IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ブレイドン ジェッツ ホールディングス リミテッドの特許一覧

特表2022-549054コンプライアントフォイルスラストベアリング
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-11-24
(54)【発明の名称】コンプライアントフォイルスラストベアリング
(51)【国際特許分類】
   F16C 27/02 20060101AFI20221116BHJP
【FI】
F16C27/02 A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022500513
(86)(22)【出願日】2019-07-01
(85)【翻訳文提出日】2022-02-07
(86)【国際出願番号】 EP2019067622
(87)【国際公開番号】W WO2021001016
(87)【国際公開日】2021-01-07
(81)【指定国・地域】
(71)【出願人】
【識別番号】522004047
【氏名又は名称】ブレイドン ジェッツ ホールディングス リミテッド
(74)【代理人】
【識別番号】100145241
【弁理士】
【氏名又は名称】鈴木 康裕
(72)【発明者】
【氏名】パイ、スティーブン
(72)【発明者】
【氏名】ニマ、バスデバ
(72)【発明者】
【氏名】ヒワード、フィリップ
【テーマコード(参考)】
3J012
【Fターム(参考)】
3J012AB20
3J012BB02
3J012CB04
3J012CB05
3J012DB07
3J012EB08
3J012EB10
3J012FB01
(57)【要約】
コンプライアントフォイルスラストベアリングサブアセンブリは、環状の嵌合リングと流体プレート嵌合リングから半径方向内側に配置された複数の流体フォイルエレメントとを含む流体プレートと、環状の嵌合リングと力伝達プレート嵌合リングから半径方向内側に配置された複数の力伝達エレメントとを含む力伝達プレートと、環状の嵌合リングとスプリングプレート嵌合リングから半径方向内側に配置された複数の撓みエレメントとを含むスプリングプレートとを備え、流体プレート、力伝達プレート、およびスプリングプレートは、各流体フォイルエレメントが重なり合った力伝達エレメントおよび撓みエレメントの対応する組によって軸方向に支持されるように積み重ねられている。
【選択図】図1
【特許請求の範囲】
【請求項1】
環状の嵌合リングと、流体プレート嵌合リングから半径方向内側に配置された複数の流体フォイルエレメントとを備える流体プレートと、
環状の嵌合リングと、力伝達プレート嵌合リングから半径方向内側に配置された複数の力伝達エレメントとを備える力伝達プレートと、
環状の嵌合リングと、スプリングプレート嵌合リングから半径方向内側に配置された複数の撓みエレメントとを備えるスプリングプレートと、
を備え、
流体プレート、力伝達プレート、およびスプリングプレートは、各流体フォイルエレメントが重なり合った力伝達エレメントと撓みエレメントの対応する組によって軸方向に支持されるように積み重ね可能である、
コンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項2】
力伝達エレメントは、軸方向の貫通孔を備える、
請求項1に記載のコンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項3】
撓みエレメントは、対応する力伝達エレメントの軸方向の貫通孔と重なり合うように配置された部分を備える、
請求項2に記載のコンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項4】
撓みエレメントは、半径方向に延びる部分を含み、
力伝達エレメントは、対応する撓みエレメントの半径方向に延びる部分の間に配置された半径方向に延びる部分を含む、
請求項1~3のいずれかに記載のコンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項5】
力伝達エレメントは、撓みエレメントの半径方向に延びる部分に接触するように配置された円周方向に延びる部分を含む、
請求項4に記載のコンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項6】
力伝達プレートは、実質的に平面であり、および/または
スプリングプレートが実質的に平面である、
請求項1~5のいずれかに記載のコンプライアントフォイルスラストベアリングサブアセンブリ。
【請求項7】
環状嵌合面と、
環状嵌合面から半径方向内側に配置された凹面と、を備える、
コンプライアントフォイルスラストベアリング用のスラストプレート。
【請求項8】
凹面から軸方向に延びる1つ以上の支持体
を備える請求項7に記載のスラストプレート。
【請求項9】
各支持体は、環状の方向に伸びている、
請求項8に記載のスラストプレート。
【請求項10】
各支持体は、凸面を含む、
請求項8または9に記載のスラストプレート。
【請求項11】
各支持体は、軸方向に、凹面から、環状嵌合面によって規定される平面内に実質的に横たわる位置まで延びている、
請求項8~10のいずれか1項に記載のスラストプレート。
【請求項12】
請求項1~6のいずれか1項に記載のコンプライアントフォイルスラストベアリングサブアセンブリと、
請求項7~11のいずれか1項に記載のスラストプレートと、
を備えるコンプライアントフォイルスラストベアリング。
【請求項13】
軸方向に凹面を有するスラストプレートを提供し、
スラストプレートの上に、半径方向内側に延びる撓みエレメントを有するスプリングプレートを重ね、
スプリングプレートの上に、撓みエレメントと重なり合うように配置された半径方向内側に延びる力伝達エレメントを有する力伝達プレートを重ね、
力伝達プレートの上に、力伝達エレメントと重なり合うように配置された流体フォイルエレメントを有する流体プレートを重ねること、
を含み、
スラストディスクから伝達された軸方向の力は、各流体フォイルエレメントを介し、対応する下側の力伝達エレメントを介し、対応する下側の撓みエレメントに伝達され、撓みエレメントは、スラストプレートの凹面に向かって軸方向に撓む、
スラストプレートにスラストディスクを回転可能に支持する方法。
【請求項14】
スラストプレートは、軸方向の凹面から軸方向に延び、撓みエレメントに接触するように配置された1つまたは複数の支持体を備える、
請求項13に記載の方法。
【請求項15】
1つまたは複数の支持体は、環状の方向に延びている、
請求項14に記載の方法。


【発明の詳細な説明】
【技術分野】
【0001】
ここで開示されている主題は、一般に、コンプライアントフォイルスラストベアリングに関するものである。
【背景技術】
【0002】
マイクロタービンは、分散型エネルギー源に利用され、圧縮機、燃焼器、タービン、発電機に活用されることで、燃料をローカルな電力源に変換することができる。マイクロタービンは、動作温度が高いため、従来の油静圧軸受(ベアリング)のような軸受は実用的ではないが、回転数が高いため空気軸受を使用することができる。また、油を使わないことで、設計の簡素化とメンテナンスの軽減を実現する。
【0003】
ラジアル軸受がラジアル荷重を支えるのに対し,スラスト軸受はアキシアル荷重を支える。コンプライアント流体フォイルスラストベアリングは、スラストプレート、スラストプレートにより軸方向に支持されたコンプライアントスプリングフォイル部材、スプリングフォイル部材により軸方向に支持され、残りのプレートを介して回転するスラストディスクを軸方向に支持するための流体フォイルエレメントを備える流体プレートを利用する。
【0004】
スピンアップ後、回転するスラストディスクは、非回転流体プレートと回転するスラストディスクの間にできる流体の薄い層によって軸方向に支持され、低摩擦の流体力学的空気軸受が生まれ、さらに、流体の移動によって熱伝導が促進される。
【0005】
スラストディスクが一般的に平坦であるのに対し、流体フォイルエレメントは一般的に円周方向に傾斜し、階段状であり、この円周方向の表面傾斜は、流体フィルムの生成とスラストディスクへの軸方向のリフティング効果をもたらす。このように、回転するスラストディスクから付与される軸方向の荷重は、流体フィルム、流体プレート、コンプライアントスプリングフォイル部材を経てスラストプレートに伝達され、ベアリングに付与される軸方向の荷重と同等の逆方向の軸方向の力を与える。この力の伝達経路に流体フィルムが存在することで、表面間の相対的な回転によって発生する可能性のある摩擦損失を大幅に低減することができる。
【0006】
コンプライアント流体フォイルスラストベアリングは、マイクロタービンに採用することで、回転数や動作温度が高い従来のベアリングでは実現できない問題を解決することができる。
【0007】
既存の流体フォイルスラストベアリングの設計は、一般的に、一連の独立したプレートを使用し、時には非平面的な特徴を用いて復元力のあるスプリング効果を提供しています。このような既存の設計では、製造が過度に複雑になるだけでなく、特に低回転/分では過剰な摩擦力が発生するなど、性能面でも問題がありました。
【0008】
そのため、既存の設計における上述の欠陥の1つ以上を解決する流体フォイルスラストベアリングを提供することが望まれる。
【図面の簡単な説明】
【0009】
開示された仕組みは、例として、また添付の図面を参照して、以下にさらに説明されている。
図1は、コンプライアントスラストベアリングサブアセンブリとスラストプレートを備えるコンプライアントスラストベアリングの一例を示す分解透視図である。
図2は、流体フォイルエレメントを備える流体プレートの一例を示す。
図3は、半径方向内側に延びる力伝達エレメントを備える力伝達プレートの一例を示す。
図4は、半径方向内側に延びる撓みエレメントを備えるスプリングプレートの一例を示す。
図5は、軸方向に凹んだ凹面を含むスラストプレートの一例を示す。
図6aはコンプライアントスラストベアリングの一例を示し、図6bはプレートを通して同じものを透視した図である。
図7aおよび図7bは、コンプライアントスラストベアリングの別の図で、流体フォイルプレートに切り込みを入れて下のプレートを露出させた状態を示す。
図8aおよび図8bは、コンプライアントフォイルスラストベアリングサブアセンブリの下面の一例で、保持タブがそれぞれ伸びた位置と折り畳まれた位置にある状態を示す。
図9A図9Bは、スラストプレートの支持体とスプリングプレートの撓みエレメントの相互作用の一例を示す誇張図である。
【発明を実施するための形態】
【0010】
図1は、コンプライアントフォイルスラストベアリングサブアセンブリ100とスラストプレート200を備えるコンプライアントフォイルスラストベアリングの一例を示している。
【0011】
コンプライアントフォイルスラストベアリングサブアセンブリ100は、流体プレート110、力伝達プレート120、およびスプリングプレート130を備える。
【0012】
図1に示すように、力伝達プレート120およびスプリングプレート130は、少なくとも実質的に平面である。流体フォイルプレート110が面外の特徴を含んでいてもよいのに対し、力伝達プレート120およびスプリングプレート130は平面であってもよい。図示の例では、力伝達プレート120およびスプリングプレート130は、固定された断面形状で形成されている。コンプライアントフォイルスラストベアリングの平面的で軸方向に均一なプレートの提供は、製造の大幅な簡素化を提供する。特に、プレートは、板金からの切り出しとして形成されてもよい。
【0013】
示された例では、コンプライアントフォイルスラストベアリングサブアセンブリ100のプレートは、その中心を通る共通軸を共有するように配置されている。図1の例では、この共通軸は、プレートの中心を通って垂直に延びている。スラストプレート200は、この共通軸を共有するように配置されている。
【0014】
流体フォイルエレメント114は、環状嵌合リング112の円周上に均等に配置されていてもよい。流体フォイルエレメント114は、図2に示すように、半径方向に対向する組で形成されてもよい。このような対称的な配分は、特に、対応して配分された力伝達エレメント124および撓みエレメント134に関して同じものと組み合わせて、均一な円周方向の荷重配分を容易にし、さもなければ損失や摩耗を増加させるであろう、あらゆる局所的な応力集中に対する予防対策を助ける。
【0015】
図2は、回転するスラストディスクを受けるのに適した流体プレート110を示している。流体プレート110は、環状の嵌合リング112と、流体プレートの嵌合リング112から半径方向内側に配置された流体フォイルエレメント114とを備えている。流体フォイルエレメント114は、円周方向に軸方向のうねりを与えるように配置されている。この円周方向のうねりは、隣接するスラストディスクの回転時に流体膜を生成する役割を果たし、この流体膜は、回転するスラストディスクを軸方向に支持するためのものである。
【0016】
回転するスラストディスクにより流体プレートの上面に与えられる軸力は、起動時と通常運転時の両方で一定ではない。このような荷重変動に対して、スラストベアリングでは、流体プレートの下面に結合されたスプリング機構の形態でコンプライアンスすなわち復元力を持たせることで対応する。
【0017】
流体プレート110は、その半径方向外側端部に設けられた、タブを受け入れるためのノッチ118を含んでいてもよい。あるいは、流体プレート110は、1つ以上の基礎となるプレートの半径方向外側端部に設けられた対応するノッチによって受け取られる、図示しないタブを含んでいてもよい。このノッチとタブの配置は、スラストベアリングサブアセンブリ100の1つ以上のプレート間の保持を容易にする。
【0018】
図3は、環状の嵌合リング122と、環状の嵌合リング122から半径方向内側に配置された力伝達エレメント124とを備える力伝達プレート120を示している。力伝達エレメント124は、環状の嵌合リング122から半径方向内側に延びていてもよい。
【0019】
以下に詳細に説明するように、各力伝達エレメント124は、貫通孔126を含んでいてもよい。この例に示すように、各力伝達エレメント124は、開いた126aおよび/または閉じた126bの貫通孔を形成するグリッドで構成されてもよい。
【0020】
図示するように、力伝達プレート120は、タブを受け入れるためにその半径方向外側端部に設けられたノッチ128を含んでいてもよい。
【0021】
図4は、環状の嵌合リング132と、環状の嵌合リング132から半径方向内側に配置された撓みエレメント134とを備えるスプリングプレート130を示している。撓みエレメント134は、環状の嵌合リング132から半径方向内側に延びていてもよい。
【0022】
スラストベアリングサブアセンブリ100の力伝達プレート120およびスプリングプレート130は、一緒になって、流体プレート110の流体フォイルエレメント114によって生成される軸方向の荷重の伝達を容易にする。特に、円周方向に間隔を空けた流体フォイルエレメント114のそれぞれは、軸方向に重なり合う力伝達エレメント124および撓みエレメント134の対応する組によって支持されてもよい。図7aに示すように、力伝達エレメントおよび撓みエレメントの重なり合う組は、オフセットされた円周方向および/または半径方向の部分から構成されていてもよく、すなわち、力伝達エレメントのオフセットされた円周方向および/または半径方向の部分は、撓みエレメントのものからオフセットされている、または重なり合わないようになっている。
【0023】
図7aの具体例では、力伝達エレメント124は、相互に接続された周方向部分および半径方向部分を備え、対応する撓みエレメント134は、相互に接続された半径方向部分を備える。力伝達エレメント12の半径方向部分4は、撓みエレメント134の半径方向部分に対して円周方向にオフセットされており、力伝達エレメント124の円周方向部分は、撓みエレメント134の半径方向部分に接触するように配置されている。この重なり合う接触は、流体プレート110の円周方向に間隔を空けた流体フォイルエレメント114によって付与される軸方向の負荷を支持するために、それによって円周方向に間隔を空けた領域で、サブアセンブリ100の力伝達およびスプリングプレート120および130を介した軸方向の力の伝達を容易にする。力伝達エレメント124と撓みエレメント134との間の重なり合う接触の他の形態が可能であることが認識されるであろう。
【0024】
力伝達エレメント124および撓みエレメント134は、円周方向に分離していてもよく、それにより、積層時にスラストベアリング内に円周方向に間隔をあけた軸方向の支持チャネルを設けることが容易になる。
【0025】
以下でより詳細に説明するように、各撓みエレメント134は、半径方向に延びる部分135を含んでいてもよい。これらの半径方向に延びる部分は、力伝達エレメント124に設けられた軸方向の貫通孔126と重なり合うように配置されてもよく、この軸方向の貫通孔126は、半径方向に延びる部分135と重なるように配置されてもよい。これにより、撓みエレメントの復元力のあるたわみが容易になる。
【0026】
各撓みエレメント134および/または各力伝達エレメント124は、開いたおよび/または閉じた貫通孔126,136を形成するグリッドで構成されてもよい。図示の例では、撓みエレメント124には閉じた貫通孔のみが存在するが、力伝達プレート120の力伝達エレメント124に関して示されているように、さらに開いた貫通孔を設けることも可能であることが認識されるであろう。
【0027】
スプリングプレート130は、その半径方向外側端部に設けられたノッチ138で構成されており、上側または下側のプレートからタブを受け取ることができる。
【0028】
図示の例では、スプリングプレート130は、タブ138を備える。タブ138は、重ね合わせた力伝達プレート120と流体プレート110のノッチに包み込むように配置され、スラストベアリングサブアセンブリ100のプレートを一緒にしっかりと保持する。
【0029】
また、流体プレート110は、力伝達プレートおよびスプリングプレートのノッチに巻き付くように配置されたタブで構成されることも可能である。
【0030】
図5は,環状嵌合面242と、その環状嵌合面242から半径方向内側に配置された凹面244とを備えたスラストプレート200を示している.凹面244は、環状の嵌合面242から軸方向に凹んでいる。図示の例では、環状嵌合面242は、凹面244よりも軸方向に延びている。このように、スラストプレート140の厚さは、環状嵌合面242を構成する半径方向外側の部分の厚さが、凹面244を含む半径方向内側の部分の厚さよりも大きいという、半径方向に不均一なものとなっている。
【0031】
これは、実質的に平坦なスラストプレート140が提供される先行技術の配置とは対照的である。
【0032】
軸方向に凹面244を設けることで、上にある撓みエレメント134がスラストプレート140に向かって、環状の嵌合面242を超えて軸方向に延びる機会を提供する。
【0033】
撓みエレメント134のこのような軸方向のたわみを容易にすることで、スプリングプレートによるコンプライアンスを提供することができる。このようにして、撓みエレメント134は、半径方向内側に延びる片持ち梁として作用すると考えられる。
【0034】
各流体フォイルエレメント114は、重なり合う力伝達エレメント124および撓みエレメント134の下にある組によって軸方向に支持されてもよい。したがって、図示されていない回転スラストディスクから流体フィルムを介して付与される荷重は、流体フォイルエレメント114を介して、対応する力伝達エレメント124を通って、対応する撓みエレメント134に伝達されてもよく、この撓みエレメントは、スラストプレート140に向かって軸方向に弾力的にたわみ、スラストプレートに設けられた凹部によって形成された凹部空間に入るようにされてもよい。
【0035】
図示の例では、スラストプレート140は、環状の嵌合面242から半径方向内側に配置された支持体246を備えている。支持体は、環状嵌合面の高さと同じ高さを有していてもよく、すなわち、支持体は、環状嵌合面242によって画定される平面内に実質的に位置する軸方向の位置で終端していてもよい。
【0036】
支持体246は、上にある撓みエレメント134に接触するための凸面を備えてもよい。このような凸面を設けることで、各支持体の片側または両側を中心とした撓みエレメント134の屈曲が容易になる。
【0037】
凹部244および/または支持体246の深さは、軸方向の撓みエレメント134のたわみを制限する役割を果たす。この場合、撓みエレメント134は、各支持体246の片側または両側でたわむように配置される。例えば、撓みエレメント134の半径方向内側の端部よりも半径方向外側に支持体246が設けられている場合には、撓みエレメントは支持体246の半径方向外側と内側の両方で曲がることがあり、一方、撓みエレメント134の半径方向内側の端部に支持体246が実質的に配置されている場合には、撓みエレメント134は支持体246の半径方向外側で曲がることがある。軸方向に凹面244は、撓みエレメント134の十分なたわみの後に、その間の接触によって、撓みエレメント134のたわみを制限する役割を果たしてもよい。
【0038】
図の例では、支持体246は環状かつ同心円状である。しかし、支持体246は他の形態であってもよい。例えば、支持体246は、各撓みエレメント134の下で環状に延び、任意に支持体間に環状の不連続部が存在してもよい。あるいは、支持体246は、ロッドなどの他の形状の形態をとる。環状の支持体を設けることで、製造が容易になる。
【0039】
各撓みエレメント124の下に配置された支持体346が設けられていてもよい。
【0040】
1つ以上の支持体246は、各撓みエレメント134の半径方向内側端部の半径方向外側に配置されるように配置されてもよい。1つ以上の支持体246は、スプリングプレート130の嵌合面132の半径方向内側に配置され、かつ、スプリングプレート130の半径方向内側端部の半径方向外側に配置されてもよい。
【0041】
図7Aに示すように、力伝達エレメント124は、相互に接続された円周方向および半径方向の部分を有していてもよい。対応する下にある撓みエレメント134は、力伝達エレメント124の半径方向部分の間に延びるように配置された半径方向部分を含んでもよい。力伝達エレメント124の周方向部分は、撓みエレメント134の半径方向部分に接触するように配置されてもよい。支持体246は、力伝達エレメント124の周方向部分の間に延び、撓みエレメント素134の半径方向部分に接触するように配置された周方向部分を含んでもよい。このようにして、重なり合った円周方向/半径方向の接触によって力の伝達が行われる。
【0042】
力伝達エレメント124にかかる下向きの軸方向の荷重は、力伝達エレメント124の周方向部分を介して撓みエレメント134に伝達されてもよく、撓みエレメント134の半径方向部分と接触し、支持体134の周方向部分と接触し、スラストプレート200の軸方向に凹んだ領域244に軸方向に撓むように配置される。
【0043】
図9aと図9bは、コンプライアントフォイルスラストベアリングサブアセンブリ100とスラストプレート200を備えるコンプライアントフォイルスラストベアリングの層構造を示す誇張された半径方向の断面図である。
【0044】
図9aおよび図9bに示すZ方向の下から上へ、凹面244、支持体246、撓みエレメント134、力伝達エレメント124、流体フォイルエレメント114が示されている。
【0045】
この例では、回転するスラストディスクによって流体フォイルエレメント114の上に形成された流体フィルムを介して付与された荷重は、流体フォイルエレメント114から、対応する力伝達エレメント124を介して、対応する撓みエレメント134に伝達され、そのうちの1つ以上の部分は、支持体246上で、軸方向の貫通孔126に入るようにたわみ、そのような軸方向のたわみは、図9aから図9bへの変化に示されている。
【0046】
図6aと図6bは、それぞれコンプライアントフォイルスラストベアリング300と、そのプレートを透視した図である。
【0047】
同様に、図7aおよび7bは、コンプライアントフォイルスラストベアリング300を示しているが、これは、凹面244、支持体246、撓みエレメント134、力伝達エレメント124、および流体フォイルエレメント114を示す切り抜き部分310がある。
【0048】
切り抜き部分310は、コンプライアントフォイルスラストベアリング300のこの例では、コンプライアントフォイルスラストベアリングサブアセンブリ100とスラストプレート200のプレート間の相対的な相互作用を示している。
【0049】
図6a、図6b、図7a、図7bを考慮すると明らかなように、流体プレート110、力伝達プレート120、およびスプリングプレート130は、流体フォイルエレメント114、力伝達エレメント124、および撓みエレメント134が軸方向に重なり合う関係で互いに周方向に整列するように、垂直方向に積層されてもよい。
【0050】
したがって、サブアセンブリ100のプレートは、各流体フォイルエレメント114が1組の対応する軸方向に重なり合う力伝達エレメント124および撓みエレメント134によって軸方向に支持されるように積層されてもよい。
【0051】
図1に示す例では、流体プレート110が力伝達プレート120の上に重なり、力伝達プレート120がスプリングプレート130の上に重なる。また、サブアセンブリ100とスラストプレート200が組み合わされた場合には、スプリングプレートがスラストプレート200の上に重なる。
【0052】
図1の例で予想される積層の順序は、スプリングプレート130がスラストプレート200の上に配置され、力伝達プレート120がスプリングプレート130の上に配置され、最後に流体プレート110が力伝達プレート120の上に配置される。積層中または積層後に、プレートは、流体フォイルエレメント114が、重なり合う力伝達エレメント124および撓みエレメント134の対応する組によって軸方向に支持されるように配向することができる。
【0053】
プレートは、各流体フォイルエレメント114が対応する力伝達エレメント124を上に重なるように配向可能であり、力伝達エレメント124は対応する撓みエレメント134の上に重なる。このようにして、各流体フォイルエレメント114から伝達された力は、対応する力伝達エレメント124を介して、対応する撓みエレメント134に伝達されてもよい。撓みエレメント134に付与された力は、撓みエレメント134を、スプリングプレート嵌合リング132に対して軸方向に変位させてもよい。変位の方向は、流体プレート110から軸方向に離れる方向である。
【0054】
先行技術の中には、使用時に塑性変形を起こす傾向のあるコンプライアンスを促進するために波形のフォイル(箔)が実装されているものもある、ここに記載されている例によれば、ここに開示されている力の伝達メカニズムによりそのような塑性変形を防止する可能性が促進される。
【0055】
本明細書に開示されている例では、最小限の数のプレートを提供するスラストプレート200上に直接位置決めするためのコンプライアントフォイルスラストベアリングサブアセンブリ100が提供されており、したがって、より多くの数のプレートが採用される場合と比較して、製造の複雑さおよび性能のばらつきを低減することができる。
【0056】
特に、力伝達エレメント124とそれに対応する撓みエレメント134の間の相互作用に注目すべきである。
【0057】
特に、これらの図に示すように、力伝達エレメント124および/または撓みエレメント134は、軸方向の貫通孔126、136を含んでいてもよい。これらの軸方向貫通孔は、開いたおよび/または閉じた軸方向貫通孔であってもよい。力伝達エレメント124および/または撓みエレメント134は、軸方向の貫通孔を含むグリッドを構成してもよい。例えば、各力伝達エレメント124は、軸方向の貫通孔126を画定するグリッドを含んでもよい。
【0058】
撓みエレメント134、またはその少なくとも一部は、力伝達エレメント124の軸方向貫通孔126内に伸長可能に配置されてもよい。
【0059】
図9aおよび図9bを参照すると、力伝達エレメント124に設けられた軸方向貫通孔126は、力伝達エレメント124に形成された貫通孔126への撓みエレメント314の軸方向の変位を容易にする。
【0060】
各力伝達エレメント124は、力伝達エレメントグリッドを含んでもよく、各対応する撓みエレメント134は、重なり合ってオフセットされた撓みエレメントグリッドを含んでもよい。このように力伝達エレメントおよび撓みエレメントグリッドを重なり合いおよびオフセットさせることにより、コンプライアントフォイルスラストベアリングにおいて、荷重を弾力的に伝達し、コンプライアンスを提供する目的で、軸方向におけるそれらの間の相対的な変位が促進される。
【0061】
ここで提供される例は、特定の力伝達エレメント124および撓みエレメント134の形状を示しているが、全体的な原理は、形状の点で幅広いバリエーションに適用可能であることが認識されるであろう。
【0062】
スラストプレート200の支持体246は、図7aおよび図7bに特に見られるように、力伝達プレート120の軸方向貫通孔126および/またはスプリングプレート130の軸方向貫通孔136と軸方向に重なり合うように配置されてもよい。
【0063】
撓みエレメント134の半径方向の部分は、図7aおよび図7bに示すように、力伝達プレート120の軸方向貫通孔125と軸方向に重なり合うように配置されてもよい。
【0064】
したがって、スラストプレート200の支持体246、および/または、撓みエレメント134の一部と力伝達エレメント124の一部とは、撓みエレメント134の一部が延びることができる間隙を提供するように、軸方向に噛みあってもよい。そのような延長は、プレート間の相対的な動きを容易にし、復元力を与える。
【0065】
図7aおよび図7bに示す例では、力伝達エレメント124は、円周方向に延びる部分によって相互に連結された半径方向に延びる部分を備える。力伝達エレメント124は、下層の撓みエレメント134と重なり合っている。撓みエレメント134は、対応する力伝達エレメント124の半径方向に延びる部分の間に延びるように配置された半径方向に延びる部分を備える。力伝達エレメント124の円周方向に延びる部分は、下にある対応する撓みエレメント134の半径方向に延びる部分と接触する。下にあるスラストプレート200の環状支持体246は、力伝達エレメント124の円周方向の部分の間に延びている。このような形態の相互接続は、個々の用途に高度に構成可能な優れた復元特性を促進する。
【0066】
図8aおよび図8bは、スプリングプレート130のタブ138を伸ばした状態と折り畳んだ状態で示している。このようにして、プレートは一緒に積み重ねることができ、タブ138は残りのプレートの上に折り畳まれて位置を保持する。
【0067】
力伝達プレート120は、図9aおよび図9bに示すように、スプリングプレート130の厚さよりも大きく、任意に流体プレート110の厚さよりも大きい厚さを備えていてもよい。スプリングプレートの厚さよりも大きな厚さの力伝達プレートを設けることで、力伝達プレートの歪みに伴う性能低下を防ぐことができることが確認されている。厚みを増した力伝達プレートは、流体プレートのより広い作業領域に伝達される力を均等に分散させるのに役立つ。
【0068】
流体プレートは、0.076から0.127mmの間の厚さで構成されていてもよい。力伝達プレート120は、0.1~0.25mm、または0.127~0.25mmの厚さで構成されていてもよい。スプリングプレート130は、0.076~0.127mmの厚さで構成されていてもよい。
【0069】
請求された例を含む、本明細書に開示された各例は、任意の1つの例に従ったコンプライアントフォイルスラストベアリングを含むガスタービンシステム、例えばマイクロタービンシステムに提供されてもよい。このようなコンプライアントフォイルスラストベアリングをガスタービンシステムに採用することで、摩擦損失や熱の管理が改善され、製造が簡素化されることにより、性能特性が向上したガスタービンシステムを提供することができる。
【0070】
ここで開示されている例は限定的なものではなく、多数の変更や置換が可能であることが認識されるであろう。
図1
図2
図3
図4
図5
図6a
図6b
図7a
図7b
図8a
図8b
図9a-9b】
【国際調査報告】