(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-10
(54)【発明の名称】マイクロ流体デバイスを作動させるためのシステム
(51)【国際特許分類】
B81B 7/00 20060101AFI20221227BHJP
B81B 1/00 20060101ALI20221227BHJP
G01N 37/00 20060101ALI20221227BHJP
B01J 19/00 20060101ALI20221227BHJP
B01J 19/12 20060101ALI20221227BHJP
C12M 1/00 20060101ALI20221227BHJP
C12Q 1/02 20060101ALI20221227BHJP
G02B 21/00 20060101ALI20221227BHJP
C12M 1/34 20060101ALN20221227BHJP
【FI】
B81B7/00
B81B1/00
G01N37/00 101
B01J19/00 321
B01J19/12 C
C12M1/00 A
C12Q1/02
G02B21/00
C12M1/34 B
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022524262
(86)(22)【出願日】2020-10-23
(85)【翻訳文提出日】2022-06-16
(86)【国際出願番号】 US2020057200
(87)【国際公開番号】W WO2021081432
(87)【国際公開日】2021-04-29
(32)【優先日】2019-10-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】514304762
【氏名又は名称】バークレー ライツ,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】アンヘレス,アンヘル ナバス
(72)【発明者】
【氏名】スロイス,ヨハネス ポール
(72)【発明者】
【氏名】テニー,ジョン エー.
(72)【発明者】
【氏名】ダンデ,ヨゲッシュ ケムチャンドラ
(72)【発明者】
【氏名】イングラム,パトリック エヌ.
(72)【発明者】
【氏名】シ,エリン チア-ウェイ
(72)【発明者】
【氏名】シン,クリストファー シー.
(72)【発明者】
【氏名】キム,ジョン ジュンヨン
(72)【発明者】
【氏名】ブレインリンガー,キース ジェイ.
(72)【発明者】
【氏名】アロン,ラジエル ソロモン
【テーマコード(参考)】
2H052
3C081
4B029
4B063
4G075
【Fターム(参考)】
2H052AA09
2H052AC14
2H052AE01
2H052AE13
3C081AA13
3C081BA23
3C081BA33
3C081CA44
3C081EA29
4B029AA07
4B029BB01
4B029CC01
4B029CC02
4B029FA09
4B029FA11
4B029FA15
4B029GA08
4B029GB06
4B029GB10
4B063QA01
4B063QA18
4B063QQ05
4B063QR90
4B063QS40
4B063QX01
4G075AA13
4G075AA27
4G075AA39
4G075AA61
4G075AA63
4G075BB05
4G075BB10
4G075CA02
4G075CA03
4G075CA32
4G075DA02
4G075DA18
4G075EA06
4G075EB50
4G075EC21
4G075EC25
(57)【要約】
【課題】マイクロ流体デバイスを作動させるためのシステムは、これらの入力及び出力を支援する。
【解決手段】マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、第1表面上にマイクロ流体デバイスを保持するように構成された蓋とを含むシステム。蓋は、マイクロ流体デバイスの第1流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第1流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第1流体入口/出口から流出させるように構成された第1流体ポートを有する第1部分と、マイクロ流体デバイスの第2流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第2流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第2流体入口/出口から流出させるように構成された第2流体ポートを有する第2部分を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
マイクロ流体デバイスを作動させるためのシステムであって、
マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、
前記第1表面上に前記マイクロ流体デバイスを保持するように構成された蓋であって、
前記マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体を前記マイクロ流体デバイスの前記第1の流体入口/出口に流入させる及び/又は前記マイクロ流体デバイスの前記第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、
前記マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体を前記マイクロ流体デバイスの前記第2の流体入口/出口に流入させる及び/又は前記マイクロ流体デバイスの前記第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分と、
を備え、
前記第2の蓋部分が前記第1の蓋部分から分離可能であり、前記第2の蓋部分の前記第2の流体ポートが前記マイクロ流体デバイスの前記第2の流体入口/出口と作用可能に結合される閉位置と前記第2の流体入口/出口を備える前記マイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、
蓋と、
を備える、システム。
【請求項2】
前記第2の蓋部分が前記開位置にあるときに、前記第1の蓋部分は前記マイクロ流体デバイスを前記第1表面上に保持する、請求項1に記載のシステム。
【請求項3】
前記第2の蓋部分が前記開位置にあるときに、前記第1の蓋部分の前記第1の流体ポートは、前記マイクロ流体デバイスの前記第1の流体入口/出口と作用可能に結合されたままである、請求項1に記載のシステム。
【請求項4】
前記第1の蓋部分の前記第1の流体ポートが、前記マイクロ流体デバイスから流体を除去するように構成されたポンプに接続されている、請求項3に記載のシステム。
【請求項5】
前記第1の蓋部分が、前記第1の流体ポートに接続された第1の流体ラインを更に備える、請求項3に記載のシステム。
【請求項6】
前記第2の蓋部分が、前記第2の流体ポートに接続された第2の流体ラインを更に備える、請求項5に記載のシステム。
【請求項7】
前記蓋が、前記カバーの前記第2の部分を前記開位置と前記閉位置との間で移動させるように構成されたヒンジを更に備える、請求項1に記載のシステム。
【請求項8】
前記蓋が、前記第2の蓋部分を前記閉位置に解放可能に保持するように構成されたラッチを更に備える、請求項1に記載のシステム。
【請求項9】
前記第2の蓋部分が前記開位置にあるときに、前記マイクロ流体デバイスの前記第2の流体入口/出口と作用可能に結合し、前記マイクロ流体デバイスの前記第2の流体入口/出口に流体媒体を流入させるように構成された挿入物を更に備える、請求項1~8のいずれか一項に記載のシステム。
【請求項10】
前記挿入物が、前記第1の蓋部分と接触するように構成されている、請求項9に記載のシステム。
【請求項11】
前記挿入物が、前記マイクロ流体デバイスの前記第2の流体入口/出口と流体的に連通するように構成された流体ウェルを備える、請求項9に記載のシステム。
【請求項12】
前記流体ウェルが、約25マイクロリットル以下の流体試料を保持するように構成されている、請求項11に記載のシステム。
【請求項13】
前記流体ウェルが、約5マイクロリットルから約15マイクロリットルの範囲の流体試料を保持するように構成されている、請求項11に記載のシステム。
【請求項14】
前記第1表面が支持体に含まれる、請求項1に記載のシステム。
【請求項15】
前記支持体が、前記マイクロ流体デバイスを収容してインターフェースするように構成されたソケットを備える、請求項14に記載のシステム。
【請求項16】
前記マイクロ流体デバイスが前記第1表面又は前記支持体と作用可能に結合されているときに前記マイクロ流体デバイスの一対の電極を横切ってバイアス電圧を印加するように構成された電気信号生成サブシステムを更に備える、請求項1に記載のシステム。
【請求項17】
前記マイクロ流体デバイスが前記第1表面又は前記支持体と作用可能に結合されているときに前記マイクロ流体デバイスの温度を調整するように構成された熱制御サブシステムを更に備える、請求項1に記載のシステム。
【請求項18】
前記支持体が、前記電気信号生成サブシステム及び前記熱電発電モジュールの一方又は両方を制御するマイクロプロセッサを更に備える、請求項1に記載のシステム。
【請求項19】
前記支持体がプリント回路基板(PCB)を備え、前記電気信号生成サブシステム、前記熱電発電モジュール、及び前記マイクロプロセッサのうちの少なくとも1つが、前記PCB上に取り付けられている及び/又は前記PCBと一体化されている、請求項18に記載のシステム。
【請求項20】
前記マイクロ流体デバイスが前記第1表面(又は支持体)と作用可能に結合されているときに前記マイクロ流体デバイス上に構造化光を放射するように構成された光変調サブシステムを更に備える、請求項1に記載のシステム。
【請求項21】
前記第1表面、前記支持体、及び/又は前記光変調サブシステムが、光学顕微鏡に取り付けられるように構成されている、請求項20に記載のシステム。
【請求項22】
前記第1表面、前記支持体、及び/又は前記光変調サブシステムが、光学顕微鏡の一体構成要素である、請求項20に記載のシステム。
【請求項23】
前記第1の流体ライン及び前記第2の流体ラインの一方又は両方と作用可能に結合された少なくとも1つの流れ制御器を更に備える、請求項6に記載のシステム。
【請求項24】
前記少なくとも1つの流れ制御器が、前記少なくとも1つの流れ制御器に流体を選択的に流すために、前記第1の流体ライン及び/又は前記第2の流体ラインと作用可能に結合された第1の熱制御式流れ制御器を備える、請求項23に記載のシステム。
【請求項25】
マイクロ流体デバイスを作動させるように構成された顕微鏡であって、
請求項14に記載のマイクロ流体デバイスを保持し前記請求項14に記載のマイクロ流体デバイスをと作用可能に結合するように構成された支持体と、
構造化光を放射するように構成された光変調サブシステムと、
光学系と
を備え、
前記マイクロ流体デバイスが前記支持体によって保持され前記支持体と作用可能に結合されているとき、前記光学系が、
(1)前記光変調サブシステムによって放射された構造化光を前記マイクロ流体デバイスの少なくとも第1の領域に集束させ、
(2)非構造化光源によって放射された非構造化光を前記マイクロ流体デバイスの少なくとも第2の領域に集束させ、
(3)前記マイクロ流体デバイスからの反射光及び/又は放射光を捉え、前記捉えた光を検出器に向ける、
ように構成されている顕微鏡。
【請求項26】
流体試料を分析する方法であって、
マイクロ流体デバイスを、前記マイクロ流体デバイスを作動させるためのシステムに接続することであって、
前記システムが、
マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、
前記第1表面上に前記マイクロ流体デバイスを保持するように構成された蓋であって、
前記マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体を前記マイクロ流体デバイスの前記第1の流体入口/出口に流入させる及び/又は前記マイクロ流体デバイスの前記第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、
前記マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体を前記マイクロ流体デバイスの前記第2の流体入口/出口に流入させる及び/又は前記マイクロ流体デバイスの前記第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分と、
を備え、
前記第2の蓋部分が前記第1の蓋部分から分離可能であり、前記カバーの前記第2の部分の前記第2の流体ポートが前記マイクロ流体デバイスの前記第2の流体入口/出口と作用可能に結合された閉位置と前記第2の流体入口/出口を備える前記マイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、
蓋と、
を備える、
接続することと、
前記第2の蓋部分を前記閉位置から前記開位置に移動させ、それにより前記マイクロ流体デバイスの前記第2の流体入口/出口を露出させることと、
流体試料を前記マイクロ流体デバイスの前記第2の流体入口/出口と流体連通させることと、
前記第1の流体ラインに吸引を印加し、それにより前記流体試料の少なくとも一部を前記マイクロ流体デバイスに引き込むことと、
前記マイクロ流体デバイスに引き込まれた前記流体試料の前記少なくとも一部を処理することと、
を含む、方法。
【請求項27】
前記閉位置の前記第2の蓋部分が以前に占めていた位置に挿入物を配置することであって、前記挿入物が、前記マイクロ流体デバイスの前記第2の流体入口/出口と流体的に連通するように構成された流体ウェルを備える、配置することを更に含み、
前記流体試料を供給することが、前記挿入物の前記流体ウェルに前記流体試料を導入することを含む、
請求項26に記載の方法。
【請求項28】
前記システムが、請求項1に記載のシステムである、請求項26又は27に記載の方法。
【請求項29】
前記システムが、請求項25に記載の顕微鏡である、請求項26又は27に記載の方法。
【請求項30】
約2マイクロリットルから約10マイクロリットルの予め選択した量の流体試料を前記マイクロ流体チップに引き込むのに十分な吸引が印加され、この時点で前記吸引は停止される、請求項26又は27に記載の方法。
【請求項31】
前記流体試料が、微小物体、任意で生物学的微小物体を含む、請求項26又は27に記載の方法。
【請求項32】
前記マイクロ流体デバイスが、(i)複数のマイクロ流体チャネルを有する流れ領域と、(ii)複数のチャンバであって、前記複数のチャンバの各チャンバは前記複数のマイクロ流体チャネルのうちの1つに流体的に接続されている、複数のチャンバと、を備える、請求項26又は27に記載の方法。
【請求項33】
少なくとも4x10^6のインポート細胞密度がもたらされる、請求項32に記載の方法。
【請求項34】
前記異なるチャネルの前記インポート細胞密度の変動係数(CV)が20%未満になる、請求項32に記載の方法。
【請求項35】
マイクロ流体デバイスを作動させるためのシステムであって、
前記マイクロ流体デバイスを保持し前記マイクロ流体デバイスと作用可能に結合するように構成された支持体と、
それぞれ、前記マイクロ流体デバイスが前記支持体によって保持され前記支持体と作用可能に結合されているときに、前記マイクロ流体デバイスの入口ポートに流体的に結合されるように構成された遠位端を有する第1の流体ラインと、前記マイクロ流体デバイスの出口ポートに流体的に結合されるように構成された近位端を有する第2の流体ラインと、
前記第1の流体ライン及び前記第2の流体ラインの一方又は両方と作用可能に結合された少なくとも1つの(例えば、2つ以上、そのうちの1つがポンプであり得る)流れ制御器であって、前記少なくとも1つの流れ制御器は、前記少なくとも1つの流れ制御器に流体を選択的に流すために、前記第1の流体ライン及び前記第2の流体ラインの一方又は両方の流れセグメントと作用可能に結合された第1の熱制御式流れ制御器を備える、少なくとも1つの流れ制御器と、
前記マイクロ流体デバイスが前記支持体によって保持され前記支持体と作用可能に結合されているときに、前記マイクロ流体デバイス上に構造化光を放射するように構成された光変調サブシステムと、
を備える、システム。
【請求項36】
前記マイクロ流体デバイスが前記支持体によって保持され前記支持体と作用可能に結合されているときに、前記マイクロ流体デバイスの一対の電極を横切ってバイアス電圧を印加するように構成された電気信号生成サブシステムを更に備える、請求項35に記載のシステム。
【請求項37】
請求項1に記載のシステムの要素のいずれかを備える、請求項35に記載のシステム。
【請求項38】
前記第1の熱制御式流れ制御器が、
前記第1の流体ライン及び前記第2の流体ラインの前記流れセグメントと結合された熱伝導性インターフェースと、
前記熱伝導性インターフェースに接触し、前記第1の流体ライン及び/又は前記第2の流体ラインの前記流れセグメントに含まれる流体の温度を制御可能に低下又は上昇させるように構成されたペルチェ熱電装置と、
を更に備える、請求項35に記載のシステム。
【請求項39】
前記第1の流体ライン及び/又は前記第2の流体ラインの前記流れセグメントに含まれる前記流体をそれぞれ凍結又は解凍するのに十分な程度に前記温度を低下又は上昇させ、それにより前記マイクロ流体デバイスの前記第1の流体入口/出口及び/若しくは前記第2の流体入口/出口から流体が流出すること又は前記マイクロ流体デバイスの前記第1の流体入口/出口及び/若しくは前記第2の流体入口/出口に流体が流入することを選択的に防止する又は可能にする、請求項38に記載のシステム。
【請求項40】
前記熱伝導性インターフェースがサーミスタを備える、請求項38又は39に記載のシステム。
【請求項41】
前記サーミスタが、前記第1の流体ラインの前記流れセグメントと前記第2の流体ラインの前記流れセグメントとの間に位置する領域内に配置されている、請求項40に記載のシステム。
【請求項42】
前記熱伝導性インターフェースが、少なくとも2つのペルチェ熱電装置の間に位置する、請求項38に記載のシステム。
【請求項43】
前記第1の熱制御式流れ制御器が、前記少なくとも2つのペルチェ熱電装置の1つから熱を奪うための導管を更に備える、請求項42に記載のシステム。
【請求項44】
前記第1の熱制御式流れ制御器がヒートシンクを更に備える、請求項38に記載のシステム。
【請求項45】
前記熱伝導性インターフェースが、前記ペルチェ熱電装置の上面に直接接触するように構成されている、請求項38に記載のシステム。
【請求項46】
前記第1の熱制御式流れ制御器が、前記第1の流体ライン及び前記第2の流体ラインの前記流れセグメントを前記熱伝導性インターフェースに挿入するためのガイドを備えるカバーを備える、請求項38に記載のシステム。
【請求項47】
前記熱制御式流れ制御器の内部に位置するバリア材料を更に備え、前記バリア材料が、氷形成を防止するのに十分である、請求項38に記載のシステム。
【請求項48】
前記バリア材料が、前記第1の熱制御式流れ制御器の前記カバー内に存在していたであろう空いた空間を実質的に埋める、請求項47に記載のシステム。
【請求項49】
前記第1の熱制御式流れ制御器が、マイクロ流体デバイスに流入及び流出する流体を制御するように構成されている、請求項38に記載のシステム。
【請求項50】
前記支持体が、前記第2の蓋部分が前記閉位置にあるときを判定するように構成されたセンサを備える、請求項9に記載のシステム。
【請求項51】
前記センサが更に、前記挿入物が前記マイクロ流体デバイスとインターフェースしたときを判定するように構成されている、請求項50に記載のシステム。
【請求項52】
前記センサが、遮断されて前記第2の蓋部分が前記閉位置にあるときを示すように構成された第1の光スイッチを備える、請求項50に記載のシステム。
【請求項53】
前記センサが、遮断されて前記挿入物が前記マイクロ流体デバイスとインターフェースしたときを示すように構成された第2の光スイッチを備える、請求項50に記載のシステム。
【請求項54】
前記センサが第1のエキステンダを備え、前記第1のエキステンダが、前記第2の蓋部分に含まれる第1のアクチュエータにより、前記第1の光スイッチに延びることで、前記第1の光スイッチを遮断するように構成されている、請求項50に記載のシステム。
【請求項55】
前記センサが第2のエキステンダを備え、前記第2のエキステンダが、前記挿入物に含まれる第2のアクチュエータにより、前記第2の光スイッチに延びることで、前記第2の光スイッチを遮断するように構成されている、請求項50に記載のシステム。
【請求項56】
前記センサが前記第2の蓋部分が前記開位置にあるときに検知し、前記挿入物が、前記第1の光スイッチ及び前記第2の光スイッチの光路が遮断されていないときには前記マイクロ流体デバイスとインターフェースしない、請求項50に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 分野
本出願は、概して、マイクロ流体デバイスとともに使用するためのシステムに関する。特に、本出願は、マイクロ流体デバイスを操作するためのシステムに記載する。
【背景技術】
【0002】
[0002] 背景
マイクロ流体の分野が進歩するにつれて、マイクロ流体デバイスは、生物学的細胞などの微小物体の処理および操作のための便利なプラットフォームとなっている。マイクロ流体デバイスは、個々の微小物体を選択して操作する能力を含むいくつかの望ましい能力を提供する。そのようなマイクロ流体デバイスは、機能するために様々な入力及び出力(例えば、流体、圧力、真空、熱、冷却、光等)を必要とする。マイクロ流体デバイスを作動させるためのシステムは、これらの入力及び出力を支援する。
【発明の概要】
【課題を解決するための手段】
【0003】
概要
[0003] 本出願は、マイクロ流体デバイスを作動させるためのシステムについて記載する。例示的な実施形態では、マイクロ流体デバイスを作動させるためのシステムであって、マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、第1表面上にマイクロ流体デバイスを保持するように構成された蓋であって、マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第1の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第2の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分とを含み、第2の蓋部分は第1の蓋部分から分離可能であり、第2の蓋部分の第2の流体ポートがマイクロ流体デバイスの第2の流体入口/出口と作用可能に結合される閉位置と第2の流体入口/出口を含むマイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、蓋とを含む、システムが提供される。
【0004】
[0004] 他の例示的な実施形態では、マイクロ流体デバイスを作動させるためのシステムであって、マイクロ流体デバイスを保持しマイクロ流体デバイスをと作用可能に結合するように構成された支持体と、それぞれ、マイクロ流体デバイスが支持体によって保持され支持体と作用可能に結合されているときに、マイクロ流体デバイスの入口ポートに流体的に結合されるように構成された遠位端を有する第1の流体ラインと、マイクロ流体デバイスの出口ポートに流体的に結合されるように構成された近位端を有する第2の流体ラインと、第1の流体ライン及び第2の流体ラインの一方又は両方と作用可能に結合された少なくとも1つの流れ制御器であって、少なくとも1つの流れ制御器は、少なくとも1つの流れ制御器に流体を選択的に流すために、第1の流体ライン及び第2の流体ラインの一方又は両方の流れセグメントと作用可能に結合された第1の熱制御式流れ制御器を含む、少なくとも1つの流れ制御器と、マイクロ流体デバイスが支持体によって保持され支持体と作用可能に結合されているときに、マイクロ流体デバイス上に構造化光を放射するように構成された光変調サブシステムとを含む、システムが提供される。
【0005】
[0005] 更に別の例示的な実施形態では、流体試料を分析する方法であって、マイクロ流体デバイスを、マイクロ流体デバイスを作動させるためのシステムに接続することであって、システムは、マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、第1表面上にマイクロ流体デバイスを保持するように構成された蓋であって、マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第1の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第2の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分とを含み、第2の蓋部分は第1の蓋部分から分離可能であり、カバーの第2の部分の第2の流体ポートがマイクロ流体デバイスの第2の流体入口/出口と作用可能に結合された閉位置と第2の流体入口/出口を含むマイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、蓋とを含む、ことと、第2の蓋部分を閉位置から開位置に移動させ、それによりマイクロ流体デバイスの第2の流体入口/出口を露出させることと、流体試料をマイクロ流体デバイスの第2の流体入口/出口と流体連通させることと、第1の流体ラインに吸引を印加し、それにより流体試料の少なくとも一部をマイクロ流体デバイスに引き込むことと、マイクロ流体デバイスに引き込まれた流体試料の少なくとも一部を処理することとを含む、方法が提供される。
【0006】
[0006] 実施形態の部分的なリストは以下の通りである。
【0007】
[0007] 実施形態1。マイクロ流体デバイスを作動させるためのシステムであって、マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、第1表面上にマイクロ流体デバイスを保持するように構成された蓋であって、マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第1の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第2の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分とを含み、第2の蓋部分は第1の蓋部分から分離可能であり、第2の蓋部分の第2の流体ポートがマイクロ流体デバイスの第2の流体入口/出口と作用可能に結合される閉位置と第2の流体入口/出口を含むマイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、蓋とを含む、システム。
【0008】
[0008] 実施形態2。第2の蓋部分が開位置にあるときに、第1の蓋部分はマイクロ流体デバイスを第1表面上に保持する、実施形態1のシステム。
【0009】
[0009] 実施形態3。第2の蓋部分が開位置にあるときに、第1の蓋部分の第1の流体ポートは、マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合されたままである、実施形態1又は2のシステム。
【0010】
[0010] 実施形態4。第1の蓋部分の第1の流体ポートは、マイクロ流体デバイスから流体を除去するように構成されたポンプに接続されている、実施形態1から3のいずれか1つに記載のシステム。
【0011】
[0011] 実施形態5。第1の蓋部分は、第1の流体ポートに接続された第1の流体ラインを更に含む、実施形態1から4のいずれか1つに記載のシステム。
【0012】
[0012] 実施形態6。第2の蓋部分は、第2の流体ポートに接続された第2の流体ラインを更に含む、実施形態1から5のいずれか1つに記載のシステム。
【0013】
[0013] 実施形態7。蓋は、カバーの第2の部分を開位置と閉位置との間で移動させるように構成されたヒンジを更に含む、実施形態1から6のいずれか1つに記載のシステム。
【0014】
[0014] 実施形態8。蓋は、第2の蓋部分を閉位置に解放可能に保持するように構成されたラッチを更に含む、実施形態1から7のいずれか1つに記載のシステム。
【0015】
[0015] 実施形態9。第2の蓋部分が開位置にあるときに、マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し、マイクロ流体デバイスの第2の流体入口/出口に流体媒体を流入させるように構成された挿入物を更に含む、実施形態1から8のいずれか1つに記載のシステム。
【0016】
[0016] 実施形態10。挿入物は、第1の蓋部分と接触するように構成されている、実施形態9のシステム。
【0017】
[0017] 実施形態11。挿入物は、マイクロ流体デバイスの第2の流体入口/出口と流体的に連通するように構成された流体ウェルを含む、実施形態9又は10のシステム。
【0018】
[0018] 実施形態12。流体ウェルは、約50マイクロリットル以下、約45マイクロリットル以下、約40マイクロリットル以下、約35マイクロリットル以下、約30マイクロリットル以下、約25マイクロリットル以下、約20マイクロリットル以下、約15マイクロリットル以下、約10マイクロリットル以下、約5マイクロリットル以下、又はこれらの終点の2つによって形成される任意の範囲の流体試料を保持するように構成されている、実施形態11のシステム。
【0019】
[0019] 実施形態13。流体ウェルは、約5マイクロリットルから約25マイクロリットル、約5マイクロリットルから約20マイクロリットル、約5マイクロリットルから約15マイクロリットル、又は約5マイクロリットルから約10マイクロリットルの範囲の流体試料を保持するように構成されている、実施形態11のシステム。
【0020】
[0020] 実施形態14。第1表面は支持体(又は「ネスト」)に含まれる、実施形態1から13のいずれか1つに記載のシステム。
【0021】
[0021] 実施形態15。支持体は、マイクロ流体デバイスを収容してインターフェースするように構成されたソケットを含む、実施形態14のシステム。
【0022】
[0022] 実施形態16。マイクロ流体デバイスが第1表面又は支持体と作用可能に結合されているときにマイクロ流体デバイスの一対の電極を横切ってバイアス電圧を印加するように構成された電気信号生成サブシステムを更に含む、実施形態1から15のいずれか1つに記載のシステム。
【0023】
[0023] 実施形態17。電気信号生成サブシステムは、マイクロ流体デバイスが第1表面又は支持体と作用可能に結合されているときに電極対を横切って印加されるバイアス電圧波形を生成するように構成された波形生成器を含む、実施形態16のシステム。
【0024】
[0024] 実施形態18。電気信号生成サブシステムは、波形生成器によって生成されたバイアス電圧波形を増幅するように構成された波形増幅回路を更に含む、実施形態17のシステム。
【0025】
[0025] 実施形態19。電気信号生成サブシステムは、バイアス電圧波形を測定するように構成されたオシロスコープを更に含み、任意で、測定によるデータは、フィードバックとして波形生成器に提供される、実施形態17又は18のシステム。
【0026】
[0026] 実施形態20。マイクロ流体デバイスが第1表面又は支持体と作用可能に結合されているときにマイクロ流体デバイスの温度を調整するように構成された熱制御サブシステムを更に含む、実施形態1から19のいずれかに記載のシステム。
【0027】
[0027] 実施形態21。熱制御サブシステムは、熱電発電モジュール、ペルチェ熱電装置、及び冷却ユニットを含み、熱電発電モジュールは、ペルチェ熱電装置の温度を調整するように構成されており、任意で、ペルチェ熱電装置は、第1表面と冷却ユニットの表面との間に配置されている、実施形態20のシステム。
【0028】
[0028] 実施形態22。前記冷却ユニットは、液体冷却装置と、冷却ブロックと、冷却された液体を液体冷却装置と冷却ブロックとの間で循環させるように構成された液体経路とを含み、冷却ブロックは、冷却ユニットの表面を含む、実施形態21のシステム。
【0029】
[0029] 実施形態23。ペルチェ熱電装置及び熱電発電モジュールは、支持体上に取り付けられている及び/又は支持体と一体化されている、実施形態21又は22のシステム。
【0030】
[0030] 実施形態24。支持体は、電気信号生成サブシステム及び熱電発電モジュールの一方又は両方を制御するマイクロプロセッサを更に含む、実施形態14から23のいずれかに記載のシステム。
【0031】
[0031] 実施形態25。支持体はプリント回路基板(PCB)を含み、電気信号生成サブシステム、熱電発電モジュール、及びマイクロプロセッサのうちの少なくとも1つは、PCB上に取り付けられている及び/又はPCBと一体化されている、実施形態24のシステム。
【0032】
[0032] 実施形態26。マイクロプロセッサと作用可能に結合された外部計算装置を更に含み、任意で、外部計算装置は、オペレータ入力を受け取り、オペレータ入力を処理してマイクロプロセッサに伝送し、電気信号生成サブシステム及び熱制御サブシステムの一方又は両方を制御するように構成されたグラフィカルユーザインターフェースを含む、実施形態24又は25のシステム。
【0033】
[0033] 実施形態27。マイクロプロセッサは、電気信号生成サブシステム及び熱制御サブシステムの一方又は両方から検出又は受信されたデータ又は情報に基づいて検出又は受信或いは計算されたデータ及び/又は情報を外部計算装置に伝送するように構成されている、実施形態26のシステム。
【0034】
[0034] 実施形態28。マイクロプロセッサ及び/又は外部計算装置は、マイクロ流体デバイスが支持体と作用可能に結合されているときにマイクロ流体デバイスの電極を横切る電気回路のインピーダンスを測定及び/又は監視するように構成されている、実施形態16又は27のシステム。
【0035】
[0035] 実施形態29。マイクロプロセッサ及び/又は外部計算装置は、電気回路の測定された及び/又は監視されたインピーダンスの検出された変化に基づいて流体経路の流量を決定するように構成されており、流体経路は、マイクロ流体デバイス内のマイクロ流体回路の少なくとも一部を含む、実施形態28のシステム。
【0036】
[0036] 実施形態30。マイクロプロセッサ及び/又は外部計算装置は、電気回路の測定された及び/又は監視されたインピーダンスの検出された変化に基づいてマイクロ流体デバイスの内部チャンバの高さを決定するように構成されている、実施形態28のシステム。
【0037】
[0037] 実施形態31。マイクロプロセッサ及び/又は外部計算装置は、電気回路の測定された及び/又は監視されたインピーダンスの検出された変化に基づいて、マイクロ流体デバイスのマイクロ流体回路内に含まれる化学物質及び/又は生物学的物質の1つ以上の特性を決定するように構成されている、実施形態28のシステム。
【0038】
[0038] 実施形態32。マイクロ流体デバイスが第1表面(又は支持体)と作用可能に結合されているときにマイクロ流体デバイス上に構造化光を放射するように構成された光変調サブシステムを更に含む、実施形態1から31のいずれか1つに記載のシステム。
【0039】
[0039] 実施形態33。第1表面、支持体、及び/又は光変調サブシステムは、光学顕微鏡に取り付けられるように構成されている、実施形態1から32のいずれか1つに記載のシステム。
【0040】
[0040] 実施形態34。第1表面、支持体、及び/又は前記光変調サブシステムは、光学顕微鏡の一体構成要素である、実施形態1から32のいずれかに記載のシステム。
【0041】
[0041] 実施形態35。第1の流体ライン及び第2の流体ラインの一方又は両方と作用可能に結合された少なくとも1つの(例えば、2つ以上、そのうちの1つがポンプであり得る)流れ制御器を更に含む、実施形態6から34のいずれか1つに記載のシステム。
【0042】
[0042] 実施形態36。少なくとも1つの流れ制御器は、少なくとも1つの流れ制御器に流体を選択的に流すために、第1の流体ライン及び/又は第2の流体ラインと作用可能に結合された第1の熱制御式流れ制御器を含む、実施形態35のシステム。
【0043】
[0043] 実施形態37。第1の熱制御式流れ制御器は、第1の流体ラインの流れセグメントに含まれる流体の温度を制御可能に低下又は上昇させるように構成されたペルチェ熱電装置を含み、第1の流体ラインの流れセグメントに含まれる流体をそれぞれ凍結又は解凍するのに十分な程度に温度を低下又は上昇させ、それにより流体が第1の流体ラインを通り、マイクロ流体デバイスの第1の流体入口/出口に流入すること又はマイクロ流体デバイスの第1の流体入口/出口から流出することを選択的に防止する又は可能にする、実施形態36のシステム。
【0044】
[0044] 実施形態38。前記第1の熱制御式流れ制御器は、第1の通路を有する第1のハウジングであって、第1の通路内に第1の流体ラインの流れセグメントが延び、ペルチェ熱電装置を更に含むハウジング、及び/又は第1の流体ラインの流れセグメントを少なくとも部分的に取り囲む絶縁材料と、任意で、第1の流体ラインの流れセグメントと結合された第1の熱伝導性インターフェースとを更に含む、実施形態37のシステム。
【0045】
[0045] 実施形態39。少なくとも1つの流れ制御器は、流体を選択的に流すために、第1の流体ライン及び第2の流体ラインのうちの他方と作用可能に結合された第2の熱制御式流れ制御器を含む、実施形態36から38のいずれか1つに記載のシステム。
【0046】
[0046] 実施形態40。第2の熱制御式流れ制御器は、第2の流体ラインの流れセグメントに含まれる流体の温度を制御可能に低下又は上昇させるように構成されたペルチェ熱電装置を含み、第2の流体ラインの流れセグメントに含まれる流体をそれぞれ凍結又は解凍するのに十分な程度に温度を低下又は上昇させ、それによりマイクロ流体デバイスの第2の流体入口/出口から流体が流出すること又はマイクロ流体デバイスの第2の流体入口/出口に流体が流入することを選択的に防止する又は可能にする、実施形態39のシステム。
【0047】
[0047] 実施形態41。前記第2の熱制御式流れ制御器は、第2の通路を有する第2のハウジングであって、第2の通路内に第2の流体ラインの流れセグメントが延び、ペルチェ熱電装置を更に含むハウジング、及び/又は第2の流体ラインの流れセグメントを少なくとも部分的に取り囲む絶縁材料と、任意で、第1の流体ラインの流れセグメントと結合された第1の熱伝導性インターフェースとを更に含む、実施形態40のシステム。
【0048】
[0048] 実施形態42。少なくとも1つの流れ制御器は、第1の流体ラインと第2の流体ラインとに作用可能に結合された熱制御式流れ制御器を含み、熱制御式流れ制御器は、第1の流体ライン及び第2の流体ラインの流れセグメントの温度を制御可能に低下又は上昇させるように構成された少なくとも1つの流れ制御ペルチェ熱電装置であって、第1の流体ライン及び第2の流体ラインの流れセグメントに含まれる流体をそれぞれ凍結又は解凍するのに十分な程度に温度を低下又は上昇させ、それにより流体が第1の流体ラインを通り、マイクロ流体デバイスの第1の流体入口/出口に流入すること、及びマイクロ流体デバイスの第2の流体入口/出口から流出し、第2の流体ラインを通ること、又はこの逆を選択的に防止する又は可能にする、少なくとも1つの流れ制御ペルチェ熱電装置を含む、実施形態35のシステム。
【0049】
[0049] 実施形態43。少なくとも1つの流れ制御ペルチェ熱電装置は、第1の流体ラインの流れセグメントに熱的に結合された第1の流れ制御ペルチェ熱電装置と第2の流体ラインの流れセグメントに熱的に結合された第2の流れ制御ペルチェ熱電装置とを少なくとも含む、実施形態42のシステム。
【0050】
[0050] 実施形態44。熱制御式流れ制御器は、第1の流体ラインの流れセグメントが延びる第1の通路と流出流体ラインの流れセグメントが延びる第2の通路とを有するハウジングを更に含み、少なくとも1つの流れ制御ペルチェ熱電装置はハウジング内に取り付けられている、実施形態42又は43のシステム。
【0051】
[0051] 実施形態45。ハウジングは断熱チャンバを画定する、実施形態44のシステム。
【0052】
[0052] 実施形態46。前記光変調サブシステムは、デジタルミラーデバイス(DMD)又はマイクロシャッタアレイシステム(MSA)を含む、実施形態32から45のいずれかに記載のシステム。
【0053】
[0053] 実施形態47。前記光変調サブシステムは、液晶ディスプレイ(LCD)、液晶オンシリコンデバイス(LCOS)、強誘電性液晶オンシリコンデバイス(FLCOS)、又は走査型レーザ装置を含む、実施形態32から45のいずれかに記載のシステム。
【0054】
[0054] 実施形態48。前記光変調サブシステムは多入力ライトパイプを含み、前記ライトパイプは、以下を含む、実施形態32から47のいずれかに記載のシステム。
【0055】
[0055] ハウジングは、それぞれの光源から放射された光を受け取るようにそれぞれ構成された複数の入力アパーチャを有し、ハウジングはさらに、入力アパーチャを介して受け取られた光を放射するように構成された出力アパーチャと;ハウジング内を第1の入力アパーチャから出力アパーチャまで延びる第1の光伝播経路と;第1の光伝搬経路を横切って斜めの角度でハウジング内に配置された第1のダイクロイックフィルタであって、第1の光アパーチャを介して受け取られた光が、第1の光伝搬経路に沿って出力アパーチャまで伝搬する際に第1のダイクロイックフィルタを通過するように構成かつ配置された第1のダイクロイックフィルタと;ハウジング内を第2の入力アパーチャから第1のダイクロイックフィルタまで延びる第2の光伝播経路であって、第2の伝播経路と第1のダイクロイックフィルタは、第2の入力アパーチャを介して受け取られた光が第2の光伝播経路に沿って伝播し、第1のダイクロイックフィルタによって出力アパーチャの方へ第1の光伝播経路上に反射されるように構成されかつ寸法を決められた第2の伝播経路を有し、各入力アパーチャ、第1および第2の光伝搬経路、第1のダイクロイックフィルタ、および出力アパーチャは、少なくとも1つの光源によって放射され、第1および第2の入力アパーチャの少なくとも1つを介して受け取られた光が実質的に均一の強度で出力アパーチャから放射されるようにサイズ決めされ、寸法決めされ、構成される。
【0056】
[0056] 実施形態49。ライトパイプは、第1のダイクロイックフィルタと出力アパーチャとの間で第1の光伝搬経路を横切って斜めの角度でハウジング内に配置された第2のダイクロイックフィルタであって、第1および第2の光アパーチャを介して受け取られた光が、その受け取られた光が第1の光伝播経路に沿って出力アパーチャまで伝播するとき第2のダイクロイックフィルタを通過するように構成かつ寸法決めされた第2のダイクロイックフィルタと、第3入力アパーチャから第2のダイクロイックフィルタまでハウジング内を延びる第3の光伝播経路とを含み、第3の伝播経路および第2のダイクロイックフィルタは、第3の入力アパーチャを介して受け取られた光が第3の光伝播経路に沿って伝播し、第2のダイクロイックフィルタによって出力アパーチャの方へ第1の光伝搬経路上に反射されるように構成され寸法決めされる、実施形態48のシステム。
【0057】
[0057] 実施形態50。前記光変調サブシステムは、ライトパイプの第1の入力アパーチャに光学的に結合された出力を有する第1の光源を更に含む、実施形態48のシステム。
【0058】
[0058] 実施形態51。第1の光源は、複数の第1の光源放射素子を含む、実施形態50のシステム。
【0059】
[0059] 実施形態52。複数の第1の光源放射素子の1つ以上は第1の狭帯域波長で光を放射する、実施形態51のシステム。
【0060】
[0060] 実施形態53。光変調サブシステムは、ライトパイプの第2の入力アパーチャに光学的に結合された出力を有する第2の光源を更に含む、実施形態50から52のいずれか1つに記載のシステム。
【0061】
[0061] 実施形態54。第2の光源は複数の第2の光源放射素子を含む、実施形態53のシステム。
【0062】
[0062] 実施形態55。複数の第2の光源放射素子の1つ以上は、第1の狭帯域波長で又は第1の狭帯域波長と異なる第2の狭帯域波長で光を放射する、実施形態54のシステム。
【0063】
[0063] 実施形態56。複数の第1の光源放射素子及び複数の第2の光源放射素子は、第1の狭帯域波長で光を放射する1つ以上の光放射素子の第1のサブセットと、第1の狭帯域波長と異なる第2の狭帯域波長で光を放射する1つ以上の光放射素子の第2のサブセットとを集合的に含み、その結果、第1の狭帯域波長及び第2の狭帯域波長の一方又は両方を含む光が、複数の第1の光放射素子及び複数の第2の光源放射素子の一方又は両方を選択的に活性化することによってライトパイプ出力アパーチャから制御可能に放射され得る、実施形態54のシステム。
【0064】
[0064] 実施形態57。光放射素子の第1のサブセットによって放射され、第1及び/又は第2の入力アパーチャを介して受け取られた光が、第1の実質的に均一な強度でライトパイプの出力アパーチャから放射され、光放射素子の第2のサブセットによって放射され、第1及び/又は第2の入力アパーチャを介して受け取られた光が第2の実質的に均一な強度で出力アパーチャから放射される、実施形態56のシステム。
【0065】
[0065] 実施形態58。第1の実質的に均一な強度は第2の実質的に均一な強度と異なる、実施形態57のシステム。
【0066】
[0066] 実施形態59。第1の狭帯域波長及び第2の狭帯域波長は、約380nm、約480nm、及び約560nmからなる群からそれぞれ選択される、実施形態56から58のいずれかに記載のシステム。
【0067】
[0067] 実施形態60。第1の光源の複数の光放射素子は、光放射素子の第1のサブセットの全てを含む又は光放射素子の第1のサブセットの全てからなり、第2の光源の複数の光放射素子は、光放射素子の第2のサブセットの全てを含む又は光放射素子の第2のサブセットの全てからなる、実施形態43から46のいずれかに記載のシステム。
【0068】
[0068] 実施形態61。前記光変調サブシステムは、ライトパイプの第3の入力アパーチャに光学的に結合された出力を有する第3の光源を更に含む、実施形態40から47のいずれかに記載のシステム。
【0069】
[0069] 実施形態62。第3の光源は複数の第3の光源放射素子を含む、実施形態61のシステム。
【0070】
[0070] 実施形態63。複数の第3の光源放射素子の1つ以上は、第1の狭帯域波長で、第2の狭帯域波長で、又は第1の狭帯域波長及び第2の狭帯域波長のそれぞれと異なる第3の狭帯域波長で光を放出する、実施形態62のシステム。
【0071】
[0071] 実施形態64。複数の第1の光源放射素子、複数の第2の光源放射素子、および複数の第3の光源放射素子は、第1の狭帯域波長で光を放射する1つまたは複数の光放射素子の第1のサブセットと、第1の狭帯域波長とは異なる第2の狭帯域波長で光を放射する1つまたは複数の光放射素子の第2のサブセットと、第1および第2の狭帯域波長のそれぞれと異なる第3の狭帯域波長で光を放射する1つまたは複数の光放射素子の第3のサブセットとを集合的に含み、その結果、第1の狭帯域波長、第2の狭帯域波長、および第3の狭帯域波長のうちの1つまたは複数を含む光が、光放射素子の第1、第2、および第3のサブセットの1つまたは複数を選択的に活性化することによってライトパイプ出力アパーチャから制御可能に放射され得る、実施形態62のシステム。
【0072】
[0072] 実施形態65。光放射素子の第1のサブセットによって放射され、第1、第2および第3の入力アパーチャのいずれかを介して受け取られた光は、第1の実質的に均一な強度で出力アパーチャから放射され、光放射素子の第2のサブセットによって放射され第1、第2および第3の入力アパーチャのいずれかを介して受け取られた光は、第2の実質的に均一な強度で出力アパーチャから放射され、光放射素子の第3のサブセットによって放射され第1、第2および第3の入力アパーチャのいずれかを介して受け取られた光は、第3の実質的に均一な強度で出力アパーチャから放射される、実施形態64のシステム。
【0073】
[0073] 実施形態66。第1の実質的に均一な強度は、第2の実質的に均一な強度および第3の実質的に均一な強度の一方または両方と異なっている、実施形態65のシステム。
【0074】
[0074] 実施形態67。第1の狭帯域波長は約380nmであり、第2の狭帯域波長は約480nmであり、第3の狭帯域波長は約560nmである、実施形態64から66のいずれかに記載のシステム。
【0075】
[0075] 実施形態68。第1の光源の複数の光放射素子は、光放射素子の第1のサブセットの全てを含む又は光放射素子の第1のサブセットの全てからなり、第2の光源の複数の光放射素子は、光放射素子の第2のサブセットの全てを含む又は光放射素子の第2のサブセットの全てからなり、第3の光源の複数の光放射素子は、光放射素子の第3のサブセットの全てを含む又は光放射素子の第3のサブセットの全てからなる、実施形態64から67のいずれかに記載のシステム。
【0076】
[0076] 実施形態69。マイクロ流体デバイスを作動させるように構成された顕微鏡であって、マイクロ流体デバイスを保持しマイクロ流体デバイスと作用可能に結合するように構成された支持体(例えば、実施形態14から31又は35から45のいずれか1つに記載の支持体)と、構造化光を放射するように構成された光変調サブシステムと、光学系とを含み、マイクロ流体デバイスが支持体によって保持され支持体と作用可能に結合されているとき、光学系は、(1)光変調サブシステムによって放射された構造化光をマイクロ流体デバイスの少なくとも第1の領域に集束させ、(2)非構造化光源によって放射された非構造化光をマイクロ流体デバイスの少なくとも第2の領域に集束させ、(3)マイクロ流体デバイスからの反射光及び/又は放射光を捉え、捉えた光を検出器に向けるように構成されている、顕微鏡。
【0077】
[0077] 実施形態70。検出器を更に含む、実施形態69の顕微鏡。
【0078】
[0078] 実施形態71。検出器はアイピース及び/又は結像装置を含む、実施形態69又は70の顕微鏡。
【0079】
[0079] 実施形態72。光変調サブシステムは、デジタルミラーデバイス(DMD)又はマイクロシャッタアレイシステム(MSA)を含む、実施形態69~71のいずれかに記載の顕微鏡。
【0080】
[0080] 実施形態73。光変調サブシステムは、液晶ディスプレイ(LCD)、液晶オンシリコンデバイス(LCOS)、強誘電性液晶オンシリコンデバイス(FLCOS)、又は走査型レーザ装置を含む、実施形態69~71のいずれかに記載の顕微鏡。
【0081】
[0081] 実施形態74。前記光変調サブシステムを制御するための制御器を更に含む、実施形態69~73のいずれかに記載の顕微鏡。
【0082】
[0082] 実施形態75。前記光学系は、前記構造化光を前記マイクロ流体デバイスの前記第1の領域に及び/又は前記非構造化光を前記マイクロ流体デバイスの前記第2の領域に集束させるように構成された対物レンズを含み、前記対物レンズは、10x対物レンズ、5x対物レンズ、4x対物レンズ、及び2x対物レンズを含む群から選択される、実施形態69から74のいずれかに記載の顕微鏡。
【0083】
[0083] 実施形態76。前記光学系は、前記光変調サブシステムによって放射された(及び前記マイクロ流体デバイスによって反射された)構造化光が検出器に到達することを実質的に防止するように構成されたダイクロイックフィルタを含む、実施形態69から75のいずれかに記載の顕微鏡。
【0084】
[0084] 実施形態77。前記光学系は、光変調サブシステムによって放射された(及び前記マイクロ流体デバイスによって反射された)可視構造化光の量と、検出器に到達した非構造化光源によって放射された(及び前記マイクロ流体デバイスによって反射された)可視非構造化光の量とを釣り合わせるように構成されたダイクロイックフィルタを含む、実施形態69から75のいずれかに記載の顕微鏡。
【0085】
[0085] 実施形態78。前記光変調サブシステムは構造化白色光を放射する、実施形態69から75のいずれかに記載の顕微鏡。
【0086】
[0086] 実施形態79。前記光変調サブシステムは水銀又はキセノンアークランプを含む、実施形態69から75のいずれかに記載の顕微鏡。
【0087】
[0087] 実施形態80。前記光変調サブシステムは1つ以上のLEDを含む、実施形態69から75のいずれかに記載の顕微鏡。
【0088】
[0088] 実施形態81。前記非構造化光源は1つ以上のLEDを含む、実施形態69から75のいずれかに記載の顕微鏡。
【0089】
[0089] 実施形態82。前記非構造化光源は約495nm以下の波長を有する光を放出する、実施形態81の顕微鏡。
【0090】
[0090] 実施形態83。前記非構造化光源は青色光を放射する、実施形態81の顕微鏡。
【0091】
[0091] 実施形態84。前記光学系は、495nmより長い波長を有する可視光を少なくとも部分的に濾波するように構成されたダイクロイックフィルタを含む、実施形態82又は83の顕微鏡。
【0092】
[0092] 実施形態85。前記非構造化光源は、約650nm以上の波長を有する光を放射する、実施形態81の顕微鏡。
【0093】
[0093] 実施形態86。前記非構造化光源は赤色光を放出する、実施形態81の顕微鏡。
【0094】
[0094] 実施形態87。前記光学系は、650nmより短い波長を有する可視光を少なくとも部分的に濾波するように構成されたダイクロイックフィルタを含む、実施形態85又は86の顕微鏡。
【0095】
[0095] 実施形態88。前記支持体は、前記装置が前記支持体によって保持され前記支持体と作用可能に結合されているときに、前記マイクロ流体デバイス内の一対の電極を横切ってバイアス電圧を印加するように構成された一体型電気信号生成サブシステムを含む、実施形態69から87のいずれかに記載の顕微鏡。
【0096】
[0096] 実施形態89。前記支持体は、前記装置が前記支持体前記支持体によって保持され前記支持体前記支持体と作用可能に結合されているときに、前記マイクロ流体デバイスの温度を調整するように構成された熱制御サブシステムを含む、実施形態69から88のいずれかに記載の顕微鏡。
【0097】
[0097] 実施形態90。流体試料を分析する方法であって、マイクロ流体デバイスを、マイクロ流体デバイスを作動させるためのシステムに接続することであって、システムは、マイクロ流体デバイスとインターフェースし作用可能に結合するように構成された第1表面と、第1表面上にマイクロ流体デバイスを保持するように構成された蓋であって、マイクロ流体デバイスの第1の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第1の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第1の流体入口/出口から流出させるように構成された第1の流体ポートを有する第1の蓋部分と、マイクロ流体デバイスの第2の流体入口/出口と作用可能に結合し流体媒体をマイクロ流体デバイスの第2の流体入口/出口に流入させる及び/又はマイクロ流体デバイスの第2の流体入口/出口から流出させるように構成された第2の流体ポートを有する第2の蓋部分とを含み、第2の蓋部分は第1の蓋部分から分離可能であり、カバーの第2の部分の第2の流体ポートがマイクロ流体デバイスの第2の流体入口/出口と作用可能に結合された閉位置と第2の流体入口/出口を含むマイクロ流体デバイスの一部分が露出する開位置との間で移動可能である、蓋とを含む、ことと、第2の蓋部分を閉位置から開位置に移動させ、それによりマイクロ流体デバイスの第2の流体入口/出口を露出させることと、流体試料をマイクロ流体デバイスの第2の流体入口/出口と流体連通させることと、第1の流体ラインに吸引を印加し、それにより流体試料の少なくとも一部をマイクロ流体デバイスに引き込むことと、マイクロ流体デバイスに引き込まれた流体試料の少なくとも一部を処理することとを含む、方法。
【0098】
[0098] 実施形態91。閉位置の第2の蓋部分が以前に占めていた位置に挿入物を配置することであって、挿入物は、マイクロ流体デバイスの第2の流体入口/出口と流体的に連通するように構成された流体ウェルを含む、ことを更に含み、流体試料を供給することは、挿入物の流体ウェルに流体試料を導入することを含む、実施形態90の方法。
【0099】
[0099] 実施形態92。システムは、実施形態1から68のいずれか1つに記載のシステムである。実施形態90又は91の方法。
【0100】
[00100] 実施形態93。システムは、実施形態69から89のいずれか1つの顕微鏡である、実施形態90又は91の方法。
【0101】
[00101] 実施形態94。予め選択した量(例えば、約2マイクロリットルから約10マイクロリットル又は約3マイクロリットルから約7マイクロリットル)の流体試料をマイクロ流体チップに引き込むのに十分な吸引が印加され、この時点で吸引は停止される、実施形態90から93のいずれか1つの方法。
【0102】
[00102] 実施形態95。流体試料は微小物体、任意で、生物学的微小物体(例えば、細胞)を含む、実施形態90から94のいずれか1つの方法。
【0103】
[00103] 実施形態96。マイクロ流体デバイスは、(i)複数のマイクロ流体チャネルを有する流れ領域と、(ii)隔離ペン(sequestration pen)(例えば、それぞれの全内容が参照によって本明細書に援用されるPCT公報、国際公開第2014/070873号及び国際公開第2015/061497号に記載されているような)などの複数のチャンバであって、複数のチャンバの各チャンバは複数のマイクロ流体チャネルのうちの1つに流体的に接続されている、複数のチャンバとを含む、実施形態90から95のいずれか1つの方法。
【0104】
[00104] 実施形態97。流体試料の少なくとも一部を処理することは、マイクロ流体チップ内に含まれる試料を撮像することを含む、実施形態90から96のいずれか1つの方法。
【0105】
[00105] 実施形態98。撮像することは、流体試料の少なくとも一部内に含まれる微小物体を撮像することを含む、実施形態97の方法。
【0106】
[00106] 実施形態99。流体試料の少なくとも一部を処理することは、流体試料の少なくとも一部内に含まれる微小物体のアッセイを実施することを含む、実施形態96の方法。
【0107】
[00107] 実施形態100。アッセイは、細胞分泌物及び/又は細胞により放出された核酸の検出を提供する(例えば、全内容が参照によって本明細書に援用されるPCT公報、国際公開第2014/070783号、国際公開第2015/061497号、国際公開第2015/061506号、国際公開第2015/095623号、国際公開第2017/181135号、国際公開第2018/064640号、国際公開第2018/076024号、国際公開第2019/075476号、及び国際公開第2019/133874号、又はPCT出願番号、国際出願PCT/US2019/041692号及び国際出願PCT/US2019/024623号に記載されているアッセイのいずれか)、実施形態99の方法。
【0108】
[00108] 実施形態101。マイクロ流体デバイスを作動させるためのシステムであって、マイクロ流体デバイスを保持しマイクロ流体デバイスをと作用可能に結合するように構成された支持体と、それぞれ、マイクロ流体デバイスが前記支持体によって保持され前記支持体と作用可能に結合されているときに、マイクロ流体デバイスの入口ポートに流体的に結合されるように構成された遠位端を有する第1の流体ラインと、マイクロ流体デバイスの出口ポートに流体的に結合されるように構成された近位端を有する第2の流体ラインと、第1の流体ライン及び第2の流体ラインの一方又は両方と作用可能に結合された少なくとも1つの(例えば、2つ以上、そのうちの1つがポンプであり得る)流れ制御器であって、少なくとも1つの流れ制御器は、少なくとも1つの流れ制御器に流体を選択的に流すために、前記第1の流体ライン及び前記第2の流体ラインの一方又は両方の流れセグメントと作用可能に結合された第1の熱制御式流れ制御器を含む、少なくとも1つの流れ制御器と、マイクロ流体デバイスが支持体によって保持され支持体と作用可能に結合されているときに、マイクロ流体デバイス上に構造化光を放射するように構成された光変調サブシステムとを含む、システム。
【0109】
[00109] 実施形態102。マイクロ流体デバイスが支持体によって保持され支持体と作用可能に結合されているときに、マイクロ流体デバイスの一対の電極を横切ってバイアス電圧を印加するように構成された電気信号生成サブシステムを更に含む、実施形態101のシステム。
【0110】
[00110] 実施形態103。実施形態1から68及び116から122のいずれか1つに記載のシステムの要素(例えば、単独で又は組み合わせで)又は実施形態69から89のいずれか1つの顕微鏡のいずれかを含む、実施形態101又は102のシステム。
【0111】
[00111] 実施形態104。前記第1の熱制御式流れ制御器は、第1の流体ライン及び第2の流体ラインの流れセグメントと結合された熱伝導性インターフェースと、熱伝導性インターフェースに接触し、第1の流体ライン及び/又は第2の流体ラインの流れセグメントに含まれる流体の温度を制御可能に低下又は上昇させるように構成されたペルチェ熱電装置とを更に含む、実施形態37又は101から103のシステム。
【0112】
[00112] 実施形態105。第1の流体ライン及び/又は第2の流体ラインの流れセグメントに含まれる流体をそれぞれ凍結又は解凍するのに十分な程度に温度を低下又は上昇させ、それによりマイクロ流体デバイスの第1の流体入口/出口及び/若しくは第2の流体入口/出口から流体が流出すること又はマイクロ流体デバイスの第1の流体入口/出口及び/若しくは第2の流体入口/出口に流体が流入することを選択的に防止する又は可能にする、実施形態104のシステム。
【0113】
[00113] 実施形態106。熱伝導性インターフェースはサーミスタを含む、実施形態104又は105のシステム。
【0114】
[00114] 実施形態107。サーミスタは、第1の流体ラインの流れセグメントと第2の流体ラインの流れセグメントとの間に位置する領域内に配置されている、実施形態106のシステム。
【0115】
[00115] 実施形態108。熱伝導性インターフェースは、少なくとも2つのペルチェ熱電装置の間に位置する、実施形態104から107のいずれか1つに記載のシステム。
【0116】
[00116] 実施形態109。第1の熱制御式流れ制御器は、少なくとも2つのペルチェ熱電装置の1つから熱を奪うための導管を更に含む、実施形態108のシステム。
【0117】
[00117] 実施形態110。第1の熱制御式流れ制御器はヒートシンクを更に含む、実施形態104から109のいずれか1つに記載のシステム。
【0118】
[00118] 実施形態111。熱伝導性インターフェースは、ペルチェ熱電装置の上面に直接接触する(例えば、載る)ように構成されている、実施形態104から110のいずれか1つに記載のシステム。
【0119】
[00119] 実施形態112。第1の熱制御式流れ制御器は、第1の流体ライン及び第2の流体ラインの流れセグメントを熱伝導性インターフェースに挿入するためのガイドを含むカバーを含む、実施形態104から111のいずれか1つに記載のシステム。
【0120】
[00120] 実施形態113。熱制御式流れ制御器の内部に位置するバリア材料を更に含み、バリア材料(例えば、絶縁ポリマー又はスプレーフォーム)は、氷形成を防止するのに十分である、実施形態104から112のいずれか1つに記載のシステム。
【0121】
[00121] 実施形態114。バリア材料は、第1の熱制御式流れ制御器のカバー内に存在していたであろう空いた空間を実質的に埋める、実施形態113のシステム。
【0122】
[00122] 実施形態115。第1の熱制御式流れ制御器は、マイクロ流体デバイス(例えば、単一のマイクロ流体デバイス)に流入及び流出する流体を制御するように構成されている、実施形態104から114のいずれか1つに記載のシステム。
【0123】
[00123] 実施形態116。支持体は、第2の蓋部分が閉位置にあるときを判定するように構成されたセンサを含む、実施形態1から68のいずれか1つに記載のシステム。
【0124】
[00124] 実施形態117。センサは更に、挿入物がマイクロ流体デバイスとインターフェースしたときを判定するように構成されている、実施形態116のシステム。
【0125】
[00125] 実施形態118。センサは、遮断されて第2の蓋部分が閉位置にあるときを示すように構成された第1の光スイッチを含む、実施形態116又は117に記載のシステム。
【0126】
[00126] 実施形態119。センサは、遮断されて挿入物がマイクロ流体デバイスとインターフェースしたときを示すように構成された第2の光スイッチを含む、実施形態116から118のいずれか1つに記載のシステム。
【0127】
[00127] 実施形態120。センサは第1のエキステンダを含み、第1のエキステンダは、第2の蓋部分に含まれる第1のアクチュエータにより、第1の光スイッチに延びることで、第1の光スイッチを遮断するように構成されている、実施形態116から119のいずれか1つに記載のシステム。
【0128】
[00128] 実施形態121。センサは第2のエキステンダを含み、第2のエキステンダは、挿入物に含まれる第2のアクチュエータにより、第2の光スイッチに延びることで、第2の光スイッチを遮断するように構成されている、実施形態116から120のいずれか1つに記載のシステム。
【0129】
[00129] 実施形態122。センサは第2の蓋部分が開位置にあるときに検知し、挿入物は、第1の光スイッチ及び第2の光スイッチの光路が遮断されていないときにはマイクロ流体デバイスとインターフェースしない、実施形態116から121のいずれか1つに記載のシステム。
【0130】
[00130] 実施形態123。マイクロ流体デバイスは、(i)複数のマイクロ流体チャネルを有する流れ領域と、(ii)複数のチャンバであって、複数のチャンバの各チャンバは複数のマイクロ流体チャネルのうちの1つに流体的に接続されている、複数のチャンバとを含む、実施形態90又は91の方法。
【0131】
[00131] 実施形態124。少なくとも4x10^6のインポート細胞密度がもたらされる、実施形態123の方法。
【0132】
[00132] 開示されるシステム、顕微鏡、及び方法の他の態様及び利点が、以下の発明を実施するための形態及び添付の特許請求の範囲において明らかになるであろう。
【0133】
[00133] 図面の簡単な説明
図面は、開示されたシステムの実施形態の設計および有用性を示し、同様の要素は共通の参照番号によって参照される。これらの図面は必ずしも縮尺通りに描かれていない。上記のおよび他の利点および目的がどのようにして得られるかをより良く理解するために、添付の図面に示されている実施形態のより詳細な説明が提供される。これらの図面は、開示されたシステムの典型的な実施形態のみを示しているので、その範囲を限定するものと見なすべきではない。
【図面の簡単な説明】
【0134】
【
図1A】[00134]いくつかの実施形態によるマイクロ流体デバイスを保持するように構成された支持体の斜視図である。
【
図1B】[00135]
図1Aに示される支持体の概略図であり、分かりやすくするためにカバーが取り外されている。
【
図2】[00136]本システムのいくつかの実施形態による電気信号生成サブシステムの要素の概略図である。
【
図3】[00137]本システムのいくつかの実施形態による熱制御サブシステムの概略図である。
【
図4】[00138]本システムのいくつかの実施形態による熱制御サブシステム中の熱制御フィードバック用に使用されるアナログ回路を示す回路図である。
【
図5】[00139]本システムのいくつかの実施形態による電気信号生成サブシステムおよび熱制御サブシステムの両方を制御するために使用されるグラフィカルユーザインターフェース(GUI)を示す例示的なスクリーンショットである。
【
図6】[00140]本システムのいくつかの実施形態によるマイクロ流体デバイスを作動させるためのシステムの概略図である。
図6に示されるシステムは、様々なビームスプリッタおよび/またはダイクロイックフィルタ、第1の光源、第2の光源、光変調サブシステム、対物レンズおよび検出器を有する光学系含む。
【
図7A】[00141]本システムのいくつかの実施形態による光学系中の構造化光経路の概略図である。
【
図7B】[00141]本システムのいくつかの実施形態による光学系中の結像経路の概略図である。
【
図8A】[00142]光の口径食を補償するために構造化光をどのように使用できるかを示す図の1つであり、
図8Aは試料面で測定された光の強度が視野を横切ってどのように変化し得るかを示す。
【
図8B】[00142]光の口径食を補償するために構造化光をどのように使用できるかを示す図の1つであり、
図8Bは光変調サブシステムからの光強度出力を制御するために使用可能な反転された機能を示す。
【
図8C】[00142]光の口径食を補償するために構造化光をどのように使用できるかを示す図の1つであり、
図8Cは、この機能が用いられない場合には
図8Aに示される光強度のパターンを生成するであろう光源からの光強度出力を制御するために
図8Bに示されるような反転された機能が使用されるときの試料面で測定された光強度を示す。
【
図9】[00143]本システムのいくつかの実施形態によるインピーダンス測定回路の概略図である。
【
図10】[00144]本システムのいくつかの実施形態による凍結弁の側面図である。
【
図11】[00144]本システムのいくつかの実施形態による凍結弁の斜視図である。
【
図12】[00145]本システムのいくつかの実施形態による一対の凍結弁の斜視図である。示されるように、凍結弁はマイクロ流体デバイスを保持しているソケットの側面にある。
【
図13】[00146]
図12に示される凍結弁の様々な構成要素の斜視図である。
【
図14】[00147]本システムのいくつかの実施形態による凍結弁の斜視図である。
【
図15】[00148]
図14に示される凍結弁のカバーの上面斜視図である。
【
図16】[00148]
図14に示される凍結弁のカバーの底面斜視図である。
【
図17】[00149]
図14に示される凍結弁の底部の斜視図である。
【
図18】[00150]
図17に示される凍結弁の底部のエンクロージャの斜視図である。
【
図19】[00151]
図14に示される凍結弁のヒートシンクの斜視図である。
【
図20】[00152]
図14に示される凍結弁のスリーブの上面図である。
【
図21】[00152]
図14に示される凍結弁のスリーブの側面図である。
【
図22】[00153]本システムのいくつかの実施形態によるマイクロ流体デバイスを作動するためのシステムの概略図である。
図22に示されるシステムは、様々なビームスプリッタおよび/またはダイクロイックフィルタ、第1の光源、第2の光源、光変調サブシステム、対物レンズおよび検出器を有する光学系を含む。
【
図23】[00154]本システムのいくつかの実施形態による2つのLEDアレイの概略図である。
【
図24】[00155]本システムのいくつかの実施形態によるライトパイプ/オプティカルインテグレータの概略図である。
【
図25】[00156]本システムのいくつかの実施形態による光源の概略図である。
【
図26】[00157]本システムのいくつかの実施形態による多入力ライトパイプ/オプティカルインテグレータの概略図である。
【
図27】[00158]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋のいくつかの実施形態を示す。
【
図28】[00159]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋の他の実施形態を示す。
【
図29】[00160]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋の更に別の実施形態を示す。
【
図30A】[00161]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋の取り外し部品の実施形態を示す。
【
図30B】[00161]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋の取り外し部品の実施形態を示す。
【
図30C】[00161]マイクロ流体デバイスを作動させるために使用されるシステムの分割蓋の取り外し部品の実施形態を示す。
【
図31A】[00162]マイクロ流体デバイスに流体試料を追加する方法の実施形態を示す。
【
図31B】[00162]マイクロ流体デバイスに流体試料を追加する方法の実施形態を示す。
【
図31C】[00162]マイクロ流体デバイスに流体試料を追加する方法の実施形態を示す。
【
図32】[00163]システムの他の実施形態の凍結弁の正面図を示す。
【
図33】[00163]システムの他の実施形態の凍結弁の斜視図を示す
【
図34】[00164]システムの更に別の実施形態の凍結弁の斜視図を示す。
【
図35】[00164]システムの更に別の実施形態の凍結弁の斜視図を示す。
【
図36】[00165]分割蓋が閉位置にある、センサを含む分割蓋のいくつかの実施形態の斜視図を示す。
【
図37】[00166]分割蓋が開位置にある、センサを含む分割蓋のいくつかの実施形態の斜視図を示す。
【
図38】[00167]分割蓋とともに使用され得るセンサの分解された構成要素のいくつかの実施形態を示す。
【
図39】[00168]分割蓋とともに使用され得るセンサの組み立てられた構成要素のいくつかの実施形態を示す。
【
図40】[00169]分割蓋が閉位置にある、センサを含む分割蓋のいくつかの実施形態の側面図を示す。
【
図41】[00170]センサで使用され得る光スイッチのいくつかの実施形態の斜視図を示す。
【
図42】[00171]作動位置にあるセンサの実施形態の上面図を示す。
【
図43】[00171]作動位置にあるセンサの実施形態の上面図を示す。
【
図44】[00172]いくつかの例示的な実施形態におけるマイクロ流体デバイス内の細胞/ビーズ分布を示す。
【0135】
例示的な実施形態の詳細な説明
[00173] 本明細書は、本開示の例示的な実施形態および使用を記載する。しかしながら、本開示は、これらの例示的な実施形態および使用に限定されず、また、それら例示的な実施形態および使用が本明細書において機能するまたは記載される態様にも限定されない。さらに、図面は、単純化されたまたは部分的な図を示す場合があり、図中の要素の寸法は、誇張されている、または比例していない場合がある。加えて、用語「~の上に(on)」、「~に取り付けられている(attached to)」、「~に接続されている(connected to)」、「~に結合されている(coupled to)」または類似の語が本明細書で使用されている場合、一方の要素(例えば、材料、層、基板等)は、一方の要素が直接的に他の要素の上にある、に取り付けられている、に接続されている、または、に結合されているか、あるいは一方の要素と他方の要素との間に1つまたは複数の介在要素が存在しているかにかかわらず、他方の要素「の上に」ある、「に取り付けられている」、「に接続されている」、または「に結合されている」ことができる。同じく、特に断りのない限り、方向(例えば、~より上(above)、~より下(below)、頂部(top)、底部(bottom)、横(side)、上(up)、下(down)、~の下(under)、~の上(over)、より上(upper)、より下(lower)、水平(horizontal)、垂直(vertical)、「x」、「y」、「z」等)は、提示されている場合、相対的なものであり、限定としてではなく、単に例として、説明及び考察を容易にするために提示される。加えて、要素の列記(例えば、要素a、b、c)に言及する場合、そのような言及は、列記された要素のうちのいずれか1つを単独で、列記された要素の全てに満たない任意の組み合わせを、及び/又は列記された要素の全ての組み合わせを含むことを意図している。本明細書における段落の分割は単に精査を容易にするためのものであり、記載される要素のあらゆる組み合わせを限定するものではない。
【0136】
[00174] 本明細書で使用される場合、「実質的に(substantially)」は、意図された目的のために働くのに十分であることを意味する。用語「実質的に」は、したがって、当業者によって期待されるような絶対的または完全な状態、寸法、測定値、結果等からの軽微な、取るに足らない変化であるが全体のパフォーマンスにはほとんど影響を及ぼさない変化を許容する。数値、または数値として表現できるパラメータもしくは特性に関して使用される場合、「実質的に」は10パーセント以内を意味する。
【0137】
[00175] 「いくつか(ones)」という用語は1よりも多いことを意味する。本明細書で使用する場合、「複数」という用語は、2、3、4、5、6、7、8、9、10以上であり得る。
【0138】
[00176] 本明細書で使用する場合、μmは、マイクロメートルを意味し、μm3は、立方マイクロメートルを意味し、pLは、ピコリットルを意味し、nLは、ナノリットルを意味し、μL(又はuL)は、マイクロリットルを意味する。
【0139】
[00177] 本明細書で使用する場合、「マイクロ流体デバイス」又は「マイクロ流体装置」は、流体を保持するように構成された1つ以上の個別のマイクロ流体回路を含むデバイスであり、各マイクロ流体回路は、領域、流路、チャネル、チャンバ、及び/又はペンを含むがこれらに限定されない流体的に相互接続された回路要素と、流体(及び任意で、流体中に懸濁した微小物体)がマイクロ流体デバイスに流入すること及び/又はマイクロ流体デバイスから流出することを可能にするように構成された少なくとも1つのポートとを備える。典型的には、マイクロ流体デバイスのマイクロ流体回路は、マイクロ流体チャネルと少なくとも1つのチャンバとを含み得る流れ領域を含み、約1mL未満、例えば、約750、500、250、200、150、100、75、50、25、20、15、10、9、8、7、6、5、4、3、又は2μL未満の流体量を保持する。特定の実施形態では、マイクロ流体回路は、約1~2、1~3、1~4、1~5、2~5、2~8、2~10、2~12、2~15、2~20、5~20、5~30、5~40、5~50、10~50、10~75、10~100、20~100、20~150、20~200、50~200、50~250、又は50~300μLを保持する。マイクロ流体回路は、マイクロ流体デバイスの第1のポート(例えば入口)と流体的に接続された第1の端部と、マイクロ流体デバイスの第2のポート(例えば出口)と流体的に接続された第2の端部とを有するように構成されてもよい。いくつかの実施形態では、マイクロ流体デバイスは、2つより多いポート、例えば、3つ、4つ、5つ、6つ、又はそれより多いポートを有してもよく、典型的な例は、例えば、同じマイクロ流体デバイスの2つのマイクロ流体回路に流体的に接続するための2つの入口と2つの出口とを有し得る。
【0140】
[00178] マイクロ流体デバイスは、本明細書では「マイクロ流体チップ」又は「チップ」と呼ばれる場合がある。
【0141】
[00179] 本明細書で使用する場合、「マイクロ流体チャネル」又は「フローチャネル」は、水平寸法及び垂直寸法の両方よりも大幅に長い長さを有するマイクロ流体デバイスの流れ領域を指す。チャネルの長さは、チャネルの流路によって全般的に画定される。直線チャネルの場合、長さは、チャネルの「長手方向軸線」である。チャネルの「水平寸法」又は「幅」は、チャネルの長手方向軸線に垂直に方向付けられた横断面で見た場合の(又は、チャネルが湾曲している場合、横断面の平面におけるチャネルの流路に接線方向の軸線に垂直な)水平寸法である。チャネルの「垂直寸法」又は「高さ」は、チャネルの長手方向軸線に垂直に方向付けられた横断面で見た場合の(又は、チャネルが湾曲している場合、横断面の平面におけるチャネルの流路に接線方向の軸線に垂直な)垂直寸法である。
【0142】
[00180] フローチャネルは、例えば、水平寸法又は垂直寸法のいずれかの長さの少なくとも5倍、例えば、この長さの少なくとも10倍、この長さの少なくとも25倍、この長さの少なくとも100倍、この長さの少なくとも200倍、この長さの少なくとも500倍、この長さの少なくとも1,000倍、この長さの少なくとも5,000倍以上にされ得る。いくつかの実施形態では、フローチャネルの長さは、約100,000ミクロンから約500,000ミクロンであり、これらの間のあらゆる値を含む。いくつかの実施形態では、水平寸法は約100ミクロンから約1000ミクロン(例えば、約150から約500ミクロン)であり、垂直寸法は約25ミクロンから約200ミクロン(例えば、約40から約150ミクロン)である。フローチャネルは、マイクロ流体デバイスにおいて様々な異なる空間的構成を有してもよく、したがって、完全に線形の要素に限定されないことに留意されたい。例えば、フローチャネルは、以下の構成、すなわち、曲線、湾曲、螺旋、上方傾斜、下方傾斜、フォーク(例えば、複数の異なる流路)、及びこれらの任意の組み合わせを有する1つ以上の断面であってもよい、又はこのような断面を含んでもよい。加えて、フローチャネルは、その経路に沿って異なる断面積を有してもよく、フローチャネル内で所望の流体流を提供するために拡張及び収縮する。フローチャネルは弁を含んでもよく、弁は、マイクロ流体の技術分野において周知の任意のタイプのものであってよい。弁を含むマイクロ流体チャネルの例は、米国特許第6,408,878号及び同第9,227,200号に開示されており、これらはそれぞれ、参照によりその全体が本明細書に援用される。
【0143】
[00181] 流れ領域(例えばチャネル)又は他の回路要素(例えばチャンバ)を通る流体の流れの方向は、流れ領域又は回路要素の「上流」及び「下流」の向きに影響する。したがって、入口は上流位置にあり、出口は一般に下流位置にある。「入口」又は「出口」の名称は、デバイス内の流れを逆にすることによって又は1つ以上の別のアパーチャを空けることによって変更してもよいことは当業者には理解されるであろう。
【0144】
[00182] 本明細書で使用する場合、「明視野」照明及び/又は画像は、コントラストが視野内の物体による光の吸収によって形成される、広域スペクトル光源によるマイクロ流体視野の白色光照明を指す。
【0145】
[00183] 本明細書で使用する場合、「構造化光」は、1つ以上の照明効果を提供するように調整された投影光である。第1の照明効果は、以下でより詳細に記述するように、DEP(dielectrophoresis:誘電泳動)基板内のDEP力を活性化するために使用される、表面の隣接部分を照明することなく(又はその照明を少なくとも最小限にして)デバイスの表面の一部分を照明する投影光、例えば投影光パターンであり得る。構造化光パターンを使用してDEP力を活性化する場合、強度、例えば、DMD(Digital Mirror Device:デジタルミラーデバイス)などの構造化光変調器のデューティサイクルの変化を使用して、光活性化DEPアクチュエータに適用される光パワーを変更することができ、したがって、公称電圧又は周波数を変更することなくDEP力を変更することができる。構造化光によって生成され得る別の照明効果には、表面不規則性及び光投影自体に関連する不規則性、例えば照明野の縁でのフォールオフに関して補正され得る投影光を含む。構造化光は、典型的には、例えばデジタルミラーデバイス(DMD)、マイクロシャッタアレイシステム(MSA)、又は液晶ディスプレイ(LCD)などの構造化光変調器によって生成される。構造化光による表面の小面積、例えば、選択した対象領域の照明は、信号対雑音比(SNR)を向上させる。なぜなら、選択した対象領域のみを照明すると迷走/散乱光が減少し、それによって画像の暗レベルが低下するからである。構造化光の重要な側面は、経時的に素早く変化し得ることである。構造化光変調器、例えばDMDによる光パターンは、焦点がほとんど合わないクリーンミラー又は表面などの難しいターゲットにオートフォーカスするために使用され得る。クリーンミラーを使用すると、より費用がかかるシャックハルトマンセンサを必要とすることなく、変調伝達関数及び像面湾曲/傾斜の測定などのいくつかのセルフテスト特徴が複製され得る。構造化光パターンの別の用途では、カメラの代わりに簡易なパワーメータを用いて試料表面のパワー分布が測定され得る。構造化光パターンまた、光モジュール/システムコンポーネントの位置合わせの基準特徴として使用されるのみならず、マニュアルフォーカスのためのマニュアル読み出しとしても使用される。構造化光パターンの使用によって可能になる別の照明効果は、選択的硬化、例えば、マイクロ流体デバイス内のヒドロゲルの固化である。
【0146】
[00184] 本明細書で使用する場合、「微小物体」という用語は、一般に、本開示に従い分離及び/又は操作され得る任意の微視的物体を指す。微小物体の非限定的な例としては、マイクロ粒子などの無生物微小物体;マイクロビーズ(例えば、ポリスチレンビーズ、ガラスビーズ、非晶質固体基板、又はLuminex(商標)ビーズなど);磁気ビーズ;マイクロロッド;マイクロワイヤ;量子ドットなど;細胞などの生物学的微小物体;生物学的細胞小器官;小胞又は錯体;合成小胞;リポソーム(例えば、合成又は膜調製から誘導された);脂質ナノラフト(Lipid nanoraft)など;又は無生物微小物体と生物学的微小物体との組み合わせ(例えば、細胞に付着させたマイクロビーズ、リポソームでコーティングされたマイクロビーズ、又はリポソームでコーティングされた磁気ビーズなど)が挙げられる。ビーズは、蛍光ラベル、タンパク質(受容体分子を含む)、炭水化物、抗原、小分子シグナリング部分、又はアッセイで使用することができる他の化学的/生物学的種などの、共有的に又は非共有的に付着させた部分/分子を含み得る。いくつかの変更形態では、部分/分子を含むビーズ/固体基板は、例えば、選択的に又は非選択的に近接して存在する小分子、ペプチド、タンパク質、又は核酸を含む分子に結合するように構成されたキャプチャビーズであってもよい。1つの非限定的な例では、キャプチャビーズは、特定の核酸配列を有する核酸に結合するように構成された核酸配列を含んでもよい、又はキャプチャビーズの核酸配列は、関連する核酸配列を有する一連の核酸に結合するように構成されてもよい。いずれのタイプの結合も選択的であると理解され得る。部分/分子を含むキャプチャビーズは、構造的に異なるが物理化学的に類似する分子の結合が行われる場合に非選択的に結合し得る。例えば、サイズ排除ビーズ又はゼオライトは、選択した大きさ又は電荷の分子を捕捉するように構成されている。脂質ナノラフトは、例えば、Ritchie et al.(2009)”Reconstitution of Membrane Proteins in Phospholipid Bilayer Nanodiscs,”
Methods Enzymol.,464:211-231に記載されている。
【0147】
[00185] 本明細書で使用する場合、「細胞」という用語は、「生物学的細胞」という用語と互換的に使用される。生物学的細胞の非限定的な例としては、真核細胞、植物細胞、動物細胞、例えば、哺乳動物細胞、爬虫類細胞、鳥類細胞、又は魚類細胞など、原核細胞、細菌細胞、真菌細胞、又は原生動物細胞など、筋肉、軟骨、脂肪、皮膚、肝臓、肺、神経組織などの組織から分離された細胞、T細胞、B細胞、ナチュラルキラー細胞、マクロファージなどの免疫細胞、胚(例えば、接合体)、卵母細胞、卵子、精子細胞、ハイブリドーマ、培養細胞、細胞系の細胞、癌細胞、感染細胞、形質転換及び/又は変換細胞、レポーター細胞などが挙げられる。哺乳動物細胞は、例えば、ヒト、マウス、ラット、ウマ、ヤギ、ヒツジ、ウシ、又は霊長類などからのものであり得る。
【0148】
[00186] 生物学的細胞のコロニーは、再生可能なこのコロニー内の生細胞が全て単一の親細胞に由来する娘細胞である場合、「クローン」である。特定の実施形態では、クローンコロニー内の全ての娘細胞は、単一の親細胞から10回以下の分裂によって得られる。他の実施形態では、クローンコロニー内の全ての娘細胞は、単一の親細胞から14回以下の分裂によって得られる。他の実施形態では、クローンコロニー内の全ての娘細胞は、単一の親細胞から17回以下の分裂によって得られる。他の実施形態では、クローンコロニー内の全ての娘細胞は、単一の親細胞から20回以下の分裂によって得られる。「クローン細胞」という用語は、同一クローンコロニーの細胞を指す。
【0149】
[00187] 流体媒体に関して本明細書で使用する場合、「拡散する」及び「拡散」は、流体媒体の成分が濃度勾配を下る熱力学的移動を指す。
【0150】
[00188] 「媒体の流れ」という表現は、主として拡散以外の任意のメカニズムによる流体媒体のバルク移動を意味し、灌流を含み得る。例えば、媒体の流れには、地点間の圧力差によるある地点から別の地点への流体媒体の移動を伴う場合がある。このような流れは、連続的な、パルス状の、周期的な、ランダムな、間欠的な若しくは往復的な液体の流れ、又はこれらの任意の組み合わせを含み得る。1つの流体媒体が別の流体媒体に流入すると、媒体の乱流及び混合が生じ得る。流すことは、溶液をマイクロ流体チャネル内に引いて出すこと(例えば、吸引)又は流体をマイクロ流体チャネルに押し通すこと(例えば、灌流)を含み得る。
【0151】
[00189] 「流れが実質的にない」という表現は、経時的に平均すると、流体媒体への又は流体媒体内の物質(例えば、目的の分析物)の成分の拡散速度に満たない流体媒体の流速を指す。そのような物質の成分の拡散速度は、例えば、温度、成分の大きさ、成分と流体媒体との間の相互作用の強度に依存し得る。
【0152】
[00190] マイクロ流体デバイス内の異なる領域に関して本明細書で使用する場合、「流体的に接続された」という表現は、異なる領域が流体媒体などの流体で実質的に充填されている場合、各領域内の流体が単体の流体を形成するように接続されていることを意味する。これは、異なる領域内の流体(又は流体媒体)の組成が必ずしも同一であることを意味するものではない。むしろ、マイクロ流体デバイス内の異なる流体的に接続された領域内の流体は、異なる組成(例えば、タンパク質、炭水化物、イオン、又は他の分子などの溶質の異なる濃度)を有し得、これらは、溶質がそれら各々の濃度勾配を下る際及び/又は流体がデバイス内を流れる際には流束である。
【0153】
[00191] 本明細書で使用する場合、「流路」は、媒体の流れの軌跡を画定しそれに曝される、1つ以上の流体的に接続された回路要素(例えば、チャネル、領域、チャンバなど)を指す。したがって、流路は、マイクロ流体デバイスの掃引領域の一例である。他の回路要素(例えば、非掃引領域)は、流路内の媒体の流れに曝されることなく、流路を含む回路要素と流体的に接続され得る。
【0154】
[00192] 本明細書で使用する場合、「微小物体の隔離」は、マイクロ流体デバイス内の画定されたエリアに微小物体を閉じ込める。画定されたエリアは、例えば、チャンバであり得る。本明細書で使用する場合、「チャンバ」は、1つ以上の微小物体をマイクロ流体デバイス内に位置する他の微小物体から隔離することを可能にするマイクロ流体デバイス内の領域(例えば、回路要素)である。チャンバの例としては、米国特許出願公開第2013/0130232号(Weibelら)及び米国特許出願公開第2013/0204076号(Hanら)に記載されているような基板(例えば、平坦基板)からエッチングされた領域であり得るマイクロウェル、又は国際公開第2010/040851号(Dimovら)若しくは米国特許出願公開第2012/0009671号(Hansenら)に記載されているマイクロ流体デバイスなどの多層デバイス内に形成された領域が挙げられる。チャンバの他の例としては、国際公開第2004/089810号(McBrideら)及び米国特許出願公開第2012/0015347号(Singhalら)に記載されているような弁付チャンバが挙げられる。チャンバの更に別の例としては、Somaweera et al.(2013),”Generation of a Chemical Gradient Across an Array of 256 Cell Cultures in a Single Chip”,Analyst.,Vol.138(19),pp 5566-5571;米国特許出願公開第2011/0053151号(Hansenら);及び米国特許出願公開第2006/0154361号(Wikswoら)に記載されているチャンバが挙げられる。チャンバの更に別の例としては、本明細書に記載される隔離ペンが挙げられる。特定の実施形態では、チャンバは、約100pLから1nL、100pLから2nL、100pLから5nL、250pLから2nL、250pLから5nL、250pLから10nL、500pLから5nL、500pLから10nL、500pLから15nL、750pLから10nL、750pLから15nL、750pLから20nL、1から10nL、1から15nL、1から20nL、1から25nL、又は1から50nLの量の流体を保持するように構成され得る。他の実施形態では、チャンバは、約20nLから200nL、100から200nL、100から300nL、100から400nL、100から500nL、200から300nL、200から400nL、200から500nL、200から600nL、200から700nL、250から400nL、250から500nL、250から600nL、又は250から750nLの量の流体を保持するように構成され得る。
【0155】
[00193] 本明細書で使用する場合、「ペン(pen)」又は「ペニング(penning)」は、マイクロ流体デバイス内の隔離ペン内に微小物体を配置することを具体的に指す。微小物体をペニングするために使用される力は、誘電泳動(DEP)、例えば、光駆動誘電泳動力(OEP);重力;磁力;局所駆動流体流;又は傾斜などの本明細書に記載される任意の適切な力であり得る。いくつかの実施形態では、複数の微小物体のペニングにより、実質的に全ての微小物体を再配置してもよい。いくつかの他の実施形態では、選択した数の複数の微小物体がペニングされる場合があり、この複数の微小物体の残りはペニングされない場合がある。いくつかの実施形態では、選択した微小物体がペニングされる場合、DEP力、例えば、光駆動DEP力又は磁力を使用して、選択した微小物体を再配置してもよい。典型的には、微小物体は、マイクロ流体デバイスの流れ領域、例えば、マイクロ流体チャネルに導入され得、その後、ペニングによってチャンバに導入され得る。
【0156】
[00194] 本明細書で使用する場合、「アンペン(unpen)」又は「アンペニング(unpenning)」は、隔離ペン内から、マイクロ流体デバイスの流れ領域、例えば、マイクロ流体チャネル内の新たな位置に微小物体を再配置することを指す。微小物体をアンペニングするために使用される力は、誘電泳動、例えば、光駆動誘電泳動力;重力;磁力;局所駆動流体流;又は傾斜などの本明細書に記載される任意の適切な力であり得る。いくつかの実施形態では、複数の微小物体のアンペニングにより、実質的に全ての微小物体を再配置してもよい。いくつかの他の実施形態では、選択した数の複数の微小物体がアンペニングされる場合があり、この複数の微小物体の残りはアンペニングされない場合がある。いくつかの実施形態では、選択した微小物体がアンペニングされる場合、DEP力、例えば、光駆動DEP力又は磁力を使用して、選択した微小物体を再配置してもよい。
【0157】
[00195] 本明細書で使用する場合、「エクスポート」又は「エクスポーティング」は、マイクロ流体デバイス内の位置、例えば、流れ領域、マイクロ流体チャネル、チャンバなどからマイクロ流体デバイスの外の位置、例えば、ウェルプレート、管、若しくは他の受容器に微小物体を再配置することを含み得る;マイクロ流体デバイス内の位置、例えば、流れ領域、マイクロ流体チャネル、チャンバなどからマイクロ流体デバイスの外の位置、例えば、ウェルプレート、管、若しくは他の受容器に微小物体を再配置することからなり得る;又はマイクロ流体デバイス内の位置、例えば、流れ領域、マイクロ流体チャネル、チャンバなどからマイクロ流体デバイスの外の位置、例えば、ウェルプレート、管、若しくは他の受容器に微小物体を再配置することから本質的になり得る。いくつかの実施形態では、微小物体のエクスポーティングは、微小物体を含むある量の媒体をマイクロ流体デバイス内から抜き取り(例えば、マイクロピペッティング)、このある量の媒体をマイクロ流体デバイスの外の位置内又は位置上に置くことを含む。いくつかの関連実施形態では、マイクロ流体デバイスの内部領域への(例えば、マイクロピペットの)アクセスを容易にするために、ある量の媒体の抜き取りに先行して、マイクロ流体デバイスを分解する(例えば、マイクロ流体デバイスのカバー又は蓋などの上層をマイクロ流体デバイスのベース部分又は基板などの下層から取り外す)。他の実施形態では、微小物体のエクスポーティングは、微小物体を含むある量の流体をマイクロ流体デバイスの流れ領域(例えば、マイクロ流体チャネルを含む)に流し、マイクロ流体デバイスの出口から出し、このある量の媒体をマイクロ流体デバイスの外の位置内又は位置上に置くことを含む。このような実施形態では、マイクロ流体チャネル内の微小物体は、分解(例えば、デバイスのカバーの取り外し)又は微小物体を更なる処理のために取り出すためのマイクロ流体デバイスの内部領域へのツールの挿入を必要とすることなくエクスポートされ得る。「エクスポート」又は「エクスポーティング」は、「アンペニング」に関して上記したように、隔離ペンを含み得るチャンバ内からマイクロ流体チャネルなどの流れ領域内の新たな位置に微小物体を再配置することを更に含み得る。隔離ペンに関して本明細書に記載したように、チャンバがマイクロ流体チャネルから側方に開くような、マイクロ流体チャネルに対するチャンバの平らな向きは、マイクロ流体チャネル内に置かれるように配置された又は再配置された(例えば、チャンバからアンペニングされた)微小物体の簡単なエクスポートを可能にする。
【0158】
[00196] マイクロ流体デバイスは、「掃引」領域及び「非掃引」領域を含み得る。本明細書で使用する場合、「掃引」領域は、マイクロ流体回路の1つ以上の流体的に相互接続された回路要素を備え、そのそれぞれは、流体がマイクロ流体回路内を流れるときに媒体の流れを受ける。掃引領域の回路要素は、例えば、領域、チャネル、及びチャンバの全部又は一部を含み得る。本明細書で使用する場合、「非掃引」領域は、マイクロ流体回路の1つ以上の流体的に相互接続された回路要素を備え、そのそれぞれは、流体がマイクロ流体回路内を流れるときに流体の流れを実質的に受けない。掃引領域と非掃引領域との間で拡散は可能であるが媒体の流れが実質的にないように流体連通が構成されることを前提として、非掃引領域は掃引領域に流体的に接続され得る。したがって、マイクロ流体デバイスは、掃引領域と非掃引領域との間に拡散流体連通のみを実質的に可能にしつつ、掃引領域内の媒体の流れから非掃引領域を実質的に分離するように構成され得る。例えば、マイクロ流体デバイスのフローチャネルは掃引領域の一例であり、マイクロ流体デバイスの分離領域(以下で更に詳細に説明する)は非掃引領域の一例である。
【0159】
[00197] 本明細書で使用する場合、流体媒体の「非掃引」流速は、隔離ペンの分離領域内の第2の流体媒体の成分が流れ領域内の第1の流体媒体中に拡散すること及び/又は第1の流体媒体の成分が分離領域内の第2の流体媒体中に拡散することを可能にするほど十分な流速を意味し、更に、第1の媒体は分離領域に実質的に流入しない。
【0160】
[00198] いくつかの実施形態では、システムは、マイクロ流体デバイスを保持するように構成された支持体(「ネスト」としても知られる)を含み得る。支持体は、例えば、光学的に作動されるマイクロ流体デバイスとインターフェースする及び/又は光学的に作動されるマイクロ流体デバイスを保持するように構成されたソケット、プリント回路基板アセンブリ(PCBA)、電気信号生成サブシステム、熱制御サブシステム、又はこれらの任意の組み合わせを含み得る。
【0161】
[00199] 特定の実施形態では、支持体は、光学的に作動されるマイクロ流体デバイスなどのマイクロ流体デバイスとインターフェースすることができるソケットを含む。例示的なソケット106は、
図1A及び
図1Bの支持体100に含まれる。しかしながら、ソケット106の形状及び機能は、
図1A及び
図1Bに示されているものと正確に同じである必要はない。例えば、ソケットは蓋を含むことができる)。更に、ソケット106は、ソケット106がインターフェースすることになるマイクロ流体デバイス110のサイズ及び型に適合するように必要に応じて調整することができる。光電子ツイーザ(optoelectronic tweezer)(OET)構成および/または光-エレクトロウェッティング(opto-electrowetting)(OEW)構成など、光学的に作動する構成を有するデバイス110を含む、様々なマイクロ流体デバイス110が当該技術分野で知られている。適切なOET構成の例は、以下の米国特許文献に示されており、そのそれぞれは、完全に記載されているかのように、その全体が参照により本明細書に組み込まれる:米国特許第RE44,711号(Wuら)(元々は米国特許第7,612,355号として発行された);および米国特許第7,956,339号(Ohtaら)。OEW構成の例は、米国特許第6,958,132号(Chiouら)および米国特許出願公開第2012/0024708号(Chiouら)に示されており、これらの両方は、完全に記載されているかのように、その全体が参照により本明細書に組み込まれる。光学的に作動されるマイクロ流体デバイスのさらに別の例は、統合されたOET/OEW構成を含み、その例は、米国特許公開第20150306598号(Khandrosら)および同第20150306599号(Khandrosら)およびそれらの対応するPCT公報WO2015/164846号およびWO2015/164847号に示されており、これらはすべて完全に記載されているかのようにその全体が参照により本明細書に組み込まれる。
【0162】
[00200]
図1Aおよび
図1Bに示す支持体100はまた、ベース部分102およびカバー104(
図1Bでは省略されている)を含む。支持体100はまた、複数のコネクタ、すなわち、第1の流体入力/出力部112;通信接続部114;電源接続部116;および第2の流体入力/出力部118を含む。第1および第2の流体入力/出力部112、118は、マイクロ流体デバイス110を冷却するために使用される冷却ブロック(
図3に示す)との間で冷却流体を送達するように構成されている。第1および第2の流体入力/出力部112、118が入力部であるか出力部であるかは、支持体100を通る流体の流れの方向に依存する。第1および第2の流体入力/出力部112、118は、支持体100内に配置される第1および第2の流体コネクタ142、144によって冷却ブロックに流体結合されている。通信接続部114は、以下で説明するように、マイクロ流体デバイスを作動させるために支持体110をシステムの他の構成要素と接続するように構成される。電力接続部116は、支持体110に動力(例えば、電気)を供給するように構成される。
【0163】
[00201] 特定の実施形態では、支持体100は、一体化された発電サブシステム138を含むことができる。発電サブシステム138は、支持体100によって保持されているマイクロ流体デバイス110内の一対の電極間にバイアス電圧を印加するように構成することができる。このようなバイアス電圧を印加する能力は、マイクロ流体デバイス110が支持体100によって保持されているとき常にバイアス電圧が印加されることを意味しない。むしろ、ほとんどの場合、バイアス電圧は断続的に、誘電泳動またはエレクトロウェッティングなどのマイクロ流体力の生成を促すために、またはマイクロ流体デバイス110内の複素インピーダンスの測定を促すために必要とされる場合に限り印加される。
【0164】
[00202] 典型的には、電気信号生成サブシステム138は、
図2に示すように、波形生成器202を含む。発電サブシステム138はさらに、検出モジュール208(例えば、オシロスコープ)および/または波形生成器202から受信した波形を増幅するように構成されている波形増幅回路204を含むことができる。検出モジュール208は、存在する場合、支持体100によって保持されたマイクロ流体デバイス110に適用される波形を測定するように構成することができる。特定の実施形態では、検出モジュール208は、マイクロ流体デバイス110に近い(および波形生成器202に遠い)位置で波形を測定し、従って、マイクロ流体デバイス110に実際に適用される波形をより正確に測定することを保証する。検出モジュール208の測定から得られたデータは、例えば、フィードバックとして波形生成器202に提供可能であり、波形生成器202はそのようなフィードバックに基づいてその出力を調整するように構成することができる。適切に組み合わせられた波形生成器202および検出モジュール208の例は、RED PITAYA(商標)である。
【0165】
[00203] 特定の実施形態では、支持体100は熱制御サブシステム140を含むことができる。熱制御サブシステム140は、支持体100によって保持されたマイクロ流体デバイス110の温度を調節するように構成することができる。
図3に示すように、熱制御サブシステム140は、ペルチェ熱電装置304および冷却ユニット312の近位構成要素を含むことができる。ペルチェ熱電装置304は、マイクロ流体デバイス110の少なくとも1つの表面と接触するように構成された第1表面306を有することができる。冷却ユニットは、例えば、冷却ブロック322を含むことができる。ペルチェ熱電装置304の第2の表面308(例えば、第1の表面306の反対側の表面308)は、このような冷却ブロック322の表面と接合するように構成することができる。冷却ブロック322の全てまたは一部(例えば、ペルチェ熱電装置304と接合する部分)は、高い熱伝導率を有する材料から作製することができる。例えば、材料は、アルミニウムなどの金属であってもよい。冷却ブロック322は、冷却された流体を流体冷却装置326と冷却ブロック322との間で循環させるように構成された流体経路324に接続することができる。流体経路324は、流体入力/出力部112、118および
図1に関連して記載された流体コネクタ142、144を含むことができる。ペルチェ熱電装置304および冷却ブロック322は、支持体100上に取り付けることができる。
【0166】
[00204] 熱制御サブシステム140は、
図3に示すように、熱電発電モジュール302をさらに含むことができる。熱電発電モジュール302は、マイクロ流体デバイス110の目標温度を達成するようにペルチェ熱電装置304の温度を調整することができる。熱電発電モジュール302へのフィードバックは、
図4に示されるようなアナログ回路400によって提供された温度値を含むことができる。あるいは、フィードバックは、デジタル回路(図示せず)によって提供されてもよい。ペルチェ熱電装置304、冷却ブロック322、および熱電発電モジュール302は全て支持体100上に取り付けることができる。
【0167】
[00205] 特定の実施形態では、支持体100はまた、熱制御サブシステム140に加えて、環境温度モニタ/調節器を含むか、またはそれとインターフェースすることもできる。
【0168】
[00206]
図4に示すアナログ回路400は、抵抗402、サーミスタ406、およびアナログ入力404を含む。アナログ入力は、電気信号生成サブシステム138(例えば、その検出モジュール208)に作用可能に結合され、マイクロ流体デバイス110の温度を計算するために使用できる信号をそれに提供する。サーミスタ406は、その抵抗が、サーミスタ406の温度が低下すると公知の態様で減少し、サーミスタ406の温度が上昇すると公知の態様で増加するように構成される。アナログ回路400は、電極408にバイアス電圧を供給するように構成された電源(図示せず)に接続される。1つの特定の実施形態では、抵抗402は約10,000オームの抵抗を有することができ、サーミスタ406は25℃で約10,000オームの抵抗を有することができ、電源(例えば、DC電源)は、約5Vのバイアス電圧を印加することができる。アナログ回路400は例示的なものであり、他のシステムを使用して、熱電発電モジュール302へのフィードバックとして温度値を提供することができる。
【0169】
[00207] 特定の実施形態では、支持体100は、制御器136(例えば、マイクロプロセッサ)をさらに備える。制御器136は、電気信号生成サブシステム138を感知および/または制御するために使用することができる。加えて、支持体100が熱制御サブシステム140を含む限りにおいて、制御器136は、熱制御サブシステム140を感知および/または制御するために使用することができる。適切な制御器136の例には、ARDUINO NANO(商標)などのARDUINO NANO(商標)マイクロプロセッサが含まれる。制御器136は、プラグ/コネクタ134を介してコンピュータまたは他の計算装置などの外部制御器(図示せず)とインターフェースするように構成することができる。特定の実施形態では、外部制御器は、電気信号生成サブシステム138、熱制御サブシステム140、またはその両方を感知および/または制御するように構成されたグラフィカルユーザインターフェース(GUI)を含むことができる。電気信号生成サブシステム138および熱制御サブシステム140の両方を制御するように構成された例示的なGUI500が、
図5に示されている。
【0170】
[00208] 特定の実施形態では、支持体100は、プリント回路基板(PCB)132を含むことができる。電気信号生成サブシステム138は、PCB132に取り付けられ、PCB132に電気的に一体化されることができる。同様に、支持体100が制御器136または熱制御サブシステム140を含む限りにおいて、制御器136および/または熱電発電モジュール302は、PCB132上に取り付けられ、PCB132に電気的に一体化されることができる。
【0171】
[00209] したがって、
図1Aおよび
図1Bに示すように、例示的な支持体100は、ソケット106、インターフェース134、制御器136、電気信号生成サブシステム138、および熱制御サブシステム140を含むことができ、これらのすべては、PCB132上に取り付けられ、およびPCB132に電気的に一体化され、それによって、プリント回路基板アセンブリ(PCBA)130を形成する。上で考察したように、ソケット106は、光学的に作動するマイクロ流体デバイスを含むマイクロ流体デバイス110(または「消耗品」)を保持するように設計することができる。
【0172】
[00210] 特定の特異的な実施形態では、発電サブシステム138は、RED PITAYA(商標)波形生成器202/検出モジュール208と、RED PITAYA(商標)波形生成器202によって生成された波形を増幅し、増幅された波形(電圧)206をマイクロ流体デバイス110に送る波形増幅回路204とを含むことができる。RED PITAYA(商標)ユニット202、208および波形増幅回路204の両方は、
図1Bに示すように、PCB132に電気信号生成サブシステム138として電気的に一体化することができる。さらに、RED PITAYA(商標)ユニット202、208は、マイクロ流体デバイス110で増幅された電圧を測定し、次に、マイクロ流体デバイス110で測定された電圧が所望の値になるように必要に応じてそれ自身の出力電圧を調整するように構成することができる。増幅回路204は、例えば、PCB132上に取り付けられた一対のDC-DCコンバータによって形成された+6.5V~-6.5Vの電源を有することができ、その結果、マイクロ流体デバイス110において最大13Vppの信号を生成する。
【0173】
[00211] 特定の特異的な実施形態では、支持体100は、液体冷却式アルミニウムブロック322とマイクロ流体デバイス110の背面との間に配置されたペルチェ熱電装置304を有する熱制御サブシステム140(
図3に示す)と、POLOLU(商標)熱電発電機(不図示)と、ARDUINO NANO(商標)制御器136とを含む。熱制御サブシステム140のためのフィードバックは、抵抗器402(例えば、抵抗10kオーム+/-0.1%、温度係数+/-0.02ppm/℃)および負の温度係数サーミスタ406(公称抵抗10kオーム+/-0.01%)を含むアナログ電圧分割器回路400(
図4に示す)であることができる。制御器136は、フィードバック回路400からの電圧を測定し、次いで、計算された温度値を入力として(例えば、オンボードPID制御ループアルゴリズムに)使用して、指向性およびパルス幅変調信号ピンの両方を熱電発電モジュール302において駆動し、それにより熱電サブシステム140を作動することができる。液体冷却ユニット326は、部分的に支持体100内に(例えば、流体入力/出力112、118および流体コネクタ142、144)および部分的に支持体100の周囲に位置する冷却経路324を介して流体をポンプ送給するように構成することができる。
【0174】
[00212] 特定の特異的な実施形態では、支持体100は、RED PITAYA(商標)ユニットが外部コンピュータと通信することを一緒に可能にするシリアルポート114およびPlinkツールを含む。シリアルポート114は、制御器136が外部コンピュータと通信することを可能にすることもできる。あるいは、制御器136が外部コンピュータと通信することを可能にするために別個のシリアルポート(図示せず)を使用することができる。他の実施形態では、支持体100は、支持体100の構成要素(例えば、制御器136および/または発電サブシステム138)と、携帯電話、PDA、または他のハンドヘルドデバイスなどのポータブルコンピュータデバイスを含むことができる外部コンピュータとの間の無線通信を促進にするように構成された無線通信デバイスを含むことができる。外部コンピュータ上のGUI(例えば、
図5に示すものなど)は、温度および波形データのプロット、出力電圧調整のためのスケーリング計算の実行、および制御器136およびRED PITAYA(商標)デバイス202、208の更新を含むがこれに限定されない様々な機能のために構成することができる。
【0175】
[00213] 特定の実施形態では、支持体100は、マイクロ流体デバイス110の内容物(例えば、流体内容物)の特性を測定するように構成されたインダクタンス/キャパシタンス/抵抗(LCR)メータを含むか、またはそれとインターフェースすることもできる。
【0176】
[00214] 例えば、LCRメータは、システムの複素インピーダンス、特に、流体がマイクロ流体デバイス110に流入するとき、その内部に配置されるとき、および/またはそこを出るときの流体の複素インピーダンスを測定するように構成することができる。いくつかの実施形態では、LCRメータは、マイクロ流体デバイス110の内外に流体を運ぶ流体ラインに接続され、および/または一体化され得る。他の実施形態では、LCRメータは、発電サブシステム138に接続され得る、またはその一体部分であり得る。したがって、特定の特異的な実施形態では、支持体100内のRED PITAYA(商標)波形生成器202および検出モジュール208は、LCRメータとして機能するように構成することができる。特定の実施形態では、発電サブシステム138と共に使用するように構成されたマイクロ流体デバイス110の電極も、LCRメータと共に使用するように構成することができる。システムのインピーダンスを測定することにより、様々なシステム特性、およびマイクロ流体デバイス110内の流体回路の高さ、マイクロ流体デバイス110内の流体の塩含有量の変化(これはその中の生物学的微小物体の状態と相関し得る)およびマイクロ流体デバイス110を通る(異なるインピーダンスを有する)流体の特異的な体積の動きなど、その中の変化を決定することができる。
【0177】
[00215] 特定の実施形態では、システムのインピーダンスの測定は、システム(すなわちマイクロ流体デバイス110)内の第1の流体からシステム内の第2の流体への変化を正確に(すなわち、真の値に近い)、かつ精密に(すなわち反復可能に)検出するために使用することができる。例えば、第1の流体は脱イオン水(DI)であり、第2の流体は生理食塩水(例えば、リン酸緩衝生理食塩水すなわち「PBS」)であり得、またはその逆であり得る。あるいは、第1の流体は生理食塩水(例えばPBS)であり得、第2の流体は生理食塩水とは検出可能に異なるインピーダンスを有する細胞培養培地であり得、またはその逆であり得る。さらに他の代替形態では、第1の流体は第1の細胞培養培地であり得、第2の流体は、第1の細胞培養培地とは検出可能に異なるインピーダンスを有する第2の細胞培養培地であり得る。
図9は、システムのインピーダンスを検出するためのインピーダンス測定回路900を示す図である。回路900は、発電サブシステム138の波形生成器202からの出力902と、発電サブシステム138の検出モジュール208への2つの入力904、906とを含む。回路900は、マイクロ流体デバイス110(支持体100のソケット106を介して接続されている)と、シャント抵抗器908とを含む。シャント抵抗器908は、LCRを0~約5,000オームの範囲(例えば、0~約4,000、0~約3,000、0~約2,500、0~約2,000、0~約1,500、または0~約1,000オームの範囲)のインピーダンスを測定するのに十分に正確にするように選択することができる。マイクロ流体デバイス110は、マイクロ流体デバイス110のベース部分(例えば、半導体デバイス)およびカバー(例えば、インジウムスズ酸化物(ITO)層を有する)を電極として機能させて、測定セルとして回路900内で機能する。特定の特異的な実施形態では、回路900の出力902は、RED PITAYA(商標)デバイスの波形生成器202から出るものであることができ、入力904、906はマイクロ流体デバイス110から発生し、RED PITAYA(商標)デバイスの検出モジュール208によって受け取られることができる。特定の特異的な実施形態では、シャント抵抗器908は50オームの抵抗器とすることができる。これらの実施形態では、発電サブシステム138を「光学作動モード」と「LCRモード」との間で切り替えることができる。さらに、LCRモードのとき、発電サブシステム138を、MATLABスクリプトを実行するコンピュータに接続することができる。
【0178】
[00216] したがって、本システムのシステムは、マイクロ流体デバイス110の流量(Vflow)を決定する方法を提供する。例えば、マイクロ流体デバイス110は、最初に第1のインピーダンスに関連する第1の流体(例えば、約450オームのインピーダンスに関連するDI)で充填される。次に、第1のインピーダンスと検出可能に異なる第2のインピーダンスに関連する第2の流体(例えば約160オームのインピーダンスに関連するPBS)が、マイクロ流体デバイス110に流し込まれ、それを通して流される。第2の流体は、例えば、流体入口ポートまたは流体出口ポートのいずれかとして機能することができるポートを介してマイクロ流体デバイス110に流し込むことができる。システムは、第2の流体がマイクロ流体デバイス110に流し込まれそれを通して流されるときに、マイクロ流体デバイス110の複素インピーダンスを連続的に測定する。上で考察したように、特定の時点におけるマイクロ流体デバイス110の複素インピーダンスを測定するために、システムはマイクロ流体デバイス110へ電圧電位を印加し、それに付随して、複素インピーダンスを計算するために使用されるマイクロ流体デバイス110からの信号を受け取る。マイクロ流体デバイスに印加される電圧電位は、約10kHz~約1MHz(例えば、約50kHz~約800kHz、約100kHz~約700kHz、約200kHz~約600kHz、約300kHz~約500kHz、約350kHz~約400kHz、または約380kHz)の周波数を有することができる。インピーダンス測定の精度を最適化し、測定時間を最小化し、誘導効果を低減するように、マイクロ流体デバイス110および第1および第2の流体の特性に基づいて特定の周波数を選択することができる。第2の流体は、測定された複素インピーダンスが第1の流体に関連する第1のインピーダンスから第2の流体に関連する第2のインピーダンスに変化するまでマイクロ流体デバイス110に流し込まれ、それを通して流される。マイクロ流体デバイス110の複素インピーダンスを第1インピーダンスから第2インピーダンスに完全に切り替えるために必要な第2の流体の最小量は、マイクロ流体デバイスの流量(Vflow)の尺度である。マイクロ流体デバイス110の複素インピーダンスを第1のインピーダンスから第2のインピーダンスに切り替えるために必要な第2の流体の量は、システムが第2の流体をマイクロ流体デバイス110にポンプ送給し始める時点から開始して、(1)マイクロ流体デバイス110の流量(Vflow)、(2)マイクロ流体デバイスの流体出口ポートの容積、および(3)ポンプからマイクロ流体デバイス110へ第2の流体を運ぶ管の流量を含むことができる。管および流体出口ポートを通る第2の流体の流れは、マイクロ流体デバイス110の複素インピーダンスを変化させないので、管および入口ポートの流量は、マイクロ流体デバイス110の流量と容易に区別することができる。
【0179】
[00217] マイクロ流体デバイス110の計算された流量を使用して、システムはさらに、マイクロ流体デバイス110から1つまたは複数の微小物体を流体の個別の量で確実にエクスポートする方法を提供する。動電学的装置110の流量(Vflow)を決定した後、流路内に配置された微小物体(例えば生物学的細胞)をエクスポートするのに必要な最小エクスポート量(Vex)は、マイクロ流体デバイス110の流体出口ポートから微小物体を分離する流路の一部を計算することによって概算することができる。例えば、流路の全長(Ltot)は、マイクロ流体デバイス110の流路を流体入口ポートから流体出口ポートまで追跡することによって決定することができる。流路のエクスポート長さ(Lex)は、流路内の微小物体の位置から流体出口ポートまでマイクロ流体デバイス110の流路を追跡することによって決定することができる。動電学的装置110から微小物体をエクスポートするのに必要な流体の最小量(Vex)は、従って、Vex=(Lex/Ltot)*Vflowとして計算することができる。あるいは、(例えば、CAD図面を使用して)流路の予測された幾何学的形状から流路の全量(Vflow-tot)を推定することができ;および流出経路の全量(Vex-tot)は同様に、流路の予測された幾何学的形状から計算することができる。このような実施形態では、マイクロ流体デバイス110から微小物体をエクスポートするのに必要な流体の最小量(Vex)は、Vex=(Vex-tot/Vflow-tot)*Vflowとして計算することができる。Vexを計算する手法にかかわらず、微小物体は、動力学的装置110の流体出口ポートを通して少なくともVexと同じ大きさの流体の量を流すことによって、動電学的装置110からエクスポートすることができる。信頼性の高いエクスポートを保証するために、微小物体は、C*Vexに等しい流体の量(Vex-rel)を流すことによって動電学的装置110からエクスポートすることができ、ここでCは約1.1に等しいかそれ以上(例えば、約1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0またはそれ以上)である倍数である。いくつかの方法では、Vex(またはVex-rel)の先頭部分は、微小物体を含む残留量(Vex(またはVex-rel)に等しいVresから先頭部分を差し引いたもの)がマイクロ流体デバイス110からエクスポートされる前に廃棄される。例えば、Vex(またはVex-rel)は1.0μLに等しい量であり得、0.5μLの先頭量は廃棄することができ、その結果、微小物体は0.5μLの最終量Vresでエクスポートされる。このようにして、微小物体は、少量ではあるが離散した流体の量でエクスポートすることができる。方法の仕方によっては、Vex、Vex-rel、またはVresは、約2.0μL、1.5μL、1.2μL、1.0μL、0.9μL、0.8μL、0.7μL、0.6μL、0.5μL、0.4μL、0.3μL、0.25μL、またはそれ未満であることができる。典型的には、微小物体を包含する流体の量(すなわち、Vex、Vex-rel、またはVres)は、収集容器に達する前に有限の内部容積を有するエクスポート管を通してエクスポートされる。したがって、本方法で使用される計算は、エクスポート管の既知の量または推定量を考慮して調整することができる。たとえば、エクスポート管は、5.0μLの内部容積を有し得る。この場合、1.0μLのVex(またはVex-rel)は6.0μLに調整され得、0.5μLの廃棄された先頭容量は5.5μLに調整され得、従って0.5μLのVresは変わらない。
【0180】
[00218] 特定の実施形態では、支持体100は、支持体100に結合された1つ以上の弁を含み、1つ以上の弁は、支持体100に結合されたマイクロ流体デバイス110内の流体の移動を制限(例えば、停止)するように構成されている。マイクロ流体デバイス110に出入りする流体の流れは例えばポンプにより制御することができるが、ポンプがオフの場合であっても、ポンプをマイクロ流体デバイス110に接続する流体ラインの動きにより、マイクロ流体デバイス110内の流体の望ましくない動き(例えば、ドリフト及び/又は振動)が生じる可能性がある。この動きは、更に、微小物体の検出及び/若しくは選択(例えば、計数、キャラクタリゼーション及び/又はチャネルとチャンバとの間の移動のための)又はマイクロ流体デバイス110内で実施されるアッセイなどのマイクロ流体デバイス110内で起こるプロセスを阻害する可能性がある。支持体100に位置する1つ以上の弁は、マイクロ流体デバイス110内の流体のそのような望ましくない動きを低減する又は防止することができる。適切な弁は、内部デッドスペース(すなわち、流体にアクセス可能であるが、流体が弁を通って流れるときに流体流にほとんど曝されない弁内の空間)が実質的にない場合がある。特定の実施形態では、1つまたは複数の弁の少なくとも1つは、凍結弁などの熱制御された流れ制御器である。
図10および
図11は、本システムの一実施形態による支持体100と共に使用するための熱制御された流れ制御器1000を示す。流れ制御器1000は、温度調節装置1004と、熱伝導インターフェース1006と、流体ライン1008の流れセグメント(隠れている)とを含む。温度調節装置1004は、1つまたは複数のペルチェ熱電装置(例えば、2つ、3つ、4つ、5つ、またはそれ以上のペルチェ装置のスタック)を含むことができる。熱伝導インターフェース1006は、金属(例えば、銅)など、熱的損傷に耐える高い熱伝導率を有する材料から形成されてもよい。熱伝導インターフェース1006は、流体ライン1008の流れセグメントの周りに巻き付くことができる。熱伝導インターフェース1006は、例えば、流体ライン1008の流れセグメントを完全に取り囲むスリーブまたは他の物体であり得るか、または、溝内に流体ライン1008の流れセグメントを収容する溝付き表面を有し得る。流体ライン1008内の流体は、流れ制御器1000によって達成可能な温度で固体を凍結させる液体であってもよい。熱伝導性インターフェース1006は、温度調節装置1004に隣接して配置され、好ましくはその熱伝導性表面と接触し、流れ制御器1000の効率を増大する。
【0181】
[00219] 特定の実施形態では、熱制御された流れ制御器1000は、アルミニウムなどの高い熱伝導率(および低い熱容量)を有する1種または複数種の材料で作製され得るヒートシンク1002を含むことができる。代替的に、流れ制御器1000は、ヒートシンク1002上に載るように、および/またはヒートシンク1002に固定されるように構成することができる。さらに、流れ制御器1000は、水分が熱伝導性インターフェース1006および/または温度調節装置1004上で凝結するときに起こり得る、水分が流れ制御器1000の機能を妨害することを防止するように構成され得る、絶縁材料1010を含むことができる。流れ制御器1000はまた、カバー1012を含むことができる。カバー1012または他のデバイス(例えばクランプ)は、熱伝導性インターフェース1006を温度調節装置1004に対して押し付け、例えばそれによって流れ制御器1000の効率を高めるように構成されることができる。
【0182】
[00220]
図12は、別の実施形態による、ソケット106と、それぞれが熱制御された流れ制御器1000である一対の弁とを示す。流れ制御器1000はソケット106のすぐ上流におよびすぐ下流に配置される。
図12に示すように、各流れ制御器1000は、ヒートシンク1002とエンクロージャ1014とを含む。各エンクロージャ1014は、温度調節装置1004と、熱伝導性インターフェース1006と、流体ライン1008の流れセグメントとを含む。流体ライン1008は、流れ制御器1000から出てソケット106に入ることが分かる。エンクロージャ1014は、低い熱伝導率および/または低いガス透過性を有する材料から作製されてもよい。材料は、例えばPVCなどのポリマーとすることができる。エンクロージャ1014はそれぞれ、その中に含まれる各温度調節装置1004の体積の少なくとも2倍(例えば、2~10倍、2~7倍、2~5倍、2~4倍、または2~3倍)の体積を含み得る。エンクロージャは、水分が各温度調節装置1004および/または熱伝導性インターフェース1006上で凝結するときに起こり得る、水分が流れ制御器1000の機能を妨害することを防止するように構成することができる。
図12はまた、流れ制御器1000が上に取り付けられ得る第2のヒートシンク1020を示す。第2のヒートシンク1020は、流れ制御器1000のヒートシンク1002からの熱を吸収するように構成される。
【0183】
[00221]
図13は、
図12に示されたもののような熱制御された流れ制御器1000のヒートシンク1002およびエンクロージャ1014を示す。エンクロージャ1014の下面は、
図13に見られ、流体ライン1008(図示せず)および/または熱伝導性インターフェース1006の少なくとも一部を収容するように構成された溝1016を示す。溝1016は、熱伝導性インターフェース1006(図示せず)を、温度調節装置1004(例えば、1つまたは複数の(例えば、スタック状の)ペルチェ熱電装置(図示せず))に対して保持するようにさらに構成することができる。
【0184】
[00222]
図14は、さらに別の実施形態による熱制御された流れ制御器1000の外観を示す。図示されるように、流れ制御器1000は、カバー1030、底部1040、およびヒートシンク1002を含む。カバー1030は、インジケータ(例えば、LED)をカバー1030の外の位置から観察できるように構成されたインジケータ開口1034、1036のそれぞれ複数を画定する。インジケータは、流れ制御器1000がオンであるかオフであるか、および/または流体ライン1008の流れセグメントが開放された(すなわち凍結していない)構成か、または閉鎖された(すなわち、凍結している)構成かどうかを示すように構成可能である。さらに、カバー1030は、流れ制御器1000を組み立てるための締結具(例えば、ねじ)を受け入れるように構成された締結具開口1032を画定することができる。底部1040は、流体ライン(図示せず)が底部1040の内部に入ることを許容するように構成された複数の流体ライン開口1042を画定する。
【0185】
[00223]
図15および
図16は、底部1040なしで示される、
図14に示されるカバー1030の、それぞれ上面および底面を示している。インジケータ開口部1034、1036および締結具開口部1032も
図15および
図16に示されている。
図16はまた、熱制御された流れ制御器1000のPCB(図示せず)を保持するように構成されたカバー1030の底面に形成されたキャビティを示す。PCBは、1つまたは複数の温度調節装置1004(図示せず)および/または1つまたは複数のインジケータ(図示せず)を制御するように構成された回路を含むことができる。カバー1030は、PVCなど(例えば、PVC)の低熱伝導性材料から作製することができる。
【0186】
[00224]
図17は、カバー1030なしで示される、
図14に示される熱制御された流れ制御器1000の底部1040およびヒートシンク1002を示す。底部1040は、スリーブ1050およびスリーブ1050を保持するように構成されたエンクロージャ1044を含む。底部1040はまた、ヒートシンク1002上にカバー1030および底部1040を取り付けるための締結具(例えば、ねじ)を受け入れるように構成された締結具開口部1048を画定する。スリーブ1050を保持することに加えて、エンクロージャ1044は、スリーブ1050内の複数の流体ライン開口部1052(
図21に示す)に対応する複数の流体ライン開口部1042(
図18に示す)も画定する。流体ライン開口部1042は、エンクロージャ1044の水平面内でエンクロージャ1044を完全に通過する。
図18は、エンクロージャ1044の下方からの斜視図である。斜視図の角度は、エンクロージャ1044の下側に形成された流体ライン開口部1042および2つのキャビティ1046の2つの対応するセットを示す。エンクロージャ1044のキャビティ1046は、温度調節装置1004(例えば、それぞれ1つまたは複数の(例えばスタック状の2つ以上の)ペルチェ熱電デバイスを有する;図示せず)およびそれに関連する配線(図示せず)を保持するようにそれぞれ構成されている。
【0187】
[00225]
図19は、(例えば、1つまたは複数の(例えば、スタック状の2つ以上の)ペルチェ熱電デバイスを有する)温度調節装置1004を保持するようにそれぞれ構成された2つのキャビティ1060を任意で、画定するヒートシンク1002を示す。ヒートシンク1002は任意で、第2ヒートシンク1020又は第2ヒートシンクとして機能し得る支持体100に結合されるように構成される。
【0188】
[00226]
図20および
図21は、2つの流体ライン1008(例えば、入口および出口;図示せず)を保持するように構成されたスリーブ1050を示している。スリーブ1050は、流体ライン1008の流れセグメントを完全に囲むように構成することができる。あるいは、スリーブ1050は、流体ライン1008の流れセグメントを収容するように構成された溝を有することができる。したがって、スリーブ1050は、熱伝導性インターフェース1006の実施形態である。したがって、スリーブ1050は、温度調整装置1004(図示せず)に近接して流体ライン1008の流れセグメントを維持することを容易にする。スリーブ1050は、金属など(例えば、銅)の高熱伝導率(および低熱容量)の材料から作ることができる。
図21の側面図は、スリーブ1050によって画定された流体ライン1008の開口部1052を示す。図示のように、流体ライン開口部1052は、スリーブ1050の水平面内でスリーブ1050を完全に通過する。流体ライン開口部1052は、(
図18に示されるように)エンクロージャ1044の対応する流体ライン開口部1042と実質的に整列され、その結果、スリーブ1050が(
図17に示されるように)エンクロージャ1044内に配置されるとき、流体ライン1008はエンクロージャ1044およびスリーブ1050の両方を通過することができる。さらに、(
図17に示されるように)スリーブ1050がエンクロージャ1044内に配置されると、スリーブ1050は、両方の温度調節装置1004(例えば、それぞれ1つまたは複数の(例えば、スタック状の2つ以上の)ペルチェ熱電装置;図示されない)の頂部に接触して配置される。
【0189】
[00227] 特定の実施形態では、熱制御された流れ制御器1000はまた、サーミスタ(図示せず)を含む。サーミスタは、スリーブおよび/または温度調整装置1004(またはその表面)の温度を監視するように構成されている。監視された温度は、流れ制御器1000の開放状態または閉鎖状態を示すフィードバックを提供することができる。
【0190】
[00228] 特定の実施形態では、熱制御された流れ制御器1000はまた、上で考察したように、プリント回路基板(PCB;図示せず)を含むか、またはそれに作用可能に結合されている。PCBは、サーミスタとインターフェースするように構成することができる。PCBはまた、温度調整装置1004に供給される電流(例えば、DC)を調整するように構成されてもよい。さらに、PCBは、温度調整装置1004に供給される電流を降圧するように構成されてもよい。
【0191】
[00229] 上述の熱制御された流れ制御器1000は堅牢であり、バクテリアまたは他のごみが蓄積および/または成長し得るデッドスペースを(他の流体弁と比較して)実質的に排除している。さらに、流れ制御器1000は、他のタイプの弁に関連する微生物汚染を低減する。さらに、流れ制御器1000は、通常であればマイクロ流体デバイスの入口および出口に接続された流体ラインの屈曲に起因するであろう、それに接続されたマイクロ流体デバイス(例えばマイクロ流体デバイス110)内の流体の移動を制限する。マイクロ流体デバイス内での流体の移動を最小限にするべくシステムを最適化するために、流れ制御器1000は、できるだけマイクロ流体デバイスの入口および出口の近くに配置されるべきである。
【0192】
[00230] 残念ながら、熱制御式流れ制御器1000にはいくつかの制約がある。いくつかの構成では、熱制御式流れ制御器1000は所望の温度に冷却して流体ラインを凍結するのに長時間かかる場合があり、それによってマイクロ流体デバイスに出入りする流体の流れの精密な制御を妨げる。場合によっては、所望の温度に冷却するまで約45から約90秒かかる場合がある。また、長期間にわたって、熱制御式流れ制御器1000は水分を蓄積して氷を形成する可能性があり、それによって流体ライン内の流体を解凍して弁を再開放するのに必要な時間が増す。場合によっては、サーミスタが流体ラインのすぐ近くにないため、温度を正確に制御することが困難な場合がある。また、熱制御式流れ制御器1000は、流体ラインをペルチェ装置に接続するために必要な多くの部品を含む。
【0193】
[00231] 他の実施形態では、熱制御式流れ制御器は、これらの制約を受けない1つ以上の凍結弁を含むことができる。これらの熱制御式流れ制御器の例は、
図32~33に示される。
図32(垂直断面)に示されるように、熱制御式流れ制御器2000は、第2のヒートシンク1020又は支持体100であり得るヒートシンク(図示せず)に取り付けることができるベース部分2016(又は基板)を含む。いくつかの構成では、ベース部分2016は、ヒートシンク自体として構成することができ、別個のヒートシンクに取り付ける必要はない。
【0194】
[00232] ベース部分2016は導管2012に接続され得る。導管2012は、他の構成要素のいくつかを取り囲み、熱を捉えてベース部分2016に伝導する。ベース部分2016は、ヒートシンクとして構成されている場合には熱を放散することができる、又は別個のヒートシンク(例えば、第2のヒートシンク1020又は支持体100)に熱を伝導することができる。ベース部分2016は、
図32に示されるねじ2010を含む任意のコネクタを使用して導管2012に接続することができる。例えばピン、又はクランプなどの他のコネクタを使用することもできる。
【0195】
[00233] ベース部分2016の頂部及び導管2012の底部はそれぞれ、ペルチェ装置2004に当接する又は隣接するように構成されている。ペルチェ装置2004は、図示されるような2層ペルチェスタックを含むことができる。或いは、ペルチェ装置2004は、3、4、又はそれ以上の層スタックを含むことができる。
図32には2つのペルチェ装置が示されているが、更なるペルチェ装置を使用することができる。熱をペルチェ装置2004から奪うことができるように、各ペルチェ装置2004の高温側は、それぞれ伝導2012及びベース部分2016に当接する又は接近するように位置する。いくつかの構成では、ベース部分2016及び導管2012は、熱制御式流れ制御器2000が組み立てられた後にペルチェ装置2004を安定させるのに役立つ1つ以上の窪み2009を有して構成することができる。
【0196】
[00234] ペルチェ装置2004は、熱伝導性インターフェース2014に隣接して位置する及び/又は当接するように構成することができる。いくつかの構成では、熱伝導性インターフェース2014は、1つ以上の流体ライン(例えば、入口及び/又は出口流体ライン)とインターフェースし、それにより冷却される/凍結される流体ライン1008の流れセグメントを画定するので、コールドヘッドと呼ばれる。熱伝導性インターフェース2014は、隣接するペルチェ装置2004との接触を最大化するように構成することができる。熱伝導性インターフェース2014は、本明細書に記載するように、1つ以上のマイクロ流体デバイスに流体を入力し1つ以上のマイクロ流体デバイスから流体を除去するために使用される流体ライン(図示せず)を内包するために使用され得る1つ以上(例えば、2つ、3つ、4つ、5つ、6つ、7つ、8つ以上)の開口部2011を含むことができる。2つ以上(例えば、3つ、4つ、6つ、8つ以上)の開口部2011を有する熱伝導性インターフェース2014を有する熱制御式流れ制御器2000は、1つ以上(例えば、2つ、3つ、4つ以上のマイクロ流体デバイス110)への流れを制御するために使用することができる。例えば、2つの開口部2011を有する熱伝導性インターフェース2014を有する熱制御式流れ制御器2000は、単一のマイクロ流体デバイス110に通じている一対の入口流体ライン及び出口流体ライン又は2つの別個のマイクロ流体デバイス110に通じている各2つの入口(又は出口)流体ラインの流れセグメントを制御可能に凍結/解凍することができる。同様に、4つの開口部2011を有する熱伝導性インターフェース2014を有する熱制御式流れ制御器2000は、各2つのマイクロ流体デバイス110に通じている2対の入口流体ライン及び出口流体ラインの流れセグメントを制御可能に凍結/解凍することができる、又は4つの別個のマイクロ流体デバイス110に通じている各4つの入口(又は出口)流体ラインを制御可能に凍結/解凍することができる。
【0197】
[00235] 特定の実施形態では、熱伝導性インターフェース2014はまた、熱センサ(例えばサーミスタ)と結合することができる中央部を含む。中央部は、中央穴2013などの穴を含むことができ、熱センサは、穴の内部に位置し得る。熱センサは、開口部2011内に位置する流体ラインの温度を測定するために使用される。
【0198】
[00236] 熱制御式流れ制御器2000の様々な構成要素は、
図33(制御器2000を
図32に対してz軸の周りで90°回転させた別の垂直断面)に示されるように、カバー2022内に囲まれ得る。カバー2022は、プラスチックなどの低い熱伝導率を有する任意の材料で作製され得る。熱制御式流れ制御器2000はまた、制御器2000の任意の所望のキャビティ内(例えば、カバー2022内)に位置するバリア材料を含むことができる。
図33に示される構成では、バリア材料2024は、熱伝導性インターフェース2014及びベース部分2016と導管2012との間の任意の間隙並びに制御器2000の構成要素間の及び/又は構成要素とカバー2022との間の任意の他の間隙を取り囲むように挿入され得る。バリア材料2024は、制御器2000の任意の内部部品に水分が集まって氷を形成する能力を防止する又は低減する。いくつかの実施形態では、バリア材料2024は、例えばポリウレタンなどのポリマーを含み得る。いくつかの実施形態では、バリア材料は、膨張フォーム(例えばウレタンフォーム)で作製されたスプレーフォーム又はフォームスライスを含み得る。
【0199】
[00237]
図33に示されるように、熱制御式流れ制御器2000はまた、ガイド2020を含み得る。ガイドは、熱伝導性インターフェース2014の両側に位置することができ、熱伝導性インターフェース2014内に流体ライン(図示せず)を供給する際に使用され得る。ガイド2020は、プラスチックなどの低い熱伝導率を有する任意の材料で作製され得る。ガイド2020は、熱制御式流れ制御器2000に含まれるカバー2022の一部であり得る。
【0200】
[00238] 熱制御式流れ制御器2000の導管2012は、橋に似た設計を含む。導管2012は、挟まれた2つのペルチェ装置の高温側から同じヒートシンクに熱を伝導することができる。したがって、ペルチェ装置から熱を伝達するその能力は、熱制御式流れ制御器1000に比べて向上している。
【0201】
[00239] 熱制御式流れ制御器の他の実施形態が
図34~
図35に示されている。これらの実施形態では、熱制御式流れ制御器3000は、第2のヒートシンク1020又は支持体100などのヒートシンク(図示せず)に取り付けることができるベース部分3016(又は基板)を含む。いくつかの構成では、ベース部分3016は、ヒートシンク自体として構成することができ、別個のヒートシンクに取り付ける必要はない。
【0202】
[00240] ベース部分3016は、制御器3000の他の構成要素と結合するように構成された部分を有する上面を含む。ベース部分3016のこの上部結合部3012は、ペルチェ装置3004の底部と結合して当接するように及び/又はカバー3022の底部と結合するように構成され得る。
図34に示されるペルチェ装置3004には3つのペルチェスタックがあるが、より少ない(例えば2つ)又は更なる(例えば4つ以上)のペルチェが含まれ得る。場合によっては、ペルチェ装置3004にわずか1つのペルチェが使用され得る。ペルチェスタックの各層ではペルチェ装置の高温面と低温面との間の絶対温度差が増し、それによってペルチェ装置スタックが維持する必要がある総熱流束が減少する。熱制御式流れ制御器3000を作動すると、流体ライン内の液体は氷形成の核形成に十分な温度まで冷却される(時として過冷却される)。この結果は単一層ペルチェ装置を使用して達成することができるが、多層構造を使用するとより簡単に達成することができる。
【0203】
[00241] ペルチェ装置3004は、層状構造(例えば、層状構造の頂面)上に載る熱伝導性インターフェース3014(又はコールドヘッド)を有するように構成されている。いくつかの構成では、熱伝導性インターフェース3014は、多層構造の最上ペルチェと同様の大きさになるように構成され得る。熱伝導性インターフェース3014は、本明細書に記載されるように、1つ以上のマイクロ流体デバイスに流体を入力する及び/又は1つ以上のマイクロ流体デバイスから流体を除去するために使用される各々の1つ以上の流体ライン(図示せず)を内包するために使用され得る1つ以上(例えば、2つ、3つ、4つ、6つ、8つ)の開口部3011を含み得る。好適な実施形態では、熱伝導性インターフェース3014は、単一のマイクロ流体デバイス110に通じている一対の入口流体ライン及び出口流体ラインを内包するように構成された2つの開口部3011を含む。他の実施形態では、熱伝導性インターフェース3014は、2つの別個のマイクロ流体デバイス110に通じている各2つの入口(又は出口)流体ラインを内包するように構成された2つの開口部3011を含む。同様に、4つの開口部3011を有する熱伝導性インターフェース3014を有する熱制御式流れ制御器3000は、各2つのマイクロ流体デバイス110に通じている2対の入口ライン及び出口流体ラインの流れセグメントを制御可能に凍結/解凍することができる、又は4つの別個のマイクロ流体デバイス110に通じている各4つの入口(又は出口)流体ラインなどを制御可能に凍結/解凍することができる。
【0204】
[00242] 特定の実施形態では、熱伝導性インターフェース3014はまた、熱センサ3015(例えばサーミスタ)と結合され得る中央部を含む。中央部は、中央穴3013などの穴を含むことができ、熱センサ3015が穴内に位置し得る。熱センサ3015は、開口部3011内に位置する流体ラインの温度を測定するために使用される。
【0205】
[00243]
図35(垂直断面の斜視図)に示されるように、熱制御式流れ制御器3000の様々な構成要素は、カバー3022によって囲まれ得る。カバー3022は、プラスチックなどの低い熱伝導率を有する材料で作製され得る。熱制御式流れ制御器3000はまた、制御器3000の任意の所望のキャビティ内(例えば、カバー3022内)に位置するバリア材料を含み得る。
図35に示される構成では、バリア材料(図示せず)は、熱伝導性インターフェース3014及びペルチェスタック3004とカバー3022との間の任意の間隙及び制御器3000の構成要素間の任意の他の間隙を取り囲むように挿入され得る。バリア材料は、制御器3000の任意の内部部分に水分が集まって氷を形成する能力を防止する又は低減する。いくつかの実施形態では、バリア材料は、例えばポリウレタンなどのポリマーを含み得る。いくつかの実施形態では、バリア材料は、任意の膨張フォーム(例えばウレタンフォーム)で作製されたスプレーフォーム又はフォームスライスを含み得る。
【0206】
[00244]
図35に示されるように、熱制御式流れ制御器3000はガイド3020を含むことができる。ガイド3020は、熱伝導性インターフェース3014の両側に位置することができ、使用者が熱伝導性インターフェース3014内に流体ライン(図示せず)を供給する際に支援する。ガイド3020は、プラスチックなどの低い熱伝導率を有する材料で作製され得る。ガイド3020は、熱制御式流れ制御器3000に含まれるカバー3022の一部であり得る。
【0207】
[00245] 熱制御式流れ制御器2000及び熱制御式流れ制御器3000は、約9mm2から約25mm2、又は約10mm2から約20mm2、又は約13mm2から約18mm2の接触面(例えば、ペルチェ装置に接触する表面)を有する熱伝導性インターフェース(又はコールドヘッド)を有し得る。特定の実施形態では、熱伝導性インターフェースは、約20mm3から約60mm3、又は約25mm3から約50mm3、又は約30mm3から約40mm3の体積を有し得る。この小さな熱質量は、ペルチェ装置に接触する相対的に大きい表面積と相まって、流体ライン及び流体ライン内を流れる流体を冷却する(又は過冷却する)のに必要な時間を減少させることができる。特定の実施形態では、熱制御式流れ制御器2000及び熱制御式流れ制御器3000は、流体ラインの流れセグメント内の流体の凍結を約35秒以下(例えば、約30秒以下、約27秒以下、約25秒以下、約23秒以下、又は約20秒、又は約20秒から約35秒、約20秒から約30秒、又は約23秒から約27秒の範囲)で達成することができる。特定の関連実施形態では、熱制御式流れ制御器2000及び熱制御式流れ制御器3000は、流体ラインの流れセグメント内の凍結した流体の解凍を約40秒以下(例えば、約35秒以下、約32秒以下、約30秒以下、約28秒以下、若しくは約25秒以下、又は約25秒から約40秒、約25秒から約35秒、若しくは約28秒から約32秒の範囲)で達成することができる。
【0208】
[00246] 熱制御式流れ制御器2000及び熱制御式流れ制御器3000はまた、マイクロ流体デバイスに対する流体ラインの開口部を含む。これらデバイスにおける関連のガイドは、コールドヘッドに流体ラインの管を見ずに案内することを可能にし、これらの組み立てを簡単にする。
【0209】
[00247] 熱制御式流れ制御器2000及び熱制御式流れ制御器3000はまた、バリア材料を含む。このバリア材料は水分バリアとして機能し、性能を低下させる氷を蓄積させることなくペルチェ装置(したがって制御器2000及び制御器3000)を長時間運転し続ける。
【0210】
[00248] 特定の実施形態では、支持体100はまた、培養条件を維持するように構成されたO2およびCO2源を含むか、またはそれらとインターフェースすることができる。特定の実施形態では、支持体100はまた、湿度モニタ/レギュレータを含むか、またはそれとインターフェースすることができる。
【0211】
[00249] 支持体100は、約6~10インチ(または約150~250mm)×約2.5~5インチ(または約60~120mm)×約1~2.5インチ(または約25~60mm)の寸法を有することができる。支持体100に組み込まれた機能に応じて、支持体100の寸法を実質的にこれらの例示的な寸法内に維持することが望ましい可能性があるが、寸法は例示的な寸法よりも小さくても大きくてもよい。例示的な支持体100は、特定の機能のために構成された特定の構成要素を含むものとして説明してきたが、他の実施形態による支持体は、記載された機能の様々な組合せおよび下位組合せを実行する異なる構成要素を含むことができる。
【0212】
[00250] 特定の実施形態では、光変調サブシステム634は、デジタルミラーデバイス(DMD)、液晶ディスプレイまたはデバイス(LCD)、液晶オンシリコンデバイス(LCOS)、および強誘電性液晶オンシリコンデバイス(FLCOS)、およびの1つまたは複数を含む。光変調サブシステム634は、例えば、プロジェクタ(例えば、ビデオプロジェクタまたはデジタルプロジェクタ)であってもよい。適切な光変調サブシステムの一例は、ANDOR TECHNOLOGIES(商標)からのMOSAIC(商標)システムである。他の実施形態では、光変調サブシステム634は、改善されたコントラスト比を提供し得るマイクロシャッタアレイシステム(MSA)を含むことができる。さらに他の実施形態では、光変調サブシステム634は、走査レーザ装置を含むことができる。特定の実施形態では、光変調サブシステム634は、構造化光および非構造化光の両方を放射可能であり得る。
【0213】
[00251] 特定の実施形態では、支持体100および光変調サブシステム634は、それぞれ、標準的な研究グレードの光学顕微鏡または蛍光顕微鏡などの顕微鏡に取り付けられるように個別に構成されている。例えば、支持体100は、顕微鏡のステージに取り付けられるように構成することができる。光変調サブシステム634は、顕微鏡のポートに取り付けるように構成することができる。
【0214】
[00252] したがって、特定の実施形態において、本システムは、光学顕微鏡を、マイクロ流体デバイス110を動作させるように構成された顕微鏡に変換する方法を使用することが出来る。この方法は、支持体100(例えば、本明細書に記載したようなもの)および光変調サブシステム634(例えば、本明細書に記載したようなもの)を含むシステムを適切な顕微鏡に取り付けるステップを含むことができる。支持体100は前記光学顕微鏡のステージに取り付けることができ、光変調サブシステム634は前記光学顕微鏡のポートに取り付けることができる。特定の実施形態では、変換された光学顕微鏡は、光学的に作動されるマイクロ流体デバイス110(例えば、OETおよび/またはOEW構成を有するマイクロ流体デバイス)を動作させるように構成することができる。
【0215】
[00253] 他の実施形態では、本明細書に記載される支持体100および光変調サブシステム634は、光学顕微鏡の一体構成要素とすることができる。例えば、一体化された支持体100および一体化された光変調サブシステム634を有する顕微鏡は、光学的に作動されるマイクロ流体デバイス110(例えば、OETおよび/またはOEW構成を有するマイクロ流体デバイス)を動作させるように構成することができる。
【0216】
[00254] 特定の関連する実施形態では、本システムは、マイクロ流体デバイス110を動作させるように構成された顕微鏡を提供する。顕微鏡は、マイクロ流体デバイス110を保持するように構成された支持体100と、第1の光源から光を受け取り、構造化光を放射するように構成された光変調サブシステム634と、光学系とを含むことができる。光学系は、(1)光変調サブシステム634から構造化光を受け取り、装置110が支持体100によって保持されているときに、マイクロ流体デバイス110の少なくとも第1の領域に構造化光を集束させ、(2)反射光および/または放射光をマイクロ流体デバイス110から受け取り、そのような反射光および/または放射光の少なくとも一部を検出器602に集束させるように構成することができる。光学系はまた、第2の光源622から非構造化光を受け取り、装置110が支持体100によって保持されているときに、マイクロ流体デバイス110の少なくとも第2の領域に非構造化光を集束させるように構成することができる。特定の実施形態では、マイクロ流体デバイス110の第1および第2の領域は、重なり合う領域とすることができる。例えば、第1の領域は、第2の領域のサブセットであり得る。
【0217】
[00255] 特定の実施形態では、本システムの顕微鏡は、1つまたは複数の検出器602をさらに含むことができる。検出器602は、電荷結合素子(CCD)、相補型金属酸化物半導体(CMOS)、科学的相補型金属酸化物半導体(SCMOS)、カメラ(例えば、デジタルカメラまたはフィルムカメラ)、またはそれらの任意の組み合わせを含むことができるが、これらに限定されない。少なくとも2つの検出器602が存在する場合、一方の検出器602は、例えば、高速フレームレートのカメラであり得、他方の検出器602は、高感度カメラであり得る。顕微鏡はまた、使用者による視覚化のために構成された接眼レンズを含むことができる。さらに、光学系は、マイクロ流体デバイス110からの反射光および/または放射光を受け取り、追加の検出器602に反射光および/または放射光の少なくとも一部を集束させるように構成することができる。顕微鏡の光学系は、各検出器602の最終倍率が異なり得るように、異なる検出器602のための異なる管レンズを含むこともできる。
【0218】
[00256] 特定の実施形態では、本システムの顕微鏡の光変調サブシステム634は、デジタルミラーデバイス(DMD)、液晶ディスプレイ/デバイス(LCD)、液晶オンシリコンデバイス(LCOS)、強誘電性液晶オンシリコンデバイス(FLCOS)、および走査型レーザデバイスの1つまたは複数を含むことができる。さらに、DMD、LCD、LCOS、FLCOS、および/または走査レーザデバイスは、プロジェクタ(例えばビデオプロジェクタまたはデジタルプロジェクタ)の一部であってもよい。他の実施形態では、光変調サブシステム634は、改善されたコントラスト比を提供し得るマイクロシャッタアレイシステム(MSA)を含むことができる。特定の実施形態では、本システムの顕微鏡は、光変調サブシステム634を制御するための埋め込み式または外部制御器(図示せず)を含むことができる。このような制御器は、例えば、外部コンピュータまたは他のコンピュータデバイスであってもよい。
【0219】
[00257] 特定の実施形態では、本システムのシステム600/顕微鏡は、少なくとも2つの光源622、632を使用するように構成されている。例えば、第1の光源632は構造化光650を生成するために使用可能であり、次いでこの光は、光学的に作動されるエレクトロキネシス(electrokinesis)および/または蛍光励起のための変調された構造化光652を形成するための光変調サブシステム634によって変調される。第2の光源622は、明視野または暗視野結像のための(例えば、非構造化光654を使用する)背景照明を提供するために使用することができる。そのような構成の一例が
図6に示されている。第1の光源632は、構造化光650を光変調サブシステム634に供給するように示され、光変調サブシステム634は変調された構造化光652を顕微鏡の光学系に提供する。第2の光源622は、ビームスプリッタ624を介して光学系に非構造化光654を提供するように示されている。光変調サブシステム634からの変調された構造化光652および第2の光源622からの非構造化光654は、一緒に光学系を通って移動し、ビームスプリッタ606に到達し、そこで光652、654は対物レンズ608(レンズであってもよい)を介して試料面610に反射される。次いで、試料面610からの反射光および/または放射光662、664は、対物レンズ608を介して、ビームスプリッタ606を介して、ダイクロイックフィルタ604まで移動する。光662、664は、試料面610からそれぞれ反射された変調された構造化光652および非構造化光654とすることができる。あるいは、光662、664は、試料面610をまたはその下を起源とすることができる。ダイクロイックフィルタ604に到達する光662、664のほんの一部のみがフィルタ604を通過し、検出器602に到達する。システムがどのように使用されているかに応じて、ビームスプリッタ606は、(例えば、試料面610にまたはその下に生じる蛍光放出を検出するための)ダイクロイックフィルタと置き換えることができる。
【0220】
[00258]
図6に示すように、第2の光源622は青色光を放射する。試料面610から反射された青色光は、ダイクロイックフィルタ604を通過し、検出器602に達することができる。これとは対照的に、光変調サブシステム634から来る構造化光は、試料面610から反射されるが、ダイクロイックフィルタ604を通過しない。この例では、ダイクロイックフィルタ604は、495nmより長い波長を有する可視光を濾波している。光変調サブシステム634からの光のこのような濾波は、光変調サブシステム634から放射された光が495nmより短い波長を含まない場合にのみ(図示のように)完了する。実際には、光変調サブシステム634から来る光が495nmより短い波長(例えば、青色波長)を含む場合、光変調サブシステム634からの光の一部はフィルタ604を通過して検出器602に達するだろう。そのようなシナリオでは、フィルタ604は、第1の光源632および第2の光源622から検出器602に到達する光の量のバランスを変化させるように働く。これは、第1の光源632が第2の光源622よりもかなり強い場合に有益であり得る。
【0221】
[00259] 第1の光源632および第2の光源622から検出器602に到達する光の量のバランスを変化させるという同じ目的を達成する、
図6に示す構成に対する1つの代替案は、第2の光源622に赤色光を放射させ、フィルタ604に650nmより短い波長を有する可視光を濾波させることである。
【0222】
[00260] 特定の実施形態では、本システムの顕微鏡(またはシステム)は、第1の光源632および/または第2の光源622をさらに備える。
【0223】
[00261] 特定の実施形態では、第1の光源632は、広いスペクトルの波長(例えば、「白色」光)を放射することができる。第1の光源632は、例えば、蛍光体の励起に適した少なくとも1つの波長を放射することができる。第1の光源632は、光変調サブシステム634によって放射された構造化光が、光学的に作動されるマイクロ流体デバイス110の光作動電気泳動を活性化することができるように十分に強力であり得る。特定の実施形態では、第1の光源632は、金属ハロゲン化物、セラミック放電、ナトリウム、水銀、および/またはキセノンを含むものなど、高強度放電アークランプを含むことができる。他の実施形態では、第1の光源632は、1つまたは複数のLED(例えば、4つのLEDからなる2×2アレイまたは9つのLEDからなる3×3アレイなどのLEDのアレイ)を含むことができる。LEDは、広スペクトル「白色」光LED(例えば、PRIZMATIXによるUHP-T-LED-白色)、または様々な狭帯域波長LED(例えば、約380nm、480nm、または560nmの波長を放出する)を含むことができる。さらに他の実施形態では、第1の光源632は、(例えば、OETおよび/または蛍光用に)選択可能な波長で光を放射するように構成されたレーザを組み込むことができる。
【0224】
[00262] 特定の実施形態では、第2の光源622は、明視野照明に適している。したがって、第2の光源622は、1つまたは複数のLED(例えば、4つのLEDからなる2×2アレイまたは9つのLEDからなる3×3アレイなどのLEDのアレイ)を含むことができる。LEDは、白色(すなわち、広スペクトル)光、青色光、赤色光等を放射するように構成することができる。いくつかの実施形態では、第2の光源622は、495nm以下の波長を有する光を放射することができる。例えば、第2の光源622は、実質的に480nm、実質的に450nm、または実質的に380nmの波長を有する光を放射することができる。他の実施形態では、第2の光源622は、650nm以上の波長を有する光を放射することができる。例えば、第2の光源622は、実質的に750nmの波長を有する光を放射することができる。さらに他の実施形態では、第2の光源622は、実質的に560nmの波長を有する光を放射することができる。
【0225】
[00263] 特定の実施形態では、本システムの顕微鏡の光学系は、495nmより長い波長を有する可視光を少なくとも部分的に濾波するダイクロイックフィルタ604を含む。他の実施形態では、本システムの顕微鏡の光学系は、650nmより短い(または620nmより短い)波長を有する可視光を少なくとも部分的に濾波するダイクロイックフィルタ604を含む。より一般的には、光学系は、第1の光源632からの構造化光が検出器602に到達するのを低減または実質的に防止するように構成されたダイクロイックフィルタ604含むこともできる。このようなフィルタ604は、(光学系に沿って)検出器602の近くに配置することができる。代替的に、光学系は、光変調サブシステム634からの構造光(例えば、可視構造化光)の量と、前記検出器602に到達する第2の光源622からの非構造化光(例えば、可視非構造光)の量とを釣り合わせるように構成された1つまたは複数のダイクロイックフィルタ604を含むことができる。このような釣り合いは、構造化光が検出器602(または検出器602によって得られた画像)で非構造化光を圧倒しないことを確実にするために使用することができる。
【0226】
[00264] 特定の実施形態では、本システムの顕微鏡の光学系は、構造化光および非構造化光をマイクロ流体デバイス110上で集束するように構成された対物レンズ608を含むことができ、対物レンズは、100x、60x、50x、20x、10x、5x、4x、または2xの対物レンズから選択される。これらの倍率は説明のために列挙され、限定することを意図したものではない。対象は任意の倍率を有することができる。
【0227】
[00265] 本システムの顕微鏡は、本明細書に記載の支持体100のいずれかを含むことができる。したがって、例えば、支持体100は、前記装置110が支持体100によって保持されているときに前記マイクロ流体デバイス110内の一対の電極間に少なくとも断続的にバイアス電圧を設定するように構成された一体化電気信号生成サブシステム138を含むことができる。代わりにまたはそれに加えて、支持体100は、前記支持体100によって前記装置110が保持されているときに前記マイクロ流体デバイス110の温度を調節するように構成された熱制御サブシステム140を含むことができる。
【0228】
[00266] 本明細書に記載のいずれのシステムまたは顕微鏡も、マイクロ流体デバイス110をさらに含むことができる。マイクロ流体デバイス110は、誘電泳動を支持するように構成されたマイクロ流体デバイス110またはエレクトロウェッティングを支持するように構成されたマイクロ流体デバイス110などのマイクロ流体デバイス110であり得る。マイクロ流体デバイス110は、光学的に作動されるマイクロ流体デバイス(例えば、OETおよび/またはOEW構成を有するマイクロ流体デバイス)であり得る。
【0229】
[00267]
図7Aは、本システムのいくつかの実施形態による光学系の構造化光経路700を示す。
図7Aに示される構造光経路700は、ガラスカバー704(例えば、20mmガラスプレート)を含むDMD702で始まる。DMD702は、
図6に示す光変調サブシステム634のような光変調サブシステムの一部であってもよい。DMD702は、光源(図示せず)からの光を修正して構造化光708を形成する。構造化光708は次いで対物レンズ710(これはレンズであってもよい)に向かって管状レンズ706によって集束される。次に対物レンズ710は、構造化光708をカバー712(例えば、カバーガラス)上で集束させる。カバー712は、光学的に作動されるマイクロ流体デバイスなどのマイクロ流体デバイス110のカバーであってもよい。後者の実施形態では、構造光は、以下に説明するように、光学的に作動されるマイクロ流体デバイス110を作動および/または動作させることができる。
【0230】
[00268]
図7Bは、本システムのいくつかの実施形態による光学系の結像光路750を示す。
図7Bに示された結像光路750は、マイクロ流体デバイス110のカバー712と一致し得る試料面752で始まる。試料面752は、
図6に示される試料面610と同様であり得る。したがって、結像光路750中の光758は、試料面752から反射され得る。あるいは、光758は、試料面752を通過し得る。試料面752から、光758は、対物レンズ754および無彩色管レンズ756によってカメラ面760に向かって集束される。カメラ面760は、
図6に示す検出器602と同様に、検出器(図示せず)と一致することができる。このようにして、結像光路750を使用して、(例えば、マイクロ流体デバイス110内に含まれる)試料面752に配置された試料またはその一部を視覚化することができる。
【0231】
[00269]
図22は、
図6に示したものと同様の光学系を有するシステム600を示す。
図22に示すシステム600において、第2の光源622およびビームスプリッタ624は、
図6のように主要光路の脇ではなく、試料面610と検出器602の間で主要光路内に配置される。このような実施形態では、第2の光源は、試料面610からの反射および/または放射光662、664と干渉しないような大きさ、形状および構成を有する。さらに、ビームスプリッタ624は、非構造化光654の方向を変えることなく第2の光源622からの非構造化光654を修正するフィルタとしてのみ機能することができる。他の実施形態では、システム600はビームスプリッタ624を含まない場合がある。
【0232】
[00270] 特定の実施形態では、第2の光源622は、ライトパイプおよび/または1つまたは複数のLED(例えば、LEDの3×3アレイの2×2などのLEDアレイ)を備える。
【0233】
[00271]
図23は、本明細書に記載のシステム600の光源として使用され得る2つのLEDアレイを示す。第1のLEDアレイ1102は、4つのLEDからなる2×2アレイを含む。第2のLEDアレイ1104は、9個のLEDからなる3×3のアレイを含む。正方形配列は、非正方形配列と比較して単位面積当たりの光強度を高める。アレイ内のLEDは、同じ色/波長(例えば、紫外線、380nm、480nmまたは560nm)を有することができる。あるいは、アレイ内のLEDの様々なサブセットが、異なる色/波長を有することができる。さらに、LEDは元々狭帯域波長(例えば、450nm波長)を放射することができるが、狭帯域波長での励起の際に白色光を放射するために燐光材料でコーティングされてもよい。
【0234】
[00272]
図24は、
図23に示すLEDアレイ1102、1104のうちの1つなど、光源から光を受け取り、伝搬するように構成され得るライトパイプ(またはオプティカルインテグレータ)1112を示す。ライトパイプ1112(「非結像収集光学素子」としても知られる)は、その一端(すなわち、入力アパーチャ)からその他端(すなわち、出力アパーチャ)に光を伝搬するように構成され、出力アパーチャから放射される光は実質的に均一の強度を有する(すなわち、出力アパーチャの平面における定義されたサイズの第1の領域を通る光束は、同じ規定されたサイズを有する出力アパーチャの平面における他のどの領域を通る光束とも実質的に同じである)。ライトパイプ1112の本体壁は、透明ガラスまたは透明プラスチックから構成することができる。ライトパイプ1112は、例えばEDMOND OPTICSから入手可能である。
【0235】
[00273]
図25は、表面1124に結合された複数の3×3LEDアレイ1104を含む光源1122を示す。表面1124は、LEDボードであってもよい。光源1122は、光源1122から放射される光を受け取るように構成されたアパーチャに対して移動可能なように、システム内に配置されてもよい。例えば、システムは、ライトパイプ/オプティカルインテグレータ1112を含むことができ、ライトパイプ1112の入力アパーチャは、表面1124に結合された複数のLEDアレイ1104の1つから放射された光を受け取るように構成することができる。したがって、光源1122の表面1124とライトパイプ/オプティカルインテグレータ1112との相対的な位置に依存して、(例えば、ライトパイプ/オプティカルインテグレータ1112を介して)異なるLEDアレイ1104を光源として利用可能であり得る。
【0236】
[00274]
図26は、多入力ライトパイプ/オプティカルインテグレータ1132を示す。多入力ライトパイプ1132は、複数の(例えば3つの)入力アパーチャであって、光伝搬経路およびそれぞれの光源1134、1136、1138にそれぞれ関連付けられた複数の入力アパーチャと、1つ少ない(例えば2つの)ダイクロイックフィルタ1140、1142とを有する。各ダイクロイックフィルタ1140、1142は、対応する光源1136、1138からの光を反射するように構成されている。
図26に示す多入力ライトパイプ1132は、第1、第2および第3の光源1134、1136、1138を有し、そのうちの任意のものが、LEDのアレイ(例えば、LEDの2×2または3×3アレイ)であってもよい。第1の光源1134は、約380nmで光を放射するLEDのアレイであってもよい。第2の光源1136は、約480nmで光を放射するLEDのアレイであってもよい。第3の光源1138は、約560nmで光を放射するLEDのアレイであってもよい。したがって、第1、第2、第3の光源1134、1136、1138を選択的に起動させることによって、多入力ライトパイプ1132から放射する光の波長を制御することができる。多入力ライトパイプ1132は、対応する入力開口に入射する光源1134、1136、1138のいずれか1つ、またはそれらの任意の組合せからの光が、出力開口から放射されるときに実質的に均一な強度であるように構成される。多入力ライトパイプ1132の本体壁は、透明ガラスまたは透明プラスチックから構成することができる。
【0237】
[00275] 特定の実施形態では、本システムの顕微鏡は、光変調サブシステム634によって受け取られ、光学系に伝達される単一の光源(例えば、白色光LED;図示せず)を使用するように構成される。単一の光源を使用して、光で作動されるエレクトロキネシス、蛍光体励起、および明視野照明のための構造化光を提供することができる。このような構成では、構造化された照明を使用して、光の口径食または照明の他のいずれかの偶然の不均一性を補償することができる。光の口径食は、視野802の縁部に向かう照明804の緩やかな減衰である(例えば、
図8A)。単一の光源の光強度は、画素ごとに測定することができ、その情報は反転された光の口径食機能814を生成するために使用される(例えば、
図8B)。反転された光の口径食機能814は次いで光変調サブシステムからの光の出力を調節するために使用可能であり、それにより、視野802内に一様に照射されたフィールド824を生成する(例えば、
図8C)。
【0238】
[00276] 本システムは、光学的に作動されるマイクロ流体デバイス110内の微小物体を操作するために光を使用する方法をさらに提供する。方法は、光学的に作動されるマイクロ流体デバイス110を、本明細書に記載のシステムまたは顕微鏡のいずれか1つの支持体100の上に配置すること、光学的に作動されるマイクロ流体デバイス110の上または中に微小物体を配置すること、光変調サブシステム634からの構造化光を光学的に作動されるマイクロ流体デバイス110の表面上の第1の領域に集束させること、および集束された構造化光を光学的に作動されるマイクロ流体デバイス110の表面上の第2の領域に移動させることを含む。微小物体が前記第1の領域に近接して配置されるならば、集束された光を動かすことにより微小物体の指向された動きを誘発することができる。集束された構造化光は、例えば、微小物体の周りに光ケージを形成するために使用することができる。あるいは、集束された構造化光は、微小物体を含む流体小滴と少なくとも部分的に接触するために使用することができる。
【0239】
[00277] 光学的に作動されるマイクロ流体デバイス110において微小物体を操作するために光を使用する方法の別の実施形態では、光パターンが空間的に固定され、光学的に作動されるマイクロ流体デバイス110が光パターンに対して移動される。例えば、光学的に作動されるマイクロ流体デバイス110は、コンピュータによって自動的に制御され得るか、使用者によって手動で制御され得るか、またはコンピュータの助けを借りて使用者によって半自動的に制御され得る電動式または機械式顕微鏡ステージを使用して移動することができる。別の同様の実施形態では、空間的に固定された光パターンは、操縦可能なステージ上の微小物体(例えば、生物学的細胞または対象とする微小物体を任意で含有する液滴)を移動させるように構成された「ケージ」またはボックスなどの幾何学的パターンを形成することができる。
【0240】
[00278] 他の実施形態では、マイクロ流体デバイスを作動させるためのシステムは、マイクロ流体デバイスに流体試料を直接(例えば、手動で又はロボットで)導入するためのアクセス部を備えて構成され得る。上記の実施形態では、流体試料は、第1の流体入力/出力ライン112及び第2の流体入力/出力ライン118を通して導入される(及び取り出される)。マイクロ流体デバイスの内部容積は、例えば、50マイクロリットル未満(例えば、40マイクロリットル未満、30マイクロリットル未満、25マイクロリットル未満、20マイクロリットル未満、15マイクロリットル未満、又は10マイクロリットル未満、又は約10から約50マイクロリットル、約10から約40マイクロリットル、約10から約30マイクロリットル、約5から約25マイクロリットル、約5から約20マイクロリットル、約5から約15マイクロリットル、約2から約10マイクロリットル、又は約2から約5マイクロリットル)に制限され得る。場合によっては、その流体量の約半分のみ(例えば、約25マイクロリットル以下、約20マイクロリットル以下、約15マイクロリットル以下、約10マイクロリットル以下、又は約2から約10マイクロリットル、又は約1から約5マイクロリットル)がマイクロ流体デバイスを通って典型的に流れる。なぜなら、流体のもう半分は分析のためにマイクロ流体デバイスによって比較的固定されたままであるからである。限られた量の流体のみが任意の所与の時間にマイクロ流体デバイスに挿入され得るため、第1又は第2の流体入力/出力ラインを通ってマイクロ流体デバイスに流入する(及び流出する)流体試料は、相対的に個別の流体パケットを理想的には形成する。しかし、第1及び第2の流体入力/出力ラインのポンプとマイクロ流体デバイスとの間の流体ラインの長さは、長くすることができ(例えば、約50cm、約75cm、約100cm、約125cm、約150cm以上)、約5マイクロリットルよりも大幅に大きい内部容積を有することができる。その結果、最初は少量の流体試料は、流体ライン内を移動してマイクロ流体デバイスに導入される前に薄くなる又は分散する可能性がある。更に、試料が分散する際、試料内の微小物体(例えば、細胞又はビーズ)は流体試料内に不均一に分布する場合があり、マイクロ流体デバイス内のチャネル間における微小物体の不均一装填につながる。
【0241】
[00279]
図27~
図31に示される例示的な実施形態は、試料をマイクロ流体デバイスに直接導入することができるため、流体試料の分散及び関連する流体試料中における微小物体の不均一分布を低減する又は防止する。これらの実施形態では、マイクロ流体デバイスは、支持体の一部であるソケットによって保持される。ソケットは、2つ(又はそれ以上の)部分に分離することができる蓋を含む。これらの部分の1つは、他の部分から分離することができるため、マイクロ流体デバイスをもはやカバー(又はこれと接触)せず、流体試料をマイクロ流体デバイスに直接導入することを可能にし、試料が流体ラインを流れる必要はない。同時に、蓋の他の部分は所定の位置にとどまり、マイクロ流体デバイスをソケット内に保持する。
【0242】
[00280]
図27に示されるように、これらの実施形態のマイクロ流体デバイスを作動させるためのシステムは、支持体100に実質的に類似する支持体1200と、ソケット106に実質的に類似するソケット1206と、第1の流体入力/出力ライン112に実質的に類似する第1の流体入力/出力ライン1212と、第2の流体入力/出力ライン118に実質的に類似する第2の流体入力/出力ライン1218とを含む。特定の実施形態では、ソケット1206は、マイクロ流体デバイス1210を支持するように構成された表面1203と、マイクロ流体デバイス1210をソケット1206内に固定するように構成された蓋1204とを含む。ソケット1206の表面1203は、マイクロ流体デバイス1210の対応する実質的に平坦な底面とインターフェースする実質的に平坦な領域を含み得る。得られたインターフェースは、マイクロ流体デバイス1210をソケット1206と作用可能に結合することができ、例えば、それによって電気接続などの機能的な相互接続を確立することができる。或いは又は加えて、ソケット1206は、表面1203から又は表面1203へと延びる特徴(例えば、ピン、凹部)を含み得る。これらの特徴は、マイクロ流体デバイス1210とインターフェースし、ソケット1206内におけるマイクロ流体デバイス1210の位置を制御することができる及び/又はマイクロ流体デバイス1210をソケット1206と作用可能に結合し、例えば、それによって電気接続などの機能的な相互接続を確立することができる。蓋1204は、マイクロ流体デバイス1210の頂面とインターフェースすることができる。得られたインターフェースは、マイクロ流体デバイス12を第1及び第2の流体入力/出力ライン1212、1218の一方又は両方と作用可能に結合することができる。特定の実施形態では、蓋1204は、例えばヒンジなどによって表面1203に接続され得る。特定の関連実施形態では、蓋1204は、蓋1204を閉位置に保持するように構成されたラッチ(又は例えばねじ、ピン、又はクランプなどの他の固定機構)を含み得る。したがって、ラッチは、蓋1204とマイクロ流体デバイス1210の頂面との間のインターフェースの形成を容易にすることができる。
【0243】
[00281] 第1及び第2の入力/出力ライン1212、1218の一方又は両方は、一端にてポンプに、他端にて蓋1204に含まれる流体ポート(図示せず)に接続され得る。流体ポートは、流体ラインの端部とマイクロ流体デバイス1210の入口/出口との両方とインターフェースすることができ、それによって流体ラインと入口/出口との間に流体連通を形成する。或いは又は加えて、第1又は第2の流体入力/出力ライン1212、1218の1つは、一端にて流体ポートに、他端にて廃物容器又は試料(例えば、マイクロ流体デバイス1210にインポートされる試料又はマイクロ流体デバイス1210からエクスポートされた試料)を保持するための容器などの容器に接続され得る。流体ポートは、任意で、その各々の流体ラインとマイクロ流体デバイスとの間における漏れに耐える接続を確実にするためのシール、又は圧縮フィッティングなどを含む。
【0244】
[00282] いくつかの実施形態では、蓋1204は、2つの部分、すなわち、第1の部分1204A及び第2の部分1204Bを含む。
図27に示されるように、蓋の第2の部分1204Bは第1の部分1204Aから分離され得る。これにより、第2の部分1204Bが、
図27に示される位置(閉位置)から、マイクロ流体デバイスの入口/出口(例えば、マイクロ流体デバイス1210の上面に位置する入口/出口)へのアクセスが可能になる開位置に移動することを可能にする。蓋の第2の部分1204Bの開位置の一例は、
図28及び
図29に示される。第2の部分1204Bは、
図28及び
図29に示される位置だけでなく、マイクロ流体デバイス1210から離れる任意の数の開位置に移動させることができる。第2の部分1204Bが開位置にあるとき、蓋の第1の部分1204Aは所定の位置にとどまり、第2の部分1204Bが移動してもマイクロ流体デバイス1210を支持体1200の表面上で保持する。蓋の第2の部分1204Bが開位置にある間、第1の流体入力/出力ライン1212は、蓋1204Aの第1の部分の流体ポートに接続されてもよく、したがって、所定の位置にとどまってもよい(例えば、第1の流体入力/出力ライン1212とマイクロ流体デバイス1210の対応する入口/出口との間の流体連通を維持してもよい)。蓋の第2の部分1204Bの流体ポートに接続され得る第2の流体入力/出力ライン1218は、第2の部分1204Bとともに移動し、それによって第2の流体入力/出力ライン1218とマイクロ流体デバイス1210の対応する入口/出口との間の流体連通を分離する。
【0245】
[00283] 特定の実施形態では、蓋の第2の部分1204Bが開位置にあるとき、蓋の第2の部分1204Bがその閉位置において占めていた場所に挿入物が配置され得る。いくつかの構成では、挿入物は、蓋の第2の部分1204Bに実質的に類似する形状にされ得る。他の構成では、挿入物は、異なる形状にされ得ると考えられる。挿入物は、複数の機能を果たすことができる。第1の機能は、蓋の第2の部分1204Bが閉位置にあるときにカバーされていたはずのマイクロ流体デバイス1210の入口/出口がカバーされないことにより生じる可能性のある汚染を防止することである。特定の実施形態では、挿入物は、流体入口(ウェルなど)を含み、流体入口によってマイクロ流体デバイス1210に流体試料を直接導入することができる。挿入物のこの流体入口は、蓋の第2の部分1204Bが閉位置にあるときに第2の流体入力/出力ライン1218の流体ポート1222とインターフェースするマイクロ流体デバイス1210の入口/出口とインターフェースするように配置されている。挿入物の一例は、流体試料を挿入するための特別仕様の流体ウェルを含む
図28に示される挿入物1207である。挿入物の別の例は、特別仕様ではない流体ウェルを含む
図29に示される挿入物1209である。見て分かるように、挿入物1207の流体ウェルは挿入物1209の流体ウェルよりも大きく、漏斗状の設計を含む。その正確な形状を問わず、流体ウェルは、約50マイクロリットル以下(例えば、約45マイクロリットル、約40マイクロリットル、約35マイクロリットル、約30マイクロリットル、約25マイクロリットル、約20マイクロリットル、約15マイクロリットル、約10マイクロリットル、約5マイクロリットル、又は前述の終点の2つによって形成される任意の範囲、例えば、約5マイクロリットルから約25マイクロリットル)の流体試料を保持するように構成され得る。
【0246】
[00284] いくつかの構成では、蓋の第2の部分1204Bは、
図30A~
図30Cに示されるプロセスを使用して移動させることができる。これらの実施形態では、蓋の第2の部分1204Bは、
図30Aに示されるように構成され得るラッチ1205及びヒンジ1225を含む。ラッチ1205は、蓋の第2の部分1204Bを閉位置に解放可能に保持するように構成されている。ラッチ1205は、
図30Bの矢印で示されるように引き上げることができる。この動作により、蓋の第2の部分1204Bを、マイクロ流体デバイス1210を覆うその閉位置から解放する。当然ながら、ラッチ1205及びその作動は、任意の他の数の構成を有することができ、例えばクランプ、摩擦ロック、ねじ、又は磁石などの、ラッチ以外の固定機構がラッチ1205を代替することができる。蓋の第2の部分1204Bはマイクロ流体デバイス1210を覆うその位置から解放されると、蓋の第2の部分1204Bをヒンジ1225の周りで回転させることによって、
図30Cに示される位置を含む任意の所望の位置に移動することができる。
図30Cに示される位置は、閉位置から約180°回転しているが、マイクロ流体デバイス1210の頂面の一部分を露出させ、マイクロ流体デバイス1210の第2の流体入口/出口へのアクセスを可能にする任意の程度の回転であれば十分である。例えば、蓋の第2の部分1204Bは、セクション部分1204Bの開位置を達成するために、少なくとも約60°、約75°、約90°、約105°、約120°、約135°、約150°以上回転させることができる。
図30Cに示されるように、挿入物1209などの挿入物が、蓋の第2の部分1204Bが前に位置していた場所に配置され得る。
【0247】
[00285] 挿入物1207又は挿入物1209を含む挿入物は、マイクロ流体デバイスの第2の流体入口/出口への流体媒体の流れを確実に達成することができるように、ソケット1206及び/又はマイクロ流体デバイス1210と作用可能に結合するように構成され得る。挿入物は、例えば、蓋の第1の部分1204Bとインターフェースするように構成され得る。挿入物は、典型的には、(i)挿入物をソケット1206及び/又はマイクロ流体デバイス1210に固定すること又は/又はソケット1206及び/又はマイクロ流体デバイス1210から取り外すこと、及び/又は(ii)挿入物とマイクロ流体デバイス1210とを位置合わせすることにおいて有用な特徴を含む。1つのそのような特徴は、蓋の第2の部分1204Bを所定の位置に保持するのに役立つ保持機構1215(
図31Bに示される)である。いくつかの構成では、保持機構は、蓋の第1の部分1204A及び/又はマイクロ流体デバイス1210の表面上の整合位置にある1つ以上の対応する磁石と引力相互作用を形成するように方向付けられた1つ以上の磁石を含む。蓋の第1の部分1204A上の対応する磁石(図示せず)とインターフェースする単一の磁石は、
図31Bに示される。挿入物の別の可能な特徴は、マイクロ流体デバイス1210の第2の流体入力/出力ラインが挿入物の流体入口と作用的に接続されるように挿入物をマイクロ流体デバイス上の正しい位置に位置合わせするのに役立つ位置合わせ特徴である。この位置合わせ特徴は、例えば、下面の整合穴1213内に収まり、任意で、挿入物内に延びる1つ以上のピン1217を含み得る。しかし、ピンの代わりに、整合特徴がこの位置合わせ機能のために使用され得る。31B(対応する保持機構1216(例えば磁石)及び位置合わせ特徴1214(例えば、ピン1217が嵌まる穴)を含む)及び本明細書の別の場所に示されるように、類似の保持及び/又は位置合わせ特徴は、蓋の第2の部分1204Bと蓋の第1の部分1204Aとの適切な位置決め及び/又は位置合わせを容易にすることができる。
【0248】
[00286]
図31Aに示される挿入物1207などの挿入物が所定の位置にある状態で、分析のために少量の流体試料がマイクロ流体デバイス1210に導入され得る。いくつかの構成では、この少量の流体試料は、
図31Cに示されるように、例えば、ピペット/マイクロピペット1220を使用して手作業で導入され得る。代替的な実施形態では、少量の流体試料は、例えば、ピペット/マイクロピペット1220を使用してロボットで導入され得る。少量の流体試料は、
図31Bに示されるウェル1219などの流体入口を使用してマイクロ流体デバイス1210に導入され得る。これらの構成では、第1の入力/出力流体ライン1212は、蓋の第1の部分1204Aの流体ポートとインターフェースされ、マイクロ流体デバイス1210の入口/出口に流体的に接続されたままである。第1の入力/出力流体ライン1212もまた、ポンプに接続されたままであるため、第1の入力/出力流体ライン1212は、ポンプが(吸引又は他の力を使用して)挿入物の流体入口(例えばウェル1219)からマイクロ流体デバイス1210へと及びマイクロ流体デバイス1210を通して流体試料の少なくとも一部を引くことができることを確実にすることができる。この操作により、マイクロ流体デバイス内における所望の速度の流体の流れを維持し、流体試料の全部又は一部がマイクロ流体デバイス1210によって分析されることを可能にする。吸引(又は他の力)は、予め選択した量の試料流体をマイクロ流体デバイス1210に引くのに十分な程度であり得る。予め選択した量は、例えば、マイクロ流体デバイス内の流量+/-約100%に等しくなり得る。流量は、媒体がマイクロ流体デバイス内を流れるときに流れを受けるマイクロ流体デバイスの量である(すなわち、米国特許第10,010,882号に記載されているような掃引領域)。特定の実施形態では、予め選択した量は、約1マイクロリットルから約25マイクロリットル(例えば、約1.5マイクロリットルから約20マイクロリットル、約2マイクロリットルから約15マイクロリットル、約2.5マイクロリットルから約10マイクロリットル、約3マイクロリットルから約7マイクロリットル、又は前述の終点の2つによって画定される任意の範囲)の流体試料であり得、この後に吸引が停止される。
【0249】
[00287] いくつかの実施形態では、分割蓋の第2の部分が所定の位置にあるかどうか、挿入物1207が所定の位置にあるかどうか、又は分割蓋の第2の部分も挿入物もマイクロ流体デバイス上の所定の位置にないかどうかを知ることは有用であり得る。これらの実施形態では、システムは、分割蓋の第2の部分又は挿入物がマイクロ流体デバイスの上方に存在するかどうかを検知するためのセンサを備えて修正され得る。このセンサのいくつかの実施形態は、
図36~
図43に示される。
【0250】
[00288]
図36に示されるように、マイクロ流体デバイス1210を作動させるためのシステムは、支持体1200と、第1の部分1204Aと第2の部分1204Bとを有する分割蓋1204とベース部分1201とを含むソケット1206と、センサ1300とを含み得る。分割蓋の第2の部分1204Bは、
図36に示されるようにラッチ1205を含むことができ、
図37に示されるように開位置に移動可能であり得る。蓋1204は、蓋の第2の部分1204Bと蓋の第1の部分1204Aとの取り付け及び位置合わせを容易にする取付特徴2015(例えば磁石)及び/又は位置合わせ特徴2017(例えばピン)を更に含み得る。マイクロ流体デバイス1210とソケット1206のベース部分1201は、プリント回路基板(PCB)などの基板1390を含み得る支持体1200上に位置し得る。
【0251】
[00289] 例示的なセンサ1300が
図38に示されている。センサ1300は、センサカバー1302と、磁石アセンブリ1304と、エキステンダ1310と、ハウジング1312と、コネクタ1314とを含み得る。センサカバー1302は、センサ1300の構成要素のいくつかを保護及び絶縁するように動作する。磁石アセンブリ1304は、第1のハウジング1306内に位置する1つ、2つ、又はそれ以上の磁石1308を含み得る。磁石1308は、蓋又は挿入物の存在を検知するプロセスにおいて使用され得る。第1のハウジング1306は、磁石1308を絶縁及び保護する。特定の実施形態では、第1のハウジング1306は、各磁石1308をエキステンダ1310の上面に接触させるための1つ以上の開口部を含む底部を含む。特定の実施形態では、第1のハウジングは、第2のハウジング1310の柱、ボルト、クランプ、又はグルーなど及びそれらの任意の組み合わせとともに作製された第1のハウジング1306の開口部などの締結機構を介して第2のハウジング1312とインターフェースすることができる。各エキステンダ1310の第1の端部は、第2のハウジング1312の柱(
図38に示されるような)、又はボルトなどの上に嵌まる開口部などを介して第2のハウジング1312に取り付けられるように構成されている。各エキステンダの第2の、反対側の端部は、ハウジング1312の底部の開口部を通って下向きに制御可能に延びるように構成されている。センサ1300の様々な構成要素は、コネクタ1314(例えば、図示されるようなねじ)を使用して互いに取り付けられ得る。
【0252】
[00290]
図39に、センサの様々な構成要素が組み立てられて示されている。残りの構成要素を見ることができるようにセンサカバー1302は透明である。
図39はまた、センサ1300がソケット1206に、例えば、周辺又はコーナ位置にどのように取り付けられ得るかを示す。
【0253】
[00291] ソケット1206のベース部分1201に取り付けられ、動作中のセンサ1300の側面図が
図40に示され得る。この図は、支持体1200に含まれる基板1390上に載るソケット1206のベース部分1201に取り付けられた分割カバー1204を示す。
図40に示されるように、センサ1300は、分割蓋1204の縁部とベース部分1201との間の境界面に位置する。分割蓋1204の第2の部分1204Bには、第2の部分1204Bが閉位置にあるときにエキステンダ1310のうちの1つと接触し、そのエキステンダ1310を下方に押すアクチュエータ1355(例えば、ねじ、又はピンなど)が備えられている。
【0254】
[00292]
図40の下部に示されるように、エキステンダ1310の端部は下方に押され、光スイッチの第1の要素(例えばLED)からの光が光スイッチの第2の要素(例えばフォトトランジスタ)に到達することを阻止することによって光スイッチを遮断している。光スイッチ1365は、光スイッチ1365が位置する基板1390以外のシステムの残部を伴わずに、
図41に示される。
図38に示される2つのエキステンダ1310に対応する2つの光スイッチ1365が
図41に示される。しかしながら、センサの所望の機能に応じて、センサは、単一の光スイッチ1365及び単一のエキステンダ1310又は3つ以上の光スイッチ1365及び対応するエキステンダ1310を含むことができる。光スイッチは、支持体1200の電気信号生成サブシステムの一部である電気回路に接続され得る。各光スイッチ1365は、単一のエキステンダ1310の下に配置されている。各エキステンダ1310が下方に押されると、各エキステンダ1310は光スイッチ1365の光学信号を遮断し、アクチュエータ1355の存在を知らせる。
【0255】
[00293]
図42及び
図43に示されるように、分割カバー1204及び挿入物1207、1209はそれぞれ、アクチュエータを異なる位置に含むように構成され得る。分割カバー1204は、第1のエキステンダ1310の上方に位置する第1の位置1361にアクチュエータを有して構成され得る。挿入物1207は、第2のエキステンダ1310の上方に位置する第2の位置1362にアクチュエータを有して構成され得る。当然ながら、どの位置が分割カバー1204と関連付けられており、どの位置が挿入物1207と関連付けられているかを知る限り、アクチュエータの実際の位置は変更することができる。光スイッチ及びエキステンダの同様の構成は、挿入物1207又は挿入物1209がマイクロ流体デバイス上に位置するかどうかを判定するためにも使用され得る。
【0256】
[00294] センサ1300が存在することにより、システムは、分割カバー、挿入物の可動部の存在、又はいずれも存在しない場合にさえ検知することができる。分割カバー1204の第2の部分1204Bがマイクロ流体デバイス1210上に位置するとき、可動部1204B内のアクチュエータは、例えば、第1の位置1361に位置することができ、下にある光センサ1365のエキステンダ1310を下方に押し、関連する光スイッチ間の信号を遮断することができる。挿入物1207、1209がマイクロ流体デバイス1210上に位置するとき、挿入物内のアクチュエータは、例えば、第2の位置1362に位置することができ、下にある光センサ1365のエキステンダ1310を下方に押し、関連する光スイッチ間の信号を遮断することができる。分割カバーの第2の部分1204Bも挿入物も存在しないとき、いずれのエキステンダ1310も下方に押されず、いずれの光スイッチ間の信号も遮られない。磁石1308は、エキステンダ1310を上位置(すなわち、関連する光スイッチを遮断しない位置に保持する。磁石がなければ、エキステンダは下位置にあり、光スイッチを遮断する。磁石の磁力は、分割蓋が開放されており挿入物が存在しないときにエキステンダをこの上位置に保持するほど十分に強いが、蓋及び挿入物上のアクチュエータが打ち勝つほど十分に弱い。したがって、このようにして、エキステンダ1310は、磁石1308とともに機能する任意の磁性材料から作製され得る。
【0257】
[00295] 分割カバーの第2の部分又は挿入物の存在を示すために、他の種類の検出及び遮断機構を使用することができる。これらの検出及び遮断機構の例としては、磁気近接スイッチ、機械的スイッチ、又は伝導性接触スイッチなどが挙げられる。
【0258】
[00296] これらの実施形態は、少量の流体試料が希釈又は分散することなくマイクロ流体デバイス1210に直接導入されることを可能にする。これらの実施形態では、少数の貴重な細胞(例えば、200,000個以下)を含む、典型的には少量(例えば、200マイクロリットル、150マイクロリットル、100マイクロリットル、50マイクロリットル以下)の試料が導入され得る。このような流体試料は、通常、物質の著しい損失を伴わずには、蛍光活性化セルソータ又は流れのみを用いて細胞をソートするマイクロ流体チップなどの従来の技術を使用して分析及び/又は回収することはできない。
【実施例】
【0259】
実施例
[00297] 実施例1:分割蓋を使用したマイクロ流体チップへの試料インポート
[00298] 形質細胞をマウスから分離し、Beacon(登録商標)システム(Berkeley Lights,Inc.)を使用してOptoSelect(商標)チップ(Berkeley Lights,Inc.)に装填した。マイクロ流体チップのチャネル内における細胞密度及び分布に対するウェルインポートの影響を試験するために、(i)標準的なネスト蓋を有するBeacon(登録商標)システムでの少量インポート法、(ii)分割蓋ネストを有するBeacon(登録商標)システムでの少量インポート法、又は(iii)開放構成の分割蓋ネストとマイクロ流体チップの入口/出口に流体的に接続されたウェルを有する挿入物とを有するBeacon(登録商標)システムでのウェルインポート法を使用して形質細胞をOptoSelect(商標)11k及び14kチップに装填した。少量インポート法には、個別の約5マイクロリットルの細胞試料をマイクロ流体チップに引くことが含まれた。マイクロ流体デバイスの入口につながる流体ライン内において細胞試料に7.5マイクロリットルの気泡を後続させ、試料中の細胞の希釈及び分散を制限した。これに対し、ウェルインポート法には、約3.5マイクロリットルの細胞試料を分割リット(開放構成)内の挿入物のウェルに手作業でピペッティングし、陰圧を使用してマイクロ流体チップに細胞試料を引くことが含まれた。装填後、流体の流れを停止し、マイクロ流体チップの各チャネル内の細胞を計数し、各条件下のインポート密度及び変動係数(CV)を決定した。
【0260】
[00299]
図44に示されるように、ウェルインポート法では、平均インポート密度は、OptoSelect(商標)11k及び14チップの両方(それぞれ4.8x10^6及び4.5x10^6)の方が、少量インポート法(平均インポート密度は閉位置の分割蓋ネストを有するBeacon(登録商標)システムでそれぞれ2.8x10^6及び2.1x10^6、標準的な蓋ネストを有するBeacon(登録商標)システムでそれぞれ2.7x10^6及び2.4x10^6)と比較すると高かった。加えて、OptoSelect(商標)11k及び14チップの両方の平均CVは、ウェルインポート(それぞれ8%及び10%)の方が、少量インポート法(平均CVは閉位置の分割蓋ネストを有するBeacon(登録商標)システムでそれぞれ26%及び30%、標準的な蓋ネストを有するBeacon(登録商標)システムでそれぞれ26%及び27%)と比較すると大幅に低かった。
【0261】
[00300] したがって、分割蓋ネストを有するウェルインポート法は、細胞装填における驚くべき改善をもたらした。分割蓋ネストを有する本明細書に開示されるシステム/顕微鏡実施形態のいずれにおいても
図44に示されるものと同様の結果が予想される。
【0262】
[00301] 開示されたシステムの特定の実施形態を本明細書に示し説明してきたが、それらは本発明を限定することを意図するものではないことは当業者によって理解されるであろうし、また、以下の特許請求の範囲およびそれらの等価物によってのみ定義される開示された発明の範囲から逸脱することなく、様々な変更および修正を行うことができる(例えば、様々な部品の寸法)ことは当業者には明らかであろう。したがって、本明細書および図面は、限定的な意味ではなく例示的な意味であるとみなされるべきである。
【国際調査報告】