IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エックス デベロップメント エルエルシーの特許一覧

<>
  • 特表-電子スピン欠陥に基づく磁気測定法 図1
  • 特表-電子スピン欠陥に基づく磁気測定法 図2
  • 特表-電子スピン欠陥に基づく磁気測定法 図3
  • 特表-電子スピン欠陥に基づく磁気測定法 図4
  • 特表-電子スピン欠陥に基づく磁気測定法 図5
  • 特表-電子スピン欠陥に基づく磁気測定法 図6
  • 特表-電子スピン欠陥に基づく磁気測定法 図7
  • 特表-電子スピン欠陥に基づく磁気測定法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-11-30
(54)【発明の名称】電子スピン欠陥に基づく磁気測定法
(51)【国際特許分類】
   G01R 33/26 20060101AFI20221122BHJP
   G01R 33/20 20060101ALI20221122BHJP
   G01R 33/02 20060101ALI20221122BHJP
【FI】
G01R33/26
G01R33/20
G01R33/02 K
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022518918
(86)(22)【出願日】2020-10-01
(85)【翻訳文提出日】2022-05-23
(86)【国際出願番号】 US2020053781
(87)【国際公開番号】W WO2021067587
(87)【国際公開日】2021-04-08
(31)【優先権主張番号】62/909,665
(32)【優先日】2019-10-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】516326438
【氏名又は名称】エックス デベロップメント エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】ローゼンフェルド,エマ ルイーズ
【テーマコード(参考)】
2G017
【Fターム(参考)】
2G017AA02
2G017AD69
(57)【要約】
【課題】 電子スピン欠陥ベースの磁気測定法を提供することである。
【解決手段】 磁力計(400)は、基板(402)と、基板上のダイヤモンド層であって、複数の格子点欠陥を含む欠陥副層(404)を含むダイヤモンド層と、マイクロ波場送信器(410)と、複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含む光を放出するように構成されている光源(408)と、欠陥副層から放出されている第2の波長を含むフォトルミネッセンスを検出するように配置されている光検出器であって、第1の波長は、第2の波長と異なる光検出器と、欠陥副層に隣接して配置されている磁石(414)とを含む。
【選択図】 図4
【特許請求の範囲】
【請求項1】
基板と、
前記基板上の電子スピン欠陥層であって、複数の格子点欠陥を含む電子スピン欠陥層と、
マイクロ波場送信器と、
前記複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含む光を放出するように構成されている光源と、
前記電子スピン欠陥層の少なくとも一部を含み、前記電子スピン欠陥層を通る前記光を再循環させるように配置されている光共鳴器キャビティと、
前記電子スピン欠陥層から放出されている第2の波長を含むフォトルミネッセンスを検出するように配置されている光検出器であって、前記第1の波長は、前記第2の波長と異なる光検出器と、
前記電子スピン欠陥層に隣接して配置されている磁石と
を含む磁力計。
【請求項2】
前記基板は、ケイ素又は炭化ケイ素を含む、請求項1に記載の磁力計。
【請求項3】
前記基板は、前記マイクロ波場送信器にマイクロ波源信号を供給するために前記マイクロ波場送信器に結合されているマイクロ波場制御回路を含み、前記マイクロ波場制御回路は、前記マイクロ波源信号をパルスマイクロ波源信号として出力するように任意選択的に構成されており、前記マイクロ波場制御回路は、前記マイクロ波源信号を約50MHzと約4GHzとの間の周波数で出力するように任意選択的に構成されている、請求項1又は2に記載の磁力計。
【請求項4】
前記基板は、前記光源に光学制御信号を供給するために前記光源に結合されている光源制御回路を含む、請求項1~3のいずれか一項に記載の磁力計。
【請求項5】
前記基板は、マイクロプロセッサを含み、前記マイクロプロセッサは、光測定信号を前記光検出器から受信するために前記光検出器に結合されており、前記マイクロプロセッサは、前記磁力計を暴露する時間依存磁場の特性を判定するために前記光測定信号を解析するように構成されている、請求項1~4のいずれか一項に記載の磁力計。
【請求項6】
前記複数の格子点欠陥は、複数の窒素空格子点(NV)欠陥を含み、前記電子スピン欠陥層は、炭素12及び/又は炭素13を含むダイヤモンド層を含む、請求項1~5のいずれか一項に記載の磁力計。
【請求項7】
前記複数の格子点欠陥は、複数の炭化ケイ素(SiC)欠陥を含む、請求項1~5のいずれか一項に記載の磁力計。
【請求項8】
前記電子スピン欠陥層は、約1μmと約1mmとの間の厚さを有する、請求項1~7のいずれか一項に記載の磁力計。
【請求項9】
前記電子スピン欠陥層は、約200μmと約5mmとの間の厚さを含む、請求項1~8のいずれか一項に記載の磁力計。
【請求項10】
前記マイクロ波場送信器は、アンテナを含む、請求項1~9のいずれか一項に記載の磁力計。
【請求項11】
前記マイクロ波場送信器は、前記電子スピン欠陥層の表面に、又は前記電子スピン欠陥層及び材料の別の層の界面に金属のパターン化層を含む、請求項1~10のいずれか一項に記載の磁力計。
【請求項12】
前記マイクロ波場送信器は、共平面導波路、ループ、ワイヤー、又はコイルを含む、請求項1~11のいずれか一項に記載の磁力計。
【請求項13】
前記光源は、発光ダイオード又はレーザーを含む、請求項1~12のいずれか一項に記載の磁力計。
【請求項14】
前記光源からの光の前記波長は、約532nmである、請求項1~13のいずれか一項に記載の磁力計。
【請求項15】
前記光源は、前記電子スピン欠陥層に向かう方向に前記光を放出するように配置されている、請求項1~14のいずれか一項に記載の磁力計。
【請求項16】
前記光が、前記電子スピン欠陥層を通って進み、前記界面の全内部反射臨界角よりも大きい角度で前記電子スピン欠陥層の界面に衝突するように、前記光源は、前記電子スピン欠陥層の方へ前記光を放出するように配置されている、請求項15に記載の磁力計。
【請求項17】
前記光源と前記電子スピン欠陥層との間に配置されている少なくとも1つの光学構成要素を含み、前記少なくとも1つの光学構成要素は、前記電子スピン欠陥層を通る前記光源からの前記光を前記界面の全内部反射臨界角よりも大きい角度で前記電子スピン欠陥層の界面に向けるように位置決めされている、請求項1~14のいずれか一項に記載の磁力計。
【請求項18】
前記少なくとも1つの光学構成要素は、レンズ、ミラー、回折格子、及び/又はビーム分割器を含む、請求項17に記載の磁力計。
【請求項19】
前記光共鳴器キャビティは、複数のミラーを含む、請求項1~18のいずれか一項に記載の磁力計。
【請求項20】
前記複数のミラーの少なくとも1つのミラーは、前記光源からの光の前記波長に対して部分的に透過し、前記光源と前記電子スピン欠陥層との間に配置されている、請求項19に記載の磁力計。
【請求項21】
前記複数のミラーの少なくとも1つのミラーは、交互屈折率を有する誘電体層のスタックを含む、請求項19に記載の磁力計。
【請求項22】
前記基板は、凹部を含み、前記電子スピン欠陥層は、前記凹部内に収容されており、前記凹部は、前記光源からの前記光を前記電子スピン欠陥層の方へ反射するために、又は前記電子スピン欠陥層から反射されている前記光源からの前記光を向け直すために、前記電子スピン欠陥層に面する少なくとも1つの反射側壁を含む、請求項1~21のいずれか一項に記載の磁力計。
【請求項23】
前記光検出器は、前記電子スピン欠陥層に直接位置決めされている、請求項1~22のいずれか一項に記載の磁力計。
【請求項24】
前記光検出器は、前記光源からの前記光を反射する又は屈折させる前記電子スピン欠陥層の領域に前記光検出器の検出面が面するように位置決めされている、請求項23に記載の磁力計。
【請求項25】
前記マイクロ波場送信器は、前記光源からの前記光を向ける前記電子スピン欠陥層の前記領域に隣接して位置決めされている、請求項24に記載の磁力計。
【請求項26】
前記電子スピン欠陥層と前記光検出器との間に少なくとも1つのレンズを含む、請求項1~22のいずれか一項に記載の磁力計。
【請求項27】
前記電子スピン欠陥層と前記光検出器との間に少なくとも1つの光学フィルターを含む、請求項1~22及び26のいずれか一項に記載の磁力計。
【請求項28】
前記少なくとも1つの光学フィルターは、前記第2の波長と異なる光の波長を除去するように構成されている、請求項27に記載の磁力計。
【請求項29】
前記磁石は、永久磁石である、請求項1~28のいずれか一項に記載の磁力計。
【請求項30】
前記電子スピン欠陥層は、接着剤を介して前記基板に固定されている、請求項1~29のいずれか一項に記載の磁力計。
【請求項31】
筐体を含み、前記基板、前記電子スピン欠陥層、前記マイクロ波場送信器、前記光源、前記光共鳴器キャビティ、前記光検出器及び前記磁石は、前記筐体に含まれている、請求項1~30のいずれか一項に記載の磁力計。
【請求項32】
前記筐体は、衣類の品物に装着するように構成されている、請求項31に記載の磁力計。
【請求項33】
前記筐体は、人間の皮膚に着脱可能に付着するように構成されている、請求項31に記載の磁力計。
【請求項34】
前記基板、前記電子スピン欠陥層、前記マイクロ波場送信器、前記光源、前記光共鳴器キャビティ、前記光検出器及び前記磁石は、単一チップに配置されている、請求項1~33のいずれか一項に記載の磁力計。
【請求項35】
回転台を含み、前記単一チップは、回転軸を有する前記回転台に固定されており、前記回転台は、前記回転軸の周りに前記単一チップを回転させるように構成されている、請求項34に記載の磁力計。
【請求項36】
回転台を含み、前記単一チップは、回転軸を有する前記回転台に固定されており、前記回転台は、前記回転軸の周りに前記単一チップを振動させるように構成されている、請求項34に記載の磁力計。
【請求項37】
回転無しの前記磁力計の感度は、100pT/√Hz未満であり、回転中の前記磁力計の感度は、約50pT/√Hzと1pT/√Hz以下との間である、請求項1~36のいずれか一項に記載の磁力計。
【請求項38】
磁力計を用いて心磁図を実行する方法であって、前記磁力計は、複数の格子点欠陥を含む電子スピン欠陥層と、マイクロ波場送信器と、光源と、光検出器と、磁石とを含み、
第1の周波数よりも大きい第2の周波数の第2の時間変動磁場を前記磁力計が受けるように前記第1の周波数の第1の時間変動磁場に対して回転軸の周りに前記磁力計を回転させることであって、前記第1の時間変動磁場を心臓から放出することと、
前記電子スピン欠陥層に前記光源からの光を、前記磁力計の前記回転中に向けることであって、前記光は、前記複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含むことと、
測定信号を供給するために前記光検出器を用いて前記電子スピン欠陥層からフォトルミネッセンスを、前記磁力計の前記回転中に検出することであって、前記フォトルミネッセンスは、前記第1の波長と異なる第2の波長を含むことと、
前記第1の時間変動磁場に関する情報を、前記測定信号から判定することと
を含む方法。
【請求項39】
前記磁力計を回転させることは、前記回転軸の周りに前記磁力計を連続的に回転させることを含む、請求項38に記載の方法。
【請求項40】
前記磁力計を回転させることは、360度未満の回転角で前記回転軸の周りに前記磁力計を振動させることを含む、請求項38に記載の方法。
【請求項41】
前記電子スピン欠陥層に前記光源からの前記光を向けることは、界面の全内部反射臨界角よりも大きい角度で前記電子スピン欠陥層の界面に前記光が衝突するように、前記電子スピン欠陥層を介して前記光源からの前記光を向けることを含む、請求項38~40のいずれか一項に記載の方法。
【請求項42】
前記電子スピン欠陥層に前記光源からの前記光を向けることは、前記電子スピン欠陥層の前記界面から前記電子スピン欠陥層の前記界面に戻る全内部反射光を、光共鳴器キャビティを用いて向け直すことを含む、請求項41に記載の方法。
【請求項43】
前記電子スピン欠陥層にマイクロ波信号を印加することを含み、前記マイクロ波信号を印加することは、一連のマイクロ波パルスを印加することを任意選択的に含み、前記一連のマイクロ波パルスは、任意選択的に動的減結合パルス列である、請求項38~42のいずれか一項に記載の方法。
【請求項44】
前記一連のパルスは、第1のπ/2パルス、前記第1のπ/2パルスに続く1つ又は複数のπパルス、及び前記第1のπパルスに続く第2のπ/2パルスを含む、請求項43に記載の方法。
【請求項45】
前記1つ又は複数のπパルスを、前記第2の時間変動磁場のゼロ交差と同時に印加する、請求項43に記載の方法。
【請求項46】
前記磁力計の回転の周波数は、前記第1の時間変動磁場の周波数よりも大きい、請求項38~45のいずれか一項に記載の方法。
【請求項47】
前記第1の時間変動磁場の前記周波数は、400Hz未満である、請求項46に記載の方法。
【請求項48】
前記磁力計は、マイクロ波場制御回路を含み、前記方法は、前記マイクロ波場送信器が前記電子スピン欠陥層の方へマイクロ波場を放出するように前記マイクロ波場制御回路からのマイクロ波源信号を前記マイクロ波場送信器に印加することを更に含み、前記マイクロ波源信号は、任意選択的にパルスマイクロ波源信号であり、前記マイクロ波源信号のマイクロ波周波数は、任意選択的に約50MHzと約4Ghzとの間である、請求項38~47のいずれか一項に記載の方法。
【請求項49】
前記磁力計は、前記マイクロ波源信号を生成するためにマイクロ波場制御回路を含む、請求項48に記載の方法。
【請求項50】
前記磁力計を回転させる前に、所定の範囲にわたって前記マイクロ波源信号の周波数を掃引することと、
電子スピン共鳴周波数を突き止めるために、前記所定の範囲内で第1のマイクロ波周波数で前記光検出器からフォトルミネッセンスの低下を識別することとを含む、請求項48に記載の方法。
【請求項51】
前記磁力計は、光源制御回路を含み、前記方法は、前記第1の波長を含む前記光を生成するために前記光源回路から前記光源に光学制御信号を供給することを更に含む、請求項38~50のいずれか一項に記載の方法。
【請求項52】
前記第1の波長は、約532nmである、請求項38~51のいずれか一項に記載の方法。
【請求項53】
前記第1の時間変動磁場に関する情報を判定することは、
前記測定信号から量子位相蓄積を抽出することと、
前記量子位相蓄積から、前記第1の時間変動磁場のベクトル、前記第1の時間変動磁場の大きさ、前記第1の時間変動磁場の位相、又は第1の時間変動磁場の前記大きさ及び前記位相の両方を判定することとを含む、請求項38~52のいずれか一項に記載の方法。
【請求項54】
前記磁力計を含む筐体を衣類の品物に装着することを含む、請求項38~53のいずれか一項に記載の方法。
【請求項55】
前記磁力計を含む筐体を皮膚に付着させることを含む、請求項38~54のいずれか一項に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
背景
[0001] 電場又は磁場などの特性を検出する古典的物理現象を当てにする様々なセンサーが利用できる。特定の場合、磁場検出器は、磁場検出器の感度、ダイナミックレンジ及び/又は形状因子のうち1つ又は複数によって制限される。
【発明の概要】
【課題を解決するための手段】
【0002】
概要
[0002] 本開示は、電子スピン欠陥ベースの磁気測定法に関する。1つ又は複数の実施形態の詳細を、下記の添付図面及び明細書で説明する。本発明の他の特徴、目的、及び利点は、明細書及び図面、及び特許請求の範囲から明白になるであろう。
【0003】
[0003] 一般的に、幾つかの態様において、本開示の主題は、基板と、基板上の電子スピン欠陥層であって、複数の格子点欠陥を含む電子スピン欠陥層と、マイクロ波場送信器と、複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含む光を放出するように構成されている光源と、電子スピン欠陥層の少なくとも一部を含み、電子スピン欠陥層を通る光を再循環させるように配置されている光共鳴器キャビティと、電子スピン欠陥層から放出されている第2の波長を含むフォトルミネッセンスを検出するように配置されている光検出器であって、第1の波長は、第2の波長と異なる光検出器と、電子スピン欠陥層に隣接して配置されている磁石とを含む磁力計を含む。
【0004】
[0004] 磁力計の実装形態は、下記の特徴のうち1つ又は複数の特徴を含んでもよい。例えば、幾つかの実装形態において、基板は、ケイ素又は炭化ケイ素を含む。基板は、マイクロ波場送信器にマイクロ波源信号を供給するためにマイクロ波場送信器に結合されているマイクロ波場制御回路を含んでもよく、マイクロ波場制御回路は、マイクロ波源信号をパルスマイクロ波源信号として出力するように任意選択的に構成されており、マイクロ波場制御回路は、マイクロ波源信号を約50MHzと約4GHzとの間の周波数で出力するように任意選択的に構成されている。
【0005】
[0005] 幾つかの実装形態において、基板は、光源に光学制御信号を供給するために光源に結合されている光源制御回路を含む。
【0006】
[0006] 幾つかの実装形態において、基板は、マイクロプロセッサを含み、マイクロプロセッサは、光測定信号を光検出器から受信するために光検出器に結合されており、マイクロプロセッサは、磁力計を暴露する時間依存磁場の特性を判定するために光測定信号を解析するように構成されている。
【0007】
[0007] 幾つかの実装形態において、複数の格子点欠陥は、複数の窒素空格子点(NV)欠陥を含み、電子スピン欠陥層は、炭素12及び/又は炭素13を含むダイヤモンド層を含む。
【0008】
[0008] 幾つかの実装形態において、複数の格子点欠陥は、複数の炭化ケイ素(SiC)欠陥を含む。
【0009】
[0009] 幾つかの実装形態において、電子スピン欠陥層は、約1μmと約1mmとの間の厚さを有する。
【0010】
[0010] 幾つかの実装形態において、電子スピン欠陥層は、約200μmと約5mmとの間の厚さを含む。
【0011】
[0011] 幾つかの実装形態において、マイクロ波場送信器は、アンテナを含む。
【0012】
[0012] 幾つかの実装形態において、マイクロ波場送信器は、電子スピン欠陥層の表面に、又は電子スピン欠陥層及び材料の別の層の界面に金属のパターン化層を含む。
【0013】
[0013] 幾つかの実装形態において、マイクロ波場送信器は、共平面導波路、ループ、ワイヤー、又はコイルを含む。
【0014】
[0014] 幾つかの実装形態において、光源は、発光ダイオード又はレーザーを含む。
【0015】
[0015] 幾つかの実装形態において、光源からの光の波長は、約532nmである。
【0016】
[0016] 幾つかの実装形態において、光源は、電子スピン欠陥層に向かう方向に光を放出するように配置されている。光が、電子スピン欠陥層を通って進み、界面の全内部反射臨界角よりも大きい角度で電子スピン欠陥層の界面に衝突するように、光源は、電子スピン欠陥層の方へ光を放出するように配置されていてもよい。
【0017】
[0017] 幾つかの実装形態において、磁力計は、光源と電子スピン欠陥層との間に配置されている少なくとも1つの光学構成要素を含み、少なくとも1つの光学構成要素は、電子スピン欠陥層を通る光源からの光を界面の全内部反射臨界角よりも大きい角度で電子スピン欠陥層の界面に向けるように位置決めされている。
【0018】
[0018] 幾つかの実装形態において、少なくとも1つの光学構成要素は、レンズ、ミラー、回折格子、及び/又はビーム分割器を含む。
【0019】
[0019] 幾つかの実装形態において、光共鳴器キャビティは、複数のミラーを含む。複数のミラーの少なくとも1つのミラーは、光源からの光の波長に対して部分的に透過してもよく、光源と電子スピン欠陥層との間に配置されている。複数のミラーの少なくとも1つのミラーは、交互屈折率を有する誘電体層のスタックを含んでもよい。
【0020】
[0020] 幾つかの実装形態において、基板は、凹部を含み、電子スピン欠陥層は、凹部内に収容されており、凹部は、光源からの光を電子スピン欠陥層の方へ反射するために、又は電子スピン欠陥層から反射されている光源からの光を向け直すために、電子スピン欠陥層に面する少なくとも1つの反射側壁を含む。
【0021】
[0021] 幾つかの実装形態において、光検出器は、電子スピン欠陥層に直接位置決めされている。光検出器は、光源からの光を反射する又は屈折させる電子スピン欠陥層の領域に光検出器の検出面が面するように位置決めされていてもよい。マイクロ波場送信器は、光源からの光を向ける電子スピン欠陥層の領域に隣接して位置決めされていてもよい。
【0022】
[0022] 幾つかの実装形態において、磁力計は、電子スピン欠陥層と光検出器との間に少なくとも1つのレンズを含む。
【0023】
[0023] 幾つかの実装形態において、磁力計は、電子スピン欠陥層と光検出器との間に少なくとも1つの光学フィルターを含む。少なくとも1つの光学フィルターは、第2の波長と異なる光の波長を除去するように構成されていてもよい。
【0024】
[0024] 幾つかの実装形態において、磁石は、永久磁石である。
【0025】
[0025] 幾つかの実装形態において、電子スピン欠陥層は、接着剤を介して基板に固定されている。
【0026】
[0026] 幾つかの実装形態において、磁力計は、筐体を含み、基板、電子スピン欠陥層、マイクロ波場送信器、光源、光共鳴器キャビティ、光検出器及び磁石は、筐体に含まれている。
【0027】
[0027] 幾つかの実装形態において、筐体は、衣類の品物に装着するように構成されている。
【0028】
[0028] 幾つかの実装形態において、筐体は、人間の皮膚に着脱可能に付着するように構成されている。
【0029】
[0029] 幾つかの実装形態において、基板、電子スピン欠陥層、マイクロ波場送信器、光源、光共鳴器キャビティ、光検出器及び磁石は、単一チップに配置されている。
【0030】
[0030] 幾つかの実装形態において、磁力計は、回転台を含み、単一チップは、回転軸を有する回転台に固定されており、回転台は、回転軸の周りに単一チップを回転させるように構成されている。
【0031】
[0031] 幾つかの実装形態において、磁力計は、回転台を含み、単一チップは、回転軸を有する回転台に固定されており、回転台は、回転軸の周りに単一チップを振動させるように構成されている。
【0032】
[0032] 幾つかの実装形態において、回転無しの磁力計の感度は、100pT/√Hz未満であり、回転中の磁力計の感度は、約50pT/√Hzと1pT/√Hz以下との間である。
【0033】
[0033] 一般的に、幾つかの他の態様において、本出願の主題は、磁力計を用いて心磁図を実行する方法であって、磁力計は、複数の格子点欠陥を含む電子スピン欠陥層と、マイクロ波場送信器と、光源と、光検出器と、磁石とを含み、第1の周波数よりも大きい第2の周波数の第2の時間変動磁場を磁力計が受けるように第1の周波数の第1の時間変動磁場に対して回転軸の周りに磁力計を回転させることであって、第1の時間変動磁場を心臓から放出することと、電子スピン欠陥層に光源からの光を、磁力計の回転中に向けることであって、光は、複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含むことと、測定信号を供給するために光検出器を用いて電子スピン欠陥層からフォトルミネッセンスを、磁力計の回転中に検出することであって、フォトルミネッセンスは、第1の波長と異なる第2の波長を含むことと、第1の時間変動磁場に関する情報を、測定信号から判定することとを含む方法に関する。
【0034】
[0034] 幾つかの実装形態において、磁力計を回転させることは、回転軸の周りに磁力計を連続的に回転させることを含む。
【0035】
[0035] 幾つかの実装形態において、磁力計を回転させることは、360度未満の回転角で回転軸の周りに磁力計を振動させることを含む。
【0036】
[0036] 幾つかの実装形態において、電子スピン欠陥層に光源からの光を向けることは、界面の全内部反射臨界角よりも大きい角度で電子スピン欠陥層の界面に光が衝突するように、電子スピン欠陥層を介して光源からの光を向けることを含む。電子スピン欠陥層に光源からの光を向けることは、電子スピン欠陥層の界面から電子スピン欠陥層の界面に戻る全内部反射光を、光共鳴器キャビティを用いて向け直すことを含んでもよい。
【0037】
[0037] 幾つかの実装形態において、方法は、電子スピン欠陥層にマイクロ波信号を印加することを含み、マイクロ波信号を印加することは、一連のマイクロ波パルスを印加することを任意選択的に含み、一連のマイクロ波パルスは、任意選択的に動的減結合パルス列である。一連のパルスは、第1のπ/2パルス、第1のπ/2パルスに続く1つ又は複数のπパルス、及び第1のπパルスに続く第2のπ/2パルスを含んでもよい。1つ又は複数のπパルスを、第2の時間変動磁場のゼロ交差と同時に印加してもよい。磁力計の回転の周波数は、第1の時間変動磁場の周波数よりも大きくてもよい。第1の時間変動磁場の周波数は、400Hz未満であってもよい。
【0038】
[0038] 幾つかの実装形態において、磁力計は、マイクロ波場制御回路を含み、方法は、マイクロ波場送信器が電子スピン欠陥層の方へマイクロ波場を放出するようにマイクロ波場制御回路からのマイクロ波源信号をマイクロ波場送信器に印加することを更に含み、マイクロ波源信号は、任意選択的にパルスマイクロ波源信号であり、マイクロ波源信号のマイクロ波周波数は、任意選択的に約50MHzと約4Ghzとの間である。
【0039】
[0039] 幾つかの実装形態において、磁力計は、マイクロ波源信号を生成するためにマイクロ波場制御回路を含む。
【0040】
[0040] 幾つかの実装形態において、方法は、磁力計を回転させる前に、所定の範囲にわたってマイクロ波源信号の周波数を掃引することと、電子スピン共鳴周波数を突き止めるために、所定の範囲内で第1のマイクロ波周波数で光検出器からフォトルミネッセンスの低下を識別することとを含む。
【0041】
[0041] 幾つかの実装形態において、磁力計は、光源制御回路を含み、方法は、第1の波長を含む光を生成するために光源回路から光源に光学制御信号を供給することを更に含む。
【0042】
[0042] 幾つかの実装形態において、第1の波長は、約532nmである。
【0043】
[0043] 幾つかの実装形態において、第1の時間変動磁場に関する情報を判定することは、測定信号から量子位相蓄積を抽出することと、量子位相蓄積から、第1の時間変動磁場のベクトル、第1の時間変動磁場の大きさ、第1の時間変動磁場の位相、又は第1の時間変動磁場の大きさ及び位相の両方を判定することとを含む。
【0044】
[0044] 幾つかの実装形態において、方法は、磁力計を含む筐体を衣類の品物に装着することを含む。
【0045】
[0045] 幾つかの実装形態において、方法は、磁力計を含む筐体を皮膚に付着させることを含む。
【図面の簡単な説明】
【0046】
図面の簡単な説明
図1】[0046]窒素空格子点欠陥に対する例示的なエネルギー準位図を示す略図である。
図2】[0047]例示的なフォトルミネッセンス強度対印加マイクロ波周波数のプロットである。
図3】[0048]交流磁場を検出するために電子スピン欠陥ベースの磁気測定法を実行する例示的な工程を示す略図である。
図4】[0049]電子スピン欠陥ベースの磁気測定法を実行するために使用可能なデバイスの例を示す略図である。
図5】[0050]例示的な磁力計を示す略図である。
図6】[0051]例示的な磁力計を示す略図である。
図7】[0052]例示的な磁力計を示す略図である。
図8】[0053]磁力計を用いて磁場を検出する例示的な工程を示す略図である。
【発明を実施するための形態】
【0047】
詳細な説明
[0054] 本開示は、電子スピン欠陥ベースの磁気測定法に関する。特に、本開示は、固体格子構造の原子欠陥の存在によって確立された電子スピン副準位のゼーマンシフトを監視することによって磁場を検知する技法、及びこの技法を実行するデバイスに関する。
【0048】
[0055] より具体的には、電子スピン欠陥ベースの磁力計は、電子スピンを光学的に初期化して読み出すことができる固体格子の電子スピン欠陥の発生を利用する量子センサーを含む。特定の実装形態において、欠陥は、格子構造における原子レベルの空格子点(例えば、ダイヤモンド内の炭素原子の代わりに置換された窒素原子の近くに発生する空格子点)として発生することがある。従って、ナノメートル空間分解能で磁場を検出するために、原子スケール欠陥としての単一スピン欠陥中心を使用してもよい一方、典型的に、√N(但し、Nは、スピン欠陥の数である)によって与えられる感度の向上を伴う集合サイズ(例えば、ミクロンのオーダー)によって与えられる空間分解能で、無相関スピン欠陥の集合を使用してもよい。更に、幾つかの実装形態において、電子スピン欠陥ベースの磁力計は、比較的長いコヒーレンス時間(例えば、1秒以上に近い時間)を示すことがある。更に、電子スピン欠陥ベースの磁力計を、室温で、特定の場合、比較的小型の構造内で動作させてもよく、携帯性及び磁力計のコスト削減を可能にし、その結果、健康関連の用途(例えば、心臓から発する磁場の測定)で有利である。
【0049】
[0056] ここに開示の技法及びデバイスは、他のタイプの電子スピン欠陥を更に含む他の材料に適用できるけれども、電子スピン欠陥ベースの磁気測定法の簡単な説明について、図1及び図2を参照して、特に窒素空格子点(NV)磁気測定法に関して記載する。NV中心は、ダイヤモンド格子の空格子点に隣接して炭素の代わりに置換窒素原子を含むダイヤモンド格子の欠陥である。欠陥の負帯電状態は、光学的手段を用いて、初期化され、長いコヒーレンス時間でコヒーレントに操作され、読み出されることができるスピン三重項基底準位を与える。図1は、NV欠陥に対するエネルギー準位図100を例示する略図である。NV欠陥は、1.945eV又はλPL=637nmでゼロフォノン線を有する広帯域フォトルミネッセンス発光を示すダイヤモンド格子内で人工原子として挙動する。更に、NV欠陥の基底準位102は、磁場がない状態でK=2.87GHzだけ分離されたm=0状態104及びm=±1状態106のスピン副準位を有するスピン三重項状態である。m=0状態110及びm=±1状態112を有するスピン三重項でもある励起準位108に、欠陥を光学的に励起することができる。一旦励起準位108に光学的に励起されると、NV欠陥は、a)放射遷移及びフォノン緩和による、従って広帯域赤色フォトルミネッセンスを生成する機構、又はb)一重項状態116への無放射項間交差を含む二次経路114による機構の2つの機構うち1つの機構によって主に緩和することができる。
【0050】
[0057] 励起状態多岐管から基底状態多岐管に戻る崩壊経路分岐比は、初期スピン副準位射影に左右される。具体的には、電子スピンがm=±1状態で始まった場合、スピンがm=0状態に至るまで二次経路114を介して無放射で崩壊する可能性が30%ある。共鳴マイクロ波場をダイヤモンドに印加することによって、スピン副準位の集団を操作することができる。具体的には、0状態と±1状態との間の遷移エネルギー費に対応する特定のマイクロ波周波数で、それらの副準位の間で遷移が生じ、システムのフォトルミネッセンスの準位が変化することになる。特に、スピンをm=0状態に初期化する場合、集団を、共鳴マイクロ波ドライブによって±1状態の1つに転送し、後の光学的照明時のフォトルミネッセンス率が低下する。PL強度対印加マイクロ波周波数のプロットである図2に示す最下フォトルミネッセンス(PL)強度線202に示すように、磁場がない状態で、マイクロ波周波数を掃引することによって、フォトルミネッセンスのこの低下を観測してもよい。しかし、NV欠陥の近傍に磁場を印加する時に、PLスペクトル(図2における上部PL線204を参照)の低下に対応する2つの電子スピン共鳴(ESR)遷移の出現を引き起こすゼーマン効果によって、m=±1スピン副準位の縮退を持ち上げる。値Δvは、典型的に1MHzのオーダーのESR線幅に対応し、値Cは、ESRコントラストである。小さい磁場を検出するために、NV遷移を、最大傾斜の点(図2における、例えば206を参照)で駆動してもよい。最大傾斜のこの点で、磁場の時間領域変化を得ることができるフォトルミネッセンスの時間領域変化を検出してもよい。信号を、(∂I/∂B)×δB×Δt(但し、Iは、NV欠陥PL率であり、δBは、無限小磁場変動であり、Δtは、磁場が変化する時間スケールよりも非常に小さい測定持続時間である)として表してもよい。従って、単一NV欠陥は、原子サイズの検出体積を有する磁場センサーとしての機能を果たすことができる。感度を向上させるために、NV欠陥の集合の収集応答を検出してもよく、その結果、収集PL信号を、検知スピンの数Nによって拡大し、従って、ショット雑音制限磁場感度が、1/√N倍だけ向上する。
【0051】
[0058] 測定されるべき磁場が、時間周期的である場合(例えば、交流磁場)、磁場感度を更に向上させることができる。古典的交流磁場を用いた感度の向上は、中心スピンの環境から中心スピンの動的減結合を介して達成可能なNVスピンコヒーレンスの延長の結果である。レーザー読み出し処理及びマイクロ波場の駆動に起因するESR線幅の拡大を回避するために、スピン操作、スピン読み出し及び位相蓄積(磁場測定)を、時間で分離してもよい。そのようにするために、一連のマイクロ波パルスを、準備状態|0>であるNV欠陥(又は複数の欠陥)に順次印加する。ここで、|0>及び|1>は、電子スピン状態m=0及びm=1を示す。図3は、マイクロ波パルス列をNV欠陥又はNV欠陥の集合に印加する交流磁場用の電子スピン欠陥ベースの磁気測定法の例を示す略図である。他の動的減結合パルス列を代わりに使用することができるけれども、パルス列は、「ハーンエコー」と呼ばれることもある。特に、第1の光パルス302を、NV欠陥又はNV欠陥の集合に印加し、NV欠陥を準備状態|0>に置く。NV欠陥を交番磁場300に暴露しながら、第1のπ/2マイクロ波パルス304を、NV欠陥に印加し、準備状態|0>から、マイクロ波駆動ラビ周波数がハミルトニアンにおける他の項よりも大きい場合、例えば、NV超微細結合及び測定されるべき磁場の大きさを総自由歳差時間2τにわたって展開するコヒーレント重ね合わせ|Ψ>=1/√2*(|0>+eiφ|1>)に、NV欠陥の電子スピンを回転させる。位相φを、定義によりゼロに設定し、マイクロ波駆動場を、y軸(任意)に沿うように選択する。自由歳差時間中に、電子スピンは、外部磁場と相互作用する。|1>状態は、ブロッホ球画像におけるスピン量子化軸に垂直な平面内のスピンの歳差に対応する|0>状態に対して位相を取得する。次に、第1のπマイクロ波パルス306を印加し、|0>状態及び|1>状態によって取得された位相を「掃引」する。環境磁気雑音の低い成分に対して、列の前半中に取得された離調を補償し、環境からの不規則雑音によって引き起こされるスピン離調を低減してもよい。更に、周波数1/τよりも非常に高い周波数成分は、平均がゼロになる。低い成分は、例えば、数Hz、数十Hz、数百Hz、及び1~1000kHz、例えば、10Hz以下、100Hz以下、又は500Hz以下、1kHz以下、10kHz以下、100kHz以下、及び1MHz以下のオーダーの直流成分及び低周波数成分を含んでもよい。幾つかの実装形態において、古典的交流磁場によるスピン位相蓄積を高めることができるように、パルス306を古典的交流磁場のゼロ交差で印加する。幾つかの実装形態において、複数のπマイクロ波パルス306を、周期的に印加する。1つ又は複数のπマイクロ波パルス306を印加した後、量子化軸に戻るNV電子スピンを射影する第2のπ/2パルス308を印加することによって、位相φ、従って磁場を測定する。従って、総位相蓄積を、NV欠陥のスピン依存PLを介して光学的に読み出し可能な電子集団に変換する。即ち、第2の光パルス310を、NV欠陥又はNV欠陥の集合に印加し、光検出器によって読み出されるフォトルミネッセンスが得られる。PL測定から磁場B(t)を得るために、パルス列の下でSz演算子の展開を記述する関数に、雑音及び信号場を掛け、次に、関数を積分して位相蓄積を取得し、その後、関数にコントラスト及び総フォトルミネッセンス率を掛け、フォトルミネッセンス信号を取得する(正弦磁気測定法)。余弦磁気測定法の場合、フィルター関数を、雑音及び信号場のパワースペクトル密度で畳み込み、位相分散を取得し、次に、フィルター関数にコントラスト及びフォトルミネッセンス率を掛ける。連続波駆動技法に比べて、感度は、少なくとも(T2/T21/2(但し、T2は、交流磁気測定法下のNVのコヒーレンス時間であり、T2は、NV線幅に反比例する)倍だけ向上し得る。
【0052】
[0059] 上述のように、NV欠陥は、電子スピン欠陥ベースの磁気測定法を実行するために使用可能なスピン欠陥のタイプの単に1つの例である。他の実装形態において、1つ又は複数のスピン欠陥を、炭化ケイ素で形成してもよい。SiC欠陥は、SiC格子で他の置換原子(例えば、リン)に起因する欠陥を含む。NV欠陥でここに記載のような磁場を検出する同様な技法を、SiC欠陥で使用してもよい。
【0053】
[0060] 図4は、ここに記載のように、電子スピン欠陥ベースの磁気測定法を実行するために使用可能なデバイス400の例を示す略図である。デバイス400は、基板402、及び基板402の上に形成された電子スピン欠陥層404を含む。電子スピン欠陥層404は、ここに記載のように、ダイヤモンドに形成されたNV欠陥などの複数の格子点欠陥を含んでもよい。NV欠陥を含む欠陥層404を、場合によっては、最大99.999%の炭素12から形成してもよい。幾つかの実装形態において、炭素12の代わりに、炭素13を部分的に使用してもよい。電子スピン欠陥層404は、典型的に電子グレードであるダイヤモンドに形成されたNV欠陥に限定されず、他の材料(例えば、炭化ケイ素)の他の格子点欠陥を含んでもよい。電子スピン欠陥層404は、電子スピン欠陥が無いより大きい層406の副層であってもよい。例えば、より大きい層406は、NV欠陥を有しないダイヤモンド層であってもよい一方、ダイヤモンド層の上部は、欠陥層404に対応する。
【0054】
[0061] 欠陥層404の厚さは、変わってもよい。例えば、幾つかの実装形態において、欠陥層404の厚さは、約2~3μmよりも厚くてもよく、例えば、10μm、50μm、100μm、250μm、500μm、又は750μmよりも厚くてもよい。欠陥層404の厚さは、約1mmよりも薄くてもよく、例えば、750μm、500μm、250μm、又は100μmよりも薄くてもよい。他の厚さを、同様に使用してもよい。ここで、層404の厚さを、層404及び層406と層404の対向接面との間の界面からの距離であるとして参照する。欠陥層が、層406の一部である、又は層406の上に形成される場合、層406は、それ自体の個別厚さを有してもよい。例えば、層406は、約200μmと約5mmとの間の厚さを有してもよい。ここで、層406の厚さを、層404と層406との間の界面及び層406と基板402との間の界面からの距離であるとして参照する。
【0055】
[0062] 幾つかの実装形態において、他のタイプの接着剤の中で、例えば、エポキシ、エラストマー、熱可塑性物質、エマルジョン、及び/又は熱硬化性物質を含む接着剤を用いて、層404(又は層406)を基板に固定する。幾つかの実装形態において、電気接触を、層404(又は層406)と基板402との間に形成する。例えば、場合によっては、基板は、1つ又は複数の回路要素(416、418、420)を製造する半導体材料(例えば、ケイ素)を含んでもよい。回路要素416、418、420と層404(又は層406)の内部又は上に形成された1つ又は複数の構成要素との間に電気的接続部を設けるために、電気的接続部を基板402内に形成してもよい。
【0056】
[0063] 更に、デバイス400は、欠陥層404の電子スピン欠陥にマイクロ波場を与えるためにマイクロ波場送信器410を含む。図4に示す本例において、マイクロ波場送信器410は、欠陥層404の上面に形成された薄膜アンテナを含む。幾つかの実装形態において、マイクロ波場送信器410は、欠陥層404の表面に、層406内に、又は欠陥層404と層406との間の界面に、金属のパターン化層を含む。マイクロ波場送信器410は、導電材料(例えば、金属)の共平面導波路、ワイヤー、ループ又はコイルを含んでもよい。マイクロ波場送信器410を、スピン欠陥励起光源からの光を向ける欠陥層404の領域に隣接して位置決めしてもよい。
【0057】
[0064] 幾つかの実装形態において、デバイス404は、マイクロ波場制御回路416を含む。マイクロ波場制御回路416を、基板402の内部又は上に形成してもよい。例えば、幾つかの実装形態において、制御回路416は、シリコン基板内に形成された回路要素であってもよい。マイクロ波場送信器410が欠陥層404の方へマイクロ波場を放出するように、マイクロ波場送信器410にマイクロ波源信号を供給するために、制御回路416を、マイクロ波場送信器410に結合(例えば、直接電気的に接続)してもよい。マイクロ波源信号は、任意選択的に、パルスマイクロ波源信号であってもよい。幾つかの実装形態において、マイクロ波源信号のマイクロ波周波数は、約2GHzと約4Ghzとの間である。幾つかの実装形態において、マイクロ波場送信器410は、互いに間隔を置いて複数の周波数で信号を放出し、追加エネルギー準位分割を促進する。例えば、幾つかの実装形態において、NV超微細遷移を扱うマイクロ波信号を放出するように、マイクロ波場送信器410を動作させてもよい。幾つかの実装形態において、マイクロ波制御回路416は、送信器410でパルスマイクロ波信号を生成する制御信号を供給するように構成されている。幾つかの実装形態において、マイクロ波制御回路416は、送信器410で連続波マイクロ波信号を生成する制御信号を供給するように構成されている。
【0058】
[0065] 幾つかの実装形態において、デバイス400は、欠陥層404の電子スピン欠陥から放出されているフォトルミネッセンスを検出するように配置されている光検出器412を含む。フォトルミネッセンスは、NV欠陥の放出波長に対応する光の1つ又は複数の波長(例えば、約637nmの波長)を含んでもよい。図4に示すように、光検出器412を、欠陥層404と直接接触して、欠陥層404の上面に位置決めしてもよい。幾つかの実装形態において、光源からの光を向ける欠陥層404の領域に光検出器412の検出面が面するように、光検出器412を位置決めする。NV欠陥によって放出された光の波長に対して光透過的である接着剤を用いて、光検出器412を欠陥層404に固定してもよい。代わりに又は更に、光検出器412を、欠陥層404の下に、例えば、基板402と層404との間の界面に、又は基板402内に形成してもよい。例えば、幾つかの実装形態において、光検出器は、基板402内に形成されたシリコンベースの光検出器であってもよい。幾つかの実装形態において、光学構成要素を、光検出器412と欠陥層404との間に位置決めする。例えば、光学構成要素は、レンズ、ビーム分割器、回折格子、光学フィルター、及び/又はミラーのうち1つ又は複数を含んでもよい。欠陥層404の欠陥によって放出された光の波長と異なる光の波長を除去するように、光学フィルターを構成してもよい。
【0059】
[0066] 幾つかの実装形態において、デバイス404は、マイクロプロセッサ418を含み、マイクロプロセッサ418は、光測定信号を光検出器から受信するために光検出器412に結合されており、マイクロプロセッサは、デバイス404を暴露する磁場の特性を判定するために光測定信号を解析するように構成されている。マイクロプロセッサ418を、基板402の内部又は上に形成してもよい。例えば、幾つかの実装形態において、マイクロプロセッサ418は、シリコン基板内に形成された回路要素であってもよい。マイクロプロセッサ418を、光検出器412に結合(例えば、直接電気的に接続)してもよい。幾つかの実装形態において、デバイス400は、フォトダイオードアレイなどの複数の光検出器を含む。欠陥層404によって放出された光の収集を最大化するために、光検出器412を、欠陥層404の周りに複数の異なる位置に設置してもよい。マイクロプロセッサ418を、基板402に形成するように示すけれども、マイクロプロセッサを、磁力計から遠く離れて設置してもよい。例えば、幾つかの実装形態において、磁力計は、制御信号及び解析信号をマイクロプロセッサ418から無線で受信し、フィードバックデータ及び測定データをマイクロプロセッサに無線で送信する送信器/受信器を含んでもよい。
【0060】
[0067] 幾つかの実装形態において、デバイス400は、光を放出するように構成されている光源408を含む。光源408によって放出された光は、欠陥層404内の1つ又は複数の格子点欠陥を基底状態から励起状態に励起する第1の波長を含んでもよい。第1の波長は、緩和時に格子点欠陥によって放出される第2の波長と異なる。第1の波長は、欠陥層404におけるNV欠陥を励起するために、例えば、約532nmであってもよい。光源408は、例えば、発光ダイオード、レーザー、又は格子点欠陥を励起するために使用される波長以外の波長の透過を遮断するように構成されているフィルターを含む広帯域源を含んでもよい。欠陥層404の方へ光422を放出するように、光源408を配置してもよい。例えば、光源408を出る光422が欠陥層404の方へ経路を進むように、光源408を曲げてもよい。代わりに、欠陥層404の方へ光を向け直すために、1つ又は複数の光学要素を、光源408から放出された光の前に位置決めしてもよい。例えば、1つ又は複数の光学構成要素は、レンズ、ミラー、ビーム分割器、及び/又は回折格子を含んでもよい。
【0061】
[0068] 幾つかの実装形態において、デバイス404は、光源回路、即ち、光源用のドライバー420を含み、ドライバー420は、光源を駆動する制御信号を供給するために光源408に結合されている。ドライバー420を、基板402の内部又は上に形成してもよい。例えば、幾つかの実装形態において、ドライバー420は、シリコン基板内に形成された回路要素であってもよい。ドライバー420を、光源408に結合(例えば、直接電気的に接続)してもよい。幾つかの実装形態において、マイクロ波場制御回路416及び/又はドライバー420の動作を制御するために、マイクロプロセッサ418を、マイクロ波場制御回路416及びドライバー420の一方又は両方に結合する。
【0062】
[0069] 幾つかの実装形態において、デバイス400は、ロックイン増幅器を含む。例えば、マイクロプロセッサ418及び/又はデバイス400の他の回路要素は、他の回路(例えば、デバイス400のマイクロプロセッサ418)によって供給された基準信号のタイミング及び周波数を一致させるために、光検出器412の出力に結合されたロックイン増幅器を含んでもよい。
【0063】
[0070] 幾つかの実装形態において、少なくとも1つの光学構成要素を、光源408と欠陥層との間に配置し、その結果、例えば図4に示すように、欠陥層404を通る光源408からの光を欠陥層404の界面の全内部反射臨界角よりも大きい角度で欠陥層404の界面に向けるように、少なくとも1つの光学構成要素を位置決めする。このようにして、入射光422を界面で最初に反射し、欠陥層404を通って再循環可能な反射光424を与え、格子点欠陥の追加励起を生成する。幾つかの実装形態において、デバイス400は、光を光学的に欠陥層404に結合する及び欠陥層404から抜け出す光ファイバー(例えば、テーパー状光ファイバー)を含む。
【0064】
[0071] 幾つかの実装形態において、デバイス400は、磁石414を含む。磁石414を、電子スピン欠陥層404に隣接して配置してもよい。磁石414は、ゼーマン効果を引き起こし、ms=±1スピン副準位の縮退を持ち上げるように設けられている。幾つかの実装形態において、磁石414は、永久磁石である。磁石414を、層406、又は層404、他の位置の上の基板402mに直接位置決めしてもよい。欠陥層406の異なる欠陥の間の不均一な広がりの影響を最小化するために、磁石の形状を選択してもよい。
【0065】
[0072] 幾つかの実装形態において、デバイス400は、電子スピン欠陥層の少なくとも一部を含み、電子スピン欠陥層を通る光を再循環させるように配置されている光共鳴器キャビティを含む。磁力計400の例示的な変型例を、磁力計500がこのような光共鳴器を含むという例外を有する図5におけるデバイス500として示す。入射光422が、閉じ込められたままである、及び/又は層404、406の規定のキャビティ空間内に定在波を形成する層406及び欠陥層404の表面によって、光共鳴器を画定してもよい。例えば、ここに記載のように、光422の全内部反射をもたらす角度で層404の1つ又は複数の表面(例えば、表面502)に、光422を向けてもよい。代わりに又は更に、共鳴器光路の一部を形成するために光422を向け直す反射面を設けてもよい。例えば、幾つかの実装形態において、光422を最初に透過させる層404及び/又は層406の表面504を、光422の波長に対して部分的に透過及び部分的に反射する層で被覆してもよい。表面508及び界面510は、反射面を含んでもよい。幾つかの実装形態において、反射面(例えば、図5に示す表面及び界面)は、ミラーを含む。ミラーを、付着及び研磨金属(例えば、銀又は金)から形成してもよい。幾つかの実装形態において、ミラーを、交互屈折率を有する誘電材料の多層(例えば、分布ブラッグ反射器)から形成してもよい。代わりに又は更に、反射面を、層404自体の材料によって形成してもよい。例えば、幾つかの実装形態において、欠陥層404は、複数の孔を含むように構造化されたダイヤモンドを含んでもよい。光共鳴器キャビティを形成するために欠陥層404の所定の位置でブラッグ反射を引き起こすように、ダイヤモンド材料と一緒に孔を設計及び構成してもよい。幾つかの実装形態において、欠陥層404は、リングキャビティ共鳴器を含んでもよく、例えば、ダイヤモンドをディスク又はリングのように形成し、層404に入った後で層404の全エッジの周りに全内部反射を受けるように欠陥層404のエッジにおいて比較的小さい角度で、光を導入する。
【0066】
[0073] 幾つかの実装形態において、基板402は、凹部を含み、欠陥層404は、凹部内に収容されている。例えば、図6は、図4に示す磁力計400の代替の実装形態600を例示する略図である。図6において、層404を位置決めする凹部602を設けるために、基板402の一部を、フライス加工、エッチング、又は別の方法で除去してもよい。光共鳴器を形成し、光を欠陥層404内で再循環させるために、光を反射するように、凹部602の2つ又は複数の壁を構成してもよい。この構成の追加の利点は、特定の機構(例えば、光源408又は光検出器412)を基板402内に更に形成することができ、より小型の磁力計構成を可能にすることである。
【0067】
[0074] 幾つかの実装形態において、磁力計(例えば、図4図6に示す例示的なデバイス)を形成する、ここに記載の構成要素を、筐体内に含んでもよい。プラスチックなどのデバイス内の磁力計を磁場が自由に通ることができる材料から、筐体を形成してもよい。幾つかの実装形態において、熱的分離用の材料(例えば、エアロゾル)の薄い熱伝導層によって、筐体を、部分的に又は全体的に覆ってもよい。幾つかの実装形態において、衣類の品物に装着するように、磁力計を含む筐体を構成してもよい。幾つかの実装形態において、人体に固定することができるストラップ、ベルト、又は他の締結具の一部として、磁力計を含む筐体を構成してもよい。例えば、磁力計を含む筐体を、人の胸に固定してもよい。代わりに又は更に、磁力計を、人体に固定される他の構造物に置いてもよい。幾つかの実装形態において、例えば、医療用接着テープ又は他の医療用接着剤を用いて、人間の皮膚に着脱可能に付着するように、ここに記載の磁力計を含む筐体を構成してもよい。
【0068】
[0075] 幾つかの実装形態において、基板、欠陥層、マイクロ波場送信器、光源、光共鳴器キャビティ、光検出器及び磁石を含むここに記載の磁力計デバイスを、単一チップに配置する。
【0069】
[0076] 幾つかの実装形態において、検出されるべき磁気信号は、比較的低い周波数(例えば、1kHz未満)信号であり、又は直流信号である。このような場合、低周波数雑音は、検出されるべき信号を押し出すことができ、即ち、信号対雑音比を低減することができる。低周波数雑音を低減又は除去するために、ここに記載のような磁力計を、軸の周りに回転させてもよく、その結果、検出されるべき磁気信号は、磁力計に現れ、より高い周波数信号である。ここに記載のように、次に、パルスマイクロ波検出方法を、高周波数信号で使用して、デバイスの測定感度を向上させてもよい。
【0070】
[0077] デバイスを回転させるために、磁力計(例えば、図4及び図6に関してここに記載の磁力計)を、図7に示すように、回転台700に固定してもよく、回転台700は、回転軸702を有する。磁力計400を回転台700に固定した場合、回転台700は、回転軸702の周りに磁力計400を回転させてもよい。デバイスの回転は、回転軸の周りに磁力計400を連続的に回転させることを含んでもよい。代わりに、デバイスの回転は、360度未満の回転角で回転軸の周りに磁力計を振動させることを含んでもよい。ここに記載のパルスマイクロ波検出方法を使用するために、磁力計の回転の周波数を、検出されるべき時間変動磁場の周波数よりも大きい周波数に設定する。例えば、回転の周波数は、検出されるべき時間変動磁場の周波数よりも3倍、10倍、100倍、1000倍、又は10000倍大きくてもよい。
【0071】
[0078] 幾つかの実装形態において、欠陥層、光源、光検出器、マイクロ波場送信器、及び磁石を含む磁力計を、集積回路チップ、即ち、磁力計チップとして形成する。磁力計チップを、回転台700(例えば、ターンテーブル)に固定してもよい。ターンテーブル及び磁力計チップを、ここに記載のような筐体内に収容してもよい。検出感度を向上させるために、量子化軸に沿った磁場の射影がデバイスの回転中にできるだけ多く変化するように、検出されるべき磁気信号の磁気ベクトル場を、欠陥層内の欠陥の固有量子化軸の平面内に配向させるべきである。一例としてNV欠陥をとると、量子化軸は、窒素及び空格子点を結合する軸に対応する。従って、ダイヤモンドのNV欠陥層でNVの4つの配向があり、その結果、磁気ベクトル場を量子化軸に整列させる4つの異なる選択肢がある。代わりに、磁場ベクトルは、磁場に関するベクトル情報を回復するために同時に対応可能な全ての4つのNV配向軸に沿った射影を有する。実装形態の例において、検出されるべき信号の磁場ベクトルに対して実質的に垂直に、従って問合せ欠陥の量子化軸に、回転軸を整列させるように、デバイスを配向させてもよい。整列が正確でない、又は背景移動がある場合(例えば、人の上に又は人の近くにデバイスを置き、人の移動により、量子化軸及び磁場の整列が絶えず変化する場合)、ここに記載のパルスマイクロ波検出方法及び後処理を用いて、このような比較的低い周波数移動を除去してもよい。
【0072】
[0079] 幾つかの実装形態において、ここに開示の技法により、回転無しの磁力計は、100pT/√Hz未満(例えば、15pT/√Hz未満)の感度を得ることができる。幾つかの実装形態において、ここに開示の技法により、回転を有する磁力計は、50pT/√Hz未満(例えば、10pT/√Hz又は1pT/√Hz未満)の感度を得ることができる。
【0073】
[0080] ここに記載の電子スピン欠陥ベースの磁気測定法の技法及びデバイスは、小型の室温磁気測定法に対して実行可能であり、大きい磁場変動に対してロバストである。幾つかの実装形態において、磁場を心臓から検出する心磁図などの用途で、磁力計を使用することができる。特に、様々な心臓の状態の長期的な連続監視及び早期検出のために、小型でロバストなスピン欠陥ベースの磁力計を使用して、心臓から発する磁場を検出してもよい。
【0074】
[0081] 心臓血管疾患は、世界中で死亡原因の第1位である。心臓によって生成される電場及び磁場は、心臓発作又は不整脈などの危険な状態の発症に関する情報を含む。しかし、この重要な臓器を監視する技術は、大きくてうるさいことがあり、この技術を、非臨床設定で、一度に最大数日間しか使用することができず、データの連続取得がせいぜい問題になる。更に、データを取得した後、電流解析を、医療専門家によって実行する必要があり、解析可能なデータ量が厳しく制限され、更に、これらの重要な設備のコストが増加する(及び、範囲及びアクセスしやすさが減少する)。
【0075】
[0082] 小さい磁場を検出するために必要なセンサーは、遮蔽室(例えば、光励起磁力計)で又は低温(例えば、SQUIDS)で動作を必要とする傾向があり、連続取得及び監視が困難になる。特定の実装形態において、ここに開示の磁力計を、量子センサーとして使用して、磁場を心臓から測定してもよく、ここに開示の磁力計は、室温で遮蔽室の外側で動作されてもよく、最大100mTの大きいダイナミックレンジを提供する。更に、デバイスが小型であり、デバイスを人体の近くに快適に着用することができるように、デバイスを構成してもよい。
【0076】
[0083] 図8は、磁力計(例えば、ここに記載の磁力計)を用いて磁場を検出する例示的な工程800を示す略図である。図8に示すように、工程800は、第1の周波数よりも大きい第2の周波数の第2の時間変動磁場を磁力計が受けるように第1の周波数の第1の時間変動磁場に対して回転軸の周りに磁力計を回転させること(802)を含んでもよい。第2のステップで、磁力計の欠陥層に光源からの光を、磁力計の回転中に向け(804)、欠陥層は、複数の格子点欠陥を含む。光は、格子点欠陥を基底状態から励起状態に励起する第1の波長を含んでもよい。工程800は、測定信号を供給するために光検出器を用いて欠陥層からフォトルミネッセンスを、磁力計の回転中に検出すること(806)を更に含んでもよく、フォトルミネッセンスは、第1の波長と異なる第2の波長を含む。工程800は、第1の時間変動磁場に関する情報を、測定信号から判定すること(808)を更に含んでもよい。
【0077】
[0084] 磁力計を回転させることは、回転軸の周りに磁力計を連続的に回転させること、又は360度未満の回転角で回転軸の周りに磁力計を振動させることを含んでもよい。電子スピン欠陥層に光源からの光を向けることは、界面の全内部反射臨界角よりも大きい角度で電子スピン欠陥層の界面に光が衝突するように、電子スピン欠陥層を介して光源からの光を向けることを含んでもよい。電子スピン欠陥層に光源からの光を向けることは、電子スピン欠陥層の界面から電子スピン欠陥層の界面に戻る全内部反射光を、光共鳴器キャビティを用いて向け直すことを含んでもよい。
【0078】
[0085] 幾つかの実装形態において、工程800は、電子スピン欠陥層にマイクロ波信号を印加することを更に含む。マイクロ波信号を印加することは、一連のマイクロ波パルスを印加することを任意選択的に含み、一連のマイクロ波パルスは、任意選択的に動的減結合パルス列(例えば、ハーンエコー列)である。一連のパルスは、第1のπ/2パルス、第1のπ/2パルスに続く1つ又は複数のπパルス、及び第1のπパルスに続く第2のπ/2パルスを含んでもよい。1つ又は複数のπパルスを、第2の時間変動磁場のゼロ交差と同時に印加してもよい。磁力計の回転の周波数は、第1の時間変動磁場の周波数よりも大きくてもよい。第1の時間変動磁場の周波数は、300Hz未満であってもよい。
【0079】
[0086] 幾つかの実装形態において、工程800は、磁力計を回転させる前に、所定の範囲にわたってマイクロ波源信号の周波数を掃引することと、電子スピン共鳴周波数を突き止めるために、所定の範囲内で第1のマイクロ波周波数で光検出器からフォトルミネッセンスの低下を識別することとを含む。
【0080】
[0087] 幾つかの実装形態において、第1の時間変動磁場に関する情報を判定することは、光検出器の測定信号から量子位相蓄積を抽出することと、量子位相蓄積から、第1の時間変動磁場の大きさ、第1の時間変動磁場の位相、又は第1の時間変動磁場の大きさ及び位相の両方を判定することとを含む。
【0081】
[0088] 第1の時間変動磁場を、生物有機体(例えば、人間)から放出してもよい。幾つかの実装形態において、第1の時間変動磁場を、心臓(例えば、人間の心臓)から放出する。幾つかの実装形態において、工程800は、磁力計を含む筐体を衣類の品物に装着することを含む。幾つかの実装形態において、生物有機体は哺乳類であり、工程800は、磁力計を含む筐体を哺乳類の皮膚に付着させることを含む。
【0082】
[0089] この明細書に記載の実施形態及び機能動作(例えば、マイクロプロセッサ、マイクロ波制御回路、及び光源ドライバーによって実行される動作及び解析)を、この明細書に開示の構造及びこれらの構造均等物を含む、デジタル電子回路、又はコンピュータソフトウェア、ファームウェア、又はハードウェア、又はこれらのうち1つ又は複数の組み合わせで実施してもよい。1つ又は複数のコンピュータプログラム製品、即ち、データ処理装置による実行、又はデータ処理装置の動作を制御する実行のためにコンピュータ可読媒体に符号化されたコンピュータプログラム命令の1つ又は複数のモジュールとして、実施形態を実施してもよい。コンピュータ可読媒体は、機械可読記憶デバイス、機械可読記憶基板、メモリデバイス、機械可読伝搬信号をもたらす合成物、又はこれらのうち1つ又は複数の組み合わせであってもよい。
【0083】
[0090] 用語「データ処理装置」は、プログラマブルプロセッサ、コンピュータ、又は複数のプロセッサ又はコンピュータを一例として含む、データを処理する全ての装置、デバイス、及び機械を含む。装置は、ハードウェアに加えて、当該コンピュータプログラム用の実行環境を生成するコード、例えば、プロセッサファームウェア、プロトコルスタック、データベース管理システム、オペレーティングシステムを構成するコード、又はこれらのうち1つ又は複数の組み合わせを含んでもよい。伝搬信号は、人工的に生成された信号、例えば、適切な受信器装置への送信用の情報を符号化するために生成される機械生成電気、光、又は電磁信号である。
【0084】
[0091] コンピュータプログラム(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、又はコードとしても知られている)を、コンパイラ言語又はインタープリタ言語を含む任意の形態のプログラミング言語で書いてもよく、スタンドアロンプログラム、又はモジュール、構成要素、サブルーチン、又は計算環境での使用に適している他のユニットとして含む任意の形態で展開してもよい。コンピュータプログラムは、ファイルシステムにおけるファイルに必ずしも対応する必要はない。他のプログラム又はデータを保持するファイル(例えば、マーク付け言語文書に記憶された1つ又は複数のスクリプト)の一部、当該プログラムに専用の単一ファイル、又は複数の協調ファイル(例えば、1つ又は複数のモジュール、サブプログラム、又はコードの一部を記憶するファイル)に、プログラムを記憶してもよい。1つの現場に設置される、又は複数の現場にわたって分散され通信ネットワークによって相互接続される1つのコンピュータ又は複数のコンピュータで実行されるように、コンピュータプログラムを展開してもよい。
【0085】
[0092] この明細書に記載の処理及び論理フローを、入力データで動作して出力を生成することによって機能を実行する1つ又は複数のコンピュータプログラムを実行する1つ又は複数のプログラマブルプロセッサによって実行してもよい。更に、処理及び論理フローを、専用論理回路、例えば、FPGA(フィールドプログラマブルゲートアレイ)又はASIC(特定用途向け集積回路)によって実行してもよく、装置を、専用論理回路として実施してもよい。
【0086】
[0093] コンピュータプログラムの実行に適しているプロセッサは、一例として、汎用及び専用マイクロプロセッサの両方、及び任意の種類のデジタルコンピュータの任意の1つ又は複数のプロセッサを含む。一般的に、プロセッサは、読み出し専用メモリ又はランダムアクセスメモリ又はこれらのメモリの両方から命令及びデータを受信する。
【0087】
[0094] この明細書は多くの詳細を含むけれども、これらの詳細は、開示又は特許請求の範囲に記載の内容の範囲を限定すると解釈されるべきではなく、特定の実施形態に特有の特徴の説明と解釈されるべきである。別々の実施形態の文脈でこの明細書に記載の特定の特徴を、単一の実施形態で結合して実施してもよい。逆に、単一の実施形態の文脈で記載の様々な特徴を、別々に複数の実施形態で、又は任意の適切な小結合で実施してもよい。更に、特徴を、特定の結合で作動すると上述することができ、それ自体で更に最初に特許請求の範囲に記載することができるけれども、場合によっては、特許請求の範囲に記載の結合からの1つ又は複数の特徴を、結合から削除することができ、特許請求の範囲に記載の結合を、小結合又は小結合の変型例に導くことができる。
【0088】
[0095] 同様に、動作を特定の順序で図面に示しているけれども、これは、望ましい結果を達成するために、示される特定の順序又は逐次的順序でこのような動作を実行すること、又は全ての例示の動作を実行することを必要とすると理解されるべきではない。特定の状況で、マルチタスク及び並列処理は、有利であり得る。更に、上述の実施形態における様々なシステム構成要素の分離は、全実施形態でこのような分離を必要とすると理解されるべきではなく、記載のプログラム構成要素及びシステムを一般的に、単一のソフトウェア製品に一緒に統合する、又は複数のソフトウェア製品にパッケージ化することができると理解されるべきである。
【0089】
[0096] 多くの実施形態が説明されている。それにもかかわらず、本発明の精神及び範囲から逸脱することなく、様々な修正を行うことができるものとする。従って、他の実施形態は、下記の特許請求の範囲の範囲内にある。
図1
図2
図3
図4
図5
図6
図7
図8
【国際調査報告】