IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヴィアレーズ, インコーポレイテッドの特許一覧

特表2023-500829フェムト秒レーザーを用いた線維柱帯およびシュレム管の治療の手術システムおよび手順
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-11
(54)【発明の名称】フェムト秒レーザーを用いた線維柱帯およびシュレム管の治療の手術システムおよび手順
(51)【国際特許分類】
   A61F 9/008 20060101AFI20221228BHJP
【FI】
A61F9/008 120E
A61F9/008 120Z
A61F9/008 120F
A61F9/008 130
【審査請求】有
【予備審査請求】有
(21)【出願番号】P 2022525201
(86)(22)【出願日】2020-10-14
(85)【翻訳文提出日】2022-06-23
(86)【国際出願番号】 US2020055632
(87)【国際公開番号】W WO2021091667
(87)【国際公開日】2021-05-14
(31)【優先権主張番号】16/674,850
(32)【優先日】2019-11-05
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.テフロン
(71)【出願人】
【識別番号】521025603
【氏名又は名称】ヴィアレーズ, インコーポレイテッド
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】ホランド, ガイ
(72)【発明者】
【氏名】ユハース, ティボル
(72)【発明者】
【氏名】ルミス, ウェスリー ダブリュ.
(72)【発明者】
【氏名】ミクラ, エリック アール.
(72)【発明者】
【氏名】ラクシ, フェレンツ
(72)【発明者】
【氏名】シャーマ, マヌ
(72)【発明者】
【氏名】スアレス, カルロス ジー.
(57)【要約】
遠位範囲、近位範囲、および側方範囲によって特徴付けられた眼組織ターゲットボリュームを、そのターゲットボリュームに向かう伝播方向のレーザーにより治療する。ターゲットボリュームの遠位範囲に相当する1回目の深さで組織層が最初に、フェムト秒レーザーを使用して、1回目の治療面を画定する複数方向にレーザーを走査することによって光切断される。ターゲットボリュームの遠位範囲とターゲットボリュームの近位範囲との間の1つまたは複数の2回目以降の深さで組織が、それに続いて、フェムト秒レーザーを使用して、レーザーの伝播方向と反対方向にレーザーの焦点を移してから、2回目以降の治療面を画定する複数方向にレーザーを走査することによって光切断される。ターゲットボリュームの近位範囲にある組織が光切断されるまで、様々な2回目以降の深さで光切断が繰り返される。
【選択図】図17
【特許請求の範囲】
【請求項1】
遠位範囲、近位範囲、および側方範囲によって特徴付けられた眼組織ターゲットボリュームに向かう伝播方向のレーザーにより目の虹彩角膜角の前記眼組織ターゲットボリュームを治療する方法であって、
最初に、前記眼組織ターゲットボリュームの前記遠位範囲に相当する1回目の深さで組織を光切断することと、
続いて、前記眼組織ターゲットボリュームの前記遠位範囲と前記眼組織ターゲットボリューム前記近位範囲との間の1つまたは複数の2回目以降の深さで組織を、前記レーザーの前記伝播方向と反対方向に前記レーザーの焦点を移すことによって、光切断することとを含む、方法。
【請求項2】
1つまたは複数の2回目以降の深さで前記光切断することが、前記眼組織ターゲットボリュームの前記近位範囲にある組織が光切断されるまで、複数の異なる2回目以降の深さで繰り返される、請求項1に記載の方法。
【請求項3】
前記眼組織ターゲットボリュームを光切断した後、前記眼組織ターゲットボリュームの前記近位範囲と前記眼組織ターゲットボリュームの前記遠位範囲との間の組織残骸または組織気泡を、前記レーザーの前記伝播方向に前記レーザーの前記焦点を移すことによって光切断することをさらに含む、請求項1に記載の方法。
【請求項4】
最初にまたは続いて組織を光切断することが、
フェムト秒レーザーからの光を、前記組織における前記1回目の深さまたは前記1つもしくは複数の2回目以降の深さであるスポットに集束させることと、
光エネルギーを前記組織に印加することと、を含む、請求項1に記載の方法。
【請求項5】
光エネルギーを印加することが、
治療面を画定する複数方向に前記レーザーを走査することによって、前記眼組織ターゲットボリュームの1回目の組織層または前記眼組織ターゲットボリュームの1つもしくは複数の2回目以降の組織層を光切断することを含む、請求項4に記載の方法。
【請求項6】
前記の1回目の組織光切断および前記2回目以降の組織光切断を1回または複数回繰り返すことをさらに含む、請求項1に記載の方法。
【請求項7】
前記眼組織ターゲットボリュームの前記遠位範囲を見付けることと、
前記眼組織ターゲットボリュームの前記近位範囲を見付けることと、
前記眼組織ターゲットボリュームの前記側方範囲を確認することと、をさらに含む、請求項1に記載の方法。
【請求項8】
前記眼組織ターゲットボリュームの前記遠位範囲および前記眼組織ターゲットボリュームの前記近位範囲が、1つまたは複数の眼組織画像に基づき見付けられる、請求項7に記載の方法。
【請求項9】
前記1つまたは複数の眼組織画像が、光学イメージング技法、多光子イメージング技法、およびオプト-メカニカルイメージング技法のうちの1つまたは複数を使用して得られる、請求項8に記載の方法。
【請求項10】
遠位範囲、近位範囲、および側方範囲によって特徴付けられた目の虹彩角膜角の眼組織ターゲットボリュームをレーザーにより治療するシステムであって、
前記目に合わせられるように構成された集束対物レンズを含む第1の光サブシステムと、
レーザービームを出力するように構成されたレーザー源と、前記集束対物レンズを通して、前記眼組織ターゲットボリュームに向かう伝播方向に、前記レーザーを集束させること、前記レーザーを走査すること、および前記レーザーを向けることのうちの1つまたは複数を行うように構成された複数の構成要素と、を含む第2の光サブシステムと、
前記第2の光サブシステムにつなげられ、また前記レーザーの前記集束および走査を制御するように構成された制御系であって、前記レーザーの前記集束および走査が、
最初に、前記眼組織ターゲットボリュームの前記遠位範囲に相当する1回目の深さで組織を光切断し、
続いて、前記眼組織ターゲットボリュームの前記遠位範囲と前記眼組織ターゲットボリュームの前記近位範囲との間の1つまたは複数の2回目以降の深さで組織を、前記レーザーの前記伝播方向と反対方向に前記レーザーの焦点を移すことによって、光切断するのに合わせて制御される、制御系と、を備える、システム。
【請求項11】
前記制御系が、前記眼組織ターゲットボリュームの前記近位範囲にある組織が光切断されるまで、複数の異なる2回目以降の深さで前記光切断を繰り返すのに合わせて、前記レーザーの前記集束および走査を制御するように構成されている、請求項10に記載のシステム。
【請求項12】
前記制御系が、前記眼組織ターゲットボリュームを光切断した後、前記眼組織ターゲットボリュームの前記近位範囲と前記眼組織ターゲットボリュームの前記遠位範囲との間の組織残骸または組織気泡を光切断するのに合わせて、前記レーザービームの前記伝播方向に前記レーザービームの前記焦点を移すことによって、前記レーザーの前記集束および走査を制御するようにさらに構成されている、請求項10に記載のシステム。
【請求項13】
前記制御系が、
前記組織における前記1回目の深さまたは前記1つもしくは複数の2回目以降の深さであるスポットにフェムト秒レーザーからの光を集束させ、
光エネルギーを前記組織に印加するようにさらに構成されることによって、1回目の組織光切断または2回目以降の組織光切断中に前記レーザーの前記集束および走査を制御する、請求項10に記載のシステム。
【請求項14】
前記制御系が、
治療面を画定する複数方向に前記レーザーの前記焦点を走査することによって、前記眼組織ターゲットボリュームの1回目の組織層または前記眼組織ターゲットボリュームの1つもしくは複数の2回目以降の組織層を光切断するようにさらに構成されることによって、光エネルギーの印加中に前記レーザーの前記集束および走査を制御する、請求項13に記載のシステム。
【請求項15】
前記制御系が、前記1回目の組織光切断および前記2回目以降の組織光切断を1回または複数回繰り返すのに合わせて、前記レーザーの前記集束および走査を制御するようにさらに構成されている、請求項10に記載のシステム。
【請求項16】
眼組織画像を取り込むように構成されたイメージング装置をさらに備え、前記制御系が、前記イメージング装置につなげられ、
前記眼組織ターゲットボリュームの前記遠位範囲を見付けること、
前記眼組織ターゲットボリュームの前記近位範囲を見付けること、および
前記眼組織ターゲットボリュームの前記側方範囲を確認すること、のうちの1つまたは複数を行うように構成されている、請求項10に記載のシステム。
【請求項17】
前記イメージング装置は、光イメージング装置、多光子イメージング装置、およびオプト-メカニカルイメージング装置のうちの少なくとも1つを含む、請求項16に記載のシステム。
【請求項18】
前眼房、シュレム管、およびそれらの間の線維柱帯を含む目を治療する方法であって、
最初に、前記シュレム管の内壁と前記線維柱帯との境界面にあるかまたは境界面近くの眼組織を光切断することと、
続いて、前記線維柱帯の眼組織を光切断することと、を含む、方法。
【請求項19】
最初に眼組織を光切断することが、
前記シュレム管の前記内壁と前記線維柱帯との前記境界面であるかまたは前記境界面近くである前記組織内スポットにフェムト秒レーザーからの光を集束させることと、
前記組織に光エネルギーを印加することと、を含む、請求項18に記載の方法。
【請求項20】
続いて組織を光切断することが、
前記線維柱帯の組織内スポットにフェムト秒レーザーからの光を集束させることと、
前記組織に光エネルギーを印加することと、を含む、請求項18に記載の方法。
【請求項21】
前記前眼房と前記シュレム管との間に開口か形成されるまで、前記1回目の眼組織光切断および前記2回目以降の組織光切断を1回または複数回繰り返すことをさらに含む、請求項18に記載の方法。
【請求項22】
前記シュレム管の前記内壁と前記線維柱帯との前記境界面にあるかまたは前記境界面近くの眼組織を見付けることと、
前記線維柱帯の近位組織範囲を見付けることと、
光切断される対象である側方眼組織範囲を確認することと、をさらに含む、請求項18に記載の方法。
【請求項23】
前記シュレム管の前記内壁と前記線維柱帯との前記境界面にあるかまたは前記境界面近くの眼組織、および前記線維柱帯の組織が、1つまたは複数の眼組織画像に基づき見付けられる、請求項22に記載の方法。
【請求項24】
前記1つまたは複数の眼組織画像が、光学イメージング技法、多光子イメージング技法、およびオプト-メカニカルイメージング技法のうちの1つまたは複数を使用して得られる、請求項23に記載の方法。
【請求項25】
前眼房、シュレム管、およびそれらの間の線維柱帯を含む目を治療するシステムであって、
前記目に合わせられるように構成された集束対物レンズを含む第1の光サブシステムと、
レーザービームを出力するように構成されたレーザー源と、前記集束対物レンズを通して、眼組織に、前記レーザービームを集束させること、前記レーザービームを走査すること、および前記レーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素と、を含む第2の光サブシステムと、
前記第2の光サブシステムにつなげられ、また前記レーザービームの前記集束および前記走査を制御するように構成された制御系であって、前記レーザービームの前記集束および前記走査が、
最初に、前記シュレム管の内壁と前記線維柱帯との境界面にあるかまたは境界面近くの眼組織を光切断し、
続いて、前記線維柱帯の眼組織を光切断するのに合わせて制御される、制御系と、を備える、システム。
【請求項26】
前記制御系が、
前記シュレム管の前記内壁と前記線維柱帯との前記境界面であるかまたは前記境界面近くである組織内スポットにフェムト秒レーザーからの光を集束させ、
光エネルギーを前記組織に印加するようにさらに構成されることによって、眼組織の1回目の光切断中に、前記レーザービームの前記集束および走査を制御する、請求項25に記載のシステム。
【請求項27】
前記制御系が、
前記線維柱帯の組織内スポットにフェムト秒レーザーからの光を集束させ、
前記組織に光エネルギーを印加するようにさらに構成されることによって、2回目以降の眼組織光切断中に、前記レーザービームの前記集束および走査を制御する、請求項25に記載のシステム。
【請求項28】
前記制御系が、前記前眼房と前記シュレム管との間に開口が形成されるまで、前記1回目の眼組織光切断および前記2回目以降の眼組織光切断を1回または複数回繰り返すのに合わせて、前記レーザービームの前記集束および走査を制御するようにさらに構成されている、請求項25に記載のシステム。
【請求項29】
眼組織画像を取り込むように構成されたイメージング装置をさらに備え、前記制御系が、前記イメージング装置につなげられ、
前記シュレム管の前記内壁と前記線維柱帯との前記境界面にあるかまたは前記境界面近くの眼組織を見付けること、
前記線維柱帯の近位組織範囲を見付けること、および
光切断される対象である側方眼組織範囲を確認すること、のうちの1つまたは複数を行うように構成されている、請求項25に記載のシステム。
【請求項30】
前記イメージング装置は、光イメージング装置、多光子イメージング装置、およびオプト-メカニカルイメージング装置のうちの少なくとも1つを含む、請求項29に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、それらの開示全体が、参照により本明細書に組み込まれる、2018年7月16日出願の「Integrated Surgical System and Method for Treatment in the Irido-Corneal Angle of the Eye」の題の米国特許出願第16/036,833号、および2018年9月7日出願の「Non-Invasive and Minimally Invasive Laser Surgery for the Reduction of Intraocular Pressure in the Eye」の題の米国特許出願第16/125,588号のそれぞれの一部継続出願である、2019年11月5日出願の「Surgical System and Procedure for Treatment of the Trabecular Meshwork and Schlemm’s Canal Using a Femtosecond Laser」の題の米国特許出願第16/674,850号のPCT国際出願である。
【0002】
本開示は、概して、緑内障を含む眼科における疾病の医療デバイスおよび治療の分野に関し、より具体的には、フェムト秒レーザーを用いて線維柱帯およびシュレム管を治療するシステム、装置、および方法に関するものである。
【背景技術】
【0003】
様々なタイプの緑内障ならびに現在の診断および治療の選択肢について説明する前に、目の解剖学的構造について簡単に概説する。
【0004】
目の解剖学的構造
【0005】
図1~3を参照すると、目1の外側組織層は、目の形状の構造をもたらす強膜2を含む。強膜2の前は、光が目の内部に入ることを可能にする、組織の透明層で構成された角膜3である。目1の中は、小帯線維5によって目に接続された水晶体4であり、小帯線維は毛様体6に接続されている。水晶体4と角膜3との間は、眼房水8と呼ばれる流動する透明液体を含んだ前眼房7である。水晶体4の周囲を取り囲んでいるのは、水晶体のほぼ中心の周りに瞳孔を形成する虹彩9である。後眼房23は、虹彩9の背後で、毛様体6、小帯線維5、および水晶体4が取り囲む環状ボリュームである。硝子体液10は、水晶体4と網膜11との間に位置する。眼球に入った光は、角膜3および水晶体を通して光集束する。
【0006】
図2を参照すると、目の強膜角膜接合部は、虹彩9と、強膜2と、角膜3との交点にある前眼房7の部分である。強膜角膜接合部における目1の解剖学的構造は、線維柱帯12を含む。線維柱帯12は、目1の中の虹彩9を取り囲む組織の線維網である。簡単に大まかに言えば、角強膜接合部の組織は、虹彩9が毛様体6と出会い、毛様体が強膜棘14の下面と出会い、強膜棘の上面が線維柱帯12の底に対する付着点として働く、というように配置されている。毛様体は、主に後眼房にあるが、前眼房7の正に隅角にも及んでいる。線維柱帯12を構成する組織層の網状構造は多孔質であり、したがって、前眼房7から流れる眼房水8の放出経路となる。この経路は、本明細書では、眼房水流出経路、水流出経路、または単に流出経路と呼ばれることがある。
【0007】
図3を参照すると、線維柱帯12の孔によって形成される経路は、ブドウ膜15と呼ばれる薄い多孔質組織層、強角膜線維柱帯16、および傍小管組織17の組に接続している。傍小管組織17は次いで、シュレム管18と呼ばれる組織に当接している。シュレム管18は、眼房水8と周囲組織からの血液との混合物を、集水チャネル(collector channel)19の系統を通って流れ出て静脈系に入る。図2に示されるように、脈絡膜20と呼ばれる目の血管膜が強膜2の隣にある。上脈絡膜腔21と呼ばれる空間が、脈絡膜20と強膜2との間に存在してもよい。角膜3と虹彩9との間のくさびの周囲付近における、円周方向に続いている全体的領域は、虹彩角膜角13と呼ばれる。虹彩角膜角13は、目の角膜角度、または単に目の角度と呼ばれることもある。図3に示される眼組織は全て虹彩角膜角13内にあるものと見なされる。
【0008】
図4を参照すると、眼房水8が移動する2つの可能な流出経路として、線維柱帯流出経路40およびブドウ膜強膜流出経路42が挙げられる。眼房水8は、毛様体6によって生成され、後眼房23から瞳孔を通って前眼房7に流れ込み、次に2つの異なる流出経路40、42のうち1つまたは複数を通って目の外に出る。眼房水8の約90%は、線維柱帯12を通過してシュレム管18に入り、集水チャネル19の1つまたは複数の神経叢を通った後、排水路41を通って流れ出て静脈系に入ることによって、線維柱帯流出経路40を介して外に出る。残っている眼房水8がある場合は主に、ブドウ膜強膜流出経路42を通って外に出る。ブドウ膜強膜流出経路42は、毛様体6の面および虹彩基部を通過して、上脈絡膜腔21(図2に図示)に入る。眼房水8は上脈絡膜腔21から流れ出て、強膜2を通って上脈絡膜腔から外に出すことができる。
【0009】
目の眼圧は、海綿体流出経路40を通る房水8の流出と、海綿体流出経路を通る房水の流出に対する抵抗とで決まってくる。目の眼圧は、ブドウ膜強膜流出経路42を通る房水8の流出とはほとんど無関係である。線維柱帯流出経路40を通る眼房水8の流出に対する抵抗は、目の眼内圧の上昇に結び付くことがあり、これは広く知られている緑内障のリスク因子である。シュレム管18および線維柱帯12が潰れるか、または機能不全に陥ることが原因で、海綿体流出経路40を通した抵抗が強まる可能性がある。
【0010】
図5を参照すると、光学系として、目1は、理想化された中心にある回転対称面、入射瞳および射出瞳、ならびに6つの基点(物体焦点および像空間焦点、第1および第2の主平面、第1および第2の節点)によって説明される、光学モデルによって表される。人間の目に対する角度方向は、目の光軸24、視軸26、瞳孔軸28、および視線29に対して定義される場合が多い。光軸24は対称軸であり、線は目の理想化された表面の頂点を接続する。視軸26は、中心窩22を第1および第2の節点によって物体に接続する。視線29は、窩を射出瞳および入射瞳を通して物体に接続する。瞳孔軸28は、角膜3の後面に対して垂直であり、入射瞳の中心に方向付けられる。これらの目の軸は互いに数度しか違わず、視野方向と一般に呼ばれる範囲内にある。
【0011】
緑内障
【0012】
緑内障は、視神経を害し、視力低下または失明の原因となり得る疾患群である。これは不可逆的な失明の主な原因である。世界中で約8000万人に緑内障があると推定され、そのうち約6700万人が両目を失明している。40歳超の米国人の2700万人超が緑内障である。症状は周辺視野の喪失から始まり、失明に進行する可能性がある。
【0013】
緑内障には2つの形態があり、1つは閉塞隅角緑内障、もう1つは開放隅角緑内障と呼ばれる。図1~4を参照すると、閉塞隅角緑内障の場合、虚脱した前眼房7内の虹彩9が、眼房水8の流れを妨げ塞ぐことがある。緑内障の中でもより多く見られる形態である開放隅角緑内障では、傍シュレム管組織17およびシュレム管内壁18aの不整、海綿体流出経路40に沿った虹彩角膜角13の組織の閉塞によって、眼組織の透過性が影響を受けることがあり得る。
【0014】
上述したように、目の眼内圧(IOP)の上昇は、視神経にダメージを与えるものであり、広く認識されている緑内障のリスク因子である。しかしながら、眼圧が増加した人が必ずしも全員緑内障を発症するわけではなく、また眼圧が増加しなくても緑内障を発症する場合がある。それでもなお、緑内障のリスクを低減するため、目のIOPの上昇を低減することが望ましい。
【0015】
緑内障患者の目の状態を診断する方法としては、視力検査および視野検査、散瞳検査、眼圧検査、即ち目の眼内圧の測定、ならびに角膜厚測定、即ち角膜の厚さの測定が挙げられる。視力の低下は、視野の狭窄から始まり、全盲へと進行する。画像診断方法としては、細隙灯検査、隅角レンズによる虹彩角膜角の観察、ならびに前眼房および網膜の光干渉断層撮影(OCT)による画像診断が挙げられる。
【0016】
診断されると、目の眼内圧を制御するかまたは低下させて、緑内障の進行を遅らせるかまたは止める、いくつかの臨床的に実証されている治療が利用可能である。最も一般的な治療としては、1)点眼薬または丸薬などの薬物治療、2)レーザー手術、および3)従来の手術が挙げられる。治療は通常、薬物治療から始まる。しかしながら、薬物治療の有効性は患者のノンコンプライアンスによって妨げられる場合が多い。薬物治療が患者にとって効き目がない場合、一般的に、次に試される治療はレーザー手術である。従来の手術は侵襲性であり、薬物治療およびレーザー手術よりもリスクが高く、効果の時間窓が限られている。したがって、従来の手術は通常、薬物治療またはレーザー手術によって眼圧を制御することができない患者のための、最後の選択肢として残して置かれる。
【0017】
レーザー手術
【0018】
図2を参照すると、緑内障のレーザー手術は、線維柱帯12を標的として、眼房水8の流動抵抗を減少させる。一般的なレーザー治療としては、アルゴンレーザー線維柱帯形成術(ALT)、選択的レーザー線維柱帯形成術(SLT)、およびエキシマレーザー線維柱帯切開術(ELT)が挙げられる。
【0019】
ALTは、第1のレーザー線維柱帯形成処置である。処置の間、514nm波長のアルゴンレーザーが、虹彩角膜角13の周囲のうち180°の線維柱帯12に適用される。アルゴンレーザーは、眼組織との熱的相互作用を誘発し、それによって線維柱帯12に開口部を生成する。しかしながら、ALTは眼組織の瘢痕を生じさせ、その後に炎症反応および組織治癒が起こり、それによって、ALT治療によって形成された線維柱帯12の開口部が最終的に閉じることがあり、結果として治療の有効性が低減される。さらに、この瘢痕のため、ALT療法は一般的には繰り返すことができない。
【0020】
SLTは、線維柱帯12の色素を選択的に標的にし、周囲の眼組織に送達される熱の量を低減することによって、瘢痕作用を低減させるように設計されている。その手順にわたり、波長532nmの固体レーザーを虹彩角13の周囲180~360度で線維柱帯12に照射し、線維柱帯から成る海綿体を内張りしている色素性細胞を除去する。SLT.12の際、線維柱帯のコラーゲン超微細構造は保存される。12.SLT治療は、繰り返し行うことができるが、2回目以降の治療では、眼圧(IOP)下降効果は低くなる。
【0021】
ELTでは、波長308nmの紫外線(UV:UltraViolet)エキシマレーザーおよび眼球組織との非熱的相互作用を使用して、海綿体網膜12およびシュレム管内壁を、治癒反応を起こさないように治療する。したがって、IOP低下の効果はより長続きする。しかしながら、レーザーのUV光は目の奥深くまで浸透することができないので、レーザー光は、開口部を通して目1に挿入された光ファイバーを介して線維柱帯12に送達され、ファイバーが線維柱帯と接触させられる。この処置は高侵襲性であり、一般に、目が既に外科的に開かれているときに白内障処置と同時に実施される。ALTおよびSLTと同じく、ELTも、IOP低減の量を制御することはできない。
【0022】
これらの既存のレーザー治療はいずれも、緑内障の理想的な治療ではない。したがって、組織の著しい瘢痕をもたらすことなくIOPを非侵襲的に有効に低減することで、単一の処置で治療を完了させることができ、必要であれば後で繰り返すことができる、緑内障のレーザー外科治療のシステム、装置、および方法が必要とされている。
【発明の概要】
【0023】
本開示は、遠位範囲、近位範囲、および側方範囲によって特徴付けられた目の虹彩角膜角の眼組織ターゲットボリュームを、眼組織ターゲットボリュームに向かう伝播方向のレーザーにより理療する方法に関するものである。この方法は、最初に、眼組織ターゲットボリュームの遠位範囲に相当する1回目の深さで組織を光切断することを含む。このために、フェムト秒レーザーからの光が、1回目の深さである組織内スポットに集束する。それにより、組織を光切断するのに十分な光エネルギーを、例えば、1回目の治療面を画定する複数方向にレーザーを走査することによって組織に印加し、それによってターゲットボリュームの1回目の組織層を光切断する。
【0024】
この方法は、続いて、レーザーの焦点をレーザーの伝播方向と反対方向に移すことによって、眼組織ターゲットボリュームの遠位範囲とターゲットボリュームの近位範囲との間の1つまたは複数の2回目以降の深さで組織を光切断することも含む。このために、フェムト秒レーザーからの光は、2回目以降の深さである組織内スポットに集束する。それにより、組織を光切断するのに十分な光エネルギーを、例えば、2回目以降の治療面を画定する複数方向にレーザーを走査することによって組織に印加し、それによってターゲットボリュームの2回目以降の組織層を光切断する。眼組織ターゲットボリュームの近位範囲にある組織が光切断されるまで、1つまたは複数の2回目以降の深さにおける光切断が、複数の異なる2回目以降の深さで繰り返される。
【0025】
さらなる態様において、この方法は、組織ターゲットボリュームを光切断した後、レーザーの焦点をレーザーの伝播方向に移し、2回目以降の治療面および1回目の治療面のうちの1つまたは複数にレーザーを再走査することによって、眼組織ターゲットボリュームの近位範囲とターゲットボリュームの遠位範囲との間の組織の残骸または組織気泡を光切断することを含む。この方法はさらに、1回目の組織光切断および2回目以降の組織光切断を1回または複数回繰り返すことを、含み得る。
【0026】
本開示はまた、遠位範囲、近位範囲、および側方範囲によって特徴付けられた目の虹彩角膜角の眼組織ターゲットボリュームをレーザーにより治療するシステムに関する。このシステムには、眼に合わせられるように構成された集束対物レンズを含む第1の光学サブシステムと、レーザービームを出力するように構成されたレーザー源を含む第2の光学サブシステムとが含まれる。第2の光学サブシステムは、集束対物レンズを通して、眼組織ターゲットボリュームに向かう伝播する方向に、レーザービームを集束させること、レーザービームを走査すること、およびレーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素も含む。
【0027】
システムにはさらに、第2の光学サブシステムにつながれ、1回目に、眼組織ターゲットボリュームの遠位範囲に相当する1回目の深さで組織を光切断するのに合わせて、レーザービームの集束および走査を制御するように構成された制御系が含まれる。このために、制御系は、フェムト秒レーザーからの光を、1回目の深さである組織内スポットに集束させることによって、その組織を光切断するのに十分である光エネルギーを組織に印加するように構成されている。制御系は、1回目の治療面を画定する複数方向にレーザーを走査し、それによって眼組織ターゲットボリュームの1回目の組織層を光切断するようにさらに構成されることによって、光エネルギー印加中にレーザービームの集束および走査を制御する。
【0028】
制御系はまた、レーザーの焦点をレーザーの伝播方向と反対方向に移すことによって、眼組織ターゲットボリュームの遠位範囲とターゲットボリュームの近位範囲との間の1つまたは複数の2回目以降の深さで組織を続いて光切断するのに合わせてレーザービームの集束および走査を制御するように構成されている。このために、制御系は、フェムト秒レーザーからの光を、2回目以降の深さである組織内スポットに集束させることによって、その組織を光切断するのに十分である光エネルギーを組織に印加するように構成されている。制御系は、2回目以降の治療面を画定する複数方向にレーザーを走査することによって、眼組織ターゲットボリュームの2回目以降の組織層を光切断するようにさらに構成されることによって、光エネルギー印加中にレーザービームの集束および走査を制御する。
【0029】
さらなる態様において、制御系は、眼組織ターゲットボリュームを光切断した後、レーザーの焦点をレーザーの伝播方向に移し、2回目以降の治療面および1回目の治療面のうちの1つまたは複数にレーザーを再走査することによって、眼組織ターゲットボリュームの近位範囲と眼組織ターゲットボリュームの遠位範囲との間の組織残骸または組織気泡を光切断するのに合わせてレーザービームの集束および走査を制御するように構成されている。制御系はさらに、1回目の組織光切断および2回目以降の組織光切断を1回または複数回繰り返すのに合わせて、レーザービームの集束および走査を制御するように構成されている。
【0030】
本開示はまた、前眼房、シュレム管、およびその間の線維柱帯を含む目を治療する方法に関する。この方法は、最初に、シュレム管の内壁と線維柱帯との境界面にあるかまたは境界面近くの眼組織を光切断することを含む。このために、フェムト秒レーザーからの光が、シュレム管の内壁と線維柱帯との境界面であるかまたは境界面近くの目組織内スポットに集束する。それにより、その組織を光切断するのに十分な光エネルギーが組織に印加される。この方法はまた、続いて、線維柱帯の眼組織を光切断することを含む。このために、フェムト秒レーザーからの光が、線維柱帯の組織内スポットに集束する。それにより、その組織を光切断するのに十分な光エネルギーが組織に印加される。さらなる態様において、この方法は、前眼房とシュレム管との間に開口が形成されるまで、1回目の眼組織光切断および2回目以降の眼組織光切断を1回または複数回繰り返すことを含む。
【0031】
本開示はまた、前眼房、シュレム管、およびその間の線維柱帯を含む目を治療するシステムに関するものである。このシステムには、目に合わせられるように構成された集束対物レンズを含む第1の光学サブシステムと、レーザービームを出力するように構成されたレーザー源を含む第2の光学サブシステムとが含まれる。第2の光学サブシステムはさらに、集束対物レンズを通して、眼組織に、レーザービームを集束させること、レーザービームを走査すること、およびレーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素を含む。
【0032】
システムにはまた、第2の光学サブシステムにつながれ、最初に、シュレム管の内壁と線維柱帯との境界面にあるかまたは境界面近くにある眼組織を光切断するのに合わせてレーザービームの集束および走査を制御するように構成された制御系が含まれる。このために、制御系は、フェムト秒レーザーからの光を、シュレム管の内壁と線維柱帯との境界面であるかまたは境界面近くである眼組織内スポットに集束させることにより、そのエネルギーがその組織を光切断するのに十分である光を組織に光を印加するように構成されている。制御系はまた、続いて、線維柱帯の組織を光切断するのに合わせてレーザービームの集束および走査を制御するように構成されている。このために、制御系は、フェムト秒レーザーからの光を線維柱帯の組織内スポットに集束させることにより、組織を光切断するのに十分である光エネルギーをその組織に印加するように構成されている。さらなる態様において、制御系はさらに、前眼房とシュレム管との間に開口が形成されるまで、1回目の眼組織光切断および2回目以降の眼組織光切断を1回または複数回繰り返すのに合わせて、レーザービームの集束および走査を制御するように構成されている。
【0033】
装置および方法の他の態様は、装置および方法の様々な態様が例証によって図示され説明される以下の詳細な説明から、当業者には明白となるであろうことが理解される。理解されるように、これらの態様は他の異なる形態で実現されてもよく、そのいくつかの詳細は他の様々な態様では修正することができる。したがって、図面および詳細な説明は、限定ではなく本質的に例証と見なされるものとする。
【0034】
以下、システム、装置、および方法の様々な態様について、限定としてではなく例として、添付図面を参照して詳細な説明で提示する。
【図面の簡単な説明】
【0035】
図1】人間の目およびその内部の解剖学的構造を示す概略断面図である。
図2図1の目の虹彩角膜角を示す概略断面図である。
図3】線維柱帯、シュレム管、およびシュレム管から分岐する1つまたは複数の集水チャネルを含む、図2の虹彩角膜角の解剖学的構造を詳細に示す概略断面図である。
図4図3の線維柱帯、シュレム管、および集水チャネルを通る眼房水の様々な流出経路を示す概略断面図である。
図5】目と関連付けられた様々な軸を示す人間の目の概略断面図である。
図6】1つまたは複数の光線がそこに沿って目の虹彩角膜角にアクセスしてもよい、角度付き光路を示す概略断面図である。
図7】制御系、フェムト秒レーザー源、OCT画像診断装置、顕微鏡、ビーム調整器およびスキャナ、ビームコンバイナ、集光対物レンズ、および患者接触面を含む、非侵襲性緑内障手術のための一体型手術システムを示すブロック図である。
図8図7の一体型手術システムを示す詳細ブロック図である。
図9a図7の一体型手術システムの患者接触面に結合された、図7の一体型手術システムの集光対物レンズを示す概略図である。
図9b図7の一体型手術システムの患者接触面から分離された、図7の一体型手術システムの集光対物レンズを示す概略図である。
図9c図9aおよび9bに含まれる集光対物レンズおよび患者接触面の構成要素を示す概略図である。
図10a図6の角度付き光路に沿って虹彩角膜角にアクセスできるようにする第1の光学系および第2の光学サブシステムを形成するように機能的に配置された、図7および8の一体型手術システムの構成要素を示す概略図である。
図10b図6の角度付き光路に沿って虹彩角膜角にアクセスできるようにする第1の光学系および第2の光学サブシステムを形成するように機能的に配置された、図7および8の一体型手術システムの構成要素を示す概略図である。
図10c図10aおよび10bの第1の光学サブシステムを通過して目に入るビームを示す概略図である。
図11図7の統合外科システムによって治療される、線維柱帯、シュレム管、シュレム管から分岐するコレクターチャネル、および眼組織外科的ボリュームを含む、虹彩角の解剖学的構造の三次元概略図である。
図12図11に示すように、虹彩角の解剖学的構造と、シュレム管と前眼房との間の眼組織外科的ボリュームに影響を与えるように、図7の統合手術システムによって適用されるレーザー治療パターンとの二次元概略図である。
図13】シュレム管と前眼房との間に開口を形成する図12のレーザー治療パターンに基づく、レーザーによる眼組織外科的ボリュームの治療後の図11の三次元概略図である。
図14a】その走査が、前眼房に隣接して始まり、シュレム管に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図14b】その走査が、前眼房に隣接して始まり、シュレム管に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15a】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15b】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15c】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15d】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15e】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15f】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図15g】その走査が、シュレム管に隣接して始まり、前眼房に向かって進む、図12の治療パターンに基づくレーザー走査プロセスの一連の概略図である。
図16a】その走査が、前眼房に隣接する開口の端で始まり、シュレム管に向かって進む、図15gの開口を通した任意のレーザー走査プロセスの一連の概略図である。
図16b】その走査が、前眼房に隣接する開口の端で始まり、シュレム管に向かって進む、図15gの開口を通した任意のレーザー走査プロセスの一連の概略図である。
図17】眼組織のボリュームを治療する方法のフローチャートである。
図18】前眼房、シュレム管、および線維柱帯を含む目の治療方法を示すフローチャートである。
【発明を実施するための形態】
【0036】
本明細書に開示するのは、緑内障を治療するかまたはそのリスクを低減するため、目の眼内圧(IOP)を安全に効果的に低減する、システム、装置、および方法である。システム、装置、および方法は、目の虹彩角膜角にアクセスできるようにし、レーザー手術の技術を高分解能の画像診断と統合して、IOPの上昇を引き起こすことがある虹彩角膜角内の異常な眼組織の状態を正確に診断し、位置決めし、治療する。
【0037】
本明細書に開示する一体型手術システムは、角膜と、前眼房と、線維柱帯、シュレム管、およびシュレム管から分岐する1つまたは複数の集水チャネルで形成された眼房水流出経路を備える虹彩角膜角とを有する、目の眼内圧を低減するように構成される。一体型手術システムはまた、第1の光学サブシステムと第2の光学サブシステムとを含む。第1の光学サブシステムは、角膜に結合されるように構成された窓と、窓に結合されるように構成された出射レンズとを含む。第2の光学サブシステムは、OCTビームを出力するように構成された光干渉断層撮影(OCT)画像診断装置と、レーザービームを出力するように構成されたレーザー源と、OCTビームおよびレーザービームを調整し、合成し、第1の光学サブシステムに向かって方向付けるように構成された複数の構成要素、例えばレンズおよびミラーと、を含む。
【0038】
一体型手術システムはまた、OCT画像診断装置、レーザー源、および第2の光学サブシステムに結合された制御系を含む。コントローラは、角膜および前眼房を通して虹彩角膜角内へと送達するため、OCTビームを出力するようにOCT画像診断装置に、またレーザービームを出力するようにレーザー源に命令するように構成される。1つの構成では、制御系は第2の光学サブシステムを制御するので、OCTビームおよびレーザービームが、第1の光軸からオフセットされるとともに角度付き経路30に沿って虹彩角膜角内へと延在する第2の光軸に沿って、第1の光学サブシステム内へと方向付けられる。
【0039】
OCTビームおよびレーザービームを同じ第2の光軸に沿って目の虹彩角膜角内へと方向付けることは、1つの臨床セッティングで状態の評価結果を正確に治療計画および手術に直接適用できるようになるという点で有益である。さらに、OCT画像診断およびレーザー治療を組み合わせることによって、いずれの既存の手術システムおよび方法でも利用可能でなかった、眼組織の正確な標的設定が可能になる。一体型手術システムによって提供される手術精度によって、顕微鏡サイズの標的組織のみに影響を与えることが可能になり、周囲組織は無傷のまま残される。目の虹彩角膜角における治療すべき患部眼組織の顕微鏡サイズ規模は、数マイクロメートル~数百マイクロメートルの範囲である。例えば、図2および3を参照すると、正常なシュレム管18の断面サイズは、数十マイクロメートル×数百マイクロメートルの楕円形である。集水チャネル19および静脈の直径は数十マイクロメートルである。傍小管組織17の厚さは数マイクロメートル、線維柱帯12の厚さは約100マイクロメートルである。
【0040】
一体型手術システムの制御系はさらに、レーザービームを眼組織に適用して体積を規定することによって、眼組織との光破壊的相互作用(photo-disruptive interaction)で経路抵抗を低減させるかまたは新しい流出経路を作成させることにより、線維柱帯、シュレム管、および1つまたは複数の集水チャネルのうち1つまたは複数に存在する経路抵抗を低減するため、流出経路内の眼組織の体積を修正するように、レーザー源に命令するように構成される。
【0041】
レーザー源はフェムト秒レーザーであってもよい。フェムト秒レーザーは、眼組織との非熱的光破壊的相互作用を提供して、周囲組織への熱的損傷を回避する。さらに、他の外科的方法とは異なり、フェムト秒レーザー治療では、目の中を通る開口面切開を回避することができ、非侵襲性治療ができるようになる。滅菌手術室で治療を実施する代わりに、非侵襲性治療を非滅菌外来患者施設で実施することができる。
【0042】
目視観察角度に沿った虹彩角膜角の直接目視観察を提供する、追加の画像診断構成要素が、一体型手術システムに含まれてもよい。例えば、目を患者接触面または不動化デバイスにドッキングし、目の眼組織を位置決めし、手術の進行を観察するプロセスにおいて外科医を支援するため、顕微鏡または画像診断カメラが含まれてもよい。目視観察角度はまた、角度付き光路30に沿って虹彩角膜角13まで角膜3および前眼房7を通ることができる。
【0043】
目視観察を提供するOCT画像診断装置および追加の画像診断構成要素、例えば顕微鏡からの画像は、コンピュータモニタなどの表示デバイス上で組み合わされる。様々な画像を登録し、単一の窓上で重ね合わせ、より簡単に理解するため、拡張し、処理し、偽色によって区別することができる。特定の特徴がコンピュータプロセッサによって計算的に認識され、画像認識およびセグメント化アルゴリズムを、表示のために拡張し、強調し、印付けすることができる。治療計画の幾何学も、表示デバイス上の画像診断情報と組み合わせ登録し、幾何学、数値、および文字情報で印付けすることができる。同じ表示を、キーボード、マウス、カーソル、タッチ画面、音声、または他のユーザインターフェースデバイスによる、特徴の選択、強調、および印付け、位置情報の入力のための、数値、文字、および幾何学的性質のユーザ入力に使用することもできる。
【0044】
OCT画像診断
【0045】
本明細書に開示する一体型手術システムの主要画像診断構成要素は、OCT画像診断装置である。OCT技術は、目の虹彩角膜角に方向付けられるレーザー手術の診断、位置決め、およびガイドに使用されてもよい。例えば、図1~3を参照すると、OCT画像診断は、前眼房7の構造的および幾何学的状態を判定して、線維柱帯流出経路40の妨害の可能性を評価し、治療のための眼組織のアクセス性を判定するのに使用されてもよい。上述したように、虚脱した前眼房7の虹彩9は、眼房水8の流れを妨げ塞いで、閉塞隅角緑内障をもたらすことがある。角度の巨視的幾何学形状が正常である開放隅角緑内障の場合、線維柱帯流出経路40に沿った組織の閉塞によって、またはシュレム管18もしくは集水チャネル19の虚脱によって、眼組織の透過性が影響を受けることがある。
【0046】
OCT画像診断は、眼組織の微視的詳細を分解するのに必要な空間分解能、組織浸透、およびコントラストを提供することができる。スキャンされると、OCT画像診断は眼組織の二次元(2D)断面画像を提供することができる。一体型手術システムの別の態様として、2D断面画像は、外科的標的設定のために目の構造のサイズ、形状、および位置を決定するのに、処理され分析されてもよい。また、複数の2D断面画像から三次元(3D)画像を再構築することが可能であるが、これは不要な場合が多い。2D画像の獲得、分析、および表示の方が高速であり、依然として正確な外科的標的設定に必要な全ての情報を提供することができる。
【0047】
OCTは、物質および組織の高分解能画像を提供することができる画像診断モダリティである。画像診断は、試料内からの散乱光のスペクトル情報からの、試料の空間情報の再構築に基づく。スペクトル情報は、試料に入る光のスペクトルを試料から散乱した光のスペクトルと比較する、干渉計側法を使用することによって抽出される。光が試料内で伝播する方向に沿ったスペクトル情報は、次に、フーリエ変換、によって同じ軸に沿った空間情報に変換される。OCTビーム伝播の横の情報は、通常、ビームを横方向にスキャンし、スキャン中に繰り返し軸方向に探査することによって収集される。試料の2Dおよび3D画像をこのように獲得することができる。画像獲得は、干渉計が時間領域OCTで機械的にスキャンされないときの方が高速であるが、広い光のスペクトルからの干渉が同時に記録され、この実現例はスペクトル領域OCTと呼ばれる。より高速な画像獲得はまた、波長掃引型OCTと呼ばれる構成において、波長スキャニングレーザーから光の波長を迅速にスキャンすることによって得られてもよい。
【0048】
OCTの軸方向空間分解能限界は、使用される探査光の帯域幅に反比例する。スペクトル領域および波長掃引型OCTは両方とも、100ナノメートル(nm)以上の十分に広い帯域幅を有する5マイクロメートル(μm)未満の軸方向空間分解能が可能である。スペクトル領域OCTでは、スペクトル干渉パターンが、電荷結合素子(CCD)または相補型金属酸化膜半導体(CMOS)カメラなどの多チャネル検出器に同時に記録され、波長掃引型OCTでは、高速光学検出器および電子デジタイザを用いて、連続時間ステップで干渉パターンが記録される。波長掃引型OCTには獲得速度の利点があるが、両方のタイプのシステムは迅速に進化し向上し、分解能および速度は、本明細書に開示する一体型手術システムの目的には十分である。スタンドアロン型OCTシステムおよびOEM構成要素は、現在は、Optovue Inc.,Fremont,CA.、Topcon Medical Systems,Oakland,NJ、Carl Zeiss Meditec AG,Germany、Nidek,Aichi,Japan、Thorlabs,Newton,NJ、Santec,Aichi,Japan、Axsun,Billercia,MA、および他の専門業者など、複数の専門業者から市販されている。
【0049】
フェムト秒レーザー源
【0050】
本明細書に開示する一体型手術システムの好ましい外科用構成要素は、フェムト秒レーザーである。フェムト秒レーザーは、周囲の眼組織への付随的損傷が最小限である、高度に局所化された非熱的光破壊的レーザー・組織相互作用を提供する。レーザーの光破壊的相互作用は光学的に透明な組織で利用される。眼組織内へのレーザーエネルギー蓄積の主なメカニズムは、吸収によってではなく、高度に非線形的な多光子過程による。この過程は、ピーク強度が高いパルス化レーザーの焦点のみで有効である。ビームが横断するが焦点ではない領域は、レーザーによって影響されない。したがって、眼組織との相互作用領域は、レーザービームによって横断方向および軸方向の両方で高度に局所化される。過程はまた、弱吸収または弱散乱組織で使用することができる。光破壊的相互作用を有するフェムト秒レーザーは、眼科手術システムで成功裏に使用され、他の眼科レーザー処置で商業化されてきたが、いずれも虹彩角膜角にアクセスする一体型手術システムでは使用されてこなかった。
【0051】
知られている屈折処置では、フェムト秒レーザーは、角膜形成術のため、角膜フラップ、ポケット、トンネル、弧状切開、レンチキュラー状切開、部分層または全層角膜切開を作成するのに使用される。白内障処置の場合、レーザーは、嚢切開術のために目の水晶体嚢に円形の切れ目を作成し、水晶体の内部を破壊してより小さい断片にして抽出を容易にする、レンズの様々なパターンの切開を作成する。角膜を通る侵入切開は、手動外科用デバイスによるアクセスのため、および水晶体乳化デバイスおよび眼内レンズ挿入デバイスの挿入のために目を開く。いくつかの会社がかかる外科用デバイスを、中でも特に、Johnson & Johnson Vision,Santa Ana,CAから現在入手可能なIntralaseシステム、Alcon,Fort Worth,TXからのThe LenSx and Wavelightシステム、Bausch and Lomb,Rochester,NY、Carl Zeiss Meditec AG,Germany,Ziemer,Port,Switzerland、およびLensAR,Orlando,FLからの他の外科用システムを商業化している。
【0052】
これらの既存のシステムは、それらの特定の用途向け、角膜の手術、ならびに水晶体およびその水晶体嚢用に開発されており、いくつかの理由により、虹彩角膜角13の手術を実施することはできない。第一に、虹彩角膜角は周囲において遠くに離れすぎており、これらのシステムの手術範囲外なので、虹彩角膜角13は、これらの外科用レーザーシステムではアクセス不能である。第二に、目1への光軸24に沿った、これらのシステムからのレーザービームの角度は、適用される波長において著しい散乱および光学歪みがある、虹彩角膜角13に達するのに適切ではない。第三に、これらのシステムが有し得るいずれの画像診断能力も、線維柱帯流出経路40に沿って十分な詳細およびコントラストで組織を画像診断するためのアクセス可能性、侵入深度、および分解能を有さない。
【0053】
本明細書に開示する一体型手術システムによれば、虹彩角膜角13への明瞭なアクセスが角度付き光路30に沿って提供される。組織、例えば角膜3、および前眼房7内の眼房水8は、この角度付き光路30に沿って、約400nm~2500nmの波長に対して透明であり、この領域で動作するフェムト秒レーザーを使用することができる。かかるモード同期レーザーは、それらの基本波長で、チタン、ネオジム、またはイッテルビウム活性材料によって働く。当該分野で知られている非線形周波数変換技術、周波数二倍化、三倍化、合計、および差周波数混合技術、光学パラメータ変換は、これらのレーザーの基本波長を、事実上、上述した角膜の透明波長範囲内のいずれの波長にも変換することができる。
【0054】
1nsよりも長いパルス持続時間を有するレーザーを適用する既存の眼科手術システムは、より高い光破壊閾値エネルギーを有し、より高いパルスエネルギーを要し、光破壊的相互作用範囲の寸法がより大きく、結果として外科治療の精度が損なわれる。しかしながら、虹彩角膜角13を治療する場合、より高い手術精度が求められる。この目的のため、一体型手術システムは、レーザービームと虹彩角膜角13の眼組織との光破壊的相互作用を発生させるため、10フェムト秒(fs)~1ナノ秒(ns)のパルス持続時間を有するレーザーを適用するように構成されてもよい。パルス持続時間が10fsよりも短いレーザーが利用可能であるが、かかるレーザー源は、より複雑であってより高価である。記載した望ましい特性、例えば、10フェムト秒(fs)~1ナノ秒(ns)のパルス持続時間を有するレーザーは、Newport,Irvine,CA、Coherent,Santa Clara,CA、Amplitude Systems,Pessac,France、NKT Photonics,Birkerod,Denmark、および他の専門業者など、複数の専門業者から市販されている。
【0055】
虹彩角膜角のアクセス
【0056】
一体型手術システムによって提供される重要な特徴は、虹彩角膜角13の標的眼組織へのアクセスである。図6を参照すると、目の虹彩角膜角13は、一体型手術システムを介して、角膜3を通過し前眼房7内の眼房水8を通る、角度付き光路30に沿ってアクセスされてもよい。例えば、画像診断ビーム、例えばOCTビームおよび/または目視観察ビーム、ならびにレーザービームのうち1つまたは複数は、角度付き光路30に沿って目の虹彩角膜角13にアクセスしてもよい。
【0057】
本明細書に開示する光学系は、光線を角度付き光路30に沿って目の虹彩角膜角13に方向付けるように構成される。光学系は、第1の光学サブシステムと第2の光学サブシステムとを含む。第1の光学サブシステムは、屈折率nの材料で形成された窓を含み、対向する凹面および凸面を有する。第1の光学サブシステムはまた、屈折率nを有する材料で形成された出射レンズを含む。出射レンズも対向する凹面および凸面を有する。出射レンズの凹面は、窓の凸面に結合して、窓および出射レンズを通って延在する第1の光軸を規定するように構成される。窓の凹面は、目に結合されたとき、第1の光軸が目の視野方向とほぼ整列されるようにして、屈折率nを有する目の角膜に分離可能に結合するように構成される。
【0058】
第2の光学サブシステムは、光線、例えばOCTビームまたはレーザービームを出力するように構成される。光学系は、第1の光軸からオフセットされた角度αで、第2の光軸に沿って出射レンズの凸面に入射するように光線が方向付けられるように構成される。出射レンズおよび窓のそれぞれの幾何学形状ならびにそれぞれの屈折率nおよびnは、目の角膜3を通って虹彩角膜角13に向かって方向付けられるように光線を曲げることによって、光線の屈折および歪みを相殺するように構成される。より具体的には、第1の光学系は、光線が角度付き光路30に沿った方向で虹彩角膜角13に向かって、角膜および眼房水8を通って進行する適切な角度で、光線が第1の光学サブシステムから出て角膜3に入るように光線を曲げる。
【0059】
角度付き光路30に沿って虹彩角膜角13にアクセスすることは、いくつかの利点を提供する。虹彩角膜角13へのこの角度付き光路30の利点は、OCTビームおよびレーザービームがほぼ透明な組織を、例えば角膜3および前眼房7内の眼房水8を通過することである。そのため、組織によるこれらのビームの散乱は顕著ではない。OCT画像診断に関しては、これにより、OCTがより高い空間分解能を達成するために、約1マイクロメートル未満のより短い波長を使用することができるようになる。角膜3および前眼房7を通る虹彩角膜角13への角度付き光路30のさらなる利点は、直接のレーザービームまたはOCTビーム光が網膜11を照射するのが回避されることである。結果として、より高い平均出力のレーザー光およびOCT光を、画像診断および手術に使用することができ、結果として処置がより高速になり、処置中の組織の移動が少なくなる。
【0060】
一体型手術システムによって提供される別の重要な特徴は、ビームの不連続性を低減する形での、虹彩角膜角13内の標的眼組織へのアクセスである。この目的のため、第1の光学サブシステムの窓および出射レンズ構成要素は、角膜3と隣接する物質との間の光学屈折率の不連続性を低減し、角膜を通して光が鋭角で入ることを容易にするように構成される。
【0061】
このように一体型手術システムおよびその特徴および利点のいくつかを記載してきたが、システムおよびその構成部品のさらに詳細な説明を以下に示す。
【0062】
一体型手術システム
【0063】
図7を参照すると、非侵襲性緑内障手術のための一体型手術システム1000は、制御系100と、外科用構成要素200と、第1の画像診断構成要素300と、任意の第2の画像診断構成要素400とを含む。図7の実施形態では、外科用構成要素200はフェムト秒レーザー源であり、第1の画像診断構成要素300はOCT画像診断装置であり、任意の第2の画像診断構成要素400は、直視またはカメラを用いた目視のための目視観察装置、例えば顕微鏡である。一体型手術システム1000の他の構成要素としては、ビーム調整器およびスキャナ500、ビームコンバイナ600、集光対物レンズ700、ならびに患者接触面800が挙げられる。
【0064】
制御系100は、一体型手術システム1000の他の構成要素のハードウェアおよびソフトウェア構成要素を制御するように構成された、単一のコンピュータおよび/または複数の相互接続されたコンピュータであってもよい。制御系100のユーザ接触面110は、ユーザからの命令を受け入れ、ユーザによる観察のための情報を表示する。ユーザから入力される情報およびコマンドとしては、システムコマンド、患者の目をシステムにドッキングさせるモーションコントロール、予めプログラムされるかまたはライブで生成される手術計画の選択、メニュー選択によるナビゲート、手術パラメータの設定、システムメッセージに対する応答、手術計画の決定および受入れ、ならびに手術計画を実行するコマンドが挙げられるが、それらに限定されない。システムからユーザに対する出力としては、システムパラメータおよびメッセージの表示、目の画像の表示、手術計画の図形、数値、および文字表示、ならびに手術の進行が挙げられるが、それらに限定されない。
【0065】
制御系100は、一体型手術システム1000の他の構成要素200、300、400、500に接続される。制御系100からフェムト秒レーザー源200への制御信号は、例えば、出力、繰り返し率、およびビームシャッターを含む、レーザー源の内部および外部動作パラメータを制御するように機能する。制御系100からOCT画像診断装置300への制御信号は、OCTビームスキャンパラメータ、ならびにOCT画像の獲得、分析、および表示を制御するように機能する。
【0066】
フェムト秒レーザー源200からのレーザービーム201、およびOCT画像診断装置300からのOCTビーム301は、ビーム調整器およびスキャナ500のユニットに向かって方向付けられる。異なる種類のスキャナを、レーザービーム201およびOCTビーム301をスキャンする目的で使用することができる。ビーム201、301に対して横断方向でスキャンする場合、角度スキャン用のガルバノスキャナが、例えば、Cambridge Technology,Bedford,MA、Scanlab,Munich,Germanyから入手可能である。スキャン速度を最適化するため、スキャナミラーは一般的に、標的位置における必要なスキャン角度およびビームの開口数に依然として対応する、最小サイズにサイズ決めされる。スキャナにおける理想的なビームサイズは、一般的に、レーザービーム201またはOCTビーム301のビームサイズと異なり、集光対物レンズ700の入口において必要とされるサイズと異なる。したがって、ビーム調整器は、個々のスキャナの前、後、または間に適用される。ビーム調整器およびスキャナ500は、ビームを横断方向および軸方向でスキャンするスキャナを含む。軸方向スキャンは、標的領域における焦点の深度を変更する。軸方向スキャンは、サーボまたはステッピングモータを用いて、光路内で軸方向にレンズを移動させることによって実施することができる。
【0067】
レーザービーム201およびOCTビーム301は、目の共通の標的体積または手術体積に達するのに、二色、偏光、または他の種類のビームコンバイナ600を用いて合成される。フェムト秒レーザー源200、OCT画像診断装置300、および目視観察デバイス400を有する一体型手術システム1000では、これらの構成要素それぞれに対する個々のビーム201、301、401は、個々に最適化されてもよく、互いに対して共線または非共線であってもよい。ビームコンバイナ600は、二色または偏光ビームスプリッタを使用して、異なる波長および/または偏光の光を分割し再合成する。ビームコンバイナ600はまた、ビームサイズ、ビーム角度、および拡散など、個々のビーム201、301、401の特定のパラメータを変化させる光学部品を含んでもよい。統合された視覚的照明、観察、または画像診断デバイスは、外科医が目をシステムにドッキングさせ、手術位置を同定するのを支援する。
【0068】
目の眼組織構造を十分に詳細に分解するため、一体型手術システム1000の画像診断構成要素300、400は、数マイクロメートルの空間分解能を有するOCTビームおよび目視観察ビームを提供してもよい。OCTビームの分解能は、OCT画像で認識することができる最小の特徴の空間寸法である。それは主に、OCT源の波長およびスペクトル帯域幅、OCTビームを目の標的位置に送達する光学部品の品質、OCTビームの開口数、ならびに標的位置におけるOCT画像診断装置の空間分解能によって決定される。一実施形態では、一体型手術システムのOCTビームは、5μm以下の分解能を有する。
【0069】
同様に、フェムト秒レーザー源200によって提供される外科用レーザービームは、数マイクロメートルの精度で標的位置に送達されてもよい。レーザービームの分解能は、周囲の眼組織に著しく影響を及ぼすことなくレーザービームによって修正することができる、標的位置における最小の特徴の空間寸法である。それは主に、レーザービームの波長、レーザービームを目の標的位置に送達する光学部品の品質、レーザービームの開口数、レーザービームにおけるレーザーパルスのエネルギー、ならびに標的位置におけるレーザースキャニングシステムの空間分解能によって決定される。それに加えて、光破壊的相互作用のためのレーザーの閾値エネルギーを最小限に抑えるため、レーザースポットのサイズは約5μm以下であるべきである。
【0070】
目視観察ビーム401は、固定の非スキャニング光学部品を使用して目視観察デバイス400によって獲得されるが、OCT画像診断装置300のOCTビーム301は、2つの横断方向で横方向にスキャンされる。フェムト秒レーザー源200のレーザービーム201は、2つの横方向でスキャンされ、焦点の深度は軸方向にスキャンされる。
【0071】
実際の実施形態の場合、ビーム調整、スキャン、および光路の結合は、レーザー、OCT、および目視観察光学ビームに対して実施される特定の機能である。それらの機能の実現は、図7に示されるのとは異なる順序で行われてもよい。それらの機能を実現するのにビームを操作する特定の光学ハードウェアは、光学ハードウェアがどのように配置されるかに関して複数の構成を有することができる。それらは、個々の光学ビームを別個に操作する形で配置することができ、別の実施形態では、1つの構成要素が機能を組み合わせてもよく、異なるビームを操作する。例えば、スキャナの単一の組が、レーザービーム201およびOCTビーム301の両方をスキャンすることができる。この場合、別個のビーム調整器が、レーザービーム201およびOCTビーム301に対するビームパラメータを設定し、次にビームコンバイナが、スキャナの単一の組に対する2つのビームを合成してビームをスキャンする。光学ハードウェア構成の多くの組み合わせが一体型手術システムのために可能であるが、以下のセクションは例示の構成について詳細に記載する。
【0072】
ビーム送達
【0073】
以下の説明では、ビームという用語は、文脈に応じて、レーザービーム、OCTビーム、または目視観察ビームのうち1つを指してもよい。合成ビームは、共線的に合成されるかまたは非線形的に合成された、レーザービーム、OCTビーム、または目視観察ビームのうち2つ以上を指す。例示の合成ビームとしては、OCTビームとレーザービームとの共線的または非共線的組み合わせである、合成OCT/レーザービーム、ならびにOCTビーム、レーザービーム、および目視ビームの共線的または非共線的組み合わせである、合成OCT/レーザー/目視ビームが挙げられる。共線的に合成されたビームの場合、異なるビームが二色または偏光ビームスプリッタによって合成され、異なるビームの多重送達によって同じ光路に沿って送達されてもよい。非共線的に合成されたビームの場合、異なるビームが、空間的にまたは間にある角度を置いて分離された異なる光路に沿って、同時に送達される。以下の説明では、上述のビームまたは合成ビームのいずれかが、包括的に光線と呼ばれることがある。遠位および近位という用語は、ビームの移動方向、または一体型手術システム内における構成要素の互いに対する物理的位置を指定するのに使用されることがある。遠位方向は目に向かう方向を指し、したがって、OCTビーム画像診断装置によって出力されるOCTビームは、目に向かって遠位方向に移動する。近位方向は目から離れる方向を指し、したがって、目からのOCT戻りビームは、OCT画像診断装置に向かって近位方向に移動する。
【0074】
図8を参照すると、一例の一体型手術システムは、レーザービーム201およびOCTビーム301それぞれを目1に向かって遠位方向で送達し、目1から戻るOCT戻りビームおよび目視観察ビーム401それぞれを受け取るように構成される。レーザービームの送達に関して、フェムト秒レーザー源200によって出力されたレーザービーム201は、基本ビームパラメータ、ビームサイズ、拡散が設定される、ビーム調整器510を通過する。ビーム調整器510はまた、ビーム出力またはパルスエネルギーを設定する追加の機能を含み、ビームを遮断してその機能をオンオフしてもよい。ビーム調整器510を出た後、レーザービーム210は軸方向スキャンレンズ520に入る。軸方向スキャンレンズ520は、単一のレンズまたはレンズ群を含んでもよく、サーボモータ、ステッピングモータ、または他の制御メカニズムによって軸方向522で移動可能である。軸方向スキャンレンズ520の軸方向522の移動によって、焦点におけるレーザービーム210の焦点の軸方向距離が変化する。
【0075】
一体型手術システムの特定の実施形態によれば、中間焦点722は、集光対物レンズ700によって決定される、手術体積720の画像共役である共役手術体積721内にあるように設定され、その中でスキャン可能である。手術体積720は、画像診断および手術が実施される、目の中の関心領域の空間的範囲である。緑内障手術の場合、手術体積720は目の虹彩角膜角13の近傍である。
【0076】
ガルバノスキャナによって回転させられる一対の横断方向スキャンミラー530、532は、2つの本質的に直交する横断方向で、例えばxおよびy方向で、レーザービーム201をスキャンする。次に、レーザービーム201は、二色または偏光ビームスプリッタ540に向かって方向付けられ、そこで、レーザービーム201をOCTビームビーム301と合成するように構成された、ビーム合成ミラー601に向かって反射される。
【0077】
OCTビームの送達に関して、OCT画像診断装置300によって出力されたOCTビーム301は、ビーム調整器511、軸方向に移動可能な集光レンズ521、ならびにスキャンミラー531および533による横断方向スキャナを通過する。集光レンズ521は、共役手術体積721および実際の手術体積720におけるOCTビームの焦点位置を設定するのに使用される。集光レンズ521は、OCT軸方向スキャンを得るためにスキャンされない。OCT画像の軸方向空間情報は、干渉法によって再合成されたOCT戻りビーム301および参照ビーム302のスペクトルをフーリエ変換することによって得られる。しかしながら、手術体積720がいくつかの軸方向セグメントに分割された場合、集光レンズ521を使用して、焦点を再調節することができる。このように、OCTビーム画像の最適な画像診断空間分解能を、複数範囲でのスキャニングに費やされる時間を犠牲にして、OCT信号ビームのレイリー範囲を超えて拡張することができる。
【0078】
目1に向かって遠位方向に進み、スキャンミラー531および533の後、OCTビーム301は、ビームコンバイナミラー601によってレーザービーム201と合成される。合成レーザー/OCTビーム550のOCTビーム301およびレーザービーム201成分は、多重化され、同じ方向に移動して、共役手術体積721内の中間焦点722で集光される。共役手術体積721において集光された後、合成レーザー/OCTビーム550は第2のビーム合成ミラー602へと伝播し、そこで目視観察ビーム401と合成されて合成レーザー/OCT/目視ビーム701を形成する。
【0079】
遠位方向に移動する合成レーザー/OCT/目視ビーム701は次に、集光対物レンズ700、および患者接触面の窓801を通過し、その窓で、共役手術体積721内のレーザービームの中間焦点722が、手術体積720の焦点へと改めて結像される。集光対物レンズ700は、患者接触面の窓801を通して、中間焦点722を手術体積720内の眼組織へと改めて結像する。
【0080】
眼組織からの散乱OCT戻りビーム301は、上述したのと同じ経路に沿って逆の順序で、近位方向に移動してOCT画像診断装置300に戻る。OCT画像診断装置300の参照ビーム302は、参照遅延光路を通過し、可動ミラー330からOCT画像診断装置に戻る。参照ビーム302は、OCT画像診断装置300内で戻る際に干渉法によってOCT戻りビーム301と合成される。参照遅延光路の遅延量は、可動ミラー330を移動させて、OCT戻りビーム301および参照ビーム302の光路を均等化することによって、調節可能である。軸方向OCT分解能を最良にするため、OCT戻りビーム301および参照ビーム302はまた、OCT干渉計の2つのアーム内の群速度分散を均等化するように分散補償される。
【0081】
合成レーザー/OCT/目視ビーム701が角膜3および前眼房7を通して送達されるとき、合成ビームは、垂直入射から外れた鋭角で角膜の後面および前面を通過する。合成レーザー/OCT/目視ビーム701の経路におけるこれらの表面は、過度の非点収差およびコマ収差を作り出し、それらを相殺する必要がある。
【0082】
図9aおよび9bを参照すると、一体型手術システム1000の一実施形態では、集光対物レンズ700および患者接触面800の光学構成要素は、空間および色収差ならびに空間および色歪みを最小限に抑えるように構成される。図9aは、両目1、患者接触面800、および集光対物レンズ700が全て互いに結合されたときの構成を示している。図9bは、両目1、患者接触面800、および集光対物レンズ700が全て互いから分離されたときの構成を示している。
【0083】
患者接触面800は、目1を集光対物レンズ700に光学的および物理的に結合し、対物レンズは次いで、一体型手術システム1000の他の光学構成要素に光学的に結合する。患者接触面800は複数の機能を果たす。目を一体型手術システムの構成要素に対して不動化し、構成要素と患者との間に滅菌バリアを作り出し、目と機器との間の光アクセスを提供する。患者接触面800は、滅菌された1回使用の使い捨てデバイスであり、目1および一体型手術システム1000の集光対物レンズ700に分離可能に結合される。
【0084】
患者接触面800は、目に面する凹面812と、凹面とは反対側の対物レンズに面する凸面813とを有する、窓801を含む。したがって、窓801はメニスカス形態を有する。図9cを参照すると、凹面812は曲率半径rによって特徴付けられ、凸面813は曲率半径rによって特徴付けられる。凹面812は、直接接触によって、または凹面812と目1との間に配置された屈折率が整合する材料、液体、もしくはゲルによって、目に結合するように構成される。窓801はガラスで形成されてもよく、屈折率nを有する。一実施形態では、窓801は溶融シリカで形成され、1.45の屈折率nを有する。溶融シリカは、一般の安価なガラスのうち最も低い屈折率を有する。テフロンAFなどのフルオロポリマーは、溶融シリカよりも低い屈折率を有する別の種類の低屈折率材料であるが、それらの光学品質はガラスよりも低く、大量生産のためには比較的高価である。別の実施形態では、窓801は一般的なガラスBK7で形成され、1.50の屈折率nを有する。このガラスの耐放射線性の種類である、Schott AG,Mainz,GermanyによるBK7G18によって、γ線照射によって窓801の光学特性を変えることなく、患者接触面800のγ線滅菌が可能になる。
【0085】
図9aおよび9bに戻ると、窓801は、患者接触面800の壁803、および吸引リング804などの不動化デバイスによって取り囲まれる。吸引リング804が目1と接触していると、環状キャビティ805が吸引リングと目との間に形成される。真空が真空チューブまたは真空ポンプ(図9aおよび9bには図示なし)を介して吸引リング804およびキャビティに適用されると、手術の間、目と吸引リングとの間の真空力によって目が患者接触面800に付着される。真空を除去することによって目1が解放されるかまたは分離される。
【0086】
患者接触面800の目1とは反対側の端部は、集光対物レンズ700のハウジング702に付着させることによって、一体型手術システム100の他の構成要素に対する目の位置を固定するように構成された、アタッチメント接触面806を含む。アタッチメント接触面806は、機械的、真空、磁気、または他の原理で働き、また、一体型手術システムから分離可能である。
【0087】
集光対物レンズ700は、目に面する凹面711と凹面とは反対側の凸面712とを有する、非球面出射レンズ710を含む。したがって、出射レンズ710はメニスカス形態を有する。図9aおよび9bに示される出射レンズ710は、設計自由度がより高い非球面レンズであるが、他の構成では、出射レンズは球面レンズであってもよい。あるいは、出射レンズ710を単レンズではなく複合レンズとして構築することによって、ここで提示される光学系の主な特性を保存しながら光学部品を最適化する、より高い設計自由度が可能になる。図9cを参照すると、凹面711は曲率半径rによって特徴付けられ、凸面712は非球面形状によって特徴付けられる。非球面の凸面712は、球面の凹面711と組み合わせて、可変の厚さを有する出射レンズ710となり、レンズの外縁部715はレンズの中央の頂点領域717よりも薄い。凹面711は、窓801の凸面813に結合するように構成される。一実施形態では、出射レンズ710は溶融シリカで形成され、1.45の屈折率nを有する。
【0088】
図10aおよび10bは、虹彩角膜角の手術体積720にアクセスできるようにする、第1の光学サブシステム1001および第2の光学サブシステム1002を有する光学系1010を形成するように機能的に配置された、図7および8の一体型手術システムの構成要素の概略図である。図10aおよび10bはそれぞれ、図9aの集光対物レンズ700および患者接触面800の構成要素を含む。しかしながら、単純にするため、集光対物レンズおよび患者接触面の全体を図10aおよび図10bに含んでいない。また、図10aをさらに単純にするため、図9aおよび9bの平面のビーム折返しミラー740は含まれず、図9aに示される合成レーザー/OCT/目視ビーム701は、折り返されないかまたは伸ばされない。平面のビーム折返しミラーを追加または除去することでは、第1の光学サブシステムおよび第2の光学サブシステムによって形成される光学系の原則的な作業は変更されないことが、当業者には理解される。図10cは、図10aおよび10bの第1の光学サブシステムを通過するビームの概略図である。
【0089】
図10aを参照すると、一体型手術システム1000の第1の光学サブシステム1001は、集光対物レンズ700の出射レンズ710と、患者接触面800の窓801とを含む。出射レンズ710および窓801は、第1の光軸705を規定するように、互いに対して配置される。第1の光学サブシステム1001は、第2の光軸706に沿って出射レンズ710の凸面712に入射するビーム、例えば合成レーザー/OCT/目視ビーム701を受け取り、そのビームを目の虹彩角膜角13の手術体積720に向かって方向付けるように構成される。
【0090】
外科手技中に、第1の光学サブシステム1001は、窓801の凸面813を出射レンズ710の凹面711とインターフェース接続することによって組み立てられてもよい。この目的のため、集光対物レンズ700は患者接触面800とドッキングされる。結果として、出射レンズ710の凹面711が窓801の凸面813に結合される。結合は、直接接触によるもの、または屈折率整合流体の層によるものであってもよい。例えば、患者接触面800を集光対物レンズ700にドッキングするとき、屈折率整合流体の液滴を接触表面の間に適用して、2つの表面711、813の間に空隙があればそれを排除することによって、最小限のフレネル反射および歪みで合成レーザー/OCT/目視ビーム701が間隙を通過するのを助けることができる。
【0091】
ビームを目の虹彩角膜角13の手術体積720に向かって方向付けるために、第1の光学サブシステム1001は、ビーム701が、出射レンズ710、窓801、および角膜3を通過する際の屈折を計算に入れるように設計される。この目的のため、図10cを参照すると、出射レンズ710の屈折率nおよび窓801の屈折率nは、角膜3の屈折率nを考慮して選択されて、ビーム701がサブシステムを出て角膜3を通過するとき、光路が虹彩角膜角13内にあるようにほぼ整列されるように、第1の光学サブシステム1001を通してビームが適切に曲げられる。
【0092】
引き続き図10cを参照し、窓801と角膜3との間の接触面から始める。合成レーザー/OCT/目視ビーム701が窓801から出て角膜3に入る接触面において、即ち窓の凹面812と角膜3の凸面との間の接触面において、入射角が鋭角過ぎると、過度の屈折および歪みが生じる。この接触面における屈折および歪みを最小限に抑えるため、第1の光学サブシステム1001の一実施形態では、窓801の屈折率は角膜3の屈折率と緊密に整合される。例えば、図9aおよび9bを参照して上述したように、窓801は、1.36の屈折率を有する角膜3と緊密に整合するように、1.42未満の屈折率を有してもよい。
【0093】
合成レーザー/OCT/目視ビーム701が窓801から出て角膜3に入る接触面における過度の屈折および歪みは、ビーム701が出射レンズ710および窓801を通過する際の曲げを制御することによって、さらに相殺されてもよい。この目的のため、第1の光学サブシステム1001の一実施形態では、窓801の屈折率nは、出射レンズ710の屈折率nおよび角膜3の屈折率nそれぞれよりも高い。結果として、合成レーザー/OCT/目視ビーム701が出射レンズ710から出て窓801に入る接触面、即ち出射レンズの凹面711と窓の凸面813との間の接触面において、ビームは、高い方から低い方への屈折率変化を通り抜け、それによってビームが第1の方向に曲がる。次に、合成レーザー/OCT/目視ビーム701が窓801から出て角膜3に入る接触面、即ち出射レンズの凹面812と角膜の凸面との間の接触面において、ビームは、低い方から高い方への屈折率変化を通り抜け、それによってビームが第1の方向とは反対の第2の方向に曲がる。
【0094】
窓801の形状はメニスカスレンズであるように選択される。そのため、光の入射角は、窓801の両方の表面812、813上において類似の値を有する。全体的な作用として、凸面813では、光は面法線から離れる方向に曲がり、凹面812では、光は面法線に向かって曲がる。この作用は、光が平面平行プレートを通過するときのようなものである。プレートの一方の表面における屈折は、他方の表面における屈折によって相殺され、プレートを通過する光の方向は変化しない。入光面における光701の入射角βが交点708における入光面に対する面法線707に近くなるように、入光面における曲率を設定することによって、目の遠位側にある出射レンズ710の入光側の凸面712における屈折は最小限に抑えられる。
【0095】
ここで、出射レンズ710、窓801、および目1は、第1の光軸705との軸対称系として配置される。実際には、光学構成要素の製造および位置合わせの誤差、目の対称性からの自然な偏差、ならびに臨床セッティングでの窓801および出射レンズ710に対する目の位置合わせの誤差があるため、軸対称性は近似値である。ただし、設計および実践上の目的のため、目1、窓801、および出射レンズ710は、軸対称の第1の光学サブシステム1001と見なされる。
【0096】
引き続き図10aを参照すると、第2の光学サブシステム1002は、第1の光学サブシステム1001の第1の光軸705に対して角度αで、第1の光学サブシステム1001に光学的に結合される。この配置の利点は、両方の光学サブシステム1001、1002を、全ての光学構成要素が共通の光軸を有する光軸上に設計されるシステムと比較して、はるかに低い開口数で設計できる点である。
【0097】
第2の光学サブシステム1002は、図8を参照して上述したように、目の中で手術体積720の共役手術体積721を生成する、リレーレンズ750を含む。第2の光学サブシステム1002は、光学サブシステムブロック1003として集合的に示される、他の様々な構成要素を含む。図8を参照すると、これらの構成要素は、フェムト秒レーザー源200と、OCT画像診断装置300と、目視観察デバイス400と、ビーム調整器およびスキャナ500と、ビームコンバイナ600とを含んでもよい。
【0098】
第2の光学サブシステム1002は、第1の光学サブシステム1001の第1の光軸705を中心にしてサブシステム全体を回転させるように構成された、機械的部品(図示なし)を含んでもよい。これによって、目1の虹彩角膜角13の360°の円周全体への光アクセスが可能になる。
【0099】
図10bを参照すると、第1および第2の光学サブシステム1001、1002のそれぞれに対する配置の柔軟性は、第2の光学サブシステム1002の光出力と第1の光学サブシステム1001の光入力との間に、光学アセンブリ1004が挟み込まれることによってもたらされてもよい。一実施形態では、光学アセンブリ1004は、第2の光学サブシステム1002の光出力、例えば合成レーザー/OCT/目視ビーム701を受け取り、合成レーザー/OCT/目視ビームの方向を変更または調節し、第1の光学軸705と第2の光学軸706との間の角度αを保存しながら、ビームを第1の光学サブシステム1001の光入力へと方向付けるように構成された、1つもしくは複数の平面ビーム折返しミラー740、プリズム(図示なし)、または光学格子(図示なし)を含んでもよい。
【0100】
別の構成では、平面ビーム折返しミラー740の光学アセンブリ1004はさらに、第2の光学サブシステム1002を静止させたまま、第1の光学サブシステム1001の第1の光軸705を中心にしてアセンブリを回転させるように構成された、機械的部品(図示なし)を含む。したがって、第2の光学サブシステム1002の第2の光軸706を、第1の光学サブシステム1001の第1の光軸705を中心にして回転させることができる。これによって、目1の虹彩角膜角13の360°の円周全体への光アクセスが可能になる。
【0101】
図9a、9b、および9cを参照にして上述した考察により、第1の光学サブシステム1001の設計は、第1の光学サブシステム1001の第1の光軸705に対する角度αでの角度付き光アクセスのために最適化される。角度αでの光アクセスは、第1の光学サブシステム1001の光学収差を相殺する。表1は、Zemax光学設計ソフトウェアパッケージを用いて、アクセス角度α=72°で最適化した結果を示している。この設計は、画像誘導フェムト秒緑内障手術に関する実践的な実施形態である。
【0102】
この設計は、開口数(NA)0.2以下で、1030nm波長のレーザービームおよび850nm波長のOCTビームの回折限界集光を作り出す。1つの設計では、第1の光学サブシステムの光学収差は、虹彩角膜角における開口数0.15超のビームに対する第1の光学サブシステムのストレール比が0.9超になる程度まで相殺される。別の設計では、第1の光学サブシステムの光学収差は部分的に相殺され、第1の光学系の残りの相殺されない収差は、第2の光学サブシステムによって、虹彩角膜角における開口数0.15超のビームに対する第1および第2の光学サブシステムの組み合わせのストレール比が0.9超になる程度まで相殺される。
【0103】
校正
【0104】
一体型手術システム1000のフェムト秒レーザー源200、OCT画像診断装置300、および目視観察デバイス400は、最初に、それらの内部の整合性を担保するように個々に校正され、次にシステム整合性に関して相互校正される。システム校正の必須部分は、レーザービーム201の外科的焦点が、OCT画像診断装置および/または目視観察デバイス400によって同定されるような、手術体積720の位置に集められたとき、達成された焦点位置が、特定の公差以内、一般的には5~10μm以内で、集められた焦点位置と整合するように担保することである。また、コンピュータモニタなどのユーザインターフェース110に表示される、グラフィックおよびカーソル出力、画像、オーバーレイ、ならびにユーザインターフェース110から受け入れられる眼組織手術体積720の位置のユーザ入力は、類似の精度の所定の公差内で組織における実際の位置に対応すべきである。
【0105】
この空間校正手順の一実施形態は、ディスプレイ上のスケール値が校正標的の実際のスケールと整合するような形での、OCTビーム画像診断装置300および/または目視観察デバイス400ならびにそれらのディスプレイの校正済みスケールおよびスケーリング倍率の撮像から始まる。次に、レーザー校正パターンが透明校正標的に露光または焼き付けられ、続いて校正パターンが撮像される。次に、意図されたパターンおよび実際の焼き付けられたパターンが、一体型手術システム1000の画像診断システムを用いて、または別個の顕微鏡によって比較される。それらが指定の公差内で整合しない場合、レーザービームスキャナのスケーリングを調節することによって、手術パターンのスケーリングパラメータが改めてスケーリングされる。この手順は、全ての空間校正が公差内になるまで、必要に応じて反復される。
【0106】
低侵襲性外科的治療
【0107】
図11は、統合手術システム1000によって可能になる外科的治療に関する目の解剖学的構造の三次元概略図である。IOPを低減するため、レーザー治療は、線維柱帯流出経路40に影響を及ぼす眼組織を標的とする。これらの眼組織としては、線維柱帯12、強膜棘14、シュレム管18、およびコレクターチャネル19を挙げることができる。線維柱帯12には、ブドウ膜15、角強膜網16、および傍シュレム管組織17の3層がある。これらの層は、多孔質で水透過性があり、ブドウ膜15が最も多孔質で透過性が高く、次いで角強膜網16が多孔質で透過性が高い。線維柱帯12のうちで、最も多孔質に乏しく、最も透過性が低い層は、傍シュレム管17である。シュレム管18の内壁18aも多孔質で水透過性であり、傍シュレム管17と同様の特性を備えている。
【0108】
図12には、図11に示す眼組織手術ボリューム900に影響を与えるように統合手術システム1000によって適用される治療パターンP1の三次元図と、治療対象の解剖学的構造に重なる治療パターンP1の二次元概略図とが含まれる。図13は、図12のレーザー治療パターンの適用から生じる、それを貫通する開口902を含む目の解剖学的構造の三次元概略図である。開口902は、眼組織における流動抵抗を下げて、前眼房7からシュレム管18への水流を増やし、それによって目のIOPを下げる流出経路40をもたらす。
【0109】
外科的治療は、レーザー治療パターンのデザインおよび選択により眼組織の修正を最小限に抑えながら、流出経路の抵抗を下げる。治療パターンは、レーザー-組織相互作用ボリュームの集合体を画定すると考えられ、本明細書ではセルとする。セルのサイズは、レーザー-組織相互作用の影響の程度によって決まってくる。レーザースポット即ちレーザーセルが線に沿って狭い間隔である場合、レーザーは、狭い微細なチャネルを作り出す。チャネルの断面内に多数のレーザースポットを狭い間隔にすることで、チャネルを広くすることができる。セルの配列は、結晶構造における原子配列に似ていることがあり得る。
【0110】
図12を参照すると、治療パターンP1は、規則的に間隔を空けた行、列、および薄片即ち層に配列された個々の細胞を包含する立方体構造の形態であり得る。治療パターンP1は、x、y、z次元によって特徴付けられることができ、セルのx、y、z座標は、列の位置(x座標)、行の位置(y座標)、層の位置(z座標)の順で近傍から近傍へ順次算出される。このような治療パターンP1は、レーザーによって修正される眼組織の三次元モデル、またはレーザーによって影響を受ける眼液の三次元モデルを画定する。
【0111】
治療パターンP1は、通常、一連の手術パラメータにより定義される。手術パラメータとしては、レーザーが通過する眼組織表面積即ち眼組織層に相当する治療面積Aのうちの1つまたは複数を挙げることができる。治療面積Aは、治療高さhと治療の側部範囲wとによって決まってくる。レーザーが眼組織に切り込むレベルに相当する治療厚みtは、シュレム管18にあるかシュレム管18近くの治療ボリュームの遠位範囲即ち遠位境界から、線維柱帯12の表面にあるか表面近くの近位範囲即ち近位境界までに及ぶ。したがって、治療パターンに従って印加されるレーザーは、治療パターンの三次元モデルに似ている手術ボリュームに影響をもたらすかまたは手術ボリュームをもたらすことがあり得、または三次元モデルが似ている目構造の内部にある流体に影響を及ぼすこともあり得る。
【0112】
さらなる手術パラメータは、目の中の手術ボリューム即ち罹患ボリュームの配置を定義する。例えば、図11および12を参照すると、配置パラメータとしては、治療が目の円周角に対して行われることになっている所に相当する場所l、および基準目構造に対して目の中の眼組織または眼液の三次元モデルの一部相当する治療深さdのうちの1つまたは複数を挙げることができる。以下では、治療深さdを示し、前眼房7が線維柱帯12に出くわす領域に対して表す。治療パターンと配置パラメータとが合わさって、治療計画を定義する。
【0113】
フェムト秒レーザーは、取り囲む眼組織への付随的損傷を最小限に抑えた高度限局性の非熱光―切断レーザー-組織相互作用をもたらす。レーザーの光―切断相互作用は、光透過性組織に活かされる。眼組織中へのレーザーエネルギー付与の主要メカニズムは、吸収によるものではなく、高度非線形多光子プロセスによるものである。このプロセスは、ピーク強度が高いパルスレーザーの焦点にのみ有効である。レーザービームが横切るが、焦点ではない領域は、レーザーに影響を受けない。それ故、眼組織との相互作用領域は、レーザービームに沿って横方向にも軸方向にも高度限局される。
【0114】
図11および12を参照すると、本明細書に開示の実施形態によれば、治療対象の眼組織手術ボリューム900が、手術システム1000によって特定され、手術ボリュームに相当する治療パターンP1が統合手術システムによってデザインされる。代替として、治療パターンP1が最初にデザインされてもよく、次に治療パターンを適用するのに相応しい手術ボリューム900が特定されてもよい。眼組織手術ボリューム900は、線維柱帯12およびシュレム管18の一部から成っていることがあり得る。例えば、図11に示す眼組織手術ボリューム900は、ブドウ膜15、角強膜網16、傍シュレム管組織17、およびシュレム管18の内壁18aの一部を含む。治療パターンP1は、レーザー走査手順を定義し、このレーザー走査手順によって、レーザーが、眼組織における様々な深さ地点に集束し、それによって、複数の罹患組織薄片即ち罹患組織層から成る三次元組織ボリュームに影響を及ぼすように複数方向に走査される。
【0115】
図12および13を参照すると、レーザー走査手順にわたり、手術用レーザー701が、治療パターンP1に従って、前眼房7から、線維柱帯12のブドウ膜15、角強膜網16、および傍シュレム管組織17、ならびにシュレム管18の内壁18aのそれぞれを貫通する、開口902を形成するように、眼組織を走査し得る。図13における開口902例は、流体経路と見なされる途切れのない1つの内腔として描かれているが、開口は、流体経路と見なされるスポンジのような構造体を成す一並べの隣り合う細孔またはその組み合わせと見なされてもよい。図13における開口902例は、立方体の形状であるが、開口の形状は、他の幾何学的形状であってもよい。
【0116】
手術ボリューム900に影響を与えるように走査するのに従ったレーザーの移動は、治療の面積Aおよび厚みtを含む一連の手術パラメータで定義される治療パターンP1に従う。治療面積Aは、幅wと高さhとで定義される。幅は、円周角を中心とした測定値で定義されてもよい。例えば、幅wは、円周角を中心とした角度、例えば、90度で定義されてもよい。
【0117】
図11および12を参照すると、レーザー焦点の目の中の1回目の配置は、深さdおよび場所lを含む、一連の配置パラメータにより定義される。場所lとは、レーザー治療が始まる目の円周角を中心とする点のことである一方、深さdとは、レーザー治療が始まるかまたは終わる前眼房7とシュレム管18との間の点のことである。深さdは、前眼房7が線維柱帯12に出くわす領域に対して測定される。したがって、線維柱帯12のシュレム管18側に近い方の第1の点は、線維柱帯12の前眼房7側に近い方の第2の点よりも深いと言うことができる。代替として、第2の点は、第1の点よりも浅いと言うことができる。
【0118】
図13を参照すると、治療パターンP1のレーザー印加からもたらされた開口902は、手術ボリューム900に似ており、手術ボリュームおよび治療パターンの面積および厚みと同様の面積Aおよび厚みtによって特徴付けられる。結果としての開口902の厚みtは、前眼房7からシュレム管18の内壁18aを貫通する一方、面積Aは、開口902の断面サイズのことである。
【0119】
本明細書に開示の実施形態によれば、レーザー走査手順にわたり、レーザー焦点を眼組織における様々な深さdに移し、それによって、複数の罹患組織薄片即ち罹患組織層から成る眼組織三次元ボリューム900に影響を与えるように、治療パターンP1によって定義される通りの横二次元即ち横2方向に走査する。横二次元は、レーザー焦点の移動軸にほぼ直交する。図13を参照すると、レーザー走査にわたるレーザー焦点の移動は、本明細書では、x方向、y方向、およびz方向、即ちx軸、y軸、およびz軸に対して表し、1)治療パターンP1即ち組織ボリューム900の厚みtを通した様々な深さdへのレーザー焦点の移動は、z軸に沿う焦点の移動に相当し、2)z軸に直交する二次元即ち2方向におけるレーザー焦点の移動は、x方向における治療パターンP1即ち組織ボリューム900の幅wに沿うレーザー焦点の移動、およびy方向における治療パターンP1即ち組織ボリューム900の高さhに沿うレーザー焦点の移動に相当する。
【0120】
本明細書で使用する際、レーザー焦点の走査とは、x方向、y方向、およびz方向におけるレーザー焦点のラスタ式移動にほぼ相当する。レーザー焦点は、z方向におけるある点にある場合、二次元即ち2方向である、x方向およびy方向でラスタ走査され得る。z方向におけるレーザーの焦点とは、治療パターンP1即ち組織ボリューム900内の深さdとすることができる。レーザー焦点の2方向ラスタ走査は、レーザー走査層を定め、今度はそれがレーザーに影響を受ける組織層をもたらす。
【0121】
レーザー走査中、レーザーのパルスショットが、治療パターンP1に相当する眼組織ボリューム内の組織に送られる。レーザー相互作用体積は小さく、数マイクロメートル(μm)程度なので、眼組織と繰り返しレーザーの各レーザーショットとの相互作用は、レーザーの焦点で局所的に眼組織を破壊する。眼組織における光破壊的相互作用に関するレーザーのパルス持続時間は数フェムト秒から数ナノ秒、パルスエネルギーは数ナノジュールから数十マイクロジュールの範囲であることができる。焦点におけるレーザーパルスは、多光子過程を経て、分子の化学結合を破壊し、組織物質を局所的に光分解し、湿組織中に気泡を作り出す。組織物質の破壊、および気泡形成による機械的応力によって、組織が細分化され、レーザーパルスを幾何学的線および表面に沿って互いに近接させた場合、明確な連続した切り口が作られる。
【0122】
表2には、組織を治療する際の治療パターンパラメータおよび手術用レーザーパラメータの例を載せている。パラメータ集合の値域は、レーザーの繰り返し率およびスキャナの走査速度に応じた実際の値域に限られる。
【0123】
図11、12、13、14a、および14bを参照すると、ある種のレーザー走査手順では、走査が前眼房7に隣接する治療パターンP1の端で始まり、レーザー701の伝播方向にほぼ相当する方向に進む。より具体的には、また図14aを参照すると、レーザー走査は、解剖学的構造、例えばシュレム管18の内壁18aに向かうz方向に進む一方、レーザー701の伝播方向も同じ解剖学的構造、例えばシュレム管18の内壁18aに向かって進む。
【0124】
しかし、このようなレーザー走査は、レーザー印加中に生じる気泡により妨げられることが原因で、前眼房7とシュレム管18との間に望ましい開口902を作り出すことに無力であることがあり得る。上で述べた通り、フェムト秒レーザーは、非常に短い光エネルギーパルスを起こす。このようなバルスのビームが、小さな断面積によって特徴付けられる非常に小さな空間ボリュームに集束すると、この焦点スポット内で、非線形効果が生じる。このような焦点スポットが組織に向けられると、組織は、小さな気泡を残して光切断される(壊される)。このプロセスは、原則として非熱式であり、極わずかなエネルギーで済む。この結果は、取り囲む組織が影響を受けない、ということである。
【0125】
しかし、フェムト秒レーザービームが組織の表面にわたって走査されると、この1回目の表層のレーザー治療により、治療の範囲全体にわたって気泡層が生じる。このレーザーが1回目の表層の下の即ち1回目の表層より深い組織層を走査すると、このような気泡は、入射レーザー光を散乱させるシャドウ効果をもたらし、事実上、この組織のさらなる治療を阻む。これは、1回目の表層の下の即ち1回目の表層よりも深い組織のさらなるレーザー治療を無効にする。
【0126】
緑内障手術に伴うこの効果の例を図14aおよび14bに示す。図14aでは、レーザービーム701の焦点が、まず深さdにある。この深さdにより、レーザー焦点は、1回目の組織層904に当たる。例えば、1回目の組織層904は、線維柱帯12のブドウ膜15と前眼房7との境界面にあることがあり得る。この場合、レーザー焦点のこの深さ地点をヌル深さとし、治療対象の1回目の層904は、前眼房7に面するブドウ膜15の表面に相当する。レーザー焦点が1回目の深さdに位置付けられると、焦点は、1回目の深さに留められながら複数方向に走査される。図14aを参照すると、複数方向とは、x方向およびy方向であり、x方向は、図14aの平面の中にある。
【0127】
図14bを参照すると、複数方向におけるラスタ走査は、1回目の組織層904および1回目の組織層にある気泡層906の形成物の光切断をもたらす。次に、レーザービーム701の焦点がシュレム管18の内壁18aに向かうz方向に、別の深さdに移される。この深さdにより、1回目の層904よりも深い2回目以降の組織層908にレーザー焦点が当たる。例えば、深い方の組織層は、線維柱帯12のブドウ膜15で成っていることがあり得る。レーザー焦点が2回目以降の層908に位置付けられると、焦点は、その深さに留められながら複数方向にラスタ走査される。しかし、この場合、気泡層906が、入射レーザー光を散乱させ、事実上、2回目以降の層908における組織のさらなる治療を阻む。
【0128】
図11、12、13、15a~15gを参照すると、本開示の実施形態により、上記の無効なラスタ治療が、それによりラスタ走査がシュレム18に隣接する治療パターンP1の端で始まり、レーザー701の伝播方向とほぼ反対の即ち伝播方向に対してほぼ反対の方向に進む、ラスタ走査手順を実施することにより回避される。より具体的には、また図15aを参照すると、レーザー走査は、解剖学的構造、例えばシュレム管18の内壁18aで始まり、前眼房7に向かうz方向にその構造を背にして進む一方、レーザー701の伝播方向は、その構造に向かって進む。
【0129】
この走査手順では、フェムト秒パルスのレーザービームは、組織ボリュームの1回目の深さで即ち組織ボリュームの表面から離れて眼組織ボリューム内に集束する。1回目の層の範囲に気泡層を生じさせる1回目の深さにある1回目の組織層が治療される。1回目の組織層の治療後、レーザーが、1回目の組織層よりも浅い、即ち1回目の深さよりも眼組織ボリュームの表面に近い深さにある2回目以降の組織層に再集束する。1回目の層の範囲にある気泡層が第2の層の下であるので、気泡が第2の層を塞ぐことはない。このプロセスは、レーザーが、眼組織ボリュームを通して、組織ボリュームの表面に、層単位で走査するまで、繰り返される。
【0130】
緑内障手術に伴うこの走査手順の例を図15a~15gに示す。図15aでは、レーザービーム701の焦点が、まず深さdにある。この深さdにより、レーザー焦点は、1回目の組織層910に当たる。例えば、1回目の組織層910は、シュレム管18の内壁18aで成ることがあり得る。レーザー焦点が1回目の深さdに位置付けられると、焦点が、1回目の深さdに留められながら、複数方向に走査される。図15aを参照すると、複数方向とは、x方向およびy方向であり、x方向は、図15aの平面の中である。
【0131】
図15bを参照すると、複数方向におけるレーザー走査は、1回目の組織層910と1回目の組織層の地点にある気泡層912の形成物の光切断をもたらす。次に、レーザービーム701の焦点が前眼房7に向かうz方向に、2回目以降の深さdに移される。2回目以降の深さdにより、1回目の組織層910よりも浅い2回目以降の組織層914にレーザー焦点が当たる。例えば、2回目以降の組織層914は、シュレム管18の内壁18a、傍シュレム管組織17、および角強網膜16の一部で成っていることがあり得る。レーザー焦点が2回目以降の深さdに位置付けられると、焦点は、2回目以降の深さdに留められながら複数方向に走査される。気泡層912が2回目以降の層914の下にあるので、この気泡により、2回目以降の層の光切断へのレーザーアクセスが妨げられることも阻止されることもない。
【0132】
図15cを参照すると、複数方向におけるレーザー走査は、2回目以降の組織層914と2回目以降の組織層の地点にある気泡層916の形成物の光切断をもたらす。次に、レーザービーム701の焦点が前眼房7に向かうz方向に、2回目以降の深さdに移される。2回目以降の深さdにより、2回目以降の組織層914よりも浅い2回目以降の組織層918にレーザー焦点が当たる。例えば、2回目以降の組織層914は、傍シュレム管組織17のおよび角強網膜16の一部で成っていることがあり得る。レーザー焦点が2回目以降の深さdに位置付けられると、焦点は、2回目以降の深さdに留められながら複数方向に走査される。気泡層912、916が2回目以降の層918の下にあるので、この気泡により、2回目以降の層の光切断へのレーザーアクセスが妨げられることも阻止されることもない。
【0133】
図15dを参照すると、複数方向におけるレーザー走査は、2回目以降の組織層918と2回目以降の組織層の地点にある気泡層920の形成物の光切断をもたらす。次に、レーザービーム701の焦点が前眼房7に向かうz方向に、2回目以降の深さdに移される。2回目以降の深さd4により、2回目以降の組織層918よりも浅い2回目以降の組織層922にレーザー焦点が当たる。例えば、2回目以降の組織層922は、角強膜網16のおよびブドウ膜15の一部で成っていることがあり得る。レーザー焦点が2回目以降の深さdに位置付けられると、焦点は、2回目以降の深さdに留められながら複数方向に走査される。気泡層912、916、920が2回目以降の層922の下にあるので、この気泡により、2回目以降の層の光切断へのレーザーアクセスが妨げられることも阻止されることもない。
【0134】
図15eを参照すると、複数方向におけるレーザー走査は、2回目以降の組織層922と2回目以降の組織層の地点にある気泡層924の形成物の光切断をもたらす。次に、レーザービーム701の焦点が前眼房7に向かうz方向に、2回目以降の深さdに移される。2回目以降の深さdにより、2回目以降の組織層922よりも浅い2回目以降の組織層926にレーザー焦点が当たる。例えば、2回目以降の組織層926は、ブドウ膜15で成っていることがあり得る。レーザー焦点が2回目以降の深さdに位置付けられると、焦点は、2回目以降の深さdに留められながら複数方向に走査される。気泡層912、916、920、924が2回目以降の層926の下にあるので、この気泡により、2回目以降の層の光切断へのレーザーアクセスが妨げられることも阻止されることもない。
【0135】
図15fを参照すると、複数方向におけるレーザー走査は、2回目以降の組織層926と2回目以降の組織層の地点にある気泡層928の形成物の光切断をもたらす。次に、レーザービーム701の焦点が前眼房7に向かうz方向に、2回目以降の深さdに移される。2回目以降の深さdにより、2回目以降の組織層926よりも浅い2回目以降の組織層930にレーザー焦点が当たる。例えば、2回目以降の組織層930は、ブドウ膜15と前眼房7に面するブドウ膜の内面とで成っていることがあり得る。レーザー焦点が2回目以降の深さdに位置付けられると、焦点は、2回目以降の深さdに留められながら複数方向に走査される。気泡層912、916、920、924、928が2回目以降の層930の下にあるので、この気泡により、2回目以降の層の光切断へのレーザーアクセスが妨げられることも阻止されることもない。
【0136】
図15gを参照すると、複数方向におけるレーザー走査は、2回目以降の組織層930と2回目以降の組織層の地点にある気泡層932の形成物の光切断をもたらす。この2回目以降の組織層930の光切断は、前眼房7とシュレム管18との間に開口920の形成をもたらし、これにより、レーザー治療手順が完了する。
【0137】
図16aを参照すると、レーザー走査の完了の時点で、開口902が、治療中にもたらされた気泡912、916、920、924、928によって一部遮られる、即ち塞がれることがあり得る。これにより、本明細書に記載の実施形態によれば、気泡が残っていればそれをシュレム管18に押し込み、それにより、図16bに示すように、開口902から邪魔者を取り除くために、図15a~15gを参照しながら述べたレーザー走査の方向を反対方向にすることができる。
【0138】
図17は、眼組織ターゲットボリュームに向かう伝播方向のレーザーにより眼組織ターゲットボリュームを治療する方法のフローチャートである。図12を参照すると、眼組織ターゲットターゲットボリューム60は、遠位範囲62、近位範囲64、および側方範囲66によって特徴付けられる。遠位範囲62は、レーザー701の伝播方向に沿って最も遠位であるターゲットボリューム60の部分または点に相当する。近位範囲64は、レーザー701の伝播方向に沿って最も最も近位であるターゲットボリューム60の部分または点に相当する。側方範囲66は、円周角に沿うターゲットボリューム60の間隔または幅wに相当する。
【0139】
図7~10bの統合手術システム1000によって行われ得る方法は、既に虹彩角膜角へのアクセスが得られ、治療対象の眼組織ターゲットボリューム60が特定されている、という手術手順の時点で始まる。虹彩角膜角にアクセスシステムおよび方法は、その開示が参照により本明細書に組み込まれている、「Integrated Surgical System and Method for Treatment in the Irido-Corneal Angle of the Eye」の題の米国特許出願第16/036,883号に記載されている。治療対象の眼組織ターゲットボリュームを特定し、治療パターン基準を考案するシステムおよび方法は、その開示が参照により本明細書に組み込まれている、「Non-Invasive and Minimally Invasive Laser Surgery for the Reduction of Intraocular Pressure in the Eye」の題の米国特許出願第16/125,588号に記載されている。
【0140】
ブロック1702では、統合手術システム1000が最初に、眼組織ターゲットボリューム60の遠位範囲62に相当する1回目の深さdで組織を光切断する。このために、また図15aを参照すると、統合手術システム1000は、1回目の深さdである組織内スポットにフェムト秒レーザー701からの光を集束させ、その組織を光切断するのに十分なレベルである光エネルギーを組織に印加する。1回目の深さdの1回目の治療面910を画定する複数方向にレーザー701を走査することによって光エネルギーを印加し、それによって、眼組織ターゲットボリュームの1回目の組織層を光切断する。図13を参照すると、この走査は、レーザーが側部範囲66に沿った第1の方向、即ちx方向に走査され、次に第2の方向、即ちy方向にわずかに移され、次にまた側部範囲に沿って走査される、というラスタ走査の形式であってもよい。
【0141】
ブロック1702の1回目の光切断プロセスのさらなる態様として、統合手術システム1000が眼組織ターゲットボリュームの遠位範囲62を見付けることがあり得る。このために、ある構成では、分かっている技法を使用してターゲットボリューム60の遠位範囲62を見付けるように、制御系100がOCTイメージング装置300によって取り込まれた画像を処理する。別の構成では、統合手術システム1000には、眼組織ターゲットボリューム60の遠位範囲62に対するレーザー701の焦点の位置を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらす多光子イメージング装置(図示せず)が含まれ得る。統合手術システム1000が、OCTイメージングに基づき、眼組織ターゲットボリューム60の側方範囲66を確認することもあり得る。
【0142】
ブロック1704において、また図15b~15fを参照すると、統合手術システム1000が続いて、眼組織ターゲットボリューム60の遠位範囲62と眼組織ターゲットボリュームの近位範囲64との間の1つまたは複数の2回目以降の深さd~dで組織を、レーザーの伝播方向と反対方向にレーザー701の焦点を移すことによって、光切断する。このために、統合手術システム1000は、1つまたは複数の2回目以降の深さd~dである組織内スポットにフェムト秒レーザー701からの光を集束させ、その組織を光切断するのに十分なレベルである光エネルギーをその組織に印加する。それぞれの異なる深さd~dの2回目以降の治療面914、918、922、926、930を画定する複数方向にレーザー701を走査することによって光エネルギーを印加し、それにより、眼組織ターゲットボリューム60の1つまたは複数の2回目以降の組織層を光切断する。図13を参照すると、この走査は、レーザーが側部範囲66に沿った第1の方向、即ちx方向に走査され、次に第2の方向、即ちy方向にわずかに移され、次にまた側部範囲に沿って走査される、というラスタ走査の形式であってもよい。
【0143】
ブロック1704の2回目以降の光切断プロセスのさらなる態様として、統合手術システム1000が、眼組織ターゲットボリューム60の遠位範囲64を見付けることがあり得る。このために、ある構成では、OCTイメージング装置300によって取り込まれた画像を、分かっている技法を使用してターゲットボリューム60の近位範囲64を見付けるように制御系100が処理する。別の構成では、統合手術システム100には、眼組織ターゲットボリューム60の近位範囲64に対するレーザー701の焦点の位置を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらす多光子イメージング装置(図示せず)が含まれ得る。さらに別の構成では、統合手術システム1000には、眼組織ターゲットボリューム60の近位範囲64に対するレーザー701の焦点の位置を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらすオプト-メカニカルイメージング装置(図示せず)が含まれ得る。
【0144】
ブロック1706では、統合手術システム1000が、眼組織ターゲットボリューム60の近位範囲64が光切断されているかどうか判断する。近位範囲64が光切断されていなければ、プロセスがブロック1704に戻り、統合手術システム1000が眼組織ターゲットボリューム60の近位範囲64にある組織が光切断されるまで、1つまたは複数の2回目以降の深さで光切断を繰り返す。
【0145】
ブロック1706に戻り、また図16aを参照すると、近位範囲64が光切断されていると、プロセスは、ブロック1798に戻り、統合手術システム1000が、眼組織ターゲットボリューム60の近位範囲64とターゲットボリュームの遠位範囲62との間の組織残骸または組織気泡906を、レーザーの伝播方向にレーザー701の焦点を移すことによって光切断する。このために、統合手術システム1000は、1つまたは複数の2回目以降の深さで組織残骸または組織気泡906ボリューム内スポットにフェムト秒レーザー701からの光を集束させ、組織残骸または組織気泡に光エネルギーを印加する。光エネルギーは、光切断対象のターゲットボリューム60の近位範囲64と遠位範囲62との間の組織残骸または組織気泡906を光切断するように、それまでに走査した治療面910、914、918、922、926、930のうちの1つまたは複数に沿った複数方向でレーザー701を走査することによって印加される。
【0146】
ブロック1710では、統合手術システム1000が、光切断対象の眼組織ターゲットボリューム60の治療を繰り返すか、または治療を終了するかを判断する。治療が繰り返される場合、プロセスがブロック1702に戻り、そこでは、統合手術システム1000が組織の1回目の切断を繰り返し、次にブロック1704および1706に進み、そこでは、システムが、2回目以降の組織光切断を1回または複数回繰り返す。治療が繰り返されない場合、プロセスは、1712に進み、そこでは、治療が終わる。
【0147】
眼組織ターゲットボリュームの遠位範囲62またはターゲットボリュームの近位範囲64を見付けるのに多光子イメージング装置を使用することに関して、このような装置は、レーザー701の焦点と組織との出くわしから生じる第2の調光の画像を提示するように構成されている。レーザー701の焦点が組織に出くわさない場合、第2の調光の強度がゼロかまたは極めて低い。焦点が組織に出くわす場合、第2の調光の強度は、上がる。これに基づき、図12に示すものなどの遠位範囲62が、最初に、レーザー701の焦点を、線維柱帯12およびシュレム管の内壁18aを通して、シュレム管18に進ませ、この場合、焦点は、光には出くわさず、第2の調光の強度がゼロかまたは非常に低いので、シュレム管の内壁18aに焦点を引き戻し、第2の調光の強度が上がったのをディスプレイ上で認めると、焦点が内壁にある、ということが分かることによって分かる。
【0148】
眼組織ターゲットボリューム60の近位範囲64を見付けるのにオプト-メカニカルイメージング装置を使用することに関して、このような装置は、レーザーの焦点に相当する点で交差するような第1の光線および第2の光線をターゲットボリュームに入射するようにさせ、第1の光線と第2の光線との位置を互いに、またレーザービームに対して揃えるように構成されている。この装置は、眼組織ターゲットボリューム60の近位範囲64に対して、第1の光線に相当する第1のスポットの画像、および第2の光線に相当する第2のスポットの画像を取り込むようにも構成されている。第1および第2のスポットは、画像には、焦点がその面を外れている場合には近位範囲64の表面の2つの別々の可視スポットとして、また焦点が表面にある場合には1つだけの重なり合ったスポットとして現れる。したがって、スポットが重なり合うと近位範囲64が分かる。
【0149】
図7~10bを参照すると、図17の方法を実施する手術システム1000にはさらに、目1に合わせられるように構成された集束対物レンズ700を含む第1の光サブシステム1001と、レーザービーム201/701を出力するように構成されたレーザー源200を含む第2の光サブシステム1002とが含まれる。第2の光サブシステム1002は、集束対物レンズを通して、眼組織ターゲットボリュームに向かう伝播方向に、レーザービームを集束させること、レーザービームを走査すること、およびレーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素1003も含む。
【0150】
手術システム1000にはさらに、第2の光サブシステム1002につなげられた制御系100が含まれ、この制御系は、眼組織ターゲットボリュームの遠位範囲に相当する1回目の深さで組織を光切断するのに合わせて、レーザービーム701の集束および走査を制御するように構成されている。このために、制御系100は、1回目の深さである組織内スポットにフェムト秒レーザー源200からの光を集束させ、それにより、その組織を光切断するのに十分である光エネルギーをその組織に印加するように構成されている。制御系100は、1回目の治療面を画定する複数方向にレーザーを走査することによって、眼組織ターゲットボリュームの1回目の組織層を光切断するようにさらに構成されることによって、光エネルギーの印加中にレーザービーム701の集束および走査を制御する。
【0151】
制御系100は、眼組織ターゲットボリュームの遠位範囲と眼組織ターゲットボリュームの近位範囲との間の1つまたは複数の2回目以降の深さで組織を光切断するのに合わせて、レーザーの伝播方向と反対方向にレーザーの焦点を移すことによって、レーザービーム701の集束および走査を制御するようにも構成されている。そのために、制御系100は、2回目以降の深さである組織内スポットにフェムト秒レーザー源200からの光を集束させ、それによって、組織を光切断するのに十分である光エネルギーをその組織に印加するように構成されている。制御系100は、2回目以降の治療面を画定する複数方向にレーザーを走査することにより、眼組織ターゲットボリュームの2回目以降の組織層を光切断するようにさらに構成されることによって、光エネルギーの印加中にレーサービーム701の集束および走査を制御する。
【0152】
制御系100は、眼組織ターゲットボリュームを光切断した後、眼組織ターゲットボリュームの近位範囲とターゲットボリュームの遠位範囲との間の組織残骸または組織気泡を、レーザーの伝播方向にレーザーの焦点を移すことによって光切断するのに合わせて、レーザービーム701の集束および走査を制御するようにも構成されている。制御系100はさらに、1回の組織光切断および2回目以降の組織光切断を1回または複数回繰り返すのに合わせて、レーザービーム701の集束および走査を制御するように構成されている。
【0153】
図18は、前眼房、シュレム管、およびそれらの間の線維柱帯を含む目を治療する方法のフローチャートである。図7~10bの統合手術システム1000によって行われ得る方法は、虹彩角膜角へのアクセスが既に得られ、治療されることになっている目の1つまたは複数の解剖学的構造が位置特定されている、という手術手順の時点で始まる。
【0154】
ブロック1802では、また図15aおよび15bを参照すると、統合手術システム1000は、最初に、シュレム管18の内壁18aと線維柱帯12との境界面にあるかまたは境界面近くの眼組織を光切断する。そのために、統合手術システム1000は、シュレム管18の内壁18aと線維柱帯12との境界面であるかまたは境界面近くである眼組織内スポットにフェムト秒レーザー701からの光を集束させ、その組織を光切断するのに十分なレベルである光エネルギーをその組織に印加する。
【0155】
ブロック1802の1回目の光切断プロセスのさらなる態様として、統合手術システム1000は、シュレム管18の内壁18aと線維柱帯12との境界面にあるかまたは境界面近くの眼組織を見付けることがあり得る。このために、ある構成では、分かっている手法を使用して、シュレム管18の内壁18aと線維柱帯12との境界面を見付けるように、OCTイメージング装置300によって取り込まれた画像が制御系100によって処理される。別の構成では、統合手術システム1000には、シュレム管18の内壁18aと線維柱帯12との境界面に対するレーザー701の焦点の位置を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらす多光子イメージング装置(図示せず)が含まれ得る。統合手術システム1000は、OCTイメージングに基づき光切断される眼組織の側方範囲66を確認することもできる。
【0156】
ブロック1804では、また図15c~15fを参照すると、統合手術システム1000は、続いて、線維柱帯12の眼組織を光切断する。このために、統合手術システム1000は、線維柱帯12の組織内スポットにフェムト秒レーザー701からの光を集束させ、その組織を光切断するのに十分なレベルである光エネルギーを組織に印加する。
【0157】
ブロック1804の2回目以降の光切断プロセスのさらなる態様として、統合手術システム1000が、線維柱帯の近位組織範囲を見付けることがあり得る。このために、ある構成において、分かっている手法を使用して、線維柱帯の近位組織範囲64を見付けるように、OCTイメージング装置300によって取り込まれた画像が制御系100によって処理される。別の構成では、統合手術システム1000には、線維柱帯の近位組織範囲64に対するレーザー701の焦点の位置を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらす多光子イメージング装置(図示せず)が含まれ得る。また別の構成において、統合手術システム1000は、線維柱帯の近位組織範囲64に対するレーザー701の焦点の場所を示している視覚表示をユーザインターフェース110のディスプレイ上にもたらす、オプト-メカニカルイメージング装置(図示せず)が含まれ得る。
【0158】
ブロック1806において、統合手術システム1000が、前眼房とシュレム管との間に開口が形成されたかどうか判断する。開口が形成されていなければ、プロセスは、ブロック1802に戻り、手術システム1000は、1回目の眼組織光切断を繰り返し、その後ブロック1800に進み、前眼房とシュレム管との間に開口が形成されるまで、2回目以降の眼組織光切断を1回または複数回繰り返す。開口が形成されていれば、プロセスは、プロック1808に進み、そこで治療が終わる。
【0159】
図7~10bを参照すると、図18の方法を実施するシステム1000には、目1に合わせられるように構成された集束対物レンズ700を含む第1の光サブシステム1001と、レーザービーム201/701を出力するように構成されたレーザー源200を含む第2の光サブシステム1002と、が含まれる。第2の光サブシステム1002は、集束対物レンズを通して、眼組織に、レーザービームを集束させること、レーザービームを走査すること、およびレーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素1003も含む。
【0160】
手術システム1000にはさらに、第2の光サブシステム1002につなげられ、またレーザービーム701の集束および走査を、最初に、シュレム管の内壁と線維柱帯との境界面にあるかまたは境界面近くの眼組織を光切断するに合わせて制御するように構成された制御系100が含まれる。このために、制御装置100は、シュレム管の内壁と線維柱帯との境界面であるかまたは境界面近くの眼組織内スポットにフェムト秒レーザー源200からの光を集束させ、それにより、そのエネルギーが組織を光切断するのに十分である、光をその組織に印加するように構成されている。
【0161】
制御系100は、続いて、線維柱帯の組織を光切断するのに合わせて、レーザービーム701の集束および走査を制御するようにも構成されている。このために、制御系100は、線維柱帯の組織内スポットにフェムト秒レーザーから光を集束させ、それにより、組織を光切断するのに十分である光エネルギーをその組織に印加するように構成されている。制御系100はさらに、前眼房とシュレム管との間に開口が形成されるまで、1回目の眼組織光切断および2回目以降の眼組織光切断を1回または複数回繰り返すのに合わせて、レーザービーム701の集束および走査を制御するように構成されている。
【0162】
本開示の様々な態様は、当業者が本発明を実施できるようにするために提供される。本開示全体を通して提示される例示的実施形態に対する様々な修正が、当業者には明白となるであろう。したがって、特許請求の範囲は本開示の様々な態様に限定されるものではなく、特許請求の範囲の文言と合致する全範囲に一致するものとする。当業者に知られているかまたは後に知られることになる、本開示全体を通して記載される例示的実施形態の様々な構成要素に対する全ての構造的および機能的等価物は、参照によって本明細書に明確に組み込まれ、特許請求の範囲に包含されるものとする。さらに、本明細書に開示される内容はいずれも、かかる開示が特許請求の範囲に明示的に列挙されているか否かにかかわらず、公衆に捧げられることを意図しない。クレーム要素はいずれも、「~のための手段」という語句を使用して明確に列挙されていない限り、または方法クレームの場合、要素が「~のための工程」という語句を使用して列挙されていない限り、米国特許法第112条第6項の規定に基づいて解釈されるべきものではない。
【0163】
本明細書に記載される本発明の実施形態は、本発明の原理の適用についての単なる例証であることが理解されるべきである。例証される実施形態の詳細に対する本明細書での言及は、本発明に必須のものと見なされる特徴を列挙する、特許請求の範囲を限定しようとするものではない。
図1
図2
図3
図4
図5
図6
図7
図8
図9a
図9b
図9c
図10a
図10b
図10c
図11
図12
図13
図14a
図14b
図15a
図15b
図15c
図15d
図15e
図15f
図15g
図16a
図16b
図17
図18
【手続補正書】
【提出日】2022-07-27
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
遠位範囲、近位範囲、および側方範囲によって特徴付けられた目の虹彩角膜角の眼組織ターゲットボリュームをレーザーにより治療するシステムであって、
前記目に合わせられるように構成された集束対物レンズを含む第1の光サブシステムと、
レーザービームを出力するように構成されたレーザー源と、前記集束対物レンズを通して、前記眼組織ターゲットボリュームに向かう伝播方向に、前記レーザーを集束させること、前記レーザーを走査すること、および前記レーザーを向けることのうちの1つまたは複数を行うように構成された複数の構成要素と、を含む第2の光サブシステムであって、前記集束対物レンズが前記レーザービームを前記目の前記虹彩角膜角内に向けるように構成されている、第2の光サブシステムと、
前記第2の光サブシステムにつなげられた制御系であって
最初に、前記眼組織ターゲットボリュームの前記遠位範囲に相当する1回目の深さで組織を光切断し、
続いて、前記眼組織ターゲットボリュームの前記遠位範囲と前記眼組織ターゲットボリュームの前記近位範囲との間の1つもしくは複数の2回目以降の深さで組織を、前記レーザーの前記伝播方向と反対方向に前記レーザーの焦点を移すことによって、光切断する
ように前記レーザーの前記集束および走査を制御するように構成された制御系と、を備える、システム。
【請求項2】
前記制御系が、前記眼組織ターゲットボリュームの前記近位範囲にある組織が光切断されるまで、複数の異なる2回目以降の深さで前記光切断を繰り返すように、前記レーザーの前記集束および走査を制御するように構成されている、請求項に記載のシステム。
【請求項3】
前記制御系が、前記眼組織ターゲットボリュームを光切断した後、前記眼組織ターゲットボリュームの前記近位範囲と前記眼組織ターゲットボリュームの前記遠位範囲との間の組織残骸または組織気泡を光切断するように、前記レーザービームの前記伝播方向に前記レーザービームの前記焦点を移すことによって、前記レーザーの前記集束および走査を制御するようにさらに構成されている、請求項に記載のシステム。
【請求項4】
前記制御系が、
前記組織における前記1回目の深さまたは前記1つもしくは複数の2回目以降の深さであるスポットにフェムト秒レーザーからの光を集束させ、
光エネルギーを前記組織に印加する
ようにさらに構成されることによって、1回目の組織光切断または2回目以降の組織光切断中に前記レーザーの前記集束および走査を制御する、請求項に記載のシステム。
【請求項5】
前記制御系が、
治療面を画定する複数方向に前記レーザーの前記焦点を走査することによって、前記眼組織ターゲットボリュームの1回目の組織層または前記眼組織ターゲットボリュームの1つもしくは複数の2回目以降の組織層を光切断する
ようにさらに構成されることによって、光エネルギーの印加中に前記レーザーの前記集束および走査を制御する、請求項に記載のシステム。
【請求項6】
前記制御系が、前記1回目の組織光切断および前記2回目以降の組織光切断を1回または複数回繰り返すように、前記レーザーの前記集束および走査を制御するようにさらに構成されている、請求項に記載のシステム。
【請求項7】
眼組織画像を取り込むように構成されたイメージング装置をさらに備え、前記制御系が、前記イメージング装置につなげられ、
前記眼組織ターゲットボリュームの前記遠位範囲を見付けること、
前記眼組織ターゲットボリュームの前記近位範囲を見付けること、および
前記眼組織ターゲットボリュームの前記側方範囲を確認すること、
のうちの1つまたは複数を行うように構成されている、請求項に記載のシステム。
【請求項8】
前記イメージング装置は、光イメージング装置、多光子イメージング装置、およびオプト-メカニカルイメージング装置のうちの少なくとも1つを含む、請求項に記載のシステム。
【請求項9】
前眼房、シュレム管、およびそれらの間の線維柱帯を含む目を治療するシステムであって、
前記目に合わせられるように構成された集束対物レンズを含む第1の光サブシステムと、
レーザービームを出力するように構成されたレーザー源と、前記集束対物レンズを通して、眼組織に、前記レーザービームを集束させること、前記レーザービームを走査すること、および前記レーザービームを向けることのうちの1つまたは複数を行うように構成された複数の構成要素と、を含む第2の光サブシステムと、
前記第2の光サブシステムにつなげられた制御系であって
最初に、前記シュレム管の内壁と前記線維柱帯との境界面にあるかまたは境界面近くの眼組織を光切断し、
続いて、前記線維柱帯の眼組織を光切断する
ように前記レーザービームの前記集束および前記走査を制御するように構成された制御系と、を備える、システム。
【請求項10】
前記制御系が、
前記シュレム管の前記内壁と前記線維柱帯との前記境界面であるかまたは前記境界面近くである組織内スポットにフェムト秒レーザーからの光を集束させ、
光エネルギーを前記組織に印加する
ようにさらに構成されることによって、眼組織の1回目の光切断中に、前記レーザービームの前記集束および走査を制御する、請求項に記載のシステム。
【請求項11】
前記制御系が、
前記線維柱帯の組織内スポットにフェムト秒レーザーからの光を集束させ、
前記組織に光エネルギーを印加する
ようにさらに構成されることによって、2回目以降の眼組織光切断中に、前記レーザービームの前記集束および走査を制御する、請求項に記載のシステム。
【請求項12】
前記制御系が、前記前眼房と前記シュレム管との間に開口が形成されるまで、1回目の眼組織光切断および2回目以降の眼組織光切断を1回または複数回繰り返すように、前記レーザービームの前記集束および走査を制御するようにさらに構成されている、請求項に記載のシステム。
【請求項13】
眼組織画像を取り込むように構成されたイメージング装置をさらに備え、前記制御系が、前記イメージング装置につなげられ、
前記シュレム管の前記内壁と前記線維柱帯との前記境界面にあるかまたは前記境界面近くの眼組織を見付けること、
前記線維柱帯の近位組織範囲を見付けること、および
光切断される対象である側方眼組織範囲を確認すること、のうちの1つまたは複数を行うように構成されている、請求項に記載のシステム。
【請求項14】
前記イメージング装置は、光イメージング装置、多光子イメージング装置、およびオプト-メカニカルイメージング装置のうちの少なくとも1つを含む、請求項13に記載のシステム。
【国際調査報告】