IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エンオーシャン ゲーエムベーハーの特許一覧

<>
  • 特表-電磁エネルギー変換器 図1A
  • 特表-電磁エネルギー変換器 図1B
  • 特表-電磁エネルギー変換器 図1C
  • 特表-電磁エネルギー変換器 図2A
  • 特表-電磁エネルギー変換器 図2B
  • 特表-電磁エネルギー変換器 図2C
  • 特表-電磁エネルギー変換器 図3
  • 特表-電磁エネルギー変換器 図4
  • 特表-電磁エネルギー変換器 図5
  • 特表-電磁エネルギー変換器 図6
  • 特表-電磁エネルギー変換器 図7
  • 特表-電磁エネルギー変換器 図8
  • 特表-電磁エネルギー変換器 図9
  • 特表-電磁エネルギー変換器 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-15
(54)【発明の名称】電磁エネルギー変換器
(51)【国際特許分類】
   H02K 35/02 20060101AFI20221208BHJP
【FI】
H02K35/02
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022522383
(86)(22)【出願日】2020-10-14
(85)【翻訳文提出日】2022-06-10
(86)【国際出願番号】 EP2020078948
(87)【国際公開番号】W WO2021074245
(87)【国際公開日】2021-04-22
(31)【優先権主張番号】102019127605.5
(32)【優先日】2019-10-14
(33)【優先権主張国・地域又は機関】DE
(81)【指定国・地域】
(71)【出願人】
【識別番号】509032955
【氏名又は名称】エンオーシャン ゲーエムベーハー
(74)【代理人】
【識別番号】110002952
【氏名又は名称】弁理士法人鷲田国際特許事務所
(72)【発明者】
【氏名】クラウツニッツァー スベン
(72)【発明者】
【氏名】シュミット フランク
(72)【発明者】
【氏名】ユドニコフ ドミトリー
(57)【要約】
本発明は、遠隔スイッチ(14)用の電磁エネルギー変換器に関する。エネルギー変換器は、電気コイル(9)と、少なくとも1つの永久磁石(8)及び少なくとも1つの強磁性要素(1)を含む磁気構成要素とを有する。永久磁石(8)及び/又は強磁性要素(1)はそれぞれ、2つの極限位置の間で移動可能であり、極限位置の間での永久磁石(8)及び/又は強磁性要素(1)の移動は磁気回路内の磁束の方向反転をもたらし、磁束は、コイル(9)によって少なくとも部分的に囲まれる。永久磁石(8)及び/又は強磁性要素(1)の極限位置のうちの少なくとも1つは、少なくとも2つの磁気構成要素が接触しない非接触の極限位置として構成される。
【選択図】 図2B
【特許請求の範囲】
【請求項1】
遠隔スイッチ(14)用の電磁エネルギー変換器であって、前記エネルギー変換器は磁気回路を生成するための磁気構成要素を有し、前記磁気構成要素は少なくとも1つの永久磁石(8)及び少なくとも1つの強磁性要素(1)を備え、
前記エネルギー変換器は少なくとも1つの電気コイル(9)を備え、
前記永久磁石(8)及び/又は前記強磁性要素(1)はそれぞれ、2つの極限位置の間で移動可能であり、前記極限位置の間の前記永久磁石(8)及び/又は前記強磁性要素(1)の移動は前記磁気回路内の磁束の方向反転をもたらし、
前記磁束は、前記コイル(9)によって少なくとも部分的に囲まれ、
前記永久磁石(8)及び/又は前記強磁性要素(1)の前記極限位置のうちの少なくとも1つは非接触極限位置として構成され、前記磁気構成要素のうちの少なくとも2つは互いに接触せず、その結果、前記磁気回路は非強磁性物質を介して少なくとも1つの位置で完全に閉じられ、前記非接触極限位置とは異なる、少なくとも2つの前記磁気構成要素が互いに接触する位置が構成される、
電磁エネルギー変換器(14)。
【請求項2】
前記非接触極限位置は、2つの前記非接触磁気構成要素の間の空隙(6)によって形成される、請求項1に記載の電磁エネルギー変換器。
【請求項3】
前記非接触極限位置は、2つの前記非接触磁気構成要素の間に少なくとも部分的に配置された非強磁性材料によって形成される、請求項1に記載の電磁エネルギー変換器。
【請求項4】
前記移動は、前記極限位置を規定する規定された回転角度を有する回転軸(A)を中心とする回転(5)である、請求項1~3のいずれか1項に記載の電磁エネルギー変換器。
【請求項5】
前記回転角度が、30°未満、特に10°未満である、請求項4に記載の電磁エネルギー変換器。
【請求項6】
前記強磁性要素(1)及び/又は前記永久磁石(8)に力結合されるばね要素(3、3a、3b)をさらに備え、
前記ばね要素(3、3a、3b)を作動させることによって、前記2つの極限位置のうちの1つからの磁気保持力に抗して、前記強磁性要素(1)及び/又は前記永久磁石(8)をそれぞれ解放するためのばね力を生成することができる、請求項1~5の何れか1項に記載の電磁エネルギー変換器。
【請求項7】
前記強磁性要素(1)は、第1の強磁性要素(1)として構成され、前記磁気構成要素は第2の強磁性要素(2a)を含み、
前記第1の強磁性要素(1)は、基部(11)及びその上に形成された2つの脚部(10a、10b)を含み、前記基部(11)において前記コイル(9)に磁気的に結合され、
前記第2の強磁性要素(2a)は、前記永久磁石(8)に磁気的に結合され、前記第1の強磁性要素(1)の前記2つの脚部(10a、10b)の領域に延在し、前記第2の強磁性要素(2a)は、前記第1の強磁性要素(1)の前記脚部(10a、10b)間の距離よりも長く、
前記第2の強磁性要素(2a)は、磁気結合のためのそれぞれの重なり合う領域において、前記第1の強磁性要素(1)の前記脚部(10a、10b)と少なくとも部分的に重なる、
請求項1~6のいずれか1項に記載の電磁エネルギー変換器。
【請求項8】
前記第2の強磁性要素(2a)は、各重なり合う領域において前記第1の強磁性要素(1)の前記基部(11)に面する側において前記第1の強磁性要素(1)の前記基部(11)側に突出している、請求項7に記載の電磁エネルギー変換器。
【請求項9】
前記第2の強磁性要素(2a)は、前記第1の強磁性要素(1)の基部(11)から離れた側の領域において前記第1の強磁性要素(1)の脚部(10a、10b)を越えて突出し、この領域において切断された角を有する、請求項7又は8に記載の電磁エネルギー変換器。
【請求項10】
前記磁気構成要素は、第3の強磁性要素(2b)を含み、
前記第3の強磁性要素(2b)は、前記永久磁石(8)に磁気的に結合され、
前記第1の強磁性要素(1)は、前記2つの極限位置の間で移動可能であり、
前記第1の強磁性要素(1)は、
前記2つの極限位置の1つで前記第2の強磁性要素(2a)を対向して前記2つの脚部(10a、10b)の1つと打撃し、距離(6)が前記2つの脚部(10a、10b)の他方と前記第3の強磁性要素(2b)との間で形成され、
前記2つの極限位置の他方で前記第2の強磁性要素(2a)を対向して前記2つの脚部(10a、10b)の他方と打撃し、距離(6)が前記2つの脚部(10a、10b)の1つと前記第3の強磁性要素(2b)との間で形成される、
請求項7~9のいずれか1項に記載の電磁エネルギー変換器。
【請求項11】
前記第3の強磁性要素(2b)と前記永久磁石(8)との間には距離(6)が形成されている、請求項10に記載の電磁エネルギー変換器。
【請求項12】
電磁エネルギー変換器(23)を含む、請求項1~11のいずれか1項に記載の遠隔スイッチ(14)。
【請求項13】
前記電磁エネルギー変換器(23)が請求項6にしたがって具体化され、前記遠隔スイッチ(14)は、ばね要素(3、3a、3b)を作動させるための前記エネルギー変換器(23)の前記ばね要素(3、3a、3b)に可動的に構成され結合される解放ユニット(15)を含む、請求項12に記載の遠隔スイッチ(14)。
【請求項14】
解放ユニット(15)を前記解放ユニット(15)の初期位置にリセットするためのリセット要素(18)を更に備えることを特徴とする請求項13に記載の遠隔スイッチ(14)。
【請求項15】
環境からの物理的パラメータの測定データを測定するための1つ以上のセンサをさらに備える、請求項12~14のいずれか1項に記載の遠隔スイッチ(14)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遠隔スイッチ用又は電子制御装置用の電磁エネルギー変換器に関する。
【背景技術】
【0002】
このような遠隔スイッチ又は制御装置は、近距離(典型的には建物内では200メートルの範囲内、建物外では20kmの範囲内)にわたって無線によって情報を送信することができる。このような装置は特に、遠隔スイッチ、無線ボタン、遠隔制御装置、及び物体の手動作動又は機械的移動によって無線信号を送信するように活性化される他の無線信号送信機を含む。
【0003】
このような装置では、電気エネルギーが有利には機械的作動自体から得られ、バッテリ交換又は定期的なバッテリ充電なしでメンテナンスフリーの動作を可能にする。この目的のために電気機械式エネルギー変換器が使用され、これは機械的エネルギーを電気エネルギーに変換し、それを短時間貯蔵し、したがって装置のエネルギー自律動作を可能にする。
【0004】
電気機械式エネルギー変換器の従来の解決策は、例えば電磁エネルギー変換器が使用されており、これは現在、前述のアプリケーションで使用されているエネルギー変換器の典型例である。このような電磁エネルギー変換器の原理は、欧州特許第1 611 662号明細書に記載されている。この原理は、強磁性要素が永久磁石に対して移動可能に取り付けられていることである。各々が2つの磁気接点を有する2つの停止位置の間で強磁性要素を振動することにより、低磁気抵抗で磁束の急激な方向反転(強い変化)が生じ、その結果、磁気的に結合した電気コイルに電気エネルギーが誘導される。このような解決策はコンパクトであり、構成が比較的容易である。
【0005】
しかしながら、これらの解決策にもいくつかの欠点がある。一方、多重磁気接点の機械的設計のために、使用される構成要素には高精度の要求がある。生産中に避けられない非常に小さな部品公差でさえ、エネルギー変換の機能に強い影響を及ぼす。一方、上述の端部位置では、強い磁力ピークが発生する。磁力曲線は、接触する可動構成要素の接点間の距離の3乗に比例する。したがって、接点の境界領域で強い力の変化が生じる。これらは、高い許容要件の問題を悪化させる。また、移動の過程において、力のピークは強いノイズの発生をもたらす。これは、エネルギー変換器が例えば、ビル内の遠隔スイッチにおいて使用される場合には望ましくない。さらに、例えば、スイッチ手段又は解放要素を介したユーザによる作動は、典型的には3Nを超える大きな力を必要とする。
【0006】
したがって、本発明の目的は前述の欠点を克服し、それにもかかわらず、コンパクトで、構成が比較的容易であり、改良されたエネルギー変換を可能にする電磁エネルギー変換器を記載することである。
【0007】
第1の態様によれば、この目的は、後述するタイプの電磁エネルギー変換器によって解決される。さらなる有利な実施形態及びさらなる実装は、特許請求の範囲に開示されている。
【0008】
電磁エネルギー変換器は、特に遠隔スイッチのために提供される。エネルギー変換器は、磁気回路を発生するための磁気構成要素を有する。磁気構成要素は、少なくとも1つの永久磁石及び少なくとも1つの強磁性要素を含む。加えて、エネルギー変換器は、少なくとも1つの電気コイルを有する。
【0009】
永久磁石及び/又は強磁性要素は、それぞれ、2つの極限位置の間で移動可能である。これにより、永久磁石及び/又は強磁性要素が両端位置間を移動すると、磁気回路内の磁束が方向反転する。磁束は少なくとも部分的にコイルで囲まれる。これはコイルに電気エネルギーを誘起する技術的効果がある。永久磁石及び/又は強磁性要素を2つの極限位置の間で移動させることによって、磁束の非常に迅速な方向反転を達成することができ、その結果、コイル内の電気エネルギーが高く誘導される。
【0010】
このエネルギー変換器において、永久磁石及び/又は強磁性要素の極限位置の少なくとも1つは、非接触の極限位置として構成され、少なくとも2つの磁気構成要素は互いに接触しない。これは、非接触極限位置において、少なくとも2つの磁気構成要素の間に間隔が形成され、その結果、2つの磁気構成要素の間に直接的な接触がないか、又は直接的に触れていないことを意味する。これは、少なくとも1箇所において非強磁性体に亘って磁気回路を完全に閉じるという技術的効果を有する。
【0011】
従来の解決策に対する上述の基準を考慮すると、このような手段は、磁気抵抗の実質的な増加及び磁束の付加的な弱化をもたらすので、当初は当業者の標準的なアプローチとは違和感があるように見える。これは、エネルギー変換器のエネルギー密度と効率にとって基本的に不利である。
【0012】
しかしながら、この欠点は、より優れた材料又はより大きな永久磁石又はより高い磁化を有する永久磁石によって補うことができる。全体として、このようなエネルギー変換器はしたがって、以下の利点を有し、これは、関係する欠点をはるかに上回る。幾つかの磁気接点の機械的な過剰な限定が回避される。その結果、エネルギー変換器の機械的システムが正確に決定される。製造において不可避である磁気構成要素の小さな公差は、機能の損失又は歩留まりの低下が全くないか、又はごくわずかしかない状態で許容することができる。これは、エネルギー変換の効率を著しく増加させる一方で、エネルギー変換器をコンパクトに設計することを可能にする。さらに、2つ以上の接点の非同時分離を回避することができる。さらに、特に非接触極限位置の領域における極端な力のピークを回避することができる。これはまた、部品公差のマイナスの影響を著しく低減する。さらに、接点における強磁性要素の飽和傾向を低減できる。これは、発生する雑音を低減することができることを意味する。加えて、エネルギー変換器の可動磁気部品に作用する中程度の磁力は、ノイズ発生に正の影響を及ぼす。
【0013】
エネルギー変換器の種々の実施形態又はさらなる実装において、非接触の極限位置とは異なる1つ以上の他の極限位置は、これらの極限位置で磁気構成要素の少なくとも2つが接触(距離0)するように構成され、その結果、例えば、接点、接触線又は磁気構成要素間の接触面を介して、接触が与えられる。代替実施形態では、少なくとも1つの他の極限位置も、説明したタイプの非接触極限位置として実施される。したがって、これらの実施形態では、少なくとも2つの非接触極限位置がある。さらなる代替実施形態では、すべての極限位置が非接触極限位置である。
【0014】
本明細書における磁気構成要素の「接触」(touching)は、他の物質の中間のスイッチ、又は中間の貯蔵、又は中間の連結なしに、磁気構成要素間の直接的に接触又は直接的なコンタクト(contact)を意味する。
【0015】
エネルギー変換器の種々の実施形態又はさらなる実装において、非接触の極限位置が、永久磁石及び/又は強磁性要素の極限位置のうちの少なくとも1つに構成される。この非接触の極限位置では、少なくとも2つの磁気構成要素が接触せず、少なくとも1つの位置で非強磁性体に亘って磁気回路が完全に閉じられるようになる。さらに、永久磁石及び/又は強磁性要素のこの少なくとも1つの極限位置において、非接触極限位置とは異なる1つ以上の他の極限位置が、磁気構成要素の少なくとも2つが接触するように構成される。
【0016】
エネルギー変換器の様々な実施形態又はさらなる実装では、強磁性要素及び永久磁石が互いに対して移動可能である。代替的に、強磁性要素及び永久磁石が互いに対して固定されるが、他の磁気構成要素及び/又はエネルギー変換器のコイルに対して移動可能であるように構成される。
【0017】
エネルギー変換器の様々な実施形態では、強磁性要素のみが2つの極限位置の間で移動可能であり、その結果、磁気回路内の磁束の方向反転が生じる。
【0018】
エネルギー変換器の代替実施形態では、永久磁石のみが2つの極限位置の間で移動可能であり、これは磁気回路内の磁束の方向反転につながる。
【0019】
エネルギー変換器の他の実施形態では、強磁性要素及び永久磁石の両方がそれぞれ2つの極限位置(強磁性要素の2つの極限位置及び永久磁石の2つの極限位置)の間で移動可能であり、結果として磁気回路内の磁束の方向反転をもたらす。
【0020】
エネルギー変換器の様々な実施形態又はさらなる実装において、(少なくとも1つの)非接触の極限位置は、2つの非接触磁気構成要素の間の空隙によって形成される。このように、空隙の手段により、非接触磁気構成要素間の間隔が簡単に形成される。しかしながら、空隙を通しても磁気回路は閉じたままであり、たとえ非接触の2つの磁気構成要素が非接触の極限位置で完全に非接触であっても空隙を通過する磁束を伴う。
【0021】
それに対する代替的な又は相補的な実施形態では、(少なくとも1つの)非接触極限位置が2つの非接触磁気構成要素の間に少なくとも部分的に配置された非強磁性材料(空気以外)によって形成される。非強磁性材料は、例えばプラスチックである。このように、非強磁性材料は、非接触極限位置にある磁気構成要素が完全に非接触となるように、非接触磁気構成要素間の空間を少なくとも部分的に埋める。しかし、非強磁性体を磁束が通過し、この構成でも磁気回路は閉じたままである。1つよりも多い非接触の極限位置を有する他の実施形態では、少なくとも1つの非接触の極限位置が空隙によって形成され、少なくとも1つの他の非強磁性材料によって非接触の極限位置が形成される。
【0022】
エネルギー変換器の様々な実施形態又はさらなる実装では、移動が規定された回転角度を有する回転軸を中心とした回転である。回転角度は、それによって極限位置を規定する。それによって、回転としての運動の構成は、永久磁石及び/又は強磁性要素に適用される。回転角は、有利にはその外側の境界が永久磁石及び/又は強磁性要素の2つの極限位置である円形セグメント<360°を規定する。回転は、永久磁石及び/又は強磁性要素の回転軸又はサスペンション又はベアリング位置の周りの移動を可能にし、これは、コンパクトな設計を実現することを可能にする。
【0023】
エネルギー変換器の様々な実施形態又はさらなる実装では、回転角度が30°未満、特に10°未満、特に1°~10°である。これは、小さな又は微少な動きのみが実行されるので、エネルギー変換器の特にコンパクトな又はフラットな設計を可能にする。
【0024】
エネルギー変換器の様々な実施形態又はさらなる実装では、強磁性要素及び/又は永久磁石に力結合されるばね要素をさらに有する。ばね要素を作動させることにより、ばね力を発生させて、磁気保持力に抗して強磁性要素及び/又は永久磁石を2つの極限位置のうちの1つから解放することができる。ばね要素は、可動磁気構成要素に予圧を与え、磁気保持力を超えると、可動磁気構成要素は突然、極限位置から他の極限位置にスナップし、その結果、磁束の方向が特に急激に反転する。非常に短時間のこの急激な磁束の変化は、コイル内の電気エネルギーの特に高い誘導を引き起こし、エネルギー変換を改善する。
【0025】
エネルギー変換器の様々な実施形態又はさらなる実装では、強磁石の要素が第1の強磁石の要素として構成され、磁石の要素は第2の強磁石の要素を含む。第1の強磁性要素は基部及びその上に形成された2つの脚部を有し、基部においてコイルに磁気的に結合されている。第2の強磁性要素は、永久磁石に磁気的に結合され、第1の強磁性要素の2つの脚部の領域内に延在する。第2の強磁性要素は、第1の強磁性要素の脚部間の距離よりも長く、第2の強磁性要素は磁気結合のためのそれぞれの重複領域において、少なくとも部分的に第1の強磁性要素の脚部と重複している。これは、永久磁石から、第2の強磁性要素を通って、第1の強磁性要素に、コイルを通って、再び永久磁石に戻る磁気回路を提供し、コイルを通って磁束を効果的にチャンネリング及び誘導する。このようにして、寄生効果が低く保たれ、エネルギー変換器の効率が向上する。
【0026】
エネルギー変換器の様々な実施形態又はさらなる実装では、第2の強磁性要素がそれぞれの重なり合う領域において第1の強磁性要素の基部に対向する側に第1の強磁性要素の基部に向かって突出する。第2の強磁性要素の幾何学的形状のこの巧みな整形により、磁気結合の重複領域の拡大、ひいては有効磁束の拡大が可能になる。
【0027】
エネルギー変換器の様々な実施形態又はさらなる実装では、第2の強磁性要素が第1の強磁性要素の基部から離れた側の領域において第1の強磁性要素の脚部を越えて延在し、この領域において角が切り取られている。第2の強磁性要素の幾何学的形状のこの巧みな整形により、寄生磁束を最小にすることができる。切断された角は例えば、直角に対して、面積が角度付けられ又は半径方向に又は他の方法で削られている。
【0028】
エネルギー変換器の様々な実施形態又はさらなる実装では、磁気構成要素が第3の強磁性要素を含む。第3の強磁性要素は、永久磁石に磁気的に結合される。第1の強磁性要素は、2つの極限位置の間で移動可能である。2つの極限位置のうちの1つにおいて、第1の強磁性要素は、2つの脚部のうちの1つと第2の強磁性要素に当たる。ここで、2つの脚部のうちの他方と第3の強磁性要素との間に距離が形成される。第1の強磁性要素は、2つの脚部の他方を前記第2の強磁性要素に当てた状態で、2つの脚部の一方と第3の強磁性要素の間に距離が形成されていることを特徴とする。この構成では、第1の強磁性要素の磁気極性が永久磁石に磁気的に結合された第2の強磁性要素に、一方又は他方の脚部をそれぞれ交互に衝突させる、すなわち接触させることによって反転される。それぞれの他方の脚部は第1の強磁性要素のこれら2つの極限位置のそれぞれにおいて第3の強磁性要素から離間しており、したがって非接触の極限位置を備えている。この構成では第1の強磁性要素の一方の脚部がしたがってそれぞれの極限位置で常に第2の強磁性要素と接触し、他方の脚部は第3の強磁性要素から離れたところで非接触の極限位置に来る。これは、永久磁石から、第2の強磁性要素を通って、第1の強磁性要素に、コイルを通って、第3の強磁性要素に、再び永久磁石に戻る磁気回路を提供し、コイルを通って磁束を効果的にチャンネリング及び誘導する。同時に、上述の基本的な利点が効率的に達成される。
【0029】
エネルギー変換器の様々な実施形態又はさらなる実装では第3の強磁性要素が第1の強磁性要素の2つの脚部の領域内に延びており、第3の強磁性要素は第1の強磁性要素の脚部の間の距離よりも短く、第3の強磁性要素が第1の強磁性要素の脚部と重ならないようになっている。このようにして、第1の強磁性要素と第3の強磁性要素のそれぞれの脚部との間隔をそれぞれ容易に形成することができる。
【0030】
エネルギー変換器の様々な実施形態又はさらなる実装ではそれぞれの脚部と第3の強磁性要素との間の距離が空隙によって、又は特に上述したタイプの非強磁性材料によって実現される。エネルギー変換器の様々な実施形態又はさらなる実装では、第3の強磁性要素と永久磁石との間に距離がある。この距離は永久的に、すなわち永久磁石及び/又は強磁性要素の極限位置とは無関係に形成される。この距離は、いくつかの実施形態では空隙によって、又は非強磁性材料によって実現される。これらの実施形態は、エネルギー変換器のコンパクトな設計を維持しながら、所望の用途のための磁気構成要素及び磁気効果の寸法決定を可能にする。
【0031】
さらなる態様によれば、上述の目的は、請求項12に記載の遠隔スイッチによって解決される。遠隔スイッチは、上記のタイプの電磁エネルギー変換器を備える。このような遠隔スイッチの手段によって、第1の態様によるエネルギー変換器に関して説明した上述の利点及び効果が同様に達成される。特に、遠隔スイッチは、完全にエネルギー自律的な方法で実装することができる。
【0032】
遠隔スイッチの様々な実施形態又はさらなる実装では電磁エネルギー変換器がエネルギー変換器の特別な実施形態に関して上述したように、強磁性要素及び/又は永久磁石に力結合されるばね要素で実現され、ばね力は2つの極限位置のうちの1つからの磁気保持力に抗して強磁性要素及び/又は永久磁石のそれぞれの解放のためにばね要素を作動させることによって生成され得る。この場合、遠隔スイッチは、移動可能に構成され、ばね要素を作動させるためにエネルギー変換器のばね要素に結合される解放ユニットを有する。このようにして、特に遠隔スイッチの双安定動作モードが実現される。解放要素が一旦作動されると、エネルギー変換器の可動磁気構成要素は、一方の極限位置から他方の極限位置に素早く動く(snap over)。解放要素が再び作動すると、エネルギー変換器の可動磁気構成要素は、第2の極限位置から第1の極限位置に素早く戻る(snap back)。この場合、解放要素は、エネルギー変換器の可動磁気構成要素が配置される極限位置に応じて、例えば2つの異なる位置に配置されるように構成される。
【0033】
遠隔スイッチの様々な実施形態又はさらなる実装では、遠隔スイッチが解放ユニットを解放ユニットの初期位置にリセットするためのリセット要素をさらに備える。この構成では、遠隔スイッチの単安定動作モードが実現される。この場合、解放要素の単一の作動は、エネルギー変換器の可動磁石の成分を一方の極限位置から他方の極限位置へ直ちに素早く動かし、続いて、エネルギー変換器の可動磁石の成分を第2の極限位置から第1の極限位置へ戻す素早く戻ることを生じる。この場合、解放要素は例えば、初期位置から第2の位置に移動し、この位置から初期位置に自動的に戻るように構成される。このようにして、単安定動作はエネルギー変換器の磁気回路における磁束の2倍の方向反転を可能にし、したがって、コイル内の電気エネルギーの2倍の誘導を可能にする。したがって、双安定動作モードよりも1回の作動でほぼ2倍の電気エネルギーを得ることができる。単安定動作モードは例えば、複雑な無線信号及び情報の伝送のエネルギーを消費するアプリケーションに使用され、双安定動作モードはエネルギーを消費することの少ないアプリケーション、例えば、位置信号又は切替指令の純粋な伝送に使用される。
【0034】
遠隔スイッチの様々な実施形態又はさらなる実装では、リセット要素が例えば、ばね又は弾性要素である。
【0035】
遠隔スイッチの様々な実施形態又はさらなる実装では、遠隔スイッチが環境からの物理的パラメータの測定変数又は測定データを測定するための1つ以上のセンサを備える。測定変数の例は、気温、湿度、近傍の物体までの距離、ガス濃度、磁場、加速度、熱放射、土壌水分、湿度、空気中の粒子数、物体の存在などである。
【0036】
上記で説明された態様、特徴、動作方法、及び実施形態のすべては、別々に、又は任意の組合せで実装され得る。
【0037】
以下で図面を用いて、いくつかの実施形態を参照しながら、本発明をより詳細に説明する。
【図面の簡単な説明】
【0038】
図1A】最先端のエネルギー変換器による例示的な実施形態の上面の概略図
図1B】第1の状態における図1Aによるエネルギー変換器の概略側面図
図1C】第2の状態における図1Bによるエネルギー変換器の概略側面図
図2A】本発明によるエネルギー変換器の第1の例示的な実施形態の上面の概略図
図2B】第1の状態における図2Aによるエネルギー変換器の概略側面図
図2C】第2の状態における図2Bによるエネルギー変換器の概略側面図
図3】第2の状態の図2Aによるエネルギー変換器の上面を模式化した斜視図
図4】本発明によるエネルギー変換器の第3の例示的な実施形態の上面の概略図
図5】本発明によるエネルギー変換器の第4の例示的な実施形態の上面の概略図
図6】本発明によるエネルギー変換器の第5の例示的な実施形態の上面の概略図
図7】本発明によるエネルギー変換器の第6の例示的な実施形態の上面の概略図
図8】本発明によるエネルギー変換器の第7の例示的な実施形態の上面の概略図
図9】本発明によるリモートスイッチの例示的な実施形態を示す透視図
図10】遠隔スイッチの分解斜視図
【発明を実施するための形態】
【0039】
まず、図1A図1Cを参照して、従来技術のエネルギー変換器の例示的実施形態を説明する。
【0040】
図1Aは、そのようなエネルギー変換器の上側の概略図を示す。このエネルギー変換器は、基部11及び脚部10a及び10bをU字状に形成した強磁性要素1を有する。電気コイル9は、強磁性要素1と共に基部11に磁気的に結合されている。これにより、電気コイル9が基部11に巻回される。コイル9は、磁気誘導によって、2つの端子に電圧を発生させるように構成されている。ばね要素3が右脚部10b上に配置され、これは、以下でより詳細に説明するように、エネルギー変換器を作動させるように構成される。強磁性要素1は、回転軸Aを中心として移動可能に取り付けられている。
【0041】
さらに、エネルギー変換器は、第2の強磁性要素2aを含む。第2の強磁性要素2aは、永久磁石8(図1B及び図1C参照)に磁気的に結合され、第1の強磁性要素1の両脚部10a及び10bの領域に延在する。第2の強磁性要素2aは、第1の強磁性要素1の脚部10aと10bとの距離よりも長く、第2の強磁性要素2aは磁気結合のためのそれぞれの重複領域において、第1の強磁性要素1の脚部10a及び10bと部分的に重なる。
【0042】
また、エネルギー変換器は、第2の強磁性要素2aとは反対側の永久磁石8の側面に配置され、それに磁気的に結合された第3の強磁性要素2b(図1B及び図1C参照)を有する。このようにして、強磁性要素2a及び2bは、永久磁石8の異なる磁極に磁気的に結合される。永久磁石8及び強磁性要素2a及び2bは、磁気回路を生成するための一群の磁気構成要素を形成する。
【0043】
以下で、この従来技術のエネルギー変換器の動作を、種々の状態におけるエネルギー変換器の側面図をそれぞれ示す図1B及び図1Cを参照して説明する。上述したように、強磁性要素1は、導電性コイル9で囲まれている。さらに、強磁性要素2a及び2bと永久磁石8とによって磁気回路が完成する。図1Bの状態によれば、第1の強磁性要素1が接触し、その2つの脚部10a及び10bを2つの接点7で有し、第2及び第3の強磁性要素2a及び2bは、永久磁石8を介して磁化(磁気的に反対極に)されている。脚部10aは左側の下部接点7で第3の強磁性要素2bに接触し、脚部10bは、右側の上部接点7で第2の強磁性要素2aに接触する。
【0044】
このようにして磁束が伝搬し、永久磁石8を起点として、それに接している強磁性要素2a及び2bを通り、その後、2つの接点7を通って強磁性要素1に入り、そこで閉じる。この2つの接点7により、磁気回路における磁気抵抗の低減が可能となり、比較的高い磁束を得ることができる。さらに、2つの接点7は、接点7の開閉時に磁束の急激で強い変化を可能にし、この点については以下でさらに詳細に説明する。
【0045】
上述したように、この例示的な実施形態では、強磁性要素1が所定の回転角(例えば、<30°又は<10°)内の回転5を介して、回転軸A(図1A参照)を中心に移動可能に取り付けられ、かつ旋回可能である。回転軸Aは、図1B及び図1Cの図面平面に入る。強磁性要素1はある回転角度を介してばね要素3に力4を加えることによってシーソー状に回転させることができ、ここで、図1B及び図1Cに示す2つの端位置(極限位置)を仮定することができる。これら2つの端位置において、強磁性要素1は、2つの脚部10a及び10bとそれぞれの接点7において強磁性要素2a及び2bの対応点に交互に当たる。ばね要素3への力4の印加により、強磁性要素1は、図1Bの位置(状態)から図1Cの位置(状態)に移される。
【0046】
回転5は、接点7における磁気保持力のために急激に起こり、ここで、ばね要素は、最初は、強磁性要素1の動きが起こらずに変形される。この磁気保持力により、強磁性要素1はいずれかの端位置に保持される。ばね要素3によって及ぼされる力4が磁石の保持力を超えるときにのみ、他方の端部位置(極限位置)及び2つの新しい接点7(図1Bから図1Cへの移行及びその逆を参照)への急激な反転があり、そこを通って磁束が伝導される。両端位置(図1B及び図1C)では強磁性要素1を通る磁束は最大であるが、各場合では磁束は逆方向である。これは磁束の向きの反転が起こることを意味し、電気コイル9に意図した電位誘導を引き起こす。
【0047】
図1A図1Cに示すような原理によるエネルギー変換器には、次のような欠点がある:
【0048】
・機械的過剰決定。これは、可動強磁性要素1のベアリング位置(回転軸)Aと、それぞれの2つの磁気接触位置7とからきている。3つの位置すべてが理想的には直線上にあるため、一貫して厳密な機能は、使用される部品や構成要素の極限精度によってのみ達成される。生産において避けられない非常に小さな逸脱(許容誤差)でさえ、エネルギー変換の機能に強い影響を与え、最終的に生産歩留まりが悪くなる(エネルギー変換)。
【0049】
・強力な力は、極限位置でピークに達する。可動強磁性要素1の力曲線は、接点7間の距離の立方体に比例する。したがって、これらの接点7への境界領域には強い力変化が生じる。これらは、高い許容要件の問題を悪化させ、接点7における強磁性材料の磁気飽和をもたらし、エネルギー変換の効率を低下させる。さらに、力ピークは時々、強磁性要素1を非同期に2つの接点7のそれぞれから離脱させるが、これもエネルギー変換の効率にマイナスの効果を及ぼす。
【0050】
・ノイズ発生が大きい。運動の過程において、力のピークは、可動強磁性要素1が強磁性要素2a及び2bとの接点7における取り付け位置に当たるときにも高いノイズ発生をもたらす。これは、エネルギー変換器が例えばビル内の遠隔スイッチで使用される場合には望ましくない。
【0051】
これらの欠点は、本発明によるエネルギー変換器によって克服される。図2A図2Cを参照して、本発明によるエネルギー変換器の例示的な実施形態を説明する。
【0052】
図2A図2Cによる実施形態による本発明のエネルギー変換器は、図1A図1Cの実施形態によるエネルギー変換器と同じ構成要素を備える。同じ構成要素には同じ参照符号を付し、対応する機能については上述の説明を参照されたい。しかしながら、図2A図2Cによる実施形態のエネルギー変換器は、図1A図1Cによる実施形態のエネルギー変換器と比較して、その構成に有意な違いがある。以下で、これらの相違点について説明する。
【0053】
1つの有意な違いは、強磁性要素1の端部位置(図2B及び2Cを図1B及び1Cと比較すると)において、磁気回路が完全に閉じられていないことである。図1A図1Cの実施形態によるエネルギー変換器とは対照的に、図2A図2Cの実施形態によるエネルギー変換器は、それぞれの端位置において、磁気回路に含まれる磁気構成要素間の所定の位置において、距離6、16を規定している。図2Bから分かるように、この端位置において、強磁性要素1は、その脚部10bを右側にしただけで強磁性要素2aに上側接点7で接触する。強磁性要素1の他方の脚部10aは、この端位置において左側に距離6だけ強磁性要素2bから離間している。図2Cから分かるように、この端位置において、強磁性要素1は、その脚部10aを上側接点7で左側にするだけで強磁性要素2aに接触する。強磁性要素1の他方の脚部10bは、この端位置において右側に距離6だけ強磁性要素2bから離間している。
【0054】
また、一例として永久磁石8と強磁性要素2bとの間にも距離16が構成されている。代替の実施形態では、距離16が永久磁石8と強磁性要素2aとの間、又は永久磁石8と強磁性要素2a及び2bとの間で、それぞれ省略され又は構成される。図2A図2Cによる実施形態では、説明した距離6、16は空隙である。代替の実施形態では、距離がそれぞれの磁気構成要素の間に導入される非強磁性材料を介して実現される。説明された距離6、16を介して、強磁性要素1の非接触の極限位置が、図2Bにおけるその脚部10aに関して、及び図2Cにおけるその脚部10bに関して実現される。
【0055】
これらの対策は、効率的なエネルギー変換の(どんな場合にも困難である)対象に対して、磁束を最も効率的かつ効果的に利用するという意味で、一見不思議に思える。これは、これらの対策が最初は磁束の弱化を招き、したがって、エネルギー変換器のエネルギー密度及び効率に有害であるからである。
【0056】
しかしながら、図2A~2Cに示される実施形態に例示されるようなエネルギー変換器の構成は、以下の利点を有することが見出された:
【0057】
・機械系の明確さ。可動強磁性要素1が今や、それぞれの終端位置(それぞれの場合における回転軸A及び接点7のうちの1つ)において3つの機械的決定の代わりに2つしか有していないという事実のために、機械的システムは、正確に決定される。製造において不可避である部品及び磁気構成要素の小さな公差は、機能の損失又は歩留まりの低下なしに許容することができる。2つの接点7の非同時分離は回避される。
【0058】
・極端な力のピークの回避。距離6が力曲線の線形化を許容する。接点7の近傍における極端な力勾配を回避することができる。
【0059】
・さらに、接点7における強磁性要素の飽和傾向を低減できる。
【0060】
・より低騒音化。可動強磁性要素1に作用する適度な磁力は、ノイズ発生に正の効果を有する。
【0061】
図3及び図4は、それぞれ、本発明によるエネルギー変換器の第2及び第3の例示的な実施形態の上面の概略図を示す。図3及び図4において、エネルギー変換器は、図2A図2Cの実施形態によるエネルギー変換器に類似して構成される。同じ構成要素には同じ参照符号を付し、対応する機能については上述の説明を参照されたい。しかしながら、図3及び図4に係る実施形態におけるエネルギー変換器は、図2A図2Cに係る構成と比較して、強磁性要素2aの幾何学的形状に相違がある。
【0062】
図2Aの強磁性要素2aの例示的な実施形態は長方形であるが、図3及び図4の実施形態ではより複雑な幾何学的形状が実現される。特に、図3及び図4のいずれの実施形態においても、強磁性要素1と強磁性要素2aの脚部10a及び10bとのそれぞれの重なり合う領域における重なり合う表面領域が拡大されている。これは、第2の強磁性要素2aを第1の強磁性要素1の基部11と対向する側の第1の強磁性要素1の基部11に向かってそれぞれ重なる領域に突出させることによって達成される。この目的のために、第2の強磁性要素2aは、対応する突起12a及び12bを有する。これは実効磁束が増加するという利点がある。
【0063】
加えて、図4に係る実施形態では、第2の強磁性要素2aが第1の強磁性要素1の脚部10a及び10bを越えて突出するそれぞれの領域において、第1の強磁性要素の基部11から離れた側の面積を小さくしている。これは、第2の強磁性要素2aがそれぞれの領域において、この離れた側に角度のついたコーナーを有することによって達成される。これは寄生磁束を低減する利点がある。しかしながら、2つの脚部10a,10bの間にある第2の強磁性要素2aの中央に位置する領域では、図4に係る実施の形態では第2の強磁性要素2aの面積は小さくならず、むしろ、この領域では第2の強磁性要素2aの可能な限り大きな面積にわたって永久磁石8との強力な磁気結合が実現される(上述比較説明)。
【0064】
図3及び図4の実施形態に示す第2の強磁性要素2aのより複雑な幾何学的形状の利点は、したがって、有益な磁束(強磁性要素1を通る)と寄生磁束(永久磁石8から生じるが強磁性要素1を通らない全ての磁束)の比を最適化することである。これはコイルを通る誘導には寄与しないが、力を生じ得る寄生磁場を減少させることによって、エネルギー変換の効率に直接利益をもたらす。
【0065】
図5図8は、それぞれ、本発明によるエネルギー変換器の第4~第7の実施形態の上面側の概略図を示す。
【0066】
図5及び図6の実施形態は、第1の強磁性要素1と第2の強磁性要素2aの突起部12a及び12bとの間の磁束に対する重なり合う領域又は重なり合う表面の設計に関する。重なり合う領域は、明確にするために、図5及び図6においてそれぞれ斜線で示されている。別のやり方では、第2の強磁性要素2aは図4に関して説明したように、角度を付けられた角13a及び13bを有する。図5において、それぞれの突起12a及び12bとそれぞれの脚部10a及び10bとの間の重なり合う領域は、面積が等しいか、又は対称的に配置されている。さらに、この場合、第2の強磁性要素2aも、2つの脚部10a及び10bに対して対称に配置される。これは、図2A図2C図3及び図4の実施形態による2つの脚部10a及び10bに対して左側に僅かにオフセットした第2の強磁性要素2aの配置に対する相違を表している。
【0067】
図6には、2つの脚部10a及び10bに対して右にわずかにオフセットされた第2の強磁性要素2aの配置と、それぞれの突出部12a及び12bとそれぞれの脚部10a及び10bとの間の重なり合う領域の非対称性との両方が示されている。特に、突起12aと脚部10aとの間の領域の重なりは、突起12bと脚部10bとの間の領域の重なりよりも小さい。接点7(図2B及び図2Cを比較されたい)の領域における磁束のためのそれぞれの重なり合う領域のサイズは、本質的に離脱力の原因である。非対称設計は2つの運動方向における離脱力の不等式を補償し、これは、構造の有限剛性と相互作用するばね要素3の片側取付けによって引き起こされる。
【0068】
図7及び図8の実施形態は、ばね要素3に関する設計に関する。図7による実施形態では、2つのばね要素3a及び3bがそれぞれ反対側に、すなわち両脚部10a及び10bに配置されている。これは、双安定概念を実現する場合に特に有利であり、その理由は、この場合、作動力がばね要素3a及び3bに、それぞれの場合において一方向に(例えば、それぞれの場合において下から、又はそれぞれの場合において上から)作用することができるからである。
【0069】
図8による実施形態では、ばね要素3が左脚部10a上に配置され、台形状の板ばねとして設計されている。ばね要素3は、応力の大きい部品であり、エネルギー変換器の工業的応用において数百万回のスイッチングサイクルに耐えなければならない。ばね要素3の幾何学的形状の台形設計は、ばね要素3が曲げられたときに応力がより均等に分散され、その結果、寿命が増大するという利点を有する。
【0070】
図9及び図10は、それぞれ、本発明による遠隔スイッチ14の例示的な実施形態の斜視図及び分解図を示す。遠隔スイッチ14は、上述したタイプのエネルギー変換器を備える。このようにして、遠隔スイッチ14は、エネルギー自律型遠隔スイッチ14として構成することができる。図2A図8は概略図であるが、図9及び図10は実際の技術的実装の図を示す。
【0071】
エネルギー自律型遠隔スイッチとして実現するためには、遠隔スイッチ14において、エネルギー変換器、電気エネルギー用の短期蓄積装置、力印加のための機械的インタフェース並びに力印加のいくつかの異なる位置の間を区別することが可能なセンサインタフェースを有するコンパクトなモジュール内の電圧変換器及び無線電子機器に加えて実現することが有用である。
【0072】
図9は、組み立てられた状態の遠隔スイッチ14を示す。図9は2つの解放ユニット15のうちの1つを示しており、その手段によってエネルギー変換器をトリガすることができる。
【0073】
図10は、遠隔スイッチ14の内部構造を例示的な詳細で示す。構成要素17及び22は、それぞれの上部と下部の外側ハウジング部品である(上面側17及び底面側22)。構成要素23は、ばね要素3と共に記載された電磁エネルギー変換器を示す。プリント回路基板24は、少なくとも次の構成要素を担持する:電圧整流器、短時間エネルギーセンサ、電圧調整器、マイクロコントローラ、無線ユニット及び無線アンテナ20。無線アンテナ20に加えて、無線インタフェース21がさらなる通信のために構成される。無線インタフェース21は例えば、NFCインタフェースである。
【0074】
さらに、任意選択で、1つ以上のセンサ25a、25b、25c、25dがある。これらはここではプリント回路基板24上の導体トラックとして例示的に実現され、上面側17上に機械的に接続されたセンサインタフェース27a~27dに力が加えられるとすぐに、キーパッドマット19によって、より正確にはその導電性セクション26a~26dによってブリッジされる。これらのセンサの目的は、複数の負荷を制御するために使用することができるダブルロッカースイッチのような、複数の作動インタフェースを有するスイッチを実装することである。
【0075】
解放ユニット15は、遠隔スイッチ14が作動すると、力をばね要素3に伝達するレバーである。リセット要素18は、外力が十分に減少するとすぐに機構をその初期状態に戻す第2のばね要素である。単安定動作モードは、リセット要素18を介して実現される。代替の実施形態では、リセット要素18は存在せず、双安定動作モードが実現される。
【0076】
単安定動作モード及び双安定動作モードについては、以下でより詳細に説明する。
【0077】
単安定動作モードが図10に示されており、ここでは、2つのばね要素3及び18が常に使用されている。第1のばね要素3は、エネルギー変換器23の可動磁気構成要素の移動を加速する役割を果たす。それは、スイッチ作動の速度にかかわらず、エネルギー変換器23の可動磁気構成要素の一定の急速な動きが確実に確保されることを保証する。第2のばね要素18は、遠隔スイッチ14の初期状態を回復させる。これにより、外力が加わらない限り、遠隔スイッチ14は安定した位置を有するだけである。
【0078】
これと区別されるのは、代替案の双安定系である。この場合、ばね要素18は省略される。遠隔スイッチ14は、解放ユニット15の一方が作動すると、2つの安定状態のそれぞれの他方に反転する。遠隔スイッチ14は、解放ユニット15の一方で新たな作動が行われるまでリセットされない。
【0079】
本明細書に記載された幾何学的形状は単に例として示されており、異なるように設計することもできる。同様に、図示しない実施形態では、相対的移動のみが重要であるため、移動部品と静止部品とが役割を交換する。説明された全ての実施形態は、単に例として選択されたものである。
【符号の説明】
【0080】
1 第1の強磁性要素(コア)
2a 第2の強磁性要素(電機子)
2b 第3の強磁性要素
3 ばね要素
3a、3b ばね要素
4 力の適用
5 角度の周りの回転
6 距離
7 接点
8 永久磁石
9 電気コイル
10a、10b 脚部
11 基部
12a、12b 突起
13a、13b 角度がついた角
14 遠隔スイッチ
15 解放ユニット
16 距離
17 上面
18 リセット要素、ばね
19 キーパッドマット
20 無線アンテナ
21 ワイヤレスインターフェース
22 底面側
23 モジュール
24 プリント基板
25a~25d センサ
26a~26d 導電部
27a~27d センサインタフェース
A 回転軸
図1A
図1B
図1C
図2A
図2B
図2C
図3
図4
図5
図6
図7
図8
図9
図10
【手続補正書】
【提出日】2022-06-10
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
遠隔スイッチ(14)用の電磁エネルギー変換器であって、前記エネルギー変換器は磁気回路を生成するための磁気構成要素を有し、前記磁気構成要素は少なくとも1つの永久磁石(8)及び少なくとも1つの強磁性要素(1)を備え、
前記エネルギー変換器は少なくとも1つの電気コイル(9)を備え、
前記永久磁石(8)及び/又は前記強磁性要素(1)はそれぞれ、2つの極限位置の間で移動可能であり、前記極限位置の間の前記永久磁石(8)及び/又は前記強磁性要素(1)の移動は前記磁気回路内の磁束の方向反転をもたらし、
前記磁束は、前記コイル(9)によって少なくとも部分的に囲まれ、
前記永久磁石(8)及び/又は前記強磁性要素(1)の前記極限位置のうちの少なくとも1つは非接触極限位置として構成され、前記磁気構成要素のうちの少なくとも2つは互いに接触せず、その結果、前記磁気回路は非強磁性物質を介して少なくとも1つの位置で完全に閉じられ、前記非接触極限位置とは異なる、少なくとも2つの前記磁気構成要素が互いに接触する位置が構成される、
電磁エネルギー変換器(14)。
【請求項2】
前記非接触極限位置は、2つの前記非接触磁気構成要素の間の空隙(6)によって形成される、請求項1に記載の電磁エネルギー変換器。
【請求項3】
前記非接触極限位置は、2つの前記非接触磁気構成要素の間に少なくとも部分的に配置された非強磁性材料によって形成される、請求項1に記載の電磁エネルギー変換器。
【請求項4】
前記移動は、前記極限位置を規定する規定された回転角度を有する回転軸(A)を中心とする回転(5)である、請求項1に記載の電磁エネルギー変換器。
【請求項5】
前記回転角度が、30°未満、特に10°未満である、請求項4に記載の電磁エネルギー変換器。
【請求項6】
前記強磁性要素(1)及び/又は前記永久磁石(8)に力結合されるばね要素(3、3a、3b)をさらに備え、
前記ばね要素(3、3a、3b)を作動させることによって、前記2つの極限位置のうちの1つからの磁気保持力に抗して、前記強磁性要素(1)及び/又は前記永久磁石(8)をそれぞれ解放するためのばね力を生成することができる、請求項1に記載の電磁エネルギー変換器。
【請求項7】
前記強磁性要素(1)は、第1の強磁性要素(1)として構成され、前記磁気構成要素は第2の強磁性要素(2a)を含み、
前記第1の強磁性要素(1)は、基部(11)及びその上に形成された2つの脚部(10a、10b)を含み、前記基部(11)において前記コイル(9)に磁気的に結合され、
前記第2の強磁性要素(2a)は、前記永久磁石(8)に磁気的に結合され、前記第1の強磁性要素(1)の前記2つの脚部(10a、10b)の領域に延在し、前記第2の強磁性要素(2a)は、前記第1の強磁性要素(1)の前記脚部(10a、10b)間の距離よりも長く、
前記第2の強磁性要素(2a)は、磁気結合のためのそれぞれの重なり合う領域において、前記第1の強磁性要素(1)の前記脚部(10a、10b)と少なくとも部分的に重なる、
請求項1に記載の電磁エネルギー変換器。
【請求項8】
前記第2の強磁性要素(2a)は、各重なり合う領域において前記第1の強磁性要素(1)の前記基部(11)に面する側において前記第1の強磁性要素(1)の前記基部(11)側に突出している、請求項7に記載の電磁エネルギー変換器。
【請求項9】
前記第2の強磁性要素(2a)は、前記第1の強磁性要素(1)の基部(11)から離れた側の領域において前記第1の強磁性要素(1)の脚部(10a、10b)を越えて突出し、この領域において切断された角を有する、請求項7又は8に記載の電磁エネルギー変換器。
【請求項10】
前記磁気構成要素は、第3の強磁性要素(2b)を含み、
前記第3の強磁性要素(2b)は、前記永久磁石(8)に磁気的に結合され、
前記第1の強磁性要素(1)は、前記2つの極限位置の間で移動可能であり、
前記第1の強磁性要素(1)は、
前記2つの極限位置の1つで前記第2の強磁性要素(2a)を対向して前記2つの脚部(10a、10b)の1つと打撃し、距離(6)が前記2つの脚部(10a、10b)の他方と前記第3の強磁性要素(2b)との間で形成され、
前記2つの極限位置の他方で前記第2の強磁性要素(2a)を対向して前記2つの脚部(10a、10b)の他方と打撃し、距離(6)が前記2つの脚部(10a、10b)の1つと前記第3の強磁性要素(2b)との間で形成される、
請求項7に記載の電磁エネルギー変換器。
【請求項11】
前記第3の強磁性要素(2b)と前記永久磁石(8)との間には距離(6)が形成されている、請求項10に記載の電磁エネルギー変換器。
【請求項12】
電磁エネルギー変換器(23)を含む、請求項1に記載の遠隔スイッチ(14)。
【請求項13】
前記電磁エネルギー変換器(23)が請求項6にしたがって具体化され、前記遠隔スイッチ(14)は、ばね要素(3、3a、3b)を作動させるための前記エネルギー変換器(23)の前記ばね要素(3、3a、3b)に可動的に構成され結合される解放ユニット(15)を含む、請求項12に記載の遠隔スイッチ(14)。
【請求項14】
解放ユニット(15)を前記解放ユニット(15)の初期位置にリセットするためのリセット要素(18)を更に備えることを特徴とする請求項13に記載の遠隔スイッチ(14)。
【請求項15】
環境からの物理的パラメータの測定データを測定するための1つ以上のセンサをさらに備える、請求項12に記載の遠隔スイッチ(14)。
【国際調査報告】