(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-11-04
(54)【発明の名称】器官機能に及ぼす医学的治療の影響を評価するための方法、システム、及び装置
(51)【国際特許分類】
A61B 6/00 20060101AFI20221027BHJP
【FI】
A61B6/00 360A
A61B6/00 330A
A61B6/00 370
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022513995
(86)(22)【出願日】2020-08-27
(85)【翻訳文提出日】2022-04-21
(86)【国際出願番号】 AU2020050900
(87)【国際公開番号】W WO2021035304
(87)【国際公開日】2021-03-04
(32)【優先日】2019-08-27
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】522078668
【氏名又は名称】フォーディーメディカル リミテッド
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】ファウラス アンドレアス
【テーマコード(参考)】
4C093
【Fターム(参考)】
4C093AA01
4C093AA13
4C093AA25
4C093AA26
4C093CA18
4C093DA03
4C093FF23
4C093FF24
4C093FF35
4C093FG14
(57)【要約】
器官の複数の領域の各々に対する第1の測定値を取得し、次いで、第1の測定値の取得後に、器官の複数の領域の各々に対する第2の測定値を取得することにより、肺などの器官に及ぼす治療の影響を評価する。領域の第1の測定値及び第2の測定値に基づいて器官の前記複数の領域の各々に対する局所変化測定値を得る。複数の局所変化測定値及び器官に送達された治療の治療情報に基づいて、治療の影響を決定する。
【特許請求の範囲】
【請求項1】
器官に及ぼす治療の影響を評価する方法であって、
前記器官の複数の領域の各々に対する第1の測定値を取得することと、
前記第1の測定値の取得後に前記器官の前記複数の領域の各々に対する第2の測定値を取得することと、
前記領域の前記第1の測定値及び前記第2の測定値に基づいて前記器官の前記複数の領域の各々に対する局所変化測定値を得ることと、
前記複数の局所変化測定値及び前記器官に送達された前記治療の局所治療情報に基づいて治療の影響を決定することと、
を含む、方法。
【請求項2】
前記器官の複数の領域の各々に対する第1の測定値又は前記器官の複数の領域の各々に対する第2の測定値のいずれかを取得することが、
前記器官の時系列の2次元(2D)画像を得ることと、
前記時系列の2D画像を処理して前記複数の領域の各々に対する運動測定値を得ることと、
を含む、請求項1に記載の方法。
【請求項3】
前記器官の時系列の2D画像を得ることがイメージング装置又は画像源から前記時系列の2D画像を受け取ることを含む、請求項2に記載の方法。
【請求項4】
前記器官の時系列の2D画像を得ることが前記器官の複数の時系列の2D画像を前記器官に対して各々異なる角度からキャプチャーすることを含む、請求項2に記載の方法。
【請求項5】
前記器官の前記複数の時系列の2D画像が10個以下の異なる角度からキャプチャーされる、請求項4に記載の方法。
【請求項6】
前記複数の時系列の2D画像が同時にキャプチャーされる、請求項4に記載の方法。
【請求項7】
前記時系列の2D画像を処理することが前記器官の2D画像を相互相関させることを含む、請求項2に記載の方法。
【請求項8】
前記時系列の2D画像を処理することが前記器官の前記時系列の2D画像から前記器官の前記複数の領域の各々に対する運動測定値を再構築することを含む、請求項7に記載の方法。
【請求項9】
前記器官の前記複数の領域が前記器官の組織を含み、及び前記運動測定値が前記組織の運動を表す、請求項8に記載の方法。
【請求項10】
運動測定値を再構築することが3D画像を最初に再構築することなく3D運動測定値を再構築することを含む、請求項9に記載の方法。
【請求項11】
前記時系列の2D画像を処理することが、前記器官の前記複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から容量測定値を導出することをさらに含む、請求項9に記載の方法。
【請求項12】
前記複数の第1の測定値の各々が前記治療の前に取得され、及び前記複数の第2の測定値の各々が前記治療時若しくは前記治療の後のいずれかで取得され、又は
前記複数の第1の測定値の各々が前記治療時に取得され、及び前記複数の第2の測定値の各々が前記治療後に取得される、
請求項1に記載の方法。
【請求項13】
前記第1の測定値及び前記第2の測定値が、変位測定値、速度測定値、換気測定値、血流測定値、換気/血流(V/Q)比測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値の1つである、請求項1に記載の方法。
【請求項14】
ある領域に対する局所変化測定値を得ることが、前記領域の前記第1の測定値と前記領域の前記第2の測定値とを比較することを含む、請求項1に記載の方法。
【請求項15】
治療の影響を決定することが、
前記器官に送達された前記治療の対応する局所治療情報と共に前記複数の局所変化測定値の各々をマッピングすることと、
前記マッピングから前記治療の影響を導出することと、
を含む、請求項1に記載の方法。
【請求項16】
前記マッピングから前記治療の影響を導出することが局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめることを含む、請求項15に記載の方法。
【請求項17】
前記治療が局所器官機能を改変したかを前記治療の影響に基づいて決定すること
をさらに含む、請求項15に記載の方法。
【請求項18】
前記治療の影響に基づいて器官機能を評価すること
をさらに含む、請求項15に記載の方法。
【請求項19】
前記治療の影響が、
a)器官機能の変化なし、
b)治療に関連する器官機能の変化、又は
c)治療に関連しない器官機能の変化、
の1つの指標となる、請求項15に記載の方法。
【請求項20】
前記治療が、前記器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である、請求項1に記載の方法。
【請求項21】
前記治療が、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含む、請求項20に記載の方法。
【請求項22】
前記治療が放射線療法治療であり、及び前記局所治療情報が前記器官の前記複数の領域の各々に対する放射線レベルを含む線量マップである、請求項20に記載の方法。
【請求項23】
前記器官の前記複数の領域の各々に対する局所変化測定値を得る前に、前記複数の第1の測定値及び前記複数の第2の測定値と前記器官の流体フロー構造とを関連させることと、又は
治療の影響を決定する前に、前記複数の局所変化測定値と前記器官の流体フロー構造とを関連させることと、
のいずれかをさらに含む、請求項1に記載の方法。
【請求項24】
前記器官が肺に対応し、及び前記流体フロー構造が前記肺の気道樹若しくは前記肺の血管樹の1つに対応し、又は
前記器官が心臓に対応し、及び前記流体フロー構造が前記心臓の血管構造に対応する、請求項23に記載の方法。
【請求項25】
器官に及ぼす治療の影響を評価するためのシステムであって、
前記器官の複数の領域の各々に対する第1の測定値を取得し、及び
前記第1の測定値の取得後に前記器官の前記複数の領域の各々に対する第2の測定値を取得するように、
構成された測定値取得モジュールと、
前記領域の前記第1の測定値及び前記第2の測定値に基づいて、前記器官の前記複数の領域の各々に対する局所変化測定値を得るように構成された測定値変化モジュールと、
前記複数の局所変化測定値及び前記器官に送達された前記治療の局所治療情報に基づいて、治療の影響を決定するように構成された治療影響モジュールと、
を含む、システム。
【請求項26】
前記器官の時系列の2次元(2D)画像を得て、及び
前記時系列の2D画像を処理して複数の領域の各々に対する運動測定値を得るように、
構成されることにより、前記測定値取得モジュールが、前記器官の複数の領域の各々に対する第1の測定値又は前記器官の複数の領域の各々に対する第2の測定値のいずれかを取得する、請求項25に記載のシステム。
【請求項27】
イメージング装置又は画像源からの時系列の2D画像を受け取るようにさらに構成されることにより、前記測定値取得モジュールが前記器官の前記時系列の2D画像を得る、請求項26に記載のシステム。
【請求項28】
前記器官の複数の時系列の2D画像を前記器官に対して各々異なる角度からキャプチャーするように構成されることにより、前記測定値取得モジュールが前記器官の時系列の2D画像を得る、請求項26に記載のシステム。
【請求項29】
前記器官の前記複数の時系列の2D画像が10個以下の異なる角度からキャプチャーされる、請求項28に記載のシステム。
【請求項30】
前記複数の時系列の2D画像が同時にキャプチャーされる、請求項28に記載のシステム。
【請求項31】
前記器官の2D画像を相互相関させるようにさらに構成されることにより、前記測定値取得モジュールが前記時系列の2D画像を処理する、請求項26に記載のシステム。
【請求項32】
前記器官の前記時系列の2D画像から前記器官の複数の領域の各々に対する運動測定値を再構築するように構成されることにより、前記測定値取得モジュールが前記時系列の2D画像を処理する、請求項31に記載のシステム。
【請求項33】
3D画像を最初に再構築することなく3D運動測定値を再構築するように構成されることにより、前記測定値取得モジュールが運動測定値を再構築する、請求項32に記載のシステム。
【請求項34】
前記器官の前記複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から容量測定値を導出するように構成されることにより、前記測定値取得モジュールが前記時系列の2D画像を処理する、請求項32に記載のシステム。
【請求項35】
前記測定値取得モジュールが、
前記複数の第1の測定値の各々を前記治療前に取得し、及び前記複数の第2の測定値の各々を前記治療時若しくは前記治療後のいずれかで取得するように、又は、
前記複数の第1の測定値の各々を前記治療時に取得し、及び前記複数の第2の測定値の各々を前記治療後に取得するように、
構成される、請求項25に記載のシステム。
【請求項36】
前記第1の測定値及び前記第2の測定値が、変位測定値、速度測定値、換気測定値、血流測定値、換気/血流(V/Q)比測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値の1つである、請求項25に記載のシステム。
【請求項37】
ある領域の第1の測定値と前記領域の第2の測定値とを比較するように構成されることにより、前記測定値変化モジュールが前記領域に対する局所変化測定値を得る、請求項25に記載のシステム。
【請求項38】
前記器官に送達された前記治療の対応する局所治療情報と共に前記複数の局所変化測定値の各々をマッピングしてマッピングを発生させ、及び
前記マッピングから治療の影響を導出するように、
構成されることにより、前記治療影響モジュールが前記治療の影響を決定する、請求項25に記載のシステム。
【請求項39】
局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめるように構成されることにより、前記治療影響モジュールが前記マッピングから前記治療の影響を導出する、請求項38に記載のシステム。
【請求項40】
前記治療が局所器官機能を改変したかを前記治療の影響に基づいて決定するように、
前記治療影響モジュールがさらに構成される、請求項38に記載のシステム。
【請求項41】
前記治療影響モジュールが、
前記治療の影響に基づいて器官機能を評価するように、
さらに構成される、請求項38に記載のシステム。
【請求項42】
前記治療の影響が、
a)器官機能の変化なし、
b)治療に関連する器官機能の変化、又は
c)治療に関連しない器官機能の変化、
の1つの指標となる、請求項38に記載のシステム。
【請求項43】
前記治療が、前記器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である、請求項25に記載のシステム。
【請求項44】
前記治療が、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含む、請求項43に記載のシステム。
【請求項45】
前記治療が放射線療法治療であり、及び前記局所治療情報が前記器官の前記複数の領域の各々に対する放射線レベルを含む線量マップである、請求項43に記載のシステム。
【請求項46】
前記測定値取得モジュールが、
前記器官の前記複数の領域の各々に対する局所変化測定値を得る前に、前記複数の第1の測定値及び前記複数の第2の測定値と前記器官の流体フロー構造とを関連させるか、又は
治療の影響を決定する前に、前記複数の局所変化測定値と前記器官の流体フロー構造とを関連させるか、
のいずれかでさらに構成される、請求項25に記載のシステム。
【請求項47】
前記器官が肺に対応し、及び前記流体フロー構造が前記肺の気道樹若しくは前記肺の血管樹の1つに対応し、又は
前記器官が心臓に対応し、及び前記流体フロー構造が心臓の血管構造に対応する、
請求項46に記載のシステム。
【請求項48】
器官に及ぼす治療の影響を評価するための装置であって、
インターフェースと、
メモリーと、
前記インターフェース及び前記メモリーに結合されたプロセッサーであって、前記メモリー中の命令を実行して、前記装置に、
前記器官の複数の領域の各々に対する第1の測定値を取得させ、
前記第1の測定値の取得後に前記器官の前記複数の領域の各々に対する第2の測定値を取得させ、
前記領域の前記第1の測定値及び前記第2の測定値に基づいて前記器官の前記複数の領域の各々に対する局所変化測定値を得させ、及び
前記複数の局所変化測定値及び前記器官に送達された前記治療の局所治療情報に基づいて治療の影響を決定させるように、
構成された、プロセッサーと、
を含む、装置。
【請求項49】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に、
イメージング装置又は画像源から前記器官の時系列の2次元(2D)画像を得させるように、及び
前記時系列の2D画像を処理して前記複数の領域の各々に対する運動測定値を得させるように、
構成されることにより、前記装置に、前記器官の複数の領域の各々に対する第1の測定値又は前記器官の複数の領域の各々に対する第2の測定値のいずれかを取得させる、請求項48に記載の装置。
【請求項50】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に前記器官の2D画像を相互相関させるようにさらに構成されることにより、前記装置に前記時系列の2D画像を処理させるようにする、請求項49に記載の装置。
【請求項51】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に前記器官の前記時系列の2D画像から前記器官の前記複数の領域の各々に対する運動測定値を再構築させるように構成されることにより、前記装置に前記時系列の2D画像を処理させるようにする、請求項50に記載の装置。
【請求項52】
前記プロセッサーが、前記メモリー中の命令を実行して、3D画像を最初に再構築することなく前記装置に3D運動測定値を再構築させるように構成されることにより、前記装置に運動測定値を再構築させるようにする、請求項51に記載の装置。
【請求項53】
前記プロセッサーが、前記メモリー中の命令を実行して、前記器官の前記複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から前記装置に容量測定値を導出させるように構成されることにより、前記装置に前記時系列の2D画像を処理させるようにする、請求項51に記載の装置。
【請求項54】
前記第1の測定値及び前記第2の測定値が、変位測定値、速度測定値、換気測定値、血流測定値、換気/血流(V/Q)比測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値の1つである、請求項48に記載の装置。
【請求項55】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置にある領域の第1の測定値と前記領域の第2の測定値とを比較させるように構成されることにより、前記装置に前記領域に対する局所変化測定値を得させるようにする、請求項48に記載の装置。
【請求項56】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に、
治療装置又は治療情報源から局所治療情報を受け取らせるように、
前記器官に送達された前記治療の対応する局所治療情報と共に前記複数の局所変化測定値の各々をマッピングしてマッピングを発生させるように、及び
前記マッピングから治療の影響を導出させるように、
構成されることにより、前記装置に前記治療の影響を決定させる、請求項48に記載の装置。
【請求項57】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめさせるように構成されることにより、前記装置に前記マッピングから前記治療の影響を導出させるようにする、請求項56に記載の装置。
【請求項58】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に、
前記治療が局所器官機能を改変したかを前記治療の影響に基づいて決定させるように、
さらに構成される、請求項56に記載の装置。
【請求項59】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に、
器官機能を前記治療の影響に基づいて評価させるように、
さらに構成される、請求項56に記載の装置。
【請求項60】
前記治療の影響が、
a)器官機能の変化なし、
b)治療に関連する器官機能の変化、又は
c)治療に関連しない器官機能の変化、
の1つの指標となる、請求項56に記載の装置。
【請求項61】
前記治療が、前記器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である、請求項48に記載の装置。
【請求項62】
前記治療が、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含む、請求項61に記載の装置。
【請求項63】
前記治療が放射線療法治療であり、及び前記局所治療情報が前記器官の前記複数の領域の各々に対する放射線レベルを含む線量マップである、請求項61に記載の装置。
【請求項64】
前記プロセッサーが、前記メモリー中の命令を実行して、前記装置に、以下のいずれか:
前記器官の前記複数の領域の各々に対する局所変化測定値を得る前に、前記複数の第1の測定値及び前記複数の第2の測定値と前記器官の流体フロー構造とを関連させるか、又は
治療の影響を決定する前に、前記複数の局所変化測定値と前記器官の流体フロー構造とを関連させるか、
を行わせるようにさらに構成される、請求項48に記載の装置。
【請求項65】
前記器官が肺に対応し、及び前記流体フロー構造が前記肺の気道樹若しくは前記肺の血管樹の1つに対応し、又は
前記器官が心臓に対応し、及び前記流体フロー構造が前記心臓の血管構造に対応する、
請求項64に記載の装置。
【請求項66】
コンピューターのプロセッサーにより実行されるときに、器官に及ぼす治療の影響を評価するように指示された工程をコンピューターに実行させるコンピュータープログラムが記憶された、非一時的コンピューター可読記憶媒体であって、前記工程が、
器官の複数の領域の各々に対する第1の測定値を取得することと、
前記第1の測定値の取得後に前記器官の前記複数の領域の各々に対する第2の測定値を取得することと、
前記領域の前記第1の測定値及び前記第2の測定値に基づいて前記器官の前記複数の領域の各々に対する局所変化測定値を得ることと、
前記複数の局所変化測定値及び前記器官に送達された前記治療の局所治療情報に基づいて治療の影響を決定することと、
を含む、非一時的コンピューター可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2019年8月27日出願の「Methods and Systems for Assessing Lung Function」という名称の米国仮特許出願第62/892,485号(その全体が参照により本明細書に明示的に組み込まれる)に基づく利益を主張する。
【0002】
本開示は、一般的には、器官に及ぼす医学的治療の影響を評価するための方法、システム、及び装置に関し、より特定的には、治療後の全体器官機能及び局所器官機能を評価して、治療が器官機能に対して正改変(positively altered)、負改変(negatively altered)、又は無影響のいずれであったかを決定するための方法及びシステムに関する。
【背景技術】
【0003】
疾患器官に対する数多くのタイプの治療が存在する。たとえば、疾患肺は、放射線療法、陽子線療法、及び抗体療法により非侵襲的に、又は腫瘍の外科的郭清、腫瘍のアブレーション、ステント留置、バルブ留置、及び肺刺傷をシールするためのグルー適用を介して侵襲的に治療されうる。これらの治療から生じる器官機能の変化をモニターすることは複雑であり、これらの治療の有効性を評価する能力には限界がある。その最も単純ないくつかの可能性でさえも、1)器官の疾患組織は、疾患進行に起因して機能が悪化する可能性があるか、又は治療に起因して機能が改善する可能性があり、及び2)健常組織は、健常のまま残り疾患の影響を受けるようになるか、又は治療の毒性若しくは負の「オフターゲット」の影響に反応する可能性がある。
【0004】
放射線により治療されている癌性腫瘍を有する肺との関連で、これらの可能性をさらに考えてみる。放射線治療計画では、体内の標的位置の腫瘍への、ある線量の放射線の送達が処方されうる。本明細書で用いられる場合、「線量」とは、1回の治療セッションで送達される特定治療量、たとえば放射線レベル/レートを意味する。しかしながら、放射線送達は、標的腫瘍に限定されず、標的腫瘍を取り囲むか、さもなければその近傍の肺組織もまた、典型的にはより低線量であるが放射線に暴露される。さらに、標的腫瘍の近くの他の器官の組織もまた、放射線に暴露されてその影響を受けうる。たとえば、肺に近接する心組織は、肺の放射線治療に暴露されてその影響を受けうる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、器官機能に及ぼす医学的治療の影響を評価する能力を提供することが望ましい。この能力を器官の局所ベースで提供すること、すなわち、器官の異なる領域で組織機能を測定し、これらの局所測定値を領域ごとに治療と比較すること又は相関付けることがさらに望ましい。近接器官に及ぼす治療の影響を評価する能力を提供することもまた望ましい。以下に開示される概念は、これらの及び他の要望に対処する。
【課題を解決するための手段】
【0006】
本開示は、器官に及ぼす治療の影響を評価する方法に関する。本方法は、器官の複数の領域の各々に対する第1の測定値を取得することと、第1の測定値の取得後、器官の複数の領域の各々に対する第2の測定値を取得することと、を含む。本方法は、領域の第1の測定値及び第2の測定値に基づいて器官の複数の領域の各々に対する局所変化測定値を得ることと、複数の局所変化測定値及び器官に送達された治療の局所治療情報に基づいて治療の影響を決定することと、をさらに含む。
【0007】
ある実施形態では、器官の複数の領域の各々に対する第1の測定値又は器官の複数の領域の各々に対する第2の測定値のいずれかを取得することが、器官の時系列の2次元(2D)画像を得ることと、時系列の2D画像を処理して複数の領域の各々に対する運動測定値を得ることと、を含む。器官の時系列の2D画像を得ることは、イメージング装置又は画像源から時系列の2D画像を受け取ることを含みうる。追加的又は代替的に、器官の時系列の2D画像を得ることは、器官の複数の時系列の2D画像を器官に対して各々異なる角度からキャプチャーすることを含む。この場合、器官の複数の時系列の2D画像は、10個以下の異なる角度からキャプチャーされる。複数の時系列の2D画像は、同時にキャプチャーされうる。
【0008】
時系列の2D画像を処理するとき、本方法は、一実施形態では、器官の2D画像を相互相関させることを含みうる。これは、器官の時系列の2D画像から器官の複数の領域の各々に対する運動測定値を再構築することを含みうる。ただし、器官の複数の領域は器官の組織を含み、及び運動測定値は組織の運動を表す。代替的又は追加的に、運動測定値を再構築することは、3D画像を最初に再構築することなく3D運動測定値を再構築することを含みうる。時系列の2D画像を処理することはまた、器官の複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から容量測定値を導出することをさらに含みうる。
【0009】
本明細書に開示されるある実施形態では、複数の第1の測定値の各々は治療前に取得され、及び複数の第2の測定値の各々は治療時若しくは治療後のいずれかで取得され、又は代替的に複数の第1の測定値の各々は治療時に取得され、及び複数の第2の測定値の各々は治療後に取得される。
【0010】
本方法の第1の測定値及び第2の測定値は、変位測定値、速度測定値、換気測定値、灌流測定値、換気/灌流(V/Q)比測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値の1つでありうる。
【0011】
ある領域に対する局所変化測定値を得る工程は、その領域の第1の測定値とその領域の第2の測定値とを比較することを含みうる。
【0012】
治療の影響を決定する工程は、一実施形態で、器官に送達された治療の対応する局所治療情報と共に複数の局所変化測定値の各々をマッピングすることと、マッピングから治療の影響を導出することと、を含みうる。この実施形態では、マッピングから治療の影響を導出することは、局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめることを含みうる。さらなる工程は、治療が局所器官機能を改変したかを治療の影響に基づいて決定することを含みうる。代替的又は追加的に、器官機能は、治療の影響に基づいて評価されうる。治療の影響は、a)器官機能の変化なし、b)治療に関連する器官機能の変化、又はc)治療に関連しない器官機能の変化の1つの指標となりうる。
【0013】
器官に及ぼす治療の影響を評価する本方法のある実施形態では、治療は、器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である。治療は、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含みうる。特定実施形態では、治療は、放射線療法治療であり、及び局所治療情報は、器官の複数の領域の各々に対する放射線レベルを含む線量マップである。
【0014】
器官に及ぼす治療の影響を評価する本方法は、器官の複数の領域の各々に対する局所変化測定値を得る前に、複数の第1の測定値及び複数の第2の測定値と器官の流体フロー構造とを関連させることと、又は治療の影響を決定する前に、複数の局所変化測定値と器官の流体フロー構造とを関連させることと、のいずれかをさらに含みうる。
【0015】
ある実施形態では、器官は肺に対応し、及び流体フロー構造は肺の気道樹若しくは肺の血管樹の1つに対応し、又は器官は心臓に対応し、及び流体フロー構造は心臓の血管構造に対応する。
【0016】
本開示はまた、器官に及ぼす治療の影響を評価するためのシステムに関する。システムは、測定値取得モジュール、測定値変化モジュール、及び治療影響モジュールを含む。測定値取得モジュールは、器官の複数の領域の各々に対する第1の測定値を取得するとともに、第1の測定値の取得後に器官の複数の領域の各々に対する第2の測定値を取得するように構成される。測定値変化モジュールは、領域の第1の測定値及び第2の測定値に基づいて、器官の複数の領域の各々に対する局所変化測定値を得るように構成される。治療影響モジュールは、複数の局所変化測定値及び器官に送達された治療の局所治療情報に基づいて、治療の影響を決定するように構成される。
【0017】
システムの一実施形態では、測定値取得モジュールは、器官の時系列の2次元(2D)画像を得るとともに、時系列の2D画像を処理して複数の領域の各々に対する運動測定値を得るように構成されることにより、器官の複数の領域の各々に対する第1の測定値又は器官の複数の領域の各々に対する第2の測定値のいずれかを取得するようにする。測定値取得モジュールは、イメージング装置又は画像源から時系列の2D画像を受け取るように構成されることにより、器官の時系列の2D画像を得るようにしうる。代替的又は追加的に、測定値取得モジュールは、器官の複数の時系列の2D画像を器官に対して各々異なる角度からキャプチャーするように構成されることにより、器官の時系列の2D画像を得る。好ましくは、器官の複数の時系列の2D画像は、10個以下の異なる角度からキャプチャーされる。複数の時系列の2D画像は、同時にキャプチャー可能である。
【0018】
測定値取得モジュールは、器官の2D画像を相互相関させるようにさらに構成されることにより、時系列の2D画像を処理する能力がありうる。これは、器官の時系列の2D画像から器官の複数の領域の各々に対する運動測定値を再構築することにより達成可能であり、及び/又は測定値取得モジュールは、3D画像を最初に再構築することなく3D運動測定値を再構築するように構成されることにより運動測定値を再構築する。
【0019】
一実施形態では、測定値取得モジュールは、器官の複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から容量測定値を導出するように構成されることにより、時系列の2D画像を処理する。
【0020】
器官に及ぼす治療の影響を評価するための本システムのある実施形態では、測定値取得モジュールは、複数の第1の測定値の各々を治療前に取得し、及び複数の第2の測定値の各々を治療時若しくは治療後のいずれかで取得するように、又は複数の第1の測定値の各々を治療時に取得し、及び複数の第2の測定値の各々を治療後に取得するように、構成される。
【0021】
本システムでは、第1の測定値及び第2の測定値は、変位測定値、速度測定値、換気測定値、灌流測定値、換気/灌流(V/Q)比測定値、又は上記測定値のいずれかから導出されうる、いずれかの測定値の1つでありうる。
【0022】
本システムでは、一実施形態の測定値変化モジュールは、ある領域の第1の測定値とその領域の第2の測定値とを比較するように構成されることにより、その領域に対する局所変化測定値を得るようにしうる。
【0023】
本システムの一実施形態では、治療影響モジュールは、器官に送達された治療の対応する局所治療情報と共に複数の局所変化測定値の各々をマッピングしてマッピングを発生させるとともに、マッピングから治療の影響を導出するように構成されることにより、治療の影響を決定する。治療影響モジュールは、局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめるように構成されることにより、マッピングから治療の影響を導出可能である。さらに又は代替的に、治療影響モジュールは、治療が局所器官機能を改変したかを治療の影響に基づいて決定するように、及び/又は器官機能を治療の影響に基づいて評価するように、構成可能である。
【0024】
本システムのある実施形態では、治療の影響は、a)器官機能の変化なし、b)治療に関連する器官機能の変化、又はc)治療に関連しない器官機能の変化の1つの指標となる。
【0025】
本システムのある実施形態では、治療は、器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である。治療は、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含みうる。治療が放射線療法治療であるとき、局所治療情報は、器官の複数の領域の各々に対する放射線レベルを含む線量マップである。
【0026】
器官に及ぼす治療の影響を評価するための本システムの一実施形態では、測定値取得モジュールは、器官の複数の領域の各々に対する局所変化測定値を得る前に、複数の第1の測定値及び複数の第2の測定値と器官の流体フロー構造とを関連させるか、又は治療の影響を決定する前に、複数の局所変化測定値と器官の流体フロー構造とを関連させるか、のいずれかを行うように、さらに構成される。
【0027】
本システムの使用では、器官は肺に対応しうるとともに、流体フロー構造は肺の気道樹若しくは肺の血管樹の1つに対応し、又は器官は心臓に対応しうるとともに、流体フロー構造は心臓の血管構造に対応する。
【0028】
本開示はさらに、器官に及ぼす治療の影響を評価するための装置に関する。本装置は、インターフェースと、メモリーと、インターフェース及びメモリーに結合されたプロセッサーと、を含む。プロセッサーは、メモリー中の命令を実行して、本装置に、器官の複数の領域の各々に対する第1の測定値を取得させ、第1の測定値の取得後に器官の複数の領域の各々に対する第2の測定値を取得させ、領域の第1の測定値及び第2の測定値に基づいて器官の複数の領域の各々に対する局所変化測定値を得させ、並びに複数の局所変化測定値及び器官に送達された治療の局所治療情報に基づいて治療の影響を決定させるように、構成される。
【0029】
本装置のある実施形態では、プロセッサーは、メモリー中の命令を実行して、本装置に、イメージング装置又は画像源から器官の時系列の2次元(2D)画像を得させるとともに、時系列の2D画像を処理して複数の領域の各々に対する運動測定値を得させるように構成されることにより、本装置に、器官の複数の領域の各々に対する第1の測定値又は器官の複数の領域の各々に対する第2の測定値のいずれかを取得させる。プロセッサーは、メモリー中の命令を実行して、本装置に器官の2D画像を相互相関させるようにさらに構成されることにより、本装置に時系列の2D画像を処理させるようにし、及び/又はメモリー中の命令を実行して、本装置に器官の時系列の2D画像から器官の複数の領域の各々に対する運動測定値を再構築させるように構成されることにより、時系列の2D画像を処理させる。
【0030】
プロセッサーは、メモリー中の命令を実行して、3D画像を最初に再構築することなく本装置に3D運動測定値を再構築させるように構成されることにより、本装置に運動測定値を再構築するようにしうる。追加的又は代替的に、プロセッサーは、メモリー中の命令を実行して、器官の複数の領域の各々に対して、その領域に関連する1つ以上の運動測定値から本装置に容量測定値を導出させるように構成されることにより、本装置に時系列の2D画像を処理させる。
【0031】
器官に及ぼす治療の影響を評価するための装置のある実施形態では、第1の測定値及び第2の測定値は、変位測定値、速度測定値、換気測定値、灌流測定値、換気/灌流(V/Q)比測定値、又は上記測定値のいずれかから導出されうる、いずれかの測定値の1つである。
【0032】
ある実施形態では、プロセッサーは、メモリー中の命令を実行して、本装置にある領域の第1の測定値とその領域の第2の測定値とを比較させるように構成されることにより、本装置にその領域に対する局所変化測定値を得させる。
【0033】
代替的又は追加的に、プロセッサーは、メモリー中の命令を実行して、本装置に、治療装置又は治療情報源から局所治療情報を受け取らせ、器官に送達された治療の対応する局所治療情報と共に複数の局所変化測定値の各々をマッピングしてマッピングを発生させるとともに、マッピングから治療の影響を導出させるように構成されることにより、本装置に治療の影響を決定させるようにしうる。この実施形態では、プロセッサーは、メモリー中の命令を実行して、本装置に局所治療情報の関数としての局所変化測定値のプロットを通る線を当てはめさせるように構成されることにより、本装置にマッピングから治療の影響を導出させるようにしうる。
【0034】
代替的又は追加的に、開示された本装置では、プロセッサーは、メモリー中の命令を実行して、本装置に、治療が局所器官機能を改変したかを治療の影響に基づいて決定させるように、さらに構成される。代替的又は追加的に、プロセッサーは、メモリー中の命令を実行して、本装置に、器官機能を治療の影響に基づいて評価させるように、さらに構成される。
【0035】
本装置では、治療の影響は、好ましくは、a)器官機能の変化なし、b)治療に関連する器官機能の変化、又はc)治療に関連しない器官機能の変化の1つの指標となる。
【0036】
本装置の一実施形態では、治療は、器官全体にわたり治療送達レベルを変動させることにより特徴付けられる不均一治療である。治療は、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、熱/アブレーション、又はグルーの少なくとも1つを含みうる。治療が放射線療法治療であるとき、局所治療情報は、器官の複数の領域の各々に対する放射線レベルを含む線量マップである。
【0037】
器官に及ぼす治療の影響を評価するための本装置では、プロセッサーは、メモリー中の命令を実行して、本装置に、器官の複数の領域の各々に対する局所変化測定値を得る前に、複数の第1の測定値及び複数の第2の測定値と器官の流体フロー構造とを関連させるか、又は治療の影響を決定する前に、複数の局所変化測定値と器官の流体フロー構造とを関連させるか、のいずれかを行わせるように、さらに構成されうる。
【0038】
本装置の使用では、器官は肺に対応しうるとともに、流体フロー構造は肺の気道樹若しくは肺の血管樹の1つに対応し、又は器官は心臓に対応しうるとともに、流体フロー構造は心臓の血管構造に対応する。
【0039】
本開示はまた、コンピューターのプロセッサーにより実行されるときに、器官に及ぼす治療の影響を評価するように指示された工程をコンピューターに実行させるコンピュータープログラムが記憶された、非一時的コンピューター可読記憶媒体に関する。工程は、器官の複数の領域の各々に対する第1の測定値を取得することと、第1の測定値の取得後に器官の複数の領域の各々に対する第2の測定値を取得することと、領域の第1の測定値及び第2の測定値に基づいて器官の複数の領域の各々に対する局所変化測定値を得ることと、複数の局所変化測定値及び器官に送達された治療の局所治療情報に基づいて治療の影響を決定することと、を含む。
【0040】
装置及び方法の他の態様は、例示を目的として装置及び方法の各種態様が示され説明されている下記の詳細な説明から、当業者には明らかになるであろうと理解される。了解できるであろうが、これらの態様は他の異なる形態で実施されうるとともに、そのいくつかの詳細は、各種他の観点で変更可能である。それゆえ、図面及び詳細な説明は、本質的に例示的なものであり限定的なものではないと見なされるべきである。
【0041】
次に、添付の図面を参照して、限定を目的としたものではなく例として、システム及び方法の各種態様を詳細な説明に提示する。
【図面の簡単な説明】
【0042】
【
図1】器官の局所変化測定値及び医学的治療に関連する局所治療情報に基づいて器官に及ぼす医学的治療の影響を評価するためのシステムのブロック図である。
【
図2】肺への放射線療法の形態の医学的治療に関連する局所治療情報の表現である。
【
図3A】器官の領域に対する運動再構築の模式図である。
【
図3B】器官の領域に対する運動再構築の模式図である。
【
図3C】器官の領域に対する運動再構築の模式図である。
【
図4】システムにより使用される医用画像をキャプチャーするコンピュータートモグラフィーX線速度測定(CTXV)システムの模式図であり、
図1のシステムの1つ以上のコンポーネントを含みうる。
【
図5A】局所変化測定値、たとえば、放射線量などの局所治療情報に対する治療前の特異的換気と治療後の特異的換気との比較の、プロットの形態の
図1のシステムにより決定された治療の影響の視覚的表現である。
【
図5B】可視化のためにコンピュータートモグラフィー(CT)スライスの画像上にオーバーレイされた、
図5Aの治療前の特異的換気測定値などの第1の測定値の2次元(2D)スライスの描画である。
【
図5C】可視化のためにCTスライスの画像上にオーバーレイされた、
図5Aの治療後の特異的換気測定値などの第2の測定値の2Dスライスの描画である
【
図6A】局所変化測定値、たとえば、放射線量などの局所治療情報に対する治療前の特異的換気と治療後の特異的換気との比較の、プロットの形態の
図1のシステムにより決定された他の治療の影響の視覚的表現である。
【
図6B】可視化のためにCTスライスの画像上にオーバーレイされた、
図6Aの治療前の特異的換気測定値などの第1の測定値のスライスの描画である。
【
図6C】可視化のためにCTスライスの画像上にオーバーレイされた、
図6Aの治療後の特異的換気測定値などの第2の測定値のスライスの描画である。
【
図7】器官に及ぼす医学的治療の影響を決定する方法のフローチャートである。
【
図8】
図7の方法を実施するように構成された装置のブロック図である。
【
図9A】医学的治療時に投与された放射線量の空間分布を示す3次元線量マップの2Dスライスの形態の局所治療情報の例である。
【
図9B】局所変化測定値、たとえば、放射線量などの局所治療情報に対する治療前の特異的換気と治療後の特異的換気との比較の、ボックスプロットの形態の治療の4ヵ月後の
図9Aの放射線量の治療の影響の視覚的表現である。
【
図10A】医学的治療時に投与された放射線量の空間分布を示す3次元線量マップの2Dスライスの形態の局所治療情報の例である。
【
図10B】局所変化測定値、たとえば、放射線量などの局所治療情報に対する治療前の特異的換気と治療後の特異的換気との比較の、ボックスプロットの形態の治療の4ヵ月後の
図10Aの放射線量の治療の影響の視覚的表現である。
【
図10C】局所変化測定値、たとえば、放射線量などの局所治療情報に対する治療前の特異的換気と治療後の特異的換気との比較の、ボックスプロットの形態の治療の12ヵ月後の
図10Aの放射線量の治療の影響の視覚的表現である。
【発明を実施するための形態】
【0043】
本明細書に開示される方法、システム、及び装置は、顆粒状レベルで肺及び他の器官に及ぼす医学的治療の影響を評価する。この目的では、本方法及びシステムは、局所ベースで器官機能を測定して領域ごとに局所器官機能と局所治療情報とを比較又は相関させる能力を提供する。これは、きわめて複雑な治療状況のかなり深いより完全な理解を可能にする。本方法、システム、及び装置は、治療される器官さらには治療される器官の近傍の他の器官の評価を可能にする。
【0044】
図1は、器官の局所測定値の変化112及び医学的治療の局所治療情報114に基づいて患者の器官122に及ぼす医学的治療124の影響116を評価するためのシステム100のブロック図である。本明細書で用いられる患者はヒトであるが、本システム100は、ex vivo又はin vitro実験で用いられる動物被験者又はモデル化生体器官で使用されうる。評価される器官122は、それに関連する運動を有するいずれかの解剖学的構造又はそれを通って流れる血液若しくは流体でありうる。たとえば、器官122は、肺、心臓、胃腸管、リンパ系、血管系、呼吸系でありうる。さらに、評価される器官122は、必ずしも器官全体とは限らない。システム100は、器官の構造又は要素、たとえば、呼吸系の気道、心臓の動脈、又は血管系の血管にその評価を集中しうる。
【0045】
影響116(本明細書では「治療の影響」という)は、治療124に付された器官122の全体機能若しくは局所機能の評価又は治療に付された身体の領域に隣接する若しくはその近くの器官の機能の評価に対応しうる。治療の影響116は、医学的治療124が器官機能に対して正改変若しくは好影響、負改変若しくは悪影響、又は無影響のいずれかの決定に対応しうる。
【0046】
一般論として、治療の影響116は、治療124による器官122の局所測定値の変化112と治療の対応する局所治療情報114との関連に基づいて導出される。本明細書で用いられる「局所測定値」とは、器官全体に対する単一グローバル測定値とは対照的に、器官122のいくつかの個別領域120の各々に対して得られる測定値108、110を意味する。本明細書で用いられる「局所治療情報」とは、器官のいくつかの個別領域120の各々に対する治療情報114を意味する。本明細書で用いられる「領域」とは、その全体よりも小さな器官の一部又は部分、一般的には有意に小さな部分に対応する。領域120は、システム技術により特徴付けられうる。たとえば、領域120は、2次元(2D)ディスプレイウィンドウ(たとえば16×16ピクセル、さらには単一ピクセル)又は3次元(3D)ディスプレイウィンドウ(たとえば8×8×8ボクセル、さらには単一ボクセル)又はベクトルノードにサイズが等価な器官122の物理的一部に対応しうる。
【0047】
「局所測定値」に関して、これらの測定値108、110は、器官を通る流体(たとえば、空気、血液など)の移動から得られるいずれかのタイプの測定値でありうる。たとえば、肺の場合には、局所測定値108、110は、肺の気道樹に関連する組織の3D領域又はボクセルの容量又は膨張測定値から導出される換気測定値でありうるとともに、この容量及び膨張測定値は、肺の組織の運動測定値から導出される。言い換えると、組織の領域の運動測定値が最初に得られ、この組織運動測定値から、換気などの空気フローに関する関連生理学的測定値が導出されうる。換気測定値は、肺容量及び肺容量の変化(たとえば、「容量の変化」を「初期容量」で除算した比換気)の両方を含むことが意図され、呼吸サイクルの吸気相若しくは部分の1つ以上の時点及び/又は呼吸サイクルの呼気相又は部分の1つ以上の時点を含めて、呼吸サイクルのいずれかの時点で測定可能である。たとえば、換気測定値は、測定値が十分な吸気をカバーするように、吸気開始と吸気終末(すなわちピーク吸気)との間で得られたものでありうる。換気測定値は、自然潮汐呼吸時又は呼吸サイクルの所望の期間に対応する時点で得られたものでありうる。
【0048】
肺に対する局所測定値108、110はまた、灌流若しくは血流測定値又は換気及び灌流測定値の組合せ(たとえば、換気及び灌流の比)でありうる。肺における灌流測定値は、肺の血管構造の3D画像又はさらなる計算及び/若しくはモデリングとの組合せで肺の血管構造に関連する3D領域若しくはボクセルの膨張測定値から導出されうる。
【0049】
心臓などの他の器官の場合には、局所測定値108、110は、血流測定値でありうる。たとえば、血流測定値は、心臓の各種腔又は心臓の他の血管構造に関連する3D領域又はボクセルの容量又は膨張測定値から導出されうる。
【0050】
以下でさらに説明されるように、局所測定値108、110は、時系列又はシーケンスの医用画像126から取得されうる。一実施形態では、局所測定値108、110を決定するために、患者の十分な数の医用画像126が得られるとともに、相互相関技術などの器官の運動を測定する技術を用いて処理される。他の実施形態では、より少ない医用画像が得られうるとともに、計算又は推定又はモデリングを介して局所測定値が決定されうる(たとえば、計算流体力学(CFD)の分野では、気道を通る空気のフロー又は血管系を通る血液のフローを計算する方法が提供される)。
【0051】
「医学的治療」に関して、この治療124は、本質的に非侵襲的又は侵襲的のいずれかで、1つ以上の治療タイプ、モダリティー、又は療法が関与しうる。たとえば、治療124は、非侵襲的な放射線療法、陽子線療法、又は薬剤療法(セラグノスティクスなどの標的化薬剤療法を含む)でありうるとともに、各々、定期的に、たとえば、1日1回、週1回、月1回などで、ある期間にわたり器官に送達される個別治療量で構成される治療レジメンに従って送達される。代替的に、治療124は、侵襲的でありうるとともに、外科的郭清、組織アブレーション、ステント留置、バルブ留置、及びグルー適用の形態の器官改変又は増強が関与しうる。
【0052】
いくつかの治療124は、身体の特異的領域に標的化された治療が身体の周囲領域にも影響を及ぼすという点で、身体への送達が不均一であるとして特徴付けられうる。たとえば、癌に対する放射線療法の場合には、治療計画では、体内の標的位置の腫瘍へのある線量の放射線の送達を処方しうる。しかしながら、放射線送達は、完全に標的に送達されるとは限らない。それゆえ、治療124時の放射線暴露は、標的位置に限定されない。標的を取り囲むか、さもなければその近傍の領域もまた、典型的にはより低線量であるが放射線に暴露される。このため、放射線療法などの技術は、器官機能に局所的影響を及ぼす傾向がある。つまり、この療法は、器官122のいくつかの領域に好影響を及ぼしうると同時に、器官の他の領域に悪影響を及ぼしうる。たとえば、癌性組織は、肺の1つ以上の領域で収縮又は死滅されうるので、それらの領域で肺機能が増加する可能性がある。反対に、肺の他の領域の非癌性組織は、放射線量により悪影響を受けるおそれがある。これらの影響は、好影響及び悪影響の両方であり、おそらく影響領域に送達された放射線量に相関する。放射線療法は、周囲器官にも影響を及ぼしうる。たとえば、乳癌に対する放射線療法治療時、心臓は、偶発的に放射線に暴露されうる。このため、心臓の複数の領域の各々に対する局所変化測定値を得るために、システム100を用いて治療の前及び後に心臓の局所血流測定値を取得しうる。
【0053】
不均一治療の他の一例として、肺の狭い又は閉塞された気管支を開放するために肺に植え込まれたステントは、その領域の肺機能を増加させることによりインプラント部位の肺の領域に好影響を及ぼす。しかしながら、ステントは、たとえば、隣接気管支の壁の部分的圧潰を引き起こして隣接気管支の領域の肺機能を減少させることにより、肺の周囲領域に悪影響を及ぼしうる。同様に、心臓の冠動脈に植え込まれたステントは、その領域の血流を増加させて心機能を改善することにより、インプラント部位の動脈の領域に好影響を及ぼす。しかしながら、ステントは、たとえば、隣接動脈の壁の部分的圧潰を引き起こして隣接動脈の領域の血流を減少させることにより、心臓の周囲領域に悪影響を及ぼしうる。他の例としては、対象領域に直接配置することも可能な担体を介する治療送達が挙げられる。例としては、肝癌に供給される血管内への放射性ビーズの配置又はセラノスティクスが挙げられる(その際、治療及び診断イメージング物質は、体内のある特定の標的に引き寄せられる又はそれに結合する物質と組み合わされる)。
【0054】
「局所治療情報」に関して、この情報114は、器官122の領域の標的治療により作成されうるか又はそれから得られうる。たとえば、放射線療法の形態の医学的治療124では、放射線療法治療計画に従って疾患領域に特定線量の放射線を送達することを試みる。放射線療法治療計画では、治療124時に肺122の各領域120に送達するように計画された線量についての詳細な知見が提供される。放射線治療計画は、公知の技術を用いて治療前に決定される。代替的に、セラノスティクスアプローチを介して送達された放射線(又は他の治療)は、たとえばPETイメージングを用いて又はかかる治療の直後にたとえば分子核イメージングを用いて推定又は測定可能である。いずれの場合も、治療124に関連する局所治療情報114は、線量マップにより表されうる。
【0055】
局所治療情報114はまた、疾患領域から離れた個別プロセスを介して作成されうる。たとえば、肺バルブ又は肺ステントは、典型的には、疾患又は非健常領域の上流位置の気道樹に植え込まれる。そのため、こうしたタイプの介入では、器官の1つの領域の治療は、器官の他の領域に影響を及ぼす。デバイスが植え込まれた器官の領域を示す局所治療情報114は、外科医若しくは医師により確信をもって知られうるか、又はインプラント後のデバイスのメディカルイメージングから取得されうる。治療物質(たとえば薬剤)又は放射線を放出するデバイスはまた、得られた送達を計算する追加の工程を必要としうる(たとえば、放射線は、典型的には、放射線を送達するデバイスからの距離の2乗で減少する)。
【0056】
本明細書に開示される実施形態によれば、特定治療に関する局所治療情報114は、治療パラメーターと肺122などの器官のいくつかの領域120の各々とを関連させる治療マップの形態で入手可能でありうる。たとえば、肺122に対する放射線療法の場合には、治療マップは、3D座標などによる肺の各領域120と、その領域に送達されたか又は送達されたと予想されるかのいずれかの対応する放射線量と、を列挙するデータセットの形態でありうる。一般に、治療マップに列挙された線量は、標的腫瘍位置又はそのすぐ周りの肺122のそうした領域でより高くなり、他の領域で標的腫瘍からの距離の関数として値が徐々に低減するであろう。
【0057】
図2は、腫瘍204を有する肺122に送達された放射線治療に対する線量マップ202の視覚的表現を提供する。治療領域206のグリッドは、肺122の視覚的表現をオーバーレイする。各治療領域206は、肺122の領域120に対応する。各治療領域206の数1~5は、肺122のその領域120に送達された放射線量を表し、より大きな値は、放射線のより高い線量に対応する。線量マップ202の、視覚的表現は、2次元であるが、線量マップ202は、本質的に3次元であり、治療領域206は、深さ方向に肺122内に伸長するキューブ又はボクセルに対応する。腫瘍204の近くの治療領域206に送達された線量は、最大であり、線量は、腫瘍からの距離の関数として徐々に低減することに留意されたい。
【0058】
図1に戻ると、システム100の続く説明は、肺に対応する器官及び肺癌を治療する目的の放射線の形態の治療に関する。肺の放射線治療は、肺の標的位置への規定線量の放射線の送達が関与しうる。すでに述べたように、「線量」とは、1回の治療セッションで送達される特定治療量、たとえば、放射線レベル/レートを意味し、「投与量」とは、特定期間にわたり特定頻度で送達される特定数の線量を意味する。たとえば、肺癌を治療する際、規定用量は、6週間の期間にわたり行われる毎日の治療セッションで標的腫瘍に送達されうる。
【0059】
器官に及ぼす医学的治療の影響を評価するためのシステム100は、測定値取得モジュール102、測定値変化モジュール104、及び治療影響モジュール106を含む。システム100は、器官の画像126を取得する目的でイメージング装置128及び局所治療情報114を取得する目的で治療装置142又は他の治療情報源にインターフェースしうる。こうした目的では、システム100は、イメージング装置128若しくは治療装置142から直接に、又は画像及び治療情報を記憶するクラウドベースサーバー/データベースや他のコンピューターネットワーク構造などの他の画像源若しくは治療情報源から、画像126及び治療情報114を取得するように構成されうる。代替的に、システム100の1つ以上のモジュールは、1つ以上のイメージング装置及び治療装置を含みうる。たとえば、測定値取得モジュール102は、イメージング装置を含みうる。
【0060】
測定値取得モジュール102は、イメージング装置128から測定値取得モジュール102により取得された肺の画像126に基づいて、肺122の複数の領域120の各々に対する第1の測定値108及び第2の測定値110を取得するように構成される。複数の領域120は、2つ程度の少ない領域でありうるが、典型的には、20超の領域、50超の領域、100超の領域、200超の領域、500超の領域、又は1000超の領域であろう。一実施形態では、画像126は2D画像である。他の実施形態では、画像126は3D画像でありうる。
【0061】
治療124に対する第1の測定値108及び第2の測定値110の取得のタイミングは、各種シナリオを取りうる。たとえば、第1の測定値108は、治療の第1の送達前に、すなわち、ともかく器官が治療される前に、又は器官が治療に付された後に、ただし、器官が他の治療に付される前に、取得されうる。第1の測定値108は、治療124の同一日さらには治療124の送達時でさえも取得されうる。第2の測定値110は、第1の測定値108の取得後に、及び治療装置142による肺122への治療124の送達後又は可能であれば送達時に取得される。たとえば、第2の測定値110は、治療124の送達の直後に、又は器官に治療の影響が現れるようにするのに十分な治療送達後の時点で、取得されうる。代替的に、第2の測定値110は、治療124の送達時に取得されうる。治療124時の取得は、好ましくは、器官に及ぼす治療の影響が即時であると予想される場合に行われる。
【0062】
重要なこととして、第1の測定値108は、治療124の影響が現れる前に取得され(器官機能のベースラインを作成するために)、及び第2の測定値110は、第1の測定値108後しばらくして(たとえば、治療の影響が現れると予想される後に)取得される。これらのタイムラインは、異なる手順では異なることが理解されよう。たとえば、肺に対する放射線療法の場合には(及び肺での望ましくない放射線暴露の副作用である放射線誘発肺炎をモニターする場合には)、第1の測定値108は、治療の同一日に肺炎が始まる前に取得されうるとともに、第2の測定値110は、実質的に治療後に(たとえば1ヵ月以上後に)取得されるであろう。これとは対照的に、手術時に医療デバイスを植え込む場合には、第1の測定値108は、器官機能のベースラインを確立するために、手術のしばらく前に(たとえば1週間前に)取得されうるとともに、第2の測定値110は、医療デバイスの植込み直後に(たとえば、まだ手術中でさえも)又は代替的に手術後しばらくして(たとえば翌日に)取得されうる。
【0063】
第1の測定値108及び第2の測定値110は、局所肺変位測定値、局所肺速度測定値、肺換気測定値、肺灌流測定値、肺換気/灌流(V/Q)比測定値、肺コンプライアンス測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値の1つでありうる。たとえば、呼吸器科の分野では、気道フロー、肺コンプライアンス、時定数、肺抵抗、又は空気トラッピング測定値は、肺換気測定値から導出されうる。肺換気測定値の例は、以下でさらに説明されるように、肺領域の容量に対する肺のその領域の容量膨張の尺度に対応する比換気測定値である。肺の複数の領域を横切る第1の測定値108は、第1の測定値データセットといいうるとともに、肺の複数の領域を横切る第2の測定値110は、第2の測定値データセットといいうる。
【0064】
図1を続けて、一実施形態では、測定値取得モジュール102は、肺122の時系列又はシーケンスの2D画像126を得るとともに、時系列の2D画像126を処理して肺の複数の領域120の各々に対する運動測定値を得ることにより、第1の測定値108及び第2の測定値110の各々を取得する。測定値取得モジュール102は、画像をキャプチャーする装置でありうるイメージング装置128又はダウンロード用の画像を記憶する画像保管通信システム(PACS)などの画像源から画像を受け取ることにより、時系列の2D画像を得るようにしうる。イメージング装置128は、個別物理構造でありうるか、又は測定値取得モジュール102若しくはシステム100のいずれかの他のモジュールに含まれうる。いずれの場合にも、本明細書で用いられる画像126は、視覚的画像が作成されうる画像データ又は画像データセットに対応しうる。これらの画像データセットは、視覚的画像に変換可能であるが、システム100による画像の処理は、通常、データセットに対するものと理解される。
【0065】
肺122の時系列の2D画像126は、呼吸サイクルのすべて又は一部分で肺に対して1つの角度又は視点からキャプチャーされた肺の単一時系列の2D画像を含みうる。特定角度での肺の単一時系列の2D画像126は、シリーズ又はシーケンスの2D画像を含みうる。このシーケンスの各それぞれの画像は、吸気時若しくは呼気時(若しくは相)又は全体呼吸時(吸気及び呼気の両方)のそれぞれ異なる時点でキャプチャーされる。時系列又はシーケンスの2D画像126の上記取得の追加の説明は、「Method of Imaging Motion of an Organ」という名称の米国特許第10,674,987号明細書に含まれる。
【0066】
肺122の時系列の2D画像126は、肺の複数の時系列の2D画像を含みうる。ただし、複数の時系列の2D画像の各々は、肺に対して異なる角度又は視点から、及び呼吸サイクルのすべて又は一部分で、キャプチャーされる。この場合には、肺122の複数の時系列の2D画像126の各々は、吸気時又は呼気時にユニーク角度で及び時間間隔をおいてキャプチャーされた一連の2D画像を含む。一構成形態では、肺122の複数の時系列の2D画像126の各々は、少なくとも3つの異なる角度からキャプチャーされる(角度の広がりを作成するために)。たとえば、肺122の2D画像126は、4つの角度又は5つの角度から取得されうるが、いずれの場合にも、好ましくは10個以下の異なる角度である。肺122の複数の時系列の2D画像126の各々は、同一呼吸内で非同期的に、同時に、若しくは異なる呼吸時に、又はそれらのいずれかの組合せでキャプチャー可能である。
【0067】
肺122の時系列の2D画像126は、画像をキャプチャーするためにX線に依拠するイメージング装置128から測定値取得モジュール102により得られうる。たとえば、イメージング装置128は、時系列の2D X線画像をキャプチャー可能な蛍光透視デバイスでありうる。代替的に、2D画像126は、他の好適なタイプの2Dメディカルイメージング装置、たとえば、投影MRIイメージング装置、mm波イメージング装置、赤外イメージング装置、4次元CTイメージング装置、又はポジトロンエミッショントモグラフィー(PET)イメージング装置から得られうる。時系列又はシーケンスの2D画像126の上記キャプチャーの追加の説明は、「Method of Imaging Motion of an Organ」という名称の米国特許第10,674,987号明細書(その全体が参照により本明細書に組み込まれる)に含まれる。
【0068】
2D画像126の取得後に、測定値取得モジュール102は、画像を解析して肺の第1の測定値108又は第2の測定値110、たとえば、換気を計算する。肺122の領域120の運動は、いずれかの好適な技術を用いて測定値取得モジュール102により計算可能であるが、一実施形態では、「Particle Image Velocimetry Suitable for X-ray Projection Imaging」という名称の米国特許第9,036,887B2号明細書(その全体が参照により本明細書に組み込まれる)に記載のように、コンピュータートモグラフィーX線速度測定(CTXV)及び相互相関技術を用いて測定される。CTXVでは、対象物(この場合には肺)の局所3次元運動を測定するために複数の投影角度から撮影されたX線画像が使用される。CTXVでの運動追跡は、時系列の第1の画像中の領域を選択して選択領域と時系列中の第2の画像とを統計的に相関させることにより領域の変位が計算される粒子画像速度測定(PIV)と呼ばれる周知の技術に依拠する。したがって、運動測定値は、変位、速度、膨張(若しくは換気)の2D若しくは3D測定値又はいずれかの他の好適な運動測定値でありうる。気道のフローもまた、運動測定値から計算可能である。
【0069】
一般に、相互相関技術を用いて、米国特許第9,036,887号明細書に記載のように、肺122の領域120に対する第1の測定値108又は第2の測定値110は、肺の複数の時系列の2D画像126から肺の複数の領域の各々に対する運動測定値を再構築してから、肺の複数の領域の各々に対してその領域に関連する1つ以上の運動測定値から容量又は膨張測定値を導出することにより計算される。一実施形態では、運動測定値の再構築は、3D画像を最初に再構築することなく3D運動測定値を再構築することを含む。
【0070】
以上の一般的な説明に付け加えると、
図3A、3B、及び3Cに関して、測定値取得モジュール102は、複数の時系列の2D画像の各々に対する2D相互相関を決定するよう構成される。この目的では、測定値取得モジュール102は、時系列308の2D画像の第1の画像304aをウィンドウ306aにスプリットし、次いで、第1の画像304aからの各ウィンドウと第2の画像304bの対応するウィンドウ306bとを比較して、第1の画像と第2の画像との間の時間にウィンドウがどこに移動したか、及び第1の画像304aからのウィンドウ306aが第2の画像304bからのウィンドウ306bにどの程度良好に相関するかを決定する。ウィンドウ306a及び306bの測定相互相関310の3D表現は、
図3Bに示される。
【0071】
測定2D相互相関に基づいて、測定値取得モジュール102は、生成された測定2D相互相関に対して3D速度フローフィールドがどのようなものであったかを推定する。
その次に、測定値取得モジュール102は、速度フローフィールドの3D推定量に対するモデル化相互相関312を決定する(ウィンドウ306a及び306bの推定相互相関の2D表現314は、
図3Cに示される。)。言い換えると、測定値取得モジュール102は、推定3Dフローに対して生じる相互相関312を計算する。こうした推定相互相関312は、測定2D相互相関310と同一でないことに留意されたい。その次に、測定値取得モジュール102は、測定2D相互相関310と推定相互相関312とを比較し、レーベンバーグ・マーカートアルゴリズム(非線形最小二乗ソルバーである)などの繰返し法を用いて2つの間の誤差を最小限に抑え、推定3D速度フローフィールドを修正する(その後、新たな推定相互相関が再計算される)。
【0072】
測定相互相関310と推定相互相関312との間の誤差が十分に最小限に抑えられたとき、測定値取得モジュール102は、3D画像をなんら再構築することなく、3Dモーションフィールド(すなわち、最終推定3D速度フィールド)を再構築した。この技術は、典型的には、コンピュータートモグラフィーX線速度測定(CTXV)といわれ、粒子画像速度測定(PIV)の拡張である。次いで、測定値取得モジュール102は、3Dモーションフィールドから(局所)膨張(換気又は比換気ともいわれる)を計算する。これは、周知の式(du/dx+dv/dy+dw/dz)を用いて行われる。
【0073】
図4に関して、一実施形態では、測定値取得モジュール102は、イメージング装置128と共にコンピュータートモグラフィーX線速度測定(CTXV)システム400に含まれる。CTXVシステム400は、イメージングハードウェア並びに画像キャプチャー及び解析ハードウェア及びソフトウェアを含む。イメージングハードウェアは、ビデオスピード又はダブルシャッターX線カメラ402、コーンビームX線源404、ソース変調システム406、ベーシックソースアライメント及び高分解能カメラアライメントハードウェア408、画像キャプチャー及び解析ハードウェア410、並びにユーザーインターフェース412を含む。画像キャプチャー及び解析ハードウェア及びソフトウェアは、典型的には、次の主要要素:ハイスピード画像キャプチャーハードウェア、ハイスピード画像処理ハードウェア、画像処理ソフトウェア、並びにアライメント、イメージング、及び解析用のユーザーインターフェースからなるであろう。CTXVシステム400の詳細は、「Particle Image Velocimetry Suitable for X-ray Projection Imaging」という名称の米国特許第9,036,887B2号明細書に記載されている。
【0074】
図1に戻ると、測定値変化モジュール104は、領域の第1の測定値108及び第2の測定値110に基づいて、肺122の複数の領域120の各々に対する局所変化測定値112を得るように構成される。この目的では、測定値変化モジュール104は、領域120ごとに領域の第1の測定値108と領域の第2の測定値110とを比較するように構成されうる。比較は、各種形態の数学又は統計学解析のいずれか1つに基づくものでありうる。たとえば、比較は、第2の測定値から第1の測定値を減算することにより得られる、領域の第1の測定値108と領域の第2の測定値110との間の差でありうる。又は比較は、領域の第1の測定値108と領域の第2の測定値110との間のパーセント変化でありうる。又は比較は、領域の第1の測定値108と領域の第2の測定値110との平均でありうる。また、いくつかの追加の第2の測定値が、たとえば、一連の放射線治療の各々の後で、経時的に得られる場合(経時的に治療の影響をモニターするために行われうる)、比較は、経時的なすべての測定値の数学又は統計学解析が関与しうる。比較は、たとえば、一連の測定値を関する当てはめ曲線でありうるとともに、その領域に及ぼす影響の傾向を表す。肺の複数の領域を横切る局所変化測定値112は、変化測定値データセットといいうる。
【0075】
これらの局所変化測定値112は、各領域120に対する換気の変化に関する情報を提供することにより、より簡単に換気の変化を同定可能にする。たとえば、負の局所変化測定値112、たとえば、比換気の負の変化は、局所変化測定値112に対応する領域で患者の換気(肺健康状態又は肺容量に対するサロゲート測定値)が減少又は低下したことを示唆する。反対に、正の局所変化測定値112、たとえば、比換気の正の変化は、その領域で患者の換気が増加又は改善したことを示唆する。
【0076】
図1を続けて、治療影響モジュール106は、複数の局所変化測定値112及び肺122に送達された治療124の局所治療情報114に基づいて、治療の影響116を得るように構成される。すでに述べたように、治療124の局所治療情報114は、治療装置142から直接に、又は関連治療情報を記憶するクラウドベースサーバー/データベースや他のコンピューターネットワーク構造などの他の治療情報源から、治療影響モジュール106により得られうる。
【0077】
治療の影響116は、治療124が全体肺機能に影響を及ぼしたか、又はより顆粒状レベルで治療が肺の他の領域よりも肺122のいくつか領域120に影響を及ぼしたか、を示唆しうる。治療の影響116はまた、肺機能の変化が治療の結果であるか否かを示唆しうる。たとえば、治療の影響116は、a)肺機能の変化なし、b)治療に関連する肺機能の変化、又はc)治療に関連しない肺機能の変化を示唆しうる。
【0078】
より具体的には、肺換気に関して、治療の影響116は、換気変化が見られなかったこと(たとえば、肺122の機能が変化しなかったこと)を示唆しうる。この治療の影響116は、たとえば、局所変化測定値112が換気変化を示さないときに生じうる。この場合には、肺癌の治療を受けている患者、及び肺での望ましくない追加の放射線暴露に起因する肺機能の低減をモニターしている医師又はシステム100は、患者の肺の健康状態に満足しうる(換気の変化が見られなかったので)。
【0079】
治療の影響は、換気変化が見られたこと及びそれが治療に関連すること(たとえば、低減又は増加のいずれかの換気変化が、局所治療情報114に対応する肺122の領域で発生したこと)を示唆しうる。この治療の影響116は、たとえば、患者が肺122の特定領域に放射線量を受けて局所変化測定値112が換気の低減を示すときに生じうる。この場合には、医師又はシステム100自体は、患者の改変された肺健康状態が肺122に送達された放射線療法に起因すると推測しうる。
【0080】
治療の影響は、換気変化が見られたがそれが治療に関連しないこと(たとえば、低減又は増加のいずれかの換気変化が、局所治療情報114に対応しない肺122の領域で発生したこと)を示唆しうる。この治療の影響116は、たとえば、患者が、局所変化測定値112により示唆される肺全体にわたる換気の全体的低減又は放射線が送達された肺の領域に関連しない肺の領域の局在的低減を有するときに生じうる。この場合には、医師又はシステム100自体は、放射線療法が肺機能の低減の原因でなく肺炎などの他の潜在的原因に注目しうると推測しうる。
【0081】
肺機能の変化の根本原因を素早く同定する能力は、異なる根本原因が異なる治療を必要とするので、医師にとって重要である(治療のなんらかの遅れは、疾患の進行をもたらす可能性がある)。言い換えると、システム100は、治療が局所肺機能を改変したかを決定するのにとくに有用である。肺健康状態のこうした改変は、治療の有効性若しくは効能を評価するために(たとえば、治療部位での肺機能の増加は、治療が奏効していることを示唆しうる)、又は治療のなんらかの悪影響が見られたかを評価するために(たとえば、治療部位での肺機能の減少は、治療がネガティブな副作用を引き起こしたことを示唆しうる)、使用されうる。
【0082】
図1に戻ると、治療影響モジュール106は、肺122に送達された治療の対応する局所治療情報114と共に複数の局所変化測定値112の各々をマッピング(たとえば、位置合せ)するように構成されたマッピングモジュール132を含みうる。言い換えると、肺122の各領域120に対して、局所治療情報114、たとえば、ある領域に対して
図2に示される放射線療法治療からの線量マップ情報は、その領域に対する局所変化測定値112にマッピングされる。
【0083】
マッピングは、領域の適正オーバーラップを確保するために、局所変化測定値112のデータセット及び/又は局所治療情報114のデータセットの変換、変形、回転、補間などの位置合せプロセスを含みうる。たとえば、いくつかの場合には、線量マップで提供される局所治療情報114及び局所変化測定値112は、同一物理的位置に存在しないこともあり、たとえば、左肺のトップのx,y,z位置は、線量マップでは0,0,0でありうるが、局所変化測定値では12,15,28でありうる。これに対処するように、マッピングモジュール132は、それぞれの物理的位置が適正にオーバーラップ/対応するまで、局所変化測定値112及び局所治療情報114の一方又は両方、たとえば、線量マップを平行移動するように構成される。
【0084】
マッピングモジュール132はまた、2つのデータセットのボクセルサイズが異なっていた場合には、局所変化測定値112及び局所治療情報114の一方又は両方を変形又はスケーリングするように構成されうる。マッピングモジュール132はまた、異なる角度から取得された場合には、同一角度になるように局所変化測定値112及び局所治療情報114の一方又は両方を回転するように構成されうる。マッピングモジュール132はまた、異なる分解能で取得された場合には、局所変化測定値112及び局所治療情報114の一方又は両方を補間するように構成されうる。
【0085】
いずれの場合にも、マッピングモジュール132によるこのマッピングは、肺122の各領域120に対して、治療124前のその領域の関数と、治療後のその領域の関数と、の測定可能な比較を、さらにはその領域に対する局所治療情報114の関数として、提供する。マッピングの結果として、治療の影響データ118が得られる。
【0086】
次いで、治療影響モジュール106は、治療影響データ118から治療の影響116を導出し、医師などのシステムユーザーによる観察に供すべく治療の影響を出力しうる。治療影響モジュール106は、ディスプレイ130に治療影響データ118を提供して、データのユーザー解釈を可能にするとともに、ユーザーが治療の影響を決定できるようにさらに構成されうる。
【0087】
図5A及び6Aを参照して、治療影響データ118は、データ点502、602のプロット500、600により表されうる。ただし、各点は、肺の領域120を表す。局所データ点502、602の位置は、領域120の局所変化測定値112及びその領域の局所治療情報114に基づく。
図5A及び6Aでは、局所変化測定値112は、領域120に対する第1の比換気測定値と同一領域に対する第2の比換気測定値との差に対応する比換気変化である。局所治療情報114は、たとえば、
図2に示される線量マップにより提供されるように、肺122の各領域120に送達されたX線量である。プロットされた局所変化測定値データセット及び局所治療情報データセットは、両方とも3Dデータセットであり、プロットすべき多くの個別データ点502、602をもたらすことに留意されたい。一群のデータ点502、602は、比較データセットといいうる。
【0088】
図5A及び6Aを続いて参照して、一構成形態では、治療影響モジュール106は、データ点502、602を線504、604に当てはめて線を解析することにより治療の影響116に到達するように構成される。この目的では、治療影響モジュール106は、当てはめ線の傾きを決定して基準に対してそれを評価することによりトレンド(相関)がデータ点502、602に存在するかを決定しうる。
【0089】
たとえば、治療影響モジュール106は、特定方向(たとえば、負又は正)の傾き又は勾配を有する当てはめ線を検出してそれに従って治療の影響116を発生させるように構成されうる。正の傾きの場合には、治療影響モジュール106は、「治療が肺機能に悪影響を及ぼさなかった」ことを示唆するメッセージの形態で治療の影響116を出力するようにプログラムされうる。このような症例は、
図5Aを参照して以下でさらに説明される。負の傾きの場合には、治療影響モジュール106は、「治療が肺機能に悪影響を及ぼした」ことを示唆するメッセージをディスプレイに出力するようにプログラムされうる。このような症例は、
図6Aを参照して以下でさらに説明される。
【0090】
図5Aでは、治療影響モジュール106は、データ点502に直線504を当てはめたが、いずれの他の好適な線を用いてデータを当てはめることも可能である。
図5Aに見られるように、当てはめ線504は、ごくわずかに正の勾配を有することから、治療124からの放射線量は、患者の肺の換気に悪影響を及ぼさないことが示唆される。言い換えると、肺122のいくつかの領域120は、比換気の有意な変化を呈し、たとえば、>±0.1であるが、領域の大部分は、ほとんど又はまったく変化を呈せず、たとえば、<±0.1である。最も有意には、線504の正の勾配をもたらして、より高線量の放射線、たとえば、10~25Gyに暴露された肺122の大部分の領域120は、ゼロ線506を上回るデータ点502により表される比換気の増加を経験した。
【0091】
図6Aを参照して、当てはめ線604は、明白な負の勾配を有することから、治療124からの放射線量は、患者の肺の換気に悪影響を及ぼしたことが示唆される。最も有意には、線604の負の勾配をもたらして、10~50Gyの放射線量に暴露された肺122の領域120の大部分は、ゼロ線606を下回るデータ点602により表される比換気の減少を経験した。
【0092】
図5A及び6Aの例は、治療の影響116を発生させる当てはめ線504、604の解析を説明しているが、局所変化測定値112及び局所治療情報の114の他のタイプのデータ解析が可能であるものと理解される。たとえば、
図9B、10B、及び10Cを参照して以下で後述されるように、局所治療情報114に対する局所変化測定値112のボックスプロットの解析を用いて、治療の影響116を発生させうる。代替的に、2Dプロットとして治療影響データ118を表す代わりに、治療影響モジュール106は、たとえば、各領域の変化測定値112に、対応する領域の治療情報114を乗算することにより、局所変化測定値112と局所治療情報114とを組み合わせて単一データセットにしうる。この結果、高変化測定値及び高治療情報値の両方がより顕在化された領域を生じるであろう(すなわち、領域が換気の有意な減少をもたらす高放射線量を有する場合、その領域の組合せ値は高いであろう)。かかるデータは、3次元データの2Dスライスとして表示可能である(たとえば、
図5Bに示されたスタイルで)。
【0093】
すでに述べたように、治療影響モジュール106は、ディスプレイ130に治療影響データ118を提供して、データのユーザー解釈を可能にするとともに、ユーザーが治療の影響を決定できるように構成されうる。治療影響データ118はまた、物理的報告の形態で出力されうる。たとえば、治療影響モジュール106は、ディスプレイ130上への
図5A及び6Aのプロットの表示を可能にするように治療影響データ118を出力しうる。そのほか、治療影響モジュール106は、第1の測定値が第2の測定値と比較されうるサイドバイサイド視覚的比較を可能にする事前及び事後の画像を表示することにより、第1の測定値108及び第2の測定値110に対応する画像データをディスプレイ130に送ってマニュアル比較を容易にするように構成されうる。
【0094】
たとえば、
図5B及び5Cに対応する表示肺画像では、
図5Bに示された第1の測定値108と
図5Cに示された第2の測定値110との間に実質的な差が見られないことが分かる。言い換えると、局所変化測定値112の実質的な変化は見られない。
図6B及び6Cに対応する表示肺画像では、とくに、第1の測定値108の領域606aを第2の測定値110の同一領域606bと比較したとき、
図6Bに示された第1の測定値108と
図6Cに示された第2の測定値110との間に実質的な差が見られることが分かる。
【0095】
以上のことから、局所変化測定値112及び局所治療情報114に基づいてシステム100により自動決定された治療の影響116並びに付随する治療影響データ118の提供は、治療の効能に関する情報を提供することに留意されたい。この情報は、治療がどのように肺に影響を及ぼしたかに関する判断を可能にする。こうした判断は、
図5A及び6Aに示されるようなプロットなどの治療影響データ118の視覚的観察に基づいて、医者/医師、研究者などのヒトにより行われうる。代替的に、判断は、局所変化測定値112及び局所治療情報114の処理を介してシステム100により自動で行われうる。
【0096】
すでに述べたように、治療は、多くの場合、ある距離で影響を及ぼしうる。たとえば、肺癌の治療は、気道を塞ぐ腫瘍を収縮しうる。代替的に、肺バルブの留置は、気道のフローを改変しうる。同様に、肺ステントの留置は、気道を改変しうる。こうした治療は、その気道/血管の遠位の組織に最大の影響を及ぼすであろう。しかしながら、機能の変化と気道樹/血管樹などとを関連させることにより、組織レベルではなく気道/血管系レベルで、ただし、依然として組織に及ぼす直接的/局所的影響に対しても同様に、変化を比較可能である。この目的では、システム100のそのほかの実施形態は、肺の気道樹に関連する測定値の処理及び解析に焦点を当てる。
【0097】
図1を参照して、システム100の他の一実施形態では、測定値取得モジュール102は気道樹モジュール134を含む。気道樹モジュール134は、第1の測定値108及び第2の測定値110をさらに処理して、それらと肺122の流体フロー構造たとえば気道樹138とを関連させるように構成される。言い換えると、気道樹モジュール134は、肺組織の各領域120と気道樹138の特異的気道又は枝144とを関連させることにより、第1の測定値108及び第2の測定値110の第1のタイプたとえば肺組織運動測定値を受け取って、それを第2のタイプたとえば気道フロー測定値に変換する。
【0098】
気道樹モジュール134は、第1の測定値108及び第2の測定値110を関連させ、修正し、又は変換してそれらと流体フロー構造とを関連させるためのいずれかの他のタイプのモジュールでありうることが理解されよう。たとえば、肺の血流を測定するとき、気道樹モジュール134は、その代わりに、血管系フロー測定値を抽出するための血管樹モジュールでありうる。心臓などの他の器官との関連の範囲内では、気道樹モジュール134は、その代わりに、第1の測定値108及び第2の測定値110を関連させ、修正し、又は変換してそれらと心臓の流体フロー構造、たとえば、心腔、冠脈などの血管構造とを関連させるための血管構造モジュールでありうる。
【0099】
気道樹モジュール134に戻って、第1の測定値108は、気道樹138に関連させて第1の気道フロー測定値といわれる一群の第1の測定値108を作成する。同様に、第2の測定値110は、気道樹138に関連させて第2の気道フロー測定値といわれる一群の第2の測定値を作成する。第1の気道フロー測定値及び第2の気道フロー測定値は、測定値取得モジュール102から測定値変化モジュール104に送られ、そして以上に記載のものと同様に測定値変化モジュール104により処理されて、局所気道フロー変化測定値といわれる局所変化測定値112を作成する。たとえば、気道樹138の1つの枝144の第2の気道フロー測定値は、同一枝の第1の気道フロー測定値から減算可能であり、それによりその枝に対する気道フロー変化測定値を作成する。本プロセスは、すべての枝144に対して繰返し可能である。局所気道フロー変化測定値は、測定値変化モジュール104から治療影響モジュール106に送られ、以上に記載のものと同様に治療影響モジュール106により処理されて、治療の影響116を決定する。
【0100】
気道樹138は、CT画像から気道をセグメント化及びスケルトン化することにより又はいずれかの他の好適な方法から作成可能である。第1の測定値108及び第2の測定値110は、いずれかの好適な方法を用いて気道樹138に関連させうる。たとえば、スケルトン化気道樹は、各気道の各枝144の終点140を位置決めすべく検査/インテロゲートされうるとともに、次いで、各第1の測定値108及び各第2の測定値110は、その最も近い終点140に割付け可能である。測定値の総和は、たとえば、気道の終点140から始まりすなわち口までの樹をバックアップし、気道全体にわたり気道フローを提供する。かかるセグメント化及びスケルトン化技術は、「Method of Scanning and Assessing Lung and Vascular Health」という名称の米国特許出願公開第2020/0069197号明細書(その全体が参照により本明細書に組み込まれる)に記載されている。
【0101】
図1を参照して、システム100の他の一実施形態では、測定値変化モジュール104は気道樹モジュール136を含む。気道樹モジュール136は、局所変化測定値112をさらに処理してそれと肺122の気道樹138とを関連させるように構成される。言い換えると、気道樹モジュール136は、局所肺組織変化測定値112の各領域120と気道樹138の特異的気道又は枝144とを関連させることにより、局所変化測定値112の第1のタイプたとえば局所肺組織運動測定値を受け取って、それを第2のタイプたとえば局所気道フロー変化測定値に変換する。
【0102】
この場合も、気道樹モジュール136は、局所変化測定値112を関連させ、修正し、又は変換するためのいずれかの他のタイプのモジュールでありうることが理解されよう。たとえば、血流を測定するとき、気道樹モジュール136は、その代わりに、局所血管系フロー変化測定値を抽出するための血管樹モジュールでありえる。
【0103】
気道樹モジュール136に戻って、治療影響モジュール106に出力される前に、局所変化測定値112は、気道樹138に関連させて、局所気道フロー変化測定値といわれる一群の局所変化測定値を作成する。局所変化測定値112は、第1の測定値108及び第2の測定値110との関連で以上に記載のものと同様に気道樹138に関連させうる。次いで、局所気道フロー変化測定値は、以上に記載のものと同様に治療影響モジュール106により処理されて治療の影響116を決定する。
【0104】
図7は、肺などの器官に及ぼす治療124の影響を評価する方法のフローチャートである。本方法は、以下でさらに説明される
図1のシステム100又は
図8の装置により実施されうる。
【0105】
ブロック702では、肺122の複数の領域120の各々に対する第1の測定値108が取得される。ブロック704では、第1の測定値の取得後及び肺への治療124の送達後又は送達時のいずれかで、肺122の複数の領域120の各々に対する第2の測定値110が取得される。いくつかの実施形態では、第2の測定値110は、治療124の送達の完了後に取得される。他の実施形態では、第2の測定値110は、治療124の送達時又は部分的に治療時及び部分的に治療後に取得されうる。第1の測定値108及び第2の測定値110は、たとえば、変位測定値、速度測定値、換気測定値、灌流測定値、換気/灌流(V/Q)比測定値、又は上記測定値のいずれかから導出されうるいずれかの測定値でありうる。
【0106】
治療124は、肺122全体にわたり治療送達レベルを変動させることにより特徴付けられた不均一治療でありうる。治療124は、限定されるものではないが、放射線療法、陽子線療法、抗体療法、手術、バルブ留置、組織アブレーション、又はグルー適用をはじめとするいずれかの療法の1つ以上でありうる。一実施形態では、治療124は、肺122の複数の領域120の各々に対する放射線レベルを含む線量マップの形態で関連局所治療情報114を有する放射線療法治療である。
【0107】
肺122の複数の領域120の各々に対する第1の測定値108及び/又は肺の複数の領域の各々に対する第2の測定値110は、肺の時系列又はシーケンスの2D画像126を得るとともに時系列の2D画像を処理して複数の領域の各々に対する運動測定値を得ることにより取得されうる。一実施形態では、肺の時系列の2D画像126を得ることは、肺の複数の時系列の2D画像を肺に対して各々異なる角度からキャプチャーすることを含む。肺122の複数の時系列の2D画像126は、10個以下の異なる角度からキャプチャーされうる。複数の時系列の2D画像126は、同一呼吸内で非同期的に、同時に、若しくは異なる呼吸時に、又はそれらのいずれかの組合せでキャプチャーされうる。
【0108】
一実施形態では、時系列の2D画像126を処理することは、肺122の2D画像を相互相関させることを含む。時系列の2D画像126を処理することはまた、肺の時系列の2D画像から肺122の複数の領域120の各々に対する運動測定値を再構築することを含みうる。この目的では、運動測定値を再構築することは、3D画像を最初に再構築することなく3D運動測定値を再構築することを含みうる。時系列の2D画像126を処理することは、肺122の複数の領域120の各々に対して、その領域に関連する1つ以上の運動測定値から容量測定値を導出することをさらに含みうる。
【0109】
第1の測定値108及び第2の測定値110は、同様に取得されうるが、これらの測定値を異なる方式で取得しうることは、理解されるであろう。たとえば、第1の測定値108は、X線イメージング装置を用いて取得されうるとともに、第2の測定値110は、MRIイメージング装置を用いて取得されうる。それぞれの技術により同一タイプ(たとえば、換気、灌流など)の第1の測定値108及び第2の測定値110が取得される限り、具体的取得方法は重要ではない。
【0110】
ブロック706では、肺122の複数の領域120の各々に対する局所変化測定値112は、その領域の第1の測定値108及び第2の測定値110に基づいて得られる。領域120に対する局所変化測定値112は、その領域の第1の測定値108とその領域の第2の測定値110とを比較することにより得られうる。たとえば、領域120の第1の測定値108とその領域の第2の測定値110との差が決定されうる。
【0111】
ブロック708では、治療の影響116は、複数の局所変化測定値112及び肺122に送達された治療124の局所治療情報114に基づいて決定される。治療の影響116は、肺122に送達された治療124の対応する局所治療情報114と共に複数の局所変化測定値112の各々をマッピングすることと、マッピングから治療の影響を導出することと、により決定されうる。
【0112】
一実施形態では、治療の影響116は、局所治療情報114の関数としての局所変化測定値112のプロット500、600を通る線504、604を当てはめることによりマッピングから導出される。治療の影響116に基づいて、治療124が局所肺機能を改変したかが決定されうる。肺機能の評価はまた、治療の影響116に基づいて行われうる。治療の影響116は、a)肺機能の変化なし、b)治療に関連する肺機能の変化、又はc)治療に関連しない肺機能の変化の1つの指標となりうる。
【0113】
任意の実施形態では、肺122の複数の領域120の各々に対する局所変化測定値112を得る(ブロック706)前に、ブロック710で、ブロック702及び704で得られた第1の測定値108及び第2の測定値110は、それぞれ、肺122の流体フロー構造たとえば気道樹138に関連させる。言い換えると、ブロック702及び704で得られた第1の測定値108及び第2の測定値110の第1のタイプたとえば組織運動は、気道樹138に関連させて第1の測定値108及び第2の測定値110の第2のタイプたとえば局所気道フローを作成する。次いで、ブロック706で、局所気道フロー測定値に基づいて、局所気道フロー変化測定値112が得られる。
【0114】
他の任意の一実施形態では、治療の影響116を決定する(ブロック708)前に、ブロック712で、ブロック706で得られる複数の局所変化測定値112は、肺122の流体フロー構造たとえば気道樹138に関連させる。言い換えると、ブロック706で得られた局所変化測定値112の第1のタイプたとえば局所組織運動変化は、気道樹138に関連させて局所変化測定値112の第2のタイプたとえば局所気道フロー変化を作成する。次いで、ブロック708で、局所気道フロー変化測定値は、その対応する局所治療情報114と一緒に処理されて治療の影響を決定する。
【0115】
図8は、器官に及ぼす治療124の影響を評価するための装置800の模式ブロック図である。装置800は、少なくとも1つのメモリー804に記憶されたコンピューター実行可能命令にアクセスしてそれを実行するように構成された1つ以上のプロセッサー802を含みうる。プロセッサー802は、必要に応じて、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組合せで実装されうる。
【0116】
ハードウェアに実装されたプロセッサー802は、汎用プロセッサーでありうる。汎用プロセッサーは、マイクロプロセッサーでありうるが、代替的に、プロセッサーは、いずれかの従来のプロセッサー、コントローラー、マイクロコントローラー、又はステートマシンでありうる。プロセッサー802は、限定されるものではないが、中央処理ユニット(CPU)、ディジタルシグナルプロセッサー(DSP)、縮小命令セットコンピューター(RISC)プロセッサー、複雑命令セットコンピューター(CISC)プロセッサー、マイクロプロセッサー、マイクロコントローラー、フィールドプログラマブルゲートアレイ(FPGA)、システムオンチップ(SOC)、又は他のプログラマブルロジック、ディスクリートゲート若しくはトランジスターロジック、ディスクリートハードウェアコンポーネント、又はそれらのいずれかの組合せ、又は本明細書に記載の機能を実施するように設計されたいずれかの他の好適なコンポーネントを含みうる。プロセッサー802はまた、特定データ処理機能又はタスクを取り扱うための1つ以上の特定用途向け集積回路(ASIC)又は特定用途向け規格品(ASSP)を含みうる。プロセッサー802はまた、コンピューティングコンポーネントの組合せ、たとえば、DSPとマイクロプロセッサーとの組合せ、複数のマイクロプロセッサー、DSPと組み合わされた1つ以上のマイクロプロセッサー、又はいずれかの他のかかる構成として実装されうる。
【0117】
プロセッサー802のソフトウェア又はファームウェア実装は、本明細書に記載の各種機能を実行するようにいずれかの好適なプログラミング言語で書かれたコンピューター実行可能命令又は機械実行可能命令を含みうる。ソフトウェアとは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などと呼ばれるかどうかにかかわらず、広義には、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、エグゼキュータブル、実行スレッド、プロシージャ、ファンクションなどを意味すると解釈されるものとする。ソフトウェアは、コンピューター可読媒体上に常駐しうる。コンピューター可読媒体は、例として、スマートカード、フラッシュメモリーデバイス(たとえば、カード、スティック、キードライブ)、ランダムアクセスメモリー(RAM)、リードオンリーメモリー(ROM)、プログラマブルROM(PROM)、イレーザブルPROM(EPROM)、エレクトリカリーイレーザブルPROM(EEPROM)、汎用レジスター、又はソフトウェア記憶用のいずれかの他の好適な非一時媒体を含みうる。
【0118】
メモリー804は、限定されるものではないが、ランダムアクセスメモリー(RAM)、フラッシュRAM、磁気媒体ストレージ、光学媒体ストレージなどを含みうる。メモリー804は、パワー供給時に情報を記憶するように構成された揮発性メモリー、及び/又はパワー供給時でなくとも情報を記憶するように構成された不揮発性メモリーを含みうる。メモリー804は、プロセッサー802による実行時に各種操作を実行させうるコンピューター実行可能命令を含みうる各種プログラムモジュール、アプリケーションプログラムなどを記憶しうる。メモリー804は、プロセッサー802によるコンピューター実行可能命令の実行時に操作及び/又は発生されるさまざまなデータをさらに記憶しうる。
【0119】
装置800は、いずれかの好適な通信規格を用いて装置800と1つ以上の他の装置との間の通信を促進しうる1つ以上のインターフェース806をさらに含みうる。たとえば、インターフェース806は、イメージング装置128からの画像データセットの受取りを可能にしうる。ただし、画像データセットは、イメージング装置によりキャプチャーされた画像126を表す。インターフェース806はまた、治療装置142からの局所治療情報114の受取りを可能にしうる。インターフェース806は、電気電子技術者協会(Institute of Electrical and Electronics Engineers)(IEEE)の各種通信規格(たとえばIEEE802.11)に準拠したプロトコル及び/又はアルゴリズムを実装するLANインターフェースでありうる。一方、セルラーネットワークインターフェースは、第3世代パートナーシッププロジェクト(Third Generation Partnership Project)(3GPP)及び3GPP2(たとえば、3G及び4G(ロングタームエボリューション(Long Term Evolution)))並びに次世代モバイルネットワーク(NGMN)アライアンス(Next Generation Mobile Networks(NGMN) Alliance)(5Gなど)の各種通信規格に準拠したプロトコル及び/又はアルゴリズムを実装する。
【0120】
メモリー804は、プロセッサー802による実行時に各種操作を実行させうるコンピューター実行可能命令を含みうる各種プログラムモジュール、アプリケーションプログラムなどを記憶しうる。たとえば、メモリー804は、ネットワークインターフェース806などのハードウェア資源を管理するとともに装置800上で実行するアプリケーションに各種サービスを提供するように構成されうるオペレーティングシステムモジュール(O/S)808を含みうる。
【0121】
メモリー804は、追加のプログラムモジュール、たとえば、測定値取得モジュール810、測定値変化モジュール812、治療影響モジュール814、マッピングモジュール816、及び気道樹モジュール818を記憶し、モジュールの各々は、ロジック及びルールの形態で機能を含み、a)第1の測定値108及び第2の測定値110の取得、b)局所変化測定値112の取得、c)治療の影響116の決定、d)局所変化測定値を得る前に、第1の測定値及び第2の測定値と、流体フロー構造、たとえば、気道樹、血管樹などと、を関連させること、及びe)治療の影響の決定前に、第1の測定値及び第2の測定値と、流体フロー構造、たとえば、気道樹、血管樹などと、を関連させることを含めて、
図1及び7を参照しながら以上で説明した各種機能をそれぞれ支持するとともにそれらを可能にする。
図8では個別モジュールとして例示されるが、モジュールの1つ以上は、他のモジュールの一部又はサブモジュールでありうる。たとえば、マッピングモジュール816は、治療影響モジュール814のサブモジュールでありうる。
【0122】
本明細書に開示されるモジュール810、812、814、816、818は、ハードウェアに実装されうるか、又はハードウェアプラットフォーム上で実行されるソフトウェア及び/若しくはファームウェア実装でありうる。ハードウェアは、プロセッサー802との関連で以上に記載したものと同一でありうる。同様に、ソフトウェア及び/又はファームウェア実装は、プロセッサー802との関連で以上に記載したものと同一でありうる。
【実施例】
【0123】
症例試験1 - 放射線治療の評価
放射線暴露と局所換気の変化との関係を探究した。治療計画に使用された局所線量分布は、局所換気データの計算時に使用されたCTに共位置合せ(たとえばマッピング)され、線量コンター図を作成した(
図9A参照)。これは、対応する線量レベルを有する各位置で測定された換気の直接比較を可能にした。さらに、すべての時間点でXV換気領域を同一CTに位置合せ(たとえばマッピング)したので、局所線量は、正規化比換気の局所変化と比較可能であった。
図9Bでは、関係は、D<0.1Gy、0.1<D<20Gy、及びD>20Gyの線量レベルに対応する3つの個別ボックスプロットとして提示される。正規化比換気差の正値は、治療前と比較して正規化比換気の増加を表し、一方、負値は、治療前と比較して正規化比換気の減少を表す。
【0124】
この患者では、線量と比換気の局所変化との明確な関係は見られなかったことが、
図9Bから明らかである。このことは、この患者が放射線肺炎を発生していないことを意味する。
【0125】
症例試験2 - 放射線治療の評価
この症例では、正規化換気の変化は、局所線量に関連すると思われる(
図10A参照)。
図10B及び10Cのボックスプロットは、正規化比換気差の大きな広がりを示す。4ヵ月では、線量と換気との間に関係は見られなかった(
図10B参照)。12ヵ月では、0.2<D<20Gy及びD>20Gyで換気の負の変化が見られ、D<0.1Gyで正の変化が見られた(
図10C)。この所見は、右肺の低比換気の領域と組み合わせて、肺炎などの放射線誘発疾患の発生を示唆しうる。
【0126】
本開示の各種態様は、当業者による本発明の実施を可能にするように提供される。本開示全体を通して提示された模範的実施形態への各種変更は、当業者には明らかであろう。それゆえ、特許請求の範囲が本開示の各種態様に限定されることは意図されないが、特許請求の範囲の表現に一致する全範囲が認められるべきである。当業者に公知であるか又は後に公知となる、本開示全体を通して説明された模範的実施形態の各種要素に対するすべての構造的及び機能的均等物は、参照により本明細書に明示的に組み込まれ、特許請求の範囲に包含されることが意図される。「means for(~のための手段)」という語句を用いて要素が明示的に列挙されない限り、又は方法請求項の場合に「step for(~のための工程)」という語句を用いて要素が列挙されない限り、特許請求の要素は、米国法典第35編第112条第6項の規定に基づいて解釈されるべきでない。
【国際調査報告】