(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-01
(54)【発明の名称】油分離デバイス、凝縮器、および油分離デバイスまたは凝縮器を使用する冷却システム
(51)【国際特許分類】
F25B 43/02 20060101AFI20221124BHJP
F28D 7/16 20060101ALI20221124BHJP
F28D 7/10 20060101ALI20221124BHJP
F28F 9/22 20060101ALI20221124BHJP
【FI】
F25B43/02 A
F28D7/16 A
F28D7/10 Z
F28F9/22
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022519711
(86)(22)【出願日】2020-09-29
(85)【翻訳文提出日】2022-04-21
(86)【国際出願番号】 CN2020118776
(87)【国際公開番号】W WO2021063348
(87)【国際公開日】2021-04-08
(31)【優先権主張番号】201910943236.1
(32)【優先日】2019-09-30
(33)【優先権主張国・地域又は機関】CN
(81)【指定国・地域】
(71)【出願人】
【識別番号】516389499
【氏名又は名称】ヨーク (ウーシー) エアー・コンディショニング・アンド・リフリジェレーション・カンパニー,リミテッド
(71)【出願人】
【識別番号】521301840
【氏名又は名称】ジョンソン・コントロールズ・タイコ・アイピー・ホールディングス・エルエルピー
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100119426
【氏名又は名称】小見山 泰明
(72)【発明者】
【氏名】ジー,シーツァイ
(72)【発明者】
【氏名】スー,シウピーン
(72)【発明者】
【氏名】ヤーン,シェンメイ
(72)【発明者】
【氏名】ヤーン,ローンフア
(72)【発明者】
【氏名】チェン,ジーン
【テーマコード(参考)】
3L065
3L103
【Fターム(参考)】
3L065DA02
3L103AA05
(57)【要約】
開示されたのは、油分離機能を伴う油分離デバイス(1283)および凝縮器(130~1130)、並びにそれらを使用する冷却システム(100、1200)である。油分離デバイス(1283)または凝縮器(130~1130)は、油分離空洞(315、1315)を含むシェル(201、1301)と、第1の冷媒入口(221、1221)と、第2の冷媒入口(222、1222)と、第1のフローガイドチャネル(445~2145)と、第2のフローガイドチャネル(446~2146)と、を備え、2つのフローガイドチャネルを通って流れる冷媒ガスが、混合されることができる。冷却システム(100、1200)が、異なる排気量を伴う2つの圧縮機(108、1208、109、1209)を備えるときに、ガス状冷媒および潤滑油を濾過ならびに分離することの要件は、大排気量圧縮機(109、1209)に従って油分離空洞(315、1315)のサイズを設計するための必要性なしに、満たされることができ、サイズは、比較的小さい。
【選択図】
図4A
【特許請求の範囲】
【請求項1】
油分離デバイスであって、
中に油分離空洞を含むシェルと、
前記シェル上に配置された第1の冷媒入口および第2の冷媒入口と、
前記油分離空洞に配置された第1のフローガイドチャネルであって、前記第1のフローガイドチャネルが、入口および出口を有し、前記第1のフローガイドチャネルの前記入口が、前記第1の冷媒入口に入る冷媒ガスの少なくとも一部を前記第1のフローガイドチャネルの前記入口から前記第1のフローガイドチャネルの前記出口にガイドするように前記第1の冷媒入口と流体連通している、第1のフローガイドチャネルと、
前記油分離空洞に配置された第2のフローガイドチャネルであって、前記第2のフローガイドチャネルが、入口および出口を有し、前記第2のフローガイドチャネルの前記入口が、前記第2の冷媒入口に入る冷媒ガスの少なくとも一部を前記第2のフローガイドチャネルの前記入口から前記第2のフローガイドチャネルの前記出口にガイドするように前記第2の冷媒入口と流体連通している、第2のフローガイドチャネルと、を備え、
前記第1のフローガイドチャネルおよび前記第2のフローガイドチャネルが、前記第1のフローガイドチャネルの前記出口から流出する前記冷媒ガスと、前記第2のフローガイドチャネルの前記出口から流出する前記冷媒ガスとが混合されることを可能にするように構成されている、油分離デバイス。
【請求項2】
前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口が、互いに接近している、請求項1に記載の油分離デバイス。
【請求項3】
凝縮デバイスと流体連通させるための少なくとも1つの連通ポートと、
前記シェルの長さ方向に対して横断して前記油分離空洞に配置された少なくとも1つのフィルタスクリーンと、をさらに備え、
前記少なくとも1つのフィルタスクリーンが、前記混合された冷媒ガスが前記少なくとも1つのフィルタスクリーンを通って前記少なくとも1つの連通ポートに流れることが可能であるように、前記少なくとも1つの連通ポートと、互いに接近している前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口との間に配置されている、請求項2に記載の油分離デバイス。
【請求項4】
前記少なくとも1つの連通ポートが、前記シェルの前記長さ方向における2つの反対側にある端部にそれぞれ配置されている2つの連通ポートを含み、
前記少なくとも1つのフィルタスクリーンが、第1のフィルタスクリーンと第2のフィルタスクリーンとを含み、
前記第1のフィルタスクリーンが、前記第1のフローガイドチャネルの前記出口と前記2つの連通ポートのうちの一方との間に配置されており、
前記第2のフィルタスクリーンが、前記第2のフローガイドチャネルの前記出口と前記2つの連通ポートのうちの他方との間に配置されている、請求項3に記載の油分離デバイス。
【請求項5】
前記第1のフローガイドチャネルおよび前記第2のフローガイドチャネルが、前記シェルの前記長さ方向における2つの反対側にある端部から前記シェルの前記長さ方向に沿って前記シェルの中央に向かって延在し、
前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口が、前記シェルの前記長さ方向においてある距離だけ離間しているか、または前記シェルの前記長さ方向と直交する方向においてある距離だけずれているように構成されている、請求項1に記載の油分離デバイス。
【請求項6】
前記第1のフローガイドチャネルの前記出口と前記第2のフローガイドチャネルの前記出口との間に配置されたブロック部材をさらに備え、
前記ブロック部材の位置およびサイズが、前記ブロック部材が前記シェルの前記長さ方向において前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口を少なくとも部分的にブロックすることが可能であるように構成されている、請求項5に記載の油分離デバイス。
【請求項7】
前記ブロック部材が、ブロックプレートまたはフィルタスクリーンである、請求項6に記載の油分離デバイス。
【請求項8】
前記第1のフローガイドチャネルが、第1のフローガイドバッフルおよび前記シェルによって形成されており、前記第2のフローガイドチャネルが、第2のフローガイドバッフルおよび前記シェルによって形成されている、請求項5に記載の油分離デバイス。
【請求項9】
凝縮器であって、
中に収容空洞を有するシェルと、
前記シェルに配置され、前記シェルの長さ方向に沿って延在する油分離バッフルであって、前記油分離バッフルが前記収容空洞を油分離空洞および凝縮空洞に仕切り、前記油分離バッフルが前記油分離空洞と前記凝縮空洞とを連通させる少なくとも1つの連通ポートを備える、油分離バッフルと、
前記シェル上に配置された第1の冷媒入口および第2の冷媒入口と、
前記油分離空洞に配置された第1のフローガイドチャネルであって、前記第1のフローガイドチャネルが、入口および出口を有し、前記第1のフローガイドチャネルの前記入口が、前記第1の冷媒入口に入る冷媒ガスの少なくとも一部を前記第1のフローガイドチャネルの前記入口から前記第1のフローガイドチャネルの前記出口にガイドするように前記第1の冷媒入口と流体連通している、第1のフローガイドチャネルと、
前記油分離空洞に配置された第2のフローガイドチャネルであって、前記第2のフローガイドチャネルが、入口および出口を有し、前記第2のフローガイドチャネルの前記入口が、前記第2の冷媒入口に入る冷媒ガスの少なくとも一部を前記第2のフローガイドチャネルの前記入口から前記第2のフローガイドチャネルの前記出口にガイドするように前記第2の冷媒入口と流体連通している、第2のフローガイドチャネルと、を備え、
前記第1のフローガイドチャネルおよび前記第2のフローガイドチャネルが、前記第1のフローガイドチャネルの前記出口から流出する前記冷媒ガスと、前記第2のフローガイドチャネルの前記出口から流出する前記冷媒ガスとが混合されることを可能にするように構成されている、凝縮器。
【請求項10】
前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口が、互いに接近している、請求項9に記載の凝縮器。
【請求項11】
凝縮デバイスと流体連通させるための少なくとも1つの連通ポートと、
前記シェルの長さ方向に対して横断して前記油分離空洞に配置された少なくとも1つのフィルタスクリーンと、をさらに備え、
前記少なくとも1つのフィルタスクリーンが、前記混合された冷媒ガスが前記少なくとも1つのフィルタスクリーンを通って前記少なくとも1つの連通ポートに流れることが可能であるように、前記少なくとも1つの連通ポートと、互いに接近している前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口との間に配置されている、請求項10に記載の凝縮器。
【請求項12】
前記少なくとも1つの連通ポートが、前記シェルの前記長さ方向における2つの反対側にある端部にそれぞれ配置されている2つの連通ポートを含み、
前記少なくとも1つのフィルタスクリーンが、第1のフィルタスクリーンと第2のフィルタスクリーンとを含み、
前記第1のフィルタスクリーンが、前記第1のフローガイドチャネルの前記出口と前記2つの連通ポートのうちの一方との間に配置されており、
前記第2のフィルタスクリーンが、前記第2のフローガイドチャネルの前記出口と前記2つの連通ポートのうちの他方との間に配置されている、請求項11に記載の凝縮器。
【請求項13】
前記第1のフローガイドチャネルおよび前記第2のフローガイドチャネルが、前記シェルの前記長さ方向における2つの反対側にある端部から前記シェルの前記長さ方向に沿って前記シェルの中央に向かって延在し、
前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口が、前記シェルの前記長さ方向においてある距離だけ離間しているか、または前記シェルの前記長さ方向と直交する方向においてある距離だけずれているように構成されている、請求項9に記載の凝縮器。
【請求項14】
前記第1のフローガイドチャネルの前記出口と前記第2のフローガイドチャネルの前記出口との間に配置されたブロック部材をさらに備え、
前記ブロック部材の位置およびサイズが、前記ブロック部材が前記シェルの前記長さ方向において前記第1のフローガイドチャネルの前記出口および前記第2のフローガイドチャネルの前記出口を少なくとも部分的にブロックすることが可能であるように構成されている、請求項13に記載の凝縮器。
【請求項15】
前記ブロック部材が、ブロックプレートまたはフィルタスクリーンである、請求項14に記載の凝縮器。
【請求項16】
前記第1のフローガイドチャネルが、第1のフローガイドバッフルおよび前記シェルによって形成されており、前記第2のフローガイドチャネルが、第2のフローガイドバッフルおよび前記シェルによって形成されている、請求項13に記載の凝縮器。
【請求項17】
冷却システムであって、
圧縮機ユニットと、
油分離デバイスであって、前記油分離デバイスが請求項1~8のいずれか一項に記載の油分離デバイスである、油分離デバイスと、
凝縮器と、
スロットルデバイスと、
蒸発器と、を備え、
前記圧縮機ユニット、前記油分離デバイス、前記凝縮器、前記スロットルデバイス、および前記蒸発器が、冷媒循環ループを形成するために順次接続されており、
前記圧縮機ユニットが、前記油分離デバイスと前記蒸発器との間に並列に接続された第1の圧縮機と第2の圧縮機とを備え、
前記第1の圧縮機の吸引ポートおよび前記第2の圧縮機の吸引ポートが、前記蒸発器に接続されており、
前記第1の圧縮機の排気ポートが、前記油分離デバイスの前記第1の冷媒入口に接続され、前記第2の圧縮機の排気ポートが、前記油分離デバイスの前記第2の冷媒入口に接続されている、冷却システム。
【請求項18】
前記第1の圧縮機の排気量が、前記第2の圧縮機の排気量よりも小さい、請求項17に記載の冷却システム。
【請求項19】
冷却システムであって、
圧縮機ユニットと、
凝縮器であって、前記凝縮器が、請求項9~16のいずれか一項に記載の凝縮器である、凝縮器と、
スロットルデバイスと、
蒸発器と、を備え、
前記圧縮機ユニット、前記凝縮器、前記スロットルデバイス、および前記蒸発器が、冷媒循環ループを形成するために順次接続されており、
前記圧縮機ユニットが、前記凝縮器と前記蒸発器との間に並列に接続された第1の圧縮機と第2の圧縮機とを備え、
前記第1の圧縮機の吸引ポートおよび前記第2の圧縮機の吸引ポートが、前記蒸発器に接続されており、
前記第1の圧縮機の排気ポートが、前記凝縮器の前記第1の冷媒入口に接続され、前記第2の圧縮機の排気ポートが、前記凝縮器の前記第2の冷媒入口に接続されている、冷却システム。
【請求項20】
前記第1の圧縮機の排気量が、前記第2の圧縮機の排気量よりも小さい、請求項19に記載の冷却システム。
【発明の詳細な説明】
【技術分野】
【0001】
背景
この出願は、油分離デバイス、凝縮器、および油分離デバイスまたは凝縮器を使用する冷却システムに関し、特に、2つの圧縮機を含む冷却システムに関する。
【背景技術】
【0002】
既存の冷却システムでは、圧縮機を潤滑するための潤滑剤(例えば、潤滑油)は、圧縮機によって圧縮されたガス状冷媒を伴って圧縮機から排出されている。ガス状冷媒および潤滑油は、油分離デバイスまたは油分離機能を伴う凝縮器を通って、概して完全な油ガス分離を完了し、分離された潤滑油は、圧縮機に戻され、分離されたガス状冷媒は、続いて、液体冷媒に凝縮される。具体的には、油分離デバイスまたは油分離機能を伴う凝縮器は、各々、フィルタスクリーンが配置された油分離空洞を含む。油分離空洞では、ガス状冷媒および潤滑油は、フィルタスクリーンを通過し、潤滑油は、ガス状冷媒から分離される。
【0003】
概して、油分離空洞のサイズは、油分離デバイスまたは油分離機能を伴う凝縮器のサイズに影響を及ぼし、油分離空洞のサイズはまた、圧縮機の排気量に関係する。圧縮機の排気量が大きいほど、油分離空洞内へ単位時間当たりに排出された潤滑油とガス状冷媒の混合物の流量は、大きくなり、油分離空洞は、合理的な流速を取得して、潤滑油とガス状冷媒の分離効果を確保するために、十分に大きなサイズを有することを必要とする。
【発明の概要】
【0004】
第1の態様では、この出願は、油分離デバイスを提供する。油分離デバイスは、中に油分離空洞を含むシェルと、シェル上に配置された第1の冷媒入口および第2の冷媒入口と、油分離空洞に配置された第1のフローガイドチャネルであって、第1のフローガイドチャネルが、入口および出口を有し、第1のフローガイドチャネルの入口が、第1の冷媒入口に入る冷媒ガスの少なくとも一部を第1のフローガイドチャネルの入口から第1のフローガイドチャネルの出口にガイドするように第1の冷媒入口と流体連通している、第1のフローガイドチャネルと、油分離空洞に配置された第2のフローガイドチャネルであって、第2のフローガイドチャネルが、入口および出口を有し、第2のフローガイドチャネルの入口が、第2の冷媒入口に入る冷媒ガスの少なくとも一部を第2のフローガイドチャネルの入口から第2のフローガイドチャネルの出口にガイドするように第2の冷媒入口と流体連通している、第2のフローガイドチャネルと、を含む。第1のフローガイドチャネルおよび第2のフローガイドチャネルは、第1のフローガイドチャネルの出口から流出する冷媒ガスと、第2のフローガイドチャネルの出口から流出する冷媒ガスとが混合されることを可能にするように構成されている。
【0005】
前述の第1の態様によれば、第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口は、互いに接近している。
【0006】
前述の第1の態様によれば、油分離デバイスは、凝縮デバイスと流体連通させるための少なくとも1つの連通ポートと、シェルの長さ方向に対して横断して油分離空洞に配置された少なくとも1つのフィルタスクリーンと、をさらに含む。少なくとも1つのフィルタスクリーンは、混合された冷媒ガスが少なくとも1つのフィルタスクリーンを通って少なくとも1つの連通ポートに流れることが可能であるように、少なくとも1つの連通ポートと、互いに接近している第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口との間に配置されている。
【0007】
前述の第1の態様によれば、少なくとも1つの連通ポートは、シェルの長さ方向における2つの反対側にある端部にそれぞれ配置されている2つの連通ポートを含む。少なくとも1つのフィルタスクリーンは、第1のフィルタスクリーンと第2のフィルタスクリーンとを含む。第1のフィルタスクリーンは、第1のフローガイドチャネルの出口と2つの連通ポートのうちの一方との間に配置されている。第2のフィルタスクリーンは、第2のフローガイドチャネルの出口と2つの連通ポートのうちの他方との間に配置されている。
【0008】
前述の第1の態様によれば、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、シェルの長さ方向における2つの反対側にある端部からシェルの長さ方向に沿ってシェルの中央に向かって延在する。第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口は、シェルの長さ方向においてある距離だけ離間しているか、またはシェルの長さ方向と直交する方向においてある距離だけずれているように構成されている。
【0009】
前述の第1の態様によれば、第1のフローガイドチャネルの出口は、第2のフローガイドチャネルの出口と第1のフローガイドチャネルの入口との間に配置されており、第2のフローガイドチャネルの出口は、第1のフローガイドチャネルの出口と第2のフローガイドチャネルの入口との間に配置されている。
【0010】
前述の第1の態様によれば、第1のフローガイドチャネルの出口は、第2のフローガイドチャネルの出口と第2のフローガイドチャネルの入口との間に配置されており、第2のフローガイドチャネルの出口は、第1のフローガイドチャネルの出口と第1のフローガイドチャネルの入口との間に配置されている。
【0011】
前述の第1の態様によれば、油分離デバイスは、第1のフローガイドチャネルの出口と第2のフローガイドチャネルの出口との間に配置されたブロック部材をさらに含む。
【0012】
前述の第1の態様によれば、ブロック部材は、ブロックプレートまたはフィルタスクリーンである。
【0013】
前述の第1の態様によれば、ブロック部材の位置およびサイズは、ブロック部材がシェルの長さ方向において第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口を少なくとも部分的にブロックすることが可能であるように構成されている。
【0014】
前述の第1の態様によれば、第1のフローガイドチャネルは、第1のフローガイドバッフルおよびシェルによって形成されており、第2のフローガイドチャネルは、第2のフローガイドバッフルおよびシェルによって形成されている。
【0015】
前述の第1の態様によれば、第1のフローガイドバッフルおよび/または第2のフローガイドバッフルの中央は、一定の含まれる角度で上プレートおよび下プレートを形成するように曲げられている。
【0016】
前述の第1の態様によれば、第1のフローガイドチャネルは、第1のフローガイド管によって形成されており、第2のフローガイドチャネルは、第2のフローガイド管によって形成されている。
【0017】
前述の第1の態様によれば、第2のフローガイドチャネルは、第1のフローガイドチャネルの出口から離れて配置された追加の出口を有する。少なくとも1つの連通ポートは、第2のフローガイドチャネルの出口と追加の出口との間に位置付けられた連通ポートを含む。少なくとも1つのフィルタスクリーンは、第2のフローガイドチャネルの出口と連通ポートとの間に配置されたフィルタスクリーンを含む。油分離デバイスは、第2のフローガイドチャネルの追加の出口と連通ポートとの間に配置された追加のフィルタスクリーンをさらに含む。
【0018】
前述の第1の態様によれば、第1のフローガイドチャネルは、シェルの長さ方向における一方の端部からシェルの油分離空洞内に長手方向に延在し、第2のフローガイドチャネルは、シェルの長さ方向における他方の端部から第1のフローガイドチャネルに向かって延在する。
【0019】
前述の第1の態様によれば、第1のフローガイドチャネルは、ストレートフローガイド管によって形成されており、第2のフローガイドチャネルは、フローガイドバッフルおよびシェルによって形成されている。
【0020】
前述の第1の態様によれば、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、シェルの中央からシェルの油分離空洞内に長手方向に並んで延在し、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、両方とも、ストレートフローガイド管によって形成されている。第1のフローガイドチャネルは、第2のフローガイドチャネルの近くに配置されている。
【0021】
前述の第1の態様によれば、少なくとも1つの連通ポートは、凝縮器における凝縮デバイスとの流体連通のためにシェル上に配置されている。
【0022】
第1の態様では、この出願の少なくとも1つの目的は、凝縮器を提供することである。凝縮器は、中に収容空洞を有するシェルと、シェルに配置され、シェルの長さ方向に沿って延在する油分離バッフルであって、油分離バッフルが収容空洞を油分離空洞と凝縮空洞に仕切り、油分離バッフルが油分離空洞と凝縮空洞とを連通させる少なくとも1つの連通ポートを含む、油分離バッフルと、シェル上に配置された第1の冷媒入口および第2の冷媒入口と、油分離空洞に配置された第1のフローガイドチャネルであって、第1のフローガイドチャネルが、入口および出口を有し、第1のフローガイドチャネルの入口が、第1の冷媒入口に入る冷媒ガスの少なくとも一部を第1のフローガイドチャネルの入口から第1のフローガイドチャネルの出口にガイドするように第1の冷媒入口と流体連通している、第1のフローガイドチャネルと、油分離空洞に配置された第2のフローガイドチャネルであって、第2のフローガイドチャネルが、入口および出口を有し、第2のフローガイドチャネルの入口が、第2の冷媒入口に入る冷媒ガスの少なくとも一部を第2のフローガイドチャネルの入口から第2のフローガイドチャネルの出口にガイドするように第2の冷媒入口と流体連通している、第2のフローガイドチャネルと、を含む。第1のフローガイドチャネルおよび第2のフローガイドチャネルは、第1のフローガイドチャネルの出口から流出する冷媒ガスと、第2のフローガイドチャネルの出口から流出する冷媒ガスとが混合されることを可能にするように構成されている。
【0023】
前述の第2の態様によれば、第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口は、互いに接近している。
【0024】
前述の第2の態様によれば、凝縮器は、凝縮デバイスと流体連通させるための少なくとも1つの連通ポートと、シェルの長さ方向に対して横断して油分離空洞に配置された少なくとも1つのフィルタスクリーンと、をさらに含む。少なくとも1つのフィルタスクリーンは、混合された冷媒ガスが少なくとも1つのフィルタスクリーンを通って少なくとも1つの連通ポートに流れることが可能であるように、少なくとも1つの連通ポートと、互いに接近している第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口との間に配置されている。
【0025】
前述の第2の態様によれば、少なくとも1つの連通ポートは、シェルの長さ方向における2つの反対側にある端部にそれぞれ配置されている2つの連通ポートを含む。少なくとも1つのフィルタスクリーンは、第1のフィルタスクリーンと第2のフィルタスクリーンとを含む。第1のフィルタスクリーンは、第1のフローガイドチャネルの出口と2つの連通ポートのうちの一方との間に配置されている。第2のフィルタスクリーンは、第2のフローガイドチャネルの出口と2つの連通ポートのうちの他方との間に配置されている。
【0026】
前述の第2の態様によれば、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、シェルの長さ方向における2つの反対側にある端部からシェルの長さ方向に沿ってシェルの中央に向かって延在する。第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口は、シェルの長さ方向においてある距離だけ離間しているか、またはシェルの長さ方向と直交する方向においてある距離だけずれているように構成されている。
【0027】
前述の第2の態様によれば、第1のフローガイドチャネルの出口は、第2のフローガイドチャネルの出口と第1のフローガイドチャネルの入口との間に配置されており、第2のフローガイドチャネルの出口は、第1のフローガイドチャネルの出口と第2のフローガイドチャネルの入口との間に配置されている。
【0028】
前述の第2の態様によれば、第1のフローガイドチャネルの出口は、第2のフローガイドチャネルの出口と第2のフローガイドチャネルの入口との間に配置されており、第2のフローガイドチャネルの出口は、第1のフローガイドチャネルの出口と第1のフローガイドチャネルの入口との間に配置されている。
【0029】
前述の第2の態様によれば、凝縮器は、第1のフローガイドチャネルの出口と第2のフローガイドチャネルの出口との間に配置されたブロック部材をさらに含む。
【0030】
前述の第2の態様によれば、ブロック部材は、ブロックプレートまたはフィルタスクリーンである。
【0031】
前述の第2の態様によれば、ブロック部材の位置およびサイズは、ブロック部材がシェルの長さ方向において第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口を少なくとも部分的にブロックすることが可能であるように構成されている。
【0032】
前述の第2の態様によれば、第1のフローガイドチャネルは、第1のフローガイドバッフルおよびシェルによって形成されており、第2のフローガイドチャネルは、第2のフローガイドバッフルおよびシェルによって形成されている。
【0033】
前述の第2の態様によれば、第1のフローガイドチャネルは、第1のフローガイド管によって形成されており、第2のフローガイドチャネルは、第2のフローガイド管によって形成されている。
【0034】
前述の第2の態様によれば、第2のフローガイドチャネルは、第1のフローガイドチャネルの出口から離れて配置された追加の出口を有する。少なくとも1つの連通ポートは、第2のフローガイドチャネルの出口と追加の出口との間に位置付けられた連通ポートを含む。少なくとも1つのフィルタスクリーンは、第2のフローガイドチャネルの出口と連通ポートとの間に配置されたフィルタスクリーンを含む。凝縮器は、第2のフローガイドチャネルの追加の出口と連通ポートとの間に配置された追加のフィルタスクリーンをさらに含む。
【0035】
前述の第2の態様によれば、第1のフローガイドチャネルは、シェルの長さ方向における一方の端部からシェルの油分離空洞内に長手方向に延在し、第2のフローガイドチャネルは、シェルの長さ方向における他方の端部から第1のフローガイドチャネルに向かって延在する。
【0036】
前述の第2の態様によれば、第1のフローガイドチャネルは、ストレートフローガイド管によって形成されており、第2のフローガイドチャネルは、フローガイドバッフルおよびシェルによって形成されている。
【0037】
前述の第2の態様によれば、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、シェルの中央からシェルの油分離空洞内に長手方向に並んで延在し、第1のフローガイドチャネルおよび第2のフローガイドチャネルは、両方とも、ストレートフローガイド管によって形成されている。第1のフローガイドチャネルは、第2のフローガイドチャネルの近くに配置されている。
【0038】
第3の態様では、この出願の少なくとも1つの目的は、冷却システムを提供することである。冷却システムは、圧縮機ユニットと、前述の第1の態様による油分離デバイスである、油分離デバイスと、凝縮器と、スロットルデバイスと、蒸発器と、を含む。圧縮機ユニット、油分離デバイス、凝縮器、スロットルデバイス、および蒸発器は、冷媒循環ループを形成するために順次接続されている。圧縮機ユニットは、油分離デバイスと蒸発器との間に並列に接続された第1の圧縮機および第2の圧縮機を含む。第1の圧縮機の吸引ポートおよび第2の圧縮機の吸引ポートは、蒸発器に接続されている。第1の圧縮機の排気ポートは、油分離デバイスの第1の冷媒入口に接続され、第2の圧縮機の排気ポートは、油分離デバイスの第2の冷媒入口に接続されている。
【0039】
前述の第3の態様によれば、第1の圧縮機の排気量は、第2の圧縮機の排気量よりも小さい。
【0040】
第4の態様では、この出願の少なくとも1つの目的は、冷却システムを提供することである。冷却システムは、圧縮機ユニットと、前述の第2の態様による凝縮器である、凝縮器と、凝縮器と、スロットルデバイスと、蒸発器と、を含む。圧縮機ユニット、凝縮器、スロットルデバイス、および蒸発器は、冷媒循環ループを形成するために順次接続されている。圧縮機ユニットは、凝縮器と蒸発器との間に並列に接続された第1の圧縮機と第2の圧縮機を含む。第1の圧縮機の吸引ポートおよび第2の圧縮機の吸引ポートは、蒸発器に接続されている。第1の圧縮機の排気ポートは、凝縮器の第1の冷媒入口に接続され、第2の圧縮機の排気ポートは、凝縮器の第2の冷媒入口に接続されている。
【0041】
前述の第4の態様によれば、第1の圧縮機の排気量は、第2の圧縮機の排気量よりも小さい。
【図面の簡単な説明】
【0042】
【
図1】この出願の冷却システムのための一実施形態の構造ブロック図である。
【
図3】
図1における凝縮器の油分離空洞と凝縮空洞との間の位置関係の図である。
【
図4A】
図1における凝縮器のための第1の実施形態の軸方向断面図である。
【
図4B】
図4Aに示された凝縮器の内部構造の、前側から見た構造立体図である。
【
図4C】
図4Aに示された凝縮器の内部構造の、後側から見た構造立体図である。
【
図5】
図1における凝縮器のための第2の実施形態の軸方向断面図である。
【
図6】
図1における凝縮器のための第3の実施形態の軸方向断面図である。
【
図7】
図1における凝縮器のための第4の実施形態の軸方向断面図である。
【
図8】
図1における凝縮器のための第5の実施形態の軸方向断面図である。
【
図9】
図1における凝縮器のための第6の実施形態の軸方向断面図である。
【
図10】
図1における凝縮器のための第7の実施形態の軸方向断面図である。
【
図11】
図1における凝縮器のための第8の実施形態の軸方向断面図である。
【
図12】この出願の冷却システムのための別の実施形態の構造ブロック図である。
【
図13】
図12における油分離デバイスのための一実施形態の構造立体図である。
【
図14】
図13における油分離デバイスの軸方向断面図である。
【
図15】
図12における油分離デバイスのための第2の実施形態の軸方向断面図である。
【
図16】
図12における油分離デバイスのための第3の実施形態の軸方向断面図である。
【
図17】
図12における油分離デバイスのための第4の実施形態の軸方向断面図である。
【
図18】
図12における油分離デバイスのための第5の実施形態の軸方向断面図である。
【
図19】
図12における油分離デバイスのための第6の実施形態の軸方向断面図である。
【
図20】
図12における油分離デバイスのための第7の実施形態の軸方向断面図である。
【
図21】
図12における油分離デバイスのための第8の実施形態の軸方向断面図である。
【発明を実施するための形態】
【0043】
この出願の様々な実施態様は、この明細書の一部を形成する添付の図面を参照して、以下に記載される。「前」、「後」、「上」、「下」、「左」、「右」、「頂部」、または「底部」などの方向性の用語が、この出願の様々な例示的な構造部品および要素を記載するために、この出願において使用されていることを理解されたい。しかしながら、本明細書で使用されるこれらの用語は、単に、添付の図面における例示的な方向に基づいて決定されている、記載の便宜のためである。この出願において開示された実施形態は、異なる方向において配列され得る。したがって、これらの方向性の用語は、単に記載のために使用されるものであり、限定的に解釈されるべきではない。
【0044】
図1は、2つの圧縮機を並列に含む冷却システムにおけるコンポーネント間の接続関係を図示するための、この出願の冷却システム100のための一実施形態の構造ブロック図である。この出願の一実施形態では、凝縮器130は、油分離機能を有し、機能を達成するための特定の構造は、以下に詳細に記載される。
【0045】
図1に示されたように、冷却システム100は、冷媒循環回路を形成するためにパイプラインを通って順次接続される、圧縮機ユニット、凝縮器130、スロットルデバイス140、および蒸発器110を含む。圧縮機ユニットは、第1の圧縮機108および第2の圧縮機109を含む。第1の圧縮機108の排気量(すなわち、冷媒ガスフロー)は、第2の圧縮機109の排気量よりも小さい。第1の圧縮機108および第2の圧縮機109は、凝縮器130と蒸発器110との間に並列に接続されている。
【0046】
具体的には、第1の圧縮機108は、吸引ポート141、排気ポート151、および油戻しポート161で提供されている。第2の圧縮機109は、吸引ポート142、排気ポート152、および油戻しポート162で提供されている。凝縮器130は、第1の冷媒入口121、第2の冷媒入口122、冷媒出口124、および油出口123で提供されている。第1の圧縮機108の吸引ポート141および第2の圧縮機109の吸引ポート142は、両方とも、蒸発器110の出口に接続されている。第1の圧縮機108の排気ポート151は、凝縮器130の第1の冷媒入口121に接続されている。第1の圧縮機108の油戻しポート161は、凝縮器130の油出口123に接続されている。第2の圧縮機109の排気ポート152は、凝縮器130の第2の冷媒入口122に接続されている。第2の圧縮機109の油戻しポート162はまた、凝縮器130の油出口123に接続されている。凝縮器130の冷媒出口124は、スロットルデバイス140に接続されている。
【0047】
冷却システム100は、冷媒および潤滑剤(例えば、潤滑油)で満たされている。冷却システム100の動作プロセスは、以下に簡単に記載されている。
【0048】
第1の圧縮機108および第2の圧縮機109では、低温低圧ガス状冷媒は、高温高圧ガス状冷媒に圧縮されている。高温高圧ガス状冷媒は、それぞれ、凝縮器130上の第1の冷媒入口121および第2の冷媒入口122を通って、凝縮器130に流入する。凝縮器130では、高温高圧ガス状冷媒は、まず油分離空洞315(
図1および2には示されていない、
図3を参照)を通過し、次いで、凝縮器130における凝縮空洞316(
図1および2には示されていない、
図3を参照)における高圧液体冷媒(場合によっては、ガス状冷媒の一部を含有する)内に発熱的に凝縮される。高圧液体冷媒は、凝縮器130の冷媒出口124から排出され、スロットルデバイス140を通って流れ、スロットルデバイス140によって低圧液体冷媒内に減圧されている。続いて、低圧液体冷媒は、蒸発器110において低温低圧ガス状冷媒に吸熱蒸発され、次いで、第1の圧縮機108および第2の圧縮機109に戻される。動作は、連続冷却サイクルが完成するために繰り返されている。
【0049】
第1の圧縮機108および第2の圧縮機109では、潤滑油は、第1の圧縮機108および第2の圧縮機109を潤滑するために使用され、次いで、潤滑油は、ガス状冷媒を伴って第1の圧縮機108および第2の圧縮機109から排出されている。排出された高圧ガス状冷媒と潤滑油との混合物(以下、「混合物」と呼ぶ)は、凝縮器130に入る。凝縮器130の油分離空洞315では、高圧ガス状冷媒は、潤滑油から分離されている。分離された高圧ガス状冷媒は、上述のように凝縮器130における凝縮空洞316に入り、一方、分離された潤滑油は、凝縮器130の油出口123を通って第1の圧縮機108および第2の圧縮機109に還流される。
【0050】
記載を容易にするために、この出願における凝縮器130は、シェルアンドチューブ型凝縮器として記載されている。しかしながら、当業者は、凝縮器130がシェルアンドチューブ型凝縮器であり得るだけでなく、凝縮器130がこの出願の趣旨に従って異なるタイプの凝縮器であり得ることを理解するであろう。例えば、凝縮器130はまた、チューブインチューブ凝縮器などであり得る。
【0051】
図2は、これらの実施形態における凝縮器130の外部構造を図示するための、
図1における凝縮器130のためのいくつかの実施形態の構造立体図である。
図2に示されたように、凝縮器130は、シェル201を含む。シェル201は、実質的に円筒形状を有し、長さ方向における左端および右端は、エンドプレート202およびエンドプレート204によって閉じられている。シェル201は、第1の冷媒入口121、第2の冷媒入口122、油出口123、および冷媒出口124で提供されている。第1の冷媒入口121および第2の冷媒入口122は、シェル201の上部に位置付けられ、それぞれ、シェル201の左端および右端の近くに配置されている。油出口123および冷媒出口124は、シェル201の下部の中央に位置付けられている。凝縮器130は、給水管206および水戻り管207をさらに含む。給水管206および水戻り管207は、エンドプレート202上に配置され、クーリング媒体(例えば、水)が凝縮器130に流入および流出することができるように、凝縮器130における凝縮デバイス313(詳細は
図3を参照)と流体連通させることができる。
【0052】
凝縮器130は、パイプライン181、パイプライン182、パイプライン183、およびパイプライン184をさらに含む。パイプライン181は、第1の冷媒入口121が第1の圧縮機108の排気ポート151に接続されるように、第1の冷媒入口121と連通されている。パイプライン182は、第2の冷媒入口122が第2の圧縮機109の排気ポート152に接続されるように、第2の冷媒入口122と連通されている。第1の圧縮機108の排気量は、第2の圧縮機109の排気量よりも小さいため、第1の冷媒入口121のサイズは、第2の冷媒入口122のサイズよりも小さい。したがって、パイプライン181は、パイプライン182よりも小さい管直径を有する。パイプライン183は、油出口123が油戻しポート161および油戻しポート162に接続されるように、油出口123と連通されている。パイプライン184は、冷媒出口124がスロットルデバイス140に接続されるように、冷媒出口124と連通されている。
【0053】
凝縮器の第1の冷媒入口121、第2の冷媒入口122、油出口123、および冷媒出口124が、異なる凝縮器の特定の設定によって異なる位置に配列され得ることに留意されたい。例えば、
図11に示された実施形態では、第1の冷媒入口121および第2の冷媒入口122は、シェル201の中央に配置されている。
【0054】
図3は、いくつかのコンポーネントが省略され、油分離空洞および凝縮空洞のみが示されている、
図2における線A-Aに沿ってとられる概して断面図である、凝縮器130のためのいくつかの実施形態における油分離空洞と凝縮空洞との間の位置関係の図である。
図3に示されたように、凝縮器130は、シェル201において収容空洞311を有する。凝縮器130は、油分離バッフル337を含む。油分離バッフル337は、シェル201において斜めに配置され、シェル201の内壁に接続されるためにシェル201の長さ方向に沿って延在する。油分離バッフル337は、収容空洞311を油分離空洞315および凝縮空洞316内に仕切る。油分離空洞315に収容されたコンポーネント(示されていない)は、潤滑油がガス状冷媒から分離されることを可能にする。凝縮空洞316に収容された凝縮デバイス313は、ガス状冷媒を液体冷媒に凝縮させることを可能にする。油分離バッフル337の上部は、少なくとも1つの連通ポート341で提供されており、少なくとも1つの連通ポート341は、潤滑油から分離されたガス状冷媒が油分離空洞315から凝縮空洞316内に流れるように、油分離空洞315と凝縮空洞316とを連通させるために使用されている。
【0055】
図2を参照すると、第1の冷媒入口121、第2の冷媒入口122、および油出口123は、油分離空洞315と流体連通している。給水管206、水戻り管207、および冷媒出口124は、凝縮空洞316と流体連通している。凝縮デバイス313は、凝縮空洞316に配置されている。一例として、この出願における凝縮デバイス313は、熱交換管束である。熱交換管束は、シェル201の長さ方向に沿って延在し、給水管206および水戻り管207と流体連通している。
【0056】
図4A~4Dは、この出願の凝縮器のための第1の実施形態を示し、その外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図4Aは、給水管206および水戻り管207が省略されている、油分離空洞315における様々なコンポーネントを図示するために、この出願による凝縮器のための第1の実施形態におけるシェルの軸方向(すなわち、
図2におけるC-C線方向)に沿った断面図である。
図4Bは、
図4Aに示された凝縮器430における油分離バッフル337、パイプライン181、パイプライン182、および油分離空洞315における様々なコンポーネントの、前側から見た構造立体図である。
図4Cは、
図4Bに示された様々なコンポーネントの、後側から見た構造立体図である。
図4Dは、エンドプレート202が省略されている、
図4Aに示された凝縮器430におけるシェルの半径方向(すなわち、
図2におけるB-B線方向)に沿った断面図である。
【0057】
図4A~4Dに示されたように、凝縮器430は、左シールプレート471および右シールプレート472を含む。左シールプレート471および右シールプレート472は、油分離空洞315の左端および右端に対称的に配置されており、シェル201および油分離バッフル337で密封接続されている。
【0058】
凝縮器430は、第1のフローガイドバッフル431をさらに含む。第1のフローガイドバッフル431の左端は、左シールプレート471に接続され、第1のフローガイドバッフル431は、左シールプレート471からシェル201の中央まで、凝縮器430の長さ方向(すなわち、左右方向)に沿って延在する。第1のフローガイドバッフル431は、油分離空洞315の上部に斜めに配置され、シェル201の内壁に接続されている。第1のフローガイドバッフル431の中央は、シェル201の半径断面において凝縮空洞316に向かって曲げられている。第1のフローガイドチャネル445は、第1のフローガイドバッフル431、左シールプレート471、およびシェル201の間に形成されている。第1のフローガイドバッフル431およびシェル201によって形成された第1のフローガイドチャネル445の半径断面は、概してアーチ状である。第1のフローガイドチャネル445は、入口445aおよび出口445bを有する。入口445aは、第1のフローガイドチャネル445の左端に位置付けられ、第1の冷媒入口121と流体連通している。出口445bは、第1のフローガイドチャネル445の右端に位置付けられている。油分離空洞315における第1のフローガイドチャネル445の下に位置付けられた収容空洞は、潤滑油をガス状冷媒から十分に分離するのに十分な大きさに設計されている。
【0059】
図4Dに示されたように、シェル201の半径断面では、第1のフローガイドバッフル431の中央は、一定の大きさの含まれる角度を形成する、互いに接続された上プレート426および下プレート427を形成するために、シェル201内に曲げられている。第1のフローガイドバッフル431およびシェル201が一定の位置に接続されている場合、第1のフローガイドバッフル431は、第1のフローガイドチャネル445の半径方向の断面積が増加されることができるように、中央が凝縮空洞316に向かって曲げられている形状に構成されている。
【0060】
同様に、凝縮器430は、第2のフローガイドバッフル432をさらに含む。第2のフローガイドバッフル432の右端は、右シールプレート472に接続され、第2のフローガイドバッフル432は、右シールプレート472からシェル201の中央まで、凝縮器430の長さ方向(すなわち、左右方向)に沿って延在する。第2のフローガイドバッフル432は、油分離空洞315の上部に斜めに配置され、シェル201の内壁に接続されている。第2のフローガイドバッフル432の中央はまた、シェル201の半径断面における凝縮空洞316に向かって曲げられており、第2のフローガイドバッフル432は、第1のフローガイドバッフル431と同じ形状を有する。第2のフローガイドチャネル446は、第2のフローガイドバッフル432、右シールプレート472、およびシェル201の間に形成されている。第2のフローガイドバッフル432およびシェル201によって形成された第2のフローガイドチャネル446の半径断面は、概してアーチ状である。第2のフローガイドチャネル446は、入口446aおよび出口446bを有する。入口446aは、第2のフローガイドチャネル446の右端に位置付けられ、第2の冷媒入口122と流体連通している。出口446bは、第2のフローガイドチャネル446の左端に位置付けられている。油分離空洞315における第2のフローガイドチャネル446の下に位置付けられた収容空洞は、潤滑油をガス状冷媒から十分に分離するのに十分な大きさに設計されている。
【0061】
図4A~4Cに示されたように、凝縮器430は、ブロック部材434をさらに含む。ブロック部材434は、出口445bを出口446bから分離するために、第1のフローガイドチャネル445の出口445bと第2のフローガイドチャネル446の出口446bとの間に配置されている。具体的には、ブロック部材434は、ブロックプレートであり、実質的には扇形であり、ブロック部材の頂部の円弧形状は、ブロック部材434がシェル201に接続されることができるように、シェル201の円弧形状と一致する。ブロック部材434の半径方向断面積は、出口445bおよび出口446bがシェル201の長さ方向において少なくとも部分的にブロックされることができるように、出口445bおよび出口446bの半径断面と実質的に同じであるように設定されている。この配列は、出口445bおよび出口446bが真正面になることから防止し、それによって、フローガイドチャネルの一方から流れ出る混合物が、高速のために他方のフローガイドチャネルに侵入することを防止する。
【0062】
混合物が第1のフローガイドチャネル445および第2のフローガイドチャネル446を通ってそれぞれ凝縮器430に流入した後、第1のフローガイドチャネル445から流入した混合物は、第2のフローガイドチャネル446から流入した混合物と直ちに接触しないが、ブロック部材434によってブロックされた後にフロー方向を変化させ、混合領域450(
図4Aにおけるドットシャドウとして示された)で実質的に混合する。
【0063】
出口445bおよび出口446bから流出する混合物が混合領域450の近傍で実質的に混合されることができるように、第1のフローガイドチャネル445の出口445b、第2のフローガイドチャネル446の出口446b、およびブロック部材434が一緒に配置されていることに留意されたい。
【0064】
前述の混合領域450は、概略的には、近似的なガス混合部のみを表し、物理的な分割を表すものではない。異なる実施形態では、混合領域450の位置およびサイズは、異なってもよいが、混合領域450、第1のフローガイドチャネル445の出口445b、および第2のフローガイドチャネル446の出口446bは、混合物が出口から流出した直後に拡散する特性によって互いに近接するべきである。
【0065】
第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口は、完全に真正面ではなく、シェルの円周方向に沿って一定の角度だけ回転してずれているように構成され得、または前後および上下方向に一定の距離だけ離間し得、出口から流出する冷媒が混合されることができるように、2つの出口が互いに近接していることを確認する必要があるだけであることは、当業者によって理解されるであろう。いくつかの実施形態では、第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口が真正面でないため、ブロック部材434は、
図8~11における実施形態に示されたように、任意の形状であり得、またはブロック部材が存在しなくてもよい。
【0066】
図4B~4Cに示されたように、少なくとも1つの連通ポート341は、油分離バッフル337の左端および右端の上部にそれぞれ配置され、油分離バッフル337の両側の油分離空洞315と凝縮空洞316とを連通させる左連通ポート441および右連通ポート442を含む。左連通ポート441および右連通ポート442は、両方とも、正方形の開口部であり、同じサイズを有する。
【0067】
凝縮器430は、油分離空洞315に配置されている第1のフィルタスクリーン475および第2のフィルタスクリーン476をさらに含む。具体的には、第1のフィルタスクリーン475は、左連通ポート441と出口445bとの間に位置付けられた第1のフローガイドバッフル431の下に配置され、左連通ポート441の近くに配置されている。第2のフィルタスクリーン476は、右連通ポート442と出口446bとの間に位置付けられた第2のフローガイドバッフル432の下に配置され、右連通ポート442の近くに配置されている。第1のフィルタスクリーン475および第2のフィルタスクリーン476の両方は、混合物が、出口445bまたは出口446bから左連通ポート441または右連通ポート442に流れる前に、第1のフィルタスクリーン475または第2のフィルタスクリーン476を通過し、中の潤滑油をフィルタリングするように、凝縮器430の半径方向に沿って油分離空洞315内に延在する(すなわち、フィルタスクリーンは、フローガイドバッフル、油分離バッフル、およびシェルに接続される必要がある)。このように、混合物における潤滑油は、左連通ポート441または右連通ポート442から凝縮空洞316に排出されることができない。
【0068】
油分離空洞315における様々なコンポーネントの動作原理は、
図4Aと併せて以下に詳細に記載されている。
図4Aにおける矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0069】
具体的には、第1の圧縮機108から排出された高圧ガス状冷媒と潤滑油との混合物(以下、「第1の混合物」と呼ぶ)は、第1の冷媒入口121を通って油分離空洞315に入る。第1の混合物は、第1のフローガイドバッフル431によって画定される第1のフローガイドチャネル445に沿って、出口445bに実質的に水平方向に流れる。第2の圧縮機109から排出された高圧ガス状冷媒と潤滑油との混合物(以下、「第2の混合物」と呼ぶ)は、第2の冷媒入口122を通って油分離空洞315に入る。第2の混合物は、第2のフローガイドバッフル432によって画定される第2のフローガイドチャネル446に沿って、出口446bに実質的に水平方向に流れる。第1の混合物および第2の混合物がそれぞれ左側および右側からブロック部材434に対して当たった後、フロー方向は、下向きのフローに変化する。ブロック部材434によってブロックされることなく、第1の混合物および第2の混合物は、下方に流れながら、混合領域450で実質的に互いに混合されている。
【0070】
一方、凝縮器430では、凝縮空洞316における圧力は、油分離空洞315における混合物が凝縮空洞316に向かって流れるように、油分離空洞315における圧力よりも低くなる。他方、左連通ポート441および右連通ポート442の両方は、凝縮空洞316と連通されているため、左連通ポート441および右連通ポート442での圧力は、実質的に同じであり、左連通ポート441および右連通ポート442のサイズはまた、実質的に同じである。したがって、第1の混合物および第2の混合物が混合領域450で実質的に互いに混合されるとき、圧力下で実質的に同じフローに分割される2つの混合物は、それぞれ、左連通ポート441および右連通ポート442に向かって流れる。
【0071】
凝縮器430におけるコンポーネントが概して左右対称に配列されるため、2つの混合物のフロー方向はまた、同様である。記載を簡潔にするために、この出願は、混合物のフローを例示するために、混合された後に左向きに流れる混合物を例として取る。具体的には、混合物は、第1のフィルタスクリーン475を通って左方向に流れる。第1のフィルタスクリーン475は、細孔を有し、混合物における潤滑油は、第1のフィルタスクリーン475に取り付けられ、それによって、潤滑油をガス状冷媒から分離する。一方、凝縮空洞316における圧力は、油分離空洞315における圧力よりも低いため、ガス状冷媒は、左連通ポート441に流れ続ける。他方、第1のフィルタスクリーン475に取り付けられた潤滑油は、重力によって油分離空洞315の底部に堆積され、油分離空洞315の底部に油出口123を通って油分離空洞315から排出されている。
【0072】
混合物が過大な流速で油分離空洞315に入るときに、混合物が第1のフローガイドバッフル431および第2のフローガイドバッフル432に直接衝撃を与えることを防止するために、衝撃防止部材438および衝撃防止部材439が、それぞれ、第1のフローガイドバッフル431および第2のフローガイドバッフル432上に配置され得ることに留意されたい。具体的には、衝撃防止部材438および衝撃防止部材439は、それぞれ、第1の冷媒入口121および第2の冷媒入口122に真正面の第1のフローガイドバッフル431および第2のフローガイドバッフル432のそれぞれの位置に配置され得る。一例として、衝撃防止部材は、フィルタスクリーンであり得る。
【0073】
バッフル(示されていない)が、油分離空洞315における混合物の過剰なフローが油分離空洞315において堆積された潤滑油の液面を乱すのを防止するために、油分離空洞315において配置され得ることにも留意されたい。バッフルは、第1のフィルタスクリーン475と第2のフィルタスクリーン476との間で油分離バッフル337およびシェル201に接続され、混合物のフローが潤滑油の液面に衝撃を与えない間、潤滑油がフィルタスクリーンに沿って流下し、油分離空洞315の底部に堆積され得るように、潤滑油の液面よりも実質的に水平に配置されるように構成されている。
【0074】
油分離機能を有する従来の凝縮器では、複数の圧縮機を含む冷却システムの場合、様々な圧縮機が同じ冷却システムで並列して使用され、油分離デバイスまたは油分離機能を有する凝縮器が共通で使用されるとき、空気は、通常、油分離デバイスまたは凝縮器の長さ方向(または軸方向)の両端から入り、フィルタスクリーンによってそれぞれ濾過された後、油分離デバイスまたは凝縮器の長さ方向(または軸方向)の中央に位置付けられた排気ポートを通って排出される。前述の配列によれば、様々な圧縮機の排気量が異なるときに、油分離空洞のサイズ(または半径方向の断面積)は、最大排気量を伴う圧縮機によって設計されることが必要とされる。しかしながら、冷却システムにおける小排気量圧縮機について、大型油分離空洞は、必要とされず、対応する油断面積は、受動的に拡大され、過大設計され、それにより、廃棄物を発生させる。
【0075】
この出願では、第1の圧縮機108の排気量が第2の圧縮機109の排気量よりも小さいとき、凝縮器430は、第1の圧縮機108および第2の圧縮機109から排出されるガス状冷媒および潤滑油の混合物が油分離空洞315において混合され、次いで濾過のために2つの均一な部分に分割されることを可能にする。したがって、ガス状冷媒および潤滑油を完全に濾過および分離する要件は、大排気量圧縮機(すなわち、第2の圧縮機109)の排気量に従って凝縮器430の油分離空洞315のサイズを設計するための必要性なしに、満たされることができる。油分離空洞315のサイズは、小さくされることができるので、凝縮器430の全体的なサイズは、小さい。
【0076】
一例として、油分離空洞315のサイズは、大排気量圧縮機(すなわち、第2の圧縮機109)および小排気量圧縮機(すなわち、第1の圧縮機108)の平均排気量によって設計され得る。
【0077】
図5は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願による凝縮器のための第2の実施形態の断面図である。第2の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図5における矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0078】
具体的には、凝縮器530の構造は、
図4A~4Cに示された凝縮器430の構造と実質的に同じであり、凝縮器530は、
図5に示された実施形態では、ブロック部材がブロックプレートではなくフィルタスクリーン534であるという点で、凝縮器430と異なる。フィルタスクリーン534は、細孔を有するが、依然として、第2の圧縮機109から排出された第2の混合物が第2のフローガイドチャネル446に侵入することから防止する。加えて、第1の混合物および第2の混合物は、依然として、フィルタスクリーン534の近くの混合領域550において混合され、次いで、2つの部分に均一に分割されることができ、潤滑油は、それぞれ、第1のフィルタスクリーン475および第2のフィルタスクリーン476によって分離され、次いで、凝縮のために凝縮空洞316に流入される。この実施形態では、フィルタスクリーン534はまた、混合物において潤滑油を吸着および分離するために役割を果たす。
【0079】
図6は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第3の実施形態の断面図である。第3の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図6における矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0080】
具体的には、凝縮器630の構造は、
図4A~4Cに示された凝縮器430の構造と実質的に同じであり、凝縮器630は、入口での第1のフローガイドバッフル631および第2のフローガイドバッフル632の特定の構造が異なる点で、凝縮器430とは異なる。
図6に示されたように、凝縮器630では、第1の冷媒入口121の近くの第1のフローガイドバッフル631および第2の冷媒入口122の近くの第2のフローガイドバッフル632は、開放頂部を伴うボックスの形状で設計されている。第1のフローガイドチャネル645は、第1のフローガイドバッフル631およびシェル201によって形成されており、第2のフローガイドチャネル646は、第2のフローガイドバッフル632およびシェル201によって形成されている。このようにして、フローガイドチャネルは、フローガイドバッフルおよびシェルのみによって形成されることができ、左および右シールプレートは、第1のフローガイドチャネル645および第2のフローガイドチャネル646をそれぞれ画定する必要はなく、凝縮器630の組み立てステップが簡略化されることができる。
【0081】
具体的には、第1のフローガイドバッフル631の左端は、開放頂部を伴うボックスの形状である。ボックスの右側は、第1のフローガイドチャネル645を形成するために、シェル201の長さ方向においてシェル201の中央に向かって延在する。ボックスの左端での第1のフローガイドバッフル631の底部は、ボックスにおける第1のフローガイドチャネルのフローガイドチャネル半径方向領域が、他の位置におけるフローガイドチャネル半径方向領域よりも大きくなるように、他の位置で第1のフローガイドバッフル631の底部よりも低い位置まで下向きに延在する。第2のフローガイドバッフル632の右端は、開放頂部を伴うボックスの形状である。ボックスの左側は、第2のフローガイドチャネル646を形成するために、シェル201の長さ方向においてシェル201の中央に向かって延在する。ボックスの右端での第2のフローガイドバッフル632の底部は、ボックスにおける第2のフローガイドチャネルのフローガイドチャネル半径方向領域が、他の位置におけるフローガイドチャネル半径方向領域よりも大きくなるように、他の位置で第2のフローガイドバッフル632の底部よりも低い位置まで下方に延在する。
【0082】
第1のフローガイドバッフル631の左端および第2のフローガイドバッフル632の右端は、第1の冷媒入口121および第2の冷媒入口122の近くのフローガイドチャネル半径方向領域を増加させ、それによって凝縮器630に入った後の混合物の速度を低下させて、混合物がフローガイドバッフルに与える影響を低減するために、開放頂部を伴うボックスの形状で設計される。このように、この実施形態では、衝撃防止部材は、提供される場合がある。
【0083】
図7は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第4の実施形態の断面図である。第4の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図7における矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0084】
具体的には、凝縮器730の構造は、
図4A~4Cに示された凝縮器430の構造と実質的に同じであり、凝縮器730は、
図7に示された実施形態では、第1のフローガイドチャネル745および第2のフローガイドチャネル746がそれぞれパイプラインによって形成されるという点で、凝縮器430とは異なる。
図7に示されたように、第1のフローガイドチャネル745は、第1のフローガイド管735によって形成されており、第2のフローガイドチャネル746は、第2のフローガイド管736によって形成されている。一例として、第1のフローガイド管735は、第1の圧縮機108の排気ポート151に接続されるために、シェル201上に配置された第1の冷媒入口121を通って上方に延在する。第2のフローガイド管736は、第2の圧縮機109の排気ポート152に接続されるために、シェル201上に配置された第2の冷媒入口122を通って上方に延在する。
【0085】
本実施形態では、フローガイドチャネルに入った後の混合物の流路は、
図4A~4Cに示されたように、左シールプレート471および/または右シールプレート472を追加的に提供することなく、フローガイド管によってフローガイドチャネルを直接形成することによって制限されている。
【0086】
フローガイドチャネルがフローガイド管によって形成されるため、フローガイド管、油分離バッフル、およびシェルに第1のフィルタスクリーン775および第2のフィルタスクリーン776が、第1のフィルタスクリーン775または第2のフィルタスクリーン776を通過した後、混合物が凝縮空洞316内に流入するように、接続される必要があることに留意されたい。
【0087】
図8は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第5の実施形態の断面図である。第5の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図8における矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
図8に示されたように、凝縮器830における第1のフローガイドチャネル845および第2のフローガイドチャネル846は、それぞれパイプラインによって形成されている。
【0088】
具体的には、第1のフローガイドチャネル845は、第1の圧縮機108の排気ポート151に接続されるために、シェル201上に配置された第1の冷媒入口121を通って上方に延在するストレートフローガイド管864によって形成されている。第1のフローガイドチャネル845の出口845bは、第1のフローガイドチャネル845の下端に配置されている。
【0089】
第2のフローガイドチャネル846は、フローガイドバッフル863およびシェル201によって形成されている。フローガイドバッフル863は、シェル201の頂部から一定の距離だけ離間しており、シェル201の長さ方向に沿って水平に延在している。第2のフローガイドチャネル846は、第2の冷媒入口122と流体連通している。第2のフローガイドチャネル846は、その左端に出口846bを有し、その右端に追加の出口843を有する。出口846bは、第1のフローガイドチャネル845の出口845bの近くに配置されている。追加の出口843は、第1のフローガイドチャネル845の出口845bから離れて配置されている。混合物が第2の冷媒入口122から第2のフローガイドチャネル846に流入した後、混合物の一部は、追加の出口843から流出し、混合物の別の部分は、右から左に流れて出口846bから出る。第1のフローガイドチャネル845の出口845bから流出する混合物は、混合領域850の近くで出口846bから流出する混合物と混合されている。
【0090】
図8に示された実施形態では、凝縮器830は、油分離バッフル337の中央に配置された1つの連通ポート841のみを含む。凝縮器830は、第1のフィルタスクリーン875および追加のフィルタスクリーン877をさらに含む。第1のフィルタスクリーン875は、第2のフローガイドチャネル846の出口846bと連通ポート841との間に配置され、追加のフィルタスクリーン877は、第2のフローガイドチャネル846の追加の出口843と連通ポート841との間に配置されている。
【0091】
混合領域850で混合された混合物は、第1のフィルタスクリーン875を通って左から右へ流れる。第1のフィルタスクリーン875を通過すると、ガス状冷媒は、潤滑油から分離されている。潤滑油から分離されたガス状冷媒は、連通ポート841から凝縮空洞に入る。潤滑油は、重力によって油分離空洞315の底部に堆積されている。追加の出口843から流出する混合物は、シェル201の右側の右端プレート204に対して当たり、次いで、追加のフィルタスクリーン877を通って右から左に流れる。追加フィルタスクリーン877を通過すると、ガス状冷媒は、潤滑油から分離されている。潤滑油から分離されたガス状冷媒は、連通ポート841から凝縮空洞に入る。潤滑油は、重力によって油分離空洞315の底部に堆積されている。
【0092】
本実施形態では、大排気量圧縮機(すなわち、第2の圧縮機109)から排出された混合物は、2つの部分に分割され、一方は、追加のフィルタスクリーン877を通って直接流れ、他方は、小排気量圧縮機(すなわち、第1の圧縮機108)から排出されたガス状冷媒と混合された後、第1のフィルタスクリーン875を通って流れる。追加の出口843のサイズを設計することによって、追加のフィルタスクリーン877および第1のフィルタスクリーン875を通って流れる混合物のフローは、ほぼ等しくすることができ、それによって、混合物のフローが濾過のために2つの均一な部分に自動的に分配されることも可能にする。油分離空洞315のサイズはまた、小さくされることができるので、凝縮器430の全体的なサイズは、小さい。
【0093】
本実施形態では、第1のフローガイドチャネル845および第2のフローガイドチャネル846の出口が真正面でないため、ブロック部材を提供することなく、フローガイドチャネルの一方から流出する混合物が高速により他方のフローガイドチャネルに侵入することを防止することができることに留意されたい。
【0094】
図9は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第6の実施形態の断面図である。第6の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図9における矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0095】
具体的には、凝縮器930の構造は、
図7に示された凝縮器730の構造と実質的に同じであり、凝縮器930は、高さ方向における第1のフローガイドチャネル945および第2のフローガイドチャネル946の特定の設定が異なる点で、凝縮器730とは異なる。
図9に示されたように、凝縮器930の第1のフローガイドチャネル945の出口945bおよび第2のフローガイドチャネル946の出口946bは、反対側に配置され、出口946bが高さ方向における出口945bの下にあるように、高さ方向にある距離だけずれて配置されている。したがって、本実施形態では、ブロック部材を提供することなく、フローガイドチャネルの一方から流出する混合物が、高速により他方のフローガイドチャネルに侵入することを防止することが可能である。
【0096】
他の実施形態では、第1のフローガイドチャネルの出口および第2のフローガイドチャネルの出口が、シェルの長さ方向に垂直な他の方向に一定の距離だけずれている限り、第1のフローガイドチャネルおよび第2のフローガイドチャネルが管状でなくてもよく、それによって、フローガイドチャネルの一方から流出する混合物が、高速により他方のフローガイドチャネルに侵入することを防止することが、当業者によって理解されるであろう。
【0097】
図10は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第7の実施形態の断面図である。第7の実施形態による凝縮器の外部構造は、
図2に示され、油分離空洞と中の凝縮空洞との位置関係は、
図3に示されている。
図10の矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0098】
具体的には、凝縮器1030の構造は、
図9に示された凝縮器930の構造と実質的に同じであり、凝縮器1030は、第1のフローガイドチャネル1045の出口1045bおよび第2のフローガイドチャネル1046の出口1046bが異なる位置に配置されている点で、凝縮器930とは異なる。
図10に示されたように、凝縮器1030の第1のフローガイドチャネル1045および第2のフローガイドチャネル1046は、シェル201の両端から中央に向かってそれぞれ互いに交差するように延在し、すなわち、第1のフローガイドチャネル1045の出口1045bは、第2のフローガイドチャネル1046の出口1046bの右側に位置付けられている。言い換えると、第1のフローガイドチャネル1045の出口1045bは、第2のフローガイドチャネル1046の出口1046bと第2のフローガイドチャネル1046の入口1046aとの間に位置付けられており、一方、第2のフローガイドチャネル1046の出口1046bは、第1のフローガイドチャネル1045の出口1045bと第1のフローガイドチャネル1045の入口1045aとの間に位置付けられている。現時点では、ブロック部材を提供することなく、フローガイドチャネルの一方から流出する混合物が、高速により他方のフローガイドチャネルに侵入することを防止することが可能である。
【0099】
図11は、油分離空洞315における様々なコンポーネントを図示するための、シェルの軸方向(すなわち、
図2におけるC-C線方向)における、この出願の凝縮器のための第8の実施形態の断面図である。第8の実施形態による凝縮器の外部構造は、
図2に示されたものとは若干異なり、第1の冷媒入口121および第2の冷媒入口122は、シェルの軸方向の中央に近接している。第8の実施形態による油分離空洞と凝縮器内部の凝縮空洞との位置関係は、
図3に示されている。
図11の矢印は、油分離空洞315におけるガス状冷媒および潤滑油の混合物の流路を示す。
【0100】
図11に示されたように、凝縮器1130における第1のフローガイドチャネル1145および第2のフローガイドチャネル1146は、それぞれ、ストレートフローガイド管1164およびストレートフローガイド管1169によって形成されている。ストレートフローガイド管1164およびストレートフローガイド管1169は、シェル201の中央に並んで配置されている。ストレートフローガイド管1164は、第1の圧縮機108の排気ポート151に接続されるために、シェル201上に配置された第1の冷媒入口121を通って上方に延在する。ストレートフローガイド管1169は、第2の圧縮機109の排気ポート152に接続されるために、シェル201上に配置された第2の冷媒入口122を通って上方に延在する。第1のフローガイドチャネル1145の出口1145bは、第1のフローガイドチャネル1145の下端に配置されている。第2のフローガイドチャネル1146の出口1146bは、第2のフローガイドチャネル1146の下端に配置されている。一例として、第1のフローガイドチャネル1145の出口および第2のフローガイドチャネル1146の出口は、背中合わせに配置されている。このように、混合物は、第1の冷媒入口1121および第2の冷媒入口1122からそれぞれ、第1のフローガイドチャネル1145および第2のフローガイドチャネル1146に流れ込み、それぞれの出口の下の混合領域1150で混合される油分離空洞315に下向きに流れ込む。
【0101】
図4A~4Cに示された実施形態と同様に、凝縮器1130は、第1のフィルタスクリーン1175、第2のフィルタスクリーン1176、左連通ポート441、および右連通ポート442をさらに含む。左連通ポート441および右連通ポート442は、油分離バッフル337の左端および右端に配置されている。混合された混合物は、2つの部分に均一に分割されている。1つの部分は、潤滑油を分離するために、第1のフィルタスクリーン1175を通って流れる。次いで、潤滑油から分離されたガス状冷媒は、左連通ポート441から凝縮空洞に流入する。他の部分は、潤滑油を分離するために、第2のフィルタスクリーン1176を通って流れる。次いで、潤滑油から分離されたガス状冷媒は、右連通ポート442から凝縮空洞に流入する。
【0102】
第1のフローガイドチャネル1145および第2のフローガイドチャネル1146の出口は、(真正面ではなく)背中合わせに配置されているので、ブロック部材を提供する必要もない。
【0103】
異なる構造を有するフローガイドチャネルは、前述の実施形態のそれぞれで設計されているが、大排気量圧縮機からの混合物の少なくとも一部分は、混合物の流路を制御することによって濾過する前に、小排気量圧縮機からの混合物と混合され、均一に分散されることができるため、油分離空洞のサイズは、大排気量圧縮機の排気量に従って設計される必要はなく、潤滑油を完全に濾過および分離する要件は、満たされることができる。この出願の凝縮器は、油分離空洞、ひいては凝縮器のサイズ要件を低減し得る。
【0104】
図12は、独立した油分離デバイスを含む冷却システムにおける様々なコンポーネント間の接続関係を図示するための、この出願の冷却システムのための別の実施形態の構造ブロック図である。この実施形態では、凝縮器は、油分離機能を有しない。
図12に示されたように、冷却システム1200は、冷媒循環回路を形成するためにパイプラインを通って順次接続される、圧縮機ユニット、凝縮器1230、スロットルデバイス140、および蒸発器110を含む。油分離デバイス1283は、圧縮機ユニットと凝縮器1230との間にさらに配置されている。圧縮機ユニットは、第1の圧縮機1208および第2の圧縮機1209を含む。本実施形態では、第1の圧縮機1208は、第2の圧縮機1209よりも小さい排気量(すなわち、冷媒ガスフロー)を有し、第1の圧縮機1208および第2の圧縮機1209は、油分離デバイス1283と蒸発器110との間で並列に接続されている。
【0105】
具体的には、第1の圧縮機1208は、吸引ポート1291、排気ポート1251、および油戻しポート1261で提供されている。第2の圧縮機1209は、吸引ポート1242、排気ポート1252、および油戻しポート1262で提供されている。油分離デバイス1283は、第1の冷媒入口1221、第2の冷媒入口1222、油出口1223、少なくとも1つの連通ポート(すなわち、油分離デバイス冷媒ガス出口)で提供されている。一例として、少なくとも1つの連通ポートは、2つの連通ポート(すなわち、油分離デバイス冷媒ガス出口)1241および1242を含む。第1の圧縮機1208の吸引ポート1291および第2の圧縮機1209の吸引ポート1242は、両方とも、蒸発器110の出口に接続されている。第1の圧縮機108の排気ポート151は、凝縮器130の第1の冷媒入口121に接続されている。第1の圧縮機1208の油戻しポート1261は、油分離デバイス1283の油出口1223に接続されている。第2の圧縮機1209の排気ポート1252は、油分離デバイス1283の第2の冷媒入口1222に接続されている。第2の圧縮機1209の油戻しポート1262はまた、油分離デバイス1283の油出口1223に接続されている。凝縮器1230の入口は、連通ポート1241および1242に接続され、凝縮器1230の冷媒出口124は、スロットルデバイス140に接続されている。
【0106】
冷却システム100は、冷媒および潤滑剤(例えば、潤滑油)で満たされている。冷却システム1200の動作プロセスは、以下に簡単に記載されている。
【0107】
第1の圧縮機1208および第2の圧縮機1209では、低温低圧ガス状冷媒は、高温高圧ガス状冷媒に圧縮されている。高温高圧ガス状冷媒は、油分離デバイス1283上の第1の冷媒入口1221および第2の冷媒入口1222をそれぞれ通過し、最初に油分離デバイス1283を通過し、次いで、高圧液体冷媒(場合によっては、ガス状冷媒の一部を含有する)内に放熱的に凝縮されるために、凝縮器1230内に流入する。高圧液体冷媒は、凝縮器1230の冷媒出口124から排出され、スロットルデバイス140を通って流れ、スロットルデバイス140によって低圧液体冷媒内に減圧されている。続いて、低圧液体冷媒は、蒸発器110において低圧ガス状冷媒に吸熱蒸発され、次いで、第1の圧縮機1208および第2の圧縮機1209に戻される。動作は、連続冷却サイクルが完成するために繰り返されている。
【0108】
第1の圧縮機1208および第2の圧縮機1209では、潤滑油は、第1の圧縮機1208および第2の圧縮機1209を潤滑するために使用され、次いで、潤滑油は、ガス状冷媒を伴って第1の圧縮機1208および第2の圧縮機1209から排出されている。排出された高圧ガス状冷媒と潤滑油との混合物(以下、「混合物」と呼ぶ)は、油分離デバイス1283に入る。油分離デバイス1283の油分離空洞1315(示されていない、
図13を参照)では、高圧ガス状冷媒は、潤滑油から分離されている。分離された高圧ガス状冷媒は、上述したように凝縮器1230に入り、一方、分離された潤滑油は、油分離デバイス1283上の油出口1223を通って第1の圧縮機1208および第2の圧縮機1209に還流される。
【0109】
図13は、
図12によって示された油分離デバイス1283のためのいくつかの実施形態の構造立体図である。
図13に示されたように、油分離デバイス1283は、シェル1301を含み、シェル1301は、中に油分離空洞1315を含む。シェル1301は、第1の冷媒入口1221、第2の冷媒入口1222、油出口1223、ならびに連通ポート1241および1242で提供されている。具体的な例として、第1の冷媒入口1221および第2の冷媒入口1222は、シェル1301の上部に位置付けられ、それぞれ、シェル1301の左端および右端の近くに配置されている。油出口1223は、シェル1301の下部に配置されている。連通ポート1241および1242は、それぞれ、シェル1301の左端および右端に配置されている。
【0110】
油分離デバイス1283は、パイプライン1281、パイプライン1282、パイプライン1284、パイプライン1285、およびパイプライン1286をさらに含む。パイプライン1281は、第1の冷媒入口1221が第1の圧縮機1208の排気ポート1251に接続されるように、第1の冷媒入口1221と連通されている。パイプライン1282は、第2の冷媒入口1222が第2の圧縮機109の排気ポート1252に接続されるように、第2の冷媒入口1222と連通されている。パイプライン1284は、油出口1223が油戻しポート1261および油戻しポート1262に接続されるように、油出口1223と連通されている。パイプライン1285およびパイプライン1286は、連通ポート1241および1242が凝縮器1230に接続されるように、連通ポート1241および1242とそれぞれ連通されている。
【0111】
油分離デバイスの第1の冷媒入口1221、第2の冷媒入口1222、油出口1223、ならびに連通ポート1241および1242が、異なる油分離デバイスの特定の設定によって異なる位置に配列され得ることに留意されたい。例えば、
図21に示された実施形態では、第1の冷媒入口1221および第2の冷媒入口1222は、シェル201の中央に配置されている。また、少なくとも1つの連通ポートは、2つの連通ポートを含まなくてもよい。例えば、
図18に示された実施形態では、1つの連通ポートのみが、含まれ得る。
【0112】
第1のフローガイドバッフル1331、第2のフローガイドバッフル1332、ブロック部材1334、第1のフィルタスクリーン1375、および第2のフィルタスクリーン1376は、油分離デバイス1283の油分離空洞1315内にさらに配置されている。第1のフローガイドチャネル1345は、第1のフローガイドバッフル1331およびシェル1301によって形成されており、第2のフローガイドチャネル1346は、第2のフローガイドバッフル1332およびシェル1301によって形成されている。
【0113】
図14は、油分離空洞1315における特定の構造を図示するための、シェルの軸方向(すなわち、
図13におけるD-D線方向)に沿った
図13の油分離デバイス1283の断面図である。
図14に示されたように、油分離空洞1315の内部構造は、油分離デバイス1283が油分離バッフルを含まず、油分離バッフル上に元々配置されている連通ポートがシェル1301上に直接配置されていることを除いて、
図4A~4Cの凝縮器430の油分離空洞315の内部構造と実質的に同じである。現時点では、連通ポートは、連通ポートから流出するガス状冷媒が凝縮デバイスによって凝縮されることができるように、凝縮器1230における凝縮デバイスとの流体連通のために使用されている。
【0114】
具体的には、第1の圧縮機1208から排出された高圧ガス状冷媒と潤滑油との混合物(以下、「第1の混合物」と呼ぶ)は、油分離空洞1315に入り、次いで、第1のフローガイドチャネル1345に沿って出口1345bに実質的に水平方向に流れる。第2の圧縮機1209から排出された高圧ガス状冷媒と潤滑油との混合物(以下、「第2の混合物」と呼ぶ)は、油分離空洞1315に入り、次いで、第2のフローガイドチャネル1346に沿って出口1346bに実質的に水平方向に流れる。第1の混合物および第2の混合物は、それぞれ左側および右側からブロック部材1334に対して当たった後にフロー方向を下向きフローに変化させ、混合領域1450でほぼ混合され、平均的に2つの部分に分割され、潤滑油を分離するためにそれぞれ第1のフィルタスクリーン1375および第2のフィルタスクリーン1376によって濾過され、次いで潤滑油は、凝縮のために連通ポート1241および1242を通って凝縮器内に流入する。
【0115】
図15は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第2の実施形態の断面図である。
図15に示されたように、第2の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態と同じである。第2の実施形態による油分離デバイスの油分離空洞の内部構造は、
図5に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、
図15に示された実施形態では、ブロック部材がブロックプレートではなくフィルタスクリーン1534であり、ガス状冷媒の混合領域1550が概してフィルタスクリーン1534の近傍にあることを除いて、
図14に示された実施形態と実質的に同じである。
【0116】
図16は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第3の実施形態の断面図である。
図16に示されたように、第3の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態と同じである。第3の実施形態による油分離デバイスの油分離空洞の内部構造は、
図6に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドバッフル1631の左端および第2のフローガイドバッフル1632の右端が、開放頂部を伴うボックスの形状で設計されていることを除いて、
図14に示された実施形態と実質的に同じである。
【0117】
図17は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第4の実施形態の断面図である。
図17に示されたように、第4の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態と同じである。第4の実施形態による油分離デバイスの油分離空洞の内部構造は、
図7に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドチャネル1745および第2のフローガイドチャネル1746がそれぞれフローガイド管によって形成されることを除いて、
図14に示された実施形態と実質的に同じである。
【0118】
図18は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第5の実施形態の断面図である。
図18に示されたように、第5の実施形態による油分離デバイスの外部構造は、1つの連通ポート1841のみが含まれ、連通ポート1841が油分離デバイスのシェルの中央の後側に配置されている点で、
図13に示された実施形態とは若干異なる。第5の実施形態による油分離デバイスの油分離空洞の内部構造は、
図8に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドチャネル1845がストレートフローガイド管1864によって形成され、第1のフローガイドチャネル1845の出口1845bが第1のフローガイドチャネル1845の下端に配置されていることを除いて、
図14に示された実施形態と実質的に同じである。第2のフローガイドチャネル1846は、フローガイドバッフル1863およびシェル1301によって形成され、第2のフローガイドチャネル1846は、その左端に出口1846bを有し、その右端に追加の出口1843を有する。第2のフローガイドチャネル1846の出口1846bは、第1のフローガイドチャネル1845の出口1845bに近接しており、第2のフローガイドチャネル1846の追加の出口1843は、第1のフローガイドチャネル1845の出口1845bから離れている。
図18に示された実施形態では、第1のフィルタスクリーン1875は、第2のフローガイドチャネル1846の出口1846bと連通ポート1841との間に配置され、追加のフィルタスクリーン1877は、第2のフローガイドチャネル1846の追加の出口1843と連通ポート1841との間に配置されている。
【0119】
図19は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第6の実施形態の断面図である。
図19に示されたように、第6の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態と同様である。第6の実施形態による油分離デバイスの油分離空洞の内部構造は、
図9に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドチャネル1945の出口および第2のフローガイドチャネル1946の出口が反対側に配置され、高さ方向においてある距離だけずれていることを除いて、
図14に示された実施形態と実質的に同じである。
【0120】
図20は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第7の実施形態の断面図である。
図20に示されたように、第7の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態と同じである。第7の実施形態による油分離デバイスの油分離空洞の内部構造は、
図10に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドチャネル2045および第2のフローガイドチャネル2046が油分離デバイスのシェルの両端からそれぞれ中央に向かって延在し、互いに交差することを除いて、
図14に示された実施形態と実質的に同じである。
【0121】
図21は、シェルの軸方向(すなわち、
図13におけるD-D線方向)における、この出願の油分離デバイスのための第8の実施形態の断面図である。
図21に示されたように、第8の実施形態による油分離デバイスの外部構造は、
図13に示された実施形態の外部構造とは若干異なり、第1の冷媒入口および第2の冷媒入口は、シェルの軸方向の中央に近接している。第8の実施形態による油分離デバイスの油分離空洞の内部構造は、
図11に示された凝縮器の油分離空洞の内部構造と実質的に同じであり、第1のフローガイドチャネル2145および第2のフローガイドチャネル2146が油分離デバイスのシェルの中央から油分離空洞1315に長手方向に並んで延在する、ストレートフローガイド管2164およびストレートフローガイド管2169によってそれぞれ形成された垂直チャネルであることを除いて、
図14に示された実施形態と実質的に同じである。
【0122】
前述の凝縮器と同様に、油分離デバイスの様々な実施形態では、第1の圧縮機1208の排気量が第2の圧縮機1209の排気量よりも小さいとき、油分離デバイス1283は、第1の圧縮機1208および第2の圧縮機1209から排出されるガス状冷媒および潤滑油の混合物が油分離空洞1315において混合され、次いで濾過のために2つの均一な部分に分割されることを可能にする。したがって、ガス状冷媒および潤滑油を完全に濾過および分離する要件は、大排気量圧縮機(すなわち、第2の圧縮機1209)の排気量に従って油分離デバイス1283の油分離空洞1315のサイズを設計するための必要なしに、満たされることができる。油分離空洞1315のサイズは、小さくされることができるので、油分離デバイス1283の全体的なサイズは、小さい。
【0123】
そこから、特に、不等排気量を伴う2つの圧縮機を含む冷却システムの場合、この出願の凝縮器は、油分離コンポーネントを内蔵した既存の凝縮器と比較して、より小さいサイズで提供され得ることが分かる。さらに、この出願の油分離デバイスはまた、既存の油分離デバイスと比較してより小さいサイズで提供され得る。
【0124】
この出願は、図面に示された特定の実施態様を参照して記載されたが、この出願の凝縮器および油分離デバイスの多くの変形が、この出願の教示の趣旨、範囲および背景から逸脱することなく可能であることを理解されたい。当業者であれば、本明細書に開示された実施形態の構造的詳細を変更する異なる方法が存在し、それらはすべて、この出願および特許請求の範囲の趣旨および範囲内に含まれることをさらに認識している。
【国際調査報告】