IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クアンタム サージカルの特許一覧

特表2023-501053医療ロボットを位置決めするためのナビゲーション方法
<>
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図1
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図2
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図3
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図4
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図5
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図6
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図7
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図8
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図9a
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図9b
  • 特表-医療ロボットを位置決めするためのナビゲーション方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-18
(54)【発明の名称】医療ロボットを位置決めするためのナビゲーション方法
(51)【国際特許分類】
   A61B 34/20 20160101AFI20230111BHJP
   A61B 34/30 20160101ALI20230111BHJP
【FI】
A61B34/20
A61B34/30
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022519595
(86)(22)【出願日】2020-11-17
(85)【翻訳文提出日】2022-05-25
(86)【国際出願番号】 FR2020052100
(87)【国際公開番号】W WO2021099729
(87)【国際公開日】2021-05-27
(31)【優先権主張番号】1912907
(32)【優先日】2019-11-19
(33)【優先権主張国・地域又は機関】FR
(81)【指定国・地域】
(71)【出願人】
【識別番号】520148884
【氏名又は名称】クアンタム サージカル
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ナホム,ベルタン
(72)【発明者】
【氏名】バダノ,フェルナンド
(72)【発明者】
【氏名】ブロンデル,リュシアン
(57)【要約】
本発明は、患者の対象の解剖構造の位置を判定するための光学ナビゲーションシステム(100)に関する。システムは、少なくとも2つの光学センサ(41)を有する位置特定装置(40)と、少なくとも3つの光学マーカ(26)を有する患者基準(21)とを含む。システムは、反射装置(30)も含む。患者基準と光学センサとの間の視準線が障害物(60)によって交差される場合、光学センサは、患者基準のそれぞれの光学マーカについて、前記光学マーカに由来し、及び反射装置によってそれぞれの光学センサに反射される経路を有する光学放射から、位置特定装置の基準フレーム内における前記光学マーカの位置を表す量を計測するように構成される。
【特許請求の範囲】
【請求項1】
患者(20)の対象の解剖構造の位置を判定するための光学ナビゲーションシステム(100)であって、
- 少なくとも2つの光学センサ(41)を有する位置特定装置(40)、
- 制御ユニット(43)、
- 少なくとも3つの光学マーカ(26)を有する患者基準(21)であって、相互に対する前記光学マーカ(26)のそれぞれの位置は、前記制御ユニット(43)によって先験的に知られており、前記患者基準は、前記患者(20)上で前記対象の解剖構造に位置決めされることを意図される、患者基準(21)
を含む光学ナビゲーションシステム(100)において、
- 反射装置(30)であって、前記位置特定装置(40)の基準フレーム内におけるその位置は、前記制御ユニット(43)によって判定され得る、反射装置(30)を更に有し、
- 前記患者基準(21)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である場合、前記光学センサ(41)は、前記患者基準(21)のそれぞれの光学マーカ(26)について、前記光学マーカ(26)から到来し、及びそれぞれの光学センサ(41)について、前記光学マーカ(26)と前記光学センサ(41)との間の直接的経路(22)を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(26)の位置を表すパラメータを計測するように構成され、
- 前記患者基準(21)と光学センサ(41)との間の直接的視準線が障害物(60)によって遮られる場合、前記光学センサ(41)は、前記患者基準(21)のそれぞれの光学マーカ(26)について、前記光学マーカ(26)から到来し、及びそれぞれの光学センサ(41)に向かって前記反射装置(30)によって反射される経路(23)を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(26)の前記位置を表すパラメータを計測するように構成され、
- 前記制御ユニット(43)は、前記光学センサ(41)によって実行された前記計測から、前記位置特定装置(40)の前記基準フレーム内における前記患者基準(21)の位置を判定し、及びそれから前記基準フレーム内における前記対象の解剖構造の位置を推定するように構成されることを特徴とする光学ナビゲーションシステム(100)。
【請求項2】
前記反射装置(30)は、少なくとも3つの光学マーカ(36)を有し、相互に対する前記光学マーカ(36)の前記それぞれの位置は、前記制御ユニット(43)によって先験的に知られている、請求項1に記載の光学ナビゲーションシステム(100)。
【請求項3】
前記制御ユニット(43)は、
- 前記患者基準(21)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である期間中、前記患者(20)の呼吸サイクル中に前記位置特定装置(40)の前記基準フレーム内で前記患者基準(21)によって辿られる移動(24)を推定すること、
- 前記患者基準(21)と光学センサ(41)との間の直接的視準線がもはや利用可能でない時点において、一方では前記患者基準(21)の前記光学マーカ(26)から到来し、及び前記反射装置(30)によって反射された前記光学放射に基づいて前記光学センサ(41)によって実行された前記計測の関数として、及び他方では前記患者基準(21)の前記推定された移動(24)の関数として前記患者基準(21)の前記位置を判定すること
を行うように構成される、請求項1又は2に記載の光学ナビゲーションシステム(100)。
【請求項4】
前記患者基準(21)は、少なくとも3つの放射線不透過性マーカ(27)を更に有し、相互に対する前記放射線不透過性マーカ(27)のそれぞれの位置は、前記制御ユニット(43)によって先験的に知られている、請求項1~3のいずれか一項に記載の光学ナビゲーションシステム(100)。
【請求項5】
前記位置特定装置(40)の前記基準フレーム内における前記対象の解剖構造の前記位置は、前記基準フレーム内における前記患者基準(21)の前記位置の関数として、及び前記患者基準(21)の前記放射線不透過性マーカ(27)が可視である、前記患者の前記対象の解剖構造の医療画像の関数として判定される、請求項4に記載の光学ナビゲーションシステム(100)。
【請求項6】
前記位置特定装置(40)の前記基準フレーム内における前記対象の解剖構造の前記位置は、前記対象の解剖構造の生体力学的モデルの関数として更に判定される、請求項5に記載の光学ナビゲーションシステム(100)。
【請求項7】
対において直交する3つの反射装置(30)を有する、請求項1~6のいずれか一項に記載の光学ナビゲーションシステム(100)。
【請求項8】
医療ロボット(10)の関節接続されたアーム(13)の遠位端に位置決めされることを意図されたロボット基準(11)を更に有し、前記ロボット基準(11)は、少なくとも3つの光学マーカを有し、相互に対する前記光学マーカ(16)のそれぞれの位置は、前記制御ユニット(43)によって先験的に知られており、
- 前記ロボット基準(11)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である場合、前記光学センサ(41)は、前記ロボット基準(11)のそれぞれの光学マーカ(16)について、前記光学マーカ(16)から到来し、及びそれぞれの光学センサについて、前記光学マーカと前記光学センサ(41)との間の直接的経路を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(16)の位置を表すパラメータを計測するように構成され、
- 前記ロボット基準(11)と光学センサ(41)との間の直接的視準線が障害物によって遮られる場合、前記光学センサ(41)は、前記ロボット基準(11)のそれぞれの光学マーカ(16)について、前記光学マーカ(16)から到来し、及びそれぞれの光学センサ(41)に向かって前記反射装置(30)によって反射される経路を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(16)の前記位置を表すパラメータを計測するように構成され、
- 前記制御ユニット(43)は、前記光学センサ(41)によってこのように実行された前記計測に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記ロボット基準(11)の位置を判定するように構成される、請求項1~7のいずれか一項に記載の光学ナビゲーションシステム(100)。
【請求項9】
関節接続されたアーム(13)を有する医療ロボット(10)を更に有し、前記ロボット基準(11)は、前記関節接続されたアーム(13)の遠位端に位置決めされ、前記医療ロボット(10)は、前記医療ロボット(10)の基準フレーム内における前記ロボット基準(11)の位置を任意の時点で判定することを可能にする、前記関節接続されたアーム(13)の関節接続エンコーダを更に有し、前記医療ロボット(10)は、前記医療ロボット(10)の前記基準フレーム内における前記ロボット基準(11)の前記位置を前記制御ユニット(43)に送信するように構成され、及び前記制御ユニット(43)は、それから、前記患者(20)の前記対象の解剖構造に対する、前記医療ロボット(10)の前記関節接続されたアーム(13)の前記遠位端に装着された医療器具の位置を推定するように構成される、請求項8に記載の光学ナビゲーションシステム(100)。
【請求項10】
前記患者基準(21)及び/又は前記ロボット基準(11)の前記光学マーカ(26、16)は、能動型マーカであり、及び光学マーカ(26、16)から到来する前記光学放射は、前記光学マーカ(26、16)によって生成される赤外放射である、請求項8又は9に記載の光学ナビゲーションシステム(100)。
【請求項11】
前記患者基準(21)及び/又は前記ロボット基準(11)の前記光学マーカ(26、16)は、受動型マーカであり、及び光学マーカ(26、16)から到来する前記光学放射は、前記位置特定装置(40)によって生成され、及び前記光学マーカ(26、16)によって反射される赤外放射である、請求項8又は9に記載の光学ナビゲーションシステム(100)。
【請求項12】
患者(20)の対象の解剖構造の位置を判定する方法(200)であって、
- 少なくとも2つの光学センサ(41)を有する位置特定装置(40)、
- 少なくとも3つの光学マーカ(26)を有する患者基準(21)であって、相互に対する前記光学マーカ(26)のそれぞれの位置は、先験的に知られており、前記患者基準(21)は、前記患者(20)上で前記対象の解剖構造に位置決めされることを意図される、患者基準(21)
を含む光学ナビゲーションシステム(100)によって実装される、方法(200)において、前記光学ナビゲーションシステム(100)は、反射装置(30)であって、前記位置特定装置(40)の基準フレーム内におけるその位置は、知られている、反射装置(30)を更に有し、及び前記方法(200)は、
- 前記患者基準(21)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である場合、前記患者基準(21)のそれぞれの光学マーカ(26)について、前記光学マーカ(26)から到来し、及びそれぞれの光学センサ(41)について、前記光学マーカ(26)と前記光学センサ(41)との間の直接的経路(22)を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(26)の位置を表すパラメータを計測するステップ(201)、
- 前記患者基準(21)と光学センサ(41)との間の直接的視準線が障害物(60)によって遮られる場合、前記患者基準(20)のそれぞれの光学マーカ(26)について、前記光学マーカ(26)から到来し、及びそれぞれの光学センサ(41)に向かって前記反射装置(30)によって反射される経路(23)を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(26)の前記位置を表すパラメータを計測するステップ(202)、
- 前記光学センサ(41)によってこのように実行された前記計測に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記患者基準(21)の位置を判定するステップ(203)、
- 前記位置特定装置(40)の前記基準フレーム内において、前記患者基準(21)の前記位置に基づいて前記対象の解剖構造の位置を判定するステップ(204)
を含むことを特徴とする方法。
【請求項13】
- 前記患者基準(21)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である期間中、前記患者(20)の呼吸サイクル中に前記位置特定装置(40)の前記基準フレーム内で前記患者基準(21)によって辿られる移動(24)を推定するステップ(205)、
- 前記患者基準(21)と光学センサ(41)との間の直接的視準線がもはや利用可能でない時点において、一方では前記患者基準(21)の前記光学マーカ(26)から到来し、及び前記反射装置(30)によって反射された前記光学放射に基づいて前記光学センサ(41)によって実行された前記計測の関数として、及び他方では前記患者基準(21)の前記推定された移動(24)の関数として前記患者基準(21)の前記位置を判定するステップ(203)
を更に有する、請求項12に記載の方法(200)。
【請求項14】
前記位置特定装置(40)の前記基準フレーム内における前記対象の解剖構造の前記位置の前記判定(204)は、前記患者基準(21)の放射線不透過性マーカ(27)が可視である、前記患者(20)の前記対象の解剖構造の医療画像に基づいて更に実施される、請求項13に記載の方法(200)。
【請求項15】
前記位置特定装置(40)の前記基準フレーム内における前記対象の解剖構造の前記位置の前記判定(204)は、前記対象の解剖構造の生体力学的モデルに基づいて更に実施される、請求項14に記載の方法(200)。
【請求項16】
前記光学ナビゲーションシステム(100)は、医療ロボット(10)の関節接続されたアーム(13)の遠位端に位置決めされることを意図されたロボット基準(11)を更に有し、前記ロボット基準(11)は、少なくとも3つの光学マーカ(16)を有し、相互に対する前記光学マーカ(16)のそれぞれの位置は、先験的に知られており、前記方法(200)は、
- 前記ロボット基準(11)とそれぞれの光学センサ(41)との間の直接的視準線が利用可能である場合、前記ロボット基準(11)のそれぞれの光学マーカについて、前記光学マーカ(16)から到来し、及びそれぞれの光学センサ(41)について、前記光学マーカ(16)と前記光学センサ(41)との間の直接的経路を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(16)の位置を表すパラメータを計測するステップ、
- 前記ロボット基準(11)と光学センサ(41)との間の直接的視準線が障害物によって遮られる場合、前記ロボット基準(11)のそれぞれの光学マーカ(16)について、前記光学マーカ(16)から到来し、及びそれぞれの光学センサ(41)に向かって前記反射装置(30)によって反射される経路を有する光学放射に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記光学マーカ(16)の前記位置を表すパラメータを計測するステップ、
- 前記光学センサ(41)によってこのように実行された前記計測に基づいて、前記位置特定装置(40)の前記基準フレーム内における前記ロボット基準(11)の位置を判定するステップ
を更に有する、請求項12~15のいずれか一項に記載の方法(200)。
【請求項17】
前記光学ナビゲーションシステム(100)は、関節接続されたアーム(13)を有する医療ロボット(10)を更に有し、前記ロボット基準(11)は、前記関節接続されたアーム(13)の遠位端に位置決めされ、前記医療ロボット(10)は、前記医療ロボット(10)の基準フレーム内における前記ロボット基準(11)の位置を任意の時点で判定することを可能にする、前記関節接続されたアーム(13)の関節接続エンコーダを更に有し、前記方法(200)は、前記患者(20)の前記対象の解剖構造に対する、前記医療ロボット(10)の前記関節接続されたアーム(13)の前記遠位端に装着された医療器具の位置を判定するステップを更に有する、請求項16に記載の方法(200)。
【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
本発明は、医療ロボットによって支援される、最小限に侵襲的及び非侵襲的な医療介入の分野に属する。本発明は、特に、医療ロボットの関節接続されたアームの一端に装着された医療器具を最適に位置決めするために、患者の対象の解剖構造の位置を判定するための光学ナビゲーションシステムに関する。特に、本発明は、障害物が、対象の解剖構造に位置する光学マーカとナビゲーションシステムの光学センサとの間の直接的視準線の取得を妨げる場合でも対象の解剖構造の位置を判定することを可能にする。本発明は、患者の対象の解剖構造の位置を判定する方法にも関する。
【背景技術】
【0002】
従来技術
最小限に侵襲的であるか又は非侵襲的な医療介入などの多くの医療介入は、患者の対象の解剖構造(例えば、肝臓、肺、腎臓、脊椎など)に対する医療器具(例えば、針、カテーテル、電極、超音波生成器、ドリルビットなど)の非常に正確な位置決め又は移動を必要とする。このタイプの医療介入を実行する専門家は、医療ロボットによって支援され得る。この場合、医療ロボットは、ナビゲーションシステムにより、患者の対象の解剖構造に対して医療器具を位置決め、維持及び/又はガイドする。医療器具は、例えば、医療ロボットの関節接続されたアームの一端に装着される。ナビゲーションシステムは、医療器具の位置及び対象の解剖構造の位置を判定することを可能にする。従って、相互に対する医療器具及び対象の解剖構造のそれぞれの位置に関する情報は、医療器具が対象の解剖構造に対して最適に位置決めされるように医療ロボットがその関節接続されたアームを構成することを可能にする。
【0003】
異なるタイプのナビゲーションシステムが存在する。電磁ナビゲーションシステムは、(医療ロボットのモーターなどの)金属性材料の存在下で電磁界の干渉及び歪の影響を受けやすいという欠点を有する。この意味では、光学ナビゲーションシステムは、対象の解剖構造に位置決めされたマーカと、ナビゲーションシステムの光学センサとの間の視準線が障害物によって遮られる場合、もはや機能しないという欠点を有する(これには、例えば、専門家が前記マーカと前記光学センサとの間に来る場合に該当する)。
【0004】
一般に、直接的視準線が利用可能である好ましい時点で対象の解剖構造の位置を判定することは、十分ではなく、なぜなら、例えば、患者の呼吸移動又は専門家による解剖構造の変位により、患者の対象の解剖構造が動いていることがあり得るからである。従って、対象の解剖構造に位置決めされたマーカと、ナビゲーションシステムの光学センサとの間の視準線が障害物によって遮られる期間中でも、ナビゲーションシステムの支援により、時間の経過に伴って対象の解剖構造の位置を追跡可能であることが必要である。
【0005】
従来技術のいくつかの解決策は、視準線が障害物によって遮られるリスクを低減するために、使用されるマーカ及び光学センサの位置決めを最適化することを含む。これらの解決策は、一般に、複雑であり、及び視準線が障害物によって遮られる場合の光学ナビゲーションシステムの動作の保証を常に可能にするわけではない。
【0006】
欧州特許出願公開第3501443A1号は、具体的には、障害物が直接的視準線の取得を妨害するとき、患者の対象の解剖構造に狙いを定めるのに適した位置にカメラを移動させるために、無影灯に統合された回転コンポーネントを含むシステムを開示している。
【0007】
従来技術のいくつかの解決策は、光学ナビゲーションシステムを、視準線が障害物によって遮られる場合のナビゲーションシステムの動作の保証を可能にする別の相補型のナビゲーションシステム(例えば、電磁ナビゲーションシステム)と組み合わせることを追及している。しかし、これらの解決策は、複雑及び高価なシステムを結果的にもたらし、その精度は、金属性物体の存在の影響を受ける場合がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
発明の開示
本発明の目的は、従来技術、具体的には上述のものの欠点のすべて又はいくつかを克服することである。
【課題を解決するための手段】
【0009】
この目的のために及び第1の態様によれば、本発明は、患者の対象の解剖構造の位置を判定するための光学ナビゲーションシステムを提供する。システムは、具体的には、患者上で対象の解剖構造に位置決めされることを意図された患者基準と、位置特定装置と、制御ユニットとを含む。位置特定装置は、少なくとも2つの光学センサを含む。患者基準は、少なくとも3つの光学マーカを有する。相互に対する患者基準の光学マーカのそれぞれの位置は、制御ユニットによって先験的に知られている。光学ナビゲーションシステムは、反射装置であって、位置特定装置の基準フレーム内におけるその位置は、制御ユニットによって判定され得る、反射装置を更に有する。患者基準とそれぞれの光学センサとの間の直接的視準線が利用可能である場合、光学センサは、患者基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサについて、前記光学マーカと前記光学センサとの間の直接的経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するように構成される。患者基準と光学センサとの間の直接的視準線が障害物によって遮られる場合、光学センサは、患者基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサに向かって反射装置によって反射される経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するように構成される。制御ユニットは、光学センサによって実行された計測から、位置特定装置の基準フレーム内における患者基準の位置を判定し、及びそれから前記基準フレーム内における対象の解剖構造の位置を推定するように構成される。
【0010】
本出願では、「光学放射」は、100nm(100ナノメートル)~1mm(1ミリメートル)の波長範囲内の電磁放射を意味することが理解される。従って、赤外放射、可視光放射及び紫外放射は、光学放射である。「光線」という用語は、ときに、光学放射が辿る特定の経路を定義するために使用される。
【0011】
本出願では、「位置」という用語は、空間的な基準フレームの3つの次元における位置及び向きを表す。
【0012】
「反射装置の位置は、制御ユニットによって判定され得る」という表現は、反射装置の位置が制御ユニットによって先験的に知られている(例えば、反射装置の位置が制御ユニットのメモリ内に保存されている)か、又はさもなければそれが(例えば、反射装置上に構成された光学マーカの支援によって)制御ユニットによって判定され得ることを意味する。
【0013】
このような構成によれば、本発明による光学ナビゲーションシステムは、視準線が障害物(例えば、対象の解剖構造に対して医療介入を実行しなければならない専門家又は前記専門家を支援する医療ロボット)によって遮られる場合でも患者の対象の解剖構造の位置を判定することができる。
【0014】
特定の実施形態では、本発明は、単独で又は技術的に可能な組合せのすべてで取られる以下の特徴の1つ又は複数を更に含み得る。
【0015】
特定の実施形態では、反射装置は、少なくとも3つの光学マーカを有する。相互に対する反射装置の光学マーカのそれぞれの位置は、制御ユニットによって先験的に知られている。
【0016】
特定の実施形態では、患者基準とそれぞれの光学センサとの間の直接的視準線が利用可能である期間中、制御ユニットは、患者の呼吸サイクル中に位置特定装置の基準フレーム内で患者基準によって辿られる移動を推定するように構成される。従って、患者基準と光学センサとの間の直接的視準線がもはや利用可能でない時点において、制御ユニットは、一方では患者基準の光学マーカから到来し、及び反射装置によって反射された光学放射に基づいて光学センサによって実行された計測の関数として、及び他方では患者基準の推定された移動の関数として患者基準の位置を判定するように構成される。
【0017】
特定の実施形態では、患者基準は、少なくとも3つの放射線不透過性マーカを更に有する。相互に対する放射線不透過性マーカのそれぞれの位置は、制御ユニットによって先験的に知られている。
【0018】
特定の実施形態では、位置特定装置の基準フレーム内における対象の解剖構造の位置は、前記基準フレーム内における患者基準の位置の関数として、及び患者基準の放射線不透過性マーカが可視である、患者の対象の解剖構造の医療画像の関数として判定される。
【0019】
特定の実施形態では、位置特定装置の基準フレーム内における対象の解剖構造の位置は、対象の解剖構造の生体力学的モデルの関数として更に判定される。
【0020】
特定の実施形態では、光学ナビゲーションシステムは、対における3つの直交する反射装置を有する。
【0021】
特定の実施形態では、光学ナビゲーションシステムは、医療ロボットの関節接続されたアームの遠位端に位置決めされることを意図されたロボット基準を更に有する。ロボット基準は、少なくとも3つの光学マーカを有する。相互に対する光学マーカのそれぞれの位置は、制御ユニットによって先験的に知られている。ロボット基準とそれぞれの光学センサとの間の直接的視準線が利用可能である場合、位置特定装置の光学センサは、ロボット基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサについて、前記光学マーカと前記光学センサとの間の直接的経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するように構成される。ロボット基準と光学センサとの間の直接的視準線が障害物によって遮られる場合、光学センサは、ロボット基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサに向かって反射装置によって反射される経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するように構成される。制御ユニットは、光学センサによってこのように実行された計測から、位置特定装置の基準フレーム内におけるロボット基準の位置を判定するように構成される。
【0022】
特定の実施形態では、光学ナビゲーションシステムは、関節接続されたアームを含む医療ロボットを更に有する。ロボット基準は、関節接続されたアームの遠位端に位置決めされる。医療ロボットは、医療ロボットの基準フレーム内におけるロボット基準の位置を任意の時点で判定することを可能にする、関節接続されたアームの関節接続エンコーダを更に有する。医療ロボットは、ロボットの基準フレーム内におけるロボット基準の位置を制御ユニットに送信するように構成される。制御ユニットは、それから、患者の対象の解剖構造に対する、医療ロボットの関節接続されたアームの遠位端に装着された医療器具の位置を推定するように構成される。
【0023】
特定の実施形態では、患者基準及び/又はロボット基準の光学マーカは、能動型マーカであり、及び光学マーカから到来する光学放射は、前記光学マーカによって生成される赤外放射である。
【0024】
特定の実施形態では、患者基準及び/又はロボット基準の光学マーカは、受動型マーカであり、及び光学マーカから到来する光学放射は、位置特定装置によって生成され、及び前記光学マーカによって反射される赤外放射である。
【0025】
第2の態様によれば、本発明は、外科的介入時に患者の対象の解剖構造の位置を判定する方法に関する。方法は、患者上で対象の解剖構造に位置決めされることを意図された患者基準と、また位置特定装置とを含む光学ナビゲーションシステムによって実装される。相互に対する光学マーカのそれぞれの位置は、先験的に知られている。位置特定装置は、少なくとも2つの光学センサを有する。患者基準は、少なくとも3つの光学マーカを有する。光学ナビゲーションシステムは、反射装置であって、位置特定装置の基準フレーム内におけるその位置は、知られている、反射装置を更に有する。方法は、
- 患者基準とそれぞれの光学センサとの間の直接的視準線が利用可能である場合、患者基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサについて、前記光学マーカと前記光学センサとの間の直接的経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するステップ、
- 患者基準と光学センサとの間の直接的視準線が障害物によって遮られる場合、患者基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサに向かって反射装置によって反射される経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するステップ、
- 光学センサによってこのようにして実行された計測から、位置特定装置の基準フレーム内における患者基準の位置を判定するステップ、
- 位置特定装置の前記基準フレーム内において、患者基準の位置に基づいて対象の解剖構造の位置を判定するステップ
を有する。
【0026】
患者の対象の解剖構造の位置及び医療ロボットの関節接続されたアームの一端に装着された医療器具の位置決めは、専門家による医療的操作の実行前に発生することに留意されたい。従って、患者の対象の解剖構造の位置を判定する本発明による方法は、療法又は手術による治療のステップを含まない。
【0027】
特定の実施形態では、本発明は、単独で又はすべての技術的に可能な組合せで取られる以下の特徴の1つ又は複数を更に含み得る。
【0028】
特定の実施形態では、方法は、
- 患者基準とそれぞれの光学センサとの間の直接的視準線が利用可能である期間中、患者の呼吸サイクル中に位置特定装置の基準フレーム内で患者基準によって辿られる移動を推定するステップ、
- 患者基準と光学センサとの間の直接的視準線がもはや利用可能でない時点において、一方では患者基準の光学マーカから到来し、及び反射装置によって反射された光学放射に基づいて光学センサによって実行された計測の関数として、及び他方では患者基準の推定された移動の関数として患者基準の位置を判定するステップ
を更に有する。
【0029】
特定の実施形態では、位置特定装置の基準フレーム内における対象の解剖構造の位置の判定は、患者基準の放射線不透過性マーカが可視である、患者の対象の解剖構造の医療画像に基づいて更に実施される。
【0030】
特定の実施形態では、位置特定装置の基準フレーム内における対象の解剖構造の位置の判定は、対象の解剖構造の生体力学的モデルに基づいて更に実施される。
【0031】
特定の実施形態では、光学ナビゲーションシステムは、医療ロボットの関節接続されたアームの遠位端に位置決めされることを意図されたロボット基準を更に有する。ロボット基準は、少なくとも3つの光学マーカを有し、相互に対する光学マーカのそれぞれの位置は、先験的に知られている。方法は、
- ロボット基準とそれぞれの光学センサとの間の直接的視準線が利用可能である場合、ロボット基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサについて、前記光学マーカと前記光学センサとの間の直接的経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するステップ、
- ロボット基準と光学センサとの間の直接的視準線が障害物によって遮られる場合、ロボット基準のそれぞれの光学マーカについて、前記光学マーカから到来し、及びそれぞれの光学センサに向かって反射装置によって反射される経路を有する光学放射に基づいて、位置特定装置の基準フレーム内における前記光学マーカの位置を表すパラメータを計測するステップ、
- 光学センサによってこのようにして実行された計測に基づいて、位置特定装置の基準フレーム内におけるロボット基準の位置を判定するステップ
を更に有する。
【0032】
特定の実施形態では、光学ナビゲーションシステムは、医療ロボットを更に有する。医療ロボットは、関節接続されたアームを有し、その遠位端にロボット基準が位置決めされる。医療ロボットは、医療ロボットの基準フレーム内におけるロボット基準の位置を任意の時点で判定することを可能にする、関節接続されたアームの関節接続エンコーダも有する。従って、方法は、患者の対象の解剖構造に対する、医療ロボットの関節接続されたアームの遠位端に装着された医療器具の位置を判定するステップを含む。
【0033】
図の提示
本発明は、非限定的な例として付与され、及び図1~10を参照して行われる以下の説明を読むことでより良好に理解されるであろう。
【図面の簡単な説明】
【0034】
図1】直接的視準線が利用可能である場合の本発明による光学ナビゲーションシステムの概略図である。
図2】視準線が障害物によって遮られる場合の本発明による光学ナビゲーションシステムの概略図である。
図3】3つの光学マーカ及び3つの放射線不透過性マーカを有する患者基準の概略図である。
図4】3つの光学マーカを有するロボット基準の概略図である。
図5】4つの光学マーカを有する反射装置の概略図である。
図6】反射装置によって反射された光線に対して光学センサによって実行された計測の関数としての、視準線が障害物によって遮られる場合の患者基準の光学マーカの位置の判定の概略図である。
図7】患者内の対象の解剖構造の位置を判定する方法の主要なステップの概略図である。
図8】患者の呼吸サイクル中の患者基準の推定された移動の概略図である。
図9a】光学センサによって実行された計測の関数及び患者基準の推定された移動の関数としての、視準線が障害物によって遮られる場合の患者基準の光学マーカの位置の判定の概略図である。
図9b図9aの断面図である。
図10】患者内の対象の解剖構造の位置を判定する方法の特定の実施形態の主要なステップの概略図である。
【発明を実施するための形態】
【0035】
これらの図では、図間における同一の参照符号は、同一又は類似の要素を表記する。わかりやすさを理由として、図示の要素は、そうではない旨が示されない限り、必ずしも同一の縮尺を有するものではない。
【0036】
本発明の一実施形態の詳細な説明
図1は、本発明による光学ナビゲーションシステム100の一例を概略的に示す。
【0037】
図1に示される対象の例では、光学ナビゲーションシステム100は、主要な要素:位置特定装置40、制御ユニット43、患者20の対象の解剖構造に位置決めされることを意図された患者基準21及び反射装置30を有する。図1に示される例では、患者20は、手術室内でテーブル50上に横たわる。
【0038】
光学ナビゲーションシステム100の目的は、患者基準21の位置を、位置特定装置40の基準フレーム内における対象の解剖構造の位置をそれから推定するために判定することである。この目的のために、制御ユニット43は、位置特定装置40の基準フレーム内における患者基準の位置の判定を可能にする方法のステップのすべて又はいくつかを実装するように構成される。制御ユニット43は、例えば、1つ又は複数のプロセッサと、コンピュータプログラムプロダクトがこのような方法の異なるステップを実装するために実行されるプログラムコード命令の組の形態で保存されるメモリ(磁気ハードディスク、電子メモリ、光学ディスクなど)とを有する。代わりに又は加えて、制御ユニット43は、1つ若しくは複数のプログラム可能な論理回路(FPGA、PLDなど)、及び/又は1つ又は複数の専門的な集積回路(ASIC)、及び/又は方法ステップのすべて若しくはいくつかを実装するのに適した個別電子コンポーネントの組などを有する。
【0039】
図1に示されるように、光学ナビゲーションシステム100は、例えば、前記端部に装着された器具ホルダ14上において、医療ロボット10の関節接続されたアーム13の遠位端に位置決めされることを意図されたロボット基準11を含むこともできる。従って、制御ユニット43は、位置特定装置40の基準フレーム内におけるロボット基準の位置を判定するように構成することもできる。ロボット基準11の位置に対する、器具ホルダ14のレベルで装着された医療器具の位置が制御ユニット43によって知られている場合、制御ユニット43は、位置特定装置40の基準フレーム内における医療器具の位置を判定することができる。従って、相互に対する医療器具及び対象の解剖構造のそれぞれの位置は、医療器具が対象の解剖構造に対して最適に位置決めされるように、医療ロボット10がその関節接続されたアームを構成することを可能にし得る。
【0040】
制御ユニット43は、図1に示される例の場合と同様に、位置特定装置40内に統合することができる。また、制御ユニット43は、位置特定装置40とは別個のエンティティであり得るか、又はさもなければ医療ロボット10内に統合され得る。制御ユニット43が医療ロボット10内に統合されない場合、制御ユニット43は、医療器具が対象の解剖構造に対して最適に位置決めされるように、医療ロボット10がその関節接続されたアーム13を構成し得るように、対象の解剖構造の位置及び/又は医療器具の位置に関する情報を医療ロボット10に送信するように構成することができる。この情報の送信は、例えば、無線通信手段を介して実施することができる。制御ユニット43が位置特定装置40内に統合されない場合、制御ユニット43は、位置特定装置40から患者基準21及び/又はロボット基準11の位置に関する情報を受け取るように構成される。位置特定装置40と制御ユニット43との間の情報の送信は、例えば、無線通信手段を介して実施することができる。
【0041】
図3は、患者基準21を概略的に示す。患者基準21は、患者基準21の位置が位置特定装置40の基準フレームの3つの空間次元で判定され得るように、少なくとも3つの光学マーカ26を有する。相互に対する患者基準21の光学マーカ26のそれぞれの位置は、制御ユニット43によって先験的に知られている。有利には、それぞれの光学マーカ26の幾何学的形状も制御ユニット43によって先験的に知られ得る。図3に示される例では、患者基準21は、球状形状の3つの光学マーカ26を有する。球状形状は、光学放射の反射の最適化を可能にする。
【0042】
光学マーカ26は、受動型又は能動型であり得る。受動型光学マーカは、例えば、位置特定装置40の別の要素によって放出された光学放射を反射する。受動型光学マーカは、例えば、赤外立体カメラ(これは、例えば、Northern Digital Inc.社によって製造されるPolaris(登録商標)ナビゲーションシステムで使用されるものである)によって検出可能である反射球体又は立体カメラ(これは、例えば、ClaroNav社からのMicronTracker(登録商標)ナビゲーションシステムで使用されるものである)によって可視である黒色及び白色パターンに対応し得る。能動型光学マーカは、それ自体、例えば位置特定装置40によって検出可能な赤外放射の光学放射を放出する。
【0043】
図4は、ロボット基準11を概略的に示す。ロボット基準11は、ロボット基準11の位置が位置特定装置40の基準フレームの3つの空間次元で判定され得るように、少なくとも3つの光学マーカ16を有する。相互に対するロボット基準11の光学マーカ16のそれぞれの位置は、制御ユニット43によって先験的に知られている。有利には、それぞれの光学マーカ16の幾何学的形状も制御ユニット43によって先験的に知られ得る。図4に示される例では、ロボット基準11は、球状形状の3つの光学マーカ16を有する。患者基準21の光学マーカ26の能動型又は受動型の特性に関して上述される内容は、ロボット基準11の光学マーカ16にも当てはまる。
【0044】
相互に対するロボット基準11の光学マーカ16のそれぞれの位置は、相互に対する患者基準21の光学マーカ26のそれぞれの位置と異なる。このような構成は、位置特定装置40が患者基準21とロボット基準11との間を弁別することを可能にする。
【0045】
図1に示されるように、位置特定装置40は、例えば、赤外放射場又は可視光場で動作する立体カメラの2つのセンサに対応する少なくとも2つの光学センサ41を有する。本説明の残りの部分では、非限定的な例として、位置特定装置40の光学センサ41及び光学ナビゲーションシステム100の様々な光学マーカ16、21は、赤外タイプの光学放射、即ちその波長が780nm~1mmで変化する電磁放射によって動作するように設計されるものと見なされる。しかし、本発明による光学ナビゲーションシステム100は、可視光場(その波長が380nm~780nmで変化する電磁放射)又は紫外放射場(その波長が10nm~380nmで変化する電磁放射)で動作するように設計され得ることにも留意されたい。
【0046】
従来の方式において及び図1に示されるように、直接的視準線が患者基準21と位置特定装置40の光学センサ41との間で利用可能である場合(即ち患者基準21と位置特定装置40の光学センサ41との間に障害物が存在しない場合又は換言すれば、赤外放射が、患者基準21のそれぞれの光学マーカ26と、位置特定装置40のそれぞれの光学センサ41との間で直線として直接的経路22を伝播し得る場合)、それぞれの光学マーカ26の位置は、前記光学マーカ26と光学センサ41との間の前記直接的経路22に対応する赤外線の移動時間の関数として(これは、光の速度に等しいことから、赤外放射の速度は、知られている)及び/又は前記光学センサ41における前記赤外線の到来角度の関数として判定することができる。
【0047】
例えば、光学ナビゲーションシステム100内で使用される光学マーカ26が受動型マーカである場合、光学センサ41は、赤外放射を放出するように構成することができる。従って、この赤外放射は、光学センサ41に向かって様々な光学マーカ26によって反射される。光学センサ41は、この反射された赤外放射を受け取るように構成される。従って、光学マーカ26と光学センサ41との間の距離は、前記光学センサ41と前記光学マーカ26との間の往復移動を実施するために、赤外線によって必要とされる時間に光の速度を乗算したものの半分に等しい。それぞれの光学マーカ26とそれぞれの光学センサ41との間の距離を知り、及び患者基準21上における相互に対する光学マーカ26の構成を先験的に知ることにより、位置特定装置40の基準フレーム内における患者基準21の位置を判定することができる。
【0048】
別の例によれば、光学ナビゲーションシステム100で使用される光学マーカ26が能動型マーカである場合、それぞれの光学センサ41は、光学マーカ26によって直接生成される赤外放射の、前記光学センサ41における到来角度を判定するように構成される。それぞれの光学マーカ26について、それぞれの光学センサ41における到来角度を知り、及び患者基準21上における相互に対する光学マーカ26の構成を先験的に知ることにより、位置特定装置40の基準フレーム内における患者基準21の位置を判定することができる。
【0049】
同様に、位置特定装置40は、直接的視準線がロボット基準11と位置特定装置40の光学センサ41との間で利用可能である場合、位置特定装置40の基準フレーム内におけるロボット基準11の位置を判定することができる。
【0050】
患者基準21の位置から患者の対象の解剖構造の位置を判定することが可能であるべきである。この目的のために及び図3に示されるように、患者基準21は、放射線不透過性マーカ27を有することができる。相互に対する放射線不透過性マーカ27のそれぞれの位置は、制御ユニット43によって先験的に知られている。有利には、放射線不透過性マーカ27の幾何学的形状も制御ユニット43によって先験的に知られ得る。好ましくは、患者基準21は、少なくとも3つの放射線不透過性マーカ27を有する。従って、位置特定装置40の基準フレーム内における対象の解剖構造の位置は、前記基準フレーム内の患者基準21の位置の関数として、及び患者基準21の放射線不透過性マーカ27が可視である、患者の対象の解剖構造の医療画像の関数として判定することができる。実際に、医療画像は、患者基準21の位置に対する対象の解剖構造の位置に関する情報を付与する。従って、位置特定装置40の基準フレーム内における患者基準21の位置を知ることにより、この基準フレーム内における対象の解剖構造の位置をそれから推定することができる。
【0051】
例えば、放射線不透過性マーカ27は、医療画像(例えば、コンピュータ断層撮影、3次元回転血管造影、磁気共鳴撮像、超音波など)内で可視であるセラミックボール又は金属ボールであり得る。患者20の医療画像は、患者基準21と共に取得される。この医療画像は、予め取得され、及び介入計画データを含む同一の患者の別の画像と見当合わせすることができるか、又は介入を計画するために直接使用することができる。計画される介入は、対象の解剖構造(例えば、肝臓、肺又は腎臓)内の腫瘍の(例えば、高周波、マイクロ波、電気穿孔法、レーザー、凍結療法、超音波による)アブレーションであり得る。計画される介入は、脳内、脊柱内(例えば、椎体形成術及び骨セメント療法のため)又は別の骨構造(例えば、膝)内への医療器具の挿入でもあり得る。計画は、患者の皮膚内のエントリポイントと、対象の解剖構造内の(腫瘍内の)ターゲットポイントとの間における医療器具(例えば、針)が辿る経路を判定することを含む。患者の対象の解剖構造の位置が位置特定装置の基準フレーム内で判定されると、これらの計画データから、医療器具がこの基準フレーム内で占めなければならない位置を推定することができる。
【0052】
図2に示されるように、障害物60が患者基準21と位置特定装置40のセンサ41との間で視準線を遮る場合、患者基準21の位置を判定する場合に問題が生じる(及び図2に示されないが、障害物がロボット基準11と位置特定装置のセンサ41との間で視準線と交差する場合のロボット基準11の位置の判定時にも類似の問題が生じる)。
【0053】
この問題を克服するために、本発明は、位置特定装置40の基準フレーム内におけるその位置が制御ユニット43によって知られている反射装置30を使用することを提案する。
【0054】
反射装置30の位置は、例えば、先験的に知られており、及び制御ユニット43のメモリ内に保存される。一変形形態では及び図5に示されるように、反射装置30は、少なくとも3つの光学マーカ36を有する。相互に対する光学マーカ36のそれぞれの位置は、制御ユニット43によって先験的に知られている。有利には、それぞれの光学マーカ36の幾何学的形状も制御ユニット43によって先験的に知られ得る。従って、反射装置30の位置は、位置特定装置40の光学センサ41の支援によって制御ユニット43によって判定することができる。図1及び図2に示されるように、反射装置30は、例えば、介入テーブル50に固定され、及び反射装置30の位置は、患者の対象の解剖構造の判定を要する時間の期間中に変更されない。
【0055】
反射装置30は、例えば、それ自体が銅又は鉛の層によって覆われている、金属(例えば、アルミニウム又は銀)の薄いシートがその上部に糊付けされたガラスプレートに対応する。代わりに、ガラスプレートは、薄い金箔によって覆うこともできる。反射装置30は、フラットミラー又は赤外線の濃縮を可能にする凹状ミラーであり得る。対象の例では、反射装置30は、矩形形状のフラットミラーである。図5に示されるように、光学マーカ36は、反射装置30によって形成された矩形のそれぞれの隅部に位置決めすることができる。
【0056】
図2及び図6に示されるように、患者基準21と光学センサ41との間の直接的視準線が障害物60によって遮られる場合、光学センサ41は、患者基準21のそれぞれの光学マーカ26について、前記光学マーカ26から到来し、及びそれぞれの光学センサ41に向かって反射装置30によって反射される経路23を辿る赤外線に基づいて(及び前記光学マーカ26と前記光学センサ41との間の直接的経路22に対応する赤外線に基づくことなく)、位置特定装置40の基準フレーム内における前記光学マーカ26の位置を表すパラメータを計測するように構成される。「マーカの位置を表すパラメータ」という表現は、例えば、光学センサと光学マーカとの間の赤外線の移動時間又は光学センサ41における赤外線の到来角度を意味することが理解される。
【0057】
例えば及び図6に示されるように、反射装置30によって反射され、及び患者基準21の光学マーカ26から到来する赤外線23の到来角度がそれぞれの光学センサ41について知られており、及び反射装置30の位置が知られている場合、前記光学マーカ26の位置を判定することができる。赤外線23は、反射装置30に垂直の直線δに対して反射角度θを形成し、及び反射ポイント28を通過することにより、反射ポイント28において反射装置30内で反射されることに留意されたい。この反射角度θは、入射光線及び反射された光線について同一である。図6では、赤外線23及び直線δを含む平面内の光学センサ41における赤外線23の到来角度は、角度φに対応する。光学センサ41における到来角度φ及び反射装置30の位置が知られている場合、反射角度θの値を判定することが可能である。従って、反射角度は、2つの光学センサ41の各々とそれぞれ関連する赤外線について判定することができる。光学マーカ26の位置は、2つの赤外線の交差点に対応する。
【0058】
光学マーカ26の位置は、一方では赤外線23の到来角度の関数として、及び他方では光学マーカ26と光学センサ41との間の赤外線23の移動時間の関数として(この移動時間が判定され得るという仮定において)、光学センサ41からも判定され得ることに留意されたい。
【0059】
図7は、患者の対象の解剖構造の位置を判定するために制御ユニット43によって実装される方法の主要なステップを概略的に示す。
【0060】
方法200は、障害物が患者基準21と位置特定装置40の光学センサ41との間の直接的視準線を遮るかどうかが検出される第1のステップを含む。
【0061】
直接的視準線が利用可能である(障害物が存在しない)場合、方法200は、患者基準21の光学マーカ26と光学センサ41との間の直接的経路22を辿る赤外線に基づいて光学センサ41によって計測が実行されるステップ201を含む。
【0062】
視準線が遮られる(障害物が存在する)場合、方法200は、患者基準21の光学マーカ26と光学センサ41との間の、反射装置30上の反射を含む間接的経路を辿る赤外線23に基づいて光学センサ41によって計測が実行されるステップ202を含む。
【0063】
ステップ203では、患者基準21の位置は、光学センサ41によって実行された計測に基づいて判定された光学マーカ26の位置から判定される。
【0064】
ステップ204では、対象の解剖構造204の位置は、患者基準21の位置から判定される。
【0065】
光学センサ41は、既定では、例えば患者基準21及び/又はロボット基準11が配置されることが仮定される作業空間から直接到来する赤外線23によって機能するように構成される。このような赤外線が検出されない場合、制御ユニット43は、反射装置30によって反射される赤外線23に基づいて機能するように光学センサ41を構成する。
【0066】
従って、直接的視準線が利用可能でない場合でも任意の時点で患者の対象の解剖構造の位置を判定することができる。
【0067】
患者基準21の位置の判定に関連して上述した内容は、障害物がロボット基準11と位置特定装置40のセンサ41との間の視準線を遮る場合のロボット基準11の判定にも適用される。
【0068】
特定の実施形態では、医療ロボット10は、その関節接続されたアーム13のレベルにおいて、医療ロボット10の基準フレーム内におけるロボット基準11の位置を任意の時点で判定することを可能にする関節接続エンコーダを更に有する。医療ロボット10は、医療ロボット10の基準フレーム内におけるロボット基準11の位置を制御ユニット43に送信するように構成される。制御ユニット43は、それから、患者20の対象の解剖構造に対する、医療ロボット10の関節接続されたアーム13の遠位端に装着された医療器具の位置を推定するように構成される。
【0069】
この目的のために、例えば予備的なセットアップステップでは、ロボット基準11が、医療ロボット10及び光学ナビゲーションシステム100の共通の作業空間内に分散された異なる較正位置を占めるようにするために、医療ロボット10の関節接続されたアーム13が予め定義された移動を実行することが想定可能である。ロボット基準11によって占められたそれぞれの較正位置について、制御ユニット43は、一方では関節接続エンコーダから、及び他方ではロボット基準11の光学マーカ16から位置情報を受け取る。医療ロボット10の基準フレーム及び位置特定装置40の基準フレームは、異なる較正位置をマッチングし、及びポイントごとに剛体見当合わせを算出することにより、再調節(再見当合わせ)することができる。
【0070】
患者が呼吸するのに伴い、患者の対象の解剖構造(及びより詳細には対象の解剖構造内のターゲットゾーン)は、呼吸移動に追随する。対象の解剖構造に位置決めされたマーカと、ナビゲーションシステムの光学センサとの間の視準線が障害物によって遮られる期間中でも、光学ナビゲーションシステム100の支援により、時間の経過に伴って対象の解剖構造の位置を追跡可能であるべきである。
【0071】
図8は、患者のいくつかの呼吸サイクルを含む時間の期間にわたる患者基準21の移動を概略的に示す。移動は、2つの座標x及びyを有する系で示される。従って、それぞれの軸x又はyは、患者基準21の移動の成分に対応する。
【0072】
例えば、対象の時間期間中、直接的視準線は、患者基準21と位置特定装置40の光学センサ41との間で常に利用可能である。患者基準21のそれぞれの光学マーカ26の位置は、その時間期間中にいくつかの時点で判定される。従って、例えば対象の時間期間にわたり、患者の呼吸サイクル中、選択された2つの成分について、患者基準21の平均移動に対応する推定された移動24を判定することができる。本説明の残りの部分では、わかりやすさを目的として、患者基準21の推定された移動24は、患者基準21のそれぞれの光学マーカ26によって辿られる移動に実質的に同一であるものと見なされる。実際に、患者基準21のそれぞれの光学マーカ26は、特定の移動を有し得、従って、患者基準の移動は、様々な光学センサの移動の結果に対応し得る(従って、患者基準21のそれぞれの光学マーカ26について、推定された移動を検討することが想定可能であろう)。
【0073】
図9a及び図9bは、視準線が障害物によって遮られる場合、患者基準21の光学マーカ26の位置が前記光学マーカ26の推定された移動24の関数として判定され得る方式を概略的に示す。図9bは、光学マーカ26から到来し、及び反射装置30によって反射される赤外線23と、また反射装置30に垂直であり、及び反射ポイント28を通過する直線δとを含む平面内の図9aの2次元表現である。
【0074】
図9a及び図9bに示されるように、視準線がもはや患者基準21と光学センサ41との間で利用可能でない場合、一方では患者基準21の前記光学マーカ26から到来し、及び反射装置30によって反射された光線23に基づいて光学センサ41によって実行された計測の関数として、及び他方では光学マーカ26の推定された移動24の関数として光学マーカ26の位置を判定することができる。図9bに示されるように、光学マーカ26の推定された移動24は、赤外線23及び直線δを含む平面に属する2つの直交する成分x及びyに分解される。赤外線23は、反射ポイント28において反射装置30内で反射され、これにより直線δに対して反射角度θを形成する。この反射角度θは、入射光線及び反射された光線について同一である。赤外線23は、光学センサ41で到来角度φを形成する。
【0075】
光学センサ41における到来角度φ及び反射装置30の位置が知られている場合、反射角度θの値を判定することができる。従って、光学マーカ26の位置を判定することが可能であり、なぜなら、これは、光学マーカ26の推定された移動24によって辿られる経路との赤外線23の交差点に対応するからである。
【0076】
別の例によれば、光学マーカ26と光学センサ41との間の赤外線23の移動時間が知られている場合、換言すれば前記赤外線が移動した距離が知られている場合、光学マーカ26の位置を判定することも可能であり、なぜなら、反射装置30上で反射した赤外線23が前記距離を移動することにより、それから光学センサ41に到達する光学マーカ26の推定された移動24によって辿られる経路上には、単一のポイントのみが存在するからである。
【0077】
それぞれの光学マーカ26の位置が判定されると、患者基準21の位置を判定することもできる。従って、特に対象の解剖構造の位置が医療画像上の患者基準の位置に対して定義され得る場合、それから対象の解剖構造の位置を推定することができる。
【0078】
患者基準21の位置及び患者基準21によって辿られる推定された移動24の関数として対象の解剖構造の位置の判定を最適化するために、対象の解剖構造の生体力学的モデルを使用することが更に可能である。実際に、生体力学的モデルの形態では、様々な解剖学的構造(筋肉、腱、骨構造、臓器、血管網など)の変形及びこれらの様々な構造間の機械的相互作用をモデル化することができる。従って、生体力学的モデルは、患者基準21によって辿られる移動の関数として、対象の解剖構造によって辿られる移動をより良好に定義することを可能にし得る。
【0079】
図10は、図7を参照して記述される方法200の特定の実施形態を概略的に示す。具体的には、患者基準の光学マーカ26の位置を直接的視準線で計測するステップ201は、患者の少なくとも1つの呼吸サイクルを含む時間期間中、いくつかの異なる時点において反復される。図8を参照して上述したように、これは、ステップ205において、患者の呼吸サイクルにおける患者基準21の移動を推定することを可能にする。次いで、この推定された移動24は、(図9a及び図9bを参照して上述したように)視準線がもはや利用可能でない場合に患者基準21の位置を判定するためにステップ203で使用される。従って、ステップ204では、患者の対象の解剖構造の位置を患者基準21の位置から判定することができる。
【0080】
従って、本発明は、直接的視準線が患者基準21と光学ナビゲーションシステム100の位置特定装置40の光学センサ41との間で利用可能でない場合でも、光学ナビゲーションシステム100の支援により、患者の対象の解剖構造の位置を判定することを可能にする。
【0081】
特定の実施形態では並びに図1及び図2に示されるように、位置特定装置40は、介入時に医療器具の挿入深さを判定するために画像を制御ユニット43に供給するカメラ42を更に有することができる。介入の画像は、カメラ42によって継続的に撮影される。医療ロボット10が介入計画に従って患者に対して位置決めされた場合、専門家は、ターゲットゾーン(例えば、腫瘍)に到達するために、患者の対象の解剖構造内に医療器具(例えば、針)を挿入する。カメラ42からの画像は、医療器具を検出するように構成された制御ユニット43によって分析される。医療器具の合計長さ及び到達されるターゲットゾーンの位置を知ることにより、制御ユニット43は、医療器具の挿入深さを判定することが可能であり、及び器具がターゲットゾーンに到達したときを判定することができる。ターゲットゾーンに到達した場合、専門家の注意のためのメッセージが例えば制御画面上に表示される。メッセージには、音響信号が伴い得る。
【0082】
特定の実施形態では、位置特定装置40のカメラ42によって提供される画像は、専門家の(手袋をした又はそうではない)手によって実施されたジェスチャを認識するために制御ユニット43によって分析され、この場合、前記ジェスチャは、(例えば、既定の位置で医療ロボットの関節接続されたアームを構成する、既定の位置に医療ロボットのベースを移動させる、医療ロボットの任意の移動を緊急に中断させるためなどの)医療ロボット10のために意図された特定のコマンドと関連付けられる。専門家によって実施されるジェスチャは、患者基準21と光学センサ41との間の視準線を妨害し得るが、反射装置30は、それにもかかわらず、本発明による光学ナビゲーションシステム100が患者基準21の位置を判定することを可能にする。
【0083】
いくつかの反射装置30は、光学マーカから到来する光学放射によって辿られる異なる経路の数を増大させるために使用され得ることに留意されたい。特定の実施形態では、光学ナビゲーションシステム100は、有利には、対において直交して構成された3つの異なる反射装置を有する。直接的視準線が利用可能でない場合、患者基準21の位置は、反射装置の1つ又は複数によって反射される光線から判定することができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9a
図9b
図10
【国際調査報告】