IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クゥアルコム・インコーポレイテッドの特許一覧

<>
  • 特表-測位のための報告拡張 図1
  • 特表-測位のための報告拡張 図2A
  • 特表-測位のための報告拡張 図2B
  • 特表-測位のための報告拡張 図3A
  • 特表-測位のための報告拡張 図3B
  • 特表-測位のための報告拡張 図3C
  • 特表-測位のための報告拡張 図4
  • 特表-測位のための報告拡張 図5
  • 特表-測位のための報告拡張 図6
  • 特表-測位のための報告拡張 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-20
(54)【発明の名称】測位のための報告拡張
(51)【国際特許分類】
   H04W 64/00 20090101AFI20221213BHJP
   H04W 74/08 20090101ALI20221213BHJP
   H04L 27/26 20060101ALI20221213BHJP
   H04B 17/24 20150101ALI20221213BHJP
【FI】
H04W64/00 140
H04W74/08
H04W64/00 130
H04L27/26 114
H04B17/24
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022520793
(86)(22)【出願日】2020-09-23
(85)【翻訳文提出日】2022-04-15
(86)【国際出願番号】 US2020052206
(87)【国際公開番号】W WO2021071674
(87)【国際公開日】2021-04-15
(31)【優先権主張番号】62/913,056
(32)【優先日】2019-10-09
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/908,282
(32)【優先日】2020-06-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100158805
【弁理士】
【氏名又は名称】井関 守三
(74)【代理人】
【識別番号】100112807
【弁理士】
【氏名又は名称】岡田 貴志
(72)【発明者】
【氏名】イェッラマッリ、スリニバス
(72)【発明者】
【氏名】スン、ジン
(72)【発明者】
【氏名】ジャン、シャオシャ
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA21
5K067EE02
5K067EE10
5K067FF03
5K067JJ01
5K067JJ51
(57)【要約】
ワイヤレス通信のための技法が開示される。一態様では、送信機デバイスが、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施し、測位セッション中の第2の時間において、複数のサブバンドのうちのCCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信する。
【選択図】図7
【特許請求の範囲】
【請求項1】
送信機デバイスによって実施されるワイヤレス通信の方法であって、
測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施することと、
前記測位セッション中の第2の時間において、前記複数のサブバンドのうちの前記CCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信することと、
を備える、方法。
【請求項2】
前記共有スペクトルは、認可スペクトルと無認可スペクトルとの組合せ、または無認可スペクトルのみを備える、請求項1に記載の方法。
【請求項3】
サブバンドの前記サブセットを示す1つまたは複数の報告を測位エンティティに送信すること、
をさらに備える、請求項1に記載の方法。
【請求項4】
サブバンドの前記サブセット上で送信される前記測位基準信号の各々は、複数のリソースブロックを備える、請求項3に記載の方法。
【請求項5】
前記複数のリソースブロックの送信は、前記第2の時間において開始し、ここにおいて、前記1つまたは複数の報告は、前記第2の時間をさらに含む、請求項4に記載の方法。
【請求項6】
前記測位基準信号を送信することは、前記測位基準信号の複数の反復を送信することを備える、請求項1に記載の方法。
【請求項7】
前記複数の反復は、異なる送信構成インジケータ(TCI)状態を有する、請求項6に記載の方法。
【請求項8】
前記送信機デバイスは基地局を備える、請求項1に記載の方法。
【請求項9】
少なくとも1つのネイバリング基地局が前記測位セッション中に測位基準信号を送信した、サブバンドのセットを示す1つまたは複数の報告を受信すること、
をさらに備える、請求項8に記載の方法。
【請求項10】
前記少なくとも1つのネイバリング基地局についての前記1つまたは複数の報告は、前記少なくとも1つのネイバリング基地局から直接受信される、請求項9に記載の方法。
【請求項11】
前記基地局によってサービスされるユーザ機器(UE)は、測位エンティティであり、前記方法は、
前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記UEに送信すること、
をさらに備える、請求項9に記載の方法。
【請求項12】
前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記送信することは、
媒体アクセス制御(MAC)制御要素(CE)中で、またはダウンリンク制御情報(DCI)中で、前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記UEに送信すること、
を備える、請求項11に記載の方法。
【請求項13】
前記基地局によってサービスされるUEとの前記測位セッションに関与するロケーションサーバは、測位エンティティであり、前記方法は、
前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記ロケーションサーバに送信すること、
をさらに備える、請求項9に記載の方法。
【請求項14】
前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告は、前記少なくとも1つのネイバリング基地局による前記測位基準信号の送信後から、しきい値時間期間内に受信される、請求項9に記載の方法。
【請求項15】
前記送信機デバイスはUEを備える、請求項1に記載の方法。
【請求項16】
サブバンドの前記サブセットは、複数の連続サブバンドを備える、請求項15に記載の方法。
【請求項17】
サブバンドの前記サブセットは、少なくとも1つの不連続サブバンドを備える、請求項15に記載の方法。
【請求項18】
前記少なくとも1つの不連続サブバンド上で送信されるべき測位基準信号をパンクチャすること、
をさらに備える、請求項17に記載の方法。
【請求項19】
メモリと、
少なくとも1つのトランシーバと、
前記メモリおよび前記少なくとも1つのトランシーバに通信可能に結合された少なくとも1つのプロセッサと、
を備える送信機デバイスであって、前記少なくとも1つのプロセッサは、
測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施することと、
前記少なくとも1つのトランシーバに、前記測位セッション中の第2の時間において、前記複数のサブバンドのうちの前記CCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信させることと、
を行うように構成された、送信機デバイス。
【請求項20】
前記少なくとも1つのプロセッサは、
前記少なくとも1つのトランシーバに、サブバンドの前記サブセットを示す1つまたは複数の報告を測位エンティティに送信させること、
を行うようにさらに構成された、請求項19に記載の送信機デバイス。
【請求項21】
前記少なくとも1つのプロセッサが、前記少なくとも1つのトランシーバに、前記測位基準信号を送信させるように構成されることは、前記少なくとも1つのプロセッサが、前記少なくとも1つのトランシーバに、前記測位基準信号の複数の反復を送信させるように構成されることを備える、請求項19に記載の送信機デバイス。
【請求項22】
前記送信機デバイスは基地局を備える、請求項19に記載の送信機デバイス。
【請求項23】
前記少なくとも1つのプロセッサは、
少なくとも1つのネイバリング基地局が前記測位セッション中に測位基準信号を送信した、サブバンドのセットを示す1つまたは複数の報告を、前記少なくとも1つのトランシーバを介して受信すること、
を行うようにさらに構成された、請求項22に記載の送信機デバイス。
【請求項24】
前記少なくとも1つのネイバリング基地局についての前記1つまたは複数の報告は、前記少なくとも1つのネイバリング基地局から直接受信される、請求項23に記載の送信機デバイス。
【請求項25】
前記基地局によってサービスされるユーザ機器(UE)は、測位エンティティであり、
前記少なくとも1つのプロセッサは、前記少なくとも1つのトランシーバに、前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記UEに送信させるようにさらに構成された、
請求項23に記載の送信機デバイス。
【請求項26】
前記基地局によってサービスされるUEとの前記測位セッションに関与するロケーションサーバは、測位エンティティであり、
前記少なくとも1つのプロセッサは、前記少なくとも1つのトランシーバに、前記少なくとも1つのネイバリング基地局の各々からの前記1つまたは複数の報告を前記ロケーションサーバに送信させるようにさらに構成された、
請求項23に記載の送信機デバイス。
【請求項27】
前記送信機デバイスはUEを備え、
サブバンドの前記サブセットは、複数の連続サブバンドを備えるか、
サブバンドの前記サブセットは、少なくとも1つの不連続サブバンドを備えるか、
またはそれらの組合せである、
請求項19に記載の送信機デバイス。
【請求項28】
前記少なくとも1つのプロセッサは、
前記少なくとも1つの不連続サブバンド上で送信されるべき測位基準信号をパンクチャすること、
を行うようにさらに構成された、請求項27に記載の送信機デバイス。
【請求項29】
測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施するための手段と、
前記測位セッション中の第2の時間において、前記複数のサブバンドのうちの前記CCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信するための手段と、
を備える、送信機デバイス。
【請求項30】
コンピュータ実行可能命令を記憶する非一時的コンピュータ可読媒体であって、前記コンピュータ実行可能命令は、
測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施するように送信機デバイスに命令する少なくとも1つの命令と、
前記測位セッション中の第2の時間において、前記複数のサブバンドのうちの前記CCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信するように前記送信機デバイスに命令する少なくとも1つの命令と、
を備える、非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【優先権の主張】
【0001】
関連出願の相互参照
[0001]本特許出願は、その両方が本出願の譲受人に譲渡され、その全体が参照により本明細書に明確に組み込まれる、2019年10月9日に出願された「REPORTING ENHANCEMENTS FOR POSITIONING」と題する米国仮出願第62/913,056号、および2020年6月22日に出願された「REPORTING ENHANCEMENTS FOR POSITIONING」と題する米国非仮出願第16/908,282号の利益を主張する。
【技術分野】
【0002】
[0002]本開示の態様は、一般に、ワイヤレス通信に関する。
【背景技術】
【0003】
[0003]ワイヤレス通信システムは、第1世代アナログワイヤレス電話サービス(1G)と、(中間の2.5Gネットワークを含む)第2世代(2G)デジタルワイヤレス電話サービスと、第3世代(3G)高速データ、インターネット対応ワイヤレスサービスと、第4世代(4G)サービス(たとえば、ロングタームエボリューション(LTE(登録商標))、WiMax(登録商標))とを含む、様々な世代を通して発展してきた。現在、セルラーおよびパーソナル通信サービス(PCS)システムを含む、使用されている多くの異なるタイプのワイヤレス通信システムがある。知られているセルラーシステムの例は、セルラーアナログアドバンストモバイルフォンシステム(AMPS)、および符号分割多元接続(CDMA)、周波数分割多元接続(FDMA)、時分割多元接続(TDMA)、モバイル通信用グローバルシステム(GSM(登録商標))などに基づくデジタルセルラーシステムを含む。
【0004】
[0004]第5世代(5G)モバイル規格は、改善の中でも、より高いデータ転送速度と、より多い数の接続と、より良いカバレージとを必要とする。次世代モバイルネットワークアライアンスによる(「新無線」または「NR」とも呼ばれる)5G規格は、数万人のユーザの各々に数十メガビット毎秒のデータレートを提供し、オフィスフロア上の数十人の労働者に1ギガビット毎秒のデータレートを提供するように設計されている。大きいセンサー展開をサポートするために、数十万の同時接続がサポートされるべきである。したがって、5Gモバイル通信のスペクトル効率は、現在の4G/LTE規格と比較して著しく拡張されるべきである。さらに、現在の規格と比較して、シグナリング効率が拡張されるべきであり、レイテンシが大幅に低減されるべきである。
【発明の概要】
【0005】
[0005]以下は、本明細書で開示される1つまたは複数の態様に関係する簡略化された概要を提示する。したがって、以下の概要は、すべての企図された態様に関係する広範な概要と見なされるべきではなく、また、以下の概要は、すべての企図された態様に関係するキーまたは重要な要素を識別するか、あるいは特定の態様に関連する範囲を定めるものと見なされるべきではない。したがって、以下の概要は、以下で提示される発明を実施するための形態に先行して、簡略化された形で、本明細書で開示される機構に関係する1つまたは複数の態様に関係するいくつかの概念を提示する唯一の目的を有する。
【0006】
[0006]一態様では、送信機デバイスによって実施されるワイヤレス通信の方法は、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でクリアチャネルアセスメント(CCA)プロシージャを実施することと、測位セッション中の第2の時間において、複数のサブバンドのうちのCCAプロシージャをクリアしたサブバンドのサブセット上で測位基準信号を送信することと、を含む。
【0007】
[0007]一態様では、送信機デバイスが、メモリと、少なくとも1つのトランシーバと、メモリおよび少なくとも1つのトランシーバに通信可能に結合された少なくとも1つのプロセッサとを含み、少なくとも1つのプロセッサは、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でCCAプロシージャを実施することと、少なくとも1つのトランシーバに、測位セッション中の第2の時間において、CCAプロシージャをクリアした複数のサブバンドのうちのサブバンドのサブセット上で測位基準信号を送信させることと、を行うように構成される。
【0008】
[0008]一態様では、送信機デバイスが、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でCCAプロシージャを実施するための手段と、測位セッション中の第2の時間において、CCAプロシージャをクリアした複数のサブバンドのうちのサブバンドのサブセット上で測位基準信号を送信するための手段とを含む。
【0009】
[0009]一態様では、コンピュータ実行可能命令を記憶する非一時的コンピュータ可読媒体が、コンピュータ実行可能命令を含み、コンピュータ実行可能命令は、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンドの各々上でCCAプロシージャを実施するように送信機デバイスに命令する少なくとも1つの命令と、測位セッション中の第2の時間において、CCAプロシージャをクリアした複数のサブバンドのうちのサブバンドのサブセット上で測位基準信号を送信するように送信機デバイスに命令する少なくとも1つの命令と、を備える。
【0010】
[0010]本明細書で開示される態様に関連する他の目的および利点は、添付の図面および発明を実施するための形態に基づいて当業者に明らかになるであろう。
【0011】
[0011]添付の図面は、本開示の様々な態様の説明を助けるために提示され、態様の限定ではなく、単に態様の例示のために提供される。
【図面の簡単な説明】
【0012】
図1】[0012]本開示の態様による、例示的なワイヤレス通信システムを示す図。
図2A】[0013]本開示の態様による、例示的なワイヤレスネットワーク構造を示す図。
図2B】本開示の態様による、例示的なワイヤレスネットワーク構造を示す図。
図3A】[0014]UEにおいて採用され得る構成要素のいくつかの例示的な態様の簡略ブロック図。
図3B】基地局において採用され得る構成要素のいくつかの例示的な態様の簡略ブロック図。
図3C】ネットワークエンティティにおいて採用され得る構成要素のいくつかの例示的な態様の簡略ブロック図。
図4】[0015]本開示の態様による、ワイヤレス電気通信システムにおいて使用するためのフレーム構造の一例を示す図。
図5】[0016]本開示の態様による、ワイヤレスノードによってサポートされるセルのための例示的な測位基準信号(PRS)構成を示す図。
図6】[0017]本開示の態様による、PRSが3つのサブバンド上で送信される例示的なシナリオの図。
図7】[0018]本開示の態様による、ワイヤレス通信の方法を示す図。
【発明を実施するための形態】
【0013】
[0019]本開示の態様が、説明のために提供される様々な例を対象とする以下の説明および関連する図面において提供される。本開示の範囲から逸脱することなく、代替態様が考案され得る。さらに、本開示の関連する詳細を不明瞭にしないように、本開示のよく知られている要素は詳細に説明されないか、または省略される。
【0014】
[0020]「例示的」および/または「例」という単語は、本明細書では「例、事例、または例示の働きをすること」を意味するために使用される。本明細書で「例示的」および/または「例」として説明されるいかなる態様も、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきであるとは限らない。同様に、「本開示の態様」という用語は、本開示のすべての態様が、説明される特徴、利点または動作モードを含むことを必要としない。
【0015】
[0021]以下で説明される情報および信号は、様々な異なる技術および技法のいずれかを使用して表され得ることを当業者は諒解されよう。たとえば、以下の説明全体にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、部分的に特定の適用例、部分的に所望の設計、部分的に対応する技術などに応じて、電圧、電流、電磁波、磁界または磁性粒子、光場または光学粒子、あるいはそれらの任意の組合せによって表され得る。
【0016】
[0022]さらに、多くの態様が、たとえば、コンピューティングデバイスの要素によって実施されるべき一連のアクションに関して説明される。本明細書で説明される様々なアクションは、特定の回路(たとえば、特定用途向け集積回路(ASIC))によって、1つまたは複数のプロセッサによって実行されるプログラム命令によって、または両方の組合せによって実施され得ることを認識されよう。さらに、本明細書で説明される一連のアクションは、実行時に、本明細書で説明される機能をデバイスの関連するプロセッサに実施させるかまたは実施するように命令することになるコンピュータ命令の対応するセットを記憶した任意の形態の非一時的コンピュータ可読記憶媒体内で全体として実施されるべきものと見なされ得る。したがって、本開示の様々な態様は、請求される主題の範囲内に入ることがすべて企図されているいくつかの異なる形態で実施され得る。さらに、本明細書で説明される態様の各々について、任意のそのような態様の対応する形態は、本明細書では、たとえば、説明されるアクションを実施する「ように構成された論理」として説明され得る。
【0017】
[0023]本明細書で使用される「ユーザ機器」(UE)および「基地局」という用語は、別段に記載されていない限り、いずれかの特定の無線アクセス技術(RAT)に固有であるかまたは他の方法でそれに限定されることを意図されていない。概して、UEは、ワイヤレス通信ネットワークを介して通信するためにユーザによって使用される任意のワイヤレス通信デバイス(たとえば、モバイルフォン、ルータ、タブレットコンピュータ、ラップトップコンピュータ、追跡デバイス、ウェアラブル(たとえば、スマートウォッチ、グラス、拡張現実(AR)/仮想現実(VR)ヘッドセットなど)、車両(たとえば、自動車、オートバイ、自転車など)、モノのインターネット(IoT)デバイスなど)であり得る。UEは、モバイルであり得るかまたは(たとえば、いくつかの時間において)固定であり得、無線アクセスネットワーク(RAN)と通信し得る。本明細書で使用される「UE」という用語は、「アクセス端末」または「AT」、「クライアントデバイス」、「ワイヤレスデバイス」、「加入者デバイス」、「加入者端末」、「加入者局」、「ユーザ端末」またはUT、「モバイルデバイス」、「モバイル端末」、「移動局」、あるいはそれらの変形形態と互換的に呼ばれることがある。概して、UEは、RANを介してコアネットワークと通信することができ、コアネットワークを通して、UEは、インターネットなどの外部ネットワークおよび他のUEと接続され得る。もちろん、ワイヤードアクセスネットワーク、(たとえば、IEEE802.11などに基づく)ワイヤレスローカルエリアネットワーク(WLAN)ネットワークなどを介したものなど、コアネットワークおよび/またはインターネットに接続する他の機構もUEに対して可能である。
【0018】
[0024]基地局は、それが展開されるネットワークに応じて、UEと通信しているいくつかのRATのうちの1つに従って動作し得、代替的に、アクセスポイント(AP)、ネットワークノード、ノードB、発展型ノードB(eNB)、次世代eNB(ng-eNB)、(gNBまたはgノードBとも呼ばれる)新無線(NR)ノードBなどと呼ばれることがある。基地局は、主に、サポートされるUEのためのデータ、音声、および/またはシグナリング接続をサポートすることを含む、UEによるワイヤレスアクセスをサポートするために使用され得る。いくつかのシステムでは、基地局は、純粋にエッジノードシグナリング機能を提供し得るが、他のシステムでは、それは、追加の制御および/またはネットワーク管理機能を提供し得る。UEがそれを通して基地局に信号を送ることができる通信リンクは、アップリンク(UL)チャネル(たとえば、逆方向トラフィックチャネル、逆方向制御チャネル、アクセスチャネルなど)と呼ばれる。基地局がそれを通してUEに信号を送ることができる通信リンクは、ダウンリンク(DL)または順方向リンクチャネル(たとえば、ページングチャネル、制御チャネル、ブロードキャストチャネル、順方向トラフィックチャネルなど)と呼ばれる。本明細書で使用されるトラフィックチャネル(TCH)という用語は、アップリンク/逆方向トラフィックチャネルまたはダウンリンク/順方向トラフィックチャネルのいずれかを指すことができる。
【0019】
[0025]「基地局」という用語は、単一の物理的送信受信ポイント(TRP)、またはコロケートされることもされないこともある複数の物理的TRPを指し得る。たとえば、「基地局」という用語が、単一の物理的TRPを指す場合、物理的TRPは、基地局のセル(またはいくつかのセルセクタ)に対応する基地局のアンテナであり得る。「基地局」という用語が、複数のコロケートされた物理的TRPを指す場合、物理的TRPは、基地局の(たとえば、多入力多出力(MIMO)システムにおけるような、または基地局がビームフォーミングを採用する場合における)アンテナのアレイであり得る。「基地局」という用語が、複数のコロケートされない物理的TRPを指す場合、物理的TRPは、分散アンテナシステム(DAS)(トランスポート媒体を介して共通ソースに接続された、空間的に分離されたアンテナのネットワーク)またはリモートラジオヘッド(RRH)(サービング基地局に接続されたリモート基地局)であり得る。代替的に、コロケートされない物理的TRPは、UEから測定報告を受信するサービング基地局と、UEがその基準RF信号(または単に「基準信号」)を測定しているネイバー基地局とであり得る。TRPは、基地局がワイヤレス信号をそこから送信および受信するポイントであるので、本明細書で使用される、基地局からの送信または基地局における受信への言及は、基地局の特定のTRPを指すものとして理解されるべきである。
【0020】
[0026]UEの測位をサポートするいくつかの実装形態では、基地局は、UEによるワイヤレスアクセスをサポートしないことがある(たとえば、UEのためのデータ、音声、および/またはシグナリング接続をサポートしないことがある)が、代わりに、UEによって測定されるべき基準信号をUEに送信し得、および/またはUEによって送信された信号を受信し、測定し得る。そのような基地局は、(たとえば、信号をUEに送信するとき)測位ビーコンと呼ばれ、および/または(たとえば、信号をUEから受信し、測定するとき)ロケーション測定ユニットと呼ばれることがある。
【0021】
[0027]「RF信号」は、送信機と受信機との間の空間を通して情報をトランスポートする所与の周波数の電磁波を備える。本明細書で使用される送信機は、単一の「RF信号」または複数の「RF信号」を受信機に送信し得る。しかしながら、受信機は、マルチパスチャネルを通るRF信号の伝搬特性により、各送信されるRF信号に対応する複数の「RF信号」を受信し得る。送信機と受信機との間の異なる経路上の同じ送信されるRF信号は、「マルチパス」RF信号と呼ばれることがある。本明細書で使用されるRF信号は、「ワイヤレス信号」と呼ばれるか、あるいは、「信号」という用語がワイヤレス信号またはRF信号を指すことがコンテキストから明らかである場合、単に「信号」と呼ばれることもある。
【0022】
[0028]様々な態様によれば、図1は、例示的なワイヤレス通信システム100を示す。(ワイヤレスワイドエリアネットワーク(WWAN)と呼ばれることもある)ワイヤレス通信システム100は、様々な基地局102と、様々なUE104とを含み得る。基地局102は、マクロセル基地局(高電力セルラー基地局)および/またはスモールセル基地局(低電力セルラー基地局)を含み得る。一態様では、マクロセル基地局は、ワイヤレス通信システム100がLTEネットワークに対応するeNBおよび/もしくはng-eNB、またはワイヤレス通信システム100がNRネットワークに対応するgNB、あるいは両方の組合せを含み得、スモールセル基地局は、フェムトセル、ピコセル、マイクロセルなどを含み得る。
【0023】
[0029]基地局102は、集合的にRANを形成し、バックホールリンク122を通してコアネットワーク170(たとえば、発展型パケットコア(EPC)または5Gコア(5GC))とインターフェースし、コアネットワーク170を通して(コアネットワーク170の一部であり得るか、またはコアネットワーク170の外部にあり得る)1つまたは複数のロケーションサーバ172へとインターフェースし得る。他の機能に加えて、基地局102は、ユーザデータを転送することと、無線チャネル暗号化および解読と、完全性保護と、ヘッダ圧縮と、モビリティ制御機能(たとえば、ハンドオーバ、デュアル接続性)と、セル間干渉協調と、接続セットアップおよび解放と、負荷分散と、非アクセス層(NAS)メッセージのための分配と、NASノード選択と、同期と、RAN共有と、マルチメディアブロードキャストマルチキャストサービス(MBMS)と、加入者および機器トレースと、RAN情報管理(RIM)と、ページングと、測位と、警告メッセージの配信とのうちの1つまたは複数に関係する機能を実施し得る。基地局102は、ワイヤードまたはワイヤレスであり得るバックホールリンク134を介して、直接または間接的に(たとえば、EPC/5GCを通して)互いに通信し得る。
【0024】
[0030]基地局102はUE104とワイヤレス通信し得る。基地局102の各々は、それぞれの地理的カバレージエリア110に通信カバレージを提供し得る。一態様では、1つまたは複数のセルは、各地理的カバレージエリア110中の基地局102によってサポートされ得る。「セル」は、(たとえば、キャリア周波数、コンポーネントキャリア、キャリア、帯域などと呼ばれる、何らかの周波数リソースを介した)基地局との通信のために使用される論理的通信エンティティであり、同じまたは異なるキャリア周波数を介して動作するセルを区別するための識別子(たとえば、物理セル識別子(PCI)、仮想セル識別子(VCI)、セルグローバル識別子(CGI))に関連付けられ得る。いくつかの場合には、異なるセルは、異なるタイプのUEにアクセスを提供し得る異なるプロトコルタイプ(たとえば、マシンタイプ通信(MTC)、狭帯域IoT(NB-IoT)、拡張モバイルブロードバンド(eMBB)、またはその他)に従って構成され得る。セルは特定の基地局によってサポートされるので、「セル」という用語は、コンテキストに応じて、論理的通信エンティティと、それをサポートする基地局とのいずれかまたは両方を指し得る。さらに、TRPは一般にセルの物理的送信ポイントであるので、「セル」という用語と「TRP」という用語とは互換的に使用され得る。いくつかの場合には、「セル」という用語は、キャリア周波数が検出され、地理的カバレージエリア110の何らかの部分内の通信のために使用され得る限り、基地局の地理的カバレージエリア(たとえば、セクタ)をも指し得る。
【0025】
[0031]ネイバリングマクロセル基地局102の地理的カバレージエリア110は、(たとえば、ハンドオーバ領域において)部分的に重複し得るが、地理的カバレージエリア110のうちのいくつかは、より大きい地理的カバレージエリア110によってかなり重複され得る。たとえば、スモールセル基地局102’は、1つまたは複数のマクロセル基地局102の地理的カバレージエリア110とかなり重複する地理的カバレージエリア110’を有し得る。スモールセル基地局とマクロセル基地局の両方を含むネットワークは、異種ネットワークとして知られ得る。異種ネットワークはまた、限定加入者グループ(CSG)として知られる制限されたグループにサービスを提供し得るホームeNB(HeNB)を含み得る。
【0026】
[0032]基地局102とUE104との間の通信リンク120は、UE104から基地局102への(逆方向リンクとも呼ばれる)アップリンク送信、および/または基地局102からUE104への(順方向リンクとも呼ばれる)ダウンリンク送信を含み得る。通信リンク120は、空間多重化、ビームフォーミング、および/または送信ダイバーシティを含む、MIMOアンテナ技術を使用し得る。通信リンク120は、1つまたは複数のキャリア周波数を通したものであり得る。キャリアの割振りは、ダウンリンクとアップリンクとに関して非対称であり得る(たとえば、ダウンリンクの場合、アップリンクの場合よりも多いまたは少ないキャリアが割り振られ得る)。
【0027】
[0033]ワイヤレス通信システム100は、無認可周波数スペクトル(たとえば、5GHz)中の通信リンク154を介してワイヤレスローカルエリアネットワーク(WLAN)局(STA)152と通信しているWLANアクセスポイント(AP)150をさらに含み得る。無認可周波数スペクトル中で通信するとき、WLAN STA152および/またはWLAN AP150は、チャネルが利用可能であるかどうかを決定するために、通信する前にクリアチャネルアセスメント(CCA)プロシージャまたはリッスンビフォアトーク(LBT)プロシージャを実施し得る。
【0028】
[0034]より詳細には、LBTは、送信機(たとえば、アップリンク上のUEまたはダウンリンク上の基地局)が、チャネル/サブバンドを使用する前にそれによってCCAを適用する機構である。したがって、送信の前に、送信機は、CCA検査を実施し、あるしきい値(たとえば、15マイクロ秒)よりも小さくなるべきではないCCA観測時間の持続時間の間、チャネル/サブバンド上でリッスンする。チャネルは、チャネルにおけるエネルギーレベルが、(送信機の送信電力に比例する)あるしきい値を超える場合、占有されたと見なされ得る。チャネルが占有された場合、送信機は、あるランダム係数(たとえば、1から20の間のある数)×CCA観測時間だけ、媒体にアクセスするためのさらなる試みを遅延させるべきである。チャネルが占有されない場合、送信機は、送信することを開始することができる。しかしながら、チャネル上での最大連続送信時間は、5ミリ秒など、あるしきい値よりも小さくなるべきである。
【0029】
[0035]スモールセル基地局102’は、認可および/または無認可周波数スペクトル中で動作し得る。無認可周波数スペクトル中で動作するとき、スモールセル基地局102’は、LTEまたはNR技術を採用し、WLAN AP150によって使用されるのと同じ5GHz無認可周波数スペクトルを使用し得る。無認可周波数スペクトル中でLTE/5Gを採用するスモールセル基地局102’は、アクセスネットワークへのカバレージをブーストし、および/またはアクセスネットワークの容量を増加させ得る。無認可スペクトルにおけるNRは、NR-Uと呼ばれることがある。無認可スペクトルにおけるLTEは、LTE-U、認可支援アクセス(LAA)、またはMulteFireと呼ばれることがある。
【0030】
[0036]ワイヤレス通信システム100は、UE182と通信している、ミリメートル波(mmW)周波数および/または近mmW周波数中で動作し得るmmW基地局180をさらに含み得る。極高周波(EHF)は、電磁スペクトル中のRFの一部である。EHFは、30GHz~300GHzの範囲と、1ミリメートルから10ミリメートルの間の波長とを有する。この帯域中の電波は、ミリメートル波と呼ばれることがある。近mmWは、100ミリメートルの波長をもつ3GHzの周波数まで下方に延在し得る。超高周波(SHF)帯域は、センチメートル波とも呼ばれる、3GHzから30GHzの間に延在する。mmW/近mmW無線周波数帯域を使用する通信は、高い経路損失と比較的短い範囲とを有する。mmW基地局180とUE182とは、極めて高い経路損失と短い範囲とを補償するために、mmW通信リンク184を介してビームフォーミング(送信および/または受信)を利用し得る。さらに、代替構成では、1つまたは複数の基地局102はまた、mmWまたは近mmWとビームフォーミングとを使用して送信し得ることが諒解されよう。したがって、上記の説明は、例にすぎず、本明細書で開示される様々な態様を限定すると解釈されるべきではないことが諒解されよう。
【0031】
[0037]送信ビームフォーミングは、RF信号を特定の方向に集束させるための技法である。旧来、ネットワークノード(たとえば、基地局)がRF信号をブロードキャストするとき、それは、信号をすべての方向に(全方向的に)ブロードキャストする。送信ビームフォーミングでは、ネットワークノードは、所与のターゲットデバイス(たとえば、UE)が(送信ネットワークノードに対して)どこに位置するかを決定し、より強いダウンリンクRF信号をその特定の方向に投射し、それにより、(データレートに関して)より高速でより強いRF信号を(1つまたは複数の)受信デバイスに提供する。送信するときにRF信号の方向性を変更するために、ネットワークノードは、RF信号をブロードキャストしている1つまたは複数の送信機の各々において、RF信号の位相と相対振幅とを制御することができる。たとえば、ネットワークノードは、アンテナを実際に移動させることなしに、異なる方向に向くように「ステアリング」され得るRF波のビームを作成する(「フェーズドアレイ」または「アンテナアレイ」と呼ばれる)アンテナのアレイを使用し得る。特に、送信機からのRF電流は、別個のアンテナからの電波が互いに加算されて所望の方向における放射が増加される一方で、望ましくない方向における放射を打ち消して抑制するように、適正な位相関係とともに個々のアンテナに供給される。
【0032】
[0038]送信ビームは擬似コロケートされ得、これは、ネットワークノードの送信アンテナ自体が物理的にコロケートされるか否かにかかわらず、送信ビームが受信機(たとえば、UE)には同じパラメータを有するように見えることを意味する。NRでは、4つのタイプの擬似コロケーション(QCL)関係がある。特に、所与のタイプのQCL関係は、第2のビーム上の第2の基準RF信号に関するいくつかのパラメータが、ソースビーム上のソース基準RF信号に関する情報から導出され得ることを意味する。したがって、ソース基準RF信号がQCLタイプAである場合、受信機は、同じチャネル上で送信される第2の基準RF信号のドップラーシフトと、ドップラー拡散と、平均遅延と、遅延拡散とを推定するために、ソース基準RF信号を使用することができる。ソース基準RF信号がQCLタイプBである場合、受信機は、同じチャネル上で送信される第2の基準RF信号のドップラーシフトとドップラー拡散とを推定するために、ソース基準RF信号を使用することができる。ソース基準RF信号がQCLタイプCである場合、受信機は、同じチャネル上で送信される第2の基準RF信号のドップラーシフトと平均遅延とを推定するために、ソース基準RF信号を使用することができる。ソース基準RF信号がQCLタイプDである場合、受信機は、同じチャネル上で送信される第2の基準RF信号の空間受信パラメータを推定するために、ソース基準RF信号を使用することができる。
【0033】
[0039]受信ビームフォーミングでは、受信機は、所与のチャネル上で検出されたRF信号を増幅するために受信ビームを使用する。たとえば、受信機は、特定の方向から受信されるRF信号を増幅する(たとえば、それの利得レベルを増加させる)ために、その方向においてアンテナのアレイの利得設定を増加させ、および/または位相設定を調整することができる。したがって、受信機が、ある方向にビームフォーミングすると言われるとき、それは、その方向におけるビーム利得が、他の方向に沿ったビーム利得に対して高いこと、またはその方向におけるビーム利得が、受信機にとって利用可能なすべての他の受信ビームのその方向におけるビーム利得と比較して最も高いことを意味する。これは、その方向から受信されるRF信号のより強い受信信号強度(たとえば、基準信号受信電力(RSRP)、基準信号受信品質(RSRQ)、信号対干渉プラス雑音比(SINR)など)を生じる。
【0034】
[0040]受信ビームは空間的に関係し得る。空間関係は、第2の基準信号のための送信ビームのためのパラメータが、第1の基準信号のための受信ビームに関する情報から導出され得ることを意味する。たとえば、UEは、基地局から1つまたは複数の基準ダウンリンク基準信号(たとえば、測位基準信号(PRS)、ナビゲーション基準信号(NRS)、追跡基準信号(TRS)、位相追跡基準信号(PTRS)、セル固有基準信号(CRS)、チャネル状態情報基準信号(CSI-RS)、1次同期信号(PSS)、2次同期信号(SSS)、同期信号ブロック(SSB)など)を受信するために特定の受信ビームを使用し得る。UEは、次いで、受信ビームのパラメータに基づいて、その基地局に1つまたは複数のアップリンク基準信号(たとえば、アップリンク測位基準信号(UL-PRS)、サウンディング基準信号(SRS)、復調基準信号(DMRS)など)を送るための送信ビームを形成することができる。
【0035】
[0041]「ダウンリンク」ビームは、それを形成しているエンティティに応じて、送信ビームまたは受信ビームのいずれかであり得ることに留意されたい。たとえば、基地局が、UEに基準信号を送信するためにダウンリンクビームを形成している場合、ダウンリンクビームは送信ビームである。しかしながら、UEがダウンリンクビームを形成している場合、それは、ダウンリンク基準信号を受信するための受信ビームである。同様に、「アップリンク」ビームは、それを形成しているエンティティに応じて、送信ビームまたは受信ビームのいずれかであり得る。たとえば、基地局がアップリンクビームを形成している場合、それはアップリンク受信ビームであり、UEがアップリンクビームを形成している場合、それはアップリンク送信ビームである。
【0036】
[0042]5Gでは、ワイヤレスノード(たとえば、基地局102/180、UE104/182)が動作する周波数スペクトルは、複数の周波数範囲、FR1(450から6000MHzまで)と、FR2(24250から52600MHzまで)と、FR3(52600MHz超)と、FR4(FR1からFR2の間)とに分割される。5Gなど、マルチキャリアシステムでは、キャリア周波数のうちの1つは、「1次キャリア」または「アンカーキャリア」または「1次サービングセル」または「PCell」と呼ばれ、残りのキャリア周波数は、「2次キャリア」または「2次サービングセル」または「SCell」と呼ばれる。キャリアアグリゲーションにおいて、アンカーキャリアは、UE104/182と、UE104/182が初期無線リソース制御(RRC)接続確立プロシージャを実施するかまたはRRC接続再確立プロシージャを開始するかのいずれかであるセルとによって利用される1次周波数(たとえば、FR1)上で動作するキャリアである。1次キャリアは、すべての共通のおよびUE固有の制御チャネルを搬送し、認可周波数中のキャリアであり得る(ただし、これは常に当てはまるとは限らない)。2次キャリアは、RRC接続がUE104とアンカーキャリアとの間で確立されると構成され得、追加の無線リソースを提供するために使用され得る、第2の周波数(たとえば、FR2)上で動作するキャリアである。いくつかの場合には、2次キャリアは、無認可周波数中のキャリアであり得る。2次キャリアは、必要なシグナリング情報および信号のみを含んでいることがあり、たとえば、1次アップリンクキャリアと1次ダウンリンクキャリアの両方が典型的にはUE固有であるので、UE固有であるシグナリング情報および信号は、2次キャリア中に存在しないことがある。これは、セル中の異なるUE104/182が、異なるダウンリンク1次キャリアを有し得ることを意味する。同じことが、アップリンク1次キャリアについて真である。ネットワークは、任意の時間に任意のUE104/182の1次キャリアを変更することが可能である。これは、たとえば、異なるキャリアに対する負荷を分散させるために行われる。(PCellであるかSCellであるかにかかわらず)「サービングセル」は、何らかの基地局がその上で通信しているキャリア周波数/コンポーネントキャリアに対応するので、「セル」、「サービングセル」、「コンポーネントキャリア」、「キャリア周波数」などの用語は、互換的に使用され得る。
【0037】
[0043]たとえば、まだ図1を参照すると、マクロセル基地局102によって利用される周波数のうちの1つは、アンカーキャリア(または「PCell」)であり得、マクロセル基地局102および/またはmmW基地局180によって利用される他の周波数は、2次キャリア(「SCell」)であり得る。複数のキャリアの同時送信および/または受信は、UE104/182がそれのデータ送信および/または受信レートを著しく増加させることを可能にする。たとえば、マルチキャリアシステムにおける2つの20MHzのアグリゲートされたキャリアは、理論的には、単一の20MHzキャリアによって達成されるものと比較して、データレートの倍増(すなわち、40MHz)につながるであろう。
【0038】
[0044]ワイヤレス通信システム100は、1つまたは複数のデバイスツーデバイス(D2D)ピアツーピア(P2P)リンクを介して1つまたは複数の通信ネットワークに間接的に接続する、UE190などの1つまたは複数のUEをさらに含み得る。図1の例では、UE190は、(たとえば、UE190がそれを通してセルラー接続性を間接的に取得し得る)基地局102のうちの1つに接続されたUE104のうちの1つとのD2D P2Pリンク192と、(UE190がそれを通してWLANベースインターネット接続性を間接的に取得し得る)WLAN AP150に接続されたWLAN STA152とのD2D P2Pリンク194とを有する。一例では、D2D P2Pリンク192および194は、LTE Direct(LTE-D)、WiFi Direct(登録商標)(WiFi-D)、Bluetooth(登録商標)など、任意のよく知られているD2D RATを用いてサポートされ得る。
【0039】
[0045]ワイヤレス通信システム100は、通信リンク120を介してマクロセル基地局102と通信し、および/またはmmW通信リンク184を介してmmW基地局180と通信し得る、UE164をさらに含み得る。たとえば、マクロセル基地局102は、UE164のためにPCellと1つまたは複数のSCellとをサポートし得、mmW基地局180は、UE164のために1つまたは複数のSCellをサポートし得る。
【0040】
[0046]様々な態様によれば、図2Aは、例示的なワイヤレスネットワーク構造200を示す。たとえば、(次世代コア(NGC)とも呼ばれる)5GC210は、機能的には、コアネットワークを形成するために協働的に動作する、制御プレーン機能214(たとえば、UE登録、認証、ネットワークアクセス、ゲートウェイ選択など)、およびユーザプレーン機能212(たとえば、UEゲートウェイ機能、データネットワークへのアクセス、IPルーティングなど)と見なされ得る。ユーザプレーンインターフェース(NG-U)213と制御プレーンインターフェース(NG-C)215とは、gNB222を5GC210に、特に制御プレーン機能214とユーザプレーン機能212とに接続する。追加の構成では、ng-eNB224も、制御プレーン機能214へのNG-C215と、ユーザプレーン機能212へのNG-U213とを介して5GC210に接続され得る。さらに、ng-eNB224は、バックホール接続223を介してgNB222と直接通信し得る。いくつかの構成では、新RAN220は、1つまたは複数のgNB222のみを有し得、他の構成は、ng-eNB224とgNB222の両方のうちの1つまたは複数を含む。gNB222またはng-eNB224のいずれかが、UE204(たとえば、図1に示されているUEのいずれか)と通信し得る。別の随意の態様は、UE204にロケーション支援を提供するために5GC210と通信していることがある、ロケーションサーバ230を含み得る。ロケーションサーバ230は、複数の別個のサーバ(たとえば、物理的に別個のサーバ、単一のサーバ上の異なるソフトウェアモジュール、複数の物理サーバにわたって拡散された異なるソフトウェアモジュールなど)として実装され得るか、または代替的に、各々単一のサーバに対応し得る。ロケーションサーバ230は、コアネットワーク5GC210を介して、および/またはインターネット(示されず)を介してロケーションサーバ230に接続することができるUE204のための1つまたは複数のロケーションサービスをサポートするように構成され得る。さらに、ロケーションサーバ230は、コアネットワークの構成要素に統合され得るか、または代替的にコアネットワークの外部にあり得る。
【0041】
[0047]様々な態様によれば、図2Bは、別の例示的なワイヤレスネットワーク構造250を示す。たとえば、5GC260は、機能的には、コアネットワーク(すなわち、5GC260)を形成するために協働的に動作する、アクセスおよびモビリティ管理機能(AMF)264によって提供される制御プレーン機能、ならびにユーザプレーン機能(UPF)262によって提供されるユーザプレーン機能と見なされ得る。ユーザプレーンインターフェース263と制御プレーンインターフェース265とは、ng-eNB224を5GC260に、特にそれぞれUPF262とAMF264とに接続する。追加の構成では、gNB222も、AMF264への制御プレーンインターフェース265と、UPF262へのユーザプレーンインターフェース263とを介して5GC260に接続され得る。さらに、ng-eNB224は、5GC260へのgNB直接接続性を用いてまたは用いずに、バックホール接続223を介してgNB222と直接通信し得る。いくつかの構成では、新RAN220は、1つまたは複数のgNB222のみを有し得、他の構成は、ng-eNB224とgNB222の両方のうちの1つまたは複数を含む。gNB222またはng-eNB224のいずれかが、UE204(たとえば、図1に示されているUEのいずれか)と通信し得る。新RAN220の基地局は、N2インターフェースを介してAMF264と通信し、N3インターフェースを介してUPF262と通信する。
【0042】
[0048]AMF264の機能は、登録管理と、接続管理と、到達可能性管理と、モビリティ管理と、合法的傍受と、UE204とセッション管理機能(SMF)266との間のセッション管理(SM)メッセージのためのトランスポートと、SMメッセージをルーティングするための透過的プロキシサービスと、アクセス認証およびアクセス許可と、UE204とショートメッセージサービス機能(SMSF)(図示せず)との間のショートメッセージサービス(SMS)メッセージのためのトランスポートと、セキュリティアンカー機能(SEAF)とを含む。AMF264はまた、認証サーバ機能(AUSF)(図示せず)およびUE204と対話し、UE204認証プロセスの結果として確立された中間キーを受信する。UMTS(ユニバーサルモバイルテレコミュニケーションズシステム)加入者識別モジュール(USIM)に基づく認証の場合、AMF264は、AUSFからセキュリティ資料を取り出す。AMF264の機能はまた、セキュリティコンテキスト管理(SCM)を含む。SCMは、それがアクセスネットワーク固有のキーを導出するために使用するキーをSEAFから受信する。AMF264の機能はまた、規制サービスのためのロケーションサービス管理と、UE204と(ロケーションサーバ230として働く)ロケーション管理機能(LMF)270との間のロケーションサービスメッセージのためのトランスポートと、新RAN220とLMF270との間のロケーションサービスメッセージのためのトランスポートと、発展型パケットシステム(EPS)との相互動作のためのEPSベアラ識別子割振りと、UE204モビリティイベント通知とを含む。さらに、AMF264はまた、非3GPP(登録商標)アクセスネットワークのための機能をサポートする。
【0043】
[0049]UPF262の機能は、(適用可能なとき)RAT内/間モビリティのためのアンカーポイントとして働くことと、データネットワーク(図示せず)への相互接続の外部プロトコルデータユニット(PDU)セッションポイントとして働くことと、パケットルーティングおよびフォワーディングを提供することと、パケット検査と、ユーザプレーンポリシールール執行(たとえば、ゲーティング、リダイレクション、トラフィックステアリング)と、合法的傍受(ユーザプレーン収集)と、トラフィック使用報告と、ユーザプレーンのためのサービス品質(QoS)ハンドリング(たとえば、アップリンク/ダウンリンクレート執行、ダウンリンクにおける反射性QoSマーキング)と、アップリンクトラフィック検証(サービスデータフロー(SDF)対QoSフローマッピング)と、アップリンクおよびダウンリンクにおけるトランスポートレベルパケットマーキングと、ダウンリンクパケットバッファリングおよびダウンリンクデータ通知トリガリングと、ソースRANノードに1つまたは複数の「終了マーカー」を送ることおよびフォワーディングすることとを含む。UPF262はまた、UE204と、セキュアユーザプレーンロケーション(SUPL)ロケーションプラットフォーム(SLP)272などのロケーションサーバとの間のユーザプレーン上でのロケーションサービスメッセージの転送をサポートし得る。
【0044】
[0050]SMF266の機能は、セッション管理と、UEインターネットプロトコル(IP)アドレス割振りおよび管理と、ユーザプレーン機能の選択および制御と、トラフィックを適切な宛先にルーティングするためのUPF262におけるトラフィックステアリングの構成と、ポリシー執行およびQoSの一部の制御と、ダウンリンクデータ通知とを含む。SMF266がそれを介してAMF264と通信するインターフェースは、N11インターフェースと呼ばれる。
【0045】
[0051]別の随意の態様は、UE204にロケーション支援を提供するために5GC260と通信していることがある、LMF270を含み得る。LMF270は、複数の別個のサーバ(たとえば、物理的に別個のサーバ、単一のサーバ上の異なるソフトウェアモジュール、複数の物理サーバにわたって拡散された異なるソフトウェアモジュールなど)として実装され得るか、または代替的に、各々単一のサーバに対応し得る。LMF270は、コアネットワーク5GC260を介して、および/またはインターネット(示されず)を介してLMF270に接続することができるUE204のための1つまたは複数のロケーションサービスをサポートするように構成され得る。SLP272は、LMF270と同様の機能をサポートし得るが、LMF270は、(たとえば、音声またはデータでなくシグナリングメッセージを伝達することを意図されたインターフェースおよびプロトコルを使用して)制御プレーン上でAMF264、新RAN220、およびUE204と通信し得、SLP272は、(たとえば、伝送制御プロトコル(TCP)および/またはIPのような音声および/またはデータを搬送することを意図されたプロトコルを使用して)ユーザプレーン上でUE204および外部クライアント(図2Bに図示せず)と通信し得る。
【0046】
[0052]図3Aと、図3Bと、図3Cとは、本明細書で教示されるファイル送信動作をサポートするために、(本明細書で説明されるUEのいずれかに対応し得る)UE302と、(本明細書で説明される基地局のいずれかに対応し得る)基地局304と、(ロケーションサーバ230と、LMF270と、SLP272とを含む、本明細書で説明されるネットワーク機能のいずれかに対応するかまたはそれを実施し得る)ネットワークエンティティ306とに組み込まれ得る、(対応するブロックによって表される)いくつかの例示的な構成要素を示す。これらの構成要素は、異なる実装形態では異なるタイプの装置において(たとえば、ASICにおいて、システムオンチップ(SoC)においてなど)実装され得ることが諒解されよう。図示された構成要素は、通信システム中の他の装置にも組み込まれ得る。たとえば、システム中の他の装置は、同様の機能を提供するために説明されるものと同様の構成要素を含み得る。また、所与の装置が、構成要素のうちの1つまたは複数を含んでいることがある。たとえば、装置は、装置が複数のキャリア上で動作し、および/または異なる技術によって通信することを可能にする、複数のトランシーバ構成要素を含み得る。
【0047】
[0053]UE302と基地局304とは、各々、NRネットワーク、LTEネットワーク、GSMネットワークなど、1つまたは複数のワイヤレス通信ネットワーク(図示せず)を介して通信するように構成されたワイヤレスワイドエリアネットワーク(WWAN)トランシーバ310および350をそれぞれ含む。WWANトランシーバ310および350は、当該のワイヤレス通信媒体(たとえば、特定の周波数スペクトル中の時間/周波数リソースの何らかのセット)上で少なくとも1つの指定されたRAT(たとえば、NR、LTE、GSMなど)を介して、他のUE、アクセスポイント、基地局(たとえば、ng-eNB、gNB)などの他のネットワークノードと通信するために、それぞれ、1つまたは複数のアンテナ316および356に接続され得る。WWANトランシーバ310および350は、指定されたRATに従って、それぞれ、信号318および358(たとえば、メッセージ、指示、情報など)を送信および符号化するために、ならびに逆に、それぞれ、信号318および358(たとえば、メッセージ、指示、情報、パイロットなど)を受信および復号するために、様々に構成され得る。特に、WWANトランシーバ310および350は、それぞれ、信号318および358を送信および符号化するために、1つまたは複数の送信機314および354をそれぞれ含み、それぞれ、信号318および358を受信および復号するために、1つまたは複数の受信機312および352をそれぞれ含む。
【0048】
[0054]UE302と基地局304とはまた、少なくともいくつかの場合には、それぞれ、ワイヤレスローカルエリアネットワーク(WLAN)トランシーバ320および360を含む。WLANトランシーバ320および360は、当該のワイヤレス通信媒体上で少なくとも1つの指定されたRAT(たとえば、WiFi(登録商標)、LTE-D、Bluetoothなど)を介して、他のUE、アクセスポイント、基地局などの他のネットワークノードと通信するために、それぞれ、1つまたは複数のアンテナ326および366に接続され得る。WLANトランシーバ320および360は、指定されたRATに従って、それぞれ、信号328および368(たとえば、メッセージ、指示、情報など)を送信および符号化するために、ならびに逆に、それぞれ、信号328および368(たとえば、メッセージ、指示、情報、パイロットなど)を受信および復号するために、様々に構成され得る。特に、トランシーバ320および360は、それぞれ、信号328および368を送信および符号化するために、1つまたは複数の送信機324および364をそれぞれ含み、それぞれ、信号328および368を受信および復号するために、1つまたは複数の受信機322および362をそれぞれ含む。
【0049】
[0055]少なくとも1つの送信機と少なくとも1つの受信機とを含むトランシーバ回路は、いくつかの実装形態では、(たとえば、単一の通信デバイスの送信機回路および受信機回路として実施される)統合されたデバイスを備え得、いくつかの実装形態では、別個の送信機デバイスと別個の受信機デバイスとを備え得、または他の実装形態では、他の方法で実施され得る。一態様では、送信機は、本明細書で説明されるように、それぞれの装置が送信「ビームフォーミング」を実施することを可能にする、アンテナアレイなどの複数のアンテナ(たとえば、アンテナ316、326、356、366)を含むかまたはそれらに結合され得る。同様に、受信機は、本明細書で説明されるように、それぞれの装置が受信ビームフォーミングを実施することを可能にする、アンテナアレイなどの複数のアンテナ(たとえば、アンテナ316、326、356、366)を含むかまたはそれらに結合され得る。一態様では、送信機と受信機とは、それぞれの装置が、同時に受信と送信の両方を行うのではなく、所与の時間において受信または送信のみを行うことができるように、同じ複数のアンテナ(たとえば、アンテナ316、326、356、366)を共有し得る。UE302および/または基地局304のワイヤレス通信デバイス(たとえば、トランシーバ310および320ならびに/または350および360の一方または両方)はまた、様々な測定を実施するためのネットワークリッスンモジュール(NLM)などを備え得る。
【0050】
[0056]UE302および基地局304はまた、少なくともいくつかの場合には、衛星測位システム(SPS)受信機330および370を含む。SPS受信機330および370は、全地球測位システム(GPS)信号、グローバルナビゲーション衛星システム(GLONASS)信号、ガリレオ信号、北斗信号、インドの地域ナビゲーション衛星システム(NAVIC)、準天頂衛星システム(QZSS)など、それぞれ、SPS信号338および378を受信するための、1つまたは複数のアンテナ336および376にそれぞれ接続され得る。SPS受信機330および370は、それぞれ、SPS信号338および378を受信および処理するための、任意の好適なハードウェアおよび/またはソフトウェアを備え得る。SPS受信機330および370は、他のシステムに適宜に情報と動作とを要求し、任意の好適なSPSアルゴリズムによって取得された測定値を使用してUE302および基地局304の位置を決定するのに必要な計算を実施する。
【0051】
[0057]基地局304とネットワークエンティティ306とは、各々、他のネットワークエンティティと通信するための少なくとも1つのネットワークインターフェース380および390を含む。たとえば、ネットワークインターフェース380および390(たとえば、1つまたは複数のネットワークアクセスポート)は、ワイヤベースまたはワイヤレスバックホール接続を介して1つまたは複数のネットワークエンティティと通信するように構成され得る。いくつかの態様では、ネットワークインターフェース380および390は、ワイヤベースまたはワイヤレス信号通信をサポートするように構成されたトランシーバとして実装され得る。この通信は、たとえば、メッセージ、パラメータ、および/または他のタイプの情報を送信および受信することを伴い得る。
【0052】
[0058]UE302と、基地局304と、ネットワークエンティティ306とはまた、本明細書で開示される動作とともに使用され得る他の構成要素を含む。UE302は、たとえば、測位動作に関係する機能を提供するための、および他の処理機能を提供するための処理システム332を実装するプロセッサ回路を含む。基地局304は、たとえば、本明細書で開示される測位動作に関係する機能を提供するための、および他の処理機能を提供するための処理システム384を含む。ネットワークエンティティ306は、たとえば、本明細書で開示される測位動作に関係する機能を提供するための、および他の処理機能を提供するための処理システム394を含む。一態様では、処理システム332、384、および394は、たとえば、1つまたは複数の汎用プロセッサ、マルチコアプロセッサ、ASIC、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、あるいは他のプログラマブル論理デバイスまたは処理回路を含み得る。
【0053】
[0059]UE302、基地局304、およびネットワークエンティティ306は、情報(たとえば、予約済みリソース、しきい値、パラメータなどを示す情報)を維持するために、(たとえば、各々メモリデバイスを含む)メモリ構成要素340、386、および396をそれぞれ実装するメモリ回路を含む。いくつかの場合には、UE302、基地局304、およびネットワークエンティティ306は、それぞれ、報告マネージャ342、388、および398を含み得る。報告マネージャ342、388、および398は、実行されたとき、UE302、基地局304、およびネットワークエンティティ306に本明細書で説明される機能を実施させる、それぞれ処理システム332、384、および394の一部であるかまたはそれらに結合されたハードウェア回路であり得る。他の態様では、報告マネージャ342、388、および398は、処理システム332、384、および394の外部にあり得る(たとえば、モデム処理システムの一部である、別の処理システムと統合される、など)。代替的に、報告マネージャ342、388、および398は、処理システム332、384、および394(またはモデム処理システム、別の処理システムなど)によって実行されたとき、UE302、基地局304、およびネットワークエンティティ306に本明細書で説明される機能を実施させる、それぞれメモリ構成要素340、386、および396に記憶された(図3A図3Cに示されているような)メモリモジュールであり得る。
【0054】
[0060]UE302は、WWANトランシーバ310、WLANトランシーバ320、および/またはSPS受信機330によって受信された信号から導出される動きデータとは無関係である移動および/または配向情報を提供するために、処理システム332に結合された1つまたは複数のセンサー344を含み得る。例として、(1つまたは複数の)センサー344は、加速度計(たとえば、マイクロ電気機械システム(MEMS)デバイス)、ジャイロスコープ、地磁気センサー(たとえば、コンパス)、高度計(たとえば、気圧高度計)、および/または任意の他のタイプの移動検出センサーを含み得る。その上、(1つまたは複数の)センサー344は、複数の異なるタイプのデバイスを含み、動き情報を提供するためにそれらの出力を合成し得る。たとえば、(1つまたは複数の)センサー344は、2Dおよび/または3D座標系における位置を算出する能力を提供するために、多軸加速度計と配向センサーとの組合せを使用し得る。
【0055】
[0061]さらに、UE302は、ユーザに指示(たとえば、可聴および/または視覚指示)を提供するための、および/または(たとえば、キーパッド、タッチスクリーン、マイクロフォンなどの検知デバイスのユーザ作動時に)ユーザ入力を受信するためのユーザインターフェース346を含む。図示されていないが、基地局304およびネットワークエンティティ306もユーザインターフェースを含み得る。
【0056】
[0062]より詳細に処理システム384を参照すると、ダウンリンクにおいて、ネットワークエンティティ306からのIPパケットが処理システム384に提供され得る。処理システム384は、RRCレイヤと、パケットデータコンバージェンスプロトコル(PDCP)レイヤと、無線リンク制御(RLC)レイヤと、媒体アクセス制御(MAC)レイヤとのための機能を実装し得る。処理システム384は、システム情報(たとえば、マスタ情報ブロック(MIB)、システム情報ブロック(SIB))のブロードキャスティングと、RRC接続制御(たとえば、RRC接続ページング、RRC接続確立、RRC接続修正、およびRRC接続解放)と、RAT間モビリティと、UE測定報告のための測定構成とに関連するRRCレイヤ機能、ヘッダ圧縮/復元と、セキュリティ(暗号化、解読、完全性保護、完全性検証)と、ハンドオーバサポート機能とに関連するPDCPレイヤ機能、上位レイヤパケットデータユニット(PDU)の転送と、自動再送要求(ARQ)を介した誤り訂正と、RLCサービスデータユニット(SDU)の連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、スケジューリング情報報告と、誤り訂正と、優先度ハンドリングと、論理チャネル優先度付けとに関連するMACレイヤ機能を提供し得る。
【0057】
[0063]送信機354と受信機352とは、様々な信号処理機能に関連するレイヤ1機能を実装し得る。物理(PHY)レイヤを含むレイヤ1は、トランスポートチャネル上の誤り検出と、トランスポートチャネルの前方誤り訂正(FEC)コーディング/復号と、インターリービングと、レートマッチングと、物理チャネル上へのマッピングと、物理チャネルの変調/復調と、MIMOアンテナ処理とを含み得る。送信機354は、様々な変調方式(たとえば、2位相シフトキーイング(BPSK)、4位相シフトキーイング(QPSK)、M位相シフトキーイング(M-PSK)、多値直交振幅変調(M-QAM))に基づく信号コンスタレーションへのマッピングをハンドリングする。コーディングされ、変調されたシンボルは、次いで、並列ストリームにスプリットされ得る。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、直交周波数分割多重(OFDM)サブキャリアにマッピングされ、時間および/または周波数領域中で基準信号(たとえば、パイロット)と多重化され、次いで、逆高速フーリエ変換(IFFT)を使用して互いに合成され得る。OFDMシンボルストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器からのチャネル推定値は、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用され得る。チャネル推定値は、UE302によって送信される基準信号および/またはチャネル状態フィードバックから導出され得る。各空間ストリームは、次いで、1つまたは複数の異なるアンテナ356に提供され得る。送信機354は、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
【0058】
[0064]UE302において、受信機312は、それのそれぞれの(1つまたは複数の)アンテナ316を通して信号を受信する。受信機312は、RFキャリア上に変調された情報を復元し、その情報を処理システム332に提供する。送信機314と受信機312とは、様々な信号処理機能に関連するレイヤ1機能を実装する。受信機312は、UE302に宛てられた空間ストリームを復元するために、情報に対して空間処理を実施し得る。複数の空間ストリームがUE302に宛てられた場合、それらは、受信機312によって単一のOFDMシンボルストリームに合成され得る。受信機312は、次いで、高速フーリエ変換(FFT)を使用して、OFDMシンボルストリームを時間領域から周波数領域にコンバートする。周波数領域信号は、OFDM信号のサブキャリアごとに別個のOFDMシンボルストリームを備える。各サブキャリア上のシンボルと、基準信号とは、基地局304によって送信される、可能性が最も高い信号コンスタレーションポイントを決定することによって復元され、復調される。これらの軟判定は、チャネル推定器によって算出されたチャネル推定値に基づき得る。軟判定は、次いで、物理チャネル上で基地局304によって最初に送信されたデータおよび制御信号を復元するために復号およびデインターリーブされる。データと制御信号とは、次いで、レイヤ3およびレイヤ2機能を実装する処理システム332に提供される。
【0059】
[0065]アップリンクでは、処理システム332は、コアネットワークからのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化と、パケットリアセンブリと、解読と、ヘッダ復元と、制御信号処理とを提供する。処理システム332はまた、誤り検出を担当する。
【0060】
[0066]基地局304によるダウンリンク送信に関して説明される機能と同様に、処理システム332は、システム情報(たとえば、MIB、SIB)獲得と、RRC接続と、測定報告とに関連するRRCレイヤ機能、ヘッダ圧縮/復元と、セキュリティ(暗号化、解読、完全性保護、完全性検証)とに関連するPDCPレイヤ機能、上位レイヤPDUの転送と、ARQを介した誤り訂正と、RLC SDUの連結、セグメンテーション、およびリアセンブリと、RLCデータPDUの再セグメンテーションと、RLCデータPDUの並べ替えとに関連するRLCレイヤ機能、ならびに論理チャネルとトランスポートチャネルとの間のマッピングと、トランスポートブロック(TB)上へのMAC SDUの多重化と、TBからのMAC SDUの逆多重化と、スケジューリング情報報告と、ハイブリッド自動再送要求(HARQ)を介した誤り訂正と、優先度ハンドリングと、論理チャネル優先度付けとに関連するMACレイヤ機能を提供する。
【0061】
[0067]基地局304によって送信される基準信号またはフィードバックからの、チャネル推定器によって導出されるチャネル推定値は、適切なコーディングおよび変調方式を選択することと、空間処理を可能にすることとを行うために、送信機314によって使用され得る。送信機314によって生成された空間ストリームは、(1つまたは複数の)異なるアンテナ316に提供され得る。送信機314は、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。
【0062】
[0068]アップリンク送信は、UE302における受信機機能に関して説明される様式と同様の様式で基地局304において処理される。受信機352は、それのそれぞれの(1つまたは複数の)アンテナ356を通して信号を受信する。受信機352は、RFキャリア上に変調された情報を復元し、その情報を処理システム384に提供する。
【0063】
[0069]アップリンクでは、処理システム384は、UE302からのIPパケットを復元するために、トランスポートチャネルと論理チャネルとの間の逆多重化と、パケットリアセンブリと、解読と、ヘッダ復元と、制御信号処理とを提供する。処理システム384からのIPパケットは、コアネットワークに提供され得る。処理システム384はまた、誤り検出を担当する。
【0064】
[0070]便宜上、UE302、基地局304、および/またはネットワークエンティティ306は、図3A図3Cでは、本明細書で説明される様々な例に従って構成され得る様々な構成要素を含むものとして示されている。しかしながら、図示されたブロックは、異なる設計では異なる機能を有し得ることが諒解されよう。
【0065】
[0071]UE302、基地局304、およびネットワークエンティティ306の様々な構成要素は、それぞれ、データバス334、382、および392を介して互いに通信し得る。図3A図3Cの構成要素は様々な方法で実装され得る。いくつかの実装形態では、図3A図3Cの構成要素は、たとえば、1つまたは複数のプロセッサおよび/または(1つまたは複数のプロセッサを含み得る)1つまたは複数のASICなど、1つまたは複数の回路において実装され得る。ここで、各回路は、この機能を提供するために回路によって使用される情報または実行可能コードを記憶するための少なくとも1つのメモリ構成要素を使用し、および/または組み込み得る。たとえば、ブロック310~346によって表される機能の一部または全部は、UE302のプロセッサと(1つまたは複数の)メモリ構成要素とによって(たとえば、適切なコードの実行によっておよび/またはプロセッサ構成要素の適切な構成によって)実装され得る。同様に、ブロック350~388によって表される機能の一部または全部は、基地局304のプロセッサと(1つまたは複数の)メモリ構成要素とによって(たとえば、適切なコードの実行によっておよび/またはプロセッサ構成要素の適切な構成によって)実装され得る。また、ブロック390~398によって表される機能の一部または全部は、ネットワークエンティティ306のプロセッサと(1つまたは複数の)メモリ構成要素とによって(たとえば、適切なコードの実行によっておよび/またはプロセッサ構成要素の適切な構成によって)実装され得る。簡単のために、様々な動作、行為、および/または機能は、本明細書では、「UEによって」、「基地局によって」、「測位エンティティによって」などで実施されるものとして説明される。しかしながら、諒解されるように、そのような動作、行為、および/または機能は、実際は、処理システム332、384、394、トランシーバ310、320、350、および360、メモリ構成要素340、386、および396、報告マネージャ342、388、および398など、UE、基地局、測位エンティティなどの特定の構成要素または構成要素の組合せによって実施され得る。
【0066】
[0072]ネットワークノード(たとえば、基地局およびUE)間のダウンリンクおよびアップリンク送信をサポートするために、様々なフレーム構造が使用され得る。図4は、本開示の態様による、ダウンリンクフレーム構造の一例を示す図400である。他のワイヤレス通信技術は、異なるフレーム構造および/または異なるチャネルを有し得る。
【0067】
[0073]LTE、および場合によってはNRは、ダウンリンク上ではOFDMを利用し、アップリンク上ではシングルキャリア周波数分割多重(SC-FDM)を利用する。しかしながら、LTEとは異なり、NRはアップリンク上でもOFDMを使用するためのオプションを有する。OFDMおよびSC-FDMは、システム帯域幅を、一般にトーン、ビンなどとも呼ばれる複数(K)個の直交サブキャリアに区分する。各サブキャリアはデータで変調され得る。概して、変調シンボルは、OFDMでは周波数領域で送られ、SC-FDMでは時間領域で送られる。隣接するサブキャリア間の間隔は固定であり得、サブキャリアの総数(K)はシステム帯域幅に依存し得る。たとえば、サブキャリアの間隔は15kHzであり得、最小リソース割振り(リソースブロック)は、12個のサブキャリア(または180kHz)であり得る。したがって、公称FFTサイズは、1.25、2.5、5、10、または20メガヘルツ(MHz)のシステム帯域幅に対して、それぞれ、128、256、512、1024、または2048に等しくなり得る。システム帯域幅はまた、サブバンドに区分され得る。たとえば、サブバンドは1.08MHz(すなわち、6つのリソースブロック)をカバーし得、1.25、2.5、5、10、または20MHzのシステム帯域幅に対して、それぞれ、1、2、4、8、または16個のサブバンドがあり得る。
【0068】
[0074]LTEは、単一のヌメロロジー(サブキャリア間隔、シンボル長など)をサポートする。対照的に、NRは複数のヌメロロジー(μ)をサポートし得、たとえば、15kHz、30kHz、60kHz、120kHz、および240kHzの、またはそれよりも大きいサブキャリア間隔が利用可能であり得る。以下で提供される表1は、異なるNRのヌメロロジーのためのいくつかの様々なパラメータを列挙する。
【0069】
【表1】
【0070】
[0075]図4の例では、15kHzのヌメロロジーが使用される。したがって、時間領域では、フレーム(たとえば、10ms)が各々1msの10個の等しいサイズのサブフレームに分割され、各サブフレームは1つのタイムスロットを含む。図4では、時間は水平方向に(たとえば、X軸上で)表され、時間は左から右に増加し、周波数は垂直方向に(たとえば、Y軸上で)表され、周波数は下から上に増加する(または減少する)。
【0071】
[0076]タイムスロットを表すためにリソースグリッドが使用され得、各タイムスロットは、周波数領域における1つまたは複数の(物理RB(PRB)とも呼ばれる)時間並列リソースブロック(RB)を含む。リソースグリッドは、複数のリソース要素(RE)にさらに分割される。REは、時間領域における1つのシンボル長および周波数領域における1つのサブキャリアに対応し得る。図4のヌメロロジーでは、ノーマルサイクリックプレフィックスの場合、RBは、合計84個のREについて、周波数領域において12個の連続するサブキャリアを含んでいることがあり、時間領域において7つの連続するシンボルを含んでいることがある。拡張サイクリックプレフィックスの場合、RBは、合計72個のREについて、周波数領域において12個の連続するサブキャリアを含んでいることがあり、時間領域において6つの連続するシンボルを含んでいることがある。各REによって搬送されるビットの数は変調方式に依存する。
【0072】
[0077]図4に示されているように、REのうちのいくつかが、UEにおけるチャネル推定のためのダウンリンク基準(パイロット)信号(DL-RS)を搬送する。DL-RSは、DMRS、CSI-RS、CRS、PRS、NRS、TRSなどを含み得、それらの例示的なロケーションは、図4において「R」でラベル付けられる。
【0073】
[0078]PRSの送信のために使用されるリソース要素(RE)の集合は、「PRSリソース」と呼ばれる。リソース要素の集合は、周波数領域において複数のPRBにまたがることができ、時間領域においてスロット内のN個の(たとえば、1つまたは複数の)連続するシンボルにまたがることができる。時間領域における所与のOFDMシンボルにおいて、PRSリソースは、周波数領域における連続するPRBを占有する。
【0074】
[0079]「PRSリソースセット」は、PRS信号の送信のために使用されるPRSリソースのセットであり、ここで、各PRSリソースはPRSリソースIDを有する。さらに、PRSリソースセット中のPRSリソースは、同じTRPに関連付けられる。PRSリソースセットはPRSリソースセットIDによって識別され、(セルIDによって識別される)特定のTRPに関連付けられる。さらに、PRSリソースセット中のPRSリソースは、スロットにわたって、同じ周期性と、共通ミューティングパターン構成と、同じ反復係数とを有する。周期性は、2m・{4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240}スロットから選択された長さを有し得、μ=0、1、2、3である。反復係数は、{1,2,4,6,8,16,32}スロットから選択された長さを有し得る。
【0075】
[0080]PRSリソースセット中のPRSリソースIDは、単一のTRPから送信される単一のビーム(および/またはビームID)に関連付けられる(ここで、TRPは1つまたは複数のビームを送信し得る)。すなわち、PRSリソースセットの各PRSリソースは、異なるビーム上で送信され得、したがって、「PRSリソース」または単に「リソース」は、「ビーム」と呼ばれることもある。これは、TRPと、PRSが送信されるビームとが、UEに知られているかどうかに関するいかなる暗示をも有しないことに留意されたい。
【0076】
[0081]「PRSインスタンス」または「PRSオケージョン」は、PRSが送信されることが予想される周期的に繰り返される時間ウィンドウ(たとえば、1つまたは複数の連続するスロットのグループ)の1つのインスタンスである。PRSオケージョンは、「PRS測位オケージョン」、「PRS測位インスタンス」、「測位オケージョン」、「測位インスタンス」、「測位基準」、あるいは単に「オケージョン」、「インスタンス」、または「反復」と呼ばれることもある。
【0077】
[0082]「測位基準信号」および「PRS」という用語は、時々、LTEシステムにおいて測位のために使用される固有の基準信号を指し得ることに留意されたい。しかしながら、別段に規定されていない限り、本明細書で使用される「測位基準信号」および「PRS」という用語は、限定はしないが、LTEにおけるPRS、5GにおけるNRS、TRS、PTRS、CRS、CSI-RS、DMRS、PSS、SSS、SSB、SRS、UL-PRSなど、測位のために使用され得る任意のタイプの基準信号を指す。さらに、「測位基準信号」および「PRS」という用語は、別段に規定されていない限り、ダウンリンクまたはアップリンク基準信号を指す。
【0078】
[0083]現在、周期的PRSリソース割振りについて2つの代替形態がある。第1の代替形態は、ダウンリンクPRSリソースの周期性が、ダウンリンクPRSリソースセットレベルにおいて構成されることである。この場合、共通の周期が、ダウンリンクPRSリソースセット内のダウンリンクPRSリソースのために使用される。第2の代替形態は、ダウンリンクPRSリソースの周期性が、ダウンリンクPRSリソースレベルにおいて構成されることである。この場合、異なる周期が、ダウンリンクPRSリソースセット内のダウンリンクPRSリソースのために使用され得る。
【0079】
[0084]図5は、ワイヤレスノード(たとえば、基地局)によってサポートされるセル/TRPのための例示的なPRS構成500を示す。図5は、PRS測位オケージョンが、システムフレーム番号(SFN)、セル固有サブフレームオフセット(ΔPRS)552、およびPRS周期性(TPRS)520によって、どのように決定されるかを示す。一般に、セル固有PRSサブフレーム構成は、測位支援データ中に含まれるPRS構成インデックス(IPRS)によって定義される。PRS周期性(TPRS)520およびセル固有サブフレームオフセット(ΔPRS)は、以下の表2に示されているように、PRS構成インデックス(IPRS)に基づいて定義される。
【0080】
【表2】
【0081】
[0085]PRS構成は、PRSを送信するセルのSFNを参照して定義される。PRSインスタンスは、第1のPRS測位オケージョンを備えるNPRS個のダウンリンクサブフレームのうちの第1のサブフレームについて、
【0082】
【数1】
【0083】
を満たし得、ここで、nfは、0≦nf≦1023のSFNであり、nsは、0≦ns≦19の、nfによって定義される無線フレーム内のスロット番号であり、TPRSは、PRS周期性520であり、ΔPRSは、セル固有サブフレームオフセット552である。
【0084】
[0086]図5に示されているように、セル固有サブフレームオフセットΔPRS552は、SFN0(「スロット番号=0」、スロット550としてマークされる)から開始して第1の(後続の)PRS測位オケージョンの開始まで送信されるサブフレームの数に関して定義され得る。図5中の例では、連続するPRS測位オケージョン518a、518b、および518cの各々における連続する測位サブフレームの数(NPRS)は4に等しい。NPRSはオケージョンごとの連続する測位サブフレームの数を指定し得るが、それは、代わりに、実装形態に基づいて、連続する測位スロットの数を指定し得ることに留意されたい。たとえば、LTEでは、NPRSはオケージョンごとの連続する測位サブフレームの数を指定するが、NRでは、NPRSはオケージョンごとの連続する測位スロットの数を指定する。
【0085】
[0087]いくつかの態様では、UEが特定のセルのための測位支援データ中でPRS構成インデックスIPRSを受信するとき、UEは、表2を使用して、PRS周期性TPRS520とPRSサブフレームオフセットΔPRSとを決定し得る。UEは、次いで、(たとえば、上記の式を使用して)PRSがセルにおいてスケジュールされるときの無線フレームとサブフレームとスロットとを決定し得る。測位支援データは、たとえば、ロケーションサーバによって決定され、基準セル、および様々なワイヤレスノードによってサポートされるいくつかのネイバーセルのための支援データを含み得る。
【0086】
[0088]一般に、同じ周波数を使用するネットワークにおけるすべてのセルからのPRSオケージョンは、時間的に整合され、異なる周波数を使用するネットワークにおける他のセルに対して、固定の知られている時間オフセット(たとえば、セル固有サブフレームオフセット552)を有し得る。SFN同期ネットワークでは、すべてのワイヤレスノード(たとえば、基地局)が、フレーム境界とシステムフレーム番号の両方に関して整合され得る。したがって、SFN同期ネットワークでは、様々なワイヤレスノードによってサポートされるすべてのセルが、PRS送信の特定の周波数のための同じPRS構成インデックスIPRSを使用し得る。一方、SFN非同期ネットワークでは、様々なワイヤレスノードは、システムフレーム番号でなく、フレーム境界に関して整合され得る。したがって、SFN非同期ネットワークでは、各セルのためのPRS構成インデックスIPRSは、PRSオケージョンが時間的に整合するように、ネットワークによって別個に構成され得る。
【0087】
[0089]UEは、そのUEが、基準セルまたはサービングセルなど、セルのうちの少なくとも1つのセルタイミング(たとえば、SFN)を取得することができる場合、測位のための基準セルおよびネイバーセルのPRSオケージョンのタイミングを決定し得る。他のセルのタイミングは、次いで、たとえば、異なるセルからのPRSオケージョンが重複するという仮定に基づいて、UEによって導出され得る。
【0088】
[0090]LTEシステムの場合、(たとえば、測位のために)PRSを送信するために使用されるサブフレームのシーケンスは、(i)帯域幅(BW)の予約済みブロックと、(ii)PRS構成インデックスIPRSと、(iii)持続時間NPRSと、(iv)随意のミューティングパターンと、(v)存在するとき(iv)におけるミューティングパターンの一部として暗黙的に含まれ得るミューティングシーケンス周期性TREPとを備える、いくつかのパラメータによって、特徴づけられ、定義され得る。いくつかの場合には、かなり低いPRSデューティサイクルでは、NPRS=1であり、TPRS=160サブフレームであり(160msと等価である)、BW=1.4、3、5、10、15、または20MHzである。PRSデューティサイクルを増加させるために、NPRS値は6まで増加され得(すなわち、NPRS=6)、帯域幅(BW)値はシステム帯域幅まで増加され得る(すなわち、LTEの場合、BW=LTEシステム帯域幅)。フルデューティサイクル(すなわち、NPRS=TPRS)までの、より大きいNPRS(たとえば、6よりも大きい)および/またはより短いTPRS(たとえば、160msよりも小さい)をもつ拡大されたPRSも、LTE測位プロトコル(LPP)の後のバージョンにおいて使用され得る。方向性PRSが、すぐ上で説明されたように構成され得、たとえば、低いPRSデューティサイクル(たとえば、NPRS=1、TPRS=160サブフレーム)または高いデューティサイクルを使用し得る。
【0089】
[0091]ダウンリンクベース測位方法と、アップリンクベース測位方法と、ダウンリンクおよびアップリンクベース測位方法とを含む、いくつかのセルラーネットワークベース測位技術がある。ダウンリンクベース測位方法は、LTEにおける観測到着時間差(OTDOA)と、NRにおけるダウンリンク到着時間差(DL-TDOA)と、NRにおけるダウンリンク離脱角度(DL-AoD)とを含む。OTDOAまたはDL-TDOAの測位プロシージャでは、UEは、基準信号時間差(RSTD)または到着時間差(TDOA)測定値と呼ばれる、基地局のペアから受信された基準信号(たとえば、PRS、TRS、NRS、CSI-RS、SSBなど)の到着時間(ToA)間の差を測定し、それらを測位エンティティに報告する。より詳細には、UEは、支援データ中で基準基地局(たとえば、サービング基地局)および複数の非基準基地局の識別子を受信する。UEは、次いで、基準基地局と非基準基地局の各々との間のRSTDを測定する。関与する基地局の知られているロケーションとRSTD測定値とに基づいて、測位エンティティはUEのロケーションを推定することができる。DL-AoD測位の場合、基地局は、UEのロケーションを推定するために、UEと通信するために使用されるダウンリンク送信ビームの角度および他のチャネルプロパティ(たとえば、信号強度)を測定する。
【0090】
[0092]アップリンクベース測位方法は、アップリンク到着時間差(UL-TDOA)とアップリンク到着角度(UL-AoA)とを含む。UL-TDOAは、DL-TDOAと同様であるが、UEによって送信されたアップリンク基準信号(たとえば、SRS)に基づく。UL-AoA測位の場合、基地局は、UEのロケーションを推定するために、UEと通信するために使用されるアップリンク受信ビームの角度および他のチャネルプロパティ(たとえば、利得レベル)を測定する。
【0091】
[0093]ダウンリンクおよびアップリンクベース測位方法は、拡張セルID(E-CID)測位と(「マルチセルRTT」とも呼ばれる)マルチラウンドトリップ時間(RTT)測位とを含む。RTTプロシージャでは、イニシエータ(基地局またはUE)が、レスポンダ(UEまたは基地局)にRTT測定信号(たとえば、PRSまたはSRS)を送信し、レスポンダは、イニシエータにRTT応答信号(たとえば、SRSまたはPRS)を返送する。RTT応答信号は、受信-送信(Rx-Tx)測定値と呼ばれる、RTT測定信号のToAとRTT応答信号の送信時間との間の差を含む。イニシエータは、「Tx-Rx」測定値と呼ばれる、RTT測定信号の送信時間とRTT応答信号のToAとの間の差を計算する。イニシエータとレスポンダとの間の(「飛行時間」とも呼ばれる)伝搬時間は、Tx-RxおよびRx-Tx測定値から計算され得る。伝搬時間および光の知られている速度に基づいて、イニシエータとレスポンダとの間の距離が決定され得る。マルチRTT測位の場合、UEは、基地局の知られているロケーションに基づいてそれのロケーションが三角測量されることを可能にするために、複数の基地局とのRTTプロシージャを実施する。RTT方法およびマルチRTT方法は、ロケーション精度を改善するために、UL-AoAおよびDL-AoDなど、他の測位技法と組み合わせられ得る。
【0092】
[0094]E-CID測位方法は、無線リソース管理(RRM)測定値に基づく。E-CIDでは、UEは、サービングセルID、タイミングアドバンス(TA)、ならびに、検出されたネイバー基地局の識別子、推定されたタイミング、および信号強度を報告する。次いで、この情報および基地局の知られているロケーションに基づいて、UEのロケーションが推定される。
【0093】
[0095]測位動作を支援するために、ロケーションサーバ(たとえば、ロケーションサーバ230、LMF270)は、UEに支援データを提供し得る。たとえば、支援データは、そこから基準信号を測定すべき基地局(または基地局のセル/TRP)の識別子、基準信号構成パラメータ(たとえば、連続する測位サブフレームの数、測位サブフレームの周期性、ミューティングシーケンス、周波数ホッピングシーケンス、基準信号識別子(ID)、基準信号帯域幅など)、および/または特定の測位方法に適用可能な他のパラメータを含み得る。代替的に、支援データは、(たとえば、周期的にブロードキャストされるオーバーヘッドメッセージ中でなど)基地局自体から直接発信し得る。いくつかの場合には、UEは、支援データを使用せずにそれ自体でネイバーネットワークノードを検出することが可能であり得る。
【0094】
[0096]ロケーション推定値は、位置推定値、ロケーション、位置、位置フィックス、フィックスなど、他の名前で呼ばれることがある。ロケーション推定値は、測地的(geodetic)であり、座標(たとえば、緯度、経度、および場合によっては高度)を備え得るか、あるいは、都市のもの(civic)であり、所在地住所、郵便宛先、またはロケーションの何らかの他の言葉の記述を備え得る。ロケーション推定値はさらに、何らかの他の知られているロケーションに対して定義されるか、または絶対的な用語で(たとえば、緯度、経度、および場合によっては高度を使用して)定義され得る。ロケーション推定値は、(たとえば、何らかの指定されたまたはデフォルトの信頼性レベルでロケーションが含まれることが予想される面積または体積を含めることによって)予想される誤差または不確実性を含み得る。
【0095】
[0097]UE支援測位(たとえば、OTDOA、DL-TDOA、RTT、DL-AOD)のためにUEによって送られた測定報告(たとえば、RSTD、RSRP)は、ダウンリンクPRSの測定に基づく。これらの測定報告は、たとえばLPPを介して、UEによってロケーションサーバ(たとえば、ロケーションサーバ230、LMF270、SLP272)に送られる。詳細には、メッセージは、サービング基地局が読むことができないNASコンテナ中で、基地局を通して送られる。
【0096】
[0098](たとえば、図5に示されている)ダウンリンクPRS構成は、UEのダウンリンク帯域幅部分(BWP)とは無関係である。すなわち、時間領域においてスケジュールされたPRSリソース(たとえば、シンボル、スロットなど)は、周波数領域におけるセルの動作周波数全体(たとえば、サブキャリア、PRBなど)まで広がり得る。しかしながら、周波数領域において、UEは、それの(1つまたは複数の)アクティブダウンリンクBWPに分類されるPRSリソースのみを測定する。より大きいPRS帯域幅を測定するために、UEは、1つまたは複数の測定ギャップが基地局によって提供されるように要求する必要がある。次いで、UEは、要求された(1つまたは複数の)測定ギャップ中に、それの他のダウンリンクBWP上でPRS(または他のダウンリンクシグナリング)を測定することができる。
【0097】
[0099]BWPは、所与のキャリア上の所与のヌメロロジーのための共通RBの連続サブセットから選択されたPRBの連続セットであることに留意されたい。概して、ダウンリンクおよびアップリンクにおいて、最大4つのBWPが指定され得る。すなわち、UEは、ダウンリンク上の最高4つのBWP、およびアップリンク上の最高4つのBWPで構成され得る。所与の時間において、1つのBWP(アップリンクまたはダウンリンク)のみがアクティブであり得、これは、UEが、一度に1つのBWP上でのみ、受信または送信することができることを意味する。ダウンリンク上では、各BWPの帯域幅は、SSBの帯域幅に等しいかまたはそれよりも大きくなるべきであるが、それは、SSBを含んでいることも含んでいないこともある。
【0098】
[00100]NRでは、無認可スペクトル(NR-U)において、LBT(または他のCCA)プロシージャが、PRSがその上で送信されるべきである、1つまたは複数の(簡単のためにサブバンドと総称される)サブバンド、コンポーネントキャリア、またはBWPについてクリアにならないことにより、ダウンリンクPRSが不連続になることが起こり得る。すなわち、送信機(たとえば、スモールセル基地局または対応するTRP)は、PRSがその上で送信されるようにスケジュール/構成された、総数のサブバンドのうちのサブセットへのアクセスのみを得ることがある。たとえば、4つの20MHzサブバンドをもつ80MHzキャリアを仮定すれば、サブバンドのサブセット(サブバンドのうちの1つまたは2つまたは3つ)のみが、PRSが送信されるようにスケジュールされた時間においてLBTプロシージャをクリアし得るか、またはどのサブバンドもクリアしないことがある。サブバンドのサブセットのみがクリアする場合、PRSは、より小さい帯域幅上で送信されることになる。たとえば、4つの20MHzサブバンドのうちの2つのみがクリアする場合、PRSは、80MHzの代わりに合計40MHz上で送信されることになる。より小さい帯域幅は、TRPとUEとの間の見通し内(LOS:line-of-sight)遅延のより低い分解能推定値、したがって、減少された測位精度を生じ得る。
報告された場合、ロケーションサーバ(たとえば、ロケーションサーバ230、LMF270、SLP272)は、すべてのTRPからのLOS遅延を後処理することによって、UEの位置を算出するとき、この値を考慮することができる。
【0099】
[00101]図6は、本開示の態様による、PRSが3つのサブバンド610a~610c上で送信される例示的なシナリオの図600である。図6では、周波数が垂直軸上に表され、時間が水平軸上に表され、各ブロックが、PRSのスケジュールされた送信を表す。図6の例では、特定のキャリア周波数(たとえば、無認可キャリア周波数)は、3つの周波数サブバンド610aと、610bと、610cとに分割される。サブバンドごとの6つのPRSブロック(すなわち、PRSリソース)が、図5中のPRS測位オケージョン518など、PRS「ウィンドウ」またはオケージョン中にスケジュールされる。
【0100】
[00102]サブバンド610a~610cのいずれかの上で送信する前に、送信機(たとえば、ダウンリンクにおけるスモールセル基地局または対応するTRP、あるいはアップリンクにおけるUE)は、それが送信することを望むサブバンド610a~610cの各々上で、LBTプロシージャを実施する必要がある。時間620におけるラインによって示されるように、送信機がサブバンドのうちの2つ(610aおよび610c)をクリアする(すなわち、それらへのアクセスを得る)のは、(時間領域において)PRSブロックの第2のセットのスケジュールされた送信時間の後であり、その時点において、それは、PRSウィンドウ/オケージョンの残りについて(影付きブロックによって示されるように)PRSを送信することを開始することができる。しかしながら、送信機は、PRSオケージョン中に、第3のサブバンド、サブバンド610bへのアクセスを獲得しない。図6は送信機が2つのサブバンドを同時にクリアすることを示すが、これは常に当てはまるとは限らないことに留意されたい。代わりに、送信機は、1つのサブバンドのみをクリアし得るか、またはPRSを送信する前にすべての3つのサブバンドをクリアするのを待ち得るか、または各サブバンド上でそのサブバンドがクリアになるときにPRSを送信することを開始し得る。諒解されるように、スケジュールされた帯域幅全体にわたって送信することが可能でないことは、PRSを正確に測定する受信機の能力を低減することがあり、これは、ロケーション推定精度を低減することがある。
【0101】
[00103]本明細書で説明される第1のソリューションとして、送信機(たとえば、基地局、TRP、UEなど)は、ロケーションサーバ(たとえば、ロケーションサーバ230、LMF270、SLP272)に、PRSが送信されたかどうかを示し、送信された場合、送信のために使用される(1つまたは複数の)サブバンドの(1つまたは複数の)識別子を示すことができる。このソリューションは、図6の例に反して、ウィンドウ(たとえば、PRS測位オケージョン518)ごとのPRSの単一の送信を仮定するか、または送信機がウィンドウの開始においてすべてのサブバンドへのアクセスを正常に得たことを仮定する。
【0102】
[00104]第2のソリューションとして、送信が、複数のPRSブロック(たとえば、図6に示されているような、異なる反復、または異なる送信構成インジケータ(TCI)状態を有する)からなる場合、送信機は、ロケーションサーバに、PRSオケージョン内のPRS送信の開始位置(たとえば、時間620)と、LBTがクリアになった(1つまたは複数の)サブバンド(たとえば、サブバンド610aおよび610c)の(1つまたは複数の)識別子とを示すことができる。
【0103】
[00105]一態様では、複数のサブバンド(たとえば、全システム帯域幅)上でLBTを実施し、次いで、複数のサブバンドのサブセット(たとえば、同時にクリアになる連続サブバンド)上でPRSを送信する代わりに、送信機は、LBTを介してどのサブバンドをテストすべきかを慎重に選び得(たとえば、順次、またはLBTより前に別の方法を介して事前フィルタ処理する)、次いで、サブバンドのしきい値数が達せられるとき、それは、連続するか否かにかかわらず、それらのサブバンドのすべての上でPRSを送信することができる。
【0104】
[00106]受信機側で、受信機(たとえば、UE、基地局/TRP/セルなど)は、PRSが送信されたかどうかを決定するために、各サブバンド上で検出を実施することができる。しかしながら、受信機は、各スケジュールされたPRSを受信するために、それの受信機を同調させるが、それは、干渉により、送信されたあらゆるPRSを検出しないことがある。したがって、第1のソリューションとして、受信機は、測位測定のために使用されるPRSの(1つまたは複数の)時間インスタンス(たとえば、スロットまたはシンボルの(1つまたは複数の)インデックス)を報告することができる。第2のソリューションとして、受信機は、各サブバンド上でのLBT結果またはPRS検出結果を報告することができる。すなわち、受信機は、各サブバンドについて、それがPRSを検出したか否かを報告することができる。受信機がUEである場合、それは、送信機(たとえば、サービングセル/TRP)が所与のサブバンド上でPRSを送信したか否かを、送信機からのチャネル占有時間シグナリング情報(COT-SI:channel occupancy time signaling information)に基づいて決定することができ、これは、特定の持続時間の間、サブバンドのどのセットがアクティブであり、サブバンドのどのセットがアクティブでないかを示すことに留意されたい。しかしながら、UEは、概して、サービングセル/TRPについてのCOT-SIのみを受信し、ネイバリングセル/TRPについてのCOT-SIを受信しない。第3のソリューションとして、受信機は、測位測定値(たとえば、RSTD値)を算出するために使用される実際の帯域幅を報告することができる。ロケーションサーバは、次いで、UEのための実際のロケーション推定値を算出するために、報告された情報を使用することができる。
【0105】
[00107]概して、特に受信機がUEである場合、UEが、遠くの基地局(より詳細には、基地局によってサポートされるTRPおよび/またはセル)からのPRS送信を検出することは、特に無認可スペクトルにおいて、実効等方放射電力(EIRP)および電力スペクトル密度(PSD)の制限と、電力ブースティングの余地がないこととにより、困難であり得る。しかしながら、サービングセル/TRPについて、COT-SIは、サービングセル/TRPにおけるLBTステータスを導出するために、シグナリングするか、または使用され得ることに留意されたい。
【0106】
[00108]ソリューションとして、サービングセル/TRPは、ネイバーセル/TRPのLBTクリアステータスをUEにシグナリングすることができる。より詳細には、サービングセル/TRPは、ネイバリングセル/TRPがPRS送信のためにクリアすることが可能であった、サブバンドの(1つまたは複数の)識別子を提供することができる。このようにして、サービングセル/TRPは、PRS送信のために各セル/TRPによって使用された時間周波数リソースの「マップ」を提供し、これは、ロケーション推定値を改善する。関与する基地局は、ワイヤードまたはワイヤレスバックホールリンク(たとえば、バックホールリンク122)を介して、この情報を互いに共有し、次いで、それを、それらがサービスしているUEに送信することができる。たとえば、この情報は、UEの測位セッションのためにPRSがその間に送信される、あらゆるフレームの最後に、UEに送信され得る。
【0107】
[00109]第1のサブソリューションとして、この情報は、MAC制御要素(MAC-CE)中で、またはダウンリンク制御情報(DCI)中で、UEに送られ得る。たとえば、異なるヘッダIDをもつ新しいMAC-CEが使用され得る。DCIの場合、(中断シグナリングのための中断RNTI(INT-RNTI)と同様の)新しい無線ネットワーク一時識別子(RNTI)をもつDCIが使用され得る。ロケーションサーバは、測位セット(すなわち、UEがPRSをそれから測定しているセル/TRPのセット)中のセル/TRPにわたって、この情報を協調させることができる。
【0108】
[00110]第2のサブソリューションとして、ネイバーセル/TRPのLBTクリアステータスは、ダウンリンクPRSの実際の送信から、ある数(「X」)のスロット(またはマイクロ秒)内に示され得、UEは、すべての他のセル/TRPからのダウンリンクPRSを適切にフィルタ処理するためにこの情報を使用することができる。UEがネイバーセル/TRPのLBTクリアステータスを通知されるとき、この情報は、測定報告がサービングセル/TRPに送られる(次いで、ロケーションサーバにフォワーディングされる)前に、ネイバーセル/TRPのLBTクリアステータスに基づいて、UEが測位データ(たとえば、PRS信号)を処理するのを助けることができる。たとえば、UEは、指示に基づいてPRS信号を処理するとき、PRS送信なしのサブバンドを無視することができる。代替的に、UEがそれ自体のロケーションを推定している場合(すなわち、UEベース測位)、それは、ロケーションサーバに何もフォワーディングする必要がない。
【0109】
[00111]LBTプロシージャは、アップリンク送信にも影響を及ぼし得る。したがって、アップリンク送信では、UEは、LBTを実施することの影響に対処するために、いくつかのモードのうちの1つで送信するように構成され得る。第1のオプションとして、UEは、LBTが追加の不連続サブバンド上でクリアになる場合でも、連続サブバンド上でのみ、アップリンク基準信号(たとえば、SRS)を送信することができる。連続サブバンド上でのみ送信するための理由は、不連続サブバンド上で送信するとき、ピーク対平均電力比(PAPR)が劣化することである。
【0110】
[00112]しかしながら、第2のオプションとして、UEは、LBTがクリアにならないサブバンド上でのパンクチャリングを行い、不連続サブバンド上で送信することができる。すなわち、UEは、サブバンドのすべてにわたって送信されるべきアップリンク信号を生成することができるが、いくつかのサブバンドがLBTプロシージャをクリアしないので、それは、それらのサブバンド上で、生成されたアップリンク信号を送信しない。たとえば、図6を参照すると、UEは、サブバンド610a~610cのすべての上で送信されるべきアップリンク信号を生成し得る。しかしながら、サブバンド610aおよび610cのみがクリアするので、それは、サブバンド610b上で送信されるべきであったアップリンク信号の部分をパンクチャする。
【0111】
[00113]一態様では、複数のサブバンド(たとえば、UEの全動作帯域幅)上でLBTを実施し、次いで、複数のサブバンドのうちのサブセット(たとえば、同時にクリアになる連続サブバンド)上でPRSを送信する代わりに、UEは、LBTを介してどのサブバンドをテストすべきかを慎重に選び得(たとえば、順次、またはLBTより前に別の方法を介して事前フィルタ処理する)、次いで、サブバンドのしきい値数が達せられるとき、それは、連続するか否かにかかわらず、それらのサブバンドのすべての上でPRSを送信することができる。
【0112】
[00114]追加の態様では、UEは、後続の送信機会(TxOP)が、元のアップリンク送信時間から、ある数(「X」)のマイクロ秒までにある場合、サービングセル/TRPにLBT結果を報告することができる。サービングセル/TRPは、次いで、UEがその上で送信したサブバンドのリストをロケーションサーバに報告することができる。
【0113】
[00115]本明細書で説明される報告のすべては、複数のキャリア上で独立して実施され得ることに留意されたい。それらは、組み合わせられて、単一の報告またはキャリアの数よりも少数の報告になる必要がない。さらに、1つまたは複数の報告は、報告されているサブバンドのサブセットのための識別子と、各サブバンドのための識別子と、サブバンドのサブセットのためのビットマップ識別子と、第1のサブバンドのための開始ポイントおよび連続サブバンドの数と、任意の他の変形形態とを含み得る。
【0114】
[00116]図7は、本開示の態様による、ワイヤレス通信の例示的な方法700を示す。一態様では、方法700は、本明細書で説明されるUEまたは基地局のいずれかなど、送信機デバイスによって実施され得る。
【0115】
[00117]710において、送信機デバイスは、測位セッション中の第1の時間において、共有スペクトル周波数範囲中の複数のサブバンド(またはキャリアまたはBWP)の各々上でクリアチャネルアセスメント(CCA)プロシージャを実施する。一態様では、送信機デバイスがUEである場合、動作710は、WWANトランシーバ310、処理システム332、メモリ構成要素340、および/または報告マネージャ342によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。一態様では、送信機デバイスが基地局である場合、動作710は、WWANトランシーバ350、処理システム384、メモリ構成要素386、および/または報告マネージャ388によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。
【0116】
[00118]720において、送信機デバイスは、測位セッション中の第2の時間において、複数のサブバンドのうちのCCAプロシージャをクリアしたサブバンドのサブセット上で、測位基準信号を送信する。一態様では、送信機デバイスがUEである場合、動作720は、WWANトランシーバ310、処理システム332、メモリ構成要素340、および/または報告マネージャ342によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。一態様では、送信機デバイスが基地局である場合、動作720は、WWANトランシーバ350、処理システム384、メモリ構成要素386、および/または報告マネージャ388によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。
【0117】
[00119]730において、送信機デバイスは、随意に、サブバンドのサブセットの各々の識別子を含む報告を、測位エンティティ(たとえば、ロケーションサーバ230、LMF270、SLP272、またはUEベース測位のためのUE)に送信する。一態様では、送信機デバイスがUEである場合、動作730は、WWANトランシーバ310、処理システム332、メモリ構成要素340、および/または報告マネージャ342によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。一態様では、送信機デバイスが基地局である場合、動作730は、WWANトランシーバ350、処理システム384、メモリ構成要素386、および/または報告マネージャ388によって実施され得、それらのいずれかまたはすべては、この動作を実施するための手段と見なされ得る。
【0118】
[00120]情報および信号は、様々な異なる技術および技法のいずれかを使用して表され得ることを当業者は諒解されよう。たとえば、上記の説明全体にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁界または磁性粒子、光場または光学粒子、あるいはそれらの任意の組合せによって表され得る。
【0119】
[00121]さらに、本明細書で開示される態様に関して説明された様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装され得ることを、当業者は諒解されよう。ハードウェアとソフトウェアとのこの互換性を明確に示すために、様々な例示的な構成要素、ブロック、モジュール、回路、およびステップが、概してそれらの機能に関して上記で説明された。そのような機能がハードウェアとして実装されるのかソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。当業者は、説明された機能を特定の適用例ごとに様々な方法で実装し得るが、そのような実装の決定は、本開示の範囲からの逸脱を生じるものと解釈されるべきではない。
【0120】
[00122]本明細書で開示される態様に関して説明された様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、DSP、ASIC、FPGA、または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明された機能を実施するように設計されたそれらの任意の組合せを用いて実装または実施され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、または任意の他のそのような構成として実装され得る。
【0121】
[00123]本明細書で開示される態様に関して説明された方法、シーケンスおよび/またはアルゴリズムは、ハードウェアで直接実施されるか、プロセッサによって実行されるソフトウェアモジュールで実施されるか、またはその2つの組合せで実施され得る。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読取り専用メモリ(ROM)、消去可能プログラマブルROM(EPROM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、または当技術分野で知られている任意の他の形態の記憶媒体中に常駐し得る。例示的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、記憶媒体に情報を書き込むことができるように、プロセッサに結合される。代替として、記憶媒体はプロセッサと一体であり得る。プロセッサおよび記憶媒体はASIC中に存在し得る。ASICはユーザ端末(たとえば、UE)中に存在し得る。代替として、プロセッサおよび記憶媒体は、ユーザ端末中に個別構成要素として存在し得る。
【0122】
[00124]1つまたは複数の例示的な態様では、説明された機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、1つまたは複数の命令またはコードとしてコンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体を介して送信され得る。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を可能にする任意の媒体を含む、コンピュータ記憶媒体とコンピュータ通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気記憶デバイス、あるいは命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用され得、コンピュータによってアクセスされ得る任意の他の媒体を備えることができる。また、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。本明細書で使用されるディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびBlu-ray(登録商標)ディスク(disc)を含み、ここで、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、データをレーザーで光学的に再生する。上記の組合せも、コンピュータ可読媒体の範囲内に含まれるべきである。
【0123】
[00125]上記の開示は本開示の例示的な態様を示しているが、添付の特許請求の範囲によって定義された本開示の範囲から逸脱することなく、本明細書において様々な変更および修正が行われ得ることに留意されたい。本明細書で説明された本開示の態様による方法クレームの機能、ステップおよび/またはアクションは、特定の順序で実施される必要がない。さらに、本開示の要素は、単数形で説明または請求されていることがあるが、単数形に限定することが明示的に述べられていない限り、複数形が企図される。
図1
図2A
図2B
図3A
図3B
図3C
図4
図5
図6
図7
【国際調査報告】