IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドの特許一覧

特表2023-502846多孔性触媒担体粒子およびそれを形成する方法
<>
  • 特表-多孔性触媒担体粒子およびそれを形成する方法 図1
  • 特表-多孔性触媒担体粒子およびそれを形成する方法 図2a
  • 特表-多孔性触媒担体粒子およびそれを形成する方法 図2b
  • 特表-多孔性触媒担体粒子およびそれを形成する方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-26
(54)【発明の名称】多孔性触媒担体粒子およびそれを形成する方法
(51)【国際特許分類】
   B01J 21/04 20060101AFI20230119BHJP
   C04B 38/00 20060101ALI20230119BHJP
   B28B 3/20 20060101ALI20230119BHJP
   B01J 37/08 20060101ALI20230119BHJP
   B01J 32/00 20060101ALI20230119BHJP
   B01J 35/10 20060101ALI20230119BHJP
   B01J 37/00 20060101ALI20230119BHJP
   B01J 21/08 20060101ALI20230119BHJP
   B01J 37/04 20060101ALI20230119BHJP
【FI】
B01J21/04 M
C04B38/00 304Z
B28B3/20 E
B01J37/08
B01J32/00
B01J35/10 301G
B01J37/00 D
B01J21/08 M
B01J37/04 102
【審査請求】有
【予備審査請求】有
(21)【出願番号】P 2022520811
(86)(22)【出願日】2020-10-02
(85)【翻訳文提出日】2022-04-04
(86)【国際出願番号】 US2020070606
(87)【国際公開番号】W WO2021067998
(87)【国際公開日】2021-04-08
(31)【優先権主張番号】62/910,674
(32)【優先日】2019-10-04
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】593150863
【氏名又は名称】サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド
【氏名又は名称原語表記】SAINT-GOBAIN CERAMICS AND PLASTICS, INC.
【住所又は居所原語表記】One New Bond Street, Worcester, MA 01615, United States of America
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】ダハ―ル、スティーブン、エル.
(72)【発明者】
【氏名】マッカーシー、ジェイムズ、エイ.
(72)【発明者】
【氏名】シー、ジンギュ
【テーマコード(参考)】
4G019
4G054
4G169
【Fターム(参考)】
4G019GA04
4G054AA06
4G054BD11
4G054BD14
4G169AA01
4G169AA08
4G169AA09
4G169BA01A
4G169BA01B
4G169BA01C
4G169BA02A
4G169BA02B
4G169BA02C
4G169BA04A
4G169BA04C
4G169BA05A
4G169BA05C
4G169BA06A
4G169BA06C
4G169BA07A
4G169BA07C
4G169BA08C
4G169BA27C
4G169BB05C
4G169BB15A
4G169BB15C
4G169BC10C
4G169BC16C
4G169BC50C
4G169BC51C
4G169BD05A
4G169BD05C
4G169DA05
4G169EA02X
4G169EA02Y
4G169EB14X
4G169EB14Y
4G169EB18X
4G169EC01X
4G169EC02X
4G169EC02Y
4G169EC03X
4G169EC03Y
4G169EC04X
4G169EC05X
4G169EC06X
4G169EC06Y
4G169EC07X
4G169EC07Y
4G169EC08X
4G169EC08Y
4G169EC14Y
4G169EC15Y
4G169EC16Y
4G169EC21X
4G169EC21Y
4G169EC22Y
4G169EC23
4G169EC24
4G169EC26
4G169FA01
4G169FB06
4G169FB30
4G169FB57
4G169FB67
4G169FB79
4G169FC02
(57)【要約】
多孔性触媒担体粒子のバッチを形成する方法は、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから多孔性触媒担体粒子のバッチを除去することと、を含み得る。多孔性触媒担体粒子のバッチは、少なくとも約0.1cm/gの平均細孔容積を有し得る。
【選択図】
【特許請求の範囲】
【請求項1】
多孔性触媒担体粒子のバッチを形成する方法であって、
前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、
前記成形アセンブリ内の前記前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、
所定の力の下で前記成形アセンブリに排出材料を方向付けして、前記成形アセンブリから前記生素地多孔性触媒担体粒子のバッチを除去することと、
前記多孔性触媒担体粒子のバッチのために前記生素地多孔性触媒担体粒子のバッチを焼成することと、を含み、
前記多孔性触媒担体粒子のバッチが、少なくとも約0.1cm/gの平均細孔容積を含む、方法。
【請求項2】
前記前駆体混合物を成形アセンブリの中に適用することが、前記前駆体混合物を、ダイ開口部を通して、かつ前記成形アセンブリの中に押し出すことを含み、前記成形アセンブリが、前記前駆体混合物を受け取るように構成された開口部を備え、前記開口部が、少なくとも3つの表面によって画定され、前記開口部が、前記成形アセンブリの第1の部分の厚さ全体を通って延在し、前記開口部が、前記成形アセンブリの厚さ全体を通って延在し、前記開口部が、前記成形アセンブリの厚さ全体の一部分を通って延在する、請求項1に記載の方法。
【請求項3】
前記成形アセンブリが、スクリーンを備え、前記成形アセンブリが、型を備え、前記成形アセンブリが、スクリーンを備える第1の部分を備え、前記成形アセンブリが、バッキングプレートを備える第2の部分を備え、前記第1の部分および前記第2の部分が、前記適用ゾーン内で互いに隣接しており、前記第1の部分が、前記適用ゾーン内で前記第2の部分に当接しており、前記スクリーンが、前記適用ゾーン内で前記バッキングプレートに隣接しており、前記バッキングプレートが、前記適用ゾーン内で前記スクリーンに当接しており、前記バッキングプレートの表面が、前記スクリーンの前記開口部内で前記混合物と接触するように構成されている、請求項1に記載の方法。
【請求項4】
前記前駆体混合物が、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、請求項1に記載の方法。
【請求項5】
前記多孔性触媒担体粒子のバッチが、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、およびそれらの組み合わせを含む、請求項1に記載の方法。
【請求項6】
前記多孔性触媒担体粒子のバッチが、少なくとも約0.1m/gの平均比表面積を含む、請求項1に記載の方法。
【請求項7】
前記多孔性触媒担体粒子のバッチが、約1.9g/cm以下の平均充填密度を含む、請求項1に記載の方法。
【請求項8】
前記多孔性触媒担体粒子のバッチが、約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを有し、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、前記多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、請求項1に記載の方法。
【請求項9】
約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを含む多孔性触媒担体粒子のバッチであって、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、前記多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、多孔性触媒担体粒子のバッチ。
【請求項10】
前記多孔性触媒担体粒子のバッチが、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項11】
前記多孔性触媒担体粒子のバッチが、少なくとも約0.1cm/gの平均細孔容積を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項12】
前記多孔性触媒担体粒子のバッチが、少なくとも約0.1m/gの平均比表面積を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項13】
前記多孔性触媒担体粒子のバッチが、約1.9g/cm以下の平均充填密度を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項14】
前記多孔性触媒担体粒子のバッチが、円柱形状を有する複数の粒子を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項15】
多孔性触媒担体粒子のバッチを形成するためのシステムであって、
開口部を有し、かつ前駆体混合物で満たされて、前駆体多孔性触媒担体粒子のバッチを形成するように構成された第1の部分、および前記第1の部分に当接する第2の部分を含む成形アセンブリを備える適用ゾーンと、
第1の熱源を備え、かつ前記前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成するように構成されている乾燥ゾーンと、
前記成形アセンブリの前記第1の部分内の前記開口部に向かって排出材料を方向付けして、前記成形アセンブリから前記多孔性触媒担体粒子のバッチを除去するように構成された排出アセンブリを備える排出ゾーンと、
バッチ生素地多孔性触媒担体粒子を前記多孔性触媒担体粒子のバッチに形成するように構成された第2の熱源を備える焼成ゾーンと、を備える、システム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年10月4日に出願された米国仮出願第62/910,674号の利益を主張する。
【0002】
以下は、一般に、多孔性触媒担体粒子、およびそれを作製する方法に関する。
【背景技術】
【0003】
触媒担体は、多種多様な用途で使用することができ、特に、触媒担体の構造設計は、触媒プロセス中のそれらの性能に直接関係している。一般に、触媒担体は、幾何学的表面積(GSA)として知られている、触媒成分が堆積され得る少なくとも最小の表面積、高吸水、および破砕強度を、組み合わせて有する必要がある。加えて、触媒プロセスは、担体の一般構造が粒子の充填能力、およびしたがって反応管を通る流体の流れに影響を与える、反応管内に多数の触媒担体を充填することを含み得る。そのような反応管では、GSAを含む担体の幾何学的サイズおよび形状は、触媒粒子の充填によって引き起こされた流体流抵抗、圧力降下として知られている性能パラメータ、およびピースカウントなどの他のパラメータとバランスをとる必要がある。加えて、触媒担体粒子の形状における連続性により、それらの全体的な性能を改善させることができる。GSAと、触媒担体の所望の性能パラメータとの間の必要なバランスを維持することは、触媒担体技術を他の化学プロセス技術よりもさらに予測不可能にする広範な実験によって達成される。したがって、業界は、所望の担体性能を最大化するために、改善された触媒担体設計、および一貫した形状およびサイズを有するそのような粒子を大量に生成する能力を要求し続けている。
【発明の概要】
【課題を解決するための手段】
【0004】
第1の態様によれば、多孔性触媒担体粒子のバッチを形成する方法は、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み得る。多孔性触媒担体粒子のバッチは、少なくとも約0.1cm/gの平均細孔容積を有し得る。
【0005】
さらに別の態様によれば、多孔性触媒担体粒子のバッチを形成する方法は、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み得る。多孔性触媒担体粒子のバッチは、少なくとも約0.1m/gの平均比表面積を有し得る。
【0006】
なお別の態様によれば、多孔性触媒担体粒子のバッチを形成する方法は、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み得る。多孔性触媒担体粒子のバッチは、約1.9g/cm以下の平均充填密度を有し得る。
【0007】
さらに別の態様によれば、多孔性触媒担体粒子のバッチは、約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(AR)分布スパンPARDSを有し得、PARDSは、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(AR)分布測定値に等しく、ARD10は、多孔性触媒担体粒子のバッチのARD10粒子アスペクト比(AR)分布測定値に等しく、ARD50は、多孔性触媒担体粒子のバッチのARD50粒子アスペクト比(AR)分布測定値に等しい。
【0008】
さらに別の態様によれば、多孔性触媒担体粒子のバッチを形成するためのシステムは、成形アセンブリを備える適用ゾーン、乾燥ゾーン、排出ゾーン、および焼成ゾーンを含み得る。適用ゾーンは、開口部を有し、かつ前駆体混合物で満たされて、前駆体多孔性触媒担体粒子のバッチを形成するように構成され得る第1の部分、および第1の部分に当接する第2の部分を含み得る。乾燥ゾーンは、第1の熱源を含み得、前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成するように構成され得る。排出ゾーンは、成形アセンブリの第1の部分内の開口部に向かって排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去するように構成された排出アセンブリを含み得る。焼成(すなわち、か焼)ゾーンは、第2の熱源を含み得、バッチ生素地多孔性触媒担体粒子を多孔性触媒担体粒子のバッチに形成するように構成され得る。
【図面の簡単な説明】
【0009】
添付の図面を参照することにより、本開示は、よりよく理解されることができ、その多くの特徴および利点は、当業者にとって明らかになるであろう。
【0010】
図1】一実施形態による、多孔性触媒担体粒子のバッチを作製する方法のフローチャートの例示である。
【0011】
図2a】一実施形態による、多孔性触媒担体粒子のバッチを形成するためのシステムの概略図を含む。
【0012】
図2b】一実施形態による、図2aのシステムの一部分の例示を含む。
【0013】
図3】本明細書に記載の実施形態に従って形成された多孔性触媒担体粒子の例示を含む。
【0014】
当業者は、図中の要素が単純化および明瞭化のために示されており、必ずしも縮尺どおりに描かれていないことを理解している。例えば、図中の要素のいくつかの寸法は、本発明の実施形態の理解を改善するのを助けるために、他の要素に対して誇張されている場合がある。
【0015】
異なる図面における同じ参照符号の使用は、同様のまたは同一の物品を示している。
【発明を実施するための形態】
【0016】
図面と組み合わせた以下の説明は、本明細書に開示される教示を理解するのを助けるために提供される。以下の考察は、本教示の具体的な実装および実施形態に焦点を合わせるであろう。この考察は、本教示を説明するのを助けるために提供されており、本教示の範囲または適用性に対する限定として解釈されるべきではない。
【0017】
「平均」という用語は、値を参照する場合、平均、幾何平均、または中央値を意味することを意図している。本明細書で使用される場合、「含む(comprise)」、「含む(comprising)」、「含む(include)」、「含む(including)」、「有する(has)」、「有する(having)」という用語、またはこれらの任意の他の変形語は、非排他的な包含を含むことを意図している。例えば、ある特徴のリストを含むプロセス、方法、物品または装置は、必ずしもこれらの特徴にのみ限定されるものではないが、明示的に列挙されていないか、またはこのようなプロセス、方法、物品または装置に固有の他の特徴を含んでいてもよい。本明細書中で使用される場合、語句「から本質的になる(consists essentially of)」または「から本質的になっている(consisting essentially of)」とは、語句が説明する対象が、対象の特性に実質的に影響を及ぼす他のいかなる成分をも含まないことを意味する。
【0018】
さらに、そうではないと明示的に述べられていない限り、「または(or)」は、包含的な「または」を指し、排他的な「または」を指さない。例えば、条件AまたはBは、以下のいずれか1つによって満たされる:Aは真(または存在する)かつBは偽(または存在しない)、Aは偽(または存在しない)かつBは真(または存在する)、およびAとBとの両方が真(または存在する)である。
【0019】
「1つ(a)」または「1つ(an)」の使用は、本明細書に記載の要素および構成要素を説明するために使用される。これは、単に便宜上および本発明の範囲の一般的な意味を与えるために行われている。この説明は、他を意味することが明確でない限り、1つまたは少なくとも1つおよび複数も含む単数形、またはその逆を含むように読む必要がある。
【0020】
さらに、範囲に記載されている値への言及は、言及された終了範囲の値を含む、その範囲内の全ての値を含む。数値範囲を説明する場合のように、「約(about)」または「およそ(approximately)」という用語が数値の前にある場合、正確な数値もまた含まれることを意図している。例えば、「約25(about 25)」で始まる数値範囲には、25ちょうどから始まる範囲もまた含まれる。さらに、「少なくとも約(at least about)」、「超(greater than)」、「未満(less than)」、または「以下(not greater than)」として記載される値への参照は、そこに記載されるあらゆる最小値または最大値の範囲を含むことができることが理解されよう。
【0021】
本明細書に記載の実施形態は、一般に、バッチ全体にわたって一般に均一な形状(すなわち、アスペクト比)を有する多孔性触媒担体粒子のバッチの形成に関する。
【0022】
多孔性触媒担体粒子のバッチを形成する方法を最初に参照すると、図1は、一般に100と呼ばれる多孔性触媒担体粒子形成プロセスを例示している。多孔性触媒担体粒子形成プロセス100は、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成する第1のステップ102と、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成する第2のステップ104と、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去する第3のステップ106と、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成する第4のステップ108と、を含み得る。
【0023】
さらに他の実施形態によれば、多孔性触媒担体粒子形成プロセス100は、形成プロセス100中の異なる時間に起こり得る追加の乾燥ステップなど、追加の任意選択のステップを含み得ることが理解されよう。例えば、多孔性触媒担体粒子形成プロセス100は、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去する第3のステップ106と、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成する第4のステップ108との間に追加の乾燥ステップを含み得る。
【0024】
図2aは、本明細書に記載の実施形態による、多孔性触媒担体粒子のバッチを形成する際に使用され得るシステムの例示を含む。図示されるように、システム200は、ダイ203のリザーバ202内に収容された前駆体混合物201の、成形アセンブリ251への送達を容易にするように構成されたダイ203を含み得る。図1に概説されるような形成プロセス100は、例えば、図2aに示されるようなシステム200を使用して行うことができるが、システム200を使用して行われることに限定されないことが理解されよう。
【0025】
具体的に、図2aを参照すると、特定の実施形態によれば、前駆体混合物201は、ダイ203の内部内に提供され、ダイ203の一端に位置決めされたダイ開口部205を通って押し出されるように構成され得る。さらに図示されるように、押し出しは、前駆体混合物201に力(または、圧力)を加えて、ダイ開口部205を通して前駆体混合物201を押し出すことを容易にすることを含み得る。一実施形態によれば、特定の圧力を押し出し中に利用することができる。例えば、圧力は、少なくとも約500kPa、少なくとも約1,000kPa、少なくとも約2,000kPa、またはさらには少なくとも約3,000kPaなど、少なくとも約10kPaであり得る。さらに他の実施形態によれば、押し出し中に利用される圧力は、約8,000kPa以下、またはさらには約6,000kPa以下など、約10,000kPa以下であり得る。押し出し中に利用される圧力は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。押し出し中に利用される圧力は、上述の最小値と最大値との間の任意の範囲内、およびそれらのいずれかを含む任意の範囲内であり得ることが理解されよう。
【0026】
図2aにさらに示されるように、システム200は、成形アセンブリ251を含み得る。ある特定の実施形態によれば、成形アセンブリ251は、第1の部分252および第2の部分253を含み得る。とりわけ、適用ゾーン283内で、第1の部分252は、第2の部分253に隣接することができる。より具体的な例では、適用ゾーン283内で、第1の部分252は、第2の部分253の表面257に当接することができる。なお他の実施形態によれば、システム200は、第1の部分252などの成形アセンブリ251の一部分がローラ間を並進することができるように設計することができる。第1の部分252は、形成プロセスを連続的に実施することができるように、ループ内で動作することができる。
【0027】
図2aにさらに示されるように、システム200は、ダイ203のダイ開口部205を含む、適用ゾーン283を含み得る。なお他の実施形態によれば、本プロセスは、前駆体混合物201を成形アセンブリ251の少なくとも一部分に適用することをさらに含み得る。特定の実施形態では、前駆体混合物201を適用するプロセスは、押し出し、型成形、鋳造、印刷、スプレー適用、およびそれらの組み合わせなどのプロセスを介して、前駆体混合物201を堆積させることを含み得る。図2aに例示されるものなどのさらに他の実施形態では、前駆体混合物201は、ダイ開口部205を通り、かつ成形アセンブリ251の少なくとも一部分への方向288に押し出され得る。とりわけ、成形アセンブリ251の少なくとも一部分は、少なくとも1つの開口部254を含み得る。図2aに例示されるものなどの特定の実施形態では、成形アセンブリ251は、ダイ203から前駆体混合物201を受け取るように構成された開口部254を有する第1の部分252を含み得る。
【0028】
さらに他の実施形態によれば、成形アセンブリ251は、例えば、少なくとも3つの表面を含む、表面または多数の表面によって画定され得る少なくとも1つの開口部254を含み得る。特定の実施形態では、開口部254は、成形アセンブリ251の第1の部分252の厚さ全体を通って延在することができる。代替的に、開口部254は、成形アセンブリ251の厚さ全体を通って延在することができる。さらに、他の代替的な実施形態では、開口部254は、成形アセンブリ251の厚さ全体の一部分を通って延在することができる。
【0029】
図2bを簡単に参照すると、第1の部分252のセグメントが例示されている。示されるように、第1の部分252は、開口部254、およびより具体的には、複数の開口部254を含み得る。開口部254は、第1の部分252の体積の中に延在することができ、より具体的には、穿孔として第1の部分252の厚さ全体を通って延在することができる。さらに例示されるように、成形アセンブリ251の第1の部分252は、第1の部分252の長さに沿って互いにずれて位置する複数の開口部254を含み得る。特定の実施形態では、第1の部分252は、押し出し方向288に対して特定の角度で、適用ゾーン283を通って方向286に並進することができる。一実施形態によれば、第1の部分252の並進方向286と押し出し方向288との間の角度は、実質的に直交することができる(すなわち、実質的に90°)。しかしながら、他の実施形態では、角度は、鋭角、または代替的に鈍角など、異なっていてもよい。
【0030】
特定の実施形態では、成形アセンブリ251は、スクリーンの形態であり得る第1の部分252を含み得、このスクリーンは、穿孔シートの形態であり得る。とりわけ、第1の部分252のスクリーン構成は、その長さに沿って延在する複数の開口部254を有する材料の長さによって画定され、前駆体混合物201がダイ203から堆積されるときに前駆体混合物201を受け入れるように構成され得る。第1の部分は、連続処理のためにローラ上を移動する連続ベルトの形態であり得る。ある特定の実施形態では、ベルトは、例えば、少なくとも約3mなど、少なくとも約2mの長さを含む、連続処理に好適な長さを有するように形成され得る。
【0031】
特定の実施形態では、開口部254は、スクリーンの長さ(l)および幅(w)によって画定された平面内で見られるように、二次元形状を有し得る。開口部254は、円形の二次元形状を有するように例示されているが、他の形状が企図される。例えば、開口部254は、多角形、楕円形、数字、ギリシャ語アルファベット文字、ラテン語アルファベット文字、ロシア語アルファベット文字、アラビア語アルファベット文字(または、任意の言語のアルファベット文字)、多角形形状の組み合わせを含む複雑な形状、およびそれらの組み合わせなどの二次元形状を有し得る。特定の例では、開口部254は、三角形、矩形、四角形、五角形、六角形、七角形、八角形、九角形、十角形、およびそれらの組み合わせなどの二次元多角形形状を有し得る。その上、第1の部分252は、複数の異なる二次元形状を有する開口部254の組み合わせを含むように形成され得る。第1の部分252は、互いに比較して、異なる二次元形状を有し得る複数の開口部254を有するように形成され得ることが理解されよう。
【0032】
他の実施形態では、成形アセンブリ251は、型の形態であり得る。特に、成形アセンブリ251は、ダイ203からの前駆体混合物201を受け入れるように構成された側面および底面を画定する開口部254を有する型の形状であり得る。とりわけ、型構成は、型が成形アセンブリ251の厚さ全体を通って延在しない開口部を有するように、スクリーン構成とは違う場合がある。
【0033】
1つの設計では、成形アセンブリ251は、適用ゾーン283内の第1の部分252に隣接するように構成された第2の部分253を含み得る。特定の例では、前駆体混合物201は、第1の部分252の開口部254の中に適用され、かつ適用ゾーン283内の第2の部分253の表面257に当接して、前駆体多孔性触媒担体粒子206を形成するように構成され得る。1つの特定の設計では、第2の部分253は、前駆体混合物201が第1の部分252内の開口部254を満たして、前駆体多孔性触媒担体粒子206を形成することを可能にする停止面として構成され得る。
【0034】
1つの実施形態によれば、第2の部分253の表面254は、前駆体混合物201が第1の部分252の開口部254内に収容されている間、前駆体混合物201に接触するように構成され得る。表面257は、処理を容易にするために特定のコーティングを有し得る。例えば、表面257は、無機材料、有機材料、およびそれらの組み合わせを含むコーティングを含み得る。いくつかの好適な無機材料としては、セラミック、ガラス、金属、金属合金、およびそれらの組み合わせを挙げることができる。有機材料のある特定の好適な例としては、例えば、ポリテトラフルオロエチレン(PTFE)などのフルオロポリマーを含むポリマーを挙げることができる。
【0035】
代替的に、表面257は、処理中に、第1の部分252の開口部254内に収容された前駆体多孔性触媒担体粒子206が第2の部分253の表面257上に収容されたフィーチャを複製することができるように、例えば、突起および溝を含むフィーチャを含み得る。
【0036】
本明細書に記載されるように、特定の実施形態では、第1の部分252は、方向286に並進することができる。このように、283上の適用において、第1の部分252の開口部254に収容された前駆体混合物201は、第2の部分253の表面257上を並進することができる。一実施形態によれば、第1の部分252は、好適な処理を容易にするために、特定の速度で方向286に並進することができる。例えば、第1の部分252は、少なくとも約0.5mm/秒の速度で、適用ゾーン283を通って並進することができる。他の実施形態では、第1の部分252の並進速度は、少なくとも約1cm/秒、少なくとも約3cm/秒、少なくとも約4cm/秒、少なくとも約6cm/秒、少なくとも約8cm/秒、またはさらには少なくとも約10cm/秒などを超えてもよい。さらに、少なくとも1つの非限定的な実施形態では、第1の部分252は、約1m/秒以下、またはさらには約0.5m/秒以下など、約5m/秒以下の速度で方向286に並進することができる。第1の部分252は、上述の最小値と最大値のいずれかの間の範囲内の速度で並進することができることが理解されよう。
【0037】
成形アセンブリ251の第1の部分252の開口部254内に前駆体混合物201を適用して、前駆体多孔性触媒担体粒子206を形成した後、第1の部分252は、排出ゾーン285に並進することができる。並進は、成形アセンブリの少なくとも一部分を適用ゾーン283から排出ゾーン285に並進させるように構成された並進機によって容易にすることができる。並進機のいくつかの好適な例としては、一連のローラを挙げることができ、これらの周りで、第1の部分252は、ループおよび回転することができる。
【0038】
排出ゾーン245への並進中に、前駆体多孔性触媒担体粒子206は、生素地触媒担体粒子207のために乾燥され得る。
【0039】
排出ゾーンは、第1の部分252の開口部254内に収容された生素地多孔性触媒担体粒子207に排出材料289を方向付けするように構成され得る少なくとも1つの排出アセンブリ287を含み得る。特定の実施形態では、適用ゾーン283から排出ゾーン285への第1の部分252の並進中に、成形アセンブリ251の一部分のみを移動させることができる。例えば、成形アセンブリ251の第1の部分252は、方向286に並進することができ、一方、成形アセンブリ251の少なくとも第2の部分253は、第1の部分252に対して静止し得る。つまり、特定の例では、第2の部分253は、完全に適用ゾーン283内に収容することができ、排出ゾーン285内の第1の部分252との接触から除外され得る。特定の例では、ある特定の実施形態では、代替的にバッキングプレートとも称され得る第2の部分253は、排出ゾーン285の前で終端する。
【0040】
第1の部分252は、適用ゾーン283から排出ゾーン285に並進することができ、第1の部分252の開口部254内に収容された生素地多孔性触媒担体粒子207の対向する主表面を露出させることができる。ある特定の例では、開口部254内の前駆体混合物201の両方の主表面の露出は、例えば、開口部254からの生素地多孔性触媒担体粒子207の排出を含む、さらなる処理を容易にすることができる。
【0041】
アセンブリ200にさらに例示されるように、特定の実施形態では、成形アセンブリ251の第1の部分252は、適用ゾーン283内で成形アセンブリ251の第2の部分253と直接接触することができる。その上、第1の部分252を適用ゾーン283から排出ゾーン285に並進させる前に、第1の部分252を第2の部分253から分離することができる。このように、開口部254内に収容された生素地多孔性触媒担体粒子207は、成形アセンブリ251の一部分の少なくとも1つの表面、およびより具体的には、成形アセンブリ251の第2の部分253の表面257から除去され得る。とりわけ、開口部254内に収容された生素地多孔性触媒担体粒子207は、排出ゾーン285内の開口部254から生素地多孔性触媒担体粒子207を排出する前に、第2の部分253の表面257から除去され得る。生素地多孔性触媒担体粒子207を成形アセンブリ251の第1の部分252から除去するプロセスは、第2の部分253を第1の部分252との接触から除外した後に実施することができる。
【0042】
1つの実施形態では、排出材料289は、成形アセンブリ251の第1の部分252に方向付けされて、第1の部分252の開口部254内の生素地多孔性触媒担体粒子207との接触を容易にすることができる。特定の例では、排出材料289は、生素地多孔性触媒担体粒子207の露出した主表面、および成形アセンブリ251の第1の部分252の開口部254と直接接触することができる。理解されるように、排出材料289の少なくとも一部分はまた、排出アセンブリ287によって並進されるときに、第2の部分252の主表面に接触することができる。
【0043】
一実施形態によれば、排出材料289は、流動化材料であり得る。流動化材料の好適な例としては、液体、気体、およびそれらの組み合わせを挙げることができる。1つの実施形態では、排出材料289の流動化材料は、不活性材料を含み得る。代替的に、流動化材料は、還元材料であり得る。さらに、別の特定の実施形態では、流動化材料は、酸化材料であり得る。1つの特定の実施形態によれば、流動化材料は、空気を含み得る。
【0044】
代替的な実施形態では、排出材料289は、気相成分、液相成分、固相成分、およびそれらの組み合わせを含むエアロゾルを含み得る。なお別の実施形態では、排出材料289は、添加剤を含み得る。添加剤のいくつかの好適な例としては、有機材料、無機材料、気相成分、液相成分、固相成分、およびそれらの組み合わせなどの材料を挙げることができる。1つの特定の例では、添加剤は、前駆体混合物201の材料をドープするように構成されたドーパント材料であり得る。別の実施形態によれば、ドーパントは、排出材料中に含有され得る液相成分、気相成分、固相成分、またはそれらの組み合わせであり得る。さらに、1つの特定の例では、ドーパントは、排出材料中に懸濁された微粉末として存在することができる。
【0045】
成形アセンブリ251の第1の部分252の開口部254内の生素地多孔性触媒担体粒子207に排出材料を方向付けすることは、所定の力で実施することができる。所定の力は、開口部254から生素地多孔性触媒担体粒子207を排出するのに好適であり得、前駆体多孔性触媒担体粒子206のレオロジーパラメータ、空洞の形状、成形アセンブリの構成材料、生素地多孔性触媒担体粒子207と成形アセンブリ251の材料との間の表面張力、およびそれらの組み合わせの関数であり得る。1つの実施形態では、所定の力は、少なくとも約1N、少なくとも約10N、少なくとも約12N、少なくとも約14N、少なくとも約16N、少なくとも約50N、またはさらには少なくとも約80Nなど、少なくとも約0.1Nであり得る。さらに、1つの非限定的な実施形態では、所定の力は、約200N以下、約100N以下、またはさらには約50N以下など、約500N以下であり得る。所定の力は、上述の最小値と最大値とのいずれかの間の範囲内であり得る。
【0046】
とりわけ、排出材料289の使用は、開口部254からの生素地多孔性触媒担体粒子207の除去に本質的に関与し得る。より一般には、開口部254から生素地多孔性触媒担体粒子207を除去するプロセスは、生素地多孔性触媒担体粒子207に外力を加えることによって実施することができる。とりわけ、外力を加えるプロセスは、成形アセンブリの限定されたひずみ、および開口部254から生素地多孔性触媒担体粒子207を排出するための外部力の適用を含む。排出のプロセスは、開口部254からの生素地多孔性触媒担体粒子207の除去をもたらし、別の構成要素(例えば、第2の部分253)に対して第1の部分252の剪断を比較的少なく、またはそれを本質的に有することなく実施することができる。その上、前駆体混合物の排出は、開口部254内の生素地多孔性触媒担体粒子207の乾燥を本質的に有することなく実現成することができる。理解されるように、多孔性触媒担体粒子のバッチ291は、開口部254から排出され、収集され得る。収集のいくつかの好適な方法は、成形アセンブリ251の第1の部分252の下にある容器を含み得る。代替的に、生素地多孔性触媒担体粒子207は、生素地多孔性触媒担体粒子のバッチ291が排出後に第1の部分252上に戻って落下するような様態で、開口部254から排出され得る。
【0047】
生素地多孔性触媒担体粒子のバッチ291は、第1の部分252上の排出ゾーンから、生素地多孔性触媒担体粒子のバッチ291を焼成(すなわち、か焼)するための焼成ゾーンなどのさらなる処理のための他のゾーンに並進して、多孔性触媒担体粒子のバッチを形成することができる。
【0048】
代替的な実施形態は、焼成せずに多孔性触媒担体粒子の最終バッチを生素地多孔性触媒担体粒子から生成することを含み得ることが理解されよう。したがって、そのような実施形態を目的として、生素地多孔性触媒担体粒子のバッチ291は、生素地多孔性触媒担体粒子のバッチ291が排出ゾーンから離れて並進するとすぐに、多孔性触媒担体粒子のバッチになり得る。
【0049】
一実施形態によれば、生素地多孔性触媒担体粒子207は、生素地多孔性触媒担体粒子207が成形アセンブリ251の第1の部分252の開口部内にある持続時間の間に、生素地多孔性触媒担体粒子207の総重量に対して、約80%未満の重量変化を受ける場合がある。他の実施形態では、成形アセンブリ251内に収容されている間の生素地多孔性触媒担体粒子207の重量損失は、約75%未満、約70%未満、約65%未満、約60%未満、またはさらには約55%未満など、より少ない場合がある。さらに他の実施形態によれば、成形アセンブリ251内に収容されている間の生素地多孔性触媒担体粒子207の重量損失は、少なくとも約25%、または少なくとも約30%、またはさらには少なくとも約35%など、少なくとも約20%であり得る。
【0050】
その上、処理中、生素地多孔性触媒担体粒子207は、生素地多孔性触媒担体粒子207が成形アセンブリ251の開口部254内にある持続時間の間に、体積変化(例えば、収縮)を受ける場合がある。例えば、生素地多孔性触媒担体粒子207の体積の変化は、生素地多孔性触媒担体粒子207を開口部内に適用してから、前駆体混合物を開口部254から排出するまでの持続時間の間に、生素地多孔性触媒担体粒子207の総体積に対して、少なくとも約3%、または少なくとも約5%、または少なくとも約10%、または少なくとも約15%、または少なくとも約20%、または少なくとも約25%、または少なくとも約30%、または少なくとも約35%、または少なくとも約40%、またはさらには少なくとも約45%など、少なくとも約1%であり得る。さらに他の実施形態によれば、生素地多孔性触媒担体粒子207の体積の変化は、生素地多孔性触媒担体粒子207を開口部内に適用してから、前駆体混合物を開口部254から排出するまでの持続時間の間に、前駆体混合物201の総体積に対して、約60%未満であり得る。他の実施形態では、総体積変化は、約58%未満、約55%未満、またはさらには約53%未満など、より少ない場合がある。
【0051】
一実施形態によれば、生素地多孔性触媒担体粒子207は、制御された加熱プロセスを受けることができ、一方、前駆体混合物は、成形アセンブリ251内に収容される。例えば、加熱プロセスは、限定された時間の間、前駆体混合物を室温より高い温度で加熱することを含み得る。温度は、少なくとも約35℃、少なくとも約40℃など、少なくとも約50℃、少なくとも約60℃、またはさらには少なくとも約100℃など、少なくとも約30℃であり得る。さらに、温度は、約200℃以下、またはさらには約150℃以下、またはさらには約100℃以下など、約300℃以下であり得る。加熱する持続時間は、約10分以下、約5分以下、約3分以下、約2分以下、またはさらには約1分以下など、特に短くてもよい。
【0052】
加熱プロセスは、赤外線ランプなどの放射熱源を利用して、生素地多孔性触媒担体粒子207の制御された加熱を容易にすることができる。その上、加熱プロセスは、前駆体混合物の特徴を制御し、本明細書における実施形態に従って多孔性触媒担体粒子の特定の態様を容易にするように適合され得る。
【0053】
一実施形態によれば、成形アセンブリ251の開口部254から生素地多孔性触媒担体粒子207を排出するプロセスは、特定の温度で実施され得る。例えば、排出のプロセスは、約300℃以下の温度で実施することができる。他の実施形態では、排出中の温度は、約250℃以下、約200℃以下、約180℃以下、約160℃以下、約140℃以下、約120℃以下、約100℃以下、約90℃以下、約60℃以下、またはさらには約30℃以下であり得る。代替的に、非限定的な実施形態では、排出材料を前駆体混合物に方向付けし、生素地多孔性触媒担体粒子207を開口部251から排出するプロセスは、室温を超え得るこれらの温度を含む、ある特定の温度で実施され得る。排出プロセスを実施するためのいくつかの好適な温度は、少なくとも約-50℃、少なくとも約-25℃、少なくとも約0℃、少なくとも約5℃、少なくとも約10℃、またはさらには少なくとも約15℃など、少なくとも約-80℃であり得る。ある特定の非限定的な実施形態では、生素地多孔性触媒担体粒子207を開口部254から排出するプロセスは、上述の温度のいずれかの間の範囲内の温度で実施され得る。
【0054】
その上、排出材料289は、調製され、所定の温度で排出アセンブリ287から排出され得ることが理解されよう。例えば、排出材料289は、開口部254内の生素地多孔性触媒担体粒子207と接触すると、前駆体混合物の温度が低下するように構成されるように、周囲環境よりも著しく低い温度であり得る。排出プロセス中、生素地多孔性触媒担体粒子207は、生素地多孔性触媒担体粒子207の材料の収縮および開口部254からの排出を引き起こす生素地多孔性触媒担体粒子207の温度よりも冷たい温度であり得る排出材料289によって接触され得る。
【0055】
一実施形態によれば、排出アセンブリ287は、一実施形態による多孔性触媒担体粒子のバッチの好適な形成を容易にするために、成形アセンブリ251の開口部254に対して特定の関係を有することができる。例えば、ある特定の例では、排出アセンブリ287は、排出材料289が排出アセンブリ287から出る排出材料開口部276を有することができる。排出材料開口部276は、排出材料開口部幅277を画定することができる。その上、第1の部分252の開口部254は、図2aに例示されるように、成形アセンブリ開口部幅278を有することができ、これは、排出材料開口部幅277と同じ方向における開口部の最大寸法を画定することができる。特定の例では、排出材料開口部幅277は、成形アセンブリ開口部幅278と実質的に同じであり得る。
【0056】
その上、排出アセンブリ287の表面と成形アセンブリの第1の部分252との間の間隙距離273は、一実施形態による多孔性触媒担体粒子の形成を容易にするように制御され得る。間隙距離273は、ある特定のフィーチャを有する多孔性触媒担体粒子を形成するか、またはある特定のフィーチャの形成を制限することを容易にするように修正することができる。
【0057】
排出ゾーン285内の成形アセンブリ251の第1の部分252の反対側に圧力差が生じ得ることがさらに理解されよう。特に、排出アセンブリ287の使用に加えて、システム200は、排出アセンブリ287からの第1の部分252の反対側の圧力を低減して、開口部254から多孔性触媒担体粒子のバッチ291を引っ張ることを容易にするように構成された任意選択のシステム279(例えば、減圧システム)を利用することができる。本プロセスは、排出アセンブリ287の反対側の成形アセンブリの側面に負圧差を提供することを含み得る。排出材料の所定の力と、排出ゾーン285内の成形アセンブリの第1の部分252の裏側272に加えられた負圧とのバランスをとることにより、多孔性触媒担体粒子のバッチ291および最終的に形成された多孔性触媒担体粒子における異なる形状特徴の形成を容易にすることができることが理解されよう。
【0058】
第1の部分252の開口部254から生素地多孔性触媒担体粒子207を排出した後、生素地多孔性触媒担体粒子のバッチが形成され、次いで、多孔性触媒担体粒子のバッチが形成される。特定の実施形態によれば、生素地多孔性触媒担体粒子のバッチ、および/または多孔性触媒担体粒子のバッチは、開口部254の形状を実質的に複製する形状を有することができる。
【0059】
ここで、前駆体混合物(すなわち、形成プロセス100に関して記載された前駆体混合物、および/またはシステム200に関して記載された前駆体混合物201)を参照すると、ある特定の実施形態によれば、前駆体混合物は、多孔性触媒担体粒子を形成するために必要な材料の任意の組み合わせを含み得る。例えば、前駆体混合物は、主成分として、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせなどの材料を含み得る。さらに他の実施形態によれば、追加の成分は、水、有機溶媒、酸、塩基、有機添加剤、および金属ドーパントを含み得る。
【0060】
ここで、生素地多孔性触媒担体粒子のバッチ(すなわち、形成プロセス100に関して記載された生素地多孔性触媒担体粒子のバッチ、および/またはシステム200に関して記載された生素地多孔性触媒担体粒子のバッチ)を参照すると、ある特定の実施形態によれば、生素地多孔性触媒担体粒子のバッチは、主成分として、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせなどの材料を含み得る。さらに他の実施形態によれば、追加の成分は、水、有機溶媒、酸、塩基、有機添加剤、および金属ドーパントを含み得る。
【0061】
ここで、多孔性触媒担体粒子のバッチ(すなわち、形成プロセス100に関して記載された多孔性触媒担体粒子のバッチ、および/またはシステム200に関して記載された多孔性触媒担体粒子のバッチ)を参照すると、ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、およびそれらの組み合わせなどの材料を含み得る。さらに他の実施形態によれば、金属ドーパントは、10重量パーセント未満の濃度で存在し得る。
【0062】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均細孔容積を有し得る。本明細書に記載の実施形態を目的として、バッチまたは多孔性触媒担体粒子の試料の平均細孔容積は、液体水銀が担体の細孔に押し込まれる従来の水銀圧入多孔度測定デバイスを使用して測定される。水銀をより小さい細孔に押し込むには、より大きい圧力が必要であり、圧力増分の測定は、侵入した細孔中の体積増分、したがって、増分体積中の細孔のサイズに対応する。本明細書で使用される場合、平均細孔容積は、Micromeritics AutoPore IV 9500シリーズ(130°の接触角、0.480N/mの表面張力を有する水銀、および水銀圧縮についての補正を適用した)を使用した水銀圧入多孔度測定(0.4~60,000psiの可能な圧力範囲)によって測定される。
【0063】
特定の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.15cm/g、または少なくとも約0.2cm/g、または少なくとも約0.25cm/g、または少なくとも約0.3cm/g、少なくとも約0.35cm/g、または少なくとも約0.4cm/g、または少なくとも約0.45cm/g、または少なくとも約0.5cm/g、または少なくとも約0.55cm/g、または少なくとも約0.6cm/g、または少なくとも約0.65cm/g、または少なくとも約0.7cm/g、または少なくとも約0.75cm/g、またはさらには少なくとも約0.8cm/gなど、少なくとも約0.1cm/gの平均細孔容積を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、約9cm/g以下、または約8cm/g以下、または約7cm/g以下、または約6cm/g以下、またはさらには約5cm/g以下など、約10cm/g以下の平均細孔容積を有し得る。多孔性触媒担体粒子のバッチの平均細孔容積は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均細孔容積は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0064】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均比表面積を有し得る。本明細書に記載の実施形態を目的として、多孔性触媒担体粒子のバッチの試料の平均比表面積は、BET法によって決定される。分析前に、最初に試料を250℃で2時間脱気する。次いで、Micromeritics ASAP 2420を使用して、5ポイントBET分析を使用して試料の表面積を決定する。
【0065】
特定の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約1.0m/g、または少なくとも約5m/g、または少なくとも約10m/g、または少なくとも約25m/g、または少なくとも約50m/g、または少なくとも約75m/g、または少なくとも約100m/g、または少なくとも約125m/g、または少なくとも約150m/g、または少なくとも約175m/g、またはさらには少なくとも約200m/gなど、少なくとも約0.1m/gの平均比表面積を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、約1500m/g以下、または約1000m/g以下、または約500m/g以下、または約400m/g以下、またはさらには約300m/g以下など、約2000m/g以下の平均比表面積を有し得る。多孔性触媒担体粒子のバッチの平均比表面積は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均比表面積は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0066】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均充填密度を有し得る。本明細書に記載の実施形態を目的として、平均充填密度は、100mLのメスシリンダーを使用して測定し、これによって、多孔性触媒担体粒子のバッチの試料を秤量し、次いで100mLレベルまで満たす。AT-2 Autotap Tap Density Analyzer(Boynton Beach,FL,USAに位置するQuantachrome Instrumentsによって製造された)は、1000回のタップを実行するように設定されており、タッピングを開始する。1000回のタップの完了後、試料の体積を0.5mL単位で測定する。次いで、試料およびメスシリンダーを秤量し、試料の質量を得るために空のメスシリンダーの質量を減算し、これを試料の体積で除算して、充填密度を求める。
【0067】
特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約1.85g/cm以下、または約1.8g/cm以下、または約1.75g/cm以下、または約1.7g/cm以下、または約1.65g/cm以下、または約1.6g/cm以下、または約1.55g/cm以下、または約1.5g/cm以下、または約1.45g/cm以下、または約1.4g/cm以下、または約1.35g/cm以下、または約1.3g/cm以下、または約1.25g/cm以下、または約1.2g/cm以下、または約1.15g/cm以下、または約1.1g/cm以下、または約1.05g/cm以下、またはさらには約1.0g/cm以下など、約1.9g/cm以下の平均充填密度を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.1g/cmの平均充填密度を有し得る。多孔性触媒担体粒子のバッチの平均充填密度は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均充填密度は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0068】
なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定のジオピクノメーター密度を有し得る。本明細書に記載の実施形態を目的として、ジオピクノメーター密度は、Micromeritics Geo-Pycnometer1360機器を使用して測定する。この機器は、既知の質量の試料がMicromeritics DryFlo(商標)を収容するチャンバに導入されたときの体積変化を測定することによって密度を決定する。DryFloは、グラファイト粉末で覆われた小さいビーズからなる。較正は、最初に円筒形の試料チャンバ内に存在するDryFloのみで実行される。チャンバの内容物はプランジャによって90Nの最大力で押され、この力を達成するためにプランジャが押された距離が機器によって記録される。この距離測定値から、試料チャンバ内のDryFloの体積が機器によって計算される。較正のために、このサイクルを5回繰り返し、平均体積を求める。次いで、チャンバおよびプランジャを取り外し、既知の質量(約2.5グラム)の多孔性触媒担体粒子のバッチの試料をチャンバ内のDryFloに添加する。測定した質量を機器に入力する。次いで、90Nの最大力までプランジャを押すプロセスは、試料がチャンバ内に存在する状態で、5サイクル繰り返す。機器は、各サイクルについてのプランジャが押された距離から、DryFlo-試料混合物の平均体積を計算する。計算したDryFlo試料についての平均体積から、DryFlo較正についての平均体積を減算することにより、試料の体積を求めた。試料の質量が既知である場合、機器は、質量を体積で除算することによって試料の密度を算出する。
【0069】
なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.12g/cm、または少なくとも約0.14g/cm、または少なくとも約0.16g/cm、または少なくとも約0.18g/cm、または少なくとも約0.2g/cm、またはさらには少なくとも約0.22g/cmなど、少なくとも約0.1g/cmのジオピクノメーター密度を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、約4.75g/cm以下、または約4.5g/cm以下、または約4.25g/cm以下、または約4.0g/cm以下、または約3.75g/cm以下、または約3.5g/cm以下、または約3.25g/cm以下、または約3.0g/cm以下、または約2.75g/cm以下、または約2.5g/cm以下、または約2.4g/cm以下、または約2.3g/cm以下、または約2.28g/cm以下、または約2.26g/cm以下、または約2.24g/cm以下、またはさらには約2.22g/cm以下など、約5.0g/cm以下のジオピクノメーター密度を有し得る。多孔性触媒担体粒子のバッチのジオピクノメーター密度は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチのジオピクノメーター密度は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0070】
なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、粒子の長さに沿った特定の断面形状を有する円柱形状を有する複数の粒子を含み得る。例示を目的として、図3は、本明細書に記載の実施形態に従って形成された粒子300の例示を含む。図3に示されるように、ある特定の実施形態によれば、粒子300は、粒子の長さに沿って円形の断面形状301を有し得る。なお他の実施形態によれば、複数の粒子は、粒子の長さに沿って楕円形の断面形状を有し得る。さらに他の実施形態によれば、複数の粒子は、粒子の長さに沿って多角形の断面形状を有し得る。
【0071】
さらに他の実施形態によれば、円柱形状を有する多孔性触媒担体粒子のバッチ中の粒子は、長さ(L)、断面直径(D)、およびアスペクト比(AR)を含む基本寸法を有し得る。本明細書に記載の実施形態を目的として、図3は、粒子の断面形状301に垂直な最も大きい寸法として定義される粒子の長さ(L)を示す例示を含む。図3はまた、粒子の断面形状の最も大きい寸法として定義される断面直径(D)を示す例示を含む。本明細書に記載の実施形態を目的として、多孔性触媒担体粒子のバッチ中の粒子のアスペクト比(AR)は、多孔性触媒担体粒子のバッチ中の粒子の断面直径(D)で除算した多孔性触媒担体粒子のバッチ中の粒子の長さ(L)に等しい。
【0072】
多孔性触媒担体粒子の特定のバッチの平均長さ(L)、平均断面直径(すなわち、等価直径)(D)、および平均粒子アスペクト比(AR)を含むすべての測定値は、Malvern Morphologi G3Sの粒子サイズおよび形状分析器を使用して測定されることが理解されよう。粒子の試料を180mmx110mmのガラスプレート上に置く。個々の粒子が別の粒子と接触しないように、粒子を均一な単層に広げる。分析器は、2.5倍の倍率で粒子の画像を収集し、次いでMorphologiソフトウェア(バージョン8.11)は、長さおよび等価直径を含む各粒子についての異なる形態特性を計算する。平均長さ(L)、平均断面直径(D)、および平均アスペクト比(AR)は、多孔性触媒担体粒子の特定のバッチから少なくとも50個の粒子を撮影した画像に基づいて計算される。特に、平均断面直径(D)は、上方から見た向き、すなわち、円形断面を上に向けた状態の粒子から計算される。平均長さ(L)および平均アスペクト比(AR)は、側方から見た位置にある粒子から計算される。アスペクト比を決定するために、長さおよび直径の両方が側方から見た向きで測定され、これらの寸法の比率が計算される。
【0073】
すべての粒子サイズ測定値(すなわち、D、L、およびAR)は、多孔性触媒担体粒子の特定のバッチの累積質量の10%、50%、および90%についての分布切片を表すと理解され得る、D値(すなわち、D10、D50、およびD90)と組み合わせて本明細書に記載され得ることがさらに理解されよう。例えば、粒子の特定のバッチは、試料の粒子の10%がこの値よりも小さい直径を有する粒子で構成されている直径として定義される直径D10値(すなわち、DD10)を有し得、粒子の特定のバッチは、試料の粒子の50%がこの値よりも小さい直径を有する粒子で構成されている直径として定義される直径D50値(すなわち、DD50)を有し得、粒子の特定のバッチは、試料の粒子の90%がこの値よりも小さい直径を有する粒子で構成されている直径として定義される直径D90値(すなわち、DD90)を有し得る。さらに、粒子の特定のバッチは、試料の粒子の10%がこの値よりも短い長さを有する粒子で構成されている長さとして定義される長さD10値(すなわち、LD10)を有し得、粒子の特定のバッチは、試料の粒子の50%がこの値よりも短い長さを有する粒子で構成されている長さとして定義される長さD50値(すなわち、LD50)を有し得、粒子の特定のバッチは、試料の粒子の90%がこの値よりも短い長さを有する粒子で構成されている長さとして定義される長さD90値(すなわち、LD90)を有し得る。最後に、粒子の特定のバッチは、試料の粒子の10%がこの値よりも小さいアスペクト比を有する粒子で構成されているアスペクト比として定義されるアスペクト比D10値(すなわち、ARD10)を有し得、粒子の特定のバッチは、試料の粒子の50%がこの値よりも小さいアスペクト比を有する粒子で構成されているアスペクト比として定義されるアスペクト比D50値(すなわち、ARD50)を有し得、粒子の特定のバッチは、試料の粒子の90%がこの値よりも小さいアスペクト比を有する粒子で構成されているアスペクト比として定義されるアスペクト比D90値(すなわち、ARD90)を有し得る。
【0074】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の長さ(L)分布スパンPLDSを有し得、PLDSは、(LD90-LD10)/LD50に等しく、式中、LD90は、多孔性触媒担体粒子のバッチのLD90粒子長さ(L)分布測定値に等しく、LD10は、LD10粒子長さ(L)分布測定値に等しい。ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約48%以下、または約45%以下、または約43%以下、または約40%以下、または約38%以下、または約35%以下、または約33%以下、またはさらには約30%以下など、約50%以下の長さ(L)分布スパンPLDSを有し得る。多孔性触媒担体粒子のバッチの長さ(L)分布スパンPLDSは、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの長さ(L)分布スパンPLDSは、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0075】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の直径(D)分布スパンPDDSを有し得、PDDSは、(DD90-DD10)/DD50に等しく、式中、DD90は、多孔性触媒担体粒子のバッチのDD90粒子直径(D)分布測定値に等しく、DD10は、DD10粒子直径(D)分布測定値に等しい。ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約48%以下、または約45%以下、または約43%以下、または約40%以下、または約38%以下、または約35%以下、または約33%以下、またはさらには約30%以下など、約50%以下の直径(D)分布スパンPDDSを有し得る。多孔性触媒担体粒子のバッチの直径(D)分布スパンPDDSは、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの直径(D)分布スパンPDDSは、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0076】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定のアスペクト比(AR)分布スパンPARDSを有し得、PARDSは、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(AR)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(AR)分布測定値に等しい。ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約48%以下、または約45%以下、または約43%以下、または約40%以下、または約38%以下、または約35%以下、または約33%以下、またはさらには約30%以下など、約50%以下のアスペクト比(AR)分布スパンPARDSを有し得る。多孔性触媒担体粒子のバッチのアスペクト比(AR)分布スパンPARDSは、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチのアスペクト比(AR)分布スパンPARDSは、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0077】
なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均粒子断面直径(D)を有し得る。ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約4.5mm以下、または約4.0mm以下、または約3.5mm以下、または約3.0mm以下、または約2.9mm以下、または約2.8mm以下、または約2.7mm以下、または約2.6mm以下、または約2.5mm以下、または約2.4mm以下、または約2.3mm以下、または約2.2mm以下、または約2.1mm以下、または約2.0mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、またはさらには約0.5mm以下など、約5.0mm以下の平均粒子断面直径を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均断面直径を有し得る。多孔性触媒担体粒子のバッチの平均断面直径は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均断面直径は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0078】
さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均長さ(L)を有し得る。ある特定の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.005mm、または少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、またはさらには少なくとも約0.3mmなど、少なくとも約0.001mmの平均粒子長さを有し得る。なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、約9mm以下、または約8mm以下、または約7mm以下、または約6mm以下、または約5mm以下、または約4mm以下、または約3mm以下、または約2mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下、または約0.4mm以下、または約0.3mm以下、または約0.2mm以下、または約0.1以下など、約10mm以下の平均粒子長さを有し得る。多孔性触媒担体粒子のバッチの平均長さは、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均長さは、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0079】
なお他の実施形態によれば、多孔性触媒担体粒子のバッチは、特定の平均アスペクト比(AR)を有し得る。特定の実施形態によれば、多孔性触媒担体粒子のバッチは、約4.5以下、または約4.0以下、または約3.5以下、または約3.0以下、または約2.5以下、または約2.0以下、または約1.9以下、または約1.8以下、または約1.7以下、または約1.6以下、または約1.5以下、または約1.4以下、または約1.3以下、または約1.2以下、または約1.1以下、または約0.9以下、または約0.8以下、または約0.7以下、または約0.6以下、またはさらには約0.5以下など、約5以下の平均アスペクト比(AR)を有し得る。さらに他の実施形態によれば、多孔性触媒担体粒子のバッチは、少なくとも約0.2、またはさらには少なくとも約0.3など、少なくとも約0.1の平均アスペクト比(AR)を有し得る。多孔性触媒担体粒子のバッチの平均アスペクト比(AR)は、上述の最小値と最大値との間の任意の値、およびそれらのいずれかを含む任意の値であり得ることが理解されよう。多孔性触媒担体粒子のバッチの平均アスペクト比(AR)は、上述の最小値と最大値との間の範囲内、およびそれらのいずれかを含む範囲内であり得ることが理解されよう。
【0080】
多くの異なる態様および実施形態が可能である。それらの態様および実施形態のいくつかが本明細書に記載される。本明細書を読んだ後、当業者は、それらの態様および実施形態が例示にすぎず、本発明の範囲を限定しないことを理解するであろう。実施形態は、以下にリスト化される実施形態のうちのいずれか1つ以上に従い得る。
【0081】
実施形態1.多孔性触媒担体粒子のバッチを形成する方法であって、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み、多孔性触媒担体粒子のバッチが、少なくとも約0.1cm/gの平均細孔容積を含む、方法。
【0082】
実施形態2.多孔性触媒担体粒子のバッチを形成する方法であって、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから生素地多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み、多孔性触媒担体粒子のバッチが、少なくとも約0.1m/gの平均比表面積を含む、方法。
【0083】
実施形態3.多孔性触媒担体粒子のバッチを形成する方法であって、前駆体混合物を適用ゾーン内の成形アセンブリの中に適用して、前駆体多孔性触媒担体粒子のバッチを形成することと、成形アセンブリ内の前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、所定の力の下で成形アセンブリに排出材料を方向付けして、成形アセンブリから多孔性触媒担体粒子のバッチを除去することと、生素地多孔性触媒担体粒子のバッチを焼成(すなわち、か焼)して、多孔性触媒担体粒子のバッチを形成することと、を含み、多孔性触媒担体粒子のバッチが、約1.9g/cmの平均充填密度を含む、方法。
【0084】
実施形態4.前駆体混合物を成形アセンブリの中に適用することが、前駆体混合物を、ダイ開口部を通して、かつ成形アセンブリの中に押し出すことを含み、成形アセンブリが、前駆体混合物を受け取るように構成された開口部を備え、開口部が、少なくとも3つの表面によって画定され、開口部が、成形アセンブリの第1の部分の厚さ全体を通って延在し、開口部が、成形アセンブリの厚さ全体を通って延在し、開口部が、成形アセンブリの厚さ全体の一部分を通って延在する、実施形態1、2、および3のいずれか1つに記載の方法。
【0085】
実施形態5.成形アセンブリが、スクリーンを備え、成形アセンブリが、型を備え、成形アセンブリが、スクリーンを備える第1の部分を備え、成形アセンブリが、バッキングプレートを備える第2の部分を備え、第1の部分および第2の部分が、適用ゾーン内で互いに隣接しており、第1の部分が、適用ゾーン内で第2の部分に当接しており、スクリーンが、適用ゾーン内でバッキングプレートに隣接しており、バッキングプレートが、適用ゾーン内でスクリーンに当接しており、バッキングプレートの表面が、スクリーンの開口部内で混合物と接触するように構成されている、実施形態1、2、および3のいずれか1つに記載の方法。
【0086】
実施形態6.第1の部分が、適用ゾーン内のダイ開口部に対して並進し、第1の部分が、適用ゾーン内の成形アセンブリの第2の部分に対して並進し、第1の部分が、適用ゾーン内の押し出し方向に対して並進し、スクリーンの並進方向と押し出し方向との間の角度が、鋭角であり、この角度が、鈍角であり、この角度が、実質的に直交している、実施形態1、2、および3のいずれか1つに記載の方法。
【0087】
実施形態7.成形アセンブリの少なくとも一部分が、適用ゾーンを通って並進し、成形アセンブリの少なくとも第1の部分が、適用ゾーンを通って並進し、成形アセンブリのこの部分が、少なくとも約0.5mm/秒、少なくとも約1cm/秒、少なくとも約8cm/秒、および約5m/秒以下の速度で並進する、実施形態1、2、および3のいずれか1つに記載の方法。
【0088】
実施形態8.混合物を適用することが、押し出し、印刷、スプレー適用、およびそれらの組み合わせからなる群から選択されるプロセスを通して混合物を堆積させることを含み、混合物が、ダイ開口部を通って、かつ成形アセンブリ内の開口部の中に押し出され、開口部への押し出し中に、混合物が、成形アセンブリの第1の部分に流れ込み、成形アセンブリの第2の部分の表面に当接する、実施形態1、2、および3のいずれか1つに記載の方法。
【0089】
実施形態9.成形アセンブリの少なくとも一部分を適用ゾーンから排出ゾーンに並進させることをさらに含み、成形アセンブリが、バッキングプレートを備え、バッキングプレートが、排出ゾーン内で取り外され、バッキングプレートが、排出ゾーンの前で終端し、混合物の対向する主表面が、排出ゾーン内の成形アセンブリの一部分の開口部内で露出される、実施形態1、2、および3のいずれか1つに記載の方法。
【0090】
実施形態10.成形アセンブリの第1の部分を成形アセンブリの第2の部分から分離することをさらに含み、成形アセンブリから生素地多孔性触媒担体粒子を除去する前に、成形アセンブリの一部分の少なくとも1つの表面から生素地多孔性触媒担体粒子を除去することをさらに含み、成形アセンブリの第1の部分から成形アセンブリの第2の部分を画定するバッキングプレートを取り外すこと、およびバッキングプレートを取り外した後、成形アセンブリの第2の部分内の開口部から生素地多孔性触媒担体粒子を除去することをさらに含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0091】
実施形態11.排出材料が、成形アセンブリの開口部内の生素地多孔性触媒担体粒子の露出した主表面に直接接触し、排出材料が、生素地多孔性触媒担体粒子の露出した主表面および成形アセンブリの一部分に直接接触している、実施形態1、2、および3のいずれか1つに記載の方法。
【0092】
実施形態12.前駆体混合物が、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0093】
実施形態13.多孔性触媒担体粒子のバッチが、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、およびそれらの組み合わせを含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0094】
実施形態14.多孔性触媒担体粒子のバッチが、少なくとも約0.1cm/g、または少なくとも約0.15cm/g、または少なくとも約0.2cm/g、または少なくとも約0.25cm/g、または少なくとも約0.3cm/g cm/g、または少なくとも約0.35cm/g、または少なくとも約0.4cm/g、または少なくとも約0.45cm/g、または少なくとも約0.5cm/g、または少なくとも約0.55cm/g、または少なくとも約0.6cm/g、または少なくとも約0.65cm/g、または少なくとも約0.7cm/g、または少なくとも約0.75cm/g、または少なくとも約0.8cm/gの平均細孔容積を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0095】
実施形態15.多孔性触媒担体粒子のバッチが、約10cm/g以下、または約9cm/g以下、または約8cm/g以下、または約7cm/g以下、または約6cm/g以下、または約5cm/g以下の平均細孔容積を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0096】
実施形態16.多孔性触媒担体粒子のバッチが、少なくとも約0.1m/g、または少なくとも約1.0m/g、または少なくとも約5m/g、または少なくとも約10m/g、または少なくとも約25m/g、または少なくとも約50m/g、または少なくとも約75m/g、または少なくとも約100m/g、または少なくとも約125m/g、または少なくとも約150m/g、または少なくとも約175m/g、または少なくとも約200m/gの平均比表面積を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0097】
実施形態17.多孔性触媒担体粒子のバッチが、約2000m/g以下、または約1500m/g以下、または約1000m/g以下、または約500m/g以下、または約400m/g以下、または約300m/g以下の平均比表面積を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0098】
実施形態18.多孔性触媒担体粒子のバッチが、約1.9g/cm以下、または約1.85g/cm以下、または約1.8g/cm以下、または約1.75g/cm以下、または約1.7g/cm以下、または約1.65g/cm以下、または約1.6g/cm以下、または約1.55g/cm以下、または約1.5g/cm以下、または約1.45g/cm以下、または約1.4g/cm以下、または約1.35g/cm以下、または約1.3g/cm以下、または約1.25g/cm以下、または約1.2g/cm以下、または約1.15g/cm以下、または約1.1g/cm以下、または約1.05g/cm以下、または約1.0g/cm以下の平均充填密度を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0099】
実施形態19.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmの平均充填密度を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0100】
実施形態20.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmのジオピクノメーター密度を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0101】
実施形態21.多孔性触媒担体粒子のバッチが、約5.0g/cm以下のジオピクノメーター密度を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0102】
実施形態22.多孔性触媒担体粒子のバッチが、円柱形状を有する複数の粒子を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0103】
実施形態23.多孔性触媒担体粒子のバッチが、円形の断面形状を有する複数の粒子を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0104】
実施形態24.多孔性触媒担体粒子のバッチが、楕円形の断面形状を有する複数の粒子を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0105】
実施形態25.多孔性触媒担体粒子のバッチが、多角形の断面形状を有する複数の粒子を含む、実施形態1、2、および3のいずれか1つに記載の方法。
【0106】
実施形態26.多孔性触媒担体粒子のバッチが、約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを有し、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、実施形態1、2、および3のいずれか1つに記載の方法。
【0107】
実施形態27.多孔性触媒担体粒子のバッチが、約4.5mm以下、または約4.0mm以下、または約3.5mm以下、または約3.0mm以下、または約2.9mm以下、または約2.8mm以下、または約2.7mm以下、または約2.6mm以下、または約2.5mm以下、または約2.4mm以下、または約2.3mm以下、または約2.2mm以下、または約2.1mm以下、または約2.0mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下など、約5.0mm以下の平均粒子直径を有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0108】
実施形態28.多孔性触媒担体粒子のバッチが、少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子直径を有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0109】
実施形態29.多孔性触媒担体粒子のバッチが、少なくとも約0.001、または少なくとも約0.005、または少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子長さを有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0110】
実施形態30.多孔性触媒担体粒子のバッチが、約10mm以下、または約9mm以下、または約8mm以下、または約7mm以下、または約6mm以下、または約5mm以下、または約4mm以下、または約3mm以下、または約2mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下、または約0.4mm以下、または約0.3mm以下、または約0.2mm以下、または約0.1以下の平均粒子長さを有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0111】
実施形態31.多孔性触媒担体粒子のバッチが、約5以下、または約4.5以下、または約4.0以下、または約3.5以下、または約3.0以下、または約2.5以下、または約2.0以下、または約1.9以下、または約1.8以下、または約1.7以下、または約1.6以下、または約1.5以下、または約1.4以下、または約1.3以下、または約1.2以下、または約1.1以下、または約0.9以下、または約0.8以下、または約0.7以下、または約0.6以下、または約0.5以下の平均アスペクト比(L/D)を有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0112】
実施形態32.多孔性触媒担体粒子のバッチが、少なくとも約0.1、または少なくとも約0.2、または少なくとも約0.3の平均アスペクト比(L/D)を有する、実施形態1、2、および3のいずれか1つに記載の方法。
【0113】
実施形態33.約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを含む多孔性触媒担体粒子のバッチであって、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、多孔性触媒担体粒子のバッチ。
【0114】
実施形態34.多孔性触媒担体粒子のバッチが、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0115】
実施形態35.多孔性触媒担体粒子のバッチが、少なくとも約0.15cm/g、または少なくとも約0.2cm/g、または少なくとも約0.25cm/g、または少なくとも約0.3cm/g、または少なくとも約0.35cm/g、または少なくとも約0.4cm/g、または少なくとも約0.45cm/g、または少なくとも約0.5cm//g、または少なくとも約0.55cm/g、または少なくとも約0.6cm/g、または少なくとも約0.65cm/g、または少なくとも約0.7cm/g、または少なくとも約0.75cm/g、または少なくとも約0.8cm/gなど、少なくとも約0.1cm/gの平均細孔容積を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0116】
実施形態36.多孔性触媒担体粒子のバッチが、約10cm/g以下、または約9cm/g以下、または約8cm/g以下、または約7cm/g以下、または約6cm/g以下、または約5cm/g以下の平均細孔容積を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0117】
実施形態37.多孔性触媒担体粒子のバッチが、少なくとも約0.1m/g、または少なくとも約1.0m/g、または少なくとも約5m/g、または少なくとも約10m/g、または少なくとも約25m/g、または少なくとも約50m/g、または少なくとも約75m/g、または少なくとも約100m/g、または少なくとも約125m/g、または少なくとも約150m/g、または少なくとも約175m/g、または少なくとも約200m/gの平均比表面積を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0118】
実施形態38.多孔性触媒担体粒子のバッチが、約2000m/g以下、または約1500m/g以下、または約1000m/g以下、または約500m/g以下、または約400m/g以下、または約300m/g以下の平均比表面積を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0119】
実施形態39.多孔性触媒担体粒子のバッチが、約1.9g/cm以下、または約1.85g/cm以下、または約1.8g/cm以下、または約1.75g/cm以下、または約1.7g/cm以下、または約1.65g/cm以下、または約1.6g/cm以下、または約1.55g/cm以下、または約1.5g/cm以下、または約1.45g/cm以下、または約1.4g/cm以下、または約1.35g/cm以下、または約1.3g/cm以下、または約1.25g/cm以下、または約1.2g/cm以下、または約1.15g/cm以下、または約1.1g/cm以下、または約1.05g/cm以下、または約1.0g/cm以下の平均充填密度を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0120】
実施形態40.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmの平均充填密度を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0121】
実施形態41.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmのジオピクノメーター密度を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0122】
実施形態42.多孔性触媒担体粒子のバッチが、約5.0g/cm以下のジオピクノメーター密度を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0123】
実施形態43.多孔性触媒担体粒子のバッチが、円柱形状を有する複数の粒子を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0124】
実施形態44.多孔性触媒担体粒子のバッチが、円形の断面形状を有する複数の粒子を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0125】
実施形態45.多孔性触媒担体粒子のバッチが、楕円形の断面形状を有する複数の粒子を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0126】
実施形態46.多孔性触媒担体粒子のバッチが、多角形の断面形状を有する複数の粒子を含む、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0127】
実施形態47.多孔性触媒担体粒子のバッチが、約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを有し、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0128】
実施形態48.多孔性触媒担体粒子のバッチが、約4.5mm以下、または約4.0mm以下、または約3.5mm以下、または約3.0mm以下、または約2.9mm以下、または約2.8mm以下、または約2.7mm以下、または約2.6mm以下、または約2.5mm以下、または約2.4mm以下、または約2.3mm以下、または約2.2mm以下、または約2.1mm以下、または約2.0mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下など、約5.0mm以下の平均粒子直径を有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0129】
実施形態49.多孔性触媒担体粒子のバッチが、少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子直径を有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0130】
実施形態50.多孔性触媒担体粒子のバッチが、少なくとも約0.001、または少なくとも約0.005、または少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子長さを有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0131】
実施形態51.多孔性触媒担体粒子のバッチが、約10mm以下、または約9mm以下、または約8mm以下、または約7mm以下、または約6mm以下、または約5mm以下、または約4mm以下、または約3mm以下、または約2mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下、または約0.4mm以下、または約0.3mm以下、または約0.2mm以下、または約0.1以下の平均粒子長さを有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0132】
実施形態52.多孔性触媒担体粒子のバッチが、約5以下、または約4.5以下、または約4.0以下、または約3.5以下、または約3.0以下、または約2.5以下、または約2.0以下、または約1.9以下、または約1.8以下、または約1.7以下、または約1.6以下、または約1.5以下、または約1.4以下、または約1.3以下、または約1.2以下、または約1.1以下、または約0.9以下、または約0.8以下、または約0.7以下、または約0.6以下、または約0.5以下の平均アスペクト比(L/D)を有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0133】
実施形態53.多孔性触媒担体粒子のバッチが、少なくとも約0.1、または少なくとも約0.2、または少なくとも約0.3の平均アスペクト比(L/D)を有する、実施形態33に記載の多孔性触媒担体粒子のバッチ。
【0134】
実施形態54.多孔性触媒担体粒子のバッチを形成するためのシステムであって、開口部を有し、かつ前駆体混合物で満たされて、前駆体多孔性触媒担体粒子のバッチを形成するように構成された第1の部分、および第1の部分に当接する第2の部分を含む成形アセンブリを備える適用ゾーンと、第1の熱源を備え、かつ前駆体多孔性触媒担体粒子のバッチを乾燥させて、多孔性触媒担体粒子のバッチを形成するように構成されている乾燥ゾーンと、成形アセンブリの第1の部分内の開口部に向かって排出材料を方向付けして、成形アセンブリから多孔性触媒担体粒子のバッチを除去するように構成された排出アセンブリを備える排出ゾーンと、備える、システム。
【0135】
実施形態55.前駆体混合物が、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、実施形態54に記載のシステム。
【0136】
実施形態56.多孔性触媒担体粒子のバッチが、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、およびそれらの組み合わせを含む、実施形態54に記載のシステム。
【0137】
実施形態57.多孔性触媒担体粒子のバッチが、少なくとも約0.1cm/g、または少なくとも約0.15cm/g、または少なくとも約0.2cm/g、または少なくとも約0.25cm/g、または少なくとも約0.3cm/g、または少なくとも約0.35cm/g、または少なくとも約0.4cm/g、または少なくとも約0.45cm/g、または少なくとも約0.5cm/g、または少なくとも約0.55cm/g、または少なくとも約0.6cm/g、または少なくとも約0.65cm/g、または少なくとも約0.7cm/g、または少なくとも約0.75cm/g、または少なくとも約0.8cm/gの平均細孔容積を含む、実施形態54に記載のシステム。
【0138】
実施形態58.多孔性触媒担体粒子のバッチが、約10cm/g以下、または約9cm/g以下、または約8cm/g以下、または約7cm/g以下、または約6cm/g以下、または約5cm/g以下の平均細孔容積を含む、実施形態54に記載のシステム。
【0139】
実施形態59.多孔性触媒担体粒子のバッチが、少なくとも約0.1m/g、または少なくとも約1.0m/g、または少なくとも約5m/g、または少なくとも約10m/g、または少なくとも約25m/g、または少なくとも約50m/g、または少なくとも約75m/g、または少なくとも約100m/g、または少なくとも約125m/g、または少なくとも約150m/g、または少なくとも約175m/g、または少なくとも約200m/gの平均比表面積を含む、実施形態54に記載のシステム。
【0140】
実施形態60.多孔性触媒担体粒子のバッチが、約2000m/g以下、または約1500m/g以下、または約1000m/g以下、または約500m/g以下、または約400m/g以下、または約300m/g以下の平均比表面積を含む、実施形態54に記載のシステム。
【0141】
実施形態61.多孔性触媒担体粒子のバッチが、約1.9g/cm以下、または約1.85g/cm以下、または約1.8g/cm以下、または約1.75g/cm以下、または約1.7g/cm以下、または約1.65g/cm以下、または約1.6g/cm以下、または約1.55g/cm以下、または約1.5g/cm以下、または約1.45g/cm以下、または約1.4g/cm以下、または約1.35g/cm以下、または約1.3g/cm以下、または約1.25g/cm以下、または約1.2g/cm以下、または約1.15g/cm以下、または約1.1g/cm以下、または約1.05g/cm以下、または約1.0g/cm以下の平均充填密度を含む、実施形態54に記載のシステム。
【0142】
実施形態62.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmの平均充填密度を含む、実施形態54に記載のシステム。
【0143】
実施形態63.多孔性触媒担体粒子のバッチが、少なくとも約0.1g/cmのジオピクノメーター密度を含む、実施形態54に記載のシステム。
【0144】
実施形態64.多孔性触媒担体粒子のバッチが、約5.0g/cm以下のジオピクノメーター密度を含む、実施形態54に記載のシステム。
【0145】
実施形態65.多孔性触媒担体粒子のバッチが、円柱形状を有する複数の粒子を含む、実施形態54に記載のシステム。
【0146】
実施形態66.多孔性触媒担体粒子のバッチが、円形の断面形状を有する複数の粒子を含む、実施形態54に記載のシステム。
【0147】
実施形態67.多孔性触媒担体粒子のバッチが、楕円形の断面形状を有する複数の粒子を含む、実施形態54に記載のシステム。
【0148】
実施形態68.多孔性触媒担体粒子のバッチが、多角形の断面形状を有する複数の粒子を含む、実施形態54に記載のシステム。
【0149】
実施形態69.多孔性触媒担体粒子のバッチが、約5.0mm以下の平均粒子直径および約50%以下の粒子アスペクト比(L/D)分布スパンPARDSを有し、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、実施形態54に記載のシステム。
【0150】
実施形態70.多孔性触媒担体粒子のバッチが、約4.5mm以下、または約4.0mm以下、または約3.5mm以下、または約3.0mm以下、または約2.9mm以下、または約2.8mm以下、または約2.7mm以下、または約2.6mm以下、または約2.5mm以下、または約2.4mm以下、または約2.3mm以下、または約2.2mm以下、または約2.1mm以下、または約2.0mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下など、約5.0mm以下の平均粒子直径を有する、実施形態54に記載のシステム。
【0151】
実施形態71.多孔性触媒担体粒子のバッチが、少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子直径を有する、実施形態54に記載のシステム。
【0152】
実施形態72.多孔性触媒担体粒子のバッチが、少なくとも約0.001、または少なくとも約0.005、または少なくとも約0.01mm、または少なくとも約0.02mm、または少なくとも約0.03mm、または少なくとも約0.04mm、または少なくとも約0.05mm、または少なくとも約0.06mm、または少なくとも約0.07mm、または少なくとも約0.08mm、または少なくとも約0.09mm、または少なくとも約0.1mm、または少なくとも約0.2mm、または少なくとも約0.3mmの平均粒子長さを有する、実施形態54に記載のシステム。
【0153】
実施形態73.多孔性触媒担体粒子のバッチが、約10mm以下、または約9mm以下、または約8mm以下、または約7mm以下、または約6mm以下、または約5mm以下、または約4mm以下、または約3mm以下、または約2mm以下、または約1.9mm以下、または約1.8mm以下、または約1.7mm以下、または約1.6mm以下、または約1.5mm以下、または約1.4mm以下、または約1.3mm以下、または約1.2mm以下、または約1.1mm以下、または約1.0mm以下、または約0.9mm以下、または約0.8mm以下、または約0.7mm以下、または約0.6mm以下、または約0.5mm以下、または約0.4mm以下、または約0.3mm以下、または約0.2mm以下、または約0.1以下の平均粒子長さを有する、実施形態54に記載のシステム。
【0154】
実施形態74.多孔性触媒担体粒子のバッチが、約5以下、または約4.5以下、または約4.0以下、または約3.5以下、または約3.0以下、または約2.5以下、または約2.0以下、または約1.9以下、または約1.8以下、または約1.7以下、または約1.6以下、または約1.5以下、または約1.4以下、または約1.3以下、または約1.2以下、または約1.1以下、または約0.9以下、または約0.8以下、または約0.7以下、または約0.6以下、または約0.5以下の平均アスペクト比(L/D)を有する、実施形態54に記載のシステム。
【0155】
実施形態75.多孔性触媒担体粒子のバッチが、少なくとも約0.1、または少なくとも約0.2、または少なくとも約0.3の平均アスペクト比(L/D)を有する、実施形態54に記載のシステム。
【実施例
【0156】
実施例1
【0157】
多孔性触媒担体粒子の3つの試料バッチS1~S3は、本明細書に記載の実施形態に従って形成した。多孔性触媒担体粒子の試料バッチS1~S3は、本明細書に記載の実施形態によるスクリーン印刷プロセスを使用し、以下の表1にまとめたパラメータを使用して形成した。
【表1】
【0158】
多孔性触媒担体粒子S1~S3の試料バッチを測定して、比較のためにそれらの組成および形状特性を決定した。
【表2】
【0159】
特定の多孔性触媒担体粒子のバッチの平均直径(D)および平均アスペクト比(AR)を含むすべての寸法測定値は、Malvern Morphologi G3の粒子サイズおよび形状分析器を使用して測定した。粒子の試料を180mmx110mmのガラスプレート上に置き、個々の粒子が別の粒子と接触しないように、均一な単層に広げる。下記の画像に示すように、粒子は横向きになっている。分析器は、粒子の画像を撮影し、次いでソフトウェアは、長さ(L)および等価直径(D)を含む各粒子についての異なる形態特性を計算する。アスペクト比は、直径で除算した長さ(AR=L/D)としてソフトウェアによって計算する。平均測定および計算は、多孔性触媒担体粒子の特定のバッチから少なくとも50個の粒子を撮影した画像に基づいている。
【0160】
実施例2
【0161】
多孔性触媒担体粒子の3つの試料バッチS4~S6は、本明細書に記載の実施形態に従って形成した。多孔性触媒担体粒子の試料バッチS4~S6は、本明細書に記載の実施形態によるスクリーン印刷プロセスを使用し、以下の表3にまとめたパラメータを使用して形成した。
【表3】
【0162】
多孔性触媒担体粒子S4~S6の試料バッチを測定して、比較のためにそれらの組成および形状特性を決定した。
【表4】
【0163】
特定の多孔性触媒担体粒子のバッチの平均直径(D)および平均アスペクト比(AR)を含むすべての寸法測定値は、Malvern Morphologi G3の粒子サイズおよび形状分析器を使用して測定した。粒子の試料を180mmx110mmのガラスプレート上に置き、個々の粒子が別の粒子と接触しないように、均一な単層に広げる。下記の画像に示すように、粒子は横向きになっている。分析器は、粒子の画像を撮影し、次いでソフトウェアは、長さ(L)および等価直径(D)を含む各粒子についての異なる形態特性を計算する。アスペクト比は、直径で除算した長さ(AR=L/D)としてソフトウェアによって計算する。平均測定および計算は、多孔性触媒担体粒子の特定のバッチから少なくとも50個の粒子を撮影した画像に基づいている。
【0164】
実施例3
【0165】
多孔性触媒担体粒子の3つの試料バッチS7~S9は、本明細書に記載の実施形態に従って形成した。多孔性触媒担体粒子の試料バッチS7~S9は、本明細書に記載の実施形態によるスクリーン印刷プロセスを使用し、以下の表5にまとめたパラメータを使用して形成した。
【表5】
【0166】
多孔性触媒担体粒子S7~S9の試料バッチを測定して、比較のためにそれらの組成および形状特性を決定した。
【表6】
【0167】
特定の多孔性触媒担体粒子のバッチの平均直径(D)および平均アスペクト比(AR)を含むすべての寸法測定値は、Malvern Morphologi G3の粒子サイズおよび形状分析器を使用して測定した。粒子の試料を180mmx110mmのガラスプレート上に置き、個々の粒子が別の粒子と接触しないように、均一な単層に広げる。下記の画像に示すように、粒子は横向きになっている。分析器は、粒子の画像を撮影し、次いでソフトウェアは、長さ(L)および等価直径(D)を含む各粒子についての異なる形態特性を計算する。アスペクト比は、直径で除算した長さ(AR=L/D)としてソフトウェアによって計算する。平均測定および計算は、多孔性触媒担体粒子の特定のバッチから少なくとも50個の粒子を撮影した画像に基づいている。
【0168】
以上のように、具体的な実施形態および特定の構成要素の接続に関する言及は、具体例である。連結または接続される構成要素に関する言及は、本明細書に記載される方法を実行するために理解され得るように、この構成要素間の直接的な接続、または1つ以上の介在する構成要素を介した間接的な接続のいずれかを開示することを意図していると理解されよう。このように、上に開示した主題は、例示であると考えられ、限定的なものではなく、添付の特許請求の範囲は、これら全ての改変、改善および他の実施形態を包含し、本発明の真の範囲内に含まれることを意図している。さらに、上記の一般的な説明または例で説明した機能のすべてが必要なわけではなく、特定の機能の一部が必要でない場合があり、説明した機能に加えて1つ以上の機能を実行できる。さらにまた、機能が記載される順序は、必ずしも実施される順序ではない。
【0169】
本開示は、特許請求の範囲の範囲または意味を制限するために使用されるべきではないという理解のもと、提出されている。加えて、上述の開示では、明確にするために、別個の実施形態の文脈で本明細書に記載されている特定の特徴は、単一の実施形態において組み合わせて提供されてもよい。逆に、簡潔にするために、単一の実施形態の文脈で説明される様々な特徴は、別個にまたは任意のサブコンビネーションで提供されてもよい。しかしながら、本発明の特定事項は、開示されている実施形態のいずれかの全ての特徴よりも少ないものに関していてもよい。
【0170】
利益、他の利点、および問題に対する解決策は、特定の実施形態に関して上記で説明されている。しかしながら、利益、利点、課題の解決策、および任意の利益、利点、または解決策を発生させるまたはより明確にさせることができる任意の特徴は、任意または全ての請求項の重要な、必要な、または本質的な特徴として解釈されるべきではない。
【0171】
したがって、法律で許される最大限の範囲で、本発明の範囲は、以下の特許請求の範囲およびそれらの均等物の最も広い許容可能な解釈によって判定されるべきであり、前述の詳細な説明によって制限または限定されないものとする。
図1
図2a
図2b
図3
【手続補正書】
【提出日】2021-07-29
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
多孔性触媒担体粒子のバッチを形成する方法であって、
前駆体混合物を適用ゾーン内の成形アセンブリの中に適用することであって、前記成形アセンブリが、第1の部分および第2の部分を備え、前記第1の部分が、前駆体混合物で満たされて、前駆体多孔性触媒担体粒子のバッチを形成するように構成された開口部を有するスクリーンを備え、前記開口部が、前記成形アセンブリの第1の部分の厚さ全体を通って延在し、前記第2の部分が、前記スクリーンに当接し、前記スクリーンの前記開口部内で前記混合物と接触するバッキングプレートを備える、適用することと、
前記成形アセンブリ内の前記前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成することと、
所定の力の下で前記成形アセンブリに排出材料を方向付けして、前記成形アセンブリから前記生素地多孔性触媒担体粒子のバッチを除去することと、
前記生素地多孔性触媒担体粒子のバッチを焼成して、前記多孔性触媒担体粒子のバッチを形成することと、を含み、
前記多孔性触媒担体粒子のバッチが、少なくとも0.1cm/gの平均細孔容積を含む、方法。
【請求項2】
前記前駆体混合物を成形アセンブリの中に適用することが、前記前駆体混合物を、ダイ開口部を通して、かつ前記成形アセンブリの中に押し出すことを含む、請求項1に記載の方法。
【請求項3】
取り消し済み
【請求項4】
前記前駆体混合物が、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属-有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、請求項1に記載の方法。
【請求項5】
前記多孔性触媒担体粒子のバッチが、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、およびそれらの組み合わせを含む、請求項1に記載の方法。
【請求項6】
前記多孔性触媒担体粒子のバッチが、少なくとも0.1m/gの平均比表面積を含む、請求項1に記載の方法。
【請求項7】
前記多孔性触媒担体粒子のバッチが、1.9g/cm以下の平均充填密度を含む、請求項1に記載の方法。
【請求項8】
前記多孔性触媒担体粒子のバッチが、5.0mm以下の平均粒子直径および50%以下の粒子アスペクト比(L/D)分布スパンPARDSを有し、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、前記多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、請求項1に記載の方法。
【請求項9】
多孔性触媒担体粒子のバッチであって、5.0mm以下の平均粒子直径および50%以下の粒子アスペクト比(L/D)分布スパンPARDSを含み、PARDSが、(ARD90-ARD10)/ARD50に等しく、式中、ARD90は、前記多孔性触媒担体粒子のバッチのARD90粒子アスペクト比(L/D)分布測定値に等しく、ARD10は、ARD10粒子アスペクト比(L/D)分布測定値に等しい、多孔性触媒担体粒子のバッチ。
【請求項10】
前記多孔性触媒担体粒子のバッチが、アルミナ、アルミニウム三水和物、ベーマイト、バイヤライト、シリカ、チタニア、水酸化チタン、ジルコニア、水酸化ジルコニウム、マグネシア、水酸化マグネシウム、炭化ケイ素、炭素、ゼオライト、金属有機構造体(MOF)、スピネル、ペロブスカイト、またはそれらの組み合わせを含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項11】
前記多孔性触媒担体粒子のバッチが、少なくとも0.1cm/gの平均細孔容積を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項12】
前記多孔性触媒担体粒子のバッチが、少なくとも0.1m/gの平均比表面積を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項13】
前記多孔性触媒担体粒子のバッチが、1.9g/cm以下の平均充填密度を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項14】
前記多孔性触媒担体粒子のバッチが、円柱形状を有する複数の粒子を含む、請求項9に記載の多孔性触媒担体粒子のバッチ。
【請求項15】
多孔性触媒担体粒子のバッチを形成するためのシステムであって、
開口部を有し、かつ前駆体混合物で満たされて、前駆体多孔性触媒担体粒子のバッチを形成するように構成された第1の部分、
および前記第1の部分に当接する第2の部分を含む成形アセンブリを備える適用ゾーンと、
第1の熱源を備え、かつ前記前駆体多孔性触媒担体粒子のバッチを乾燥させて、生素地多孔性触媒担体粒子のバッチを形成するように構成されている乾燥ゾーンと、
前記成形アセンブリの前記第1の部分内の前記開口部に向かって排出材料を方向付けして、前記成形アセンブリから前記多孔性触媒担体粒子のバッチを除去するように構成された排出アセンブリを備える排出ゾーンと、
バッチ生素地多孔性触媒担体粒子を前記多孔性触媒担体粒子のバッチに形成するように構成された第2の熱源を備える焼成ゾーンと、を備える、システム。
【国際調査報告】