(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2022-12-27
(54)【発明の名称】ディーゼル酸化触媒
(51)【国際特許分類】
B01J 29/74 20060101AFI20221220BHJP
B01J 35/04 20060101ALI20221220BHJP
B01J 23/63 20060101ALI20221220BHJP
B01D 53/94 20060101ALI20221220BHJP
【FI】
B01J29/74 A ZAB
B01J35/04 301L
B01J23/63 A
B01D53/94 222
B01D53/94 245
B01D53/94 280
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022514769
(86)(22)【出願日】2020-10-30
(85)【翻訳文提出日】2022-03-04
(86)【国際出願番号】 EP2020080482
(87)【国際公開番号】W WO2021084054
(87)【国際公開日】2021-05-06
(32)【優先日】2019-10-30
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】501399500
【氏名又は名称】ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト
【氏名又は名称原語表記】Umicore AG & Co.KG
【住所又は居所原語表記】Rodenbacher Chaussee 4,D-63457 Hanau,Germany
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】エレナ・ミュラー
(72)【発明者】
【氏名】ゴードン・カイトル
(72)【発明者】
【氏名】ヴルフ・ハウプトマン
【テーマコード(参考)】
4D148
4G169
【Fターム(参考)】
4D148AA02
4D148AA06
4D148AA18
4D148AB01
4D148AB02
4D148AB03
4D148AB08
4D148BA01X
4D148BA03X
4D148BA06X
4D148BA07X
4D148BA08X
4D148BA18X
4D148BA19X
4D148BA30X
4D148BA31X
4D148BA41X
4G169AA03
4G169BA01A
4G169BA01B
4G169BA02B
4G169BA03A
4G169BA04A
4G169BA04B
4G169BA05A
4G169BA07B
4G169BA13A
4G169BA13B
4G169BB04A
4G169BB04B
4G169BB06A
4G169BB06B
4G169BC10A
4G169BC12A
4G169BC13A
4G169BC42A
4G169BC42B
4G169BC43A
4G169BC43B
4G169BC50A
4G169BC50B
4G169BC72A
4G169BC72B
4G169BC75A
4G169BC75B
4G169CA07
4G169CA08
4G169CA09
4G169CA13
4G169DA06
4G169EA18
4G169EA27
4G169EB12Y
4G169EB14Y
4G169EC28
4G169EC29
4G169EE09
4G169FC08
4G169ZA19B
4G169ZF02B
(57)【要約】
本発明は、第1の端面と第2の端面との間に延びている長さLを有する担体本体と、当該担体本体上に配列された異なる構成の材料区画A及びBと、を含むディーゼル酸化触媒であって、材料区画Aは、セリウム-チタン混合酸化物に適用された白金及びパラジウムを含み、材料区画Bは、担体酸化物Bに適用された白金及びパラジウムを含む、ディーゼル酸化触媒に関する。
【特許請求の範囲】
【請求項1】
第1の端面と第2の端面との間に延びている長さLを有する担体本体と、前記担体本体上に配列された異なる構成の材料区画A及びBと、を含むディーゼル酸化触媒であって、
材料区画Aは、セリウム-チタン混合酸化物に適用された白金及びパラジウムを含み、
材料区画Bは、担体酸化物Bに適用された白金及びパラジウムを含む、
ディーゼル酸化触媒。
【請求項2】
材料区画Aが、白金及びパラジウムを3:1~1:50の重量比で含むことを特徴とする、請求項1に記載のディーゼル酸化触媒。
【請求項3】
前記セリウム-チタン混合酸化物が、20~98重量%の酸化セリウム及び80~2重量%の酸化チタンを含むことを特徴とする、請求項1又は2に記載のディーゼル酸化触媒。
【請求項4】
材料区画Bが、白金及びパラジウムを10:1~1:3の重量比で含むことを特徴とする、請求項1~3のいずれか一項に記載のディーゼル酸化触媒。
【請求項5】
担体酸化物Bが、酸化アルミニウム、ドープされた酸化アルミニウム、酸化ケイ素、二酸化チタン、酸化ジルコニウム及びこれらの1つ以上の混合酸化物からなる群から選択されることを特徴とする、請求項1~4のいずれか一項に記載のディーゼル酸化触媒。
【請求項6】
材料区画Bが、酸化ランタン、酸化マグネシウム、酸化バリウム及び/又は酸化ストロンチウムを含むことを特徴とする、請求項1~5のいずれか一項に記載のディーゼル酸化触媒。
【請求項7】
材料区画Bが、水素吸着剤材料を含むことを特徴とする、請求項1~6のいずれか一項に記載のディーゼル酸化触媒。
【請求項8】
前記担体本体が、材料区画A及びBとは異なっていて、かつ担体酸化物Cに適用された白金、パラジウム、又は白金とパラジウムを含む材料区画Cを含むことを特徴とする、請求項1~7のいずれか一項に記載のディーゼル酸化触媒。
【請求項9】
材料区画Cが、白金又は白金とパラジウムを≧1の重量比で含むことを特徴とする、請求項8に記載のディーゼル酸化触媒。
【請求項10】
担体酸化物Cが、特に、酸化アルミニウム、ドープされた酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、二酸化チタン及びこれらの1つ以上の混合酸化物からなる群から選択されることを特徴とする、請求項8又は9に記載のディーゼル酸化触媒。
【請求項11】
ディーゼル酸化触媒が、第1の端面と第2の端面との間に延びている長さLを有する担体本体と、前記担体本体上に配列された異なる構成の材料区画A、B及びCと、を含み、
材料区画Aは、25~95重量%の酸化セリウム及び75~5重量%の酸化チタンを含むセリウム-チタン混合酸化物に適用された白金及びパラジウムを1:1~1:10の重量比で含み、
材料区画Bは、酸化アルミニウム又はランタンで安定化された酸化アルミニウムに適用された白金及びパラジウムを5:1~1:1の重量比で含み、
材料区画Cは、ドープされた酸化アルミニウムに基づいて1~20重量%のシリカでドープされた酸化アルミニウムに適用された白金及び/又はパラジウムを含む、
ことを特徴とする、請求項1~10のいずれか一項に記載のディーゼル酸化触媒。
【請求項12】
材料区画A及びB両方が、前記担体本体の完全長Lにわたって延びていて、材料区画Aが、材料区画Bの下に位置していることを特徴とする、請求項1~8のいずれか一項に記載のディーゼル酸化触媒。
【請求項13】
ディーゼル排ガスを処理するための方法であって、前記ディーゼル排ガスを、請求項1~12のいずれか一項に記載のディーゼル酸化触媒に通すことを特徴とし、前記ディーゼル排ガスは、前記第1の端面で前記担体本体に流入し、前記第2の端面で前記担体本体から流出する、方法。
【請求項14】
請求項1~12のいずれか一項に記載のディーゼル酸化触媒を有するディーゼルエンジンからの排ガスを浄化するための装置。
【請求項15】
請求項1~12のいずれか一項に記載のディーゼル酸化触媒が、ディーゼル微粒子フィルター及び/又は窒素酸化物の選択的触媒還元のための触媒の上流に配列されていることを特徴とする、請求項14に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ディーゼルエンジンの排ガスを浄化するための酸化触媒に関する。
【背景技術】
【0002】
一酸化炭素CO、炭化水素HC、及び窒素酸化物NOxに加えて、ディーゼルエンジンの無希釈排ガスの酸素含有量は最大15体積%と比較的高い。更に、主に煤残留物(soot residues)からなり、いくつかの場合には有機凝集塊からなる微粒子排出物(particulate emissions)が含まれており、それは、シリンダ内の燃料の一部不完全な燃焼に起因する。
【0003】
微粒子排出物の除去には、触媒活性コーティングの有無にかかわらずディーゼル微粒子フィルターが好適であり、窒素酸化物は、例えば、いわゆるSCR触媒での選択的触媒還元(SCR)により窒素に変換することができるが、一酸化炭素及び炭化水素は、好適な酸化触媒で酸化され無害化される。
【0004】
酸化触媒は、文献中に広く記載されている。これらは、例えば、セラミック又は金属材料から作製されたいわゆるフロースルー基材であり、必須の触媒活性構成要素である貴金属として、白金及びパラジウムなどを、高表面積で多孔質の高融点酸化物の上に、例えば、酸化アルミニウムの上に、担持している。排ガスが連続して接触する、異なる組成の材料区画を、排ガスの流れの方向に有する、予め区画化された酸化触媒も記載されている。
【0005】
例えば、米国特許出願公開第2010/257843号、同第2011/099975号、及び国際公開第2012/079598(A1)号は、白金及びパラジウムを含有する区画化された酸化触媒を記載している。国際公開第2011/057649(A1)号にも、酸化触媒が記載されており、これらは、層状及び区画化された実施形態で使用することができる。区画化された実施形態の場合、第2の区画、すなわち流出する排ガスが直接接触する区画は、流入する排ガスに直接接触する手前側の区画よりも貴金属含有量が高い。国際公開第2011/057649号による酸化触媒は、流出側のSCR触媒のためにNO対NO2の最適比を設定する特定の役割を有する。
【0006】
更なる酸化触媒は、国際公開第2010/133309(A1)号、同2013/050784(A2)号、米国特許出願公開第2008/045405号、国際公開第2012/137930(A1)号及び同2012/071421(A2)号に開示されている。
【0007】
欧州特許第2000639(A1)号は、白金に加えて、マグネシウム、アルカリ土類金属及びアルカリ金属から選択される金属の酸化物を含有する、酸化触媒を記載している。触媒の作用は、燃料噴射中の排ガス温度を上昇させることである。国際公開第2010/083355(A2)号は、パラジウム、及びセリウムを含む第1の耐火性金属酸化物担体含む第1のウォッシュコート層と、第2の耐火性酸化物担体及び白金成分を含む第2のウォッシュコート層と、を含むディーゼル酸化触媒を開示している。第2のウォッシュコート層は、実質的にパラジウムを含まず、モレキュラーシーブを含む。
【0008】
国際公開第2013/042080(A1)号は、少なくとも45重量%の量でセリアを含む担体材料に含浸されたパラジウムを第1の層中に含む層状ディーゼル酸化触媒を開示している。
【0009】
国際公開第2015/031611(A1)号は、パラジウム、及び例えばセリア、セリア-ジルコニア、セリア-ジルコニア-アルミナ又はこれらの混合物であり得るセリア含有材料を含む、COスリップ触媒を開示している。
【0010】
米国特許出願公開第2019/162095号は、担体本体、並びに3つの触媒活性区画A、B及びCを含むディーゼル酸化触媒に関する。区画Aは、パラジウム、又は≦1のPt:Pd重量比で白金及びラジウムを含有し、区画Bは、酸化セリウムを含み、かつ白金を含まず、区画Cは、白金、又は≧5のPt:Pd重量比で白金及びパラジウムを含有している。
【0011】
米国特許出願公開第2016/339389号は、担体基材、第1及び第2のウォッシュコート層を含む酸化触媒を特許請求している。第1のウォッシュコート層は、セリウムを含み、更にチタニアを含有することができる第1の耐火性金属酸化物担体によって担持されたパラジウムを含み、及び特に白金を実質的に含まない。第2のウォッシュコート層は、第2の耐火性担体及び白金成分を含み、特にパラジウムを実質的に含まない。
【0012】
Catalysis Today 126(2007)382-386及びJournal of Catalysis 233(2005)41-50は、両方ともに、CeO2-TiO2複合酸化物に担持されたPd上での低温におけるCO酸化を扱っている。
【0013】
Environmental Science&Technology,vol.46,no.17,pages 9600-9605は、NOをNH3で選択的に触媒還元するためのCe-Tiアモルファス酸化物を開示している。
【発明の概要】
【発明が解決しようとする課題】
【0014】
ユーロ5、6及び6+の排ガス規制に関連する現在及び将来のディーゼルエンジンの排ガス温度は、CO2の排出削減を目的とした燃料の節約により、ますます低下しつつある。低排ガス温度下で、十分なCOライトオフを有するディーゼル酸化触媒は一層重要となっている。同時に、触媒は、炭化水素も十分に酸化しなければならない。現在知られているディーゼル酸化触媒は、この条件を十分に満たさないことから、これに対応する更なる開発が必要とされている。
【課題を解決するための手段】
【0015】
ここで、以下に記載及び定義するディーゼル酸化触媒がこれらの条件を満たすことが判明した。
【0016】
本発明は、第1の端面と第2の端面との間に延びている長さLを有する担体本体と、担体本体上に配列された異なる構成の材料区画A及びBと、を含むディーゼル酸化触媒であって、
材料区画Aは、セリウム-チタン混合酸化物に適用された白金及びパラジウムを含み、
材料区画Bは、担体酸化物Bに適用された白金及びパラジウムを含む、ディーゼル酸化触媒に関する。
【0017】
材料区画Aは、好ましくは、3:1~1:50、例えば、2:1~1:20、又は1:1~1:10の重量比で白金及びパラジウムを含む。
【0018】
材料区画Aは、更にロジウムを含むことができる。
【0019】
材料区画Aは、好ましくは、担体本体の体積に基づいて、0.18~3.53g/Lの量で白金及びパラジウム及び任意選択でロジウムを含む。
【0020】
材料区画Aでは、白金及びパラジウム及び任意選択でロジウムが、セリウム-チタン混合酸化物に適用される。本出願の文脈において、「セリウム-チタン混合酸化物」という用語では、酸化セリウムと酸化チタンとの物理的混合物は除外される。むしろ、当該用語は、個々の金属酸化物を区別することができない均一な結晶格子を有する固溶体を表す。又は、当該用語は、均一な結晶格子を有しておらず、個々の金属酸化物の相を区別することができる酸化セリウムと酸化チタンとを含む凝集塊を表す。
【0021】
好ましくは、セリウム-チタン混合酸化物は、20~98重量%の酸化セリウム及び80~2重量%の酸化チタンを含む。より好ましくは、セリウム-チタン混合酸化物は、25~95重量%の酸化セリウム及び75~5重量%の酸化チタンを含む。
【0022】
通常は、材料区画Aは、担体本体の体積に基づいて、20~140g/Lの量でセリウム-チタン混合酸化物を含む。
【0023】
好ましくは、材料区画Aは、バリウム及び酸化バリウムを含まない。
【0024】
材料区画Bは、好ましくは、10:1~1:3、例えば、5:1~1:1の重量比で白金及びパラジウムを含む。
【0025】
材料区画Bは、好ましくは、担体本体の体積に基づいて、0.73~6.36g/Lの量で白金及びパラジウムを含む。
【0026】
担体酸化物Bは、有利には高融点であり、すなわち、その融点は、本発明による酸化触媒の意図される運転中に生じる温度よりも十分に高い。担体酸化物Bはまた、有利なことに、表面積が大きく、好ましくは、50~200m2/gの比表面積を有する。
【0027】
担体酸化物Bは、特に、酸化アルミニウム、ドープされた酸化アルミニウム、酸化ケイ素、二酸化チタン、酸化ジルコニウム、及びこれらの1つ以上の混合酸化物からなる群から選択される。
【0028】
ドープされた酸化アルミニウムは、例えば、酸化ケイ素、酸化ジルコニウム及び/又は酸化チタンがドープされた酸化アルミニウムである。ランタンがドープされた酸化アルミニウムが有利に使用され、ランタンは、それぞれLa2O3として計算され、かつ安定化された酸化アルミニウムの重量に対し、1~10重量%、好ましくは3~6重量%の量で使用される。
【0029】
好ましくは、担体酸化物Bは、酸化アルミニウム又はランタンで安定化された酸化アルミニウムである。
【0030】
通常は、材料区画Bは、担体本体の体積に基づいて、10~160g/Lの量で担体酸化物Bを含む。
【0031】
本発明による酸化触媒の一実施形態では、材料区画Bは、酸化ランタン、酸化マグネシウム、酸化バリウム及び/又は酸化ストロンチウムを、特に、担体本体の体積に基づいて、0.5~8g/Lの量で含む。酸化ランタンが好ましい。
【0032】
本発明による酸化触媒の別の実施形態では、材料区画Bは、ゼオライトを例とする炭化水素吸着剤材料を含む。好ましくは、水素吸着剤材料は、ベータゼオライトである。
【0033】
本発明による酸化触媒の更に別の実施形態では、担体本体は、材料区画A及びBとは異なっていて、かつ担体酸化物Cに適用された白金、パラジウム、又は白金とパラジウムを含む材料区画Cを含む。
【0034】
好ましくは、材料区画Cは、≧1の重量比、例えば、20:1~10:1で、白金、又は白金とパラジウムを含む。
【0035】
材料区画Cは、好ましくは、担体本体の体積に基づいて、1.06~7.06g/Lの量で、白金、パラジウム、又は白金とパラジウムを含む。
【0036】
担体酸化物Cは、有利には高融点であり、すなわち、その融点は、本発明による酸化触媒の意図される運転中に生じる温度よりも十分に高い。担体酸化物Cはまた、有利なことに、表面積が大きく、好ましくは、50~200m2/gの比表面積を有する。
【0037】
担体酸化物Cは、特に、酸化アルミニウム、ドープされた酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、二酸化チタン及びこれらの1つ以上の混合酸化物からなる群から選択される。
【0038】
ドープされた酸化アルミニウムは、例えば、酸化ケイ素、酸化ジルコニウム及び/又は酸化チタンがドープされた酸化アルミニウムである。ランタンで安定化された酸化アルミニウムが有利に使用され、ランタンは、それぞれLa2O3として算出され、かつ安定化された酸化アルミニウムの重量に対し、1~10重量%、好ましくは3~6重量%の量で使用される。
【0039】
好ましくは、担体酸化物Cは、担体酸化物Cの重量に基づいて、1~20重量%の総量でシリカがドープされた酸化アルミニウムである。
【0040】
通常は、材料区画Cは、担体本体の体積に基づいて、30~180g/Lの量で担体酸化物Cを含む。
【0041】
特に好ましい実施形態では、本発明は、第1の端面と第2の端面との間に延びている長さLを有する担体本体と、担体本体上に配列された異なる構成の材料区画A、B及びCと、を含むディーゼル酸化触媒であって、
材料区画Aは、25~95重量%の酸化セリウム及び75~5重量%の酸化チタンを含むセリウム-チタン混合酸化物に適用された白金及びパラジウムを1:1~1:10の重量比で含み、
材料区画Bは、酸化アルミニウム又はランタンで安定化された酸化アルミニウムに適用された白金及びパラジウムを5:1~1:1の重量比で含み、
材料区画Cは、ドープされた酸化アルミニウムに基づいて、1~20重量%のシリカでドープされた酸化アルミニウムに適用された白金及び/又はパラジウムを含む、ディーゼル酸化触媒に関する。
【0042】
担体本体は、特に、セラミック、好ましくはコーディエライト、又は金属で作製されたいわゆるハニカム体である。いわゆるフロースルーハニカム体(flow-through honeycomb bodies)が好ましく使用される。しかし、ウォールフローフィルター(wall-flow filters)を担体本体として使用する実施形態も想定される。
【0043】
図1に参照されるように、材料区画A及びB、並びに、存在する場合、材料区画Cは、異なる配列で担体本体上に配列することができる。
【0044】
第1の配列では、本発明の酸化触媒は、両方が担体本体の完全な長さL上にわたって延在している材料区画A及びBを含み、材料区画Bは、材料区画Aの下に位置している。
【0045】
第2の配列では、本発明の酸化触媒は、両方が担体本体の完全な長さL上にわたって延在している材料区画A及びBを含み、材料区画Aは、材料区画Bの下に位置している。
【0046】
第3の配列では、本発明の酸化触媒は、材料区画A及びBを含み、材料区画Aは、長さLの20~80%にわたって第1の端面から始まって延び、材料区画Bは、長さLの20~80%にわたって第2の端面から始まって延びている。第3の配列の好ましい実施形態では、材料区画A及びBは両方とも、長さLの40~60%、より好ましくは50%にわたって延びている。
【0047】
第4の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画A及びBの両方は、長さLの40~60%にわたって第1の端面から始まって延びており、材料区画Aは、材料区画Bの下に位置し、材料区画Cは、長さLの40~60%にわたって第2の端面から延びており、L=LA+LCであり、LAは材料区画Aの長さであり、LCは材料区画Cの長さであり、材料区画Bは材料区画Aと同じ長さを有する。
【0048】
第5の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画A及びBは両方とも、長さLの40~60%にわたって第1の端面から始まって延びており、材料区画Bは、材料区画Aの下に位置し、材料区画Cは、長さLの40~60%にわたって第2の端面から延びており、L=LA+LCであり、LAは、材料区画Aの長さであり、LCは、材料区画Cの長さであり、材料区画Bは、材料区画Aと同じ長さを有する。
【0049】
第6の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画Aは、長さLの40~60%にわたって第1の端面から始まって延びており、材料区画Cは、長さLの40~60%にわたって第2の端面から始まって延びており、材料区画Bは、完全長Lにわたって延びていて、材料区画A及びCの下に位置しており、L=LA+LCであり、LAは、材料区画Aの長さであり、LCは、材料区画Cの長さである。
【0050】
第7の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画Bは、長さLの40~60%にわたって第1の端面から始まって延びており、材料区画Cは、長さLの40~60%にわたって第2の端面から始まって延びており、材料区画Aは、完全長Lにわたって延びていて、材料区画B及びCの下に位置しており、L=LB+LCであり、LBは、材料区画Bの長さであり、LCは、材料区画Cの長さである。
【0051】
第8の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画B及びCは両方とも、長さLの40~60%にわたって第2の端面から始まって延びており、材料区画Bは、材料区画Cの下に位置し、材料区画Aは、長さLの40~60%にわたって第1の端面から始まって延びており、L=LA+LCであり、LAは、材料区画Aの長さであり、LCは、材料区画Cの長さであり、材料区画Bは、材料区画Cと同じ長さを有する。
【0052】
第9の配列では、本発明の酸化触媒は、材料区画A、B及びCを含み、材料区画A及びCは両方とも、長さLの40~60%にわたって第2の端面から始まって延びており、材料区画Aは、材料区画Cの下に位置し、材料区画Bは、長さLの40~60%にわたって第1の端面から始まって延びており、L=LB+LCであり、LBは、材料区画Bの長さであり、LCは、材料区画Cの長さであり、材料区画Aは、材料区画Cと同じ長さを有する。
【0053】
本発明の酸化触媒は、コーティング懸濁液、いわゆるウォッシュコートによって、それ自体既知である手法で、適した担体本体をコーティングすることにより作製されてもよい。例えば、材料区画A、B及びCそれぞれを製造するためのコーティング懸濁液を製造するために、選択した担体酸化物を水に懸濁させる。次いで、白金及び/又はパラジウム及び/又はロジウムを、例えば硝酸パラジウム又はヘキサヒドロキソ白金酸などの好適な水溶性前駆体化合物の形態で、撹拌しながら、懸濁液に添加し、任意選択で、pHを設定することによって、及び/又は補助試薬を添加することによって、担体材料上に固定する。
【0054】
代替的に、担体材料には、欧州特許出願公開第1101528(A2)号に記載の方法と類似した仕方で貴金属も適用され得る。
【0055】
次いで、このような方法で得られた懸濁液を、粉砕し、標準的なコーティング方法のうちの1つによって、担体本体に適用する。各コーティング工程の後、コーティングされた部分は、熱風流で乾燥され、場合によっては焼成される。
【0056】
前述の前駆体及び補助試薬は、当業者に既知のものである。
【0057】
本発明のディーゼル酸化触媒は、ディーゼルエンジンの排ガスを、特に、一酸化炭素及び炭化水素に関し浄化するのに、好適である。
【0058】
したがって、本発明はディーゼル排ガスを処理するための方法にも関し、当該方法は、ディーゼル排ガスを、上記で記載し定義したとおりのディーゼル酸化触媒に通すことを特徴とし、ディーゼル排ガスは、第1の端面で担体本体に流入し、第2の端面で担体本体から流出する。
【0059】
本発明のディーゼル酸化触媒は、特に排ガス浄化システムの構成要素として使用される。本発明のディーゼル酸化触媒に加えて、対応する排ガス浄化システムは、例えば、ディーゼル微粒子フィルター及び/又は窒素酸化物の選択的触媒還元のための触媒を含み、ディーゼル微粒子フィルター及びSCR触媒は、通常、流出側である本発明のディーゼル酸化触媒の下流に配置される。排出制御システムの一実施形態では、SCR触媒は、ディーゼル微粒子フィルター上に配置される。
【図面の簡単な説明】
【0060】
【
図1】材料区画A及びB、並びに、存在する場合、材料区画Cは、異なる配列で担体本体上に配列することができることを示す図である。
【発明を実施するための形態】
【0061】
実施例1
a)60g/Lの粉砕CeTiOx材料(CeO2/TiO2=95/5)を、可溶性Pt塩の溶液(0.35315g/LのPt)に添加し、続いて硝酸塩として1.05944g/LのPdを添加した。最後に、4.5g/Lのアルミナ-ゾルを添加した。得られた生成物を、乾燥させ、550℃で2時間焼成した。
【0062】
b)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、上記a)に従って得られた生成物を66g/L含有するウォッシュコートで、その完全長にわたってコーティングした。
【0063】
c)100g/Lのアルミナに固定された2.5897g/LのPt及び1.2949g/LのPdを含む66.165g/Lの粉砕粉末に対して、3.18g/LのLa2O3及び25.48g/Lのベータゼオライトを添加した。その粉末を、550℃で2時間、焼成した。
【0064】
d)上記b)に従って得られたコーティングされた基材を、その完全長にわたって、上記c)に従って得られた生成物を94g/L含有するウォッシュコートでコーティングした。
【0065】
得られた酸化触媒は、上記の配列2に対応し、以下ではC1と称する。
【0066】
比較例1
工程a)において、100g/Lの粉砕CeTiOx材料(CeO2/TiO2=95/5)を、可溶性Pt塩の溶液(0.9712g/LのPt)に添加し、続いて硝酸塩として2.9135g/LのPdを添加した以外は、実施例1の工程a)及びb)を繰り返した。
【0067】
得られた酸化触媒は、以下ではCC1と称する。
【0068】
比較例2
a)100g/Lのアルミナに固定された2.5897g/LのPt及び1.2949g/LのPdを含む103.88g/Lの粉砕粉末に対して、5g/LのLa2O3及び40g/Lのベータゼオライトを添加した。その粉末を、550℃で2時間、焼成した。
【0069】
b)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、上記a)に従って得られた生成物を148g/L含有するウォッシュコートで、その完全長にわたってコーティングした。
【0070】
得られた酸化触媒は、以下ではCC2と称する。
【0071】
実施例2
a)42g/Lの粉砕CeTiOx材料(CeO2/TiO2=95/5)を、可溶性Pt塩の溶液(1.059g/LのPt)に添加し、続いて硝酸塩として1.059g/LのPdを添加した。最後に、18g/Lの粉砕アルミナを、続いて4.5g/Lのアルミナ-ゾルを添加した。得られた生成物を、乾燥させ、550℃で2時間焼成した。
【0072】
b)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、上記a)に従って得られた生成物を67g/L含有するウォッシュコートで、その長さの50%にわたって、その第1の端面から開始してコーティングした。
【0073】
c)50g/Lの粉砕アルミナを、Pt塩の溶液(0.942g/LのPt)に添加した。続いて、硝酸塩として0.471g/LのPd、3g/LのLa2O3、30g/Lのベータゼオライト及び4.5g/Lのアルミナ-ゾルを添加した。得られた生成物を、乾燥させ、550℃で2時間、焼成した。
【0074】
d)上記b)に従って得られたコーティングされた基材を、上記c)に従って得られた生成物を89g/L含有するウォッシュコートで、その長さの50%にわたって、その第1の端面から開始してコーティングした。
【0075】
e)10重量%のシリカでドープされた150g/Lのアルミナを、2.608g/LのPt及び0.217g/LのPd(両方とも硝酸塩の形態)を含有する溶液に添加した。得られた生成物を、乾燥させ、550℃で2時間、焼成した。
【0076】
f)上記d)に従って得られたコーティングされた基材を、上記e)に従って得られた生成物を150g/L含有するウォッシュコートで、その長さの50%にわたって、その第2の端面から開始してコーティングした。
【0077】
得られた酸化触媒は、上記の配列4に対応し、以下ではC2と称する。
【0078】
実施例3
基材を、最初に、実施例2の工程c)に従って得られた生成物を含有するウォッシュコートでコーティングし、続いて、実施例2)の工程a)に従って得られた生成物を含有するウォッシュコートでコーティングした以外は、上記の実施例2を繰り返した。
【0079】
得られた酸化触媒は、上記の配列5に対応し、以下ではC3と称する。
【0080】
実施例4
a)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、実施例2の工程c)に従って得られた生成物を89g/L含有するウォッシュコートで、その完全長にわたってコーティングした。
【0081】
b)上記a)に従って得られたコーティングされた基材を、実施例2の工程a)に従って得られた生成物を67g/L含有するウォッシュコートで、その長さの50%にわたって、その第1の端面から開始してコーティングした。
【0082】
c)10重量%のシリカがドープされた100g/Lのアルミナを、1.304g/LのPt及び0.109g/LのPd(両方とも硝酸塩の形態)を含有する溶液に添加した。得られた生成物を、乾燥させ、550℃で2時間、焼成した。
【0083】
d)上記b)に従って得られたコーティングされた基材を、上記c)に従って得られた生成物を102g/L含有するウォッシュコートで、その長さの50%にわたって、その第2の端面から開始してコーティングした。
【0084】
得られた酸化触媒は、上記の配列6に対応し、以下ではC4と称する。
【0085】
実施例5
a)84g/Lの粉砕CeTiOx材料(CeO2/TiO2=95/5)を、可溶性Pt塩の溶液(1.413g/LのPt)に添加し、続いて硝酸塩として1.413g/LのPdを添加した。最後に、36g/Lの粉砕アルミナを、続いて9g/Lのアルミナ-ゾルを添加した。得られた生成物を、乾燥させ、550℃で2時間焼成した。
【0086】
b)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、上記a)に従って得られた生成物を134g/L含有するウォッシュコートで、その長さの50%にわたって、その第1の端面から開始してコーティングした。
【0087】
c)上記b)に従って得られたコーティングされた基材を、実施例2の工程c)に従って得られた生成物を66.8g/L含有するウォッシュコートで、その長さの50%にわたって、その第2の端面から開始してコーティングした。
【0088】
d)10重量%のシリカがドープされた100g/Lのアルミナを、2.282g/LのPt及び0.109g/LのPd(両方とも硝酸塩の形態)を含有する溶液に添加した。得られた生成物を、乾燥させ、550℃で2時間、焼成した。
【0089】
e)上記c)に従って得られたコーティングされた基材を、上記d)に従って得られた生成物を102g/L含有するウォッシュコートで、その長さの50%にわたって、その第2の端面から開始してコーティングした。
【0090】
得られた酸化触媒は、上記の配列8に対応し、以下ではC5と称する。
【0091】
実施例6
a)84g/Lの粉砕CeTiOx材料(CeO2/TiO2=95/5)を、可溶性Pt塩の溶液(1.413g/LのPt)に添加し、続いて硝酸塩として1.413g/LのPdを添加した。最後に、36g/Lのアルミナ及び9g/Lのアルミナ-ゾルを添加した。得られた生成物を、乾燥させ、550℃で2時間焼成した。
【0092】
b)セル密度62cpcm(400cpsi)及び壁厚102μm(4.0ミル)で寸法14.4cm×7.6cm(5.66インチ×3.00インチ)を有するコーディエライトの市販の円形フロースルー基材を、上記a)に従って得られた生成物を66g/L含有するウォッシュコートで、その完全長にわたってコーティングした。
【0093】
c)上記b)に従って得られたコーティングされた基材を、実施例2の工程c)に従って得られた生成物を66.8g/L含有するウォッシュコートで、その長さの50%にわたって、その第1の端面から開始してコーティングした。
【0094】
d)上記c)に従って得られたコーティングされた基材を、実施例5の工程d)に従って得られた生成物を102g/L含有するウォッシュコートで、その長さの50%にわたって、その第2の端面から開始してコーティングした。
【0095】
得られた酸化触媒は、上記の配列7に対応し、以下ではC6と称する。
【0096】
比較実験
a)触媒C1~C6、CC1及びCC2からコアを取り出した。全てのコアを、水熱雰囲気下、800℃で16時間エージングした。
【0097】
b)全ての触媒のT50CO-及びT50C3H6-ライトオフ値を、表1に示したガス混合物を用いて、合成ガスベンチで測定した。試験前に、触媒を、同じガス雰囲気下の650℃で予備コンディショニングした。
【0098】
【0099】
【0100】
追加の実験
A.触媒C7~C10は、通常のコーティング技術によって、通常の市販のフロースルー基材上にウォッシュコートをコーティングすることによって、製造した。全ての触媒は、アルミナ上に110g/ft3の白金及び/又はパラジウムを含有し、ウォッシュコートの担持量は、各場合において、110g/Lであった。触媒は以下のように異なっていた:
C7は、白金のみ含有していた。
C8は、白金及びパラジウムを2:1のPt:Pd重量比で含有していた。
C9は、白金及びパラジウムを1:3のPt:Pd重量比で含有していた。
C10は、パラジウムのみを含有していた。
白金を、可溶性Pt塩と、硝酸塩としてのパラジウムとの溶液として適用した。
【0101】
B.触媒C11~C14は、通常のコーティング技術によって、通常の市販のフロースルー基材上にウォッシュコートをコーティングすることによって、製造した。全ての触媒は、セリア上に110g/ft3の白金及び/又はパラジウムを含有し、ウォッシュコートの担持量は、各場合において、110g/Lであった。加えて、各ウォッシュコートは、7g/LのAlusolを含有していた。触媒は以下のように異なっていた:
C11は、白金のみを含有していた。
C12は、白金及びパラジウムを2:1のPt:Pd重量比で含有していた。
C13は、白金及びパラジウムを1:3のPt:Pd重量比で含有していた。
C14は、パラジウムのみを含有していた。
白金を、可溶性Pt塩と、硝酸塩としてのパラジウムとの溶液として適用した。
【0102】
C.製造直後及びエージング後(熱水雰囲気下、800℃で16時間)の条件で、触媒C7~C14のT50CO-ライトオフ値を、表2に示したガス混合物を用いて、合成ガスベンチで測定した。試験前に、触媒を、同じガス雰囲気下の500℃で予備コンディショニングした。
【0103】
【0104】
結果を表3に示す。
【0105】
【国際調査報告】