を流れることができ、ワークポート217を通じて第2のチャンバ222間を流れることができる。
【0025】
ピストン・ヘッド214は、直径DHを有し得る一方で、ロッド216は、直径DRを有し得る。したがって、第1のチャンバ220内の流体は、ピストン・ヘッド214の断面領域で相互作用し、この断面領域は、ピストン・ヘッド領域と呼ぶことができ、
【0026】
【0027】
に等しい。一方で、第2のチャンバ222内の流体は、ピストン212の環状面領域で相互作用し、この環状面領域は、ピストン環状領域
【0028】
【0029】
と呼ぶことができる。
【0030】
領域A
環状は、ピストン・ヘッド領域A
Hよりも小さい。したがって、ピストン212がシリンダ210内で拡張する(例えば、
図2の右に移動する)か又は後退する(例えば、
図2の左に移動する)際、第1のチャンバ220に入る又は第1のチャンバ220から排出される流体流量Q
Hは、第2のチャンバ222に入る又は第2のチャンバ222から排出される流体流量Q
環状よりも多い。特に、ピストン212が特定速度Vで移動している場合、Q
H=A
HVは、Q
環状=A
環状Vより大きい。流れの差は、Q
H-Q
環状=A
RVとして決定することができ、式中、A
Rはロッド216の断面積であり、
【0031】
【0032】
に等しい。この構成により、油圧シリンダ・アクチュエータ204は、一方のチャンバへの流体流/一方のチャンバからの流体流が、もう一方のチャンバへの流体流/もう一方のチャンバからの流体流に等しくないため、不平衡アクチュエータと呼ぶことができる。
【0033】
EHA202は、油圧シリンダ・アクチュエータ204への油圧流体流の量及び方向を制御するように構成される。そのような制御は、ポンプ226の駆動に使用される電気モータ224の速度及び方向を制御することによって達成され、ポンプ226は、双方向流体流源として構成される。ポンプ226は、流体流ライン230によって油圧シリンダ・アクチュエータ204の第1のチャンバ220に接続される第1のポンプ・ポート228と、流体流ライン234によって油圧シリンダ・アクチュエータ204の第2のチャンバ222に接続される第2のポンプ・ポート232とを有する。用語「流体流ライン」は、本明細書全体を通じて、示される接続をもたらす1つ又は複数の流体通路、導管等を示すために使用される。
【0034】
第1のポンプ・ポート228及び第2のポンプ・ポート232は、電気モータ224及びポンプ226の回転方向に基づき、入口ポート及び出口ポートの両方であるように構成される。したがって、電気モータ224及びポンプ226は、第1の回転方向で回転し、流体を第1のポンプ・ポート228(この場合入口ポート)から引き出し、流体を第2のポンプ・ポート232(この場合出口ポート)に注入するか、逆に、第2の回転方向で回転し、流体を第2のポンプ・ポート232(この場合入口ポート)から引き出し、流体を第1のポンプ・ポート228(この場合出口ポート)に注入することができる。
【0035】
図2に示すように、ポンプ226及び油圧シリンダ・アクチュエータ204は、閉回路、即ち、閉ループ油圧回路で構成される。用語「閉回路」は、流体がポンプ226と油圧シリンダ・アクチュエータ204との間のループ内で再循環されることを示すために本明細書で使用される。特に、EHA202において、ポンプ226は、流体を第1のポンプ・ポート228を通じてワークポート215に供給するか、又は第2のポンプ・ポート232を通じてワークポート217に供給し、他のワークポートから排出された流体は、ポンプ226の対応するポートに戻る。したがって、流体は、ポンプ226と油圧シリンダ・アクチュエータ204との間を再循環する。閉回路とは対照的に、開回路又は開ループ回路は、ポンプにより流体を槽から引き出し、次に、流体をアクチュエータに供給するが、アクチュエータから排出された流体が、ポンプの入口ポートに流れるのではなく、槽に戻ることを伴う。
【0036】
一例では、ポンプ226は、固定容積ポンプとすることができ、ポンプ226によって供給される流体流量は、電気モータ224の速度によって(即ち、ポンプ226の入力軸に結合された電気モータ224の出力軸の回転速度によって)制御される。例えば、ポンプ226は、特定のポンプ押しのけ量PDを有するように構成することができ、ポンプ容積PDは、例えば、ポンプ226によって生成又は供給される、1回転あたりの立方インチ単位の流体量(in3/rev)を決定する。電気モータ224は、毎分回転数(RPM)単位を有する指令速度で稼働することができる。したがって、電気モータ224の速度にPDを乗算すると、ポンプ226によって油圧シリンダ・アクチュエータ204に供給される1分あたりの立方インチ(in3/min)での流体流量Qが決定される。
【0037】
流量Qは、今度は、ピストン212の線形速度を決定する。例えば、電気モータ224が回転しており、ポンプ226が、第1のチャンバ220に流体を供給する第1の回転方向である場合、ピストン212は、速度
【0038】
【0039】
で拡張することができる。一方、電気モータ224が回転しており、ポンプ226が、第2のチャンバ222に流体を供給する第2の回転方向である場合、ピストン212は、速度
【0040】
【0041】
で後退することができる。
【0042】
図2に示すように、油圧シリンダ・アクチュエータ208は、油圧シリンダ・アクチュエータ204と同様に構成することができ、それぞれの負荷236に結合することができる。EHA206も、EHA202と同様に構成することができ、(ポンプ226と同様の)それぞれのポンプ238を含むことができ、ポンプ238は、それぞれの第1のポンプ・ポート237とそれぞれの第2のポンプ・ポート239とを有し、(電気モータ224と同様の)それぞれの電気モータ240によって制御される。
【0043】
上述のように、油圧シリンダ・アクチュエータ204は、第1のチャンバ220に供給される又は第1のチャンバ220から排出される流体流量が、第2のチャンバ222に供給される又は第2のチャンバ222から排出される流体流量よりも大きいため、不平衡である。したがって、第1のポンプ・ポート228から第1のチャンバ220に供給される、又は第1のポンプ・ポート228で受け入れる第1のチャンバ220からの流体流量は、第2のポンプ・ポート232から第2のチャンバ222に供給される、又は第2のポンプ・ポート232で受け入れる第2のチャンバ222からの流体流量よりも大きい。ポンプ226が供給する流体流量とポンプ226で受け入れる流体流量との間のそのような差異により、キャビテーションが生じることがあり、ポンプ226が適切に動作しない場合がある。
【0044】
EHA202は、増幅回路242を含み、増幅回路242は、流体流量を増幅する又は過剰流を消費し、そのような流体流量の差異を補償するように構成される。増幅回路242は、例えば、チャージ・ポンプを含むことができ、チャージ・ポンプは、槽244から流体を引き出し、流れを増幅流ライン246に供給するように構成される。槽244は、低圧レベル、例えば、75~100ポンド/平方インチ(psi)で流体を収容する流体保管所として構成することができる。別の例では、増幅回路242は、加圧流体を保管するように構成した蓄圧器を備えることができ、槽244は使用しなくてよい。増幅回路242は、増幅流ライン246を流れる過剰流体を受け入れ、そのような過剰流のための槽244への経路をもたらすように構成することもできる。
【0045】
EHA202は、逆止め弁247を含むことができる。逆止め弁247は、ポンプ・ポート228を介してポンプ226によって供給される流体を遮断し、そのような流体を第1のチャンバ220にそらし、ピストン212を拡張させるように構成することができる。例では、逆止め弁247は、ピストン212が後退している場合等に電子制御することができ、過剰流を増幅回路242に供給することが望ましい場合、逆止め弁247は、開放状態に切り替えることができ、過剰流を第1のチャンバ220から増幅回路242に流すことを可能にする。
【0046】
図2に示すように、油圧システム200は、制御器248を含むことができる。制御器248は、1つ若しくは複数のプロセッサ又はマイクロプロセッサを含むことができ、データ記憶装置(例えば、メモリ、一時的コンピュータ可読媒体、非一時的コンピュータ可読媒体等)を含んでもよい。データ記憶装置は、命令をデータ記憶装置上に記憶させることができ、これらの命令は、制御器248の1つ又は複数のプロセッサによって実行されると、制御器248が、本明細書で説明する動作を実施する。
【0047】
制御器248は、様々なセンサ又は入力デバイスからの信号を介してセンサ情報を含む入力情報を受信することができ、応答して、EHA202の様々な構成要素に電気信号を供給する。例えば、制御器248は、(例えば、掘削機100のジョイスティック122、124から)指令又は入力を受信し、ピストン212を所与の方向で、特定の所望の速度で移動させる(例えば、ピストンを拡張又は後退させる)ことができる。制御器248は、ピストン212の1つ若しくは複数の位置又は速度、様々な油圧ライン、チャンバ、又はEHA202のポートの圧力レベル、負荷218の大きさ等を示すセンサ情報を受信することもできる。これに応答して、制御器248は、指令信号をパワー・エレクトロニクス・モジュール250を介して電気モータ224に供給し、ピストン212を指令方向で、所望の指令速度で、制御して移動させることができる。
【0048】
パワー・エレクトロニクス・モジュール250は、例えば、半導体切替え要素(トランジスタ)の構成を有するインバータを備えることができ、掘削機100の電池252から供給される直流電流(DC)電力から、電気モータ224を駆動可能な3相電力に変換することを支持し得る。電池252は、制御器248に電気的に結合し、電力を制御器248に供給し、制御器248からの指令を受信することもできる。他の例では、掘削機100を、電池252によって電気的に推進するのではなく、内燃機関(ICE)によって推進させる場合、発電機をICEに結合し、パワー・エレクトロニクス・モジュール250のために発電することができる。
【0049】
油圧システム200は、電気モータ240を制御し制御器248と通信する別のパワー・エレクトロニクス・モジュールを含むことができる。増幅回路242は、それぞれの電気モータ及びチャージ・ポンプを制御するそれぞれのパワー・エレクトロニクス・モジュールを含むこともできる。そのようなパワー・エレクトロニクス・モジュールは、図の視覚的な煩雑さを低減するため、
図2では示さない。
【0050】
ピストン212を拡張する(即ち、ピストン212を
図2の右に移動させる)には、制御器248は、指令信号をパワー・エレクトロニクス・モジュール250に送信し、電気モータ224を動作させ、ポンプ226を第1の回転方向で回転させることができる。したがって、流体は、ポンプ・ポート228から流体流ライン230を通じて第1のチャンバ220に供給され、ピストン212を拡張させる。ピストン212が拡張するにつれて、流体が第2のチャンバ222から排出され、第2のポンプ・ポート232に流れる(閉回路構成)。
【0051】
同時に、増幅回路242は、増幅流ライン246を通じて流れを補償又は増幅することができ、増幅流は、第2のチャンバ222から排出された流体に合流する。次に、第2のチャンバ222及び増幅回路242から結合した流れは、第2のポンプ・ポート232に流れる。増幅流量Q増幅の補償は、Q増幅=ARVとして決定され、上述のように、式中、ARは、ロッド216の断面積であり、Vは、ピストン212の速度である。
【0052】
したがって、ポンプ・ポート232に供給される流量は、ポンプ226によってポンプ・ポート228及び流体流ライン230を通じて第1のチャンバ220に供給される流量に実質的に等しい。特に、チャンバ222から流体流ライン234を通じてポンプ・ポート232に戻る流体は、低圧レベルを有し、したがって、ポンプ・ポート232に戻る流れの低圧レベルに一致する低圧レベルで増幅流を供給することができる。例えば、増幅流は、10~35バール又は145~500psiの範囲内で圧力レベルを有することができる。このことは、負荷218が抵抗性であると仮定して、負荷218に対してピストン212を拡張させるためにポンプ226が第1のチャンバ220に供給し得る4500psi等の高圧レベルと比較される。
【0053】
ピストン212を後退させる(即ち、ピストン212を
図2の左に移動させる)には、制御器248は、指令信号をパワー・エレクトロニクス・モジュール250に送信し、電気モータ224を動作させ、ポンプ226を第1の回転方向とは反対の第2の回転方向で回転させることができる。したがって、流体は、ポンプ・ポート232から流体流ライン234を通じて第2のチャンバ222に供給され、ピストン212を後退させる。
【0054】
第1のチャンバ220から排出された流体は、第2のチャンバ222に供給される流体と比較すると、より高流速で流れる。第1のチャンバ220から戻る過剰流は、増幅流ライン246に流れ、次に、増幅回路242に流れことができ、これにより、槽244への流路をもたらすことができる。過剰流量は、Q過剰=ARVとして決定することができる。したがって、第1のチャンバ220からの過剰流は、増幅流ライン246に供給される一方で、第1のチャンバ220からポンプ・ポート228に戻る流体流量は、ポンプ226によって、ポンプ・ポート232及び流体流ライン234を通じて第2のチャンバ222に供給される流量に実質的に等しい。
【0055】
EHA206は、ピストンを拡張又は後退させるのと同様に、油圧シリンダ・アクチュエータ208のピストンの動作を制御することができる。したがって、油圧システム200は、各油圧シリンダ・アクチュエータ204、208のための専用静油圧ポンプ(即ち、ポンプ226、238)と、電気モータ(即ち、電気モータ224、240)とを有するオンデマンド閉回路システムを備える。この手法は、弁の計測を特徴とする従来のシステムをなくすことによって、効率を向上させることができる。
【0056】
しかし、増幅流をもたらし、過剰流を受け入れる専用増幅回路242があると、増幅回路242が更なる増幅ポンプ及び関連する流体接続部を含み得る場合、油圧システムに費用及び複雑さを追加させる。増幅流をもたらすのに既存のポンプ及びモータを利用する様式で油圧システムを構成するのではなく、専用増幅システムを伴わずに機械の油圧システム構成することが望ましい場合があり、これにより、システムの費用を低減し、その効率を増大させる。
【0057】
更に、各機械アクチュエータのための専用閉回路が、アクチュエータの間で流れの共有及び流れの総和を可能にしない場合、過剰流量及び過大構成要素を有するシステムにすることがある。例えば、油圧シリンダ・アクチュエータ204、208の一方にそれぞれの負荷を移動させるように命じる一方で、他方に移動を命じていない場合、命じられていない油圧シリンダ・アクチュエータは、流れを供給するための容量が使用されずに、遊休状態のままである。したがって、場合によっては、ポンプ226、238を並列に流体接続する開回路構成でEHA202、206の一方又は両方を動作させ、流れの総和を可能にし、システムのポンプ及びモータの利用を向上させることが望ましい場合がある。このように、場合によっては、より小さなポンプを使用することができる。
【0058】
図3は、例示的実装形態による、開回路構成が流れの総和を可能にする油圧システム300を示す。油圧システム300は、流れの総和を示すため、油圧シリンダ・アクチュエータ204、208のピストンの拡張を伴う状態を示す簡略化された形式で示す。しかし、油圧システム300は、方向弁を含むことができ、方向弁は、油圧システム500に対して以下で説明するように、ピストンの後退を可能にするように作動し得ることを理解されたい。更に、槽244は、油圧システム300内の複数の場所で示されるが、
図3全体を通して同じ参照番号で指定される。
【0059】
油圧システム300は、ポンプ・ポート228を油圧シリンダ・アクチュエータ204の第1のチャンバ220に流体結合し得る可変オリフィス302と、第2のチャンバ222を槽244に流体結合する可変オリフィス304とを含む。可変オリフィス302、304は、
図3に概略的に示すが、例えば、電気的に作動することができる方向弁、比例弁によって形成し得ることを理解されたい。可変オリフィス302、304は、個別の弁又は一方向弁内に含めることができる。油圧システム300は、可変オリフィス306と可変オリフィス308とを更に含み、可変オリフィス306及び可変オリフィス308は、油圧シリンダ・アクチュエータ208に流体結合され、可変オリフィス302、304と同様に動作する。
【0060】
閉回路構成で構成したポンプ226、238を有する油圧システム200とは対照的に、油圧システム300は、開回路構成で構成したポンプ226、238を有する。特に、ポンプ226のポンプ・ポート228は、流体流ライン310を介してポンプ238のポンプ・ポート237に流体結合される一方で、ポンプ226のポンプ・ポート232及びポンプ238のポンプ・ポート239は、槽244に流体結合される。このように、それぞれのピストンが拡張する際に油圧シリンダ・アクチュエータ204、208から排出される流体は、油圧システム200のような閉ループではポンプ226、238に戻らない。そうではなく、油圧シリンダ・アクチュエータ204、208から排出された流体は、槽244に戻る。この場合、ポンプ226、238は、槽244から流体を引き込み、流体を油圧シリンダ・アクチュエータ204、208に押し出し、ピストンを拡張させる。
【0061】
例えば、オペレータがピストン212を拡張させる指令を与えたと仮定すると、制御器248は、電気モータ224を作動させ、ポンプ226を駆動することができる。ポンプ226は、ポンプ・ポート232を通じて流体を槽244から引き込み、流体をポンプ・ポート228に押し出す。また、制御器248は、可変オリフィス302を開放し、第1のチャンバ220への流路を開放し、ピストン212を拡張させ、可変オリフィス304を開放し、第2のチャンバ222から排出された流体を槽244に供給する流路を形成する。
【0062】
特に、油圧システム300の構成により、ポンプ238のポンプ・ポート237は、流体流ライン310を介してポンプ226のポンプ・ポート228に流体結合される。このように、ポンプ226、238は、並列で接続される。したがって、ポンプ238の流体出力は、ピストン212を拡張させるために油圧シリンダ・アクチュエータ204の第1のチャンバ220に流れる前、ポンプ226の流体出力に合流するか、ポンプ226の流体出力に追加されるか、又はポンプ226の流体出力と総和される。同様に、ポンプ226の流体出力は、ピストンを拡張させるために油圧シリンダ・アクチュエータ208に流れる前、ポンプ238の流体出力に合流するか、ポンプ238の流体出力に追加されるか、又はポンプ238の流体出力と総和される。
【0063】
このように、ポンプ226、238を駆動する電気モータ224、240の最大許容速度に基づき利用可能な総流量は、それぞれのピストンに対する指令速度に応じて、油圧シリンダ・アクチュエータ204と208との間に分配することができる。例えば、油圧シリンダ・アクチュエータ204のピストン212に、油圧シリンダ・アクチュエータ208のピストンと比較してより高速で移動するように命じたと仮定する。この例では、制御器248は、可変オリフィス302、306を異なる開放サイズに開放することができ、これにより、ポンプ・ポート237を通じてポンプ238によって押し出される流体部分が油圧シリンダ・アクチュエータ208に流れてピストンを拡張させる。流体の残りの部分は、流体流ライン310を通じて流れ、ポンプ・ポート228を通じてポンプ226によって押し出された流体に合流し、可変オリフィス302を通じて第1のチャンバ220に流れ、ピストン212を拡張させる。この構成は、ポンプ226、238の個々のポンプ容量を低減可能にし得る。というのは、この構成により、2つのポンプ226、238の間の流れの総和を可能にするためである。したがって、油圧システム200と比較して、より小型の、費用があまり高くない構成要素を使用することができる。
【0064】
他の例では、圧力の総和を可能にするシステム構成を有することが望ましい場合がある。電気モータ224、240によって与えられるモータ・トルクは、それぞれのポンプの出口ポートにおける圧力レベル(P出)とポンプの入口ポートにおける圧力レベル(P入)との間の圧力差に基づき決定される。例えば、電気モータ224がポンプ226に供給し、ピストン212を拡張させ、負荷218を押し出すトルク(したがって動力)は、(P出-P入)のデルタ圧力値に基づき、P出は、(第1のチャンバ220内の圧力レベルに実質的に等しい)ポンプ・ポート228の圧力レベルであり、P入は、(第2のチャンバ222内の圧力レベルに実質的に等しい)ポンプ・ポート232の圧力レベルである。圧力レベルP出、P入は、負荷218の大きさによって決定することができる。
【0065】
デルタ圧力値(P出-P入)がより高いほど、電気モータ224がピストン212及び負荷218を所与の速度で駆動するために供給する必要があるトルク及び動力は、より大きい。したがって、ポンプ226、238を直列に流体接続する開回路構成でEHA202、206の一方又は両方を動作させることが望ましい場合があり、第1のポンプの出口ポートは、第2のポンプの入口ポートに接続され、圧力の総和を可能にし、第2のポンプにわたるデルタ圧力値を低減する。このように、第2のポンプのモータが供給する必要があるトルクを低減することができる。したがって、システムの利用を向上することができ、場合によっては、より小型サイズのモータを使用することができる。
【0066】
図4は、例示的実装形態による、圧力の総和を可能にする開回路構成を有する油圧システム400を示す。油圧システム400は、簡略化された形式で示され、圧力の総和を示すため、油圧シリンダ・アクチュエータ204、208のピストンの拡張を伴う状態を示す。しかし、油圧システム400は、方向弁を含むことができ、方向弁は、油圧システム500に対して以下で説明するように、ピストンの後退を可能にするように作動し得ることを理解されたい。更に、槽244は、油圧システム400内の複数の場所で示されるが、
図4全体を通して同じ参照番号で指定する。
【0067】
油圧システム400は、開回路実装形態で構成したポンプ226、238を有する。しかし、ポンプ226、238が並列に接続され、ポンプ出口ポート(ポンプ226のポンプ・ポート228及びポンプ・ポート237)が流体接続される油圧システム300とは対照的に、油圧システム400では、ポンプ226、238は直列に接続される。詳細には、ポンプ・ポート237(関連するピストンが拡張している際のポンプ238の出口ポート)は、流体流ライン402を介してポンプ・ポート232(ピストン212が拡張している際のポンプ226の入口ポート)に接続される。
【0068】
したがって、ポンプ238の流体出力は、ポンプ226の入口ポートに供給される。このように、ポンプ238は、高圧流体をポンプ226の入口ポートに供給し、これにより、ポンプ226にわたる圧力差を低減する(即ち、ポンプ226が流体を加圧する大きさを低減する)ことができる。ポンプ226にわたるデルタ圧力(P出-P入)を低減した結果として、電気モータ224がポンプ226に供給するトルク及び動力を低減することができる。したがって、油圧システム400の電力消費量も低減することができる。
【0069】
したがって、油圧システム200は、各アクチュエータのための専用EHAを有する閉回路構成をもたらす一方で、油圧システム300、400は、流れの総和及び圧力の総和のそれぞれを可能にする開回路構成をもたらす。閉回路構成と開回路構成との間で選択的に切り替える油圧システムを有することが望ましい場合がある。そのようなシステムは、異なる動作モードの間での切替えに対して柔軟性をもたらし、油圧システムのオペレータの指令及び条件に基づき、システムの効率及びシステムの構成要素の利用を最適化する。
【0070】
図5は、例示的実装形態による、閉回路構成と開回路構成との間の切替えを可能にする構成を有する油圧システム500を示す。油圧システム500は、機械の様々なアクチュエータを制御するEHA501A、501B、501Cを含む。特に、EHA501A、501Bは、油圧シリンダEHAであり、EHA501Aが油圧シリンダ・アクチュエータ502を制御し、EHA501Bが油圧シリンダ・アクチュエータ504を制御する一方で、EHA501Cは、油圧モータEHAであり、回転油圧モータ・アクチュエータ506を制御する。
【0071】
油圧シリンダ・アクチュエータ502、504は、油圧シリンダ・アクチュエータ204、208と同様に構成され、掘削機100の油圧シリンダ・アクチュエータ114、116及び118のいずれかを表すことができる。回転油圧モータ・アクチュエータ506は、例えば、掘削機100の旋回油圧モータ・アクチュエータ120を表すことができる。特に、油圧シリンダ・アクチュエータ502、504の不平衡アクチュエータとは異なり、回転油圧モータ・アクチュエータ506は平衡であり、動作の際に増幅流を必要としない。
【0072】
EHA501A、501B及び501Cは、同じ構成要素を備える。したがって、EHA501A、501B及び501Cの構成要素又は要素は、同じ参照番号で指定し、「A」、「B」又は「C」の接尾辞は、EHA501A、501B及び501Cのそれぞれに対応する。EHA501Aを以下で詳細に説明するが、EHA501B及び501Cは同様に動作することを理解されたい。
【0073】
更に、制御器248、パワー・エレクトロニクス・モジュール250及び電池252は、図の視覚的な煩雑さを低減するため、
図5には示さない。しかし、油圧システム500は、制御器248等の制御器を含むことができ、制御器は、電気モータ及び電気作動弁のソレノイド・コイル等の油圧システム500の様々な構成要素を動作、作動させるように構成されることを理解されたい。また、油圧システム500の電気モータは、パワー・エレクトロニクス・モジュール250と同様に、それぞれのパワー・エレクトロニクス・モジュールによって駆動又は制御されることを理解されたい。電池252と同様の電池も、油圧システム500の様々な構成要素及びモジュールに給電することができる。
【0074】
油圧シリンダ・アクチュエータ502は、油圧シリンダ・アクチュエータ204と同様に構成され、ピストン・ヘッドを有するピストン508Aを有し、ピストン・ヘッドは、油圧シリンダ・アクチュエータ502のシリンダを、ヘッド側又は第1のチャンバ510及びロッド側又は第2のチャンバ512に分割する。EHA501Aは、油圧シリンダ・アクチュエータ502への油圧流体流の量及び方向を制御するように構成される。そのような制御は、双方向流体流源として構成した(ポンプ226、238と同様の)ポンプ516Aを駆動するように構成した(電気モータ224、240と同様の)電気モータ514Aの速度及び方向を制御することによって達成される。ポンプ516Aは、流体流ライン520Aによって油圧シリンダ・アクチュエータ502の第1のチャンバ510に接続される第1のポンプ・ポート518Aと、流体流ライン524Aによって油圧シリンダ・アクチュエータ502の第2のチャンバ512に接続される第2のポンプ・ポート522Aとを有する。
【0075】
第1のポンプ・ポート518A及び第2のポンプ・ポート522Aは、電気モータ514A及びポンプ516Aの回転方向に基づき、入口ポート及び出口ポートの両方であるように構成される。したがって、電気モータ514A及びポンプ516Aは、第1の回転方向で回転し、第1のポンプ・ポート518Aを通じて流体を引き込み、流体を第2のポンプ・ポート522Aに注入するか、又は逆に、第2の回転方向で回転し、第2のポンプ・ポート522Aを通じて流体を引き込み、流体を第1のポンプ・ポート518Aに注入することができる。
【0076】
EHA501Aは、第1の負荷保持弁526Aを更に含み、第1の負荷保持弁526Aは、第1のポンプ・ポート518Aと第1のチャンバ510との間で流体流ライン520A内に配設される。EHA501Aは、第2の負荷保持弁528Aも含み、第2の負荷保持弁528Aは、第2のポンプ・ポート522Aと第2のチャンバ512との間で流体流ライン524A内に配設される。負荷保持弁526A、528Aは、圧力制御弁として構成することができ、ピストン508Aが制御されずに移動しないようにする。特に、負荷保持弁526A、528Aは、逆止め弁として動作するように構成することができ、ポンプ516Aからチャンバ510、512への自由な流れを可能にする一方で、作動されるまで、流体がチャンバ510、512からポンプ516Aに戻るのを遮断する。用語「遮断」は、本明細書全体を通して、例えば、1分あたりの液滴の最小流又は漏洩流を除き、流体流を実質的に防止することを示すように使用される。
【0077】
一例として、負荷保持弁526Aは、3つのポートを有する方向弁として構成することができ、第1のポートは、第1のチャンバ510に流体結合し、第2のポートは、(ポンプ・ポート518Aに結合される)流体流ライン520Aに流体結合し、第3のポートは、流体槽532に流体結合する槽流体ライン530に流体結合する。負荷保持弁526Aは、ソレノイド・コイル534A、536Aを備えるソレノイド・アクチュエータを有する電気作動弁とすることができる。
【0078】
負荷保持弁526Aがニュートラル位置又はニュートラル状態にある場合(即ち、ソレノイド・コイル534A、536Aに通電されていない場合)、流体がポンプ516Aから(ポンプ・ポート518A及び流体流ライン520Aを通り)負荷保持弁526Aを通じて第1のチャンバ510に流れることを可能にするが、第1のチャンバ510から排出された流体を遮断する。ソレノイド・コイル534Aに通電すると、負荷保持弁526Aは、第1の状態で動作し、第1のチャンバ510から排出された流体が、負荷保持弁526Aを通じて流体流ライン520Aに流れ、次に、ポンプ516Aのポンプ・ポート518Aに流れることを可能にする(例えば、閉回路構成)。一方、ソレノイド・コイル536Aに通電すると、負荷保持弁526Aは、第2の状態で動作し、第1のチャンバ510から排出された流体が、負荷保持弁526Aを通じて槽流体ライン530に流れることを可能にする(例えば、開回路構成)。
【0079】
負荷保持弁528Aは、負荷保持弁526Aと同様に構成される。特に、負荷保持弁528Aは、3つのポートを有する方向弁として構成することができ、第1のポートは、第2のチャンバ512に流体結合し、第2のポートは、(ポンプ・ポート522Aに結合される)流体流ライン524Aに流体結合し、第3のポートは、槽流体ライン530に流体結合する。負荷保持弁528Aも、ソレノイド・コイル538A、540Aを備えるソレノイド・アクチュエータを有する電気作動弁とすることができる。
【0080】
負荷保持弁528Aがニュートラル位置又はニュートラル状態にある場合(即ち、ソレノイド・コイル538A、540Aに通電されていない場合)、流体がポンプ516Aから(ポンプ・ポート522A及び流体流ライン524Aを通り)負荷保持弁528Aを通じて第2のチャンバ512に流れることを可能にするが、第2のチャンバ512から排出された流体を遮断する。ソレノイド・コイル538Aに通電すると、負荷保持弁528Aは、第1の状態で動作し、第2のチャンバ512から排出された流体が、負荷保持弁528Aを通じて流体流ライン524Aに流れ、次に、ポンプ516Aのポンプ・ポート522Aに流れることを可能にする(例えば、閉回路構成)。一方、ソレノイド・コイル540Aに通電すると、負荷保持弁528Aは、第2の状態で動作し、第2のチャンバ512から排出された流体が、負荷保持弁528Aを通じて槽流体ライン530に流れることを可能にする(例えば、開回路構成)。
【0081】
例えば、ピストン508Aを拡張させるには、ポンプ516Aは、流体流を第1のポンプ・ポート518Aから負荷保持弁526Aを通じて第1のチャンバ510に供給することができる(負荷保持弁526Aを
図5で示すように作動させなくてもよく、代替的に、ソレノイド・コイル534Aに通電することによって第1の状態に作動させてもよい)。第2のチャンバ512から排出された流体は、負荷保持弁528Aが作動されるまで、負荷保持弁528Aによって遮断される。例えば、
図5に示す状態で示すように、ソレノイド・コイル538Aに通電し、第2のチャンバ512から第2のポンプ・ポート522Aへの流体流路を開放し、EHA501Aを閉回路構成で動作させることができる。代替的に、負荷保持弁528Aは、ソレノイド・コイル540Aに通電することによって作動させ、第2のチャンバ512から槽流体ライン530への流体流路を開放し、EHA501Aを開回路構成で動作させることができる。
【0082】
逆に、ピストン508Aを後退させるには、ポンプ516Aは、流体流を第2のポンプ・ポート522Aから負荷保持弁528Aを通じて第2のチャンバ512に供給することができる(負荷保持弁526Aを作動させなくてもよく、ソレノイド・コイル538Aに通電することによって第1の状態に作動させてもよい)。第1のチャンバ510から排出された流体は、負荷保持弁526Aが作動されるまで、負荷保持弁526Aによって遮断される。例えば、ソレノイド・コイル534Aに通電し、第1のチャンバ510から第1のポンプ・ポート518Aへの流体流路を開放し、EHA501Aを閉回路構成で動作させることができる。代替的に、負荷保持弁528Aは、ソレノイド・コイル536Aに通電することによって作動させ、第1のチャンバ510から槽流体ライン530への流体流路を開放し、EHA501Aを開回路構成で動作させることができる。
【0083】
一例では、負荷保持弁526A、528Aは、作動時に全開するオン/オフ弁とし得る。別の例では、流体が排出されるチャンバ又は分配流体がそれぞれ供給されるチャンバ(チャンバ510、512のいずれか)内の流体圧力レベルを制御することが望ましい場合がある。この例では、負荷保持弁526A、528Aは、比例弁として構成することができ、負荷保持弁を通る特定のサイズの開口を有するように変調し、流体が排出されるチャンバ又は特定の流体量を可能にするチャンバのそれぞれにおける特定の背圧を達成することができる。
【0084】
油圧シリンダ・アクチュエータ502は、第1のチャンバ510に供給される流体流量又は第1のチャンバ510から排出される流体流量が、第2のチャンバ512に供給される流体流量又は第2のチャンバ512から排出される流体流量よりも大きいため、不平衡である。したがって、EHA501Aが閉回路構成で動作する場合、第1のポンプ・ポート518Aから第1のチャンバ510に供給される流体流量又は第1のチャンバ510から第1のポンプ・ポート518Aで受け入れられる流体流量は、第2のポンプ・ポート522Aから第2のチャンバ512に供給される流体流量又は第2のチャンバ512から第2のポンプ・ポート522Aで受けられる流体流量よりも大きい。ポンプ516Aが供給する流体流量とポンプ516Aで受けられる流体流量との間のそのような差異により、キャビテーションが生じることがあり、ポンプ516Aが適切に動作しない場合がある。EHA501Aは、流体流量を増幅させ、流体流量のそのような差異を補償する構成をもたらす。
【0085】
EHA501Aは、モード切替え弁542Aを含むことができ、モード切替え弁542Aは、閉回路動作モードと開回路動作モードとの間でEHA501Aの動作モードを切り替えるように構成される。EHA501Aは、モード切替え弁542Aに流体結合する増幅流弁544Aと槽流弁546Aとを有するように更に構成される。
【0086】
特に、モード切替え弁542Aは、4つのポートを有する3位置/4方向弁として構成することができ、(i)第1のポートは、槽流弁546Aに流体結合し、(ii)第2のポートは、増幅流弁544Aに流体結合し、(iii)第3のポートは、流体流ライン520A及びポンプ・ポート518Aに流体結合し、(iv)第4のポートは、流体流ライン524A及びポンプ・ポート522Aに流体結合する。モード切替え弁542Aは、ソレノイド・コイル548A、550Aを備えるソレノイド・アクチュエータを有する電気作動弁とすることができる。
【0087】
モード切替え弁542Aがニュートラル位置又は状態にある場合(即ち、ソレノイド・コイル548A、550Aに通電されていない場合)、全ての4つのポートは遮断され、流体はモード切替え弁542Aを通過しない。ソレノイド・コイル548Aに通電すると、モード切替え弁542Aは、第1の状態(
図5に示す)で動作することができ、モード切替え弁542Aは、流体流ライン520Aを槽流弁546Aに流体結合し、流体流ライン524Aを増幅流弁544Aに流体結合する。一方、ソレノイド・コイル550Aに通電すると、モード切替え弁542Aは、第2の状態で動作することができ、モード切替え弁542Aは、流体流ライン520Aを増幅流弁544Aに流体結合し、流体流ライン520Aを槽流弁546Aに流体結合する。
【0088】
例では、増幅流弁544Aは、2つのポートを有する2位置/2方向弁として構成することができ、第1のポートは、増幅流ライン552に流体結合し、第2のポートは、モード切替え弁542Aの第2のポートに流体結合する。増幅流弁544Aは、ソレノイド・コイル554Aを備えるソレノイド・アクチュエータを有する電気作動弁とすることができる。
図5に示す例示的実装形態では、増幅流弁544Aは、通常開放弁とすることができ、作動されていない場合(第1の状態)、モード切替え弁542Aを増幅流ライン552に流体結合する。しかし、ソレノイド・コイル554Aに通電すると、増幅流弁544Aは、第2の状態で動作し、増幅流弁544Aは、モード切替え弁542Aと増幅流ライン552との間の流体流を遮断する。
【0089】
同様に、例では、槽流弁546Aは、2つのポートを有する2位置/2方向弁として構成することができ、第1のポートは、槽流体ライン530に流体結合し、第2のポートは、モード切替え弁542Aの第1のポートに流体結合する。槽流弁546Aは、ソレノイド・コイル556Aを備えるソレノイド・アクチュエータを有する電気作動弁とすることができる。
図5に示す例示的実装形態では、槽流弁546Aは、通常開放弁とすることができ、作動されていない場合(第1の状態)、モード切替え弁542Aを槽流体ライン530に流体結合する。しかし、ソレノイド・コイル556Aに通電すると、槽流弁546Aは、第2の状態で動作し、槽流弁546Aは、モード切替え弁542Aと槽流体ライン530との間の流体流を遮断する。
【0090】
油圧システム500は、増幅流を不平衡アクチュエータに供給し得る専用増幅システムを有するのではなく、過剰流容量を有するアクチュエータが、過剰流を増幅流ライン552に供給し、増幅流を要求する不平衡アクチュエータに与えるように構成される。このことは、EHA501A、501B、501Cの負荷保持弁、モード切替え弁、増幅流弁及び槽流弁の状態を変更することによって達成される。
【0091】
例えば、油圧シリンダ・アクチュエータ502、504の両方のピストンが拡張しており、したがって、増幅流を必要とする場合、回転油圧モータ・アクチュエータ506のポンプ516Cは、増幅流を供給することができる(例えば、ポンプ516Cは、流体流ライン524C、ソレノイド・コイル548Cによって作動されるモード切替え弁542C、及び通常開放状態の増幅流弁544Cを通じて流体を増幅流ライン552に供給することができる)。特に、油圧システム500の制御器(例えば、制御器248)は、不平衡アクチュエータによって要求される流量を決定し、電気モータ514Cに特定の速度で回転するように命じ、要求された流体流量を発生させることができる。
【0092】
場合によっては、不平衡アクチュエータ(油圧シリンダ・アクチュエータ502、504)を作動するのと同時に、機械のオペレータ(例えば、掘削機100のオペレータ)は、回転油圧モータ・アクチュエータ506に所与の速度で移動する(例えば、回転プラットフォーム110を回転させる)ように命じる。これらの場合、制御器は、不平衡アクチュエータが要求する流量、及び回転油圧モータ・アクチュエータ506を動作するのに要求される流量を決定し、次に、電気モータ514Cに、合計流量を生成する特定の速度で回転するように命じることができる。
【0093】
更に、油圧システム500は、ピストンが後退している不平衡アクチュエータの一部から戻る過剰流を、ピストンが拡張している他の不平衡アクチュエータが使用することを可能にする。例えば、油圧シリンダ・アクチュエータ502のピストン508Aが後退している際、第1のチャンバ510から排出された(ポンプ516Aによって消費されない)過剰流は、(例えば、負荷保持弁526Aのソレノイド・コイル534A、モード切替え弁542Aの場合はソレノイド・コイル550Aに通電することによって)増幅流ライン552に供給することができる。ピストン508Bが拡張している、したがって、油圧シリンダ・アクチュエータ504によって増幅流が要求される場合、油圧シリンダ・アクチュエータ502によって増幅流ライン552に供給される過剰流は、油圧シリンダ・アクチュエータ504が増幅流として消費することができる。
【0094】
例では、増幅流体流を特定の圧力レベルで供給することが望ましい場合がある。例えば、ピストン508Aが拡張している、したがって、増幅流が要求される場合、増幅流は、ポンプ・ポート522Aに流す前、増幅流ライン552から非作動状態にある増幅流弁544Aに供給し、次に、ソレノイド・コイル548Aに通電することによって作動されるモード切替え弁542Aを通り、次に、第2のチャンバ512から排出された戻り流に合流させることができる。第2のチャンバ512から排出された流体の圧力レベルに実質的に等しい圧力レベルで増幅流を有するには、油圧システム500は、増幅流ライン552内の流体の圧力レベルを制御するように構成した電気油圧圧力逃し弁(EHPRV)558を含むことができる。
【0095】
EHPRV558は、
図5に示すように、増幅流ライン552を槽532に流体結合させる。EHPRV558は、例えば、機械的逃し部分と、ソレノイド・コイル560を有する電気油圧比例部分とを含むことができる。一例として、機械的逃し部分は、ばね付勢される可動要素(例えばポペット)を有することができ、可動要素は、EHPRV558の弁体又はスリーブ内に形成される座に据え付けられる。ばねは、EHPRV558の圧力設定を決定する。
【0096】
増幅流ライン552内の流体の圧力レベルが特定の圧力レベル、即ち、EHPRV558の圧力設定を超えると、可動部材はばねに打ち勝ち、座から持ち上がり、これにより、流体が増幅流ライン552から槽532に流れる。したがって、増幅流ライン552内の圧力レベルは、EHPRV558の圧力設定を超えない。
【0097】
EHPRV558の電気油圧比例部分は、例えば、比例二方弁を含むことができる。電気信号をソレノイド・コイル560に供給すると、電気油圧比例部分内のスプール又は可動要素は移動し、流体信号を機械的逃し部分に供給することを可能にする。流体信号は、ソレノイド・コイル560に供給された電気信号の大きさに基づき、機械的逃し部分のばねによって決定された圧力設定を変化させる。信号の大きさが増大するにつれて、例えば圧力設定が増大する。またその逆も同様である。この構成により、ソレノイド・コイル560への電気信号によって、増幅流ライン552内の増幅流体流の圧力レベルを制御、変更することができる。
【0098】
油圧システム500は、逆止め弁562を更に有することができ、逆止め弁562は、増幅流ライン552から槽532への流体流を遮断し、EHPRV558が増幅流ライン552内の圧力レベルを制御することを可能にする。しかし、逆止め弁562は、増幅流ライン552内の圧力レベルが特定の圧力レベル(例えば、70psi)以下に下がった場合、槽から増幅流ライン552への流体のための流路をもたらし、増幅流ライン552内のキャビテーションを防止することができる。
【0099】
油圧システム500内の複数の弁の機能は、1つの弁又はマニホルドに一体化することができ、逆に、単一弁の機能を複数の弁に分離し得ることを理解されたい。例えば、モード切替え弁542A、542B、542Cは、槽流弁546A、546B、546C並びに増幅流弁544A、544B及び544C)の一方又は両方と共に、単一弁、パッケージ又はマニホルドに一体化することができる。同様に、弁(例えば、モード切替え弁542A、542B及び542C)の動作は、複数の弁に分離することができる。
【0100】
したがって、モード切替え弁542A、542B又は542C、槽流弁546A、546B又は546C並びに増幅流弁544A、544B及び又は544Cは、これら弁の動作を実施するように構成した弁組立体と集合的に呼ぶことができる。例えば、油圧シリンダ・アクチュエータ502のモード切替え弁542A、槽流弁546A及び増幅流弁544Aは、弁組立体564と集合的に呼ぶことができる。弁組立体564は、モード切替え弁542A、槽流弁546A及び増幅流弁544Aのそれぞれの状態に基づき、複数の状態で動作することができる。弁組立体564の状態に基づき、EHA501Aは、複数の状態で動作することができる。例では、負荷保持弁526A、528Aは、弁組立体564内に含めることができる。
【0101】
油圧シリンダ・アクチュエータ504及び回転油圧モータ・アクチュエータ506に対応する他の弁組立体は、図の視覚的な煩雑さを低減するため、
図5では指定しない。しかし、モード切替え弁542B、槽流弁546B及び増幅流弁544Bは、EHA501Bのための弁組立体を形成し、同様に、モード切替え弁542C、槽流弁546C及び増幅流弁544Cは、EHA501Cのための弁組立体を形成すると理解されたい。
【0102】
図5に示す油圧システム500は、閉回路構成におけるEHA501A、501B及び501Cのそれぞれを示す(即ち、ポンプ516A、516B及び516Bは槽532に流体結合していない)。しかし、油圧システム500は、動作に柔軟性をもたらす。詳細には、専用増幅回路を有するのではなく、アクチュエータを増幅流源として使用可能にすることに加えて、油圧システム500は、システムの条件に基づき閉回路構成と開回路構成との間で切り替えることも可能にする。更に、開回路構成において、油圧システム500は、流れの総和又は圧力の総和を可能にするように構成することができる。したがって、弁組立体564、及び他のアクチュエータの対応する弁組立体は、閉回路構成又は開回路構成でそれぞれのポンプを動作させるように異なる状態で動作し得る弁構成を含むことができ、
図6、
図7、
図8及び
図9に対して以下で説明するように、流れの総和及び圧力の総和を可能にする。
【0103】
図6は、例示的実装形態による、開回路動作モードにおける回転油圧モータ・アクチュエータ506のEHA501Cを有する油圧システム500を示す。
図6に示す油圧システム500の例示的動作シナリオにおいて、機械(例えば、掘削機100)のオペレータが、入力デバイス(例えば、ジョイスティック122、124)を使用し、油圧シリンダ・アクチュエータ502のピストン508Aの拡張、油圧シリンダ・アクチュエータ504のピストン508Bの拡張、及び回転油圧モータ・アクチュエータ506の作動を要求すると仮定する。油圧システム500の制御器(例えば、制御器248)は、オペレータの指令を示す信号を入力デバイスから受信する。応答して、制御器は、指令信号の大きさを、ピストン508A、508B及び回転油圧モータ・アクチュエータ506に対する要求速度に変換し、これに応じて、要求速度を達成する流体流量を決定することができる。
【0104】
制御器は、ポンプ516A、516Bのそれぞれが、閉回路構成で動作する際に十分な流れをそれぞれのアクチュエータに供給し得ること、及び電気モータ514A、514Bが、十分なトルクを供給し、油圧システム500内に存在する圧力レベルでポンプ516A、516Bを駆動し得ることを決定することもできる。したがって、制御器は、閉回路動作モードにおけるEHA501A、501B内の動作が最適であることを決定することができる。閉回路モードでEHA501A、501Bを動作させるため、制御器は、(i)モード切替え弁542A、542Bのソレノイド・コイル548A、548Bに通電し、(ii)槽流弁546A、546Bのソレノイド・コイル556A、556Bに通電し、モード切替え弁542A、542Bと槽流体ライン530との間の流体流を遮断することができる。
【0105】
しかし、増幅流を油圧シリンダ・アクチュエータ502、504に供給するため、制御器は、EHA501Cを開回路動作モードで動作させることができ、ポンプ516Cが、回転油圧モータ・アクチュエータ506への流体流に加えて、増幅流を増幅流ライン552に供給できるようにする。開回路モードでEHA501Cを動作するため、制御器は、増幅流弁544C又は槽流弁546Cのどちらも作動させない一方で、モード切替え弁542Cのソレノイド・コイル550Cに通電することができる。したがって、増幅流弁544C及び槽流弁546Cの両方は、通常開放状態で動作する。
【0106】
制御器のメモリに記憶し得るポンプ516A、516Bの押しのけ量に基づき、制御器は、モータ指令信号を電気モータ514A、514Bに供給し、それぞれの回転速度で回転させ、したがって、それぞれの回転速度でポンプ516A、516Bを回転させ、決定された流体流量をもたらし、ピストン508A、508Bを拡張させる。
【0107】
EHA501Aを参照すると、制御器は、ソレノイド・コイル538Aに通電することによって負荷保持弁528Aを更に作動させ、油圧シリンダ・アクチュエータ502の第2のチャンバ512から排出された流体が、負荷保持弁528Aを流れ、ポンプ516Aに戻ることを可能にする。ピストン508Aは拡張しているので、第2のチャンバ512から排出された戻り流体に合流させるには、増幅流は、ポンプ・ポート522Aに一緒に流す前に必要である。ピストン508Aのための指令速度がV1であり、ピストン508Aのロッドの断面積がAロッド_1であると仮定すると、増幅流量は、制御器によってV1.Aロッド_1であるように決定することができる。
【0108】
同様に、EHA501Bを参照すると、制御器は、ソレノイド・コイル538Bに通電することによって負荷保持弁528Bを作動させ、油圧シリンダ・アクチュエータ504のロッド側チャンバから排出された流体が、負荷保持弁528Bを流れ、ポンプ516Bに戻ることを可能にする。ピストン508Bは拡張しているので、ロッド側チャンバから排出された戻り流体に合流させるには、増幅流は、ポンプ516Bの入口ポートに一緒に流す前に必要である。ピストン508Bのための指令速度がV2であり、ピストン508Bのロッドの断面積がAロッド_2であると仮定すると、増幅流量は、制御器によってV2.Aロッド_2であるように決定することができる。
【0109】
オペレータは、入力デバイスを使用し、特定の回転速度ω旋回で回転プラットフォーム110の回転を命じることができる。次に、制御器は、回転油圧モータ・アクチュエータ506に供給する流体流量Q旋回を決定し、速度ω旋回を達成する。
【0110】
制御器のメモリ上に記憶し得るポンプ516Cの押しのけ量に基づき、制御器は、それぞれの回転速度で回転させるモータ指令信号を電気モータ514Cに与え、したがって、ポンプ516Cをそれぞれの回転速度で回転させ、回転油圧モータ・アクチュエータ506を指令速度で回転させ、油圧シリンダ・アクチュエータ502、504の指令によって要求された増幅流をもたらすのに十分な流量、即ち、合計流量Q合計=Q旋回+V1.Aロッド_1+V2.Aロッド_2をもたらす。
【0111】
EHA501Cを参照すると、制御器は、EHA501Cを開回路動作モードで動作させるには、ソレノイド・コイル550Cに通電することによってモード切替え弁542Cを作動させるが、槽流弁546Cを作動させない(即ち、ソレノイド・コイル556Cには通電されない)。特に、ソレノイド・コイル550Cに通電することによって、モード切替え弁542Cは、
図6に示す状態で動作し、モード切替え弁542Cは、流体流ライン524Cを(通常開放状態にある)槽流弁546Cに流体結合し、したがって、流体流ライン524Cは、槽流体ライン530に流体結合される。
【0112】
制御器は、増幅流弁544Cも作動させない(即ち、ソレノイド・コイル554Cには通電されない)。したがって、流体流ライン520Cは、モード切替え弁542C及び(通常開放状態にある)増幅流弁544Cを介して増幅流ライン552に流体結合される。
【0113】
制御器は、ソレノイド・コイル538Cに通電することによって負荷保持弁528Cを更に作動させることができ、回転油圧モータ・アクチュエータ506から排出された流体が、負荷保持弁528Cを通り、ポンプ516Bに戻ることを可能にする。更に、制御器は、ソレノイド・コイル534Cに通電することによって負荷保持弁526Cを作動させる。上述のように、負荷保持弁526Cは、比例弁として構成され、したがって、制御器は、回転油圧モータ・アクチュエータ506の指令速度に比例してソレノイド・コイル534Cを作動することができる。このように、ポンプ516Cが供給する流体を分配又は分割し、流体の一部分が、負荷保持弁526Cを介して流量Q旋回で回転油圧モータ・アクチュエータ506に流れ、流体の残りの部分が、モード切替え弁542Cに流れるようにすることができる。
【0114】
上述のように、増幅流弁544Cを作動させずに、モード切替え弁542Cを
図6に示す状態に作動させることによって(即ち、ソレノイド・コイル550Cに通電することによって)、増幅流のための流路が、モード切替え弁542C及び増幅流弁544Cを通じてポンプ516Cから増幅流ライン552まで開放される。詳細には、ポンプ516Cは、流量V
1.A
ロッド_1+V
2.A
ロッド_2で流体を増幅流ライン552に供給することができる。更に、増幅流ライン552から油圧シリンダ・アクチュエータ502、504のモード切替え弁542A、542Bへの流路を開放し、モード切替え弁542A、542Bに増幅流をもたらすため、増幅流弁544A、544Bは、作動されない(即ち、ソレノイド・コイル554A、554Bには通電されない)。
【0115】
したがって、流量V1.Aロッド_1の増幅流を油圧シリンダ・アクチュエータ502にもたらすことができ、流量V2.Aロッド_2の増幅流を油圧シリンダ・アクチュエータ504にもたらすことができる。制御器は、増幅流ライン552内の特定の圧力レベルを維持する電気指令信号をEHPRV558に更に供給することができ、この特定の圧力レベルは、それぞれの油圧シリンダ・アクチュエータからポンプ516A、516Bに戻る流体圧力レベルよりも実質的に等しいか又はこれよりも高い。
【0116】
場合によっては、速度ω旋回を達成するため、回転油圧モータ・アクチュエータ506によって要求される流体流量に加えて、増幅流ライン552のために要求される合計流量Q合計は、ポンプ押しのけ量、及び電気モータ514Cの最大許容モータ速度に基づき、ポンプ516Cが供給し得る最大許容流体流量Q最大を超えることができる。こうした場合では、制御器は、
【0117】
【0118】
に等しい速度低減因数を決定することができ、これにより、1よりも小さい値がもたらされる。次に、制御器は、ピストン508Aのための速度指令V1、ピストン508Bのための速度指令V2、及び回転油圧モータ・アクチュエータ506のための旋回指令ω旋回に、速度低減因数を乗算し、元の指令V1、V2、及びε旋回よりも小さい修正指令V1_修正、V2_修正、及びω旋回_修正をそれぞれ決定することができる。次に、制御器は、修正指令を使用し、増幅流ライン552及び回転油圧モータ・アクチュエータ506のために要求される流体流量を決定することができ、これらの量が、ポンプ516Cの最大許容流量Q最大を超えないようにする。
【0119】
この構成により、機械(例えば、掘削機100)の動作は、専用増幅システムの使用を伴わない。そうではなく、EHA501C、特にポンプ516Cは、回転油圧モータ・アクチュエータ506を動作するように構成されることに加えて、増幅システムとして動作することができる。このように、油圧システム500の費用及び複雑さは、それぞれのポンプ、モータ、弁及び油圧ラインを伴う更なる専用増幅システムを伴う他のシステムよりも低減することができる。
【0120】
一代替シナリオでは、増幅流をもたらすのに旋回ポンプ516Cを使用するのではなく、油圧シリンダ・アクチュエータの1つを使用し、増幅流をもたらすことができる。特に、油圧シリンダ・アクチュエータは、開回路動作モードで動作することができ、それぞれのポンプが流れを増幅流ライン552に供給することを可能にする。
【0121】
図7は、例示的実装形態による、開回路動作モードにおける油圧シリンダ・アクチュエータ504のEHA501Bを有する油圧システム500を示す。
図7に示す油圧システム500の状態では、EHA501A及びEHA501Cは、閉回路構成で動作する一方で、油圧シリンダ・アクチュエータ504に関連するEHA501Bは、開回路モードで動作する。この動作状態は、例えばオペレータが、(i)ポンプ516Aの流量を必要とする高速で拡張させることをピストン508Aに命じる際、(ii)ポンプ516Cの流容量を必要とする高回転速度で回転させることを回転油圧モータ・アクチュエータ506の油圧モータに命じる際、及び(iii)ポンプ516Bの完全流容量を必要としない低速で拡張させることをピストン508Bに命じる際、制御器によって最適であるように決定することができる。ポンプ516Bは過剰容量を有するため、制御器は、ポンプ516Bの過剰流容量が増幅流ライン552に供給されるように、EHA501Bが開回路動作モードで動作するように決定することができる。このように、ポンプ516Bの過剰流容量は、増幅流を油圧シリンダ・アクチュエータ502に供給することができる。
【0122】
図7に示すように、EHA501Aは、
図7の場合と同じ状態で動作する。したがって、EHA501Aは、閉回路構成で動作しており、ピストン508Aが拡張する際、増幅流をポンプ・ポート522Aに流す前に第2のチャンバ512から排出された流体に合流させることを必要とする。
図6とは対照的に、
図7では、EHA501Cは、閉回路動作状態で動作する。
【0123】
特に、ソレノイド・コイル550Cではなく、モード切替え弁542Cのソレノイド・コイル548Cに通電される。また、ソレノイド・コイル534C及び538Cに通電し、流体が負荷保持弁526C、528Cを介して回転油圧モータ・アクチュエータ506間を流れることを可能にする。したがって、ポンプ516Cは、流体流を流体流ライン520Cに供給し、次に、回転油圧モータ・アクチュエータ506に供給し、回転油圧モータ・アクチュエータ506を特定の回転方向で回転させることができる。槽流弁546Cのソレノイド・コイル556Cも通電し、流体がモード切替え弁542Cを通じて槽流体ライン530に流れないようにする。回転油圧モータ・アクチュエータ506から排出された流体は、流体流ライン524Cを通じて流れ、ポンプ516Cの入口ポート引き込まれる。上述のように、回転油圧モータ・アクチュエータ506は、平衡であり、閉回路構成で動作する際に増幅流を必要としない、又は過剰流をもたらさない。ソレノイド・コイル554Cには、増幅流ライン552が、あらゆるポンプ又はモータへの漏洩を補償する流体流を増幅流弁544Cを通じてポンプ516Cに供給するため、通電しなくてよい。
【0124】
EHA501Bを開回路構成で動作させ、増幅流を増幅流ライン552に供給するため、(i)モード切替え弁542Bのソレノイド・コイル550Bに通電し、(ii)槽流弁546Bのソレノイド・コイル556Bに通電し、(iii)負荷保持弁528Bのソレノイド・コイル540Bに通電する。この構成により、負荷保持弁528Bは、油圧シリンダ・アクチュエータ504のロッド側チャンバから排出された流体が、ポンプ516Bの入口ポートに戻るのではなく、負荷保持弁528Bを通り槽流体ライン530に流れる状態で動作する。このように、EHA501Bは、開回路構成で動作する。また、ソレノイド・コイル556Bには通電されないため、槽流弁546Bは、槽532からポンプ516Bの入口ポンプ・ポートへの流路を開放する。
【0125】
ポンプ516Bによって流体流ライン524Bに供給される流体は、流体の一部分が負荷保持弁526Bを通り油圧シリンダ・アクチュエータ504のヘッド側チャンバに流れるように分割することができ、過剰流部分があれば、モード切替え弁542Bに流れる。モード切替え弁542Bのソレノイド・コイル550Bには通電されるので、モード切替え弁542Bは、流体流ライン520Bを増幅流弁544Bに流体結合する。増幅流弁544Bは作動されないので、増幅流弁544Bに供給される流体は、増幅流弁544Bを通って増幅流ライン552に流れる。次に、増幅流は、増幅流ライン552からEHA501Aの増幅流弁544A及びモード切替え弁542Aを通じて引き込まれ、ポンプ・ポート522Aに流れる前に第2のチャンバ512から戻る流体に合流することができる。
【0126】
図7に示される状態は、油圧システム500を示し、油圧システム500は、過剰容量の利用可能性に基づき、アクチュエータ(油圧シリンダ・アクチュエータ502、504又は回転油圧モータ・アクチュエータ506)のいずれかが増幅流を供給し得るという柔軟性をもたらす。油圧システム500は、
図4に対する上記説明と同様に、圧力総和動作モードで動作するように更に構成することができる。
図4に関して説明したように、圧力総和モードは、第1のポンプからの出口流が第2のポンプの入口ポートに供給される際に生じ、これにより、第2のポンプの入口における圧力レベルを増大させる。したがって、第2のポンプにわたる圧力差を低減することができ、第2のポンプを制御する電気モータによって生成されるモータ・トルクも同様に低減することができる。
【0127】
図8は、例示的実装形態による、圧力総和動作モードで動作する油圧システム500を示す。
図8に示す油圧システム500の状態において、EHA501Cは、高圧流体を回転油圧モータ・アクチュエータ506及び増幅流ライン552の両方にもたらすように、開回路動作モードで動作する。特に、モード切替え弁542Cのソレノイド・コイル550Cに通電し、槽流弁546Cを作動させないため、通常開放状態で動作する。この構成により、ポンプ516Cは、槽532から槽流体ライン530、槽流弁546C及びモード切替え弁542Cを通じて流体を引き込むことができる。次に、ポンプ516Cは、高圧流体を流体流ライン520Cに供給する。
【0128】
負荷保持弁526Cのソレノイド・コイル534Cは、回転油圧モータ・アクチュエータ506に要求される速度に比例して通電されるため、ポンプ516Cが供給する流体は、回転油圧モータ・アクチュエータ506と増幅流ライン552との間で分配される(増幅流ライン544Cは、通常開放状態にあり、したがって、流体は流体流ライン524Cから流体流ライン524Cを通って増幅流ライン552に流れることができる)。特に、負荷保持弁528Cのソレノイド・コイル540Cは、回転油圧モータ・アクチュエータ506から排出された流体を槽流体ライン530に供給する。したがって、この構成により、EHA501Cは、開回路動作モードで動作し、高圧流体は、ポンプ516Cから増幅流ライン552に供給される。
【0129】
油圧シリンダ・アクチュエータ502に関連するEHA501Aについて、負荷保持弁528Aのソレノイド・コイル540Aに通電されているので、ピストン508Aが拡張するにつれて、第2のチャンバ512から排出された流体は、槽流体ライン530に流れる。したがって、第2のチャンバ512から排出された流体は、ポンプ516Aの入口ポート(ポンプ・ポート522A)に戻らない。そうではなく、ポンプ516Aは、増幅流ライン552からの流体を引き込む。
【0130】
特に、増幅流弁544Aは、作動されず、したがって、通常開放状態で動作する。モード切替え弁542Aのソレノイド・コイル548Aには通電されるため、流体流ライン524A(及びポンプ・ポート522A)は、モード切替え弁542A及び増幅流弁544Aを介して増幅流ライン552に流体結合される。
【0131】
このように、増幅流ライン552は、ポンプ516Aの入口ポート(ポンプ・ポート522A)と直列である。特に、ポンプ516Cによって増幅流ライン552に供給される高圧流体は、ポンプ516Aの入口ポート(ポンプ・ポート522A)に流れる。したがって、EHA501Aは、増幅流ライン552がポンプ516Aの入口ポートと直列である状態で、開回路動作モードで動作するとみなすことができる。EHA501Bも、
図8に示すEHA501Aと同様に構成される。
【0132】
したがって、
図4に関して上記で説明したように、ポンプ516A、516Bにわたるデルタ圧力値(P
出-P
入)は減少する。次に、電気モータ514A、514Bがポンプ516A、516Bに供給するトルクが減少し、これにより、油圧システム500の電力消費量を減少させる。
図8に示す動作モードは、例えば、アクチュエータ(油圧シリンダ・アクチュエータ502、504及び回転油圧モータ・アクチュエータ506)の指令速度が、必要流量がわずかであるために低速である一方で、アクチュエータが与える必要がある力が高い場合、望ましい又は最適である。例えば、掘削機100がサイクルの掘削部分にある場合、地面を掘削するためにブーム102及びアーム104を介して高い力を印加することが望ましいが、掘削の間、ブーム102及びアーム104をゆっくり動かすことができる。
【0133】
油圧システム500は、
図3に対する上記説明と同様に、流れ総和動作モードで動作するように更に構成することができる。
図3に関して説明したように、流れ総和モードは、2つのポンプを並列に接続する際、即ち、第1のポンプからの出口流が第2のポンプの出口流に合流し、これにより、アクチュエータのために利用可能な流れの合計流量が増大する場合に生じる。
【0134】
図9は、例示的実装形態による、流れ総和動作モードで動作する油圧システム500を示す。
図5に示す油圧システム500の状態では、全ての3つのEHA501、501B及び501Cは、開回路動作モードにあり、ポンプ516A、516B及び516Cは並列に接続される。特に、ポンプ516A、516B及び516Cの出口ポートは、増幅流ライン552に接続され、したがって、出口流は、全ての3つのアクチュエータの間で総和、共有することができる。
図9に示すシナリオでは、ピストン508A、508Bは、拡張しており、ポンプ516Cは、出力流を流体流ライン520Cに供給する。
【0135】
EHA501Aを参照すると、モード切替え弁542Aのソレノイド・コイル550Aに通電され、EHA501Aを開回路モードで動作させる。詳細には、ポンプ516Aの出口ポート(ポンプ・ポート518A)は、モード切替え弁542Aを介して増幅流ライン552に流体結合される(増幅流弁544Aは、非作動、通常開放状態にある)。このように、ポンプ516Aによって供給される流体は、油圧シリンダ・アクチュエータ502の第1のチャンバ510と増幅流ライン552との間で分割することができる。
【0136】
ポンプ516Aの入口ポート(ポンプ・ポート522A)及び流体流ライン524A(第2のチャンバ512から排出された流体は、流体流ライン524Aに供給される)は、モード切替え弁542A及び(非作動、通常開放状態にある)槽流弁546Aを介して槽流体ライン530に流体結合される。EHA501B、501Cは、同様に構成される。
【0137】
したがって、ポンプ516A、516B及び516Cの出口ポート(例えば、ピストン508Aが拡張する際のポンプ・ポート518A)は、増幅流ライン552に流体結合される。この構成により、流体流は、全ての3つのアクチュエータの間で共有、総和することができる。例えば、油圧シリンダ・アクチュエータ502が、ポンプ516Aが供給し得る流量よりも高い流量を必要とする場合、ポンプ516Aからの流体流は、ポンプ516B、516Cの一方又は両方によって増幅流ライン552からポンプ516Aに供給される流体によって増大させることができる。例では、ポンプ516A、516B及び516Cは、アクチュエータのいずれかによって更なる流れを必要とする場合にのみ、選択的にオンにすることができる。したがって、個々のポンプ押しのけ量を低減し、ポンプ及びモータの費用を節約することができる。
【0138】
図5~
図9が示すように、油圧システム500は、機械条件に基づき、閉回路モードと開回路モードとの間での切替えを可能にする二重構成を備える。このように、油圧システム500は、特定の機械の動作条件及び予期される負荷サイクルに調整することができ、これにより、可能性としては、費用を低減する一方で、効率に対する影響を最小化する。
【0139】
油圧システム500は、他のアクチュエータのポンプによって不平衡アクチュエータに供給する必要がある増幅流を可能にする。したがって、ポンプ及びモータを有する専用増幅回路は、不要である。そうではなく、あらゆるアクチュエータによって必要とされる過剰動力は、負荷サイクルに応じて、過剰容量を有する他のアクチュエータのEHAに分散することができる。
【0140】
開回路圧力総和モード(
図8)は、機械の合計流を、増大した増幅圧力と相殺することによって、据え付けた機械の合計トルクを低下させることができる。増大した増幅圧力をポンプに供給することにより、モータ・トルクを増大させずに、出力圧力を増大させる。したがって、機械は、費用対効果の高い、低速の、高い力/トルク動作モードで動作することができる。
【0141】
開回路流れ総和モード(
図9)は、高速動作を必要とする際に並行ポンプ動作を可能にすることによって、据え付けるポンプの合計押しのけ量を低下させることができる。この可能性は、全体的な機械の機能を犠牲にせずに、又は更なるポンプ/モータを追加せずに、専用の予備機能も可能にする。
【0142】
図10は、例示的実装形態による油圧システム500を動作させる方法1000のフローチャートである。
【0143】
方法1000は、ブロック1002~1008の1つ又は複数によって示される1つ若しくは複数の動作又は操作を含むことができる。ブロックは連続的な順序で示されるが、これらのブロックは、並行して、及び/又は本明細書で説明する順序とは異なる順序で実施してもよい。また、様々なブロックは、所望の実装形態に基づき、より少ないブロックに組み合わせる、更なるブロックに分割する、及び/又は除くことができる。本明細書で開示するこの及び他の工程及び方法、フローチャートは、本発明の例の1つの可能な実装形態に対する機能及び動作を示すことを理解されたい。代替実装形態は、本開示の例の範囲内に含まれ、機能は、図示又は説明される順序から順不同に実行することができ、当業者には理解されるように、関与する機能に応じて、同時、又は逆の順序を実質的に含む。
【0144】
ブロック1002において、方法1000は、油圧システム(例えば、油圧システム500)の制御器(例えば、制御器248)で、第1の油圧アクチュエータ(例えば、油圧シリンダ・アクチュエータ502)を作動させる要求を受信することを含み、油圧システムは、(i)流体流を第1の油圧アクチュエータに供給するため、第1の電気モータ(例えば、電気モータ514A)によって駆動されるように構成した第1のポンプ(例えば、ポンプ516A)であって、第1の入口ポート(例えば、ポンプ・ポート522A)及び第1の出口ポート(例えば、ポンプ・ポート518A)を有する、第1のポンプと、(ii)第1のポンプを増幅流ライン552、及び槽532に流体結合する槽流体ライン530に流体結合するように構成した第1の弁組立体(例えば、弁組立体564)と、(iii)流体流を第2の油圧アクチュエータ(例えば、油圧シリンダ・アクチュエータ504又は回転油圧モータ・アクチュエータ506)に供給するため、第2の電気モータ(例えば、電気モータ514B又は電気モータ514C)によって駆動されるように構成した第2のポンプ(例えば、ポンプ516B又はポンプ516C)であって、第2の入口ポート及び第2の出口ポートを有する第2のポンプと、(iv)第2のポンプを増幅流ライン552及び槽流体ライン530に流体結合するように構成した、第2の弁組立体(例えば、モード切替え弁542B、槽流弁546B及び増幅流弁544Bを備える弁組立体、又はモード切替え弁542C、槽流弁546C及び増幅流弁544Cを備える弁組立体)とを備える。
【0145】
ブロック1004において、方法1000は、応答して、(i)第1のポンプを駆動し、流体流を供給し、第1の油圧アクチュエータを駆動するため、第1の指令信号を第1の電気モータに送信することと、(ii)第1の状態で第1の弁組立体を動作させることとを含み、第1の状態では、(a)第1の弁組立体は、第1のポンプの第1の入口ポートと槽との間の流路を遮断し、これにより、第1のポンプが、第1の油圧アクチュエータから排出された流体が第1のポンプの第1の入口ポートに供給される閉回路構成で動作するのを可能にし、(b)増幅流ラインから第1のポンプの第1の入口ポートへの流路を開放する。
【0146】
ブロック1006において、方法1000は、第2のポンプを駆動するため、第2の指令信号を第2の電気モータに送信することを含む。
【0147】
ブロック1008において、方法1000は、第2の状態で第2の弁組立体を動作させることを含み、第2の状態では、第2の弁組立体は、第2のポンプの第2の入口ポートと槽との間の流路を開放し、第2のポンプの第2の出口ポートから増幅流ラインまでの流路を開放し、これにより、第2のポンプが、第2のポンプが槽から第2のポンプの第2の入口ポートに流体を引き込む開回路構成で動作することを可能にする。
【0148】
方法1000は、第1の弁組立体及び第2の弁組立体を、
図6~
図9に関して上記した他の動作モード(例えば、流れ総和動作モード及び圧力総和動作モード)に対応する他の状態で動作させることを更に含むことができる。
【0149】
上記の詳細な説明は、添付の図面を参照しながら、開示するシステムの様々な特徴及び動作を説明している。本明細書で説明する例示的な実装形態は、限定的であることを意味するものではない。開示するシステムのいくつかの態様は、多種多様な異なる構成で構成、組み合わせることができ、これらの構成の全てが本明細書で企図される。
【0150】
更に、文脈が別段に示唆しない限り、図のそれぞれに示される特徴は、互いに組み合わせて使用してよい。したがって、図面は、概して、1つ又は複数の実装形態全体の構成態様として見るべきであり、全ての例示する特徴が各実装形態に必要ではないことを理解されたい。
【0151】
更に、本明細書又は特許請求の範囲におけるあらゆる要素、ブロック又はステップの列挙は、明確にするためのものである。したがって、そのような列挙は、これらの要素、ブロック若しくはステップが特定の構成に忠実であること又は特定の順序で実行することを必要とする又は暗示すると解釈すべきではない。
【0152】
更に、デバイス又はシステムは、図示する機能を実施するように使用又は構成することができる。いくつかの例では、デバイス及び/又はシステムの構成要素は、構成要素が実際にそのような実施を可能にするために(ハードウェア及び/又はソフトウェアにより)構成、構造化されるように、機能を実施するように構成してよい。他の例では、デバイス及び/又はシステムの構成要素は、特定の様式で動作する等の際、機能の実施に適合させるか、機能の実施を可能にするか、又は機能の実施に適するように構成してよい。
【0153】
用語「実質的に」又は「約」によって列挙される特徴、パラメータ又は値は、厳密に達成される必要がないが、例えば、当業者に公知である測定精度の限度及び他の要因を含む偏差又はばらつきが、特徴が実現を目的とした効果を妨げない量で生じてよいことが意味される。
【0154】
本明細書で説明する構成は、例にすぎない。したがって、当業者は、他の構成及び他の要素(例えば、機械、インターフェース、動作、順序及び動作のグループ化等)を代わりに使用することができ、いくつかの要素は、所望の結果に従って完全に省いてよいことを了解するであろう。更に、説明した要素の多数は、個別構成要素若しくは分散構成要素として、又は他の構成要素と共に、あらゆる適切な組合せ及び場所で実装し得る機能的実体である。
【0155】
様々な態様及び実装形態を本明細書で開示しているが、他の態様及び実装形態は、当業者に明らかであろう。本明細書で開示する様々な態様及び実装形態は、説明のためであり、限定的であることを意図しない。真の範囲は、以下の特許請求の範囲によって、そのような請求の権利を与えられた等価物の完全な範囲と共に示される。また、本明細書で使用する用語は、特定の実施形態を説明する目的にすぎず、限定的であることを意図しない。
【国際調査報告】