(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-26
(54)【発明の名称】3D走査を実施するコンピュータ支援手術ナビゲーションのシステムおよび方法
(51)【国際特許分類】
A61B 34/20 20160101AFI20221219BHJP
【FI】
A61B34/20
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022524913
(86)(22)【出願日】2020-10-28
(85)【翻訳文提出日】2022-06-16
(86)【国際出願番号】 IB2020000867
(87)【国際公開番号】W WO2021084320
(87)【国際公開日】2021-05-06
(32)【優先日】2019-10-28
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514048224
【氏名又は名称】ワルデマール リンク ゲーエムベーハー ウント ツェーオー.カーゲー
(74)【代理人】
【識別番号】110002516
【氏名又は名称】弁理士法人白坂
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】リカルド シニョレッティ
(72)【発明者】
【氏名】ルイ-フランソワ ラポイント
(72)【発明者】
【氏名】ジェニファー ガス
(72)【発明者】
【氏名】オビナ ワンナー
(72)【発明者】
【氏名】レイモンド ベロン
(57)【要約】
コンピュータ支援手術を提供する手術ナビゲーションシステム。この手術ナビゲーションシステムは、コンピュータ支援ナビゲーションを備えた手持ち型手術ツールと、グラフィカルユーザインタフェースモジュールと、任意選択で撮像デバイスとを含む。手持ち型手術ツールは、配向を検出する少なくとも1つのセンサを備えてよいハンドルを含む。コンピューティングデバイスおよび少なくとも1つの表示デバイスが、手持ち型手術ツールと関連付けられ、手術手順のための手持ち型手術ツールの目標軌道を表示するように構成される。
【特許請求の範囲】
【請求項1】
患者で使用される手術ナビゲーションシステムであって、
(a)コンピュータ支援ナビゲーションを備えた手持ち型手術ツールであって、ハンドルおよび器具シャフトを含む、該手持ち型手術ツールと、
(b)グラフィカルユーザインタフェース(GUI)モジュールであって、少なくとも1つのコンピューティングデバイスと、前記手持ち型手術ツールの位置を示すように構成された視覚ディスプレイとを含む、該GUIモジュールと、任意選択で、
(c)撮像デバイスと
を備えたことを特徴とする手術ナビゲーションシステム。
【請求項2】
前記ハンドルは、プロセッサと、少なくとも1つのセンサユニットとを含むことを特徴とする請求項1に記載の手術ナビゲーションシステム。
【請求項3】
前記少なくとも1つのセンサユニットは、3軸加速度計、3軸レートジャイロスコープ、3軸磁力計、またはそれらの組合せを含むことを特徴とする請求項2に記載の手術ナビゲーションシステム。
【請求項4】
前記少なくとも1つのセンサユニットは、前記手持ち型手術ツールの配向データを生成するように構成されたことを特徴とする請求項2または3に記載の手術ナビゲーションシステム。
【請求項5】
前記プロセッサまたは前記少なくとも1つのコンピューティングデバイスは、前記配向データに基づいて前記手持ち型手術ツールの配向を決定するように構成されことを特徴とする請求項4に記載の手術ナビゲーションシステム。
【請求項6】
前記プロセッサまたは前記少なくとも1つのコンピューティングデバイスは、前記手持ち型手術ツールの前記配向を少なくとも1つの事前設定された目標配向と比較するように構成されたことを特徴とする請求項5に記載の手術ナビゲーションシステム。
【請求項7】
前記視覚ディスプレイは、前記少なくとも1つの事前設定された目標配向からの、前記手持ち型手術ツールの前記配向の任意の偏差を示すように構成されたことを特徴とする請求項6に記載の手術ナビゲーションシステム。
【請求項8】
前記撮像デバイスを備えたことを特徴とする請求項1ないし7のいずれか1つに記載の手術ナビゲーションシステム。
【請求項9】
前記撮像デバイスは、3次元画像または輪郭に変換されることができるデータを生成するように構成されたことを特徴とする請求項1ないし8のいずれか1つに記載の手術ナビゲーションシステム。
【請求項10】
前記撮像デバイスは、飛行時間カメラ、一対の立体カメラ、または3次元走査ツールを備えたことを特徴とする請求項1ないし9のいずれか1つに記載の手術ナビゲーションシステム。
【請求項11】
前記患者の解剖学的構造の一部分に取り付け可能な少なくとも1つのマーカをさらに備えたことを特徴とする請求項1ないし10のいずれか1つに記載の手術ナビゲーションシステム。
【請求項12】
前記患者の解剖学的構造の異なる部分にそれぞれ取り付け可能な2つのマーカをさらに備えたことを特徴とする請求項1ないし11のいずれか1つに記載の手術ナビゲーションシステム。
【請求項13】
マーカ係合機は前記手持ち型手術ツールに取り付けることができ、前記マーカ係合機は、設定された配向で前記1つまたは複数のマーカと係合するように構成されたことを特徴とする請求項11または12に記載の手術ナビゲーションシステム。
【請求項14】
前記プロセッサは、前記1つまたは複数のマーカの配向を検出するように構成されたことを特徴とする請求項11ないし13のいずれか1つに記載の手術ナビゲーションシステム。
【請求項15】
前記プロセッサは、前記1つまたは複数のマーカに関する、解剖学的特徴の角度配向および直線距離を測定するように構成されたことを特徴とする請求項11ないし14のいずれか1つに記載の手術ナビゲーションシステム。
【請求項16】
前記コンピューティングデバイスは、前記患者の解剖学的構造またはその一部分の表面の3次元モデルまたは輪郭を生成するように構成されたことを特徴とする請求項3ないし15のいずれか1つに記載の手術ナビゲーションシステム。
【請求項17】
前記患者の解剖学的構造またはその一部分の前記表面の前記3次元モデルまたは輪郭は、前記撮像デバイスからのデータに基づいて生成されることを特徴とする請求項1ないし16のいずれか1つに記載の手術ナビゲーションシステム。
【請求項18】
前記GUIモジュールは、前記手持ち型手術ツールの位置、所望の位置からの前記手持ち型手術ツールの前記位置の偏差、前記患者の解剖学的構造またはその一部分の画像、および前記患者の解剖学的構造またはその一部分の3次元モデル、のうちの1つまたは複数に関するデータを受信するように構成されたことを特徴とする請求項1ないし17のいずれか1つに記載の手術ナビゲーションシステム。
【請求項19】
前記GUIモジュールは、前記患者の解剖学的構造またはその一部分の画像、前記患者の解剖学的構造またはその一部分の前記3次元モデル、前記手持ち型手術ツールの前記位置、前記手持ち型手術ツールについての前記所望の位置、のうちの1つまたは複数をオーバレイするように構成されたことを特徴とする請求項1ないし18のいずれか1つに記載の手術ナビゲーションシステム。
【請求項20】
前記GUIモジュールは、前記患者の解剖学的構造またはその一部分の画像、前記患者の解剖学的構造またはその一部分の前記3次元モデル、前記手持ち型手術ツールの前記位置、前記手持ち型手術ツールについての前記所望の位置のうちの1つまたは複数を表示するように構成されたことを特徴とする請求項1ないし19のいずれか1つに記載の手術ナビゲーションシステム。
【請求項21】
前記GUIモジュールは、前記オーバレイを表示するように構成されたことを特徴とする請求項19に記載の手術ナビゲーションシステム。
【請求項22】
前記GUIモジュールは、前記手持ち型手術ツールの前記位置と前記手持ち型手術デバイスの前記所望の位置との間の前記偏差を定性的または定量的に示すように構成されたことを特徴とする請求項18ないし21のいずれか1つに記載の手術ナビゲーションシステム。
【請求項23】
前記GUIモジュールは、1つまたは複数の視覚インジケーションによって、前記手持ち型手術ツールの前記位置と前記手持ち型手術デバイスの前記所望の位置との間の前記偏差を示すように構成されたことを特徴とする請求項18ないし22のいずれか1つに記載の手術ナビゲーションシステム。
【請求項24】
前記GUIモジュールは、1つまたは複数の聴覚インジケーションによって、前記手持ち型手術ツールの前記位置と前記手持ち型手術デバイスの前記所望の位置との間の前記偏差を示すように構成されたことを特徴とする請求項18ないし22のいずれか1つに記載の手術ナビゲーションシステム。
【請求項25】
前記GUIモジュールは、1つまたは複数の触覚インジケーションによって、前記手持ち型手術ツールの前記位置と前記手持ち型手術デバイスの前記所望の位置との間の前記偏差を示すように構成されたことを特徴とする請求項18ないし22のいずれか1つに記載の手術ナビゲーションシステム。
【請求項26】
関節形成術を受ける患者にプロテーゼを埋め込む方法における、請求項1ないし25のいずれか1つに記載の手術ナビゲーションシステムの使用。
【請求項27】
関節形成術を受ける患者におけるプロテーゼの埋込みの精度を向上させる方法における、請求項1ないし25のいずれか1つに記載の手術ナビゲーションシステムの使用。
【請求項28】
前記関節形成術は、股関節形成術、膝関節形成術および肩関節形成術から選択される請求項26または27に記載の使用。
【請求項29】
手術ナビゲーションシステムを使用して関節形成術を受ける患者にプロテーゼを埋め込む方法であって、前記手術ナビゲーションシステムは、
(a)コンピュータ支援ナビゲーションを備えた手持ち型手術ツールであって、ハンドルおよび器具シャフトを含む、該手持ち型手術ツールと、
(b)グラフィカルユーザインタフェース(GUI)モジュールであって、少なくとも1つのコンピューティングデバイスと、前記手持ち型手術ツールの位置を示すように構成された視覚ディスプレイとを含む、GUIモジュールと、任意選択で、
(c)撮像デバイスと
を備え、
前記方法は、
(i)前記関節形成術の関節を露出させるステップと、
(ii)前記関節の解剖学的特徴の上に1つまたは複数のマーカを配置するステップと、
(iii)前記手持ち型手術ツールを前記1つまたは複数のマーカと係合させ、前記係合中の前記手持ち型手術ツールの配向を記録するステップと、
(iv)前記手持ち型手術ツールの前記配向を、前記関節の配向にずれないように合わせるステップと、
(v)前記手持ち型手術ツールの前記配向、および前記手持ち型手術ツールについての所定の目標配向を、前記視覚ディスプレイ上に表示するステップと、
(vi)前記手持ち型手術ツールおよび前記視覚ディスプレイを使用して前記プロテーゼを埋め込むステップであって、前記手持ち型手術ツールの前記配向は、前記手持ち型手術ツールについての前記所定の目標配向に従って調節されるステップと
を備えたことを特徴とする方法。
【請求項30】
手術ナビゲーションシステムを使用して関節形成術を受ける患者にプロテーゼを埋め込む方法であって、前記手術ナビゲーションシステムは、
(a)コンピュータ支援ナビゲーションを備えた手持ち型手術ツールであって、ハンドルと、器具シャフトとを含む、該手持ち型手術ツールと、
(b)グラフィカルユーザインタフェース(GUI)モジュールであって、少なくとも1つのコンピューティングデバイスと、前記手持ち型手術ツールの位置を示すように構成された視覚ディスプレイとを含む、該GUIモジュールと、任意選択で、
(c)撮像デバイスと
を備え、
前記方法は、
(i)前記関節形成術の関節を露出させるステップと、
(ii)前記撮像デバイスを使用して、前記関節の解剖学的構造またはその一部分の画像データを記録するステップと、
(iii)前記GUIモジュールを使用して、前記関節の解剖学的構造またはその前記一部分の3次元画像または輪郭を生成するステップと、
(iv)前記手持ち型手術ツールを前記関節上の1つまたは複数の解剖学的特徴と係合させ、前記係合中の前記手持ち型手術ツールの配向を記録するステップと、
(v)前記手持ち型手術ツールの前記配向を、前記関節の配向にずれないように合わせるステップと、
(vi)前記3次元画像または輪郭、前記手持ち型手術ツールの前記配向、および前記手持ち型手術ツールについての所定の目標配向のうちの1つまたは複数を、前記視覚ディスプレイ上に表示するステップと、
(vii)前記手持ち型手術ツールおよび前記視覚ディスプレイを使用して前記プロテーゼを埋め込むステップであって、前記手持ち型手術ツールの前記配向は、前記手持ち型手術ツールについての前記所定の目標配向に従って調節されるステップと
を備えたことを特徴とする方法。
【請求項31】
前記ハンドルは、プロセッサと、少なくとも1つのセンサユニットとを含むことを特徴とする請求項30に記載の方法。
【請求項32】
前記少なくとも1つのセンサユニットは、3軸加速度計、3軸レートジャイロスコープ、3軸磁力計、またはそれらの組合せを含むことを特徴とする請求項31に記載の方法。
【請求項33】
前記少なくとも1つのセンサユニットは、前記手持ち型手術ツールの配向データを生成するように構成されたことを特徴とする請求項31または32に記載の方法。
【請求項34】
前記プロセッサまたは前記少なくとも1つのコンピューティングデバイスは、前記配向データに基づいて前記手持ち型手術ツールの前記配向を決定するように構成されたことを特徴とする請求項33に記載の方法。
【請求項35】
前記プロセッサまたは前記少なくとも1つのコンピューティングデバイスは、前記手持ち型手術ツールの前記配向を少なくとも1つの事前設定された目標配向と比較するように構成されたことを特徴とする請求項34に記載の方法。
【請求項36】
前記視覚ディスプレイは、前記少なくとも1つの事前設定された目標配向からの、前記手持ち型手術ツールの前記配向の任意の偏差を示すように構成されたことを特徴とする請求項35に記載の方法。
【請求項37】
前記撮像デバイスは、前記3次元画像または輪郭に変換することができるデータを生成するように構成されたことを特徴とする請求項29ないし36のいずれか1つに記載の方法。
【請求項38】
前記撮像デバイスは、飛行時間カメラ、一対の立体カメラ、または3次元走査ツールを含むことを特徴とする請求項29ないし37のいずれか1つに記載の方法。
【請求項39】
前記関節形成術は、股関節形成術、膝関節形成術および肩関節形成術から選択されることを特徴とする請求項29ないし38のいずれか1つに記載の方法。
【請求項40】
前記関節形成術は、股関節形成術であることを特徴とする請求項29ないし39のいずれか1つに記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンピュータ支援ナビゲーションを備えた手持ち型手術ツールを有する手術ナビゲーションシステムに関する。手持ち型手術ツールは、筐体と、器具シャフトと、センサユニットとを備える。手術ナビゲーションシステムは、解剖学的表面の3次元モデル/輪郭を生成するように構成された少なくとも1つの撮像ユニットと、3次元表面/輪郭および手持ち型手術ツールの位置を表示するように構成されたグラフィカルユーザインタフェースモジュールとをさらに備える。
【背景技術】
【0002】
関連出願の相互参照
本願は、参照により全ての目的のためにその全体が本明細書に組み込まれる、2019年10月28日に出願された米国仮出願第62/926657号の優先権の利益を主張するものである。
【0003】
股関節形成術、膝関節形成術、肩関節形成術(TSA)、および脊柱形成術などの整形外科の埋込み手順は、2つの主要なステップ、すなわち対象となる骨について、仮想基準系(例えばカメラによって提供される)が実際の基準系とマッチングされる見当合わせステップと、インプラントデバイスが患者に埋め込まれるインプラントターゲティング/配置ステップとを含む可能性がある。患者の解剖学的構造に関する手術ツールおよびインプラントの適切な位置決めは、最良の結果を保証するために極めて重要である。例えば、これらの埋込み手順では、手術ガイド、切断ツール、およびインプラントの適切な配向が、関節置換の機能性を保証するために不可欠である。手術ガイド、切断ツール、および/またはインプラントの位置ずれは、関節の転位、関節の動きおよび可動性の低下、周囲組織に対する損傷、長期間続く痛み、および早期のインプラント故障など、有害な結果につながる恐れがある。特に股関節形成術では、リビジョンの場合の改変された解剖学的構造、関節窩の骨の喪失、および信頼性の低いランドマークが患者集団において一般にみられるので、正確なインプラントの位置決めが、様々な問題により困難であることがある。これらの場合には、関節窩ベースプレートを十分な骨量を確保して適当な軸に沿って方向付けることは、困難な術中作業であることがある。
【0004】
手術ガイド、切断ツール、およびインプラントを適切に配置する能力は、外科医にとって困難であることが多く、わずかな配向の変化でも、不適切なインプラントの位置合わせにつながる恐れがある。解剖学的構造に対して物理的ランドマークが取り付けられて、これらの手順中に外科医を誘導および案内することがある。ただし、このような方法は不完全であり、骨の位置に対してマーカの位置を見当合わせする際に誤差があった、マーカがしっかり取り付けられておらず、骨に対して動く、または手術により生じたマーカを覆う可能性がある流体もしくは物質が存在するためにカメラがマーカを検出することができないなど、様々な理由によって位置ずれにつながる恐れがある。外科医がマーカを取り付けず、身体の他の物理的特徴を見当合わせに使用する場合には、それらの物理的特徴が不正確に測定される場合、または外科医が患者の解剖学的構造を適切に配向しない場合に、誤差が生じる恐れがある。コンピュータ断層(CT)または磁気共鳴撮像(MRI)走査の3次元再構築は手術計画を改善することができるが、手術中に同じ計画を作成し直すことは、大変な作業になる可能性がある。
【0005】
上記の問題の少なくとも一部に対応する試みとして、手術中のツールの適切な配置を支援することができる技術を開発する努力が払われている。例えば、特許文献1は、位置精度を改善するために設けられた特定のナビゲーション機能を有する手持ち型手術ツールを記載している。このツールは、デバイスがその基本参照位置を達成したときに押されなければならないボタンを特徴とし、押されることで、ツールがゼロ設定される。これが実施されると、ツールは外科医によって自由に操作されることが可能になり、それは、空間内のその位置決めを、そのケーシングに設けられた3つの数値ディスプレイ上に示す。ディスプレイは、空間内のツールの3次元角度配向を示す。このデバイスは、一般に、アクセスが制限され、その結果として目視観測が制限される領域においてツールの位置決めを決定する外科医の能力を向上させる。ただし、すでに所望の配向に到達しているかどうか、または所望の配向が維持されるかどうかを確認するために外科医が複数のディスプレイを制御することはかなり困難である可能性がある。さらに、このデバイスは、手術ツールの位置を所望の配向と比較するようには構成されておらず、また外科医が手術ツールの配置を視覚化することができるように解剖学的構造のモデルを生成するようにも構成されていない。したがって、特許文献1による手術ツールは、医療手順中の手術ツールの位置ずれを十分には防止しない。
【0006】
特定患者向け計装(PSI)は、人工股関節置換術、人工膝関節置換術および人工肩関節置換術、骨盤および寛骨臼の処置、および脊柱変形などの整形外科のサブスペシャルティにおいて、様々な成功の度合いで普及してきている。しかし、PSIは、手術の前に器具を受け取るのに2週間以上の準備期間を必要とするという欠点を有し、手術中には、選択されたインプラントまたはその配向を修正することができない。
【0007】
したがって、当技術分野では、信頼性および再現性が高く、インプラントの正確な位置決めおよび位置合わせをもたらす整形外科の埋込み手順が依然として必要とされている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許第8057482(B2)号
【特許文献2】米国特許出願第16/442155号
【非特許文献】
【0009】
【非特許文献1】Hsu J et al., J. Biomech., 82: 193-203, 2018
【非特許文献2】Lewinnek GE et al, J. Bone Joint Surg. Am., 60-A: 217-220, 1978
【発明の概要】
【課題を解決するための手段】
【0010】
本発明の主要な態様のうちのいくつかが、以下に要約されている。追加の態様は、本開示の発明の詳細な説明、例、および特許請求の範囲のセクションに記載されている。本開示の各セクションの記述は、他のセクションと関連付けて読まれるように意図されている。さらに、本開示の各セクションに記載される様々な実施形態は、様々に組み合わせられることが可能であり、そのような組合せは全て、本発明の範囲に含まれるものと意図されている。
【0011】
したがって、本開示は、患者で使用される手術ナビゲーションシステムであって、(a)コンピュータ支援ナビゲーションを備えた手持ち型手術ツールであって、ハンドルおよび器具シャフトを含む手持ち型手術ツールと、(b)グラフィカルユーザインタフェース(GUI)モジュールであって、少なくとも1つのコンピューティングデバイスと、手持ち型手術ツールの位置を示すように構成された視覚ディスプレイとを含む、GUIモジュールとを備える手術ナビゲーションシステムを提供する。いくつかの実施形態では、この手術ナビゲーションシステムは、撮像デバイスも備える。
【0012】
ハンドルは、プロセッサと、少なくとも1つのセンサユニットとを含む。少なくとも1つのセンサユニットは、3軸加速度計、3軸レートジャイロスコープ、3軸磁力計、またはそれらの組合せ、を含む。いくつかの実施形態では、少なくとも1つのセンサユニットは、手持ち型手術ツールの配向データを生成するように構成される。
【0013】
プロセッサまたは少なくとも1つのコンピューティングデバイスは、配向データに基づいて手持ち型手術ツールの配向を決定するように構成される。いくつかの実施形態では、プロセッサまたは少なくとも1つのコンピューティングデバイスは、手持ち型手術ツールの配向を少なくとも1つの事前設定された目標配向と比較するように構成される。
【0014】
視覚ディスプレイは、少なくとも1つの事前設定された目標配向からの、手持ち型手術ツールの配向の任意の偏差を示すように構成されてよい。
【0015】
撮像デバイスは、3次元画像または輪郭に変換されることができるデータを生成するように構成されてよい。撮像デバイスは、飛行時間カメラ、一対の立体カメラ、または3次元走査ツールを含む。
【0016】
いくつかの実施形態では、手術ナビゲーションシステムは、患者の解剖学的構造の一部分に取り付け可能な少なくとも1つのマーカをさらに備えてよく、特定の実施形態では、患者の解剖学的構造の異なる部分にそれぞれ取り付け可能な2つのマーカをさらに備えてよい。マーカ係合機が、手持ち型手術ツールに対して取り付けられることが可能であり、マーカ係合機は、設定された配向で1つまたは複数のマーカと係合するように構成される。プロセッサは、1つまたは複数のマーカの配向を検出するように構成されることがあり、いくつかの実施形態では、1つまたは複数のマーカに関する、解剖学的特徴の角度配向および直線距離を測定するように構成される。
【0017】
いくつかの実施形態では、コンピューティングデバイスは、患者の解剖学的構造またはその一部分の表面の3次元モデルまたは輪郭を生成するように構成される。3次元モデルまたは輪郭は、撮像デバイスからのデータに基づいて生成されてよい。
【0018】
いくつかの実施形態では、GUIモジュールは、手持ち型手術ツールの位置、手持ち型手術ツールの位置の所望の位置からの偏差、患者の解剖学的構造またはその一部分の画像、および患者の解剖学的構造またはその一部分の3次元モデルのうちの1つまたは複数に関するデータを受信するように構成される。特定の実施形態では、GUIモジュールは、患者の解剖学的構造またはその一部分の画像、患者の解剖学的構造またはその一部分の3次元モデル、手持ち型手術ツールの位置、手持ち型手術ツールについての所望の位置のうちの1つまたは複数をオーバレイするように構成される。さらに別の実施形態では、GUIモジュールは、患者の解剖学的構造またはその一部分の画像、患者の解剖学的構造またはその一部分の3次元モデル、手持ち型手術ツールの位置、手持ち型手術ツールについての所望の位置のうちの1つまたは複数を表示するように構成される。いくつかの実施形態では、GUIモジュールは、オーバレイを表示するように構成される。
【0019】
本発明の実施形態では、GUIモジュールは、手持ち型手術ツールの位置と手持ち型手術デバイスの所望の位置との間の偏差を定性的または定量的に示すように構成される。偏差は、1つまたは複数の視覚、聴覚、または触覚インジケーションによって示されてよい。
【0020】
手術ナビゲーションシステムは、関節形成術を受ける患者にプロテーゼを埋め込む方法で使用されてよい。さらに、手術ナビゲーションシステムは、関節形成術を受ける患者内におけるプロテーゼの埋込みの精度を向上させるために使用されてよい。関節形成術は、股関節形成術、膝関節形成術、または肩関節形成術であってよい。
【0021】
したがって、本発明の別の態様は、本発明の手術ナビゲーションシステムを使用して関節形成術を受ける患者にプロテーゼを埋め込む方法が対象とされる。この方法は、(i)関節形成術の関節を露出させることと、(ii)関節の解剖学的特徴の上に1つまたは複数のマーカを配置することと、(iii)手持ち型手術ツールを1つまたは複数のマーカと係合させ、係合中の手持ち型手術ツールの配向を記録することと、(iv)手持ち型手術ツールの配向を、関節の配向にずれないように合わせることと、(v)手持ち型手術ツールの配向、および手持ち型手術ツールについての所定の目標配向を、視覚ディスプレイ上に表示することと、(vi)手持ち型手術ツールおよび視覚ディスプレイを使用して、プロテーゼを埋め込むことであって、手持ち型手術ツールの配向は、手持ち型手術ツールについての所定の目標配向に従って調節されることとを含むことがある。
【0022】
あるいは、この方法は、(i)関節形成術の関節を露出させることと、(ii)撮像デバイスを使用して、関節の解剖学的構造またはその一部分の画像データを記録することと、(iii)GUIモジュールを使用して、患者の解剖学的構造またはその一部分の3次元画像または輪郭を生成することと、(iv)手持ち型手術ツールを関節上の1つまたは複数の解剖学的特徴と係合させ、係合中の手持ち型手術ツールの配向を記録することと、(v)手持ち型手術ツールの配向を、関節の配向にずれないように合わせることと、(vi)3次元画像または輪郭、手持ち型手術ツールの配向、および手持ち型手術ツールについての所定の目標配向のうちの1つまたは複数を、視覚ディスプレイ上に表示することと、(vii)手持ち型手術ツールおよび視覚ディスプレイを使用してプロテーゼを埋め込むことであって、手持ち型手術ツールの配向は、手持ち型手術ツールについての所定の目標配向に従って調節されることとを含むことがある。
【図面の簡単な説明】
【0023】
例示を目的として与えられたものであり、開示される詳細に本発明を限定することは意図されていない以下の説明は、添付の図面に関連付けて述べられる。図面においては、同じ参照符は、同じ、または同様の要素および部分を指している。
【0024】
【
図1】本発明の実施形態による手持ち型手術ツールを示す斜視図である。
【
図2】本発明の実施形態による手術ナビゲーションシステムの要素の機能ブロックを示す図である。
【
図3】本発明の実施形態による手術ナビゲーションシステムの構成要素を示す図である。
【
図4】本発明の実施形態による視覚ディスプレイ上に示される可動域モデルの入力の例を示す図である。
【
図5】本発明の実施形態による、撮像デバイス500が手持ち型手術ツールと一体化されている、またはその他の方法で取り付けられている手術ナビゲーションシステムの構成要素を示す図である。
【
図6A】患者が股関節形成術中にとる可能性がある仰臥位を示す図である。
【
図6B】患者が股関節形成術中にとる可能性がある側臥位を示す図である。
【
図7】本発明の実施形態による交差上前腸骨棘(ASIS)バーを示す図である。
【
図8A】本発明の実施形態によるCross-ASISバーの使用を示す図であり、同側のASISおよび対側のASIS上のCross-ASISバーの配置を示す図である。
【
図8B】本発明の実施形態によるCross-ASISバーの使用を示す図であり、骨盤上の同側のASISおよび対側のASISの位置を示す図である。
【
図9A】本発明の実施形態によるCross-ASISバーの使用を示す図であり、同側のASISおよび恥骨結合上のCross-ASISバーの配置を示す図である。
【
図9B】本発明の実施形態によるCross-ASISバーの使用を示す図であり、骨盤上の同側のASISおよび恥骨結合の位置を示す図である。
【
図10A】本発明の実施形態による前面を見当合わせするための手持ち型手術デバイスの使用を示す図である。
【
図10B】本発明の実施形態による前面を見当合わせするための手持ち型手術デバイスの使用を示す図である。
【
図11A】本発明の実施形態による水平面を見当合わせするための手持ち型手術デバイスの使用を示す図である。
【
図11B】本発明の実施形態による水平面を見当合わせするための手持ち型手術デバイスの使用を示す図である。
【
図12A】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素を示す図であり、特に、骨盤上の第1のマーカの配置を示す図である。
【
図12B】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素を示す図であり、特に、手持ち型手術ツールのマーカとの係合を示す図である。
【
図13A】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素をさらに示す図であり、特に、大腿骨上の第2のマーカの配置を示す図である。
【
図13B】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素をさらに示す図であり、特に、中立位置に対する脚の再位置決めを示す図である。
【
図14A】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素をさらに示す図であり、特に、手持ち型手術ツールの大腿骨上に配置された第2のマーカとの係合を示す図である。
【
図14B】本発明の実施形態による、手術ステップ中の手術ナビゲーションシステムの構成要素をさらに示す図であり、特に、手持ち型手術ツールを使用して、大腿骨の遠位面に沿った大腿骨軸を取り込むことを示す図である。
【
図15】本発明の実施形態による線形測定デバイス(LMD)を示す図である。
【
図16】撮像デバイスが関連する患者の解剖学的構造を撮像する、本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図である。
【
図17】本発明の実施形態による、視覚ディスプレイ上に示される検出されたマーカを有する初期の脚のオフセットの走査の例を示す図である。
【
図18】撮像デバイスが切除後に関連する解剖学的構造を撮像し、寛骨臼上の複数の点が位置特定される、本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図である。
【
図19A】本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図であり、参照点を確立するために手持ち型手術ツールを第1のマーカと係合させることを示す図である。
【
図19B】本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図であり、手持ち型手術ツールに対して取り付けられたカップインパクタの使用を示す図である。
【
図19C】本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図であり、視覚ディスプレイがどのようにしてカップインパクタを適切に配向するための案内を提供するかを示す図である。
【
図20】本発明の実施形態による視覚ディスプレイ上に示される、回転中心の検出のための寛骨臼の月状面上の点のブラシ選択の例を示す図である。
【
図21】本発明の実施形態による視覚ディスプレイ上に示される検出された回転中心および寛骨臼の直径の例を示す図である。
【
図22】本発明の実施形態による視覚ディスプレイ上に示されるリーミングおよびカップ配向ナビゲーションのためのターゲティングインタフェースの例を示す図である。
【
図23】本発明の実施形態による視覚ディスプレイ上に示される可動域モデルの出力グラフからのカップ配向角の選択を示す図である。
【
図24】新たな3次元輪郭/表面が追加の走査から生成される、本発明の実施形態によるさらに別の手術ステップ中の手術ナビゲーションシステムの構成要素を示す図である。
【
図25】本発明の実施形態による視覚ディスプレイ上に示される、検出されたマーカ、検出されたトライアルヘッドおよび回転中心、埋め込まれたカップの縁上の選択された点、ならびに検出されたカップ配向を表示する、トライアルの回転中心走査を示す図である。
【
図26】Kワイヤが手持ち型手術ツールによって案内されながら関節窩内にドリルで挿入される様子と、取り付けられたKワイヤガイドとを示す図である。
【
図27A】本発明の実施形態による手術ナビゲーションシステムによって提供されるKワイヤ軌道案内インタフェースの例を示す図である。
【
図27B】本発明の実施形態による手術ナビゲーションシステムによって提供されるKワイヤ軌道案内インタフェースの例を示す図である。
【発明を実施するための形態】
【0025】
本手術ナビゲーションシステムおよび対応する方法の詳細な実施形態が、本明細書に開示されている。しかし、開示される実施形態は、単に、様々な形態で実施されることがある手術ナビゲーションシステムおよび方法を例示するものに過ぎないことを理解されたい。加えて、システムおよび方法の様々な実施形態に関連して与えられる各例は、制限的なものではなく、例示的なものとして意図されている。さらに、図面および写真は、必ずしも正確な縮尺ではなく、特定の構成要素の詳細を示すために一部の特徴が強調されていることもある。加えて、図面に示されている任意の測定値および指定などは、限定的なものではなく、例示的なものとして意図されている。したがって、本明細書に開示される具体的な構造的および機能的詳細は、限定として解釈されるべきものではなく、単に当業者に対して本システムおよび方法を様々に利用することを教示するための代表的な基礎として解釈されるべきものである。
【0026】
手術ナビゲーションシステム
本発明の手術ナビゲーションシステムは、手持ち型手術ツールおよびグラフィカルユーザインタフェース(GUI)モジュールと、任意選択で撮像デバイスとを備える。
図1に示されるように、手持ち型手術ツール200は、ハンドル210と、器具シャフトまたは端部ツール250とを備えることがある。GUIモジュール400は、コンピューティングデバイス405および少なくとも1つの視覚ディスプレイ410と、任意選択でデータを記憶する少なくとも1つのメモリユニット(
図2参照)とを備えることがある。
【0027】
器具シャフト250は、ハンドル210の近位端部に対して取り付けられる。ハンドル210の近位端部は、例えばユニバーサル接続または共通接続を用いて複数の様々な種類の器具シャフトに対応するように構成される。器具シャフト250は、遠位端部先端251および近位端部252を含む。
【0028】
いくつかの実施形態では、器具シャフト250は、それ自体がツールであってよい。他の実施形態では、器具シャフト250は、リーマ、切断ジグ、カップインパクタ、マーカ係合機、Xジグ(本明細書に記載される)などのツールを交換可能に受ける取付け点として構成されてよい。
【0029】
特定の実施形態では、器具シャフト250は、手術器具を案内するための内部中空導管を有するガイドであってよく、また、手術器具を正しく配置するために、手術器具は、その先端を手術器具が目標位置と相互作用する角度を決定する特定の配向で目標位置に置いた状態で配置されてよい。
【0030】
ハンドルは、筐体に封入された複数の構成要素を備えてよい。例えば、ハンドルは、
図2に示されるように、プロセッサ220および少なくとも1つのセンサユニット260(慣性測定ユニットとも呼ばれる)を備えてよい。任意選択で、センサユニットは、例えばハンドルに対して取り付けられることが可能なセンサ筐体内の、別個の構成要素であってよい。
【0031】
センサユニット260は、手持ち型手術ツールの配向データを提供することができる。特定の実施形態によれば、センサユニット260は、3軸加速度計、3軸レートジャイロスコープ、3軸磁力計、またはそれらの組合せの形態で慣性センサを備えてよい。いくつかの実施形態では、センサユニット260は、3軸加速度計および3軸ジャイロスコープを備えてよい。特定の実施形態では、センサユニット260は、温度センサを備えてもよい。プロセッサ220またはコンピューティングデバイス410は、センサユニットの配向データに基づいて空間内の手持ち型手術ツール200の配向を決定するように構成されてよい。
【0032】
代替の実施形態によれば、センサユニット260は、位置情報を生成するように構成された他の種類のセンサを備えてよい。データ融合モジュール(図示せず)は、センサユニットの出力信号を一般に既知の方法(フィルタリング、正規化、較正など)で処理し、いくつかの実施形態では、処理された信号をマージして一体化され統合された位置出力信号を生成するように構成されてよい。このマージに関しては、一般に既知の技術(例えばカルマンフィルタ、四元数勾配、相補フィルタなど)が使用されてよい。任意選択で、データ融合モジュールは、ジンバルロック問題などの異常を回避するために、出力を四元数によってコード化するようにさらに構成される。代替の実施形態によれば、データ融合モジュールは、プロセッサ220に組み込まれてよい。
【0033】
データ融合モジュールの統合された出力位置信号は、プロセッサ220に供給される。この信号に基づいて、オイラー角または3次元ベクトルへの変換が実行されてよい。いくつかの実施形態では、出力位置信号は、四元数に基づくデータを含み、これがその後、3次元ベクトルに変換され、そこから2Dベクトルに変換される。位置メモリ224は、全ての位置データを記憶するように構成される。
【0034】
セットキー240は、手持ち型手術ツールのハンドル210上に設けられ、ツールを較正する、またはツールの現在位置を記憶するために使用されてよい。セットキー240の代替として、マイクロフォン240´が設けられてよく、その場合には、セットキー240を物理的に押すことの代わりに音声起動が使用されることが可能である。
【0035】
本発明の実施形態では、プロセッサ220は、位置メモリ224と、セットキー240と、左制御キー242および右制御キー244とに対して動作可能に接続されてよい。制御キーは、特定の軌道を改変してよく、またユーザがGUIモジュール400と直接相互作用するための手段を提供してよい。さらに、プロセッサ220は、位置メモリ224からデータをリコールするように構成されてよい。
【0036】
特定の実施形態によれば、プロセッサ220は、セットキー240の起動によって選択されてよい、2つの動作モード用に構成される。第1の動作モードでは、プロセッサ220は、記憶された不完全な位置を一般に位置メモリ224からリコールし、それを、センサユニット261から供給される実際の位置インジケーションと比較するように構成される。これらの位置インジケーションの間の差に基づいて、プロセッサ220は、傾斜など(または、別の方向については前傾など)、1つの方向についての第1の偏差信号を生成する。第2の動作モードでは、プロセッサ220は、完全な位置インジケーションをリコールし、それを、センサユニット261から供給される実際の位置インジケーションと比較するように構成される。これらの位置インジケーションの間の差に基づいて、それは、好ましい実施形態では傾斜および前傾など、第1の偏差信号より1つ多い次元を有する異なる偏差信号を生成する。第1の動作モードから第2の動作モードへの切換えは、いくつかの実施形態では、ユーザによってセットキー240を用いて制御されてよい。本明細書の特定の実施形態では、偏差信号がプロセッサ220によって生成されて供給されるものとして述べているが、本発明は、そのように限定されるわけではない。例えば、位置データの処理は、GUIモジュール、手持ち型手術ツール、またはそれらの組合せによって実行されてよい。
【0037】
偏差信号は、手術ナビゲーションシステムのGUIモジュール400に対して供給される、またはいくつかの実施形態では、手術ナビゲーションシステムのGUIモジュール400によって生成される。GUIモジュール400は、コンピューティングデバイス405と、少なくとも1つの視覚ディスプレイ410と、任意選択で、データ(例えば手持ち型手術ツール200からの位置データ)を記憶する少なくとも1つのメモリユニットとを備えてよい。いくつかの実施形態では、GUIモジュール400は、偏差信号によって規定される任意の偏差の方向および位置と、定性的かつ/または定量的に大きさとを示すように構成されてよい。GUIモジュール400は、視覚インジケータを含んでもよく、この視覚インジケータは、視覚ディスプレイ410によって構成される。視覚インジケータを構成する視覚ディスプレイ410は、実施形態によれば、十字線パターン内のブルズアイ表示(
図3参照)を備える。いくつかの実施形態によれば、
図2に示すように、GUIモジュール400は、手持ち型手術ツール200と通信していてよい。例えば、GUIモジュール400は、無線送信機248、249を介して手持ち型手術ツール200と無線で通信してよい。
【0038】
いくつかの実施形態によれば、手持ち型手術ツール200は、触覚インジケータ246、聴覚インジケータ247、視覚インジケータ(図示せず)、またはそれらの組合せを含んでよい。触覚インジケータ246は、筐体210の対向する側面上、ならびに筐体210の上面および底面上にそれぞれ配置された、2対の振動変換器246´および246″を備えてよい。聴覚インジケータとしては、手持ち型手術ツール200またはGUIモジュール400のいずれかの一部を構成する音声モジュール247´によって駆動される、ラウドスピーカ247が設けられてよい。視覚インジケータは、LCDディスプレイなどのディスプレイの形態であってよく、またはLEDなど1つもしくは複数の照明デバイスの形態をとることができる。
【0039】
さらに、手持ち型手術ツール200は、GUIモジュール400上の無線送信機249と通信するように構成された無線送信機248を備えて構成されてよい。特定の実施形態によれば、触覚インジケータ246、聴覚インジケータ247、および/または視覚インジケータが、視覚ディスプレイ410と置き換わってよい。このような実施形態では、十字線パターン内のブルズアイ表示は省略されてよく、手持ち型手術ツール200が、聴覚インジケータ247によって提供される可聴キューを介するなどして方向および位置のインジケーションを提供してよい。
【0040】
供給線(図示せず)を介して手持ち型手術ツールの様々な構成要素に供給を行う充電可能または使い捨てのバッテリ270が設けられてよい。バッテリ270を充電するために、無線充電用に構成された充電用コイル271が設けられてよい。
【0041】
手術ナビゲーションシステムの撮像デバイス500は、
図3に示されるように、解剖学的構造の一部分を撮像して3次元表面/輪郭を作成するために使用される撮像データを生成するように構成される。特定の実施形態によれば、撮像デバイス500は、手持ち型手術ツール200に対して一体化されるなどして取り付けられる。代替の実施形態によれば、撮像デバイス500は、別個のデバイスであり、手持ち型手術ツール200および/またはGUIモジュール400と通信するように構成される。
【0042】
いくつかの実施形態では、手術ナビゲーションシステムは、非一時的なコンピュータ可読媒体に記憶され、プロセッサによって実行されたときに、プロセッサを2つの異なる動作モードで動作させる命令を有する、プロセッサを備えてよく、この2つの異なる動作モードのうちの一方では、縮約された位置インジケーションが処理される。縮約された位置インジケーションは、第2の動作モードの完全な位置インジケーションと比較して1つの自由度についての少なくとも1つのインジケーションが欠けている位置インジケーションである。例えば、ユークリッド空間においては、3次元空間内のデバイスの配向を記述するために3つの角度インジケーションを使用することができる。しかし、絶対位置がモニタリングされなくてもよい場合には、これらの角度のうちの3つの代わりに2つがモニタリングされてよく、その場合には、完全に固定された配向を提供せず、その代わりに1つの自由度を保持することになる。例えば、ロール、ピッチ、およびヨーの角度が使用される場合には、不完全な位置インジケーションは、ロールおよびヨーのインジケーションのみを有し、ピッチは自由度として残す可能性がある。別の例として、3つの角度ではなく、2つの角度しか使用されない場合(例えばロールが無視される場合)には、完全な位置インジケーションは、両方の角度(例えばピッチおよびヨー)を有するが、不完全な位置インジケーションは、1つの角度(例えばヨーのみ)しか示さないことになる。本明細書に組み込まれる2つの動作モードを実施する詳細な実施形態は、同時係属の特許文献2にさらに記載されている。加えて、具体的には股関節形成術の適用例に関しては、これらの角度は、カップの傾斜および前傾であることがある。
【0043】
手術ナビゲーションシステムを使用する方法
本発明の手術ナビゲーションシステムは、関節形成術を受ける患者内にプロテーゼを埋め込む方法、および関節形成術を受ける患者内のプロテーゼ埋込みの精度を向上させる方法において使用されてよい。
【0044】
このような方法に関しては、手術ナビゲーションシステムは、手術室内に設置されることができる。これを行うために、
図3に示されるように、撮像デバイス500は、手術台上にいる患者の隣に位置してよい。
【0045】
センサユニット260がハンドル210に対して取り付けられる実施形態では、手持ち型手術ツール200を組立ててよい。これらの実施形態によれば、手持ち型手術ツール200のハンドル210は、滅菌包装される。滅菌パウチが開けられ、ハンドル210の裏面から蓋が取り外され、センサユニット260が、ハンドル210と完全に係合して面一になるまで挿入される。その後、蓋が閉じられ、センサユニット260をハンドル210内に封入してよい。
【0046】
所望の器具シャフト250(すなわち端部ツール)が選択され、ハンドル210の近位端部に対して取り付けられる。
【0047】
手持ち型手術ツール200が、起動されてよい。単なる例示に過ぎないが、手持ち型手術ツール200上のプルタブを取り除くことによって、バッテリ270が手持ち型手術ツール200の構成要素に電源投入することができるようになる。あるいは、スイッチが押されて、手持ち型手術ツール200の構成要素に電源投入してよい。
【0048】
いくつかの実施形態では、手持ち型手術ツール200は、初期化を受けてよい。初期化中に、手持ち型手術ツール200は、そのセンサユニット260を用いて重力の方向を測定して、手持ち型手術ツール200の空間内の位置が座標系に対して確立されるようにする。いくつかの実施形態では、手持ち型手術ツール200は、初期化中に静止したままでなければならない。インジケータが、初期化が完了したことを示すことがある。インジケータの例は、限定されるわけではないが、緑色LED灯などの発光ダイオード(LED)灯を含む。
【0049】
本発明の文脈における「空間内の位置」およびその短縮形「位置」という用語は、一般に、絶対的な位置および配向を含んでよい6つの自由度を有する系を指す。位置は、直交軸(例えばX、Y、Z)を有する3次元空間の座標として表現されてよく、配向は、オイラー角(例えばヨー、ピッチ、およびロール、アルファα、ベータβおよびガンマγ、ならびにファイφ、シータθ、およびプサイψなど)または四元数によって与えられてよい。好ましい実施形態では、手持ち型デバイスの座標系は、重力に対して相対的に確立されて、y軸が重力の方向と反対向きに配向されるようになっている。
【0050】
定義により、人体に関する座標系は、側方(左から右、右から左、すなわち外側-内側方向)軸としてのX軸、上下(足から頭、頭から足、すなわち上/頭蓋-下/尾側方向)軸としてのY軸、ならびにX軸およびY軸に直交して奥行きを示すZ軸(前から後、後から前、すなわち前/腹-後/背方向)を特徴として定義されることがある。あるいは、人体に関する座標系は、Y軸が重力の方向の反対向きであり、その結果として、人体に対する座標系の位置合わせが患者の位置によって決まるようになっていることがある。例えば、患者が頭部を右に向けて仰向けで横臥している場合には、Y軸は、前/腹-後/背方向と一致し、X軸は、上/頭蓋-下/尾側方向と一致し、Z軸は、外側-内側方向と一致することになる。
【0051】
撮像デバイス500は、患者の関連のある解剖学的構造を撮像してよい。手持ち型手術ツール200とGUIモジュール400との間の接続(例えば無線)は、(例えば手持ち型手術ツール200上に示されるコードを入力することによって)起動されることがあり、その接続性は、視覚ディスプレイ410上の対応するアイコン(例えばハンドルのアイコン)が同時に動くことを確認することによって(例えば手持ち型手術ツール200の一部を動かすことによって)検証されてよい。
【0052】
この手順の態様(例えば手術レベル、インプラントサイド、カップのサイズなど)は、あらかじめ記憶されていてよいし、あるいはGUIモジュール400および/または手持ち型手術ツール200に対して提供されてよい。例えば、所望の手術手順の提供された態様に基づいて、所期の手術に適した開始目標角度のデフォルト値が入力されることが可能である。GUIモジュール400および/または手持ち型手術ツール200は、効果的な手術のために手術ツールが配向される必要がある角度に近い、手術の種類毎の関節形成術の構成要素の位置決めに関するこれらのデフォルトの目標角度値および/または距離値(例えば研究、出版されているソース、または手術前撮像データによる)がプログラムされる。これにより、初期軌道がGUIモジュール400の視覚ディスプレイ410上の十字線内に収まるようにすることなどによって実際の手術のための軌道を確立するために必要な(他のステップにおける、以下で説明した)調節の量を解消または最小化する。
【0053】
例示を目的として、股関節形成術に関しては、「可動域モデル」がカップ置換モデルとして選択されてよく、GUIモジュール400の視覚ディスプレイ410は、
図4に示されるような見た目になることがあり、これは、患者の所望の術後可動域、インプラントの幾何学的パラメータ、および患者の骨盤の傾きが入力として必要とされていることを示している。可動域モデルは、入力に基づいて、前傾および傾斜の角度によって規定されるカップの配向の「ヒートマップ」を生成するように構成される。ヒートマップは、例えば緑色を用いて、どこで配向がインピンジメントのない動きをもたらすかを示す。
【0054】
実施形態によれば、
図3に例示されるように、1つまたは複数のマーカが、手術手順の位置に対応する患者の解剖学的構造の一部分の上、すなわち関節形成術に関わる骨のうちの1つまたは複数の上に配置されてよい。マーカは、手持ち型手術ツール200と係合するように設計されることがある。好ましい実施形態では、マーカ係合機610などのツールは、例えば手持ち型手術ツール200の遠位端部先端251で、手持ち型手術ツール200に対して取り付けられてよい。
【0055】
いくつかの実施形態では、骨ねじなどの第1のマーカ601は、関節の一部を構成する骨の上に配置される。いくつかの実施形態では、第1のマーカ601が一意的な形状を有し、手持ち型手術ツール200に対して取り付けられたマーカ係合機610が相補的な形状を有して、第1のマーカ601とマーカ係合機610とが単一の配向で対合することができるようになっていてよい。これにより、マーカ係合機610は、特定の配向で第1のマーカ601と嵌合する、第1のマーカ601の上に嵌合する(または第1のマーカ601内に嵌合する)ことができる。配置されたら、マーカ係合機610は、第1のマーカ601に対して対合され、次いで、手持ち型手術ツール200が、(例えばセットキー240を押すことによって、または手術チームの一員もしくは代表者がGUIモジュール400上のボタンをクリックすることによって)この位置に対してゼロ設定/較正される。第1のマーカ601の位置は、システムによって(例えば解剖学的構造の3次元表面/モデル700中での検出を介して)事前に確立されてよく、したがって、手持ち型手術ツール200の位置は同様に既知である。このように、ナビゲーションフィールド内の手持ち型手術ツール200の位置のゼロ設定が実施されることが可能である。これにより、第1のマーカ601、およびそれに対する相対的な手持ち型手術ツール200の位置情報の生成も可能になる。
【0056】
次いで、マーカ係合機610は、第1のマーカ601から取り外され、水平ベクトルを取り込むように解剖学的構造の1つまたは複数の他の特徴と接触させてよい。この位置における手持ち型手術ツール200の位置は、例えばセットキー240の押下げによって記憶される。この位置情報を用いて、第1のマーカ601の水平ベクトル301に対する相対位置が決定される。
【0057】
いくつかの実施形態では、第2のマーカ602(第1のマーカ601と同様または同じ)は、手術手順に応じて、関節の一部を構成する別の骨の上など、患者の解剖学的構造の別の部分の上に配置することができる。第1のマーカ601および第2のマーカ602の両方が配置されると、中立位置が実現されるように、患者が再位置決めされる。
【0058】
いくつかの実施形態では、第1のマーカ601と同様に、手持ち型手術ツール200に対して取り付けられたマーカ係合機610は、第2のマーカ602と対合され、次いで、手持ち型手術ツール200は、この位置に対してゼロ設定/較正される。第2のマーカ602の位置は、システムによって(例えば解剖学的構造の3次元表面/モデル700中での検出を介して)事前に確立してよい。次いで、マーカ係合機610は、第2のマーカ602から取り外されてよく、水平ベクトルを取り込むように解剖学的構造の1つまたは複数の他の特徴と接触させてよい。この位置における手持ち型手術ツール200の位置は、次いで記憶される。
【0059】
いくつかの実施形態では、撮像デバイス500は、第1のマーカ601と、存在する場合には第2のマーカ602とを含む関連する患者の解剖学的構造を撮像してよい。いくつかの実施形態では、撮像デバイス500は、マーカがその上に位置する骨の形状/表面、ならびにマーカの位置および配向に対応するデータを取り込む3次元走査ツールであってよい。このようなデータは、骨の関連する領域の周りで走査ツールを移動させ、その移動中に撮像データを取り込むことによって取り込まれてよい。
【0060】
プロセッサ(例えば手持ち型手術ツールのプロセッサ、GUIモジュールのプロセッサなど)は、撮像データを取得し、解剖学的構造およびマーカの3次元表面/モデルを生成してよい。3次元表面/モデルは、走査されている解剖学的構造の関連する部分のみを表すものでよく、解剖学的構造全体を表すものである必要はないことに留意されたい。プロセッサは、非一時的なコンピュータ可読媒体に記憶され、プロセッサによって実行されたときに、プロセッサにマーカを援用して3次元表面/モデルから解剖学的構造の関連する特徴を検出させる命令を有する。プロセッサは、また、患者の解剖学的構造に関して、関連する配向(例えば角度配向)および距離を計算してもよい。この情報は、手術のために骨がどのように修正されるべきか(例えば骨がどこで切断されたり削られたりするべきかなど)を決定する際の精度を高める助けになってよい。
【0061】
いくつかの実施形態では、本明細書に記載されるマーカを取り付けて走査するプロセスは、必要に応じて繰り返されてよい。例えば、いくつかの実施形態では、異なる骨または解剖学的特徴に対して、追加のマーカが取り付けられてよい。
【0062】
本発明の代替の実施形態では、マーカは、骨またはその他の解剖学的特徴に対して取り付けられず、その代わりに、手持ち型手術ツール200が、患者の目標の解剖学的構造の隣に配置される。次いで、撮像デバイスが、手持ち型手術ツール200と共に目標の解剖学的構造(例えば股関節)を撮像する。この撮像データから、手持ち型手術ツール200の位置が、プロセッサによって検出される。手持ち型手術ツール200は、この情報に基づいて、ナビゲーション空間に対して較正されることができる。
【0063】
いくつかの実施形態では、手術は、骨の一部分を切断または除去することを必要としてよい。取り込まれた位置情報を用いて、視覚ディスプレイ410は、例えば切断の位置および角度が正確になるように切断ジグが特定の解剖学的構造に対して適切に位置合わせされるように、切断ジグがどこに配置されるべきかを示すことができる。
【0064】
特定の実施形態では、手持ち型手術ツール200の器具シャフト250の遠位端部251は、手順の開始参照点を確立するために、現実空間内で、マーカ内またはマーカ上などの開始点に配置されることが可能である。好ましい実施形態では、開始点は、システムの仮想空間内の点としてGUIモジュール上でずれないように合わせてよい(例えば、好ましくは、X=0、Y=0、Z=0である、すなわち開始点は好ましくはシステムの仮想空間内の原点として設定される)。また、器具シャフト250の近位端部252は、システムの仮想空間内の開始点に対する相対的なシステムの仮想空間内の点としてずれないように合わせ、現実空間内の開始点に対する相対的な、またデフォルトの目標角度/軌道/配向に対する相対的な現実空間内の器具シャフト250の配向が、システムの仮想空間内でシステムによって決定可能かつ表現可能となるようになっていてよい。開始点に対する相対的な現実空間内のシャフトの配向がデフォルトの目標角度/軌道/配向と一致していることを視覚ディスプレイ410が示すまで、手持ち型手術ツール200を現実空間内で移動させて、現実空間内の開始点の周りで器具シャフト250を屈曲させることができる。
【0065】
例えば、既定の軌道は、関連するメモリ(例えば位置メモリ224)からリコールされてよく、手持ち型手術ツール200は、現実空間内で動かされることが可能であり、視覚ディスプレイ410上のインジケータ(例えば器具シャフトの近位端部252を表す緑色のドット)の位置は、目標点(例えばブルズアイの十字線の中心に対応する遠位端部先端251)の位置に対して相対的に示され、それらの位置が一致したときに、システムは器具シャフト250が現実空間内で既定の軌道(例えば文献または手術前の撮像データに基づいて確立された軌道)に対して相対的に配向されていると決定し、ディスプレイ410は、その一致についてユーザに警告する(例えば、GUIモジュールの色を主に緑色に変えることにより)。特定の実施形態によれば、既定の軌道は、外科医によって決定される、事前に計画された傾斜/前傾などに基づく。代替の実施形態によれば、患者画像は、既定の軌道を妥当性検査するための入力として使用されてよい。既定の軌道が満足できるものである場合には、次いで、手術手順(例えば骨のリーミングまたは切断)が実施される。
【0066】
加えて、3次元表面/輪郭700は、関連する解剖学的構造、手持ち型手術ツール200の器具シャフト250、および手持ち型手術ツール200を示す視覚ディスプレイ410上で生成および表示することが可能である。視覚ディスプレイ410は、画像または3次元表面/モデル上に、シャフトの配向の角度を(例えばシャフトの長手方向軸に沿った線によって)示すこともあってよい。加えて、視覚ディスプレイ410は、仮想空間内で変更可能な相対角度/軌道/配向インジケータ(例えば遠位端部先端251の位置に対応する開始点256の周りで、3次元表面/モデル内の仮想空間内で回転可能な線)を提示する。ユーザは、制御キー242および244を用いて直接GUIモジュール400上で、またはその他の適当な手段によって、仮想空間内のインジケータの角度/軌道/配向をデフォルトの角度/軌道/配向(例えば、画像上または3次元表面/モデル内に示される参照用解剖学的ランドマーク)から変更することができる。例えば、インジケータが寛骨臼に関して適切に配向されていないことがユーザに分かった場合には、ユーザは、線が所望の解剖学的構造を通過するまでインジケータの角度/軌道/配向を変更することができる。
【0067】
好ましい実施形態では、ユーザは、例えばセットキー240を押すことによって所望の角度/軌道/配向を確認することができる。例えば、適当な角度/軌道/配向であるとユーザが決定したときには、ユーザは、セットキー240を押すことができる。確認後、目標角度/軌道/配向が、デフォルトの角度/軌道/配向(例えば研究および文献のソースから得られたもの)から所望の角度/軌道/配向(例えばユーザによって確立されたもの)に変更される。次いで、新たな目標角度/軌道/配向(すなわち所望の角度/軌道/配向)についてのデータは、位置メモリ224に保存される。加えて、または代替として、新たな目標角度/軌道/配向についてのデータは、手持ち型手術ツール200の筐体の外部に収容された位置メモリ、例えば別個のコンピュータ、ハードドライブなどの別個のデバイスに記憶されてよい。これで、所望の角度/軌道/配向を固定する。
【0068】
手持ち型手術ツール200は、屈曲させることができ、視覚ディスプレイ410は、手持ち型手術ツール200の位置のインジケーションを提供し、ツールが新たな所望の角度/軌道/配向と一致したときにそのことを示すことができる。好ましくは、これらの位置が一致したときに、手持ち型手術ツール200は、現実空間内で一致位置に維持され、その部位が準備される(例えば、外科医が寛骨臼をリーミングする、寛骨臼カップを配置する、など)。この手順中の任意の時点で、撮像は、選択された3次元軌道/配向/位置の精度を検査するために使用することができる。
【0069】
さらなる実施形態によれば、初期のデフォルトの角度/軌道/配向の値は、直接ターゲティングに基づいてよい。初期の3次元軌道/配向/位置は、目標の解剖学的構造に対してハードウェア(例えば固定ピン)を取り付け、次いでハードウェアが取り付けられた軌道/配向を決定することによって、決定することができる。例えば、システムは、手作業で配置された器具またはインプラントのデジタル軌道/配向を取り込むことができる。従来の手術方法によれば、インプラントの送達のためにターゲティングするときに、トライアルのインプラント、ガイドワイヤ、仮固定ピンまたはドリルビットなどを仮配置し、放射線写真を撮影して既知のランドマークに関する仮配置の位置決めを評価することは珍しいことではない。完全に手作業の環境であれば、外科医はアナログの調節を行う必要があり、例えば最終的なインプラントの配置が数度外側かつ数度上方に配向されることになる。このプロセスは、恣意的であり、誤差が生じやすく、高レベルな空間配向認識を必要とし、誤判断およびハードウェアの不適切な配置という結果になる可能性がある。手術ナビゲーションシステム100は、このプロセスを改善することができる。手持ち型手術200の器具シャフト250は、仮に向きを決められたトライアルのガイドワイヤまたは固定ピンなどの上に配置することができ、システムは、デジタル配向を実時間で取り込んで、外科医がより正確に最終的な配置を調節することができるようにすることができる。例示的な例によれば、仮要素(例えばトライアルの寛骨臼カップ)が実装される。次いで、器具シャフト250が、この固定要素に対して取り付けられる(または接して配置される)。位置合わせされたら、シャフト250の3次元軌道/配向が、(例えばセットキー240を押すことによって)ずれないように合わせることができる。その後、シャフトは、除去することができる。次いで、撮像デバイス500は、患者の解剖学的構造および固定要素を描写する(あるいは、関連する解剖学的構造のX線が、固定要素を観察するために撮影されてよい)第1の撮像データを取得する(例えば、第1の3次元表面/モデルの作成を可能にする)。上述のプロセスと同様に、デバイスの初期の位置合わせでずれないような合わされた軌道/配向は、このずれないように合わされた軌道/配向についてのインジケーションを提供する。制御キー242および244(またはGUIモジュール)を使用して、目標の軌道/配向は、所望の軌道/配向が得られるまで修正することができ、その後、それは(例えばセットキー240を使用することによって)固定することができる。最後に、ツール200のシャフト250が手術部位に配置され、視覚ディスプレイ410は、器具シャフト250の適切な位置合わせを案内するために、ブルズアイ型の表示(
図3に例示される)を表示してよい。
【0070】
この手順に従って骨が切断/リーミングされる、またはその他の方法で修正されると、新たな3次元輪郭/表面700は、任意のマーカを含めて骨を撮像することによって生成された画像データに基づいて、生成してよい。例えばインプラントデバイスの角度および位置決めを決定する更新された計算は、インプラントデバイスに対する任意の調整がどこで必要とされているかを識別するのを助けることができる。
【0071】
さらなる実施形態によれば、撮像デバイス500は、
図5に示されるように、手持ち型手術ツール200と一体化されてよく、またはその他の方法で手持ち型手術ツール200に取り付けられてよい。これらのさらなる実施形態では、手持ち型手術ツール200は、センサユニット261を含んでよく、GUIモジュール400と通信してよい。その変形によれば、センサユニット261およびマーカは、省略されてよい。例えば、一体化された撮像デバイスを備えると、撮像デバイス500に関する手持ち型手術ツール200の相対的な配向が固定される。こうして、手持ち型手術ツール200の移動は、撮像デバイス500により認識される。したがって、位置センサが手持ち型手術ツール200の相対的な移動を測定する必要がなく、その代わりに、撮像データ自体は、手持ち型手術ツール200の移動を検出するために使用することができる。マーカ605は、手持ち型手術ツール200を配向するのを支援するために解剖学的構造の上に配置してよいことに留意されたい。
【0072】
撮像デバイス500は、患者内に画像を投影するように構成されてもよい。例えば、特定の実施形態によれば、撮像デバイス500は、線状ビームを骨の上に(レーザ投影などを介して)投影して、切断位置を視覚的に示す。このような実施形態は、撮像デバイス500が回転/移動されることを可能にする電動式ヘッドを含んでよい。加えて、または代替として、このような画像は、3次元表面/輪郭700上に投影されてよい。
【0073】
股関節形成術
本発明の実施形態では、本発明の手術ナビゲーションシステムは、股関節形成術を実行するために使用されてよい。特に、本発明の手術ナビゲーションシステムは、正確なインプラントの位置決めを実現するために使用されてよい。
【0074】
いくつかの実施形態では、股関節形成術は、ずれないように合わせることおよび/または埋込みの様々な態様が設定されてよい事前計画ステップを含んでよい。例えば、寛骨臼カップの配置についての設定は、カップを所望の配向で埋め込むために使用されるカップ配置モデルの選択と、所望のカップの配向を決定するために使用される基準面と、最終的なカップの配向の測定を含むかどうかとを含んでよい。
【0075】
カップ置換モデルは、可動域モデルまたは拡張されたLewinnekモデルから選択されてよい。可動域モデルは、設定された目標可動域、患者の骨盤の傾き、ならびに大腿骨内での3D角度のネックおよびステムの配向に基づいてカップ配向のインピンジメントのないゾーンを計算するアルゴリズムの適用を含む(非特許文献1)。拡張されたLewinnekモデルは、目標ゾーンとして「Lewinnekセーフゾーン」(非特許文献2)を規定するが、特定の入力情報を適用する。
【0076】
基準面は、前骨盤平面または冠状面から選択されてよい。前骨盤平面は、2つの上前腸骨棘(ASIS)および恥骨結節の中間点によって規定される解剖学的平面である。冠状面は、機能平面であり、身体を腹側部分と背側部分とに分割する任意の垂直平面として規定される。
【0077】
いくつかの実施形態では、事前計画ステップは、脚長の変化を検出するかどうかを選択することを含んでよい。選択された場合には、脚長、中外側のオフセット、および前後方向位置など脚の位置の様々な態様を、埋込みの前後に測定して、変化が起きた場合にどんな変化が起きたのかを決定することができる。この選択は、術後測定を実行するときに大腿骨が同じ配向に戻されることが可能となるように、大腿骨の初期の配向を記録することを含んでよい。
【0078】
患者の座標系がずれないような合わせることを実行するために、すなわち関節の仮想基準系(手持ち型手術ツール200の配向を含む)と関節の実際の基準系(例えば関節の実際の配向)との間の関係を確立するために、手持ち型手術ツールは、患者の解剖学的平面に対応するベクトルを取り込むために使用されてよい。各ベクトルは、手持ち型手術ツールの配向を記録する(すなわち手持ち型手術デバイスの現在の四元数を記録する)ことによって取り込まれ、ベクトルは、記録された四元数で構成される。好ましい実施形態では、2つの平面に対応する少なくとも2つのベクトルが取り込まれる。
【0079】
患者の位置に応じて、すなわち患者が仰臥位(
図6A参照)であるか側臥位(
図6B参照)であるかに応じて、異なるベクトルが取り込まれることがある。患者が仰臥位である場合には、手持ち型手術ツール200は、矢状面および前骨盤平面を取り込むことができる。いくつかの実施形態では、Cross-ASISバー900などのツールが使用されてよい。
図7に示されるように、Cross-ASISバー900は、近位端部907および遠位端部908を有するバー905を備え、Cross-ASISバー900の近位端部907は、手持ち型手術ツール200の遠位端部先端251と係合するように構成される。Cross-ASISバー900は、バー905から同じ方向に延び、バー905の長軸に対して直交する、第1の足部910および第2の足部912をさらに備える。Cross-ASISバー900は、手持ち型手術ツール200に対して取り付けられて、Cross-ASIS 900バーが平面を識別しているときに手持ち型手術ツール200の配向が記録されてよい。矢状面をずれないように合わせるために、第1の足部910は、同側のASIS915(すなわち手術対象の股関節に対して同側)上に配置され、第2の足部912は、対側のASIS917上に配置され、その結果得られる手持ち型手術デバイスの四元数が記録される(
図8参照)。この四元数から、ベクトルが構築されることが可能である。
【0080】
いくつかの実施形態では、Cross-ASISバーの長軸の方向を指す個のベクトルは、患者の冠状面上に投影されてよい。仰臥位の患者の冠状面は、手持ち型デバイスが電源投入されたときに自動的に検出され、手術用手持ち型デバイス200のY軸を規定するために使用される重力の方向に対して直交する平面と同じであると仮定されてよい。その結果として、Y軸についての補正は必要ない。患者に対する手持ち型デバイスの調節四元数は、冠状面上に投影された手持ち型デバイスの座標における単位X軸とASIS間ベクトルとの間の回転として定義されてよい。いくつかの実施形態では、これらの測定は、手術台が重力の方向に対して直交したままである(すなわち水平である)間に実行される。
【0081】
前骨盤平面をずれないような合わせるために、2つのベクトルが取り込まれる。第1のベクトルは、矢状面をずれないような合わせるために記録されたのと同じベクトルであるが、このベクトルを記録した後で、第1の足部910がCross-ASISバーの同側に留まり、第2の足部910が同側の骨盤の恥骨結合920に対して移動されるように(
図9参照)、Cross-ASISバーは枢動することができる。このベクトルは、この枢動された位置で取り込まれ、その後、両ベクトルは、前骨盤平面を識別およびずれないように合わせるために、使用することができる。これは、骨盤の傾きもずれないように合わせる。骨盤の傾きは、矢状面上に投影されたCross-ASISバーの長軸によって与えられる患者の座標におけるベクトルと正のZ軸との間の角度である。骨盤の傾きがゼロでないときには、後に報告される傾斜および前傾の角度が、骨盤基準系に合わせて調節される。
【0082】
患者が側臥位である場合には、手持ち型手術ツール200は、前(冠状)面および水平面を取り込むために使用することができる。
図10に示されるように、前面は、手持ち型手術ツールがASISを横切って垂直であり、患者が完全に横向きになっており、床に対して直交すると仮定するときに作成されるベクトルを記録することによって、ずれがないように合わせることができる。水平面は、手持ち型手術ツールが患者の主軸と位置合わせされているときに作成されるベクトルを記録することによって、ずれがないように合わせることができる(
図11参照)。
【0083】
いくつかの実施形態では、この見当合わせステップ中の手持ち型手術ツールの記録は、患者に対する手持ち型手術ツールの調節四元数を生成する。
【0084】
本発明の実施形態では、1つまたは複数のマーカが、骨盤および/または大腿骨上に設置されることがある。マーカは、手作業による方法(木槌または同様の器具を使用してマーカの端部を軽く叩いて骨の中に差し込み、その後それが完全に骨の中に収まるまでマーカをねじ込む)または電力による方法(ドリルなどを使用してマーカを設置する)によって設置されてよい。手作業による方法によってマーカを設置する前、またはマーカをねじ込む前に、ドリルを使用してパイロット孔を作成することもできる。
【0085】
いくつかの実施形態では、第1のマーカ601は、
図12Aに示されるように骨盤800に取り付けることができる。好ましい実施形態では、第1のマーカ601は、寛骨臼の上前縁上に取り付けられる。手持ち型手術ツール200に取り付けられたマーカ係合機は、第1のマーカ601と対合されてよく、その後、第1のマーカ601と係合した手持ち型手術ツール200の配向が記録されて、手持ち型手術ツール200に対する相対的な第1のマーカ601の位置情報を生成するようにしてよい(
図12B参照)。いくつかの実施形態では、この位置情報は、記録されたマーカ係合四元数と呼ばれてよい。
【0086】
記録されたマーカ結合四元数および患者に対する手持ち型手術デバイスの調節四元数は、骨盤マーカの配向を規定する患者座標における2つのベクトル、すなわちマーカ係合軸に沿って方向付けられた1つのベクトルと、ロールを規定する直交する1つのベクトルとを構築するために使用することができる。数学的には、手持ち型デバイスから得られる係合四元数は、ハミルトニアン積:qengagement,patient=qhandtool
to
patient*qengagement,handtoolを計算することによって、患者の座標に合わせて調節される。患者の2つの直交軸を、この四元数だけ回転させて、マーカ係合軸およびロールベクトルを得る。
【0087】
原位置で大腿骨をブローチングすることを含むことがある大腿骨切除が実行される。いくつかの実施形態によれば、大腿骨825が適切に露出した後で、
図13、
図14、および
図16に示されるように、第2のマーカ602(例えば骨ねじ)が、大腿骨825上、特に大転子上に配置されることが可能である(
図13A参照)。手持ち型手術ツール200に対して取り付けられたマーカ係合機610は、第2のマーカ602(
図14A参照)と係合させることができる。第2のマーカ602は、一意的な形状を有することがあり、マーカ係合機610は、それらが単一の配向で対合することができるように相補的な形状を有する。これにより、マーカ係合機610は、特定の配向で第2のマーカ602と嵌合する、第2のマーカ602の上に嵌合する、または第2のマーカ602内に嵌合することができる。配置されたら、マーカ係合機610は、第2のマーカ602に対して対合され、次いで、手持ち型手術ツール200の位置が(例えばセットキー240を押すことによって、または手術チームの一員もしくは代表者がGUIモジュール400上のボタンをクリックすることによって)記録される。第2のマーカ602の位置はシステムによって(例えば3次元表面/モデル700における検出を介して)事前に確立されるので、手持ち型手術ツール200の位置は、同様に既知である。その後、マーカ係合機610は第2のマーカ602から取り外されてよく、いくつかの実施形態では、大腿骨825の遠位面に沿った直線である大腿骨軸302(
図14B参照)を取り込むように、手持ち型手術ツール200を大転子の側面と接触させてよい。手持ち型手術ツール200の位置は、例えばセットキー240を押し下げることによって記憶するようにしてよい。この位置情報を用いて、大腿骨軸302に対する第2のマーカ602の相対位置が決定され、大腿骨軸302に対する水平軸301の相対角度が決定される。
【0088】
いくつかの実施形態では、第1のマーカ601および第2のマーカ602の両方が配置されたら、脚の中立位置(すなわち中立の屈曲/伸長、内転/外転、および内旋/外旋)が実現されるように、患者が再位置決めしてよい(
図13B参照)。
【0089】
いくつかの実施形態では、手持ち型手術ツールは、初期の脚位置を測定するために使用されてよい。特定の実施形態では、例えば
図15に示される線形測定デバイス(LMD)などのツールが、初期の線形測定に使用されてよい。LMD950は、近位端部957および遠位端部958を有する第1のアーム955と、近位端部962および遠位端部963を有する第2のアーム960とを備える。第1のアーム955と第2のアーム960とは、第1のアーム955および第2のアーム960が互いに対して相対的に回転することを可能にする継手965によって接続される。第1のアーム955の近位端部957および第2のアーム960の近位端部962は、それぞれマーカと係合するように構成される。第1のアーム955の遠位端部958および第2のアーム960の遠位端部963は、手持ち型手術ツール200に対して取り付けられたマーカ係合機610と係合するように構成される。使用中に、LMD950は、骨盤マーカ601および大腿骨マーカ602の両方と係合する。手持ち型手術ツール200は、LMD950の第1のアーム955と係合して記録され、手持ち型手術ツール200は、次いでLMD900の第2のアーム960と係合して記録される。ソフトウェアにおいては、LMD900のアーム955、960のそれぞれを表すベクトルが、手持ち型手術ツール200の記録された四元数から患者の座標において構築される。記録された第2のベクトルは、記録された第1のベクトルから減算される。このベクトルは、2つのマーカの間の距離を表し、骨盤マーカ601から大腿骨マーカ602を指す。
【0090】
図16に示されるように、撮像デバイス500は、第1のマーカ601および第2のマーカ602を含む関連する患者の解剖学的構造を撮像する。例えば、撮像デバイス500は、骨盤の形状/表面ならびにマーカ601および602の位置および配向に対応するデータを取り込む3次元走査ツールであることがある。プロセッサは、撮像データから、骨盤ならびにマーカ601および602の3次元表面/モデル700を生成する。寛骨臼の形状(冠状面および矢状面)などの骨の特徴、ならびにマーカおよび患者の解剖学的構造に関するそれらの配向は、3次元表面/モデル700に基づいて検出することができる。加えて、システムが、マーカ601および602の、中立位置における、互いに対する、また水平ベクトル301に対する位置情報を有するので、プロセッサは、術中脚長(ILL)、脚長不等(LLD)、および股関節置換術の前(および後)の患者のオフセットなど、関連する配向および距離を計算することができる。これにより、システムは、大腿骨頭の切断のために適切な角度および大腿骨頸上の適当な開始位置を決定することができる。さらに、中立位置において撮像することにより、正確な脚長を計算することができる。
【0091】
いくつかの実施形態では、3次元走査ツールが使用されて、骨盤マーカおよび大腿骨マーカの両方が可視である単一の点群ファイルを取得する(
図17参照)。このプロセスは、走査座標における各マーカの位置および配向を識別するために、3次元走査に関して点群マッチングアルゴリズムを実行してよい。既知の配向を有する個々のマーカの事前走査された点群は、マッチングのためのソースデータとしてアルゴリズムに対して提供されてよい。点群マッチングアルゴリズムは、目標走査における第1のマーカ601および第2のマーカ602についての近似変換(すなわち位置および配向)を求めるために、ランダムサンプルコンセンサスを使用することができる。この近似変換は、その後、反復最接近点計算によって正確な変換に洗練される。
【0092】
骨盤マーカの配向が記録されている実施形態では、走査軸と患者軸との間の四元数の回転が計算されることが可能である。最初に、走査座標における骨盤マーカ係合軸から患者座標における係合軸への四元数の回転qengagement
correctionが計算される。次いで、qengagement
correctionだけ回転された走査座標におけるロールベクトルから患者座標におけるロールベクトルへの四元数の回転としてqroll
correctionを求めることによって、ロールが説明される。患者に対する走査の全体の四元数は、qscan
to
patient=qroll
correction*qengagement
correctionである。次いで、同じベクトルを走査座標において以下のようにqscan
to
patientだけ回転させることによって、2つのマーカの中心を結ぶベクトルが計算され、患者座標に記録される:νintermarker,patient=qscan
to
patient*νintermarker,scan*qscan
to
patient
-1。骨盤マーカの配向ベクトルおよび大腿骨マーカの配向ベクトルは、同様に患者座標に変換される。
【0093】
いくつかの実施形態では、両マーカの走査を得るプロセスを簡略化するために、両マーカを接続する剛性ガイドは傷口内に配置されてよい。このガイドは、3次元スキャナが一方のマーカから他方への固定された経路をたどり、それにより動きやすい軟組織を横切る経路を走査することの技術的困難さを回避できるようにしてよい。
【0094】
いくつかの実施形態では、
図16に示されるように、マーク603(例えばディボット、バー、またはボウイ)は、大腿骨頭上にさらに配置されてよい。撮像ユニットは、マーカ601および602とマーク603とを取り込むために、手術領域を再度撮像する。
図16にさらに示されるように、大腿骨軸302は、その後に生成された3次元表面/輪郭700上に表示されてよい。
【0095】
この位置情報を用いて、視覚ディスプレイ410は、大腿骨頭が適切に切除される(すなわち適切な角度で切断される)ように切断ジグが大腿骨軸302と適切に位置合わせされるように、切断ジグがどこに配置されるべきかを示すことができる。
【0096】
いくつかの実施形態では、撮像デバイス500は、寛骨臼の特徴など、関連する解剖学的特徴を生成するために、切除後に、関連する解剖学的構造を撮像する。実施形態によれば、3次元表面/輪郭700は、画像データから生成され、
図18に示されるように寛骨臼上の複数の点604を位置特定するために解析される。これらの点は、1つの好ましい実施形態によれば、寛骨臼切痕、ならびに上、左および右の寛骨臼縁に対応する。この情報を用いて、システムは、3次元表面/輪郭700と共に視覚ディスプレイ410に表示されてよい冠状面を決定する。
【0097】
コンピュータ支援手術手順を実施するために、ステップのセットが実行されてよい。手持ち型手術ツール200は、手順に関する開始参照点を確立するために、
図19に示されるように、現実空間内で、(例えばマーカ係合機610を介して)マーカ601内/上などの開始点に配置されてよい。
【0098】
特定の実施形態では、撮像デバイス500は、骨盤マーカおよび寛骨臼の月状面が可視である単一の点群ファイルを取得する。点群マッチングアルゴリズムが撮像データ上で実行されて、走査座標における骨盤マーカの位置および配向を識別することがあり、次いで、配向が、患者座標に合わせて調整される。特定の実施形態では、寛骨臼の月状面上の点を選択するために、UIにおいて、ブラシセレクタツール505(
図20参照)が使用されてよく、最小二乗計算を用いてこれらの点に対して球がフィッティングされる。骨盤マーカの中心に対する、患者座標における最も良くフィットする球の中心が、股関節の本来の回転中心を与える(
図21参照)。この球の直径は、カップのサイズおよびリーミング順序を外科医に示唆するために使用することができる。
【0099】
いくつかの実施形態では、カップ配向のターゲティングを開始する前に、または患者座標における骨盤マーカの配向ベクトルを記録した後に望まれる任意の他の時点において、手持ち型デバイスの軸が時間と共にずれることがある、または骨盤が手術台の上で移動する可能性があるので、患者に対する手持ち型手術デバイスの調節四元数を再確立するために、手持ち型手術デバイスがテアされてよい。手持ち型デバイスは、一意的な配向で骨盤マーカと係合させることができ、配向は(例えばセットキーを押すことによって)記録される。患者に対する手持ち型デバイスの調節四元数は、手持ち型デバイス座標におけるマーカ係合軸から患者座標におけるマーカ係合軸への四元数の回転(本明細書に記載されるように記録される)を求めることによって再計算されてよい。
【0100】
いくつかの実施形態によれば、次いで、リーミングツールまたはカップインパクタが寛骨臼内に位置するように、手持ち型手術ツールのシャフトが、リーミングツールまたはカップインパクタ850の器具シャフトに嵌合されてよい(
図19B参照)。手持ち型デバイスが係合したとき、ソフトウェアは、ブルズアイターゲティングインタフェースを用いてカップインパクタまたはリーマを所望の配向で保持するように外科医を誘導する(
図19Cおよび
図22参照)。寛骨臼が適切にリーミングされたら、プロテーゼカップがその中に埋め込まれる。
【0101】
いくつかの実施形態では、カップが寛骨臼内に配置された後で、外科医は、可動域モデルによって規定されるインピンジメントのないゾーン内でのその位置に関するソフトウェアからのフィードバックに従ってカップの配向を調節することができる(
図23参照)。外科医は、所望の配向を選択し、可動域モデルからのフィードバックを患者の特定の解剖学的構造と統合することができる。
【0102】
いくつかの実施形態では、カップがインパクトされた後で、ライナがカップ内に配置される。特定の実施形態では、走査前に適当なサイズのトライアルヘッドがライナ内に配置されて、点群マッチングアルゴリズムによる新たな回転中心の検出を容易にする。特定の実施形態では、回転中心は、空のライナを走査し、ライナの球形表面上で選択された点に対して球をフィッティングすることによって検出される。
【0103】
図24が示すように、撮像デバイス500によって生成された寛骨臼の画像データに基づく、および、第1のマーカ601および埋め込まれたカップを含む、新たな3次元輪郭/表面700が生成されてよい。次いで、更新された寛骨臼平面が計算され、および3次元輪郭/表面700に関連して表示されてよい。埋め込まれたカップの前傾および傾斜も、3次元輪郭/表面700から計算することができる。
【0104】
いくつかの実施形態では、撮像デバイス500は、骨盤マーカ、埋め込まれたカップの縁、およびトライアルヘッドが可視である単一の点群ファイルを取得してよい(
図25参照)。3次元走査に対して点群マッチングアルゴリズムを実行して、走査座標における骨盤マーカの位置および配向、ならびに骨盤マーカに対する相対的な回転中心位置を識別することができる。これらの値は、患者座標に変換される。特定の実施形態では、埋め込まれた寛骨臼カップの縁に沿っていくつかの点が選択され、これらの選択された点の最も良くフィットする平面に対する法線ベクトル(すなわちカップ軸、
【0105】
【0106】
)から、このカップのX線撮影の傾斜および前傾の角度が計算される。次いで、カップ軸は、以下の数式によって冠状面上に投影される(冠状面法線ベクトル
【0107】
【0108】
):
【0109】
【0110】
。傾斜は、
【0111】
【0112】
と患者(
【0113】
【0114】
)の長手方向軸との間の角度として計算される:
【0115】
【0116】
。前傾は、カップ軸と、冠状面上へのその投影との間の角度として計算される:前傾
【0117】
【0118】
。他の実施形態では、カップ軸のX線撮影の傾斜および前傾の角度は、点群マッチングアルゴリズムを使用して、既知の配向を有するカップ縁の3次元モデルを3次元走査にマッチングすることによって計算される。
【0119】
いくつかの実施形態では、大腿骨は、寛骨臼カップの配置前にブローチングされることがある。代替の実施形態では、大腿骨は、寛骨臼カップの配置後にブローチングされることがある。
【0120】
カップが埋め込まれ、大腿骨が切除されたら、トライアルステムが大腿骨内に配置されてよい。撮像データおよび決定された配向/角度/距離に基づいて、システムは、最適なステム、ヘッド、インサート、およびアダプタなど、最適なプロテーゼ構成要素を計算することができる。撮像デバイス500は、プロテーゼの適合性を試験するためにトライアルが埋め込まれたときに関連する解剖学的構造を撮像することができる。
【0121】
いくつかの実施形態では、撮像デバイス500は、大腿骨マーカおよび骨盤マーカの両方を含む単一の点群ファイルを取得するために使用される。3次元走査に対して点群マッチングアルゴリズムが実行されて、走査座標における各マーカの位置および配向を識別する。骨盤マーカの配向は患者座標において既知であるので、走査軸と患者軸との間の四元数の回転が計算されることが可能である。これらのマーカの配向ベクトル、および2つのマーカの中心を結ぶベクトルが、患者座標において計算され、記録される。
【0122】
最終的なプロテーゼが埋め込まれたら、別の撮像デバイス500が、関連する解剖学的構造を再度撮像して、脚長不等(LLD)およびオフセットを測定し、インプラントの要素の選択を微調整して、LLDおよびオフセットをゼロ(または既定の値)まで低減する。
【0123】
いくつかの実施形態では、長さのオフセットの変化が計算されることがある。本来のオフセットに関する現在のトライアルについての脚のオフセットの変化は、手術概要表示において、中外側(x)、前後(y)、および頭尾(z)方向で報告される。初期の走査とトライアルのマーカ間走査の間で高い信頼性でデータを比較するために、トライアルの距離と初期のマーカ間距離との間の差としてオフセットの変化を求める前に、トライアルの脚が、初期の走査における脚の配向と一致するようにトライアルの回転中心の周りで仮想的に回転されてよい。脚の配向は、大腿骨マーカの配向によって規定される。トライアルの脚の配向から初期の脚の配向への変換(T1→0)を求めるためには、以下の行列系が解かれる。
【0124】
【0125】
ここで、
【0126】
【0127】
は、患者座標における初期の大腿骨マーカの軸であり、
【0128】
【0129】
は、患者座標における初期の大腿骨マーカのロールベクトルであり、
【0130】
【0131】
であり、
【0132】
【0133】
は、患者座標におけるトライアルの大腿骨マーカの軸であり、
【0134】
【0135】
は、患者座標におけるトライアルの大腿骨マーカのロールベクトルであり、
【0136】
【0137】
である。mf1(x,y,z)が、トライアル走査において測定される患者座標における大腿骨マーカの中心として定義され、c1(x,y,z)が、患者座標におけるトライアルの回転中心として定義される場合には、
【0138】
【0139】
が、トライアルの回転中心からトライアル走査において測定される大腿骨マーカの中心を指すベクトルである。トライアル走査における大腿骨マーカの位置を、初期走査における脚の配向に従って調節するために、
【0140】
【0141】
が計算される。オフセットの変化は、
【0142】
【0143】
である。
【0144】
いくつかの実施形態では、手術の開始時に「位置計画」プログラムが開始されてよい。位置計画プログラムは、(i)手術のワークフローのオプションの確認または変更と、(ii)カップ位置計画モデルと、(iii)インプラントの幾何学的パラメータが選択されたカップ位置モデルに自動的に入力される手術において使用されると予想されるインプラントと、(iv)患者の座位および立位での骨盤の傾きと、のうちの1つまたは複数がユーザによって入力されることを必要とする。寛骨臼が大腿骨の前に準備されるいくつかの実施形態では、患者の本来の大腿骨の前捻がモデルに入力されてよく、インプラントの前捻は、本来の前捻と選択されたステムの設計された前捻との合計として計算される。大腿骨が寛骨臼の前に準備される他の実施形態では、患者の本来の大腿骨の前捻がモデルに入力されないことがあり、インプラントの前捻は、手持ち型手術ツールを埋め込まれたステムと係合させることによって測定される。係合ベクトルは、患者座標において記録されてよく、係合軸とステム軸の間の既知の変換が使用されて、患者座標におけるステムの配向を計算してよい。
【0145】
いくつかの実施形態では、LMDは、LLDまたはオフセットを測定するために使用されてもよいが、これを行うためには、距離の測定値を比較可能にするために、2つのマーカが前後で同じ相対配向を有する必要がある。これは、中立位置を規定して、例えば脚を上に保持する(側臥位)、若しくは脚を他方の脚と平行に配置する(仰臥位)ことによって立位の患者を再現することによって、または代替として、LMDを使用して大腿骨の配向を正確にナビゲートすることによって、実現することができる。プロテーゼの埋込みの前に大腿骨マーカの配向を記録することにより、手持ち型手術ツールに対して取り付けられたマーカ係合機は、大腿骨マーカと再度係合することができ、次いで、大腿骨マーカが埋込み前と同じ配向になるまで大腿骨を移動させることができる。
【0146】
特定の実施形態では、カップ配置モデル、手術インプラントのパラメータおよび患者の特定の幾何学的パラメータの選択を含む患者の位置計画を、ローカルデータベースに保存するという選択肢がある。加えて、ランダムに生成された手術IDが、保存された各位置計画に割り当てられてよい。この位置計画は、患者を識別する情報を含まないことになる。
【0147】
特定の実施形態では、位置計画は、保存された位置計画のリストから選択されてよく、データをGUIモジュールにロードするか、またはデータを別のコンピュータに転送してよい。
【0148】
肩関節形成術
本発明の実施形態では、本発明の手術ナビゲーションシステムは、限定されるわけではないが、解剖学的肩関節形成術、逆肩関節形成術、腫瘍肩関節形成術、およびリビジョン肩関節形成術を含む肩関節形成術を実行するために使用されてよい。特に、本発明の手術ナビゲーションシステムは、正確なインプラントの位置決めを決定するために使用されてよい。
【0149】
いくつかの実施形態では、肩関節形成術に手術ナビゲーションシステムを使用することは、関節窩の位置を手持ち型手術ツールとずれないように合わせること、およびそれを3次元モデルにマッピングすることを含む。この3次元モデルは、コンピュータ断層(CT)走査または磁気共鳴画像(MRI)から生成される。
【0150】
本発明の実施形態では、肩関節形成術と共に使用される事前計画データファイルが生成されてよい。事前計画データファイルは、限定されないが、(i)CTまたはMRI走査から得られる患者の手術対象の肩甲骨の3次元幾何学的形状、(ii)手術対象の肩甲骨が右肩甲骨であるか左肩甲骨であるか、(iii)3次元モデルの座標系における計画されたKワイヤの入口点を表す3次元点、(iv)計画されたKワイヤの入口点からの、3次元モデルの座標系における計画されたKワイヤの方向を表す3次元ベクトル、(v)3次元モデルの座標系における関節窩上の最も上方の点を表す3次元点、(vi)3次元モデルの座標系における関節窩上の最も下方の点を表す3次元点、(vii)3次元モデルの座標系における関節窩上の最も後方の点を表す3次元点、(viii)3次元モデルの座標系における関節窩上の最も前方の点を表す3次元点、および/または(ix)3次元モデルの座標系における関節窩の中心点を表す3次元点を含む情報を含んでよい。いくつかの実施形態では、関節窩の前方点、後方点、上方点、下方点、および中心点は、アルゴリズム的に選択されることになる。
【0151】
手術の前に、事前計画データファイルは、患者の3次元肩甲骨モデルのアノテーションのためにGUIモジュールにインポートされることになる。アノテーションプロセス中に、3次元モデルから抽出された情報が使用されて、患者の関節窩の術中の配向をずれないように合わせ、それにより事前計画されたKワイヤの配向を患者の現実の関節窩上にマッピングする。
【0152】
いくつかの実施形態では、肩甲骨モデルは、事前計画データファイル中にあるものとして述べられている点と共に、GUIモジュールに表示されるものとする。ユーザは、これらの点の選択を確認する、またはやり直す機会を有することがあるが、Kワイヤの方向および入口点の選択を確認する、またはやり直す機会はない。
【0153】
手術のために設置するために、手持ち型手術ツールは初期化される。すなわち、それは、重力の方向を測定し、そのY軸が重力の反対を指すようにその軸を配向する。その後に、手術する肩が露出されてよく、3次元モデル上に見えない軟組織が除去される。Kワイヤの挿入位置は、電気焼灼機を用いて関節窩上にマークされてよい。
【0154】
いくつかの実施形態では、肩甲骨上にマーカが設置されてよい。マーカは、本発明の実施形態に従う方式で手持ち型手術ツールと係合して、マーカの配向が記録されることを可能にしてよい。
【0155】
いくつかの実施形態では、関節窩は、3Dスキャナを用いて走査されて、マーカの代わりに関節窩の物理的属性が識別されてよい。
【0156】
視覚ディスプレイ上に、患者の関節窩の3次元モデルが表示されてよい。
【0157】
手持ち型手術ツールと関節窩の間の座標の変換後に、GUIモジュールは、患者の関節窩に関する取り付けられたツールを備える手持ち型手術ツールの実時間で計算された配向を描写する3次元アニメーションを表示することができる。ユーザがツールを移動させるにつれて、ユーザは、3次元アニメーション中の患者の関節窩の走査に対するツールの配向および動きが、手術台の上の患者の実際の関節窩に対するツールの配向および動きと一致することを確認することができる。
【0158】
いくつかの実施形態では、手持ち型手術ツールと関節窩の間の座標系の変換は、輪郭追跡を用いて計算されてよい。そのような実施形態では、手持ち型手術ツールと接続するジグが、関節窩上に設置されてよい。手持ち型手術ツールは、関節窩の表面に沿って追跡することができ、変換は、記録された輪郭を予想される輪郭とマッチングすることによって計算されることになる。
【0159】
いくつかの実施形態では、肩甲骨上に設置されたマーカの配向は、手持ち型手術ツールと係合することによって記録することができる。その後の肩甲骨マーカとの再係合により、手持ち型手術ツールの座標系と関節窩の座標系の間の変換の再計算を可能にし、それにより限定されないが、ジャイロスコープのドリフトおよび患者の肩甲骨の可動性による誤差を含む蓄積される誤差を解消することができる。
【0160】
いくつかの実施形態では、肩内部の距離は、股関節形成術に関して上述されているスキャナまたはLMDを用いて測定されてよい。同様に、股関節形成術について上述されているように、肩についても回転中心が測定されてよい。
【0161】
肩関節形成術のためにKワイヤが使用される実施形態では、
図26に示されるKワイヤガイド975が、手持ち型手術ツール200に取り付けられてよい。ユーザは、Kワイヤ980をKワイヤガイド975内に挿入し、Kワイヤ980をKワイヤ挿入点990上に位置決めできる。視覚ディスプレイ410は、患者の関節窩875に対する相対的な実時間のKワイヤガイド975の位置のアニメーションと、所望のKワイヤの軌道の描写とを表示できる。ユーザは、このアニメーションからのフィードバックを利用して、Kワイヤガイド975を正しい軌道内に移動させることもできる。GUIモジュールは、例えば音または色もしくはその他のグラフィック手段によって、Kワイヤガイド975が所望の軌道から既定の角度許容範囲内に保持されているときにそのことを示すことができる(
図27Aおよび
図27B参照)。ユーザは、Kワイヤガイド975が正しい軌道内に保持されていることがGUIモジュールによって示されている間に、患者の関節窩875内にKワイヤをドリルで挿入することができる(
図27参照)。
【0162】
上述のシステムおよび方法は、理解を明瞭にすることのみのために与えられたものであり、代替のコンピュータ支援手術ナビゲーションシステムおよび方法も、本開示の範囲内である。例えば、これらのシステムおよび方法は、例示されている股関節形成術手順および肩関節形成術手順以外の手術手順のために実施されてよい。
【0163】
本明細書には、本システムおよび方法の詳細な実施形態が開示されているが、開示されている実施形態は単なる例示であること、およびこれらのシステムおよび方法が様々な形態で実施されることがあることを理解されたい。加えて、システムおよび方法の様々な実施形態に関連して与えられている各例は、制限ではなく例示を意図したものである。
【0164】
本明細書および後記の特許請求の範囲を通じて、文脈からそうでないことが必要でない限り、「備える(comprise)」という用語および「備える(comprises)」および「備える(comprising)」などの変形表現は、記載されている完全体もしくはステップ、または完全体もしくはステップのグループを含むことを暗に意味し、任意の他の完全体もしくはステップ、または完全体もしくはステップのグループを排除することを意味していないものと理解される。
【0165】
本明細書を通じて、システムが構成要素を含むものとして記載されている場合には、そうでないと記載されていない限り、その組成が、基本的に記載されている構成要素もしくは材料の任意の組合せからなる、または記載されている構成要素もしくは材料の任意の組合せからなることもできるものと企図されている。同様に、方法が特定のステップを含むものとして記載されている場合には、そうでないと記載されていない限り、それらの方法が、基本的に記載されているステップの任意の組合せからなる、または記載されているステップの任意の組合せからなることもできるものと企図されている。本明細書に例示的に開示されている本発明は、本明細書に詳細には開示されていない任意の要素またはステップがない状態で実施されるのが適当であることがある。
【0166】
本明細書に開示される方法、およびその個々のステップの実施は、手作業で、かつ/または電子機器によって提供される自動化を援用して実行されることが可能である。特定の実施形態を参照してプロセスについて説明されているが、当業者なら、方法に関連する動作を実行する他の方式が使用されることがあることを容易に理解するであろう。例えば、様々なステップの順序は、そうでないと記載されていない限り、方法の範囲および趣旨を逸脱することなく変更されることがある。加えて、個々のステップの一部は、組み合わせられる、省略される、または追加のステップにさらに細分されることが可能である。
【0167】
本明細書に引用されている全ての特許、出版物および参考文献は、参照により完全に本明細書に組み込まれる。本開示と、組み込まれた特許、出版物および参考文献との間に矛盾がある場合には、本開示が優先するものとする。
【国際調査報告】