IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ユーアイパス,インコーポレイテッドの特許一覧

特表2022-552465ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング
<>
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図1
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図2
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図3
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図4
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図5
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図6
  • 特表-ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-16
(54)【発明の名称】ロボティック・プロセス・オートメーションのためのヒューマンインザループ・ロボット・トレーニング
(51)【国際特許分類】
   G06N 20/00 20190101AFI20221209BHJP
   G06Q 10/06 20120101ALI20221209BHJP
【FI】
G06N20/00
G06Q10/06
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022520183
(86)(22)【出願日】2020-08-19
(85)【翻訳文提出日】2022-05-27
(86)【国際出願番号】 US2020046945
(87)【国際公開番号】W WO2021076227
(87)【国際公開日】2021-04-22
(31)【優先権主張番号】62/915,429
(32)【優先日】2019-10-15
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/708,036
(32)【優先日】2019-12-09
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.JAVASCRIPT
2.BLUETOOTH
(71)【出願人】
【識別番号】520262319
【氏名又は名称】ユーアイパス,インコーポレイテッド
【氏名又は名称原語表記】UiPath,Inc.
【住所又は居所原語表記】1 Vanderbilt Avenue, 60th Floor, New York, NY 10017, United States of America
(74)【代理人】
【識別番号】100180781
【弁理士】
【氏名又は名称】安達 友和
(74)【代理人】
【識別番号】100182903
【弁理士】
【氏名又は名称】福田 武慶
(72)【発明者】
【氏名】シング,プラブディープ
(72)【発明者】
【氏名】クナス,リジ
(72)【発明者】
【氏名】カダキア,パラク
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049AA11
(57)【要約】
ロボティック・プロセス・オートメーション(RPA)のために人工知能(AI)を使用するヒューマンインザループ・ロボット・トレーニングが、開示される。これは、ユーザー又は別のロボットとコンピューティングシステムとのインタラクションを監視するリスナーロボットによって達成され得る。ユーザー又はロボットによるコンピューティングシステムとのインタラクションに基づいて、ロボットは、ユーザー又はユーザーグループのために改善及び/又はパーソナライズされ得る。

【特許請求の範囲】
【請求項1】
ロボティック・プロセス・オートメーション(RPA)ロボット及びリスナーを備えるユーザー・コンピューティング・システムと、
サーバと、
を備えるシステムであって、
前記リスナーが、
前記ユーザー・コンピューティング・システムを介した前記RPAロボットとのユーザーインタラクションを監視して、前記ユーザーインタラクションに関連するデータをログ記録し、更に、
前記ユーザーインタラクションに関連する前記ログ記録されたデータを前記サーバに送信する、ように構成され、
前記サーバが、
前記ユーザーインタラクションに関連する前記ログ記録されたデータを受信し、
前記ログ記録されたデータに基づいて前記RPAロボットのRPAワークフローに改良を加えるべきか否かを判定し、更に、
前記サーバが、前記改良を加えるべきであると判定した場合、
前記RPAロボットの前記RPAワークフローに、アクティビティ又はアクティビティのシーケンスを挿入することによって前記改良が対処可能である場合、前記判定した改良を行う前記RPAロボットの前記RPAワークフローに前記アクティビティ又はアクティビティのシーケンスを挿入する、ように構成される、
システム。
【請求項2】
前記サーバが、
前記改良したRPAワークフローを使用して前記RPAロボットの新規のバージョンを生成し、更に、
前記RPAロボットの前記新規のバージョンを前記ユーザー・コンピューティング・システムにデプロイメントする、ように更に構成される、
請求項1に記載のシステム。
【請求項3】
前記ユーザー・コンピューティング・システムが、
前記サーバから前記RPAロボットの新規のバージョンを受信し、更に、
前記RPAロボットの前記新規のバージョンをデプロイメントする、ように構成される、
請求項1に記載のシステム。
【請求項4】
前記ログ記録されたデータが、前記RPAロボットの動作中に、前記ユーザー・コンピューティング・システムを介して前記ユーザーによって指摘された例外を含む、請求項1に記載のシステム。
【請求項5】
前記例外が、前記RPAロボット、ユーザー設定、又はその両方によって、エラーに関係する、請求項4に記載のシステム。
【請求項6】
改良を加えるべきか否かの前記判定が、所定の時間の経過に起因して、受信されている同じタイプの所定数の例外に基づくか、例外の頻度に基づくか、又はそれらの任意の組合せに基づくものである、請求項1に記載のシステム。
【請求項7】
前記改良が、前記RPAワークフローに、前記アクティビティ又はアクティビティのシーケンスを挿入することによって対処可能でない場合、前記サーバが、
前記ログ記録されたデータに基づいてローカル機械学習(ML)モデルをトレーニングし、更に、
前記トレーニングされたMLモデルを呼び出すように前記RPAワークフローを改良する、ように更に構成される、
請求項1に記載のシステム。
【請求項8】
前記サーバが、
他のコンピューティングシステムの他のユーザーとそれぞれのRPAロボットとのインタラクションに関連するログ記録されたデータを収集し、
前記ユーザーについての例外が、すべての前記他のユーザーのうちのサブセットである前記他のユーザーのグループについて、前記収集したログ記録されたデータにおける例外と同様である場合、
前記ユーザーのサブセットのためのコミュニティMLモデルをトレーニングし、
前記コミュニティMLモデルを呼び出すように、前記RPAワークフローを改良し、更に、
前記ユーザーについての例外が前記他のユーザーのグループについての前記収集したログ記録されたデータにおける例外と類似していて、グローバル再トレーニング閾値を超えた場合、
すべてのユーザーのグローバルMLモデルをトレーニングし、
前記グローバルMLモデルを呼び出すように、前記RPAワークフローを改良する、ように更に構成される、
請求項1に記載のシステム。
【請求項9】
前記ログ記録されたデータが、前記サーバ上で実行されるコンダクタアプリケーションへのハートビートメッセージの一部として前記リスナーによって前記サーバに送信される、請求項1に記載のシステム。
【請求項10】
非一時的コンピュータ可読媒体に格納されるコンピュータプログラムであって、前記プログラムが、少なくとも1つのプロセッサに、
ユーザー・コンピューティング・システムを介したロボティック・プロセス・オートメーション(RPA)ロボットとのユーザーインタラクションを監視させ、前記ユーザーインタラクションに関連し、かつ例外を含むデータをログ記録させ、
前記ユーザーインタラクションに関連する前記ログ記録されたデータをサーバに送信させ、
前記ログ記録されたデータ内の前記例外に対処するように改良した前記RPAロボットの新規のバージョンを前記サーバから受信させ、更に、
前記RPAロボットの前記新規のバージョンをデプロイメントさせる、ように構成される、
コンピュータプログラム。
【請求項11】
前記例外が、前記RPAロボット、ユーザー設定、又はその両方によってエラーに関係する、請求項10に記載のコンピュータプログラム。
【請求項12】
前記ログ記録されたデータが、前記サーバ上で実行されるコンダクタアプリケーションへのハートビートメッセージの一部として前記サーバに送信される、請求項10に記載のコンピュータプログラム。
【請求項13】
前記ログ記録されたデータが、所定量のデータが収集された後、所定の時間期間が経過した後、又はその両方の後で、前記サーバに送信される、請求項10に記載のコンピュータプログラム。
【請求項14】
コンピューティングシステムによって、ユーザーとロボティック・プロセス・オートメーション(RPA)ロボットとのインタラクションに関連するログ記録されたデータを受信することと、
前記コンピューティングシステムによって、前記ログ記録されたデータに基づいて前記RPAロボットのRPAワークフローに改良を加えるべきか否かを判定することと、
前記コンピューティングシステムが、前記改良を加えるべきであると判定した場合、
前記RPAロボットの前記RPAワークフローに、アクティビティ又はアクティビティのシーケンスを挿入することによって前記改良が対処可能である場合、前記コンピューティングシステムによって、前記判定した改良を行う前記RPAロボットの前記RPAワークフローに前記アクティビティ又はアクティビティのシーケンスを挿入することと、を含む、
コンピュータ実装方法。
【請求項15】
前記改良したRPAワークフローを使用して、前記コンピューティングシステムによって、前記RPAロボットの新規のバージョンを生成することと、
前記コンピューティングシステムによって、前記RPAロボットの前記新規のバージョンをデプロイメントすることと、を更に含む、
請求項14に記載のコンピュータ実装方法。
【請求項16】
前記ログ記録されたデータが、前記RPAロボットの動作中に、前記ユーザーによって指摘された例外を含む、請求項14に記載のコンピュータ実装方法。
【請求項17】
前記例外が、前記RPAロボット、ユーザー設定、又はその両方によるエラーに関係する、請求項16に記載のコンピュータ実装方法。
【請求項18】
改良を加えるべきか否かの前記判定が、所定の時間の経過に起因して、受信されている同じタイプの所定数の例外に基づくか、例外の頻度に基づくか、又はそれらの任意の組合せに基づくものである、請求項14に記載のコンピュータ実装方法。
【請求項19】
前記改良が、前記RPAワークフローに前記アクティビティ又はアクティビティのシーケンスを挿入することによって対処可能でない場合、前記方法が、
前記コンピューティングシステムによって、前記ログ記録されたデータに基づいてローカル機械学習(ML)モデルをトレーニングすることと、
前記コンピューティングシステムによって、前記トレーニングされたMLモデルを呼び出すように、前記RPAワークフローを改良することと、を更に含む、
請求項14に記載のコンピュータ実装方法。
【請求項20】
前記コンピューティングシステムによって、他のユーザーとそれぞれのRPAロボットとのインタラクションに関連するログ記録されたデータを収集することと、
前記ユーザーについての例外が、すべての前記他のユーザーのうちのサブセットである前記他のユーザーのグループについて、前記収集したログ記録されたデータにおける例外と同様である場合、
前記コンピューティングシステムによって、前記ユーザーのサブセットのためのコミュニティMLモデルをトレーニングすることと、
前記コンピューティングシステムによって、前記コミュニティMLモデルを呼び出すように、前記RPAワークフローを改良することと、
前記ユーザーについての例外が前記他のユーザーのグループについての前記収集したログ記録されたデータにおける例外と類似していて、グローバル再トレーニング閾値を超えた場合、
前記コンピューティングシステムによって、すべてのユーザーのグローバルMLモデルをトレーニングすることと、
前記グローバルMLモデルを呼び出すように、前記RPAワークフローを改良することと、を更に含む、
請求項14に記載のコンピュータ実装方法。


【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2019年12月9日に出願された米国非仮特許出願第16/708,036号、及び2019年10月15日に出願された米国仮特許出願第62/915,429号の利益を主張する。これらの先に出願された出願の主題は、その全体が参照により本明細書に組み込まれる。
【0002】
本発明は、一般に、ロボティック・プロセス・オートメーション(RPA)に関し、より具体的には、RPAのためのヒューマンインザループ・ロボット・トレーニングに関する。
【背景技術】
【0003】
RPAロボットは、様々なタスクについてユーザーの達成を支援するためにデプロイメントされ得る。そのようなロボットは、予想される一般的な機能の必要性に基づいて設計され得る。しかしながら、ロボットは、必ずしも特定のユーザーの必要性に適合するとは限らない。したがって、RPAロボットをトレーニングし、パーソナライズするための改善された手法が有益であり得る。
【発明の概要】
【0004】
本発明の特定の実施形態は、現在のロボットトレーニング技術によって、まだ完全に識別され、認識され、又は解決されていない当技術分野の問題及び必要性に対するソリューションを提供し得る。例えば、本発明のいくつかの実施形態は、RPAのためのヒューマンインザループ・ロボット・トレーニングに関する。
【0005】
一実施形態では、システムは、RPAロボット及びリスナーを含むユーザー・コンピューティング・システムを含む。システムはまた、サーバを含む。リスナーは、ユーザー・コンピューティング・システムを介したRPAロボットとのユーザーインタラクションを監視し、インタラクションに関連するデータをログ記録するように構成される。リスナーはまた、ユーザーインタラクションに関連するログ記録されたデータをサーバに送信するように構成される。サーバは、ユーザーインタラクションに関連するログ記録されたデータを受信し、そのログ記録されたデータに基づいてRPAロボットのRPAワークフローに改良を加えるべきか否かを判定するように構成される。改良を加えるべきであると、サーバが判定した場合、RPAロボットのRPAワークフローに、アクティビティ又はアクティビティのシーケンスを挿入することによって改良が対処可能である場合、サーバは、判定した改良を行うRPAロボットのRPAワークフローにアクティビティ又はアクティビティのシーケンスを挿入するように構成される。
【0006】
別の実施形態では、コンピュータプログラムは、非一時的コンピュータ可読媒体に格納される。少なくとも1つのプロセッサに、ユーザー・コンピューティング・システムを介したRPAロボットとのユーザーインタラクションを監視させ、インタラクションに関連するデータをログ記録させるように構成されたプログラム。ログ記録されたデータは例外を含む。プログラムはまた、少なくとも1つのプロセッサに、ユーザーインタラクションに関連するログ記録されたデータをサーバに送信させ、ログ記録されたデータ内の例外に対処するように改良したRPAロボットの新規のバージョンをサーバから受信させ、RPAロボットの新規のバージョンをデプロイメントさせるように構成される。
【0007】
更に別の実施形態では、コンピュータ実装方法は、コンピューティングシステムによって、ユーザーとRPAロボットとのインタラクションに関連するログ記録されたデータを受信することと、コンピューティングシステムによって、ログ記録されたデータに基づいてRPAロボットのRPAワークフローに改良を加えるべきか否かを判定することと、を含む。改良を加えるべきであると、コンピューティングシステムが判定した場合、RPAロボットのRPAワークフローに、アクティビティ又はアクティビティのシーケンスを挿入することによって改良が対処可能である場合、コンピュータ実装方法はまた、コンピューティングシステムによって、判定された改良を行うRPAロボットのRPAワークフローに、アクティビティ又はアクティビティのシーケンスを挿入することを含む。
【図面の簡単な説明】
【0008】
本発明の特定の実施形態の利点が容易に理解されるように、上記で簡単に記載した本発明の具体的な説明は、添付の図面に示している特定の実施形態を参照することによって提供される。これらの図面は、本発明の典型的な実施形態のみを示しており、したがってその範囲を限定するものと見なされるべきではないことを理解されたい、本発明は、添付の図面を使用することによって追加の具体性及び詳細を伴って記載し、説明する。
【0009】
図1】本発明の一実施形態による、RPAシステムを示すアーキテクチャ図である。
【0010】
図2】本発明の一実施形態による、デプロイメントされたRPAシステムを示すアーキテクチャ図である。
【0011】
図3】本発明の一実施形態による、デザイナと、アクティビティと、ドライバとの間の関係を示すアーキテクチャ図である。
【0012】
図4】本発明の一実施形態による、RPAシステムを示すアーキテクチャ図である。
【0013】
図5】本発明の一実施形態による、RPA環境でロボットをトレーニングするように構成されたコンピューティングシステムを示すアーキテクチャ図である。
【0014】
図6】本発明の一実施形態による、RPA用のAIを使用してヒューマンインザループ・ロボット・トレーニングを実施するように構成されたシステムを示すアーキテクチャ図である。
【0015】
図7】本発明の一実施形態による、RPAのためのヒューマンインザループ・ロボット・トレーニングのためのプロセスを示すフローチャートの図である。
【0016】
別段の指示がない限り、同様の参照符号は、添付の図面を通して一貫して対応する特徴を示す。
【発明を実施するための形態】
【0017】
本発明のいくつかの実施形態は、RPAのためのヒューマンインザループ・ロボット・トレーニングに関する。これは、いくつかの実施形態では、ユーザーとコンピューティングシステムとのインタラクションを監視するリスナーロボットによって具現化されてもよい。コンピューティングシステムは、本発明の範囲から逸脱することなく、パーソナルコンピュータ、モバイルデバイス、サーバ(例えば、RPAロボットがサーバの動作及び保守を支援する場合)、又は任意の他の適切なコンピューティングシステムであり得る。例えば、1人の従業員又は従業員のグループが優れたパフォーマンス(例えば、型にはまらない多数のリードを変換し、大きなセールスを生み出す)を達成している場合を考える。リスナーロボットは、ログ記録されたデータをサーバに送信し、それは、データベースに記憶され得る。1人のユーザーのアクションが分析されている場合、ユーザーのアクションを分析し、及びコピーすることによって、ワークフローを生成し、次いで、これらのアクションを模倣するロボットが、ワークフローから生成され、他のユーザーのコンピューティングシステムにデプロイメントされて、パフォーマンスを向上させ得る。
【0018】
ユーザー又はロボットのグループが監視されている場合、各ユーザー又はロボットからのデータは、サーバに送信され、AIを使用して分析されて、その中のユーザー挙動プロセスのパターンを認識し、機械学習(ML)モデルを開発し得る。次いで、このMLモデルを呼び出すRPAワークフローを生成し、及びデプロイメントし得る。
【0019】
特定の実施形態では、リスナーは、ロボットとのユーザーのインタラクションを監視してもよく、ロボットとのユーザーのインタラクションに基づいて、ユーザーに対してよりパーソナライズされたロボットの新規のバージョンを生成してもよい。ユーザー固有の場合、ロボットのワークフローは、そのユーザー固有の変更を行うように改良されてもよい。例えば、ユーザーが、アテンディッドロボットに、特定の電子メールを生成するように命令したが、その後、ユーザーが、電子メールに特定の結びの言葉を手動で追加したり、フォントを変更したりする場合、システムは、ユーザーが通常これを行うことを学習し、この変更を自動的に行うRPAワークフローに、1つ以上のアクティビティを作成してもよい。ロボットの新規のローカルバージョンは、ユーザーが能動的に変更を行うことなくデプロイメントされてもよく、その後、ユーザーは、ロボットがこれらのアクションを自動的に実施し始めたことに気付き得る。
【0020】
一部のロボットは、ヒューマンインザループ機能を達成するために、ユーザーの音声コマンド又はテキスト入力に基づいてアクションを実施してもよい。しかしながら、ロボットの初期のグローバルにデプロイメントされたバージョンは、すべてのユーザーにとって好適に機能しない場合がある。例えば、ロボットに命令するユーザーにアクセントがある場合、特定のグローバルMLモデルは、ユーザーの発話を適切に認識できない場合がある。しかしながら、ローカルMLモデルは、例えば、ユーザーによって行われたテキストに対する修正に基づいてユーザーのアクセントで発話された言葉を理解するように学習することによって、ロボットとのその特定のユーザーのインタラクションを監視し、効果的に応答するようにトレーニングされ得る。したがって、ローカルモデルは、それらのインタラクションから学習することによってトレーニングされ、ユーザーのためにロボットをパーソナライズし得る。
【0021】
一般に、グローバルMLモデルは、広いユーザーのプールからのデータを使用してトレーニングされる。文書処理の場合を考える。グローバルMLモデルは、すべてのエンタープライズ文書又はその一部でトレーニングされ得る。
【0022】
しかしながら、場合によっては、特定の人又は人々のグループが、MLモデルによって効果的に処理されない特定のタイプの文書を処理している場合がある。これらの文書は、特定の言語であってもよく、抽出される異なるデータエンティティを有してもよく、異なるワークフローを使用してもよい。そのような場合、ローカルMLモデルは、これらの特定の文書タイプを学習して処理するように、トレーニングされてもよい。
【0023】
いくつかの実施形態では、グローバルMLモデルが使用されている間に、再トレーニングのために例外を収集してもよい。例外が所与のユーザー又はユーザーのグループに固有の傾向がある場合、ローカルMLモデルは、これらの例外に基づいて最初に作成され、及びトレーニング(又は再トレーニング)されてもよい。しかしながら、例外が多数のユーザーによって経験される傾向がある場合、グローバルMLはまた、これらの例外に基づいて再トレーニングされてもよい。
【0024】
フォーカスされたインボックスの例を考える。グローバルMLモデルにおけるスパムを検出する目的で追加され得るキーワードがある場合がある。しかしながら、特定の企業の場合、グローバルMLコンテキストにおいて、スパムを示すキーワードを有する電子メールは、その企業又は個人にとって、実際にはスパムではない可能性がある。ユーザー・コンピューティング・システムにデプロイメントされたリスナーは、この理由でスパムフォルダに配置された電子メールが、1人又は複数のユーザーによって頻繁にインボックスに移動されたことを示すデータを提供し得る。次いで、その特定のユーザー又はユーザーのグループに対してそのような電子メールをスパムとしてマークしないようにローカルMLモデルをトレーニングし得る。
【0025】
いくつかの実施形態では、ローカルMLモデルは、様々なアプリケーションとのユーザーインタラクション、アプリケーションの使用中に取られるユーザーステップなどのユーザーの特定の挙動を学習し、それにより、それらのステップをオートメーション化してもよい。ローカルMLモデルが、最初に適用されてもよく、結果が得られない場合、グローバルモデルが適用されてもよい。このように、グローバルMLモデルは、ローカルMLモデルが結果を提供できない場合の代替として使用されてもよい。
【0026】
いくつかの実施形態では、ロボットは分析をレビューしてもよい。例えば、何回電話をかけると、セールスマンが成果を得たかを、ロボットが観察してもよい。ロボットは、上位の従業員を検索し、従業員のパターンを観察し、トレーニングのためにこの情報を収集してもよい。ロボットはまた、キーワードを観察し、感情(ビデオが撮影され、及び/又は音声がキャプチャされた場合、特定の表情、発話パターン、及び音量が感情を示す場合がある)を分析するなどしてもよい。これらの分析は、ロボットによる好適なアプリケーションの選択を助け得る。例えば、セールスリードの場合、ユーザーが、別のシステムではなく、1つのシステムのみからリードを取っている場合、ロボットは、好適に作業するリード変換ソフトウェアに集中するように選択してもよい。
【0027】
いくつかの実施形態は、作用態様を含んでもよい。これらの実施形態では、有効な専門知識が(例えば、特定のキーワードを使用して)定量化される場合、ロボットは、自動的にステップを取るか、又は推奨を行ってもよい。したがって、ロボットは、ユーザーのためのインテリジェントなガイドツールになるように学習してもよい。
【0028】
図1は、本発明の一実施形態による、RPAシステム100を示すアーキテクチャ図である。RPAシステム100は、開発者がワークフローを設計し、及び実装することを可能にし得るデザイナ110を含む。デザイナ110は、アプリケーション統合のためのソリューション、並びにサードパーティのアプリケーション、管理情報技術(IT)タスク、及びビジネスITプロセスをオートメーション化することを提供し得る。デザイナ110は、ビジネスプロセスのグラフィカル表現であるオートメーションプロジェクトの開発を容易にし得る。簡単に言えば、デザイナ110は、ワークフロー及びロボットの開発及びデプロイメントを容易にする。
【0029】
オートメーションプロジェクトにより、本明細書で「アクティビティ」と定義する、ワークフローで開発されたステップのカスタムセット間の遂行順序及び関係の制御を開発者に与えることによって、ルールベースのプロセスのオートメーション化を可能にする。デザイナ110の実施形態の一商用例は、UiPath Studio(商標)である。各アクティビティは、ボタンのクリック、ファイルの読み取り、ログパネルへの書き込みなど、アクションを含んでもよい。いくつかの実施形態では、ワークフローを、ネストしても、又は埋め込んでもよい。
【0030】
いくつかのタイプのワークフローは、限定しないが、シーケンス、フローチャート、有限状態機械(FSM)、及び/又はグローバル例外ハンドラを含んでもよい。シーケンスは、ワークフローを乱すことなく、1つのアクティビティから別のアクティビティへの流れを可能にする線形プロセスに特に適している場合がある。フローチャートは、複雑なビジネスロジックに特に適しており、複数の分岐論理演算子を介して多様な方法で、決定の統合、及びアクティビティの接続を可能にする。FSMは、大規模なワークフローに特に適している場合がある。FSMは、条件(すなわち、遷移)又はアクティビティによってトリガされるワークフローの遂行において有限数の状態を使用し得る。グローバル例外ハンドラは、遂行エラーに遭遇したときのワークフローの挙動を判定し、プロセスをデバッグするために特に適している場合がある。
【0031】
ワークフローがデザイナ110で開発されると、ビジネスプロセスの遂行は、コンダクタ120によって編成され、コンダクタ120は、デザイナ110で開発されたワークフローを遂行する1つ又は複数のロボット130を編成する。コンダクタ120の実施形態の一市販例は、UiPath Orchestrator(商標)である。コンダクタ120は、環境内のリソースの作成、監視、及びデプロイメントの管理を容易にする。コンダクタ120は、サードパーティのソリューション及びアプリケーションとの統合ポイントとして作用し得る。
【0032】
コンダクタ120は、すべてのロボット130を管理し、集中ポイントからロボット130を接続し、及び遂行し得る。管理され得るロボット130のタイプは、限定しないが、アテンディッドロボット132、アンアテンディッドロボット134、開発ロボット(アンアテンディッドロボット134と同様であるが、開発及びテストの目的で使用される)、及び非生産ロボット(アテンディッドロボット132と同様であるが、開発及びテストの目的で使用される)を含む。アテンディッドロボット132は、ユーザーイベントによってトリガされ、同じコンピューティングシステム上で人間と一緒に動作する。アテンディッドロボット132は、集中プロセスデプロイメント及びログ記録媒体のために、コンダクタ120と共に使用され得る。アテンディッドロボット132は、人間のユーザーが達成する様々なタスクを助け、ユーザーイベントによってトリガされ得る。いくつかの実施形態では、プロセスを、このタイプのロボットのコンダクタ120から開始できず、及び/又はロックされた画面の下で実行できない。特定の実施形態では、アテンディッドロボット132は、ロボットトレイ又はコマンドプロンプトからのみ起動され得る。いくつかの実施形態では、アテンディッドロボット132は人間の監督下で実行するべきである。
【0033】
アンアテンディッドロボット134は、仮想環境で無人で実行し、多くのプロセスをオートメーション化し得る。アンアテンディッドロボット134は、リモート遂行、監視、スケジューリング、及び作業キューのサポートの提供を担当し得る。いくつかの実施形態では、すべてのロボットタイプのデバッグを、デザイナ110で実行してもよい。アテンディッドロボット及びアンアテンディッドロボットの両方は、限定しないが、メインフレーム、ウェブアプリケーション、VM、エンタープライズアプリケーション(例えば、SAP(登録商標)、SalesForce(登録商標)、Oracle(登録商標)などによって製造されたもの)、及びコンピューティング・システム・アプリケーション(例えば、デスクトップ及びラップトップアプリケーション、モバイル・デバイス・アプリケーション、ウェアラブル・コンピュータ・アプリケーションなど)を含む、様々なシステム及びアプリケーションをオートメーション化し得る。
【0034】
コンダクタ120は、限定しないが、プロビジョニング、デプロイメント、構成、キューイング、監視、ログ記録、及び/又は相互接続性の提供を含む、様々な機能を有し得る。プロビジョニングは、ロボット130とコンダクタ120(例えば、ウェブアプリケーション)との間の接続の作成及び保守を含み得る。デプロイメントは、遂行のために、割り当てられたロボット130へのパッケージバージョンの正しい送達を保証することを含み得る。構成は、ロボット環境及びプロセス構成の維持及び送達を含み得る。キューイングは、キュー及びキュー項目の管理を提供することを含み得る。監視は、ロボット識別データを追跡し続け、ユーザー権限を維持することを含み得る。ログ記録は、データベース(例えば、SQLデータベース)及び/又は別のストレージ機構(例えば、大規模なデータセットを記憶し、迅速に照会する能力を提供するElasticSearch(登録商標))に、ログを記憶し、及びインデックス付けすることを含み得る。コンダクタ120は、サードパーティのソリューション及び/又はアプリケーションのための通信の集中ポイントとして作用することによって、相互接続性を提供し得る。
【0035】
ロボット130は、デザイナ110に構築されたワークフローを実行する遂行エージェントである。ロボット130のいくつかの実施形態の一商用例は、UiPath Robots(商標)である。いくつかの実施形態では、ロボット130は、デフォルトで、Microsoft Windows(登録商標)Service Control Manager(SCM)管理サービスをインストールする。結果として、そのようなロボット130は、ローカル・システム・アカウントの下でインタラクティブなWindows(登録商標)セッションを開き、Windows(登録商標)サービスの権利を有し得る。
【0036】
いくつかの実施形態では、ロボット130は、ユーザーモードでインストールされてもよい。このようなロボット130の場合、これは、所与のロボット130がインストールされているユーザーと同じ権利を有することを意味する。この特徴は、その最大の可能性で各機械の完全な利用を保証する高密度(HD)ロボットにも利用可能であり得る。いくつかの実施形態では、任意のタイプのロボット130をHD環境で構成してもよい。
【0037】
いくつかの実施形態におけるロボット130は、いくつかのコンポーネントに分割され、その各々は、特定のオートメーションタスクに専用である。いくつかの実施形態におけるロボットコンポーネントは、限定しないが、SCM管理ロボットサービス、ユーザー・モード・ロボット・サービス、エグゼキュータ、エージェント、及びコマンドラインを含む。SCM管理ロボットサービスは、Windows(登録商標)セッションを管理し、及び監視し、コンダクタ120と遂行ホスト(すなわち、ロボット130が遂行されるコンピューティングシステム)との間のプロキシとして作用する。これらのサービスは、ロボット130の資格情報で信頼され、資格情報を管理する。コンソールアプリケーションは、ローカルシステムの下でSCMによって起動される。
【0038】
いくつかの実施形態におけるユーザー・モード・ロボット・サービスは、Windows(登録商標)セッションを管理し、及び監視し、コンダクタ120と遂行ホストとの間のプロキシとして作用する。ユーザー・モード・ロボット・サービスは、ロボット130のための資格情報で信頼され、資格情報を管理し得る。SCM管理ロボットサービスがインストールされていない場合、Windows(登録商標)アプリケーションが、自動的に起動されてもよい。
【0039】
エグゼキュータは、Windows(登録商標)セッション下で所与のジョブを実行し得る(すなわち、エグゼキュータはワークフローを遂行し得る。エグゼキュータは、パ-モニタ・ドット・パー・インチ(DPI)設定を認識していてもよい。エージェントは、システム・トレイ・ウィンドウに利用可能なジョブを表示するWindows(登録商標)Presentation Foundation(WPF)アプリケーションであってもよい。エージェントは、サービスのクライアントであってもよい。エージェントは、ジョブの開始又は停止、及び設定の変更を要求し得る。コマンドラインは、サービスのクライアントである。コマンドラインは、コンソールアプリケーションであり、コンソールアプリケーションは、ジョブの開始を要求し、その出力を待つことができる。
【0040】
上記で説明したようにロボット130のコンポーネントを分割することは、各コンポーネントが遂行していることについて、開発者、サポートユーザー、及びコンピューティングシステムによる、容易な実行、識別、及び追跡に役立つ。このようにして、エグゼキュータ及びサービスに対して異なるファイアウォールルールを設定するなど、特別な挙動をコンポーネントごとに構成し得る。エグゼキュータは、いくつかの実施形態では、モニタごとにDPI設定を常に認識し得る。結果として、ワークフローは、それらが作成されたコンピューティングシステムの構成にかかわらず、任意のDPIで遂行され得る。いくつかの実施形態では、デザイナ110からのプロジェクトは、ブラウザのズームレベルとは無関係であってもよい。DPIを認識していない、又は意図的に認識していないとマークされたアプリケーションの場合、いくつかの実施形態では、DPIを無効にし得る。
【0041】
図2は、本発明の一実施形態による、デプロイメントされたRPAシステム200を示すアーキテクチャ図である。いくつかの実施形態では、RPAシステム200は、図1のRPAシステム100であってもよいし、その一部であってもよい。クライアントサイド、サーバサイド、又はその両方は、本発明の範囲から逸脱することなく、任意の所望の数のコンピューティングシステムを含み得ることに留意されたい。クライアントサイドでは、ロボットアプリケーション210は、エグゼキュータ212と、エージェント214と、デザイナ216と、を含む。しかしながら、いくつかの実施形態では、デザイナ216は、コンピューティングシステム210上で実行されていなくてもよい。エグゼキュータ212は、実行中のプロセスである。図2に示すように、いくつかのビジネスプロジェクトが同時に実行されてもよい。エージェント214(例えば、Windows(登録商標)サービス)は、本実施形態ではすべてのエグゼキュータ212に対する単一の接続ポイントである。本実施形態におけるすべてのメッセージは、コンダクタ230にログ記録され、コンダクタ230は、データベースサーバ240、インデクササーバ250、又はその両方を介してログ記録したものを更に処理する。図1に関して上述したように、エグゼキュータ212は、ロボットコンポーネントであってもよい。
【0042】
いくつかの実施形態では、ロボットは、機械名とユーザー名との間の関連付けを表す。ロボットは、複数のエグゼキュータを同時に管理し得る。同時に実行される複数のインタラクティブなセッション(例えば、Windows(登録商標)Server 2012)をサポートするコンピューティングシステムでは、複数のロボットが同時に実行され、それぞれが一意のユーザー名を使用して別々のWindows(登録商標)セッションで実行されてもよい。これは、上記ではHDロボットと呼ばれる。
【0043】
エージェント214はまた、ロボットのステータス(例えば、ロボットがまだ機能していることを示す「ハートビート」メッセージを定期的に送信する)を送信し、遂行されるパッケージの必要なバージョンをダウンロードする役割も担う。エージェント214とコンダクタ230との間の通信は、いくつかの実施形態では、常にエージェント214によって開始される。通知シナリオでは、エージェント214は、ロボットにコマンド(例えば、始動、停止など)を送信するために、コンダクタ230によって後で使用されるWebSocketチャネルを開き得る。
【0044】
サーバサイドには、プレゼンテーション層(ウェブアプリケーション232、オープン・データ・プロトコル(OData)代表状態転送(REST)アプリケーション・プログラミング・インタフェース(API)エンドポイント234、並びに通知監視236)、サービス層(API実装/ビジネスロジック238)、及び永続層(データベースサーバ240、インデクササーバ250)が含まれる。コンダクタ230は、ウェブアプリケーション232と、OData REST APIエンドポイント234と、通知監視236と、API実装/ビジネスロジック238と、を含む。いくつかの実施形態では、ユーザーがコンダクタ220のインターフェース(例えば、ブラウザ220を介して)内で実施するほとんどのアクションは、様々なAPIを呼び出すことによって実施される。そのようなアクションは、限定しないが、本発明の範囲から逸脱することなく、ロボットでのジョブの開始、キュー内のデータの追加/削除、無人で実行するためのジョブのスケジューリングなどを含んでもよい。ウェブアプリケーション232は、サーバプラットフォームのビジュアル層である。本実施形態では、ウェブアプリケーション232は、ハイパーテキストマークアップ言語(HTML)及びJavaScript(JS)を使用する。しかしながら、本発明の範囲から逸脱することなく、任意の所望のマークアップ言語、スクリプト言語、又は任意の他のフォーマットを使用してもよい。ユーザーは、コンダクタ230を制御する様々なアクションを実施するために、本実施形態では、ブラウザ220を介してウェブアプリケーション232からのウェブページとインタラクトする。例えば、ユーザーは、ロボットグループを作成し、ロボットにパッケージを割り当て、ロボットごと及び/又はプロセスごとにログを分析し、ロボットを起動し、及び停止するなどしてもよい。
【0045】
ウェブアプリケーション232に加えて、コンダクタ230はまた、OData REST APIエンドポイント234を公開するサービス層を含む。しかしながら、本発明の範囲から逸脱することなく、他のエンドポイントを含んでもよい。REST APIは、ウェブアプリケーション232とエージェント214の両方によって消費される。エージェント214は、本実施形態ではクライアントコンピュータ上の1つ又は複数のロボットの管理者である。
【0046】
本実施形態におけるREST APIは、構成、ログ記録、監視、及びキューイング機能をカバーする。構成エンドポイントは、いくつかの実施形態では、アプリケーションユーザー、権限、ロボット、アセット、リリース及び環境を、定義し、及び構成するために使用されてもよい。例えば、エラー、ロボットによって送信された明示的なメッセージ、及び他の環境固有の情報など、様々な情報をログに記録するために、RESTエンドポイントをログに記録することが使用されてもよい。開始ジョブコマンドがコンダクタ230内で使用される場合に遂行されるべきパッケージバージョンを照会するために、デプロイメントRESTエンドポイントがロボットによって使用され得る。RESTエンドポイントをキューイングすることは、キューにデータを追加すること、キューからトランザクションを取得すること、トランザクションのステータスを設定することなど、キュー及びキュー項目管理を担当し得る。
【0047】
RESTエンドポイントの監視により、ウェブアプリケーション232及びエージェント214を監視し得る。通知監視API236は、エージェント214の登録、エージェント214への構成設定の送達、並びにサーバ及びエージェント214からの通知の送信/受信のために使用されるRESTエンドポイントであってもよい。通知監視API236はまた、いくつかの実施形態では、WebSocket通信を使用してもよい。
【0048】
永続層は、本実施形態におけるサーバのペア、すなわちデータベースサーバ240(例えば、SQLサーバ)及びインデクササーバ250を含む。本実施形態におけるデータベースサーバ240は、ロボット、ロボットグループ、関連するプロセス、ユーザー、役割、スケジュールなどの構成を記憶する。この情報は、いくつかの実施形態では、ウェブアプリケーション232を介して管理される。データベースサーバ240は、キュー及びキュー項目を管理し得る。いくつかの実施形態では、データベースサーバ240は、(インデクササーバ250に加えて、又はその代わりに)ロボットによってログ記録されたメッセージを記憶してもよい。
【0049】
インデクササーバ250は、いくつかの実施形態では任意選択であり、ロボットによってログ記録された情報を記憶し、及びインデックス付けする。特定の実施形態では、インデクササーバ250は、構成設定を介して無効にされてもよい。いくつかの実施形態では、インデクササーバ250は、オープン・ソース・プロジェクトのフルテキスト検索エンジンであるElasticSearch(登録商標)を使用する。(例えば、ログメッセージ又は行書き込みのようなアクティビティを使用する)ロボットによってログ記録されたメッセージは、ログ記録RESTエンドポイントを介してインデクササーバ250に送信されてもよく、そこでそれらは将来の利用のためにインデックス付けされる。
【0050】
図3は、本発明の一実施形態による、デザイナ310と、アクティビティ320,330と、ドライバ340との間の関係300を示すアーキテクチャ図である。上記により、開発者は、デザイナ310を使用して、ロボットによって遂行されるワークフローを開発する。ワークフローは、ユーザー定義のアクティビティ320及びUIオートメーションアクティビティ330を含み得る。いくつかの実施形態は、本明細書では、コンピュータビジョン(CV)と呼ぶ、画像内の非テキスト視覚コンポーネントを識別し得る。そのようなコンポーネントに関係するいくつかのCVアクティビティは、限定しないが、クリック、タイプ、テキストを取得、ホバー、要素存在、リフレッシュ範囲、ハイライトなどを含み得る。いくつかの実施形態では、クリックは、例えば、CV、光学文字認識(OCR)、ファジー文字マッチング、及びマルチアンカーを使用して要素を識別し、それをクリックする。タイプは、上記及び要素内のタイプを使用して要素を識別し得る。テキストを取得は、OCRを使用して特定のテキストの位置を識別し、それをスキャンし得る。ホバーは、要素を識別し、それをホバーし得る。要素存在は、上述した技術を使用して、画面上に要素が存在するか否かをチェックし得る。いくつかの実施形態では、デザイナ310に実装され得るアクティビティは、数百又は数千であってもよい。しかしながら、本発明の範囲から逸脱することなく、アクティビティの任意の数及び/又はタイプが利用可能である。
【0051】
UIオートメーションアクティビティ330は、特別な下位レベルのアクティビティのサブセットであり、それは、下位レベルコード(例えば、CVアクティビティ)に書き込まれ、画面とのインタラクションを容易にする。UIオートメーションアクティビティ330は、ロボットが、所望のソフトウェアとインタラクトし得るドライバ340を介して、これらのインタラクションを容易にする。例えば、ドライバ340は、OSドライバ342、ブラウザドライバ344、VMドライバ346、エンタープライズ・アプリケーション・ドライバ348などを含んでもよい。
【0052】
ドライバ340は、フックを探し、キーを監視するなど、低レベルでOSとインタラクトし得る。それらは、Chrome(登録商標)、IE(登録商標)、シトリックス(登録商標)、SAP(登録商標)などとの統合を容易にし得る。例えば、「クリック」アクティビティは、ドライバ340を介してこれらの異なるアプリケーションで同じ役割を実施する。
【0053】
図4は、本発明の一実施形態による、RPAシステム400を示すアーキテクチャ図である。いくつかの実施形態では、RPAシステム400は、図1及び/又は図2のRPAシステム100及び/又は200であり得るか、それらを含み得る。RPAシステム400は、ロボットを実行する複数のクライアント・コンピューティング・システム410を含む。コンピューティングシステム410は、その上で実行されるウェブアプリケーションを介してコンダクタ・コンピューティング・システム420と通信し得る。次に、コンダクタ・コンピューティング・システム420は、データベースサーバ430及び任意選択のインデクササーバ440と通信し得る。
【0054】
図1及び図3に関して、これらの実施形態ではウェブアプリケーションが使用されているが、本発明の範囲から逸脱することなく、任意の適切なクライアント/サーバソフトウェアを使用し得ることに留意されたい。例えば、コンダクタは、クライアント・コンピューティング・システム上の非ウェブベースのクライアント・ソフトウェア・アプリケーションと通信するサーバサイドアプリケーションを実行してもよい。
【0055】
図5は、本発明の一実施形態による、RPA用のAIを使用してヒューマンインザループ・ロボット・トレーニングを実施するように構成されたコンピューティングシステム500を示すアーキテクチャ図である。いくつかの実施形態では、コンピューティングシステム500は、本明細書に図示及び/又は記載したコンピューティングシステムのうちの1つ又は複数であってもよい。コンピューティングシステム500は、情報を通信するためのバス505又は他の通信機構と、情報を処理するためにバス505に結合されたプロセッサ510と、を含む。プロセッサ510は、中央処理装置(CPU)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、グラフィックス・プロセッシング・ユニット(GPU)、それらの複数のインスタンス、及び/又はそれらの任意の組合せを含む、任意のタイプの汎用又は専用プロセッサであってもよい。プロセッサ510はまた、複数の処理コアを有してもよく、コアの少なくともいくつかは、特定の機能を実施するように構成されてもよい。いくつかの実施形態では、複数並列処理を使用してもよい。特定の実施形態では、プロセッサ510の少なくとも1つは、生体ニューロンを模倣する処理要素を含むニューロモーフィック回路であってもよい。いくつかの実施形態では、ニューロモーフィック回路は、フォン・ノイマン・コンピューティング・アーキテクチャの典型的なコンポーネントを必要としなくてもよい。
【0056】
コンピューティングシステム500は、情報、及びプロセッサ510によって遂行される命令を記憶するメモリ515を更に含む。メモリ515は、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、フラッシュメモリ、キャッシュ、磁気若しくは光ディスクなどの静的ストレージ、又は任意の他のタイプの非一時的コンピュータ可読媒体、又はそれらの組合せのうちの任意の組合せから構成されてもよい。非一時的コンピュータ可読媒体は、プロセッサ510によってアクセスされ得る任意の利用可能な媒体であってもよく、揮発性媒体、不揮発性媒体、又はその両方を含んでもよい。媒体はまた、取り外し可能、取り外し不能、又はその両方であってもよい。
【0057】
更に、コンピューティングシステム500は、無線及び/又は有線接続を介して通信ネットワークへのアクセスを提供するためのトランシーバなどの通信デバイス520を含む。いくつかの実施形態では、通信デバイス520は、周波数分割多元接続(FDMA)、シングルキャリアFDMA(SC-FDMA)、時分割多元接続(TDMA)、符号分割多元接続(CDMA)、直交周波数分割多重方式(OFDM)、直交周波数分割多元接続(OFDMA)、移動体用グローバルシステム(GSM)通信、汎用パケット無線サービス(GPRS)、ユニバーサル移動体通信システム(UMTS)、cdma 2000、広帯域CDMA(W-CDMA)、高速ダウンリンク・パケット・アクセス(HSDPA)、高速アップリンク・パケット・アクセス(HSUPA)、高速パケットアクセス(HSPA)、ロング・ターム・エボリューション(LTE)、LTEアドバンスト(LTE-A)、802.11 x、Wi-Fi、ジグビー、超広帯域無線(UWB)、802.16 x、802.15、ホームノードB(HnB)、Bluetooth、無線周波数識別(RFID)、赤外線データ協会(IrDA)、近距離無線通信(NFC)、第5世代(5G)、エヌアール(NR)、それらの任意の組合せ、並びに/あるいは本発明の範囲から逸脱しない任意の他の現在存在する、又は将来実施される通信規格及び/若しくはプロトコルを使用するように構成される。いくつかの実施形態では、通信デバイス520は、1つ又は複数のアンテナを含んでもよく、そのアンテナは、本発明の範囲から逸脱することなく、単数、アレイ、位相、切り替え、ビームフォーミング、ビームステア、それらの組合せ、及び又は任意の他のアンテナ構成である。
【0058】
プロセッサ510は、バス505を介して、ディスプレイ525に更に結合され、そのディスプレイは、プラズマディスプレイ、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、電界放出ディスプレイ(FED)、有機発光ダイオード(OLED)ディスプレイ、フレキシブルOLEDディスプレイ、フレキシブル基板ディスプレイ、プロジェクションディスプレイ、4Kディスプレイ、高精細ディスプレイ、Retina(登録商標)ディスプレイ、インプレーンスイッチング(IPS)ディスプレイ、又はユーザーに情報を表示するための任意の他の適切なディスプレイである。ディスプレイ525は、抵抗性、容量性、表面弾性波(SAW)容量性、赤外線、光学イメージング、分散信号技術、音響パルス認識、フラストレート全内部反射などを使用して、タッチ(触覚)ディスプレイ、3次元(3D)タッチディスプレイ、マルチ入力タッチディスプレイ、マルチタッチディスプレイなどとして構成され得る。本発明の範囲から逸脱することなく、任意の適切なディスプレイデバイス及び触覚I/Oが使用され得る。
【0059】
キーボード530、及びコンピュータマウス、タッチパッドなどのカーソル制御デバイス535は、ユーザーがコンピューティングシステムとインターフェースすることを可能にするために、バス505に更に結合される。しかしながら、特定の実施形態では、物理的なキーボード及びマウスが存在しなくてもよく、ユーザーは、ディスプレイ525及び/又はタッチパッド(図示せず)のみを介してデバイスとインタラクトしてもよい。入力デバイスの任意のタイプ及び組合せを、設計上の選択事項として使用し得る。特定の実施形態では、物理的入力デバイス及び/又はディスプレイは存在しない。例えば、ユーザーは、コンピューティングシステム500と通信する別のコンピューティングシステムを介して、コンピューティングシステム500と遠隔にインタラクトしてもよく、又はコンピューティングシステム500は、自律的に動作してもよい。
【0060】
メモリ515は、プロセッサ510によって遂行された場合、機能を提供するソフトウェアモジュールを記憶する。モジュールは、コンピューティングシステム500のためのオペレーティングシステム540を含む。モジュールは、本明細書に記載のプロセス又はその派生物の全部又は一部を実施するように構成されたトレーニングモジュール545を更に含む。コンピューティングシステム500は、追加の機能を含む1つ又は複数の追加の機能モジュール550を含み得る。
【0061】
当業者であれば、「システム」が、本発明の範囲から逸脱することなく、サーバ、組込みコンピューティングシステム、パーソナルコンピュータ、コンソール、パーソナル・デジタル・アシスタント(PDA)、携帯電話、タブレット・コンピューティング・デバイス、量子コンピューティングシステム、又は任意の他の適切なコンピューティングデバイス、又はデバイスの組合せとして具現化され得ることを理解するであろう。上記の機能を「システム」によって実施されるものとして提示することは、本発明の範囲を限定することを決して意図するものではなく、本発明の多くの実施形態の一例を提供することを意図している。実際、本明細書に開示した方法、システム、及び装置は、クラウド・コンピューティング・システムを含むコンピューティング技術と一致する局所化された形態及び分散された形態で実装され得る。
【0062】
本明細書に記載されたシステム特徴のいくつかは、それらの実装の独立性をより具体的に強調するために、モジュールとして提示されていることに留意されたい。例えば、モジュールは、カスタムの超大規模集積(VLSI)回路又はゲートアレイ、既製の半導体、例えばロジックチップ、トランジスタ、又は他のディスクリートコンポーネントなどを含むハードウェア回路として実装されてもよい。モジュールはまた、フィールド・プログラマブル・ゲート・アレイ、プログラマブル・アレイ・ロジック、プログラマブル・ロジック・デバイス、グラフィックス・プロセッシング・ユニットなどのプログラマブル・ハードウェア・デバイスに実装されてもよい。
【0063】
モジュールはまた、様々なタイプのプロセッサによって遂行するためのソフトウェアに少なくとも部分的に実装されてもよい。遂行可能コードの識別されたユニットは、例えば、オブジェクト、手順、又は機能として編成され得るコンピュータ命令の1つ又は複数の物理ブロック又は論理ブロックを含んでもよい。それにもかかわらず、識別されたモジュールの遂行可能なものは、物理的に共に配置される必要はないが、論理的に共に結合されたときに、異なる場所に記憶され、モジュールを含み、モジュールの記載された目的を達成する異なる命令を含み得る。更に、モジュールは、例えば、ハード・ディスク・ドライブ、フラッシュデバイス、RAM、テープ、及び/又は本発明の範囲から逸脱することなくデータを記憶するために使用される任意の他のそのような非一時的コンピュータ可読媒体であり得るコンピュータ可読媒体に記憶されてもよい。
【0064】
実際、モジュールの遂行可能コードは、単一の命令、又は多くの命令であってもよく、いくつかの異なるコードセグメントにわたって、異なるプログラム中に、及びいくつかのメモリデバイスの間に、分散されてもよい。同様に、操作データは、本明細書ではモジュール内で識別され、及び図示され、任意の適切な形態で具現化され、任意の適切なタイプのデータ構造内に編成されてもよい。操作データは、単一のデータセットとして収集されてもよく、又は異なるストレージデバイスを含む異なる場所にわたって分散されてもよく、少なくとも部分的に、システム又はネットワーク上の電子信号としてのみ存在してもよい。
【0065】
図6は、本発明の一実施形態による、RPAのためのAIを使用してヒューマンインザループ・ロボット・トレーニングを実施するように構成されたシステム600を示すアーキテクチャ図である。システム600は、デスクトップコンピュータ602、タブレット604、及びスマートフォン606などのユーザー・コンピューティング・システムを含む。しかしながら、限定しないが、スマートウォッチ、ラップトップコンピュータ、モノのインターネット(IoT)デバイス、車両コンピューティングシステムなどを含む任意の所望のコンピューティングシステムを、本発明の範囲から逸脱することなく使用してもよい。
【0066】
各コンピューティングシステム602,604,606は、その上にインストールされたリスナー610を有する。リスナー610は、本発明の範囲から逸脱することなく、RPAデザイナアプリケーション、オペレーティングシステムの一部、パーソナルコンピュータ(PC)若しくはスマートフォン用のダウンロード可能なアプリケーション、又は任意の他のソフトウェア及び/若しくはハードウェアを介して生成されたロボットであってもよい。実際、いくつかの実施形態では、1つ又は複数のリスナー610のロジックは、物理ハードウェアを介して部分的又は完全に実装される。
【0067】
リスナー610は、それぞれのコンピューティングシステム602,604,606上のロボットとのユーザーインタラクションのログを生成する。次いで、リスナー610は、ネットワーク620(例えば、ローカル・エリア・ネットワーク(LAN)、移動通信ネットワーク、衛星通信ネットワーク、インターネット、それらの任意の組合せなど)を介してサーバ630にログデータを送信する。いくつかの実施形態では、サーバ630は、コンダクタアプリケーションを実行してもよく、データは、ハートビートメッセージの一部として定期的に送信されてもよい。特定の実施形態では、所定量のログデータが収集された後、所定の期間が経過した後、又はその両方で、ログデータをサーバ630に送信してもよい。サーバ630は、リスナー610から受信したログデータを、データベース640に記憶する。
【0068】
人間のユーザー(例えば、RPAエンジニア又はデータサイエンティスト)によって指示された場合、所定量のログデータが収集された場合、最後の分析から所定量の時間が経過した場合などで、サーバ630は、リスナー610によって、様々なユーザーから収集された、データベース640からのログデータにアクセスし、複数のAI層632を介してログデータを実行する。AI層632は、ログデータを処理し、ロボットとのユーザーのインタラクションに基づいてローカルMLモデルをトレーニングする。次いで、サーバ630は、トレーニングしたローカルMLモデルを呼び出すワークフローを自動的に生成し、ワークフローを実装するロボット(又は交換ロボット)を生成し、生成したロボットを、遂行対象のユーザー・コンピューティング・システム602,604,606にプッシュし得る。
【0069】
あるいは、特定の実施形態では、AI層632から提案されたプロセスは、コンピューティングシステム650上で、デザイナアプリケーション652を介してRPAエンジニアに提示されてもよい。次いで、RPAエンジニアは、ワークフローをレビューし、任意の所望の変更を行い、次いで、ロボットを介してコンピューティングシステム602,604,606に、ワークフローをデプロイメントするか、又はロボットにデプロイメントさせてもよい。例えば、デプロイメントは、サーバ630又は別のサーバ上で実行されるコンダクタアプリケーションを介して行われてもよく、これは、プロセスを実装するロボットをユーザー・コンピューティング・システム602,604,606にプッシュしてもよい。いくつかの実施形態では、このワークフローデプロイメントは、デザイナアプリケーションのオートメーションマネージャ機能を介して実現されてもよく、RPAエンジニアは、単にボタンをクリックしてロボットにプロセスを実装してもよい。
【0070】
リスナー
【0071】
ロボットとインタラクションする場合にコンピューティングシステム602,604,606上でユーザーによって行われたアクションに関するデータを抽出するために、リスナー610は、ドライバレベル(例えば、図3のドライバ340)でクライアントサイドにおいて採用され、ホワイトリストに登録されたアプリケーションからデータを抽出し得る。例えば、リスナー610は、ユーザーが画面上のどこをクリックしたか、及びどのアプリケーション、でクリックしたか、クリックされたボタンのキー入力、アプリケーション間のユーザー切り替えのインスタンス、フォーカスの変更、電子メールが送信されたこと、及び電子メールが関連するものなどを記録してもよい。追加的又は代替的に、リスナー610は、コンピューティングシステム602,604,606上で動作するロボットに関するデータを収集してもよい。いくつかの実施形態では、ワークフローを実装する、様々なタスクを実施するロボットは、それら自体の動作のためのリスナーとして機能してもよい。そのようなデータは、コンピューティングシステム602,604,606とのユーザーのインタラクション及び/又はその上で実行するロボットの動作の高い忠実度のログを生成するために使用され得る。
【0072】
プロセス抽出のためのログデータを生成することの追加又は代替的に、いくつかの実施形態は、ユーザーが実際に行っていることに対する洞察を与えてもよい。例えば、リスナー610は、いつユーザーが実際にアプリケーションを使用したか、ユーザーが所与のアプリケーションを使用している時間の割合、ユーザーがアプリケーション内のどの機能を使用し、どの機能を使用しなかったかなどを判定してもよい。この情報は、アプリケーションのライセンスを更新するか否か、機能のライセンスを更新しない、又は機能が欠落している安価なバージョンにダウングレードするか否か、他の従業員は生産的にすることが多いアプリケーションを、ユーザーが使用していないので、ユーザーを適切にトレーニングし得るか否か、ユーザーが非作業アクティビティ(例えば、個人の電子メールをチェックしたり、ウェブをサーフィンする)を実施するために多くの時間を費やしているか、あるいはユーザーが机から離れているか否か(例えば、コンピューティングシステムとインタラクションしない)などに関する情報に基づいた決定を行うために、マネージャに提供されてもよい。
【0073】
いくつかの実施形態では、検出更新をリスナーにプッシュして、ドライバーレベルのユーザーインタラクション並びに/又はロボット動作検出及びキャプチャプロセスを改善してもよい。特定の実施形態では、リスナー610は、それらの検出にAIを採用してもよい。特定の実施形態では、オートメーションワークフローからのプロセスを実装するロボットは、それぞれのリスナー610を介してコンピューティングシステム602,604,606に自動的にプッシュされてもよい。
【0074】
図7は、本発明の一実施形態による、RPAのためのAIを使用してヒューマンインザループ・ロボット・トレーニングを実施するプロセス700を示すフローチャートである。プロセスは、705において、コンピューティングシステムのユーザーとRPAロボットとのインタラクションを、リスナーによって監視することから始まる。リスナーは、別個のリスナーロボット、ユーザーが、インタラクションしているRPAロボット、別のリスナー・ソフトウェア・アプリケーションなどであってもよい。710において、ユーザーインタラクションに関連するデータは、経時的にログ記録され(例えば、ログファイルに記憶され)、サーバに送信される。
【0075】
ログ記録されたデータは、ロボットが画像内にナンバープレートを見つけることができない場合など、ユーザーによって指摘された例外を含んでもよく、ロボットは、画像内で、ナンバープレートがどこにあるかを示すようにユーザーに要求してもよい。これは、バウンディングボックス、テキスト、座標、画面上の位置などを介してユーザーによって提供されてもよい。例外は、RPAロボットが修正を要求することなく行われるユーザー修正であってもよい。これらの修正は、エラー及び/又はユーザー設定に起因し得る。
【0076】
その後、715において、サーバは、ユーザーによって指摘された例外に基づいて改良を加えるべきであると判定する。これは、所定量の時間(例えば、1日、1週間、1ヶ月など)の経過に起因して1人又は複数のユーザーによって受信されている同じタイプの所定の数の例外に基づいて、例外頻度に基づいて、それらの任意の組合せ(例えば、同じタイプの50の例外が短い時間期間に受信され、同じタスクに対して少なくとも75%の頻度が提供されない限り、毎週実行する)などに基づいて、判定されてもよい。例えば、サーバは、ログ記録されたデータを分析することによって、ユーザーが所定の閾値(例えば、少なくとも時間の50%)を超える特定の変更を行うことが多いことに気付くことによって、この判定を行ってもよい。
【0077】
720において、サーバは、まず、特定のアクティビティ又は一連のアクティビティを介して、そのユーザーが改良に対処可能であるか否かを判定する。例えば、サーバは、特定の値をルックアップするアクティビティ(例えば、請求書内のフィールドをルックアップして、特定の番号を追加する)を含めることによって、又はアクティビティのシーケンス(例えば、データベースからテンプレート電子メール本文テキストをルックアップし、ユーザーが好むと思われる特定のテキストを電子メールに挿入する)を含めることによって、修正を実施してもよい。換言すれば、この場合、例外におけるユーザーのアクションを模倣することによって改良を行い得る。これが該当する場合、725において、改良を行うアクティビティ又はアクティビティのシーケンスが、ワークフローに挿入される。いくつかの実施形態では、これは、1つ又は複数の既存のアクティビティを置き換えること、及び/又はワークフロー自体のロジックを改良することを含んでもよい。次いで、730において、ワークフローを実装するロボットが生成され、ユーザーのコンピューティングシステムにデプロイメントされる。
【0078】
特定の実施形態では、ユーザー自身のコンピューティングシステムは、ステップ715,720,725及び730を実施してもよい。例えば、ユーザーがパーソナライズのために特定の変更を行っている場合、これは、ロボットを分析及び改良するためにサーバの計算能力を必要としない場合がある。したがって、ユーザーのコンピューティングシステム自体が、改良を加えるべきか否かを判定し、ワークフローを改良し、ローカルロボットの新規のバージョンを生成し、以前のバージョンの代わりにロボットの新規のバージョンをデプロイメントしてもよい。
【0079】
しかしながら、場合によっては、その改良は、あまりに複雑すぎて、ワークフローアクティビティのみを追加/改良することはできない。例えば、発話を認識するためのMLモデルを最初にトレーニングする必要があり得る、又は既存のMLモデルを再トレーニングしてユーザーのアクセントを認識する必要があり得る。この場合、735において、サーバは、機械学習技術(例えば、深層学習ニューラルネットワーク)を使用してログ記録されたデータに基づいてMLモデルをトレーニングして、ローカルMLモデル(又はその新規のバージョン)を作成する。740において、ワークフローは、このローカルMLモデルを呼び出すように改良され、次いで、730において、このワークフローを実装するロボットが生成されデプロイメントされる。
【0080】
いくつかの実施形態では、図7のプロセスは、組織全体及び/又はグローバルに、多くのユーザーに対して実施されてもよい。ログ記録されたデータが複数、多数、又はすべてのユーザーから収集されると、特定のパターンが出現する可能性がある。例えば、分析は、特定の場所にいるユーザーのグループが、同様のアクセントを有し、同様の例外に注目していること、すべてのユーザーのかなりの数が、請求書の特定のフィールドを修正していること、すべてのユーザーのかなりの数が、特定の設定を持っていることなどを明らかにする可能性がある。いくつかの実施形態では、これは、所定の閾値(例えば、例外を有するユーザーの所定の数又は割合、例外の所定の頻度、ある時間期間にわたって例外が発生した回数など)によって判定されてもよい。これが745のケースである場合、750において、ユーザーのグループ又は会社の「コミュニティ」MLモデル、あるいはすべてのユーザーのグローバルMLモデルを、このログ記録されたデータを使用してトレーニングしてもよい。次いで、740において、適切なワークフローが改良され、730において、このワークフローを実装するロボットが、生成され、及びデプロイメントされる。
【0081】
再トレーニングの頻度は、受信したログ記録されたデータの量に基づいてもよい。ユーザーの大きなグループは、MLモデルを頻繁(例えば、毎日)に再トレーニングするために十分なデータを生成し得る。しかしながら、ユーザーの小さなグループは、再トレーニングの目的に有用である十分なログ記録されたデータを生成するために、多くの時間を要する場合がある。
【0082】
図7で実施されるプロセスステップは、本発明の実施形態に従って、プロセッサが図7に記載したプロセスの少なくとも一部を実施するために、命令を符号化するコンピュータプログラムによって実施されてもよい。コンピュータプログラムは、非一時的コンピュータ可読媒体に格納されてもよい。コンピュータ可読媒体は、限定しないが、ハード・ディスク・ドライブ、フラッシュデバイス、RAM、テープ、及び/あるいはデータを記憶するために使用される任意の他のそのような媒体又は媒体の組合せであってもよい。コンピュータプログラムは、コンピュータ可読媒体に記憶され得る、図7に記載したプロセスステップの全部又は一部を実装するように、コンピューティングシステム(例えば、図5のコンピューティングシステム500のプロセッサ510)のプロセッサを制御するための符号化された命令を含んでもよい。
【0083】
コンピュータプログラムは、ハードウェア、ソフトウェア、又はハイブリッド実装で実装してもよい。コンピュータプログラムは、互いに動作可能に通信し、情報又は命令を表示のために渡すように設計されたモジュールから構成してもよい。コンピュータプログラムは、汎用コンピュータ、ASIC、又は任意の他の適切なデバイス上で動作するように構成してもよい。
【0084】
本発明の様々な実施形態のコンポーネントは、本明細書の図に一般的に記載及び図示されているように、多種多様な異なる構成で配置及び設計されてもよいことが容易に理解されよう。したがって、添付の図面に表すように、本発明の実施形態の詳細な説明は、特許請求される本発明の範囲を限定することを意図するものではなく、本発明の選択された実施形態を単に代表するものである。
【0085】
本明細書を通して記載した本発明の特徴、構造、又は特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられ得る。例えば、本明細書全体を通して「特定の実施形態」、「いくつかの実施形態」、又は同様の文言への言及は、実施形態に関連して記載した特定の特徴、構造、又は特性が本発明の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書全体を通して、「特定の実施形態では」、「いくつかの実施形態では」、「他の実施形態では」、又は同様の文言の出現は、必ずしもすべてが同じ実施形態のグループを指すわけではなく、記載した特徴、構造、又は特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられ得る。
【0086】
本明細書を通して特徴、利点、又は同様の文言への言及は、本発明で実現され得る特徴及び利点のすべてが本発明の任意の単一の実施形態であるべきであること、又は本発明の任意の単一の実施形態であることを意味するものではないことに留意されたい。むしろ、特徴及び利点に言及する文言は、実施形態に関連して記載した特定の特徴、利点、又は特性が本発明の少なくとも1つの実施形態に含まれることを意味すると理解される。したがって、本明細書を通して、特徴及び利点、並びに同様の文言の説明は、必ずしもそうとは限らないが、同じ実施形態を参照し得る。
【0087】
更に、本発明の記載した特徴、利点、及び特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられてもよい。当業者は、特定の実施形態の特定の特徴又は利点のうちの1つ又は複数なしに、本発明を実施し得ることを認識するであろう。他の例では、本発明のすべての実施形態には存在しない可能性がある特定の実施形態において、追加の特徴及び利点が認識され得る。
【0088】
当業者であれば、上記のような本発明は、異なる順序のステップで、及び/又は開示されているものとは異なる構成のハードウェア要素で実施され得ることを容易に理解するであろう。したがって、本発明を、これらの好ましい実施形態に基づいて記載しているが、本発明の精神及び範囲内に留まりながら、特定の改良、変形、及び代替構造が明らかであることは、当業者には明らかであろう。したがって、本発明の範囲を決定するために、添付の特許請求の範囲を参照すべきである。


図1
図2
図3
図4
図5
図6
図7
【国際調査報告】