(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-14
(54)【発明の名称】温度による影響を除去した自動車用動力伝達装置の動作状態を確認する動き間隔測定装置
(51)【国際特許分類】
G01B 7/14 20060101AFI20221207BHJP
G01M 17/007 20060101ALI20221207BHJP
【FI】
G01B7/14
G01M17/007 Z
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022502927
(86)(22)【出願日】2020-09-22
(85)【翻訳文提出日】2022-03-14
(86)【国際出願番号】 KR2020012754
(87)【国際公開番号】W WO2022045432
(87)【国際公開日】2022-03-03
(31)【優先権主張番号】10-2020-0110107
(32)【優先日】2020-08-31
(33)【優先権主張国・地域又は機関】KR
(81)【指定国・地域】
(71)【出願人】
【識別番号】520452965
【氏名又は名称】シルラ インダストリアル カンパニー リミテッド
(74)【代理人】
【識別番号】100091683
【氏名又は名称】▲吉▼川 俊雄
(74)【代理人】
【識別番号】100179316
【氏名又は名称】市川 寛奈
(72)【発明者】
【氏名】チェ,ビョン ソン
(72)【発明者】
【氏名】クォン,イク ヒョン
【テーマコード(参考)】
2F063
【Fターム(参考)】
2F063AA22
2F063BA11
2F063BB03
2F063BC05
2F063BD15
2F063CA34
2F063CB01
2F063CC03
2F063DA01
2F063DA05
2F063DC08
2F063DD02
2F063GA03
2F063LA05
2F063LA17
2F063LA19
(57)【要約】
本発明は温度の影響を除去した自動車用動力伝達装置の動作状態を確認する動き間隔測定装置に関するものであって、本発明に従う温度の影響を除去した自動車用動力伝達装置の動作状態を確認する動き間隔測定装置は、感知コイルが含まれた共振回路を用いて、前記検出対象物体と前記感知コイルとの間隔変化に対応して変化される前記共振回路での共振周波数変化と前記共振回路の出力電圧の変化を用いて、前記検出対象物体の動き間隔を測定し、別途にダイオード電圧を検出するダイオード電圧検出部を備えて共振回路の出力値に含まれたダイオード電圧を除去することにより温度変化の影響を受けないように構成される。
【選択図】
図8
【特許請求の範囲】
【請求項1】
噛み合い構造が含まれた駆動軸と、この駆動軸に噛み合って動力を伝達する移動可能な推進軸と、前記推進軸と連結されて共に動く金属材質の検出対象物体及び前記推進軸に作動力を伝達する内部作動子とアクチュエータ駆動源を含む自動車用動力伝達装置制御用アクチュエータを備える自動車用動力伝達装置における前記検出対象物体の動作時、自動車用動力伝達装置の動作状態を確認する動き間隔測定装置であって、
特定周波数の矩形波を発生させる矩形波発生器と、
前記矩形波発生器から発生した矩形波を正弦波に変えるか、または前記矩形波の基準周波数成分を除外した雑音成分を除去するための低域通過フィルタと、
前記低域通過フィルタを通過した信号を増幅し、感知コイルが含まれた共振回路を含んで構成されて、前記検出対象物体と前記感知コイルとの間隔変化に対応して変化される前記共振回路の出力電圧を含む出力信号を提供する同調増幅器と、
前記同調増幅器の出力信号からバイアス電圧を除去して交流成分の信号のみを出力する直流復元器(dc restorer)と、
前記直流復元器の出力信号から最高電圧値を検出するための最高値検出部と、
前記最高値検出部から出力される最高電圧値に含まれた第1ダイオード電圧値を除去するために前記直流復元器と前記最高値検出部で使われたダイオード個数だけの第2ダイオード電圧値を検出するためのダイオード電圧検出部と、
前記最高値検出部の最高電圧値と前記ダイオード電圧検出部の第2ダイオード電圧値をディジタル信号に変換して出力するADコンバータと、
ディジタル変換された前記第2ダイオード電圧値を用いてディジタル変換された前記最高電圧値に含まれた第1ダイオード電圧値を除去して温度変化によるダイオード電圧の影響を除去し、前記第1ダイオード電圧値が除去された前記最高電圧値を予め格納された比較データと比較することにより前記検出対象物体の動き間隔値を出力する制御部と、
を備えることを特徴とする、自動車用動力伝達装置の動作状態を確認する動き間隔測定装置。
【請求項2】
前記直流復元器は、互いに直列連結されたキャパシタとダイオードとから構成され、前記第2ダイオード電圧値を出力とするクランピング回路から構成されることを特徴とする、請求項1に記載の自動車用動力伝達装置の動作状態を確認する動き間隔測定装置。
【請求項3】
前記ダイオード電圧検出部は、電源電圧(VCC)と接地との間に順次に直列連結された抵抗と少なくとも1つのダイオードを用いて構成され、前記第2ダイオード電圧値を出力値とする回路から構成されることを特徴とする、請求項1に記載の自動車用動力伝達装置の動作状態を確認する動き間隔測定装置。
【請求項4】
前記制御部は、前記ADコンバータを通じてディジタル変換された前記最高電圧値から前記第2ダイオード電圧値を足して温度変化によるダイオード電圧の影響を除去することを特徴とする、請求項1または3に記載の自動車用動力伝達装置の動作状態を確認する動き間隔測定装置。
【請求項5】
前記共振回路に特定周波数を有する入力信号源が入力される時、前記感知コイルと前記検出対象物体が最も近くにある時を基準に前記感知コイルと前記検出対象物体との間の間隔が遠ざかるほど前記同調増幅器の出力電圧が減少する原理を用いるか、または前記感知コイルと前記検出対象物体が最も遠くにある時を基準に前記感知コイルと前記検出対象物体との間隔が近づくほど前記同調増幅器の出力電圧が減少する原理を用いて前記検出対象物体の動き間隔を測定することを特徴とする、請求項1に記載の自動車用動力伝達装置の動作状態を確認する動き間隔測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はアクチュエータにより制御される自動車用動力伝達装置の動作状態を確認する動き間隔測定装置に関し、より詳しくは、車両動力伝達装置内のアクチュエータ作動によって動く検出対象物体と感知コイルとの間の間隔変化に対応する感知コイルのインダクタンス変化を、共振回路の同調特性を用いて測定して動力伝達装置の動作状態を確認し、温度による影響が除去された動き間隔測定装置に関する。
【背景技術】
【0002】
一般に、アクチュエータは内部作動子を動くようにする駆動源により一定位置に移動し、駆動源が無くなれば元の位置に戻る作動原理を有している。
【0003】
また、このようなアクチュエータの駆動源はソレノイドコイルの電磁気力でありえ、モーターコイルの電磁気力でありえ、油圧による圧力でありえるので、内部作動子を動くようにすることができる駆動源であれば、何れにも限定されない。
【0004】
例えば、ソレノイドアクチュエータの場合、ソレノイドコイルに電流が印加されれば電子力が発生して作動鉄心を移動させて相対物(クラッチなど)に作動力を加えるようになり、ソレノイド電源が切れると作動鉄心が原位置する動作原理を有している。
【0005】
自動車用動力伝達装置制御用アクチュエータ(例えば、ソレノイドアクチュエータなど)は自動車動力の断続のためのアクチュエータとして主に使われて、適用例に、自動車用差動装置鎖錠装置(EDL)、電気ドライブ断続装置(EDD)などに使われる。
【0006】
このようなアクチュエータによって制御される自動車用動力伝達装置1は、
図1に図示したように、噛み合い構造が含まれた駆動軸40と、この駆動軸に噛み合って動力を伝達する移動可能な推進軸50と、前記推進軸と連結されて共に動く金属材質の検出対象物体20と、推進軸に作動力を伝達する内部作動子10と、アクチュエータ駆動源30を含む自動車用動力伝達装置制御用アクチュエータ60を備える構成を有する。
【0007】
このような一般的な自動車用動力伝達装置の実際の作動の有無が分かる手段には、スプリング弾性を用いた機械式スイッチが使用できるが、機械式スイッチの場合、スイッチを作動させるための追加動力が必要になって、アクチュエータ作動力の損失をもたらし、激しい作動によってスイッチ接点部の摩滅が発生するか、または内部部品の破損または固着などにより問題が発生する場合、これをシステム的に確認する方法がない。
【0008】
更に他の手段には、磁石を用いたホールセンサーが利用できるが、磁石成分が動力伝達装置内の鉄分(Iron particle)を吸着させて装置の誤作動を起こすことがある。また、ホールセンサーはソレノイドまたはモーターコイルの電磁気場の影響を受けるので、これを回避するための別途の空間確保及び検出対象物体との間隙維持のための相当に高い水準の加工及び組立公差が求められて、装置のサイズが不要に大きくなったり、高い費用がかかるようになる問題点がある。
【発明の概要】
【発明が解決しようとする課題】
【0009】
したがって、本発明の目的は、前記の従来の問題点が克服できるように自動車用動力伝達装置の動作状態を確認する動き間隔測定装置を提供することにある。
【0010】
本発明の他の目的は、アクチュエータの作動時、内部作動子と共に動く検出対象物体の動き間隔を測定することによって、自動車用動力伝達装置の動作状態を確認する動き間隔測定装置を提供することにある。
【0011】
本発明の更に他の目的は、温度による影響を最小化するか、温度による影響が除去された自動車用動力伝達装置の動作状態を確認する動き間隔測定装置を提供することにある。
【課題を解決するための手段】
【0012】
前記の技術的課題の一部を達成するための本発明の具体化によって、本発明に従う噛み合い構造が含まれた駆動軸と、その駆動軸に噛み合って動力を伝達する移動可能な推進軸と、前記推進軸と連結されて共に動く金属材質の検出対象物体及び前記推進軸に作動力を伝達する内部作動子と、アクチュエータ駆動源を含む自動車用動力伝達装置制御用アクチュエータを備える自動車用動力伝達装置において、前記検出対象物体の動作時、自動車用動力伝達装置の動作状態を確認する動き間隔測定装置は、特定周波数の矩形波を発生させる矩形波発生器と;前記矩形波発生器から発生した矩形波を正弦波に変えるか、または前記矩形波の基準周波数成分を除外した雑音成分を除去するための低域通過フィルタと;前記低域通過フィルタを通過した信号を増幅し、感知コイルが含まれた共振回路を含んで構成されて、前記検出対象物体と前記感知コイルの間隔変化に対応して変化される前記共振回路の出力電圧を含む出力信号を提供する同調増幅器と;前記同調増幅器の出力信号からバイアス電圧を除去して交流成分の信号のみを出力する直流復元器(dc restorer)と;前記直流復元器の出力信号から最高電圧値を検出するための最高値検出部と;前記最高値検出部から出力される最高電圧値に含まれた第1ダイオード電圧値を除去するために前記直流復元器と前記最高値検出部で使われたダイオード個数だけの第2ダイオード電圧値を検出するためのダイオード電圧検出部と;前記最高値検出部の最高電圧値と前記ダイオード電圧検出部の第2ダイオード電圧値をディジタル信号に変換して出力するADコンバータと;ディジタル変換された前記第2ダイオード電圧値を用いてディジタル変換された前記最高電圧値に含まれた第1ダイオード電圧値を除去して温度変化によるダイオード電圧の影響を除去し、前記第1ダイオード電圧値が除去された前記最高電圧値を予め格納された比較データと比較することにより前記検出対象物体の動き間隔値を出力する制御部を備える。
【0013】
前記直流復元器は互いに直列連結されたキャパシタとダイオードとから構成され、前記第2ダイオード電圧値を出力とするクランピング回路から構成できる。
【0014】
前記ダイオード電圧検出部は、電源電圧(VCC)と接地との間に順次に直列連結された抵抗と少なくとも1つのダイオードを用いて構成され、前記第2ダイオード電圧値を出力値とする回路から構成できる。
【0015】
前記制御部は、前記ADコンバータを通じてディジタル変換された前記最高電圧値から前記第2ダイオード電圧値を足して温度変化によるダイオード電圧の影響を除去することができる。
【0016】
前記共振回路に特定周波数を有する入力信号源が入力される時、前記感知コイルと前記検出対象物体が最も近くにある時を基準に、前記感知コイルと前記検出対象物体との間の間隔が遠ざかるほど前記同調増幅器の出力電圧が減少する原理を利用するか、または前記感知コイルと前記検出対象物体が最も遠くにある時を基準に、前記感知コイルと前記検出対象物体とのの間隔が近づくほど前記同調増幅器の出力電圧が減少する原理を用いて前記検出対象物体の動き間隔を測定することができる。
【発明の効果】
【0017】
本発明によれば、自動車用動力伝達装置の推進軸と連結されて共に動く金属材質の検出対象物体の動きを、感知コイルと検出対象物体との間の間隔変化に対応する感知コイル(L1)のインダクタンス変化を用いて測定することによって、検出対象物体の動作により自動車用動力伝達装置の制御される動作状態が分かる長所がある。また、温度変化に影響を受けない動き間隔測定装置の具現が可能になる。
【図面の簡単な説明】
【0018】
【
図1】一般的な自動車用動力伝達装置の概略構造図である。
【
図2】本発明の一実施形態に従う動作状態を確認する動き間隔測定装置が備えられた自動車用動力伝達装置の概略構造図である。
【
図3】
図2の動き間隔測定装置の原理を説明するための回路図である。
【
図4】
図2の動き間隔測定装置の原理を説明するためのグラフである。
【
図5】
図2の動き間隔測定装置の原理を説明するためのグラフである。
【
図6】本発明の第1実施形態に従う動き間隔測定装置の具体ブロック図である。
【
図7】
図6の動き間隔測定装置の具現例である回路図である。
【
図8】本発明の第2実施形態に従う
図2の動き間隔を確認する測定装置の具体ブロック図である。
【
図9】
図8の動き間隔を確認する測定装置の具現例である回路図を示すものである。
【発明を実施するための形態】
【0019】
以下、本発明の好ましい実施形態が、本発明が属する技術分野で通常の知識を有する者に本発明の徹底した理解を提供する意図の以外の他の意図無しで、添付の図面を参照として詳細に説明される。
【0020】
図2は、本発明の一実施形態に従うアクチュエータにより制御される自動車用動力伝達装置の動作状態を確認する動き間隔測定装置の概略構造図である。
【0021】
図2に図示したように、本発明の一実施形態に従うアクチュエータ60の制御による自動車用動力伝達装置1の動作状態を確認する動き間隔測定装置100は前記アクチュエータ60に備えられる。前記自動車用動力伝達装置1は、噛み合い構造が含まれた駆動軸40と、この駆動軸に噛み合って動力を伝達する移動可能な推進軸50と、この推進軸と共に動く金属材質の検出対象物体20及び前記推進軸に作動力を伝達する内部作動子10と、アクチュエータ駆動源30を含む自動車用動力伝達装置制御用アクチュエータ60を備える構成を有する。前記検出対象物体20は、アルミニウム、スチール、ステンレススチールなどの多様な金属材質から構成できる。
【0022】
本発明の一実施形態に従う自動車用動力伝達装置の作動状態を確認する動き間隔測定装置100は、感知コイルが含まれた共振回路を用いて、前記検出対象物体20と前記感知コイルとの間隔変化による前記共振回路での共振周波数変化と前記共振回路の出力電圧の変化を用いて前記検出対象物体20の動き間隔(T)を測定するようになる。即ち、自動車用動力伝達装置用アクチュエータの作動時、内部作動子10に連結された検出対象物体20の動きに従う検出対象物体20と感知コイルとの間隔を測定することによって、EDLまたはEDDなどの全体システムの作動状態を感知するようになる。
【0023】
これによって、発明の一実施形態に従う自動車用動力伝達装置の作動状態を確認する動き間隔測定装置100は、共振回路を構成する感知コイルが検出対象物体20の動きにより影響を受ける程度の位置に備えられて、自動車用動力伝達装置用アクチュエータと隣接配置されるべきである。
【0024】
図3から
図5を用いて検出対象物体動き間隔測定の原理を簡単に説明すると、次の通りである。
図3は前記動き間隔測定装置100の測定原理を説明するための共振回路であり、
図4及び
図5は前記動き間隔測定装置100の測定原理を説明するためのグラフである。
【0025】
図3に図示したように、共振回路は入力信号源(I
psin(2πf
0t))が備えられ、抵抗(R)、感知コイル(L)、及びキャパシタ(C)が並列連結された構造を有する。
【0026】
入力信号源(Ipsin(2πf0t))の入力信号の周波数(fo)が共振周波数(fr)と一致する時に最大電圧が前記共振回路の両端に示される。ここで、共振周波数(fr)とQ(Quality Factor)は次の通り示される。
【0027】
【0028】
図4は、
図3の共振回路で感知コイル(L)と前記検出対象物体20が最も近くにある時を基準に共振特性の変化を示すグラフである。
【0029】
図4に図示したように、
図3のような共振特性を有する共振回路で入力信号源(I
psin(2πf
0t))の周波数を“f
o=f
a”になるように印加すれば、共振特性グラフが最右側のグラフ(A)のように示され、共振回路の出力電圧の大きさは“V
a”となる。この状態で感知コイル(L)と検出対象物体20との間の間隔が増えれば、前記感知コイル(L)のインダクタンスが増加して共振特性は中間の共振回路特性グラフ(B)に変化するようになり、この際、共振回路の電圧大きさは“V
b”となる。
【0030】
前記感知コイル(L)と検出対象物体20との間の間隔が更に増えれば、前記感知コイル(L)のインダクタンスが更に増加して共振特性は左側の共振回路特性グラフ(C)のように変化するようになり、この際、共振回路の出力電圧大きさは“Vc”となる。即ち、感知コイル(L)と検出対象物体20との間隔が遠ざかるほど共振回路の共振周波数は減少し、共振回路の出力電圧が減少する。このような原理を用いて感知コイル(L)と検出対象物体20との間の間隔を測定することができる。
【0031】
図5は、
図3の共振回路で感知コイル(L)と検出対象物体20が最も遠くにある時を基準に共振特性の変化を示すグラフである。
【0032】
図5に図示したように、
図3のような共振特性を有する共振回路で入力信号源(I
psin(2πf
0t))の周波数f
o=f
aになるように印加すれば、共振特性グラフが最左側のグラフ(D)のように示され、共振回路の電圧の大きさは“V
a”となる。感知コイル(L)と検出対象物体20との間の間隔が減れば、感知コイル(L)のインダクタンスが減少して共振特性は中間の共振回路特性グラフ(E)のように変化するようになり、この際、共振回路の出力電圧は“V
b”となる。以後、感知コイル(L)と検出対象物体20との間の間隔が更に減れば、感知コイル(L)のインダクタンスが更に減少して共振特性は右側の共振回路特性グラフ(F)のように変化するようになり、この際、共振回路の出力電圧は“V
c”となる。
【0033】
即ち、感知コイル(L)と検出対象物体20との間隔が近づくほど、共振回路の周波数は増加し、共振回路の出力電圧が減少する。これを用いて感知コイル(L)と検出対象物体20との間の間隔を測定することができる。
【0034】
これによって、
図4のように、感知コイル(L)と検出対象物体20が最も近い間隔を基準とする場合には共振回路の特性グラフの左側特性を用い、感知コイル(L)と検出対象物体が最も遠い間隔を基準とする場合には共振回路の特性グラフの右側特性を用いて、感知コイル(L)と検出対象物体20との間隔を測定することができる。
【0035】
前記の回路は同調増幅器を用いて具現することができる。
【0036】
図6は本発明の第1実施形態に従う
図2の動き間隔を確認する測定装置の具体ブロック図であり、
図7は
図6の動き間隔を確認する測定装置100の具現例である回路図を示すものである。
図7に図示した具現例は1つの例示であり、他の回路で具現可能であることが当然である。
【0037】
図6及び
図7に図示したように、本発明の第1実施形態に従う動き間隔を確認する測定装置100は、矩形波発生器110、低域通過フィルタ120、同調増幅器130、検出部140、ADコンバータ150、及び制御部160を備える。以外に、温度補正のための温度センシング部170を更に備えることができ、前記検出部140と前記温度センシング部170から提供される信号選択のためのスイッチング部180を更に備えることができる。
図7では、制御部160を構成するマイクロコントローラ(μC)がスイッチング部180、ADコンバータ150、矩形波発生器110、及びメモリ(EEPROM)162などの機能を内蔵することで具現されている。
【0038】
前記矩形波発生器110は特定周波数の矩形波を発生させるためのものであって、前記制御部160を構成するマイクロコントローラ(μC)に内蔵されたタイマーを用いるか、または通常の技術者によく知られた矩形波発生器を用いて具現可能である。
【0039】
前記低域通過フィルタ120は、前記矩形波発生器110で発生した矩形波を正弦波に変えるか、または前記矩形波の基準周波数成分を除外した雑音成分(例えば、2次以上のハーモニックス成分など)を除去するためのものである。前記低域通過フィルタ120は、
図7に図示したように、抵抗(R6、R8)とキャパシタ(C5)を用いて通常の技術者によく知られた低域通過フィルタで具現可能である。
図7の低域通過フィルタ120で2つの抵抗(R6、R8)は前記矩形波発生器110から出力される矩形波の大きさを調整し、キャパシタ(C5)と共に低域通過濾波器を構成するようになり、この際、低域通過フィルタの遮断周波数“以下の数2”として与えられる。
【0040】
【0041】
前記同調増幅器130は前記低域通過フィルタ120を通過した信号を増幅し、感知コイル(L1)が含まれた共振回路132を含んで構成されて、前記検出対象物体20と前記感知コイル(L1)との間隔変化に対応して変化される共振周波数及び変化する共振回路132の出力電圧を含む出力信号を提供するようになる。
【0042】
図7に図示したように、前記同調増幅器130は2つのトランジスタ(Q1A、Q2A)とその周辺回路で構成される。前記共振回路132は、抵抗(R3)、キャパシタ(C1)、及び感知コイル(L1)の並列構造で
図3のような共振回路またはその応用回路で具現可能であり、
図7に図示したような回路構造の共振回路の以外に多様な共振回路で具現可能である。インダクタ(L1)は感知コイルを示し、キャパシタ(C2)は共振周波数を決定する。抵抗(R3)はコイルの内部抵抗と共に共振回路の選択もQを決定する。トランジスタ(Q1A)は増幅機能を遂行し、トランジスタ(Q1B)はトランジスタ(Q1A)の増幅器が検出部140の回路の影響を受けないようにするために緩衝回路(Buffer)として使われる。
【0043】
前記検出部140は、前記同調増幅器130の出力信号から最高値及び最低値を検出するためのものであって、最高値検出回路142及び最低値検出回路144を備えることができる。
【0044】
前記最高値検出回路142は前記同調増幅器130の出力信号から最高値を検出し、前記最低値検出回路144は前記同調増幅器130の出力信号から最低値を検出して前記スイッチング部180を通じて前記ADコンバータ150に提供するようになる。
【0045】
前記最高値検出回路(MAX)142は、ダイオード(DN2)、抵抗(R9、R10)、及びキャパシタ(C6)から構成されて、
図7に図示した回路のように具現できる。以外に、通常の技術者によく知られた他の回路で具現することも可能である。
図7の最高値検出回路142では“dCHG”信号がロー(Low)レベルに出力される時にキャパシタ(C6)が放電されながら前記最高値検出回路142が初期化され、dCHG信号がハイ(High(Vcc))レベルになれば前記同調増幅器130を構成するトランジスタ(Q1B)のエミッタに示される最大信号がキャパシタ(C6)に充電される構成を有するようになる。
【0046】
前記最低値検出回路(MIN)144は、ダイオード(DN1)、抵抗(R2、R5)、及びキャパシタ(C3)で構成されて、
図7に図示した回路のような最低値検出回路144で具現できる。以外に、通常の技術者によく知られた他の回路で具現することも可能である。
図7の最低値検出回路144では“dCHL”信号がハイ(High(VCC))レベルに出力される時にキャパシタ(C3)が“VCC-VD”大きさ(“VD”はダイオード(DN1)の電圧)で充電されながら最低値検出回路144が初期化され、dCHL信号がロー(Low)レベルになれば前記同調増幅器130を構成するトランジスタ(Q1B)のエミッタに示される最低信号までキャパシタ(C3)が放電されてキャパシタ(C3)に最低値が示されるようになる。
【0047】
前記ADコンバータ150は、前記検出部140の最高値(MAX)出力信号、最低値(MIN)出力信号をディジタル信号に変換して出力するようになる。前記ADコンバータ150は、前記マイクロコントローラ(μc)に内蔵されることも、別途に具現することも可能である。
【0048】
前記スイッチング部180は、前記検出部140の最高値(MAX)出力信号、最低値(MIN)出力信号、前記温度センシング部170の温度検出信号を選択して前記ADコンバータ150に提供する機能を遂行する。前記スイッチング部180は、
図7に図示したように、前記マイクロコントローラ(μC)に内蔵されたアナログスイッチで具現することも可能であるが、別途に具現することも可能である。
【0049】
前記温度センシング部170は、現在の温度を検出して温度検出信号を前記ADコンバータに提供する。前記温度センシング部170は、抵抗(R13)とサーミスタ(RT1)を備えて
図7に図示したような回路構造で具現可能であり、以外に、通常の技術者によく知られた温度センシング回路でも具現可能である。
図7で、サーミスタ(RT1)は温度によって抵抗値が変化する素子であり、前記温度センシング部170での出力電圧(V
TMP)は”以下の数3” として与えられるようになる。前記温度センシング部170は必要によって省略可能である。
【0050】
【0051】
前記制御部160は、前記矩形波発生器110、前記スイッチング部180、前記ADコンバータ150、及び前記検出部140などの動作を制御し、前記マイクロコントローラ(μC)とメモリ(EEPROM)、及び出力回路162を含んで構成できる。
【0052】
前記マイクロコントローラ(μC)は、前記矩形波発生器110、前記スイッチング部180、前記ADコンバータ150の機能を含むことができ、前記メモリ(EEPROM)を内蔵している。これによって、前記マイクロコントローラ(μC)は内蔵されたタイマーを用いて前記矩形波を発生し、内蔵されたアナログスイッチとADコンバータを用いて前記同調増幅器130の最低値と最高値を読み込むようになり、前記温度センシング部170の温度値を読み込むようになる。そして、これら値と内蔵されたメモリ162に格納された資料を用いて前記感知コイル(L1)と検出対象物体20との間の間隔を測定するようになる。
【0053】
前記メモリ162は、前記最高値及び前記最低値、前記最高値と前記最低値の差値に対応する検出対象物体20と感知コイル(L1)の間隔に対する情報と、温度補正のためのデータが格納されている。
【0054】
前記出力回路(OUTPUT)162は、ハーフデュプレックス(Half-duplex)通信とPWM信号出力が可能であるように抵抗(R12、R14、R15、R16)、ダイオード(D1)、トランジスタ(Q2)を備えて
図7に図示したことのような回路構造で具現可能である。
【0055】
前記出力回路162は、前記マイクロコントローラ(μC)が温度補正などの補正を遂行する補正モードである場合には、前記マイクロコントローラ(μC)に内蔵された“UART(Universal asynchronous receiver/transmitter)”を用いてUARTを用いてハーフデュプレックス(Half-duplex)通信を行い、前記マイクロコントローラ(μC)が補正モードでない場合には“UART”は不活性化(disable)され、前記マイクロコントローラ(μC)のRX端子にハイ(High)信号が出力され、前記マイクロコントローラ(μC)のTX端子にPWM信号が出力されれば、前記出力回路162はトランジスタ(Q2)と抵抗(R15)を通じてPWM信号を出力するようになる。
【0056】
前記制御部160は、前記ADコンバータ150を通じて出力される最高値と最低値の差を計算し、これを前記メモリ162に予め格納された比較データと比較することにより前記プレート20の動き間隔値を出力するようになる。
【0057】
前記制御部160は、前記同調増幅器130の出力信号の最高値と最低値を検出するために周期的に前記検出部140の最高値検出回路142と前記最低値検出回路144に初期化信号を印加する。また、前記制御部160は前記ADコンバータ150の最高値と最低値の差を計算して出力信号のピーク値を求めて提供し、温度補正を必要とする場合には温度補正を行う。即ち、前記制御部160は前記ADコンバータ150を通じて出力される最高値と最低値の差値に対して前記温度検出信号を用いて温度補正を遂行した以後に、温度補正された値を前記メモリ(EEPROM)に格納されたデータを用いて感知コイル(L1)とプレート20との間の間隔変化と同調増幅器130の出力信号の間の非線形特性を補正して、その結果を出力(OUTPUT)として送り出す。これによって、前記検出対象物体20の動き間隔値を出力するようになる。
【0058】
前述した本発明の第1実施形態の場合には温度変化に甚大な影響を受けるという問題点がある。通常的に、
図7の回路の場合、回路周辺の温度が-40~150℃範囲内で動作するようになるが、この場合、温度によって特性の差が多く示されるようになる。
【0059】
特に、バイポーラトランジスタ(Q1A)を使用する同調増幅器130とダイオード(DN1、DN2)を使用する最高値検出回路(MAX)142と最低値検出回路(MIN)144は、温度に甚大な影響を受けるという問題点がある。
【0060】
このような問題点を解決するために、本発明の第2実施形態が具現された。
【0061】
本発明の第2実施形態は、
図8及び
図9を通じて説明する。
【0062】
図8は本発明の第2実施形態に従う
図2の動き間隔を確認する測定装置の具体ブロック図であり、
図9は
図8の動き間隔を確認する測定装置100の具現例である回路図を示すものである。
図9に図示した具現例は1つの例示であり、他の回路で具現可能であることは当然である。
【0063】
図8及び
図9に図示したように、本発明の第2実施形態に従う動き間隔を確認する測定装置100は、矩形波発生器110、低域通過フィルタ120、同調増幅器130、直流復元器135、検出部140、ダイオード電圧検出部190、ADコンバータ150、及び制御部160を備える。本発明の第1実施形態とは異なり、本発明の第2実施形態は回路の温度補正を遂行せず、最低値検出部を備えない。しかしながら、渦電流(Eddy current)による感知コイルの温度特性を補正するための温度センシング部は必要でありえる。
【0064】
そして、
図9の場合に、ADコンバータ150と制御部160の構成は別途に図示しなかった。これは、本発明の第1実施形態を適用または応用して通常の技術者の水準で具現可能なためである。本発明の第2実施形態の場合に、制御部160を構成するマイクロコントローラ(μC)がADコンバータ150、矩形波発生器110、及びメモリ(EEPROM)162などの機能を内蔵することで具現できる。
【0065】
前記矩形波発生器110は、特定周波数の矩形波を発生させるためのものであって、前記制御部160を構成するマイクロコントローラ(μC)に内蔵されたタイマーを用いるか、または通常の技術者によく知られた矩形波発生器を用いて具現可能である。
【0066】
前記低域通過フィルタ120は、前記矩形波発生器110から発生した矩形波を正弦波に変えるか、または前記矩形波の基準周波数成分を除外した雑音成分(例えば、2次以上のハーモニックス成分など)を除去するためのものである。前記低域通過フィルタ120は、
図9に図示したように、抵抗(R6、R8)とキャパシタ(C5)を用いて通常の技術者によく知られた低域通過フィルタで具現可能である。
図9の低域通過フィルタ120において、2つの抵抗(R6、R8)は前記矩形波発生器110から出力される矩形波の大きさを調整し、キャパシタ(C5)と共に低域通過濾波器を構成するようになり、この際、低域通過フィルタの遮断周波数“以下の数4”として与えられる。
【0067】
【0068】
前記同調増幅器130は前記低域通過フィルタ120を通過した信号を増幅し、感知コイル(L1)が含まれた共振回路132を含んで構成されて、前記検出対象物体20と前記感知コイル(L1)の間隔変化に対応して変化される共振周波数及び変化する共振回路132の出力電圧を含む出力信号を提供するようになる。
【0069】
本発明の第1実施形態である
図7に図示した同調増幅器の場合には、温度による影響を受ける問題点があると前述したことがある。これを具体的に見ると、
図7の同調増幅器130の電圧利得(Av)は、“以下の数5”のように与えられる。ここで、g
m=I
C/V
T、Ic=トランジスタ(Q1A)のコレクタ電流、V
T=熱電圧、R
L=トランジスタ(Q1A)のコレクタから眺めた負荷抵抗を意味する。
【0070】
【0071】
前記の電圧利得(Av)の数式において、熱電圧(VT)は温度に比例して変化するので、同調増幅器130の電圧利得が温度によって変化するようになる。これを改善するためにはトランジスタ(Q1A)のエミッタに抵抗を連結して熱電圧(VT)の影響を減少させる必要がある。
【0072】
このために、本発明の第2実施形態の同調増幅器130は、
図9に図示したように、2つのトランジスタ(Q1、Q2)とその周辺回路から構成される。前記共振回路132は、抵抗(R3)、キャパシタ(C2、C3)、及び感知コイル(L1)の並列構造で
図3のような共振回路またはその応用回路で具現可能であり、
図9に図示したような回路構造の共振回路の以外に多様な共振回路で具現可能である。インダクタ(L1)は感知コイルを示し、キャパシタ(C2、C3)は共振周波数を決定する。抵抗(R3)はコイルの内部抵抗と共に共振回路の選択度Qを決定する。トランジスタ(Q1)は増幅機能を遂行し、トランジスタ(Q2)はトランジスタ(Q1)の増幅器が前記検出部140の回路の影響を受けないようにするために緩衝回路(Buffer)として使われる。
【0073】
図9の場合、
図7とは異なり、増幅機能を遂行するトランジスタ(Q1)のエミッタに抵抗(R20)が追加される。これは、トランジスタ(Q1)の熱電圧(V
T)の影響を減少させるためである。ここで、前記抵抗(R20)は、以下の数6になるように設定されて、熱電圧(V
T)による影響、即ち、温度変化による影響が最小化されるようにする。
【0074】
【0075】
具体的に、
図9の同調増幅器の電圧利得(Av)は、“以下の数7”となる。ここで、g
m=I
C/V
T、Ic=トランジスタ(Q1)のコレクタ電流、V
T=熱電圧、R
L=トランジスタ(Q1)のコレクタから眺めた負荷抵抗を意味する。
【0076】
【0077】
図9の同調増幅器の電圧利得(Av)の数式において、抵抗(R20)の大きさが、以下の数8であるので、
図9の同調増幅器の電圧利得(Av)は、“以下の数9”となる。これによって、熱電圧による影響が減少して同調増幅器130の電圧利得が温度による影響を少なく受けるようになる。
【0078】
【0079】
【0080】
前記直流復元器(dc restorer)135は、前記同調増幅器130の出力信号からバイアス電圧を除去して交流成分の信号のみを出力するようになる。
【0081】
前記直流復元器135は互いに直列連結されたキャパシタ(C5)とダイオード(D4)から構成され、ダイオード(D4)電圧を出力とするクランピング回路から構成できる。これによって、前記同調増幅器130の出力信号が前記直流復元器135に入力されれば、バイアス電圧は消えて、前記同調増幅器130の出力信号の最低値が前記ダイオード(D4)にクランピングされて出力される。
【0082】
前記検出部140は、前記直流復元器135の出力信号から最高電圧値(VMAX)を検出するためのものである。
【0083】
前記検出部140は、ダイオード(D3)、抵抗(R22)、及びキャパシタ(C7)から構成されて、
図9に図示した回路のように具現できる。即ち、前記直流復元器135の出力ノードと前記検出部140の出力ノードとの間に連結されたダイオード(D3)と、前記検出部140の出力ノードと初期化信号(dCHG)の入力端との間に連結された抵抗(R22)と前記検出部140の出力ノードと接地との間に連結されたキャパシタ(C7)で具現可能である。以外に、通常の技術者によく知られた他の回路で具現することも可能である。
【0084】
図9の検出部140では初期化信号である“dCHG”信号がロー(Low)レベルに出力される時にキャパシタ(C7)が放電されながら前記検出部140が初期化され、dCHG信号がハイ(High(Vcc))レベルになれば前記同調増幅器130を構成するトランジスタ(Q2)のエミッタに示される最大電圧値がキャパシタ(C7)に充電される構成を有するようになる。
【0085】
前記同調増幅器130の出力信号を“Vo(t)”と仮定すれば、前記直流復元器135の出力信号は“Vo(t)-VD”となり、前記検出部140から出力される最高電圧値(VMAX)は、以下の数10として与えられる。
【0086】
【0087】
前記検出部140から出力される最高電圧値(VMAX)は前記ADコンバータ150に提供するようになる。
【0088】
前記検出部140から出力される最高電圧値(VMAX)には、前記直流復元器135で使われたダイオード(D4)と前記検出部140で使われたダイオード(D3)により第1ダイオード電圧値(2VD)が含まれるようになる。前記第1ダイオード電圧値(2VD)は温度変化に敏感に作用するので、即ち、甚大に温度の影響を受けるので除去する必要がある。このために、前記ダイオード電圧検出部190が必要となる。
【0089】
前記ダイオード電圧検出部190は前記直流復元器135と前記検出部140で使われたダイオード個数だけのダイオード電圧値を検出して前記ADコンバータ150に提供するようになる。前記ダイオード電圧検出部190から出力されるダイオード電圧値を第2ダイオード電圧値と称することにする。
【0090】
前記ダイオード電圧検出部190は、電源電圧(VCC)と接地との間に順次に直列連結された抵抗(R21)と少なくとも1つのダイオード(D1、D2)を用いて構成され、前記第2ダイオード電圧値を出力値とする回路で
図9に図示したように具現できる。以外に、他の回路で具現されることも可能である。
【0091】
前記ダイオード電圧検出部190は、前記検出部140から出力される最高電圧値(VMAX)から温度による影響の大きい前記第1ダイオード電圧値(2VD)を除去するために、これと同一の値を有することと予想される第2ダイオード電圧値(VBIAS)を生成して前記ADコンバータ150に提供するようになる。
【0092】
前記ダイオード電圧検出部190の出力である第2ダイオード電圧値(VBIAS)は、“VBIAS=2VD”となる。
【0093】
前記ADコンバータ150は前記検出部140の最高電圧値(VMAX)と前記ダイオード電圧検出部190の出力である第2ダイオード電圧値(VBIAS)をディジタル信号に変換して出力するようになる。前記ADコンバータ150は前記マイクロコントローラ(μc)に内蔵されることも、別途に具現することも可能である。
【0094】
前記制御部160は、前記矩形波発生器110、前記ADコンバータ150、及び前記検出部140などの動作を制御し、前記マイクロコントローラ(μC)とメモリ(EEPROM)、及び出力回路162を含んで構成できる。
【0095】
前記マイクロコントローラ(μC)は、前記矩形波発生器110、前記ADコンバータ150の機能を含むことができ、前記メモリ(EEPROM)を内蔵している。これによって、前記マイクロコントローラ(μC)は内蔵されたタイマーを用いて前記矩形波を発生し、内蔵されたアナログスイッチとADコンバータを用いて前記同調増幅器130の最高電圧値を読み込むようになる。そして、これら値と内蔵されたメモリ162に格納された資料を用いて前記感知コイル(L1)と検出対象物体20との間の間隔を測定するようになる。
【0096】
前記メモリ162は、前記最高電値及び前記最低値、前記最高値と前記最適値の差値に対応する検出対象物体20と感知コイル(L1)との間隔に対する情報が格納されている。
【0097】
前記出力回路(OUTPUT)162は、本発明の第1実施形態を通じて説明した通りである。
【0098】
前記制御部160は、ディジタル変換された前記第2ダイオード電圧値(VBIAS)を用いてディジタル変換された前記最高電圧値(VMAX)に含まれた第1ダイオード電圧値(2VD)を除去して温度変化によるダイオード電圧の影響を除去し、前記第1ダイオード電圧値が除去された前記最高電圧値(Vopp)を予め格納された比較データと比較することにより前記検出対象物体の動き間隔値を出力するようになる。
【0099】
具体的に、以下の式のように、前記第1ダイオード電圧値を除去するために、ディジタル変換された前記最高電圧値(VMAX)と前記第2ダイオード電圧値(VBIAS)を足すと、第1ダイオード電圧値が除去されて温度変化によるダイオード電圧の影響は消えるようになる。
【0100】
VOPP=VMAX+VBIAS
={vo(t)のピーク値-2VD}+2VD=vo(t)のピーク値
【0101】
これによって、温度変化に影響を受けない動き間隔測定装置の具現が可能になる。
【0102】
前記制御部160は、前記同調増幅器130の出力信号の最高電圧値を検出するために周期的に前記検出部140に初期化信号を印加する。また、前記メモリ(EEPROM)に格納されたデータを用いて感知コイル(L1)とプレート20との間の間隔変化と同調増幅器130の出力信号との間の非線形特性を補正して、その結果を出力(OUTPUT)として送り出す。これによって、前記検出対象物体20の動き間隔値を出力するようになる。
【0103】
前述したように、本発明によれば、検出対象物体20と感知コイル(L1)との間の間隔変化に対応する感知コイル(L1)のインダクタンス変化を、共振回路の同調特性を用いて測定することによって、検出対象物体20の動作により制御される制御装置の動作状態が分かる長所がある。また、温度変化に影響を受けない動き間隔測定装置の具現が可能になる。
【産業上の利用可能性】
【0104】
前記した実施形態の説明は本発明のより徹底した理解のために図面を参照して例を挙げたことに過ぎないので、本発明を限定する意味として解釈されてはならない。また、本発明が属する技術分野で通常の知識を有する者において、本発明の基本的原理を逸脱しない範囲内で多様な変化と変更が可能であることは明らかである。
【符号の説明】
【0105】
20:検出対象物体
110:矩形波発生器
120:低域通過フィルタ
130:同調増幅器
135:直流復元器
140:検出部
150:ADコンバータ
160:制御部
190:ダイオード電圧検出部
【国際調査報告】