(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-01-30
(54)【発明の名称】トランスデューサアレイ載置を最適化するための方法および装置
(51)【国際特許分類】
A61N 1/40 20060101AFI20230123BHJP
A61B 5/055 20060101ALI20230123BHJP
A61N 1/06 20060101ALI20230123BHJP
A61N 1/32 20060101ALI20230123BHJP
【FI】
A61N1/40
A61B5/055 380
A61B5/055 390
A61N1/06
A61N1/32
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022527204
(86)(22)【出願日】2020-12-02
(85)【翻訳文提出日】2022-06-24
(86)【国際出願番号】 IB2020001008
(87)【国際公開番号】W WO2021111186
(87)【国際公開日】2021-06-10
(32)【優先日】2019-12-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519275847
【氏名又は名称】ノボキュア ゲーエムベーハー
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ノア・ウルマン
(72)【発明者】
【氏名】ルーヴェン・ルビィ・シャミール
(72)【発明者】
【氏名】ゼーヴ・ボムゾン
(72)【発明者】
【氏名】エドゥアルド・ジー・フェドロフ
(72)【発明者】
【氏名】ヨラム・ワッサーマン
【テーマコード(参考)】
4C053
4C096
【Fターム(参考)】
4C053DD08
4C053JJ13
4C053JJ14
4C053JJ15
4C053LL07
4C096AA03
4C096AA11
4C096AA18
4C096AD14
4C096DC23
4C096DC28
(57)【要約】
患者へのトランスデューサアレイの載置を最適化するための方法は、被験者の身体の一部分の3Dモデル内の関心領域を決定するステップと、被験者の身体の前記一部分を横断する平面を決定するステップであって、前記平面は、前記平面の輪郭に沿った位置の複数の対を含む、ステップと、解剖学的制限に基づき、前記複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成するステップと、位置の前記各対について、シミュレートされた電界分布を決定するステップと、前記シミュレートされた電界分布に基づき、前記各対に対する線量メトリックを決定するステップと、角度制限の条件を満たす対の1つまたは複数のセットを決定するステップと、線量メトリックおよび角度制限の条件を満たす位置の対の1つまたは複数のセットに基づき、1つまたは複数の候補トランスデューサアレイレイアウトマップを決定するステップとを含む。
【特許請求の範囲】
【請求項1】
方法であって、
被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定するステップと、
前記ROIの中心に基づき、前記被験者の身体の前記一部分を横断する平面を決定するステップであって、前記平面は、前記平面の輪郭に沿った位置の複数の対を含む、ステップと、
解剖学的制限に基づき、位置の前記複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成するステップと、
前記修正済み平面上の位置の前記複数の対のうちの位置の各対について、シミュレートされた電界分布を決定するステップと、
前記シミュレートされた電界分布に基づき、位置の前記複数の対のうちの位置の各対に対する線量メトリックを決定するステップと、
トランスデューサアレイの対の間の角度制限の条件を満たす位置の前記複数の対のうちの位置の対の1つまたは複数のセットを決定するステップと、
前記線量メトリックおよび前記角度制限の条件を満たす位置の対の前記1つまたは複数のセットに基づき、1つまたは複数の候補トランスデューサアレイレイアウトマップを決定するステップとを含む方法。
【請求項2】
前記1つまたは複数の候補トランスデューサアレイレイアウトマップの少なくとも1つの位置で少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整するステップと、
前記少なくとも1つのトランスデューサアレイに対する前記シミュレートされた配向または前記シミュレートされた位置を調整するステップに基づき、最終トランスデューサアレイレイアウトマップを決定するステップとをさらに含む請求項1に記載の方法。
【請求項3】
前記解剖学的制限は、前記被験者の身体の前記一部分の解剖学的特徴を含む請求項1に記載の方法。
【請求項4】
前記角度制限は、前記トランスデューサアレイの複数の対の間の直交角度を含む請求項1に記載の方法。
【請求項5】
前記角度制限は、前記トランスデューサアレイの複数の対の間の角度の範囲を含む請求項1に記載の方法。
【請求項6】
前記修正済み平面上の位置の前記複数の対のうちの位置の各対について、前記シミュレートされた電界分布を決定するステップは、
第1の位置で、第1のトランスデューサアレイによって生成される第1の電界をシミュレートするステップと、
前記第1の位置とは反対の第2の位置で、第2のトランスデューサアレイによって生成される第2の電界をシミュレートするステップと、
前記第1の電界および前記第2の電界に基づき、前記シミュレートされた電界分布を決定するステップとを含む請求項1に記載の方法。
【請求項7】
第3の位置で、前記第1のトランスデューサアレイによって生成される第3の電界をシミュレートするステップと、
前記第3の位置とは反対の第4の位置で、前記第2のトランスデューサアレイによって生成される第4の電界をシミュレートするステップと、
前記第3の電界および前記第4の電界に基づき、前記シミュレートされた電界分布を決定するステップとをさらに含む請求項6に記載の方法。
【請求項8】
装置であって、
1つまたは複数のプロセッサと、
プロセッサ実行可能命令を記憶するメモリであって、前記命令は前記1つまたは複数のプロセッサによって実行されたときに、前記装置に請求項1~7のいずれか一項に記載の方法を実行させる、メモリとを備える装置。
【請求項9】
方法であって、
被験者の身体の一部分の三次元(3D)モデルを決定するステップと、
前記被験者の身体の前記一部分の前記3Dモデル内の関心領域(ROI)を決定するステップと、
トランスデューサアレイの対に対する複数の位置の各々について、前記3Dモデル、前記ROI、および解剖学的制限パラメータに基づき、電界分布マップを決定するステップと、
トランスデューサアレイの2つの対の複数の組合せのうちの各組合せについて、前記電界分布マップに基づき、前記ROI内の複数の線量メトリックを決定するステップと、
角度制限パラメータおよび前記ROI内の前記複数の線量メトリックに基づき、1つまたは複数の候補トランスデューサアレイレイアウト平面図を決定するステップと、
前記1つまたは複数の候補トランスデューサアレイレイアウト平面図の各々について、1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を、トランスデューサアレイの前記対の1つまたは複数のトランスデューサアレイの位置または配向を調整することによって決定するステップと、
各調整済み候補トランスデューサアレイレイアウト平面図について、前記ROI内の調整済み線量メトリックを決定するステップと、
前記ROI内の前記調整済み線量メトリックに基づき、前記調整済み候補トランスデューサアレイレイアウト平面図から最終トランスデューサアレイレイアウト平面図を決定するステップとを含む方法。
【請求項10】
前記解剖学的制限パラメータは、前記電界分布マップの決定における使用から除外されるべき前記ROIの横断面の1つまたは複数の位置を示す請求項9に記載の方法。
【請求項11】
前記角度制限パラメータは、前記トランスデューサアレイの複数の対の間の直交角度を示す請求項9に記載の方法。
【請求項12】
前記角度制限パラメータは、前記トランスデューサアレイの複数の対の間の角度の範囲を示す請求項9に記載の方法。
【請求項13】
前記ROIの中心に基づき、前記被験者の身体の前記一部分を横断する平面を決定するステップであって、前記平面が、前記平面の輪郭に沿ったトランスデューサアレイの前記対に対する位置の複数の対を含む、ステップと、
前記解剖学的制限パラメータに基づき、位置の前記複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成するステップとをさらに含む請求項9に記載の方法。
【請求項14】
前記複数の線量メトリックは、トランスデューサアレイの2つの対の前記複数の組合せのうちの各組合せに対して生成されたシミュレートされた電界に基づく請求項9に記載の方法。
【請求項15】
装置であって、
1つまたは複数のプロセッサと、
プロセッサ実行可能命令を記憶するメモリであって、前記命令は前記1つまたは複数のプロセッサによって実行されたときに、前記装置に請求項9~14のいずれか一項に記載の方法を実行させる、メモリとを備える装置。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、参照により全体が本明細書に組み込まれている、2019年12月2日に出願した米国仮出願第62/942,595号の優先権を主張するものである。
【背景技術】
【0002】
腫瘍治療電界(Tumor Treating Fields)、またはTTFieldsは、中間周波数範囲(100~300kHz)内の低強度(たとえば、1~3V/cm)の交番電界である。この非侵襲的治療は、充実性腫瘍を対象とし、全体が参照により本明細書に組み込まれている、米国特許第7,565,205号において説明されている。TTFieldsは、有糸分裂の際に鍵分子との物理的相互作用を通じて細胞分裂を阻害する。TTFields療法は、再発膠芽腫に対する承認済みの単剤治療であり、新たに診断された患者に対する化学療法との承認済み併用療法である。これらの電界は、患者の頭皮に直接載置されたトランスデューサアレイ(すなわち、電極の配列)によって非侵襲的に誘導される。TTFieldsは、また、身体の他の部分の腫瘍を治療するのにも有益であるように見える。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第7,565,205号明細書
【特許文献2】米国特許出願公開第2019/0117956号明細書
【非特許文献】
【0004】
【非特許文献1】刊行物「Correlation of Tumor Treating Fields Dosimetry to Survival Outcomes in Newly Diagnosed Glioblastoma: A Large-Scale Numerical Simulation-based Analysis of Data from the Phase 3 EF-14 randomized Trial」(2019年)
【非特許文献2】Bucking TMら(2017年)、From medical imaging data to 3D printed anatomical models、PLoS ONE 12(5): e0178540
【非特許文献3】Ahmed Hosnyら、J Thorac Cardiovasc Surg 2018年、155:143~5頁
【発明の概要】
【課題を解決するための手段】
【0005】
説明されている方法は、被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定することと、ROIの中心に基づき、被験者の身体の一部分を横断する平面を決定することであって、平面が平面の輪郭に沿った位置の複数の対を含む、決定することと、解剖学的制限に基づき、位置の複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成することと、修正済み平面上の位置の複数の対のうちの位置の各対について、シミュレートされた電界分布を決定することと、シミュレートされた電界分布に基づき、位置の複数の対のうちの位置の各対に対する線量メトリックを決定することと、トランスデューサアレイの対の間の角度制限の条件を満たす位置の複数の対のうちの位置の対の1つまたは複数のセットを決定することと、線量メトリックおよび角度制限の条件を満たす位置の対の1つまたは複数のセットに基づき、1つまたは複数の候補トランスデューサアレイレイアウトマップを決定することとを含む。
【0006】
説明されている方法は、また、被験者の身体の一部分の三次元(3D)モデルを決定することと、被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定することと、トランスデューサアレイの対に対する複数の位置の各々について、3Dモデル、ROI、および解剖学的制限パラメータに基づき、電界分布マップを決定することと、トランスデューサアレイの2つの対の複数の組合せのうちの各組合せについて、電界分布マップに基づき、ROI内の複数の線量メトリックを決定することと、角度制限パラメータおよびROI内の複数の線量メトリックに基づき、1つまたは複数の候補トランスデューサアレイレイアウト平面図を決定することと、1つまたは複数の候補トランスデューサアレイレイアウト平面図の各々について、1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を、トランスデューサアレイの対の1つまたは複数のトランスデューサアレイの位置または配向を調整することによって決定することと、各調整済み候補トランスデューサアレイレイアウト平面図について、ROI内の調整済み線量メトリックを決定することと、ROI内の調整済み線量メトリックに基づき、調整済み候補トランスデューサアレイレイアウト平面図から最終トランスデューサアレイレイアウト平面図を決定することとを含む。
【0007】
追加の利点は、一部次の説明で述べられるか、または実践で知られ得る。利点は、付属の請求項において特に指摘されている要素および組合せを用いて実現され、達成される。前述の一般的な説明および次の詳細な説明は両方とも、例示的であり、解説にすぎず、制限的でないことは理解されるべきである。
【0008】
特定の要素または活動の説明を識別しやすくするために、参照番号の1つまたは複数の最上位桁はその要素が最初に導入された図番を指す。
【図面の簡単な説明】
【0009】
【
図1】電気療法治療のための例示的な装置を示す図である。
【
図2】例示的なトランスデューサアレイを示す図である。
【
図3A】電気療法治療のための装置の応用事例を例示する図である。
【
図3B】電気療法治療のための装置の応用事例を例示する図である。
【
図4A】患者の頭部に載置されるトランスデューサアレイを示す図である。
【
図4B】患者の腹部に載置されるトランスデューサアレイを示す図である。
【
図5A】患者の胴に載置されるトランスデューサアレイを示す図である。
【
図5B】患者の骨盤部に載置されるトランスデューサアレイを示す図である。
【
図6】電界発生器および患者支持システムを示すブロック図である。
【
図7】有限要素法シミュレーションモデルからの冠状断像で示されている電界マグニチュードおよび分布(単位はV/cm)を例示する図である。
【
図8A】三次元アレイレイアウトマップ800を示す図である。
【
図8B】患者の頭皮へのトランスデューサアレイの載置を示す図である。
【
図9A】頭部サイズを測定するために使用される眼窩を含む、最頂端部画像(most apical image)を含む軸位T1シーケンススライス(axial T1 sequence slice)を示す図である。
【
図9B】頭部サイズを測定するために使用される外耳道のレベルで画像を選択する冠状T1シーケンススライスを示す図である。
【
図9C】腫瘍部位を測定するために使用される最大強調腫瘍径(maximal enhancing tumor diameter)を示す造影後T1軸位像を示す図である。
【
図9D】腫瘍部位を測定するために使用される最大強調腫瘍径を示す造影後T1冠状断像を示す図である。
【
図11A】患者の頭部における腫瘍の中心点に基づく例示的な横断平面図を示す図である。
【
図11B】患者の胸部における腫瘍の中心点に基づく例示的な横断平面図を示す図である。
【
図13A】トランスデューサアレイに対する有効な配置および無効な配置(たとえば、解剖学的制限)を示す患者モデルを示す図である。
【
図13B】トランスデューサアレイに対する有効な配置および無効な配置(たとえば、解剖学的制限)を示す患者モデルを示す図である。
【
図14】横断面の輪郭上の位置への解剖学的制限の適用を示す図である。
【
図15】頭部を通る横断面の輪郭上に沿ったトランスデューサアレイの対の回転を示す図である。
【
図16】胸部を通る横断面の輪郭上に沿ったトランスデューサアレイの対の回転を示す図である。
【
図17】横断面の輪郭上の位置への角度制限の適用を示す図である。
【
図18】例示的なインターフェースを示す図である。
【
図19】例示的な動作環境を示すブロック図である。
【発明を実施するための形態】
【0010】
本発明の方法およびシステムが開示され、説明される前に、方法およびシステムが特定の方法、特定のコンポーネント、または特定の実装形態に限定されないことは理解されるべきである。また、本明細書において使用されている用語は、特定の実施形態のみを記述することになっており、限定的であることを意図されていないことも理解されるべきである。
【0011】
本明細書および付属の請求項で使用されているように、「1つの(または使わない場合もある)」および「その(使わない場合もある)」(英語原文の冠詞「a」、「an」、および「the」に対応する)で示される単数形は、文脈上明らかにそうでないことを示していない限り、複数形を含む。範囲は、本明細書では、「約」(おおよその)一方の特定の値からおよび/または「約」(おおよその)他方の特定の値までとして表現され得る。そのような範囲が表現されるときに、別の実施形態は、一方の特定の値からおよび/または他方の特定の値までを含む。同様に、値が近似値として表現されるときには、先行詞「約」の使用により、特定の値が別の実施形態を形成することが理解されるであろう。さらに、範囲の各々の終点は、他の終点と関係する場合と、他の終点とは関係していない場合との両方において重要であることは理解されるであろう。
【0012】
「任意選択」または「任意選択で」は、その後に説明される事象または状況が発生することも、発生しないこともあり得ること、および説明は、前記事象または状況が発生する事例および発生しない事例を含むこと、を意味する。
【0013】
本明細書の説明および請求項全体を通して、「含む」、「備える」という語および「含むこと」、「備えること」、および「含む」、「備える」などの、語の活用形は、「限定はしないが...を含む」を意味し、たとえば、他の構成要素、整数、またはステップを除外することを意図されていない。「例示的な」は、「...の例」を意味し、好ましいまたは理想的な実施形態の指示を伝えることを意図されていない。「...など」は、制限的な意味で使用されず、例として説明することを目的として使用される。
【0014】
開示されるのは、開示されている方法およびシステムを実行するために使用され得るコンポーネントである。これらおよび他のコンポーネントは、本明細書において開示されており、これらのコンポーネントの組合せ、サブセット、相互作用、グループなどが開示されるときに、これらの各様々な個別の、および集合的な組合せおよび順列の特定の参照が明示的には開示されない場合があるが、各々、すべての方法およびシステムに対して、本明細書において特に企図され、説明されていると理解される。これは、開示されている方法におけるステップを、限定はしないが含む、本出願のすべての態様に適用される。したがって、実行され得る様々な追加のステップがある場合に、これらの追加のステップの各々は、開示されている方法の任意の特定の実施形態または実施形態の組合せで実行され得ることは理解される。
【0015】
本発明の方法およびシステムは、好ましい実施形態の次の詳細な説明およびそこに含まれる例、ならびに図およびそれらの前後の説明を参照することによってより容易に理解され得る。
【0016】
当業者によって理解されるように、方法およびシステムは、全体がハードウェアである実施形態、全体がソフトウェアである実施形態、またはソフトウェアとハードウェアの態様を組み合わせた実施形態の形態を取り得る。さらに、方法およびシステムは、記憶媒体中に具現化されたコンピュータ可読プログラム命令(たとえば、コンピュータソフトウェア)を有するコンピュータ可読記憶媒体上のコンピュータプログラム製品の形態を取り得る。より詳細には、方法およびシステムは、ウェブ実装コンピュータソフトウェアの形態を取り得る。ハードディスク、CD-ROM、光学式記憶装置デバイス、または磁気記憶装置デバイスを含む任意の好適なコンピュータ可読記憶媒体が利用されてもよい。
【0017】
方法およびシステムの実施形態が、方法、システム、装置、およびコンピュータプログラム製品のブロック図およびフローチャートの図解を参照しつつ以下で説明される。ブロック図およびフローチャート図解の各ブロック、ならびにブロック図およびフローチャート図解中のブロックの組合せは、それぞれ、コンピュータプログラム命令によって実装され得ることは理解されるであろう。これらのコンピュータプログラム命令は、汎用コンピュータ、専用コンピュータ、または他のプログラム可能データ処理装置上にロードされてマシンを生成し、それにより、コンピュータまたは他のプログラム可能データ処理装置上で実行される命令が、1つまたは複数のフローチャートブロックにおいて指定される機能を実装するための手段を生成する。
【0018】
コンピュータ(または他のプログラム可能データ処理装置)を特定の方法で機能させることができるこれらのコンピュータプログラム命令は、さらに、コンピュータ可読メモリに記憶されてもよく、これにより、コンピュータ可読メモリ内に格納される命令で、1つまたは複数のフローチャートブロックで指定された機能を実装するためのコンピュータ可読命令を収めた製造品を生産する。コンピュータプログラム命令は、また、コンピュータまたは他のプログラム可能データ処理装置にもロードされるものとしてよく、それにより、コンピュータ実装プロセスを生成するための一連の動作ステップがコンピュータまたは他のプログラム可能装置上で実行させられ、したがってコンピュータまたは他のプログラム可能装置上で実行される命令は、1つまたは複数のフローチャートブロックで指定された機能を実装するためのステップを提供する。
【0019】
したがって、ブロック図およびフローチャート図解のブロックは、指定された機能を実行するための手段の組合せ、指定された機能を実行するためのステップの組合せ、および指定された機能を実行するためのプログラム命令手段をサポートする。ブロック図およびフローチャート図解の各ブロック、ならびにブロック図およびフローチャート図解中のブロックの組合せは、指定された機能もしくはステップ、または専用ハードウェアとコンピュータ命令との組合せを実行する専用ハードウェアベースのコンピュータシステムによって実装され得ることも理解されるであろう。
【0020】
本明細書では交番電界とも称される、TTFieldsは、分裂中期における適切な微小管重合を妨げ、最終的に分裂終期および細胞質分裂中に細胞を破壊するので、抗有糸分裂癌治療法として確立されている。その効果は電界強度の増大とともに高まり、最適な周波数は癌細胞株に依存し、TTFieldsによって引き起こされるグリオーマ細胞成長の阻害が最も高い周波数は200kHzであった。癌治療を目的として、非侵襲性デバイスは、たとえば、ヒトで最も一般的な原発性悪性脳腫瘍である多形性膠芽腫(GBM)の患者のために、腫瘍に近い皮膚領域に直接載置される容量結合型トランスデューサを用いて開発された。
【0021】
TTFieldsの効果は、電界に平行に分裂する細胞が他の方向に分裂する細胞よりも影響を受けるという方向性があり、細胞はあらゆる方向に分裂するので、TTFieldsは、典型的には、治療される腫瘍内に垂直な電界を生成するトランスデューサアレイの2つの対を通じて印加される。より具体的には、トランスデューサアレイの一方の対は腫瘍の左右(LR)に配置され、トランスデューサアレイの他方の対は腫瘍の前後(AP)に配置され得る。これら2つの方向(すなわち、LRとAP)の間で電界をサイクル動作させることは、最大範囲の細胞配向がターゲットにされることを確実にする。トランスデューサアレイの他の位置は、垂直電界を超えて企図される。一実施形態において、3つのトランスデューサアレイの非対称の位置決めが企図され、3つのトランスデューサアレイの1つの対が交番電界を印加し、次いで3つのトランスデューサアレイの別の対が交番電界を印加し、3つのトランスデューサアレイの残りの対が交番電界を印加し得る。
【0022】
インビボおよびインビトロ研究は、電界の強度が高くなるとTTFields療法の有効性が高まることを示している。したがって、脳の罹患領域で強度を高めるために患者の頭皮上へのアレイ載置を最適化することは、Optuneシステムの標準的技法である。アレイ載置の最適化は、「経験則」(たとえば、アレイを腫瘍に可能な限り近くなるように頭皮上に載置すること)、患者の頭部の幾何学的形状、腫瘍寸法、および/または腫瘍配置を記述する測定値によって実行され得る。入力として使用される測定値は、画像データから導出され得る。画像データは、任意のタイプの視覚的データ、たとえば、単一光子放射断層撮影(SPECT)画像データ、X線コンピュータ断層撮影(X線CT)データ、磁気共鳴映像法(MRI)データ、陽電子放出断層撮影(PET)データ、光学機器(たとえば、写真用カメラ、電荷結合素子(CCD)カメラ、赤外線カメラなど)によってキャプチャされ得るデータ、および同様のものを含むことを意図されている。いくつかの実装形態において、画像データは、3Dスキャナから取得されるか、または3Dスキャナによって生成された3Dデータ(たとえば、点雲データ)を含んでもよい。最適化は、電界がアレイの位置の関数として頭部内でどのように分布するかについての理解に頼ることができ、いくつかの態様では、異なる患者の頭部内の電気特性分布の変動を考慮するものとしてよい。
【0023】
図1は、電気療法治療のための例示的な装置100を示している。一般的に、装置100は、非侵襲的表面トランスデューサアレイを介して体内に交番電界を生成する携帯型の電池または電源駆動式デバイスであってよい。装置100は、電界発生器102および1つまたは複数のトランスデューサアレイ104を備え得る。装置100は、電界発生器102を介して腫瘍治療電界(TTFields)(たとえば、150kHz)を生成し、1つまたは複数のトランスデューサアレイ104を通じて身体の一領域にTTFieldsを印加するように構成され得る。電界発生器102は、電池および/または電源駆動式デバイスであってもよい。一実施形態において、1つまたは複数のトランスデューサアレイ104は、均一な形状である。一実施形態において、1つまたは複数のトランスデューサアレイ104は、均一な形状でない。
【0024】
電界発生器102は、信号発生器108と通信するプロセッサ106を備え得る。電界発生器102は、プロセッサ106および信号発生器108の実行を制御するように構成されている制御ソフトウェア110を備え得る。
【0025】
信号発生器108は、波形またはパルス列の形状の1つまたは複数の電気信号を生成し得る。信号発生器108は、約50kHzから約500kHz(好ましくは約100kHzから約300kHz)の範囲内の周波数の交流電圧波形を発生するように構成され得る(たとえば、TTFields)。これらの電圧は、治療されるべき組織内の電界強度が約0.1V/cmから約10V/cmの範囲にあるような電圧である。
【0026】
電界発生器102の1つまたは複数の出力114は、1つまたは複数の導電性リード112に結合されるものとしてよく、これらのリードの一方の端部が信号発生器108に取り付けられている。導電性リード線112の反対側の端は、電気信号(たとえば、波形)によって活性化される1つまたは複数のトランスデューサアレイ104に接続される。導電性リード線112は、可撓性金属シールドを有する標準的な孤立導体を備えるものとしてよく、導電性リード線112で発生する電界の広がりを防ぐために接地され得る。1つまたは複数の出力114は、順次動作させてもよい。信号発生器108の出力パラメータは、たとえば、電界の強度、波の周波数(たとえば、治療周波数)、および1つまたは複数のトランスデューサアレイ104の最大許容温度を含み得る。出力パラメータは、プロセッサ106と連携して制御ソフトウェア110によって設定され、および/または決定され得る。所望の(たとえば、最適な)治療周波数を決定した後、制御ソフトウェア110は、信号発生器108に制御信号を送信することをプロセッサ106に行わせ、所望の治療周波数を1つまたは複数のトランスデューサアレイ104に出力することを信号発生器108に行わせる。
【0027】
1つまたは複数のトランスデューサアレイ104は、治療を集中させる標的容積部のところに所望の構成、方向、および強度の電界を発生させるために様々な形状および位置で構成され得る。1つまたは複数のトランスデューサアレイ104は、注目する容積部を通して2つの垂直な電界方向をもたらすように構成され得る。
【0028】
1つまたは複数のトランスデューサアレイ104のアレイは、1つまたは複数の電極116を備え得る。1つまたは複数の電極116は、高い誘電率を有する任意の材料から作られ得る。1つまたは複数の電極116は、たとえば、1つまたは複数の絶縁セラミックディスクを備え得る。電極116は、生体適合性であり、可撓性回路基板118に結合されてもよい。電極116は、電極116が導電性ヒドロゲル(図示せず)の層(心電図パッドに見られるものと類似している)によって皮膚から分離されるので皮膚と直接接触しないように構成され得る。
【0029】
電極116、ヒドロゲル、および可撓性回路基板118は、1つまたは複数のトランスデューサアレイ104を身体上の適所に保ち、皮膚と連続的に直接接触させるために、低刺激性医療用絆創膏120に取り付けられてもよい。各トランスデューサアレイ104は、トランスデューサアレイ104の下の皮膚温度を測定するために1つまたは複数のサーミスタ(図示せず)、たとえば、8個のサーミスタ(精度±1℃)を備え得る。サーミスタは、周期的に、たとえば、1秒おきに、皮膚温度を測定するように構成されてもよい。サーミスタは、温度測定への干渉を避けるために、TTFieldsが印加されていない間に、制御ソフトウェア110によって読み取られてもよい。
【0030】
測定された温度が、2つの後続の測定の間で、事前設定された最高温度(Tmax)、たとえば38.5~40.0℃±0.3℃を下回る場合、制御ソフトウェア110は、電流が最大治療電流(たとえば、4アンペアピークツーピーク)に達するまで電流を増やすことができる。温度がTmax+0.3℃に達し、上昇し続ける場合、制御ソフトウェア110は、電流を下げることができる。温度が41℃まで上昇した場合、制御ソフトウェア110は、TTFields療法を止めることができ、過熱アラームがトリガーされ得る。
【0031】
1つまたは複数のトランスデューサアレイ104は、サイズが異なっていてもよく、患者の身体の大きさおよび/または異なる治療法に基づき様々な数の電極116を備え得る。たとえば、患者の胸部であるという文脈において、小型トランスデューサアレイは、各々13個の電極を備えてよく、大型トランスデューサアレイは、各々20個の電極を備えてよく、電極は各アレイ内で直列に相互接続されている。たとえば、
図2に示されているように、患者の頭部であるという文脈において、各トランスデューサアレイは、各々9個の電極を備えてよく、電極は各アレイ内で直列に相互接続されている。
【0032】
1つまたは複数のトランスデューサアレイ104の代替的構造が企図されて、使用されてもよく、これは、たとえば、ディスク形状ではないセラミック要素を使用するトランスデューサアレイ、および複数の平坦な導体の上に位置決めされた非セラミック誘電体材料を使用するトランスデューサアレイを含む。後者の例は、プリント基板のパッドの上、または平坦な金属片の上に配設されているポリマーフィルムを含む。容量結合されていない電極素子を使用するトランスデューサアレイも使用されてよい。この状況では、トランスデューサアレイの各要素は、被験者/患者の身体に当てて載置するように構成された導電性材料の領域を使用して実装され、絶縁誘電体層は導電性要素と体の間に配設されていない。トランスデューサアレイを実装するための他の代替的構造物も使用され得る。トランスデューサアレイ(または類似の装置/コンポーネント)の構成、配置構成、タイプ、および/または同様のものが、(a)被験者/患者の身体にTTFieldsを印加することができ、(b)本明細書において説明されているように患者/被験者の身体の一部分に位置決めされ、配置構成され、および/または載置され得る限り、トランスデューサアレイ(または類似の装置/コンポーネント)の構成、配置構成、タイプ、および/または同様のものは、本明細書において説明されている方法およびシステムに使用され得る。
【0033】
装置100の状況および監視パラメータは、メモリ(図示せず)に記憶されてよく、有線またはワイヤレス接続を介してコンピューティングデバイスに転送され得る。装置100は、電源オン、治療オン、アラーム、および電池残量低下などの視覚的インジケータを表示するためのディスプレイ(図示せず)を備え得る。
【0034】
図3Aおよび
図3Bは、装置100の応用事例を例示している。トランスデューサアレイ104aおよびトランスデューサアレイ104bが図示されており、各々低刺激性医療用絆創膏120aおよび120bに組み込まれている。低刺激性医療用絆創膏120aおよび120bは、皮膚表面302に貼られる。腫瘍304は、皮膚表面302および骨組織306の下に配置されており、脳組織308内に配置されている。電界発生器102は、腫瘍304の癌細胞によって提示される急速な細胞分裂を破壊する交番電界310を脳組織308内に発生することをトランスデューサアレイ104aおよびトランスデューサアレイ104bに行わせる。交番電界310は、非臨床実験において、腫瘍細胞の増殖を停止させること、および/または腫瘍細胞を破壊することを示されている。交番電界310の使用は、交番電界310の効果を受けやすくする、癌細胞の特別な特性、幾何学的形状、および分裂速度を利用する。交番電界310は、中間周波数(100~300kHzのオーダー)でその極性を変化させる。特定の治療に使用される周波数は、治療される細胞種類に特有のものであり得る(たとえば、MPMに対して150kHz)。交番電界310は、紡錘体微小管重合体を破壊し、細胞質分裂中に細胞内巨大分子および細胞小器官の誘電泳動転位をもたらすことが示されている。これらのプロセスは、細胞膜の物理的破壊およびプログラムされた細胞死(アポトーシス)を引き起こす。
【0035】
交番電界310の効果は、電界に平行に分裂する細胞が他の方向に分裂する細胞よりも影響を受けるという方向性があり、細胞はあらゆる方向に分裂するので、交番電界310は、治療される腫瘍内に垂直な電界を生成するトランスデューサアレイ104の2つの対を通じて印加され得る。より具体的には、トランスデューサアレイ104の一方の対は腫瘍の左右(LR)に配置され、トランスデューサアレイ104の他方の対は腫瘍の前後(AP)に配置され得る。これら2つの方向(たとえば、LRとAP)の間で交番電界をサイクル動作させることは、最大範囲の細胞配向がターゲットにされることを確実にする。一実施形態において、交番電界310は、トランスデューサアレイ104の対称的セットアップ(たとえば、全部で4つのトランスデューサアレイ104、2つの一致した対)に従って印加され得る。別の実施形態において、交番電界310は、トランスデューサアレイ104の非対称的セットアップ(たとえば、全部で3つのトランスデューサアレイ104)に従って印加され得る。トランスデューサアレイ104の非対称的セットアップは、交番電界310を印加するために3つのトランスデューサアレイ104のうちの2つを係合させ、次いで、交番電界310を印加するために3つのトランスデューサアレイ104のうちの別の2つに切り替える、および同様のことを行い得る。
【0036】
インビボおよびインビトロ研究は、電界の強度が高くなるとTTFields療法の有効性が高まることを示している。説明されている方法、システム、および装置は、脳の罹患領域における強度を高めるために患者の頭皮上のアレイ載置を最適化するように構成される。
【0037】
図4Aに示されているように、トランスデューサアレイ104は、患者の頭部に載置され得る。
図4Bに示されているように、トランスデューサアレイ104は、患者の腹部に載置され得る。
図5Aに示されているように、トランスデューサアレイ104は、患者の胴体に載置され得る。
図5Bに示されているように、トランスデューサアレイ104は、患者の骨盤部に載置され得る。患者の身体の他の部分(たとえば、腕、脚、など)へのトランスデューサアレイ104の載置が特に企図される。
【0038】
図6は、患者支持システム602を含むシステム600の非限定的な例を示すブロック図である。患者支持システム602は、電界発生器(EFG)構成アプリケーション606、患者モデリングアプリケーション608、および/または画像データ610を操作し、および/または記憶するように構成されている1つまたは複数のコンピュータを備えることができる。患者支持システム602は、たとえば、コンピューティングデバイスを備えることができる。患者支持システム602は、たとえば、ラップトップコンピュータ、デスクトップコンピュータ、携帯電話(たとえば、スマートフォン)、タブレット、および同様のものを含み得る。
【0039】
患者モデリングアプリケーション608は、画像データ610に従って患者の身体の一部分の三次元モデル(たとえば、患者モデル)を生成するように構成され得る。画像データ610は、任意のタイプの視覚的データ、たとえば、単一光子放射断層撮影(SPECT)画像データ、X線コンピュータ断層撮影(X線CT)データ、磁気共鳴映像法(MRI)データ、陽電子放出断層撮影(PET)データ、光学機器(たとえば、写真用カメラ、電荷結合素子(CCD)カメラ、赤外線カメラなど)によってキャプチャされ得るデータ、および同様のものを含み得る。いくつかの実装形態において、画像データは、3Dスキャナから取得されるか、または3Dスキャナによって生成された3Dデータ(たとえば、点雲データ)を含んでもよい。患者モデリングアプリケーション608は、また、患者モデルおよび1つまたは複数の電界シミュレーションに基づき三次元アレイレイアウトマップを生成するようにも構成され得る。
【0040】
患者の身体の一部分へのアレイ載置を適切に最適化するために、MRI画像データなどの画像データ610は、腫瘍を含む関心領域を識別するために患者モデリングアプリケーション608によって分析され得る。患者の頭部という文脈では、電界が人間の頭部内でどのように振る舞い、分布するかを特徴付けるために、有限要素法(FEM)シミュレーションを使用する解剖学的頭部モデルに基づくモデリングフレームワークが使用され得る。これらのシミュレーションでは、磁気共鳴映像法(MRI)測定に基づく現実的な頭部モデルを生成し、頭部内の頭蓋骨、白質、灰白質、脳脊髄液(CSF)などの組織種類を区分けする。各組織種類は、比導電率および比誘電率に関する誘電特性を割り当てられ、異なるトランスデューサアレイ構成がモデルの表面に適用されるシミュレーションが実行されるものとしてよく、これにより、事前設定されている周波数の外部印加電界が患者の身体の任意の部分、たとえば、脳全体を通してどのように分布するかを理解する。対になっているアレイ構成、定電流、200kHzのプリセット周波数を採用するこれらのシミュレーションの結果から、電界分布は脳全体を通して比較的不均一であること、およびCSFを除くほとんどの組織コンパートメント内に1V/cmを超える電界強度が発生することが実証された。これらの結果は、トランスデューサアレイと頭皮とのインターフェースにおいて1800ミリアンペア(mA)のピークツーピーク値を有する全電流を想定して取得される。電界強度のこの閾値は、膠芽細胞腫細胞株において細胞増殖を停止させるのに十分である。それに加えて、対になっているトランスデューサアレイの構成を操作することによって、
図7に示されているように、脳の特定の領域に対する電界強度のほぼ3倍を達成することが可能である。
図7は、有限要素法シミュレーションモデルからの冠状断像で示されている電界マグニチュードおよび分布(単位はV/cm)を例示している。このシミュレーションは、左右の対になっているトランスデューサアレイ構成を採用している。
【0041】
一態様において、患者モデリングアプリケーション608は、腫瘍の配置および範囲に基づき患者に対する所望の(たとえば、最適な)トランスデューサアレイレイアウトを決定するように構成され得る。たとえば、初期形態計測頭部サイズ測定は、軸位断像および冠状断像を使用して、脳MRIのT1シーケンスから決定され得る。造影後軸位および冠状MRIスライスは、強調病変の最大径を示すように選択され得る。頭部の大きさおよび所定の基準マーカーから腫瘍縁までの距離の測定値を採用することで、対になっているアレイレイアウトの様々な順列および組合せが評価され、それにより、腫瘍部位に最大の電界強度を印加する構成を生成し得る。
図8Aに示されているように、出力は、三次元アレイレイアウトマップ800であってよい。三次元アレイレイアウトマップ800は、
図8Bに示されているように、TTFields療法の通常の過程で頭皮上にアレイを配置構成する際に患者および/または介護者によって使用されてもよい。
【0042】
一態様において、患者モデリングアプリケーション608は、患者に対する三次元アレイレイアウトマップを決定するように構成され得る。トランスデューサアレイを受け入れることになっている患者の部分のMRI測定値が決定され得る。たとえば、MRI測定値は、標準のDigital Imaging and Communications in Medicine(DICOM)ビューアを介して受信され得る。MRI測定値決定は、たとえば、自動的に、たとえば人工知能技術を用いて、実行されるか、または手動で、たとえば医師により実行されてもよい。
【0043】
手動MRI測定決定は、DICOMビューアを介してMRIデータを受信し、および/または提供することを含み得る。MRIデータは、腫瘍を含んでいる患者の部分のスキャンを含み得る。たとえば、患者の頭部という文脈では、MRIデータは、右前頭側頭腫瘍、右頭頂側頭腫瘍、左前頭側頭腫瘍、左頭頂後頭腫瘍、および/または多巣性正中線腫瘍のうちの1つまたは複数を含む頭部のスキャンを含み得る。
図9A、
図9B、
図9C、および
図9Dは、患者の頭部のスキャンを示すMRIデータの例を示す図である。
図9Aは、頭部サイズを測定するために使用される眼窩を含む、最頂端部画像を含む軸位T1シーケンススライスを示している。
図9Bは、頭部サイズを測定するために使用される外耳道のレベルで画像を選択する冠状T1シーケンススライスを示している。
図9Cは、腫瘍部位を測定するために使用される最大強調腫瘍径を示す造影後T1軸位像を示している。
図9Dは、腫瘍部位を測定するために使用される最大強調腫瘍径を示す造影後T1冠状断像を示している。MRI測定は、頭皮の外縁にある基準マーカーから開始し、右側、前側、上側の起点から接線方向に延在し得る。形態測定頭部サイズは、眼窩をまだ含んでいた最頂端部画像(または眼窩の上縁の真上の画像)を選択する軸位T1 MRIシーケンスから推定され得る。
【0044】
一態様において、MRI測定値は、たとえば、頭部サイズ測定値および/または腫瘍測定値のうちの1つまたは複数を含んでいてもよい。一態様において、1つまたは複数のMRI測定値は、最も近いミリメートル値に丸められ、分析のためにトランスデューサアレイ載置モジュール(たとえば、ソフトウェア)に提供され得る。次いで、MRI測定値は、三次元アレイレイアウトマップ(たとえば、三次元アレイレイアウトマップ800)を生成するために使用されてもよい。
【0045】
MRI測定値は、頭皮の外縁から測定を開始する最大前後(A-P)頭部サイズ、A-P測定に対して垂直な頭部の最大幅、右から左への横方向距離、および/または頭皮の最も右側の縁から解剖学的正中線までの距離などの1つまたは複数の頭部サイズ測定値を含んでいてもよい。
【0046】
MRI測定値は、冠状断像の頭部サイズ測定値などの1つまたは複数の頭部サイズ測定値を含んでいてもよい。冠状断像の頭部サイズ測定値は、外耳道のレベルでの画像を選択するT1 MRIシーケンスで取得され得る(
図9B)。冠状断像の頭部サイズ測定値は、頭皮の頂点から側頭葉の下縁を線引きする直交線までの垂直測定値、最大左右側頭部幅、および/または頭皮の右端縁から解剖学的正中線までの距離のうちの1つまたは複数を含み得る。
【0047】
MRI測定値は、腫瘍配置測定値などの、1つまたは複数の腫瘍測定値を含んでいてもよい。腫瘍配置測定は、T1造影後MRIシーケンスを使用して、最初に、最大強調腫瘍径(
図9C)を示す軸位画像上で行われてもよい。腫瘍配置測定は、鼻を除く最大A-P頭部サイズ、A-P距離に対して垂直に測定された最大左右横径、頭皮の右縁から解剖学的正中線までの距離、左右横方向距離に平行に、A-P測定に対して垂直に測定された、頭皮の右縁から最も近い腫瘍縁までの距離、左右横方向距離に平行に、A-P測定に対して垂直に測定された、頭皮の右縁から最も遠い腫瘍縁までの距離、A-P測定に平行に測定された、前頭部から最も近い腫瘍縁までの距離、および/またはA-P測定に平行に測定された、前頭部から最も遠い腫瘍縁までの距離のうちの1つまたは複数を含み得る。
【0048】
1つまたは複数の腫瘍測定値は、冠状断像の腫瘍測定値を含んでいてもよい。冠状断像の腫瘍測定値は、腫瘍強調の最大直径を特徴とする造影後T1 MRIスライスを識別することを含み得る(
図9D)。冠状断像の腫瘍測定は、頭皮の頂点から大脳の下縁までの最大距離のうちの1つまたは複数を含んでいてもよい。前方スライスでは、これは前頭葉または側頭葉の下縁に引かれた水平線によって境界を定められ、後方では、目に見えるテントの最低レベル、最大左右外側頭幅、頭皮の右縁から解剖学的正中線までの距離、右左横方向距離に平行に測定された、頭皮の右縁から最も近い腫瘍縁までの距離、右左横方向距離に平行に測定された頭皮の右縁から最も遠い腫瘍縁までの距離、上頂点から下大脳線に平行に測定された頭頂から最も近い腫瘍縁までの距離、および/または上頂点から下大脳線に平行に測定された、頭頂から最も遠い腫瘍縁までの距離まで延在する。
【0049】
他のMRI測定値は、特に腫瘍が患者の身体の別の部分に存在するときに、使用され得る。
【0050】
MRI測定値は、患者モデルを生成するために患者モデリングアプリケーション608によって使用されてもよい。次いで、患者モデルは、三次元アレイレイアウトマップ(たとえば、三次元アレイレイアウトマップ800)を決定するために使用され得る。患者の頭部内の腫瘍の例を続けると、患者モデルを作成することができる変形可能なテンプレートとして機能する健常頭部モデルが生成されてもよい。患者モデルを作成するときに、腫瘍は、患者のMRIデータ(たとえば、1つまたは複数のMRI測定値)からセグメント化され得る。MRIデータをセグメント化することで、各ボクセル内の組織種類を識別し、経験データに基づき電気特性が各組織種類に割り当てられ得る。Table 1(表1)は、シミュレーションにおいて使用され得る組織の標準電気的特性を示している。患者MRIデータ中の腫瘍の領域はマスクされ、非剛体レジストレーションアルゴリズムが、患者頭部の残りの領域を健常頭部モデルの変形可能なテンプレートを表す3D離散画像上に位置合わせするために使用され得る。このプロセスは、患者の頭部の健常部分をテンプレート空間内にマッピングする非剛体変換、さらにはテンプレートを患者空間内にマッピングする逆変換を生み出す。この逆変換は、3D変形可能テンプレートに適用され、腫瘍が存在しない場合の患者の頭部の近似を生成する。最後に、腫瘍(関心領域(ROI)と称される)は、変形済みテンプレートに植え込み戻され、完全な患者モデルを生成する。患者モデルは、組織、器官、腫瘍などの内部構造を含む、患者の体の部分の三次元空間内のデジタル表現であってよい。
【表1】
【0051】
次いで、TTFieldsの印加は、患者モデルを使用して、患者モデリングアプリケーション608によってシミュレートされ得る。一実施形態において、患者モデリングアプリケーション608は、
図10に示されている、方法1000を実行するように構成され得る。方法1000は、関心領域(ROI)(たとえば、腫瘍)に高線量(電界)を印加する最適なトランスデューサアレイレイアウトを効率的に識別することができる。方法1000は、ステップ1010でROIを通る横断面を決定することを含み得る。ROI(たとえば、腫瘍配置)に関するトランスデューサアレイの系統的な位置決めを確実にするために、基準座標系が定義され得る。
図11Aに示されているように、横断面1102は、最初に関心領域1104の中心および傾斜角によって定義され得る。傾斜角は、当業者によって定義されてもよい。たとえば、頭部に対する傾斜角は、軸平面(たとえば、水平)から150~20度外れていてもよい。横断面1102は、解剖学的モデル(たとえば、頭部、胸部、胴体、腹部、脚、腕、および同様のもの)の境界(たとえば、外形)によって作成される輪郭を含み得る。たとえば、輪郭は、楕円、円、不規則な形状、および同様の形状に類似していてもよい。横断面1102を決定することは、横断面1102の輪郭に沿った複数の位置1106を決定することを含んでいてもよい。複数の位置1106は、トランスデューサアレイが患者に貼り付けられ得る配置を表してもよい。複数の位置1106は、各位置でトランスデューサアレイによって生成される電界がROI1104を通過するように決定され得る。任意の数の位置1106が企図される。一実施形態において、位置1106は、トランスデューサアレイの対(各トランスデューサアレイは位置の対のうちの一方に配置される)によって生成される交番電界がROI1104を通過するように対に分割され得る。位置1106は、たとえば、約2cmの並進に対応する15度だけ離間していてもよく、これは180度の範囲内で合計12個の異なる位置を与える。他の間隔も企図される。
【0052】
図11Aは、患者の頭部における横断面1102の定義を示しており、
図11Bは、患者の胸部において定義されるような横断面1102を示している。横断面1102は、患者の身体の任意の部分において定義され得る。
【0053】
図10を再び参照すると、ステップ1010でROI1104および複数の位置1106を通る横断面1102を決定した後、方法1000は、ステップ1020で位置1106に解剖学的制限を適用してよい。解剖学的制限は、患者モデルに基づき、および/または観察によって決定され得る。解剖学的制限は、たとえば、目、耳、関節、腋窩、乳首、生殖器などの患者の解剖学的特徴に関連付けてもよい。解剖学的制限は、患者に引き起こされ得る不快感または痛みがあるのでトランスデューサアレイ載置に対して回避されるべき患者の領域、たとえば、刺激、傷、瘢痕、および同様のものがある領域に関連付けられ得る。
【0054】
解剖学的制限の適用は、トランスデューサアレイ載置に対して解剖学的に有効な配置のみが考慮されることを確実にする。患者モデリングアプリケーション608は、解剖学的制限を決定するように構成されてもよい。一実施形態において、解剖学的制限は、患者の一部分の画像データ(たとえば、頭部のMRIデータ)および二値画像を含むアトラスを生成することによって決定され得る。二値画像は、専門家が画像データの有効な部分をセグメント化することによって手動で作成され得る。
図12は、頭部のMRI画像と二値画像とを組み合わせることによって作成された例示的なアトラスを示している。専門家が、アトラスMRI上の有効ゾーン1202を手動でセグメント化し、有効ゾーン1202は、二値画像として保存された。たとえば、有効ゾーン1202は、二値画像内で「1」に関連付けられ得る。一実施形態において、複数の患者に対して同じ二値画像が使用されてもよい。別の実施形態では、二値画像は、各患者に対して生成されてもよい。
【0055】
新しい患者の患者モデルが与えられると、アトラスを患者モデルにアライメントする変換が計算され、二値画像に適用されて、有効ゾーンをマスクし得る。次いで、二値画像は、患者モデル境界に適合するように修正され得る。
図13Aおよび
図13Bは、患者の頭部表面(灰色)上に示されている有効表面(緑色)を有する患者モデルを示す。患者モデルから、2つの有効表面が、垂直レイアウトに対する表面および水平レイアウトに対する表面について決定され得る。表面は、点と三角形を含み得る。緑色の領域内の各点は、トランスデューサアレイ載置のための解剖学的に有効な位置を表すものとしてよく、灰色の領域は解剖学的な制限を表す。
【0056】
一実施形態において、解剖学的制限は、電界分布の決定における使用から除外されるべき横断面1102の1つまたは複数の位置1106を定義し得る。一実施形態において、解剖学的制限は、解剖学的制限を考慮するために移動(たとえば、上昇、下降、シフト、および同様の動作)されるべき横断面1102の1つまたは複数の位置1106を定義し得る。
図14に示されているように、解剖学的制限1402(耳)を回避するために位置1106Bが持ち上げられてもよく、これは、横断面1102の輪郭を3D曲線輪郭になるように調整する。位置1106Cへのトランスデューサアレイの載置の結果、トランスデューサアレイは解剖学的制限1404(瘢痕)上に載置されることになるので、位置1106Cは、さらなる分析から除外され得る。
【0057】
図10を再び参照すると、ステップ1020における解剖学的制限の適用後、方法1000は、横断面1102の位置1106におけるトランスデューサアレイの対に対するシミュレートされた電界分布を決定し得る。一実施形態において、
図15に示されているように、トランスデューサアレイ120A、120B(縮尺通りに示されていない)は、対向位置1106に沿ったそれらの中心および長手軸が横断面1102の縁に沿って画成された状態で、仮想的に載置されてよく、横断面1102は患者の頭部を通過する。対向位置1106は、ROI1104と交差する中心線に沿って置かれる位置を含む。
図15に示されているように、対向位置は、1106A:1106F、1106B:1106G、1106D:1106H、および1106E:1106Iを含む。中心線は、対向位置1106を接続する破線によって示されている。中心線は、対向する位置1106のいずれかの位置1106でいずれかのトランスデューサアレイによって生成される電界1108の経路を表し得る。
図16は、トランスデューサアレイ120A、120B(縮尺通りに示されていない)が、対向位置1106に沿ったそれらの中心および長手軸が横断面1102の縁に沿って画成された状態で、仮想的に載置されてよいことを示しており、横断面1102は患者の胴体を通過する。
【0058】
図15を再び参照すると、一実施形態において、トランスデューサアレイ120A、120Bの対は、最初に任意の対向位置1106に載置され、横断面1102の周りに0~180度の範囲で対向位置1106の各対まで回転され、それによって横断面1102の全周を覆うものとしてよい。たとえば、トランスデューサアレイ120A、120Bの対は、対向する位置1106A:1106Fに仮想的に載置されてよく、シミュレートされた電界分布が決定されてよく、トランスデューサアレイ120A、120Bの対は、横断面1102の周りに対向位置1106B:1106Gまで回転されてよく、シミュレートされた電界分布が決定されてよく、トランスデューサアレイ120A、120Bの対は、横断面1102の周りに対向位置1106D:1106Hまで回転されてよく、シミュレートされた電界分布が決定されてよく、トランスデューサアレイ120A、120Bの対は、横断面1102の周りに対向位置1106E:1106Iまで回転されてよく、最終的なシミュレートされた電界分布が決定され得る。Table 2(表2)に示されているように、位置の各対に対するシミュレートされた電界分布を含むTTFields分布マップが生成され得る。
【表2】
【0059】
図10を再び参照すると、ステップ1030でシミュレートされた電界分布が決定された後、方法1000はステップ1040に進み、トランスデューサアレイの複数の対の各々について線量メトリックを決定し得る。一実施形態において、方法1000は、トランスデューサアレイ120の2つの対の各々について決定された電界分布に基づき線量メトリックを決定し得る。シミュレートされた電界分布、線量測定、およびシミュレーションベースの分析は、参照により全体が本明細書に組み込まれている、Balloらによる米国特許出願公開第20190117956号および刊行物「Correlation of Tumor Treating Fields Dosimetry to Survival Outcomes in Newly Diagnosed Glioblastoma: A Large-Scale Numerical Simulation-based Analysis of Data from the Phase 3 EF-14 randomized Trial」(2019年)で説明されている。ROIにおける線量メトリックは、トランスデューサアレイ120の2つの対のすべての可能な位置1106の組合せについて決定され得る。Table 3(表3)は、ステップ1040で線量メトリックを決定した結果を示している。
【表3】
【0060】
ステップ1040で線量メトリックが決定された後、方法1000は、ステップ1050に進み、トランスデューサアレイの複数の対に角度制限を適用し得る。一実施形態において、方法1000は、ステップ1050で、角度制限に従って1つまたは複数の候補トランスデューサアレイレイアウト平面図を決定してもよい。角度制限は、他のトランスデューサアレイに対するトランスデューサアレイの位置に関する制限を示し得る。角度制限は、トランスデューサアレイの所望の対の数に基づき決定され得る。一実施形態において、角度制限は、180度を所望のトランスデューサアレイの対の数で除算することによって決定され得る。たとえば、トランスデューサアレイの2つの対が望まれているものである場合、角度制限は、約90度であってよい。トランスデューサアレイの3つの対が望まれている一実施形態において、角度制限は、約60度であってよい。トランスデューサアレイの4つの対が望まれている一実施形態において、角度制限は、約45度であってよい。角度制限は、少なくとも1つの他のトランスデューサアレイ対について角度制限が満たされるようにトランスデューサアレイ対が位置決めされるべきであることを指定し得る。角度制限は、トランスデューサアレイの対が配置される位置1106間の中心線に基づき評価され得る。
【0061】
角度制限は、トランスデューサアレイ位置が角度制限内に入るかまたは角度制限から外れることを引き起こすトランスデューサアレイ位置を考慮から排除してもよい。たとえば、角度制限は、トランスデューサアレイの2つの対の間に直交する(90度の)角度を形成するトランスデューサアレイ位置のみが考慮されることを示し得る。任意の角度が、角度制限で企図され得る。角度制限は、さらに、範囲を含み得る。範囲は、たとえば、30~90度の間であってもよい。一実施形態において、トランスデューサアレイのサイズは、角度制限に影響を及ぼし得る。トランスデューサアレイが小さければ小さいほど、より多くのトランスデューサアレイが使用され得る。したがって、角度制限は、より小さいトランスデューサアレイの数の増大を考慮して比較的小さくてもよい(たとえば、30~45度)。
【0062】
ステップ1050において、方法1000は、トランスデューサアレイ120の2つの対の各組合せの間の角度を決定し得る。
図17に示されているように、位置1106A:1106Fに配置されているトランスデューサアレイ対は、位置1106D:1106Hに配置されている別のトランスデューサアレイ対に関連付けられている中心線に対して90度の角度を成す中心線(破線)に関連付けられている。位置1106A:1106Fに配置されているトランスデューサアレイ対は、位置1106B:1106Gに配置されている別のトランスデューサアレイ対に関連付けられている中心線に対して30度の角度を成す中心線(破線)に関連付けられている。Table 4(表4)は、
図17に示されているトランスデューサアレイ120の対の位置の組合せに対する線量メトリックおよび角度の決定結果を示している。
【表4】
【0063】
図10を再び参照すると、ステップ1050で、1つまたは複数の候補トランスデューサアレイレイアウト平面図が、角度制限から逸脱するトランスデューサアレイ対位置をフィルタリングして取り除くことによって決定され得る。たとえば、Table 4(表4)において、候補トランスデューサアレイレイアウト平面図は、位置、(1106A:1106F)および(1106D:1106H)を含み得る。別の候補トランスデューサアレイレイアウト平面図は、位置1106の位置、(1106B:1106G)および(1106E:1106I)を含み得る。一実施形態において、ユーザが線量密度マップおよび線量メトリックに対する異なるトランスデューサアレイレイアウト平面図の効果を調べることを可能にするように角度制限を外れる候補トランスデューサアレイレイアウト平面図が選択され得る。
【0064】
ステップ1050で角度制限が適用された後、方法1000はステップ1060に進み、トランスデューサアレイ間の重なりを決定し得る。ステップ1030で実行された電界分布は、個々のトランスデューサアレイ対として計算されたので、各候補トランスデューサアレイレイアウト平面図内のトランスデューサアレイ120の位置および配向は、隣接するトランスデューサアレイ120間に物理的な重なりを生じさせる可能性がある。隣接するトランスデューサアレイ120間の重なりは、トランスデューサアレイ120の任意の部分が別のトランスデューサアレイ120の任意の部分と重なる結果として形成され得る。たとえば、トランスデューサアレイ120は、治療中にトランスデューサアレイ120を患者に貼り付けたままにするように設計された絆創膏を含み得る。ステップ1050において、方法1000は、一方のトランスデューサアレイ120の絆創膏が別のトランスデューサアレイ120の一部分と重なり得る(たとえば、別の絆創膏、導電性リード112、および/または電極116と重なり得る)可能性が存在すると決定し得る。別の例では、ステップ1050において、方法1000は、トランスデューサアレイ120の1つまたは複数の電極116が別のトランスデューサアレイ120の一部分と重なる(たとえば、別の絆創膏、導電性リード112、および/または電極116と重なる)と決定し得る。一実施形態において、重なる絆創膏などの、いくつかの重なりは無視されてもよい。一実施形態において、重なる電極116などの、いくつかの重なりは無視され得ない。患者モデリングアプリケーション608は、各トランスデューサアレイに関連付けられている所定のサイズ情報に基づき、トランスデューサアレイ間に重なりが存在するかどうか、さらにそのような重なりがトランスデューサアレイの調整を正当化するかどうか(たとえば、重なる電極対重なる絆創膏)を決定するように構成され得る。
【0065】
一実施形態において、ステップ1060で、方法1000は、各候補トランスデューサアレイレイアウト平面図について、トランスデューサアレイ120間の重なりをなくす(または減らす)ためにトランスデューサアレイ120に配向および/または位置を変更させ得る。一実施形態において、ステップ1070で、方法1000は、トランスデューサアレイの複数の対のうちの1つまたは複数を提示し得る。患者モデリングアプリケーション608は、1つまたは複数の候補トランスデューサアレイレイアウト平面図および/または1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を提示するように構成され得る。一実施形態において、患者モデリングアプリケーション608は、最終トランスデューサアレイレイアウト平面図として選択するために、および/またはユーザによるさらなる調整のために、1つまたは複数の候補トランスデューサアレイレイアウト平面図および/または1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を提示し得る。最終トランスデューサアレイレイアウト平面図は、電界分布および/または線量メトリックに基づき候補トランスデューサアレイレイアウト平面図および/または調整済み候補トランスデューサアレイレイアウト平面図から決定され得る。
【0066】
図18に示されている一実施形態において、1つまたは複数の候補トランスデューサアレイレイアウト平面図がユーザに対して表示され得る。ユーザは、各トランスデューサアレイの載置を操作してよく、電界分布および線量メトリックの結果の変化が表示され得る。
【0067】
最適化方法に関して上で説明されている電界分布は、電位の有限要素(FE)近似を使用して患者モデリングアプリケーション608によって決定され得る。一般に、時間的に変化する電磁場を定義する量は、複素マクスウェル方程式によって与えられる。しかしながら、生体組織内では、TTFieldsの低い周波数から中間の周波数(f=200kHz)において、電磁波の波長は、頭部の大きさよりもかなり大きく、誘電率εは実数値電気伝導率σに比べ無視できるくらい小さい、すなわちω=2πfは角周波数である。これは、組織内の電磁波伝搬効果および容量効果が無視できるくらい小さいことを意味しており、したがってスカラー電位は、電極および皮膚における適切な境界条件の下で静的ラプラス方程式∇・(σ∇φ)=0でよく近似され得る。したがって、複素インピーダンスは、抵抗性(すなわち、リアクタンスは無視できる)として扱われ、したがって、容積導体中を流れる電流は、主に自由(オーム)電流である。ラプラス方程式のFE近似は、SimNIBSソフトウェア(simnibs.org)を使用して計算された。計算は、ガラーキン法に基づき、共役勾配ソルバーの残差は<1E-9であることを要求された。ディリクレ境界条件が使用され、電位は電極アレイの各セットにおいて(任意に選択された)固定値に設定された。電界(ベクトル場)は、電位の数値勾配として計算され、電流密度(ベクトル場)は、オームの法則を使用して電界から計算された。電界値の電位差および電流密度は、各アレイ対に対するピークツーピーク全振幅が1.8Aとなるように線形にリスケーリングされ、活性電極ディスク上のすべての三角形表面要素にわたる法線方向の電流密度成分の(数値)表面積分として計算された。これは、Optune(登録商標)デバイスによる臨床的TTFields療法に使用される電流レベルに対応する。TTFieldsの「線量」は、電界ベクトルの強度(L2ノルム)として計算された。モデル化された電流は、3×3トランスデューサアレイの対に各々接続された2つの分離した順次活性化するソースによって供給されると仮定されている。シミュレーションでは、左側と後側のアレイはソースと定義され、右側と前側のアレイは、対応するシンクとして定義された。しかしながら、TTFieldsは交番電界を採用しているので、この選択
は任意であり、結果には影響しない。
【0068】
患者上の複数の配置に載置されたトランスデューサアレイによって発生する電界の平均強度は、1つまたは複数の組織種類について患者モデリングアプリケーション608によって決定され得る。一態様において、腫瘍組織種類における最高の平均電界強度に対応するトランスデューサアレイ位置は、患者に対する所望の(たとえば、最適な)トランスデューサアレイ位置として選択され得る。したがって、腫瘍組織種類における最高の平均電界強度に対応するトランスデューサアレイ位置は、患者に対する所望の(たとえば、最適な)トランスデューサアレイレイアウトマップとして選択され得る。一実施形態において、方法1000は、トランスデューサアレイレイアウトマップを決定するために使用されてもよい。
【0069】
患者モデルは、所望のトランスデューサアレイレイアウトマップの指示を含むように修正されてもよい。トランスデューサアレイレイアウトマップの指示を含む、結果として得られる患者モデルは、三次元アレイレイアウトマップ(たとえば、三次元アレイレイアウトマップ600)と称され得る。したがって、三次元アレイレイアウトマップは、患者の身体の一部分の三次元空間内のデジタル表現、腫瘍配置の指示、1つまたは複数のトランスデューサアレイの載置に対する位置の指示、それらの組合せ、および同様のものを含み得る。
【0070】
三次元アレイレイアウトマップは、デジタル形式および/または物理的形態で患者に提供され得る。患者、および/または患者の介護者は、三次元アレイレイアウトマップを使用して、患者の身体の関連部分(たとえば、頭部)に1つまたは複数のトランスデューサアレイを貼り付けるものとしてよい。
【0071】
三次元アレイレイアウトマップは、患者の身体の部分上の1つまたは複数のランドマーク(たとえば、湾曲、隆起、割れ目、構造(たとえば、耳、鼻、乳首など))の指示をさらに含んでいてもよい。患者の身体の一部分上の1つまたは複数のランドマークの指示は、患者モデリングアプリケーション608によって画像データから導出され得る。三次元アレイレイアウトマップは、身体の部分上の1つまたは複数のトランスデューサアレイの載置を示す位置データ、および身体の部分の1つまたは複数のランドマークを示す表面データを含み得る。デジタル三次元表現は、参照により本明細書に組み込まれている、Bucking TMら(2017年)、From medical imaging data to 3D printed anatomical models、PLoS ONE 12(5): e0178540、Ahmed Hosnyら、J Thorac Cardiovasc Surg 2018年、155:143~5頁において説明されているように使用され得る。
【0072】
図19は、患者支持システム104の非限定的な例を含む環境1900を図示しているブロック図である。一態様において、任意の説明されている方法のいくつかの、またはすべてのステップは、本明細書において説明されているようなコンピューティングデバイス上で実行され得る。患者支持システム104は、EFG構成アプリケーション606、患者モデリングアプリケーション608、画像データ610、および同様のものの1つまたは複数を記憶するように構成された1つまたは複数のコンピュータを備えることができる。
【0073】
患者支持システム104は、ハードウェアアーキテクチャに関して、一般的にプロセッサ1908、メモリシステム1910、入力/出力(I/O)インターフェース1912、およびネットワークインターフェース1914を含むデジタルコンピュータであってよい。これらのコンポーネント(1908、1910、1912、および1914)は、ローカルインターフェース1916を介して通信可能に結合される。ローカルインターフェース1916は、たとえば、限定はしないが、当技術分野で知られているように、1つもしくは複数のバスまたは他の有線もしくはワイヤレス接続とすることができる。ローカルインターフェース1916は、通信を可能にするために、コントローラ、バッファ(キャッシュ)、ドライバ、リピータ、および受信機など、簡略化のために省略されている追加の要素を有することができる。さらに、ローカルインターフェースは、前述のコンポーネント間の適切な通信を可能にするためにアドレス、制御、および/またはデータ接続を含み得る。
【0074】
プロセッサ1908は、ソフトウェア、特にメモリシステム1910に記憶されているソフトウェアを実行するためのハードウェアデバイスとすることができる。プロセッサ1908は、任意のカスタムメイドまたは市販のプロセッサ、中央演算処理装置(CPU)、患者支持システム104に関連付けられている複数のプロセッサのうちの補助プロセッサ、半導体ベースのマイクロプロセッサ(マイクロチップもしくはチップセットの形態を取る)、または一般的にソフトウェア命令を実行するための任意のデバイスとすることができる。患者支持システム104が動作しているときに、プロセッサ1908は、メモリシステム1910内に記憶されているソフトウェアを実行し、メモリシステム1910との間でデータを通信し、ソフトウェアに従って患者支持システム104の動作を一般的に制御するように構成され得る。
【0075】
I/Oインターフェース1912は、1つまたは複数のデバイスまたはコンポーネントからユーザ入力を受け取り、および/またはシステム出力を提供するために使用され得る。ユーザ入力は、たとえば、キーボードおよび/またはマウスを介して提供され得る。システム出力は、ディスプレイデバイスおよびプリンタ(図示せず)を介して提供されてもよい。I/Oインターフェース1912は、たとえば、シリアルポート、パラレルポート、Small Computer System Interface(SCSI)、IRインターフェース、RFインターフェース、および/またはユニバーサルシリアルバス(USB)インターフェースを含むことができる。
【0076】
ネットワークインターフェース1914は、患者支持システム104からの伝送および受信に使用され得る。ネットワークインターフェース1914は、たとえば、10BaseTイーサネットアダプタ、100BaseTイーサネットアダプタ、LAN PHYイーサネットアダプタ、トークンリングアダプタ、ワイヤレスネットワークアダプタ(たとえば、WiFi)、または任意の他の好適なネットワークインターフェースデバイスを含んでもよい。ネットワークインターフェース1914は、適切な通信を可能にするためにアドレス、制御、および/またはデータ接続を含み得る。
【0077】
メモリシステム1910は、揮発性メモリ素子(たとえば、ランダムアクセスメモリ(DRAM、SRAM、SDRAMなどのRAM))および不揮発性メモリ素子(たとえば、ROM、ハードドライブ、テープ、CDROM、DVDROMなど)のうちの任意の1つまたは組合せを含むことができる。さらに、メモリシステム1910は、電子、磁気、光学、および/または他の種類の記憶媒体を組み込み得る。メモリシステム1910は、様々なコンポーネントが互いに離れた場所に置かれているが、プロセッサ1908によってアクセスすることができる、分散型アーキテクチャを有することができることに留意されたい。
【0078】
メモリシステム1910内のソフトウェアは、1つまたは複数のソフトウェアプログラムを含むものとしてよく、その各々は、論理機能を実装するための実行可能命令の順序付きリスティングを含む。
図19の例では、患者支持システム104のメモリシステム1910内のソフトウェアは、EFG構成アプリケーション606、患者モデリングアプリケーション608、画像データ610、および好適なオペレーティングシステム(O/S)1918を含むことができる。オペレーティングシステム1918は、本質的に、他のコンピュータプログラムの実行を制御し、スケジューリング、入出力制御、ファイルおよびデータ管理、メモリ管理、ならびに通信制御および関係するサービスを提供する。
【0079】
説明を目的として、アプリケーションプログラム、およびオペレーティングシステム1918などの他の実行可能プログラムコンポーネントは、本明細書において別個のブロックとして例示されているが、そのようなプログラムおよびコンポーネントは、患者支持システム104の異なる記憶装置コンポーネントに様々な時点において置かれ得ると認識されている。EFG構成アプリケーション606、患者モデリングアプリケーション608、画像データ610、および/または制御ソフトウェア110の一実装形態は、何らかの形態のコンピュータ可読媒体に記憶されるか、またはそれを介して伝送され得る。開示されている方法のどれかが、コンピュータ可読媒体上に具現化されたコンピュータ可読命令によって実行され得る。コンピュータ可読媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であってよい。たとえば、限定はしないが、コンピュータ可読媒体は、「コンピュータ記憶媒体」および「通信媒体」を含むことができる。「コンピュータ記憶媒体」は、コンピュータ可読命令、データ構造体、プログラムモジュール、または他のデータなどの、情報を記憶するための任意の方法または技術で実装される揮発性および不揮発性、取り外し可能および取り外し不可能な媒体を含むことができる。例示的なコンピュータ記憶媒体は、RAM、ROM、EEPROM、フラッシュメモリもしくは他のメモリ技術、CD-ROM、デジタル多用途ディスク(DVD)もしくは他の光学式記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置もしくは他の磁気記憶デバイス、または所望の情報を記憶するために使用することができ、しかもコンピュータによってアクセスできる任意の他の媒体を含むことができる。
【0080】
図20に例示されている実施形態において、装置100、患者支持システム602、患者モデリングアプリケーション608、および/または本明細書において説明されている他の任意のデバイス/コンポーネントの1つまたは複数は、2010において被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定することを含む方法2000を実行するように構成され得る。
【0081】
2020において、ROIの中心に基づき、被験者の身体の一部分を横断する平面を決定し、平面は、平面の輪郭に沿った位置の複数の対を含む。
【0082】
2030において、解剖学的制限に基づき、位置の複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成する。解剖学的制限は、被験者の身体の一部分の解剖学的特徴に基づくものとしてよい。たとえば、第1のトランスデューサアレイによって生成される第1の電界は、第1の位置でシミュレートされてよく、第2のトランスデューサアレイによって生成される第2の電界は、第1の位置とは反対の第2の位置でシミュレートされてよく、第1の電界および第2の電界に基づき、シミュレートされた電界分布が決定され得る。いくつかの事例において、第1のトランスデューサアレイによって生成される第3の電界は、第3の位置でシミュレートされてよく、第2のトランスデューサアレイによって生成される第4の電界は、第3の位置とは反対の第4の位置でシミュレートされてよく、第3の電界および第4の電界に基づき、シミュレートされた電界分布が決定され得る。
【0083】
2040において、修正済み平面上の位置の複数の対のうちの位置の各対について、シミュレートされた電界分布を決定する。たとえば、以下のようになる。
【0084】
2050において、シミュレートされた電界分布に基づき、位置の複数の対のうちの位置の各対に対する線量メトリックを決定する。
【0085】
2060において、トランスデューサアレイの対の間の角度制限の条件を満たす位置の複数の対のうちの位置の対の1つまたは複数のセットを決定する。たとえば、角度制限は、トランスデューサアレイの複数の対の間の直交角度であってよく、および/または、直交角度を示し得る。角度制限は、たとえば、トランスデューサアレイの複数の対の間の角度の範囲であってよく、および/または角度の範囲を示し得る。
【0086】
2070において、線量メトリックおよび角度制限の条件を満たす位置の対の1つまたは複数のセットに基づき、1つまたは複数の候補トランスデューサアレイレイアウトマップを決定する。
【0087】
いくつかの事例において、方法2000は、1つまたは複数の候補トランスデューサアレイレイアウトマップの少なくとも1つの位置で少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することと、少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することに基づき、最終トランスデューサアレイレイアウトマップを決定することとを含み得る。
【0088】
図21に例示されている実施形態において、装置100、患者支持システム602、患者モデリングアプリケーション608、および/または本明細書において説明されている他の任意のデバイス/コンポーネントの1つまたは複数は、2110において、被験者の身体の一部分の三次元(3D)モデルを決定することを含む方法2100を実行するように構成され得る。
【0089】
2120において、被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定する。
【0090】
2130において、トランスデューサアレイの対に対する複数の位置の各々について、3Dモデル、ROI、および解剖学的制限パラメータに基づき、電界分布マップを決定する。解剖学的制限パラメータは、電界分布マップの決定における使用から除外されるべきROIの横断面の1つまたは複数の位置を示し得る。いくつかの事例において、方法2100は、ROIの中心に基づき、被験者の身体の一部分を横断する平面を決定することであって、平面が平面の輪郭に沿ったトランスデューサアレイの対に対する位置の複数の対を含む、決定することと、解剖学的制限パラメータに基づき、位置の複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成することとを含み得る。
【0091】
2140において、トランスデューサアレイの2つの対の複数の組合せのうちの各組合せについて、電界分布マップに基づき、ROI内の複数の線量メトリックを決定する。複数の線量メトリックは、トランスデューサアレイの2つの対の複数の組合せのうちの各組合せに対して生成されたシミュレートされた電界に基づいてもよい。
【0092】
2150において、角度制限パラメータおよびROI内の複数の線量メトリックに基づき、1つまたは複数の候補トランスデューサアレイレイアウト平面図を決定する。いくつかの事例において、角度制限パラメータは、トランスデューサアレイの複数の対の間の直交角度を示し得る。いくつかの事例において、角度制限パラメータは、トランスデューサアレイの複数の対の間の角度の範囲を示し得る。
【0093】
2160において、1つまたは複数の候補トランスデューサアレイレイアウト平面図の各々について、1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を、トランスデューサアレイの対の1つまたは複数のトランスデューサアレイの位置または配向を調整することによって決定する。
【0094】
2170において、各調整済み候補トランスデューサアレイレイアウト平面図について、ROI内の調整済み線量メトリックを決定する。
【0095】
2180において、ROI内の調整済み線量メトリックに基づき、調整済み候補トランスデューサアレイレイアウト平面図から最終トランスデューサアレイレイアウト平面図を決定する。
【0096】
説明されている装置、システム、および方法、ならびにそれらの変形形態を考慮して、本明細書において以下で説明されるのは、本発明のいくつかのより詳しく説明されている実施形態である。しかしながら、これらの詳しく述べられている実施形態は、本明細書において説明されている異なるもしくはより一般的な教示を含む任意の異なる請求項に対して何らかの制限的効果を有するか、または「特定の」実施形態が、そこで文字通り使用されている言葉の固有の意味以外に何らかの仕方で制限されると、解釈されるべきではない。
【0097】
実施形態1:方法であって、被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定することと、ROIの中心に基づき、被験者の身体の一部分を横断する平面を決定することであって、平面が平面の輪郭に沿った位置の複数の対を含む、決定することと、解剖学的制限に基づき、位置の複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成することと、修正済み平面上の位置の複数の対のうちの位置の各対について、シミュレートされた電界分布を決定することと、シミュレートされた電界分布に基づき、位置の複数の対のうちの位置の各対に対する線量メトリックを決定することと、トランスデューサアレイの対の間の角度制限の条件を満たす位置の複数の対のうちの位置の対の1つまたは複数のセットを決定することと、線量メトリックおよび角度制限の条件を満たす位置の対の1つまたは複数のセットに基づき、1つまたは複数の候補トランスデューサアレイレイアウトマップを決定することとを含む方法。
【0098】
実施形態2:先行する実施形態のいずれか1つに記載の実施形態であって、1つまたは複数の候補トランスデューサアレイレイアウトマップの少なくとも1つの位置で少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することと、少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することに基づき、最終トランスデューサアレイレイアウトマップを決定することとをさらに含む、実施形態。
【0099】
実施形態3:先行する実施形態のいずれか1つに記載の実施形態であって、解剖学的制限は、被験者の身体の一部分の解剖学的特徴を含む、実施形態。
【0100】
実施形態4:先行する実施形態のいずれか1つに記載の実施形態であって、角度制限は、トランスデューサアレイの複数の対の間の直交角度を含む、実施形態。
【0101】
実施形態5:先行する実施形態のいずれか1つに記載の実施形態であって、角度制限は、トランスデューサアレイの複数の対の間の角度の範囲を含む、実施形態。
【0102】
実施形態6:先行する実施形態のいずれか1つに記載の実施形態であって、修正済み平面上の位置の複数の対のうちの位置の各対について、シミュレートされた電界分布を決定することは、第1の位置で、第1のトランスデューサアレイによって生成される第1の電界をシミュレートすることと、第1の位置とは反対の第2の位置で、第2のトランスデューサアレイによって生成される第2の電界をシミュレートすることと、第1の電界および第2の電界に基づき、シミュレートされた電界分布を決定することとを含む、実施形態。
【0103】
実施形態7:先行する実施形態のいずれか1つに記載の実施形態であって、第3の位置で、第1のトランスデューサアレイによって生成される第3の電界をシミュレートすることと、第3の位置とは反対の第4の位置で、第2のトランスデューサアレイによって生成される第4の電界をシミュレートすることと、第3の電界および第4の電界に基づき、シミュレートされた電界分布を決定することとをさらに含む、実施形態。
【0104】
実施形態8:先行する実施形態のいずれか1つに記載の実施形態であって、トランスデューサアレイの複数の対の組合せに基づき、トランスデューサアレイレイアウト平面図を決定することは、1つまたは複数の候補トランスデューサアレイレイアウト平面図の各々について、1つもしくは複数の調整済み候補トランスデューサアレイレイアウト平面図を、トランスデューサアレイの第1の対の1つもしくは複数のトランスデューサアレイまたはトランスデューサアレイの第2の対の1つもしくは複数のトランスデューサアレイの、位置もしくは配向を調整することによって決定することと、各調整済み候補トランスデューサアレイレイアウト平面図について、ROI内の調整済み線量メトリックを決定することと、ROI内の調整済み線量メトリックに基づき、調整済み候補トランスデューサアレイレイアウト平面図から最終トランスデューサアレイレイアウト平面図を決定することとを含む、実施形態。
【0105】
実施形態9:装置であって、1つまたは複数のプロセッサと、プロセッサ実行可能命令を記憶するメモリであって、この命令は1つまたは複数のプロセッサによって実行されたときに、装置に実施形態1~8のいずれか1つに記載の実施形態の方法を実行させる、メモリとを備える装置。
【0106】
実施形態10:プロセッサ実行可能命令を記憶する1つまたは複数の非一時的コンピュータ可読媒体であって、この命令はプロセッサによって実行されたときに、プロセッサに実施形態1~8のいずれか1つに記載の実施形態の方法を実行させる、非一時的コンピュータ可読媒体。
【0107】
実施形態11:方法であって、被験者の身体の一部分の三次元(3D)モデルを決定することと、被験者の身体の一部分の3Dモデル内の関心領域(ROI)を決定することと、トランスデューサアレイの対に対する複数の位置の各々について、3Dモデル、ROI、および解剖学的制限パラメータに基づき、電界分布マップを決定することと、トランスデューサアレイの2つの対の複数の組合せのうちの各組合せについて、電界分布マップに基づき、ROI内の複数の線量メトリックを決定することと、角度制限パラメータおよびROI内の複数の線量メトリックに基づき、1つまたは複数の候補トランスデューサアレイレイアウト平面図を決定することと、1つまたは複数の候補トランスデューサアレイレイアウト平面図の各々について、1つまたは複数の調整済み候補トランスデューサアレイレイアウト平面図を、トランスデューサアレイの対の1つまたは複数のトランスデューサアレイの位置または配向を調整することによって決定することと、各調整済み候補トランスデューサアレイレイアウト平面図について、ROI内の調整済み線量メトリックを決定することと、ROI内の調整済み線量メトリックに基づき、調整済み候補トランスデューサアレイレイアウト平面図から最終トランスデューサアレイレイアウト平面図を決定することとを含む、方法。
【0108】
実施形態12:実施形態11に記載の実施形態であって、1つまたは複数の候補トランスデューサアレイレイアウトマップの少なくとも1つの位置で少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することと、少なくとも1つのトランスデューサアレイに対するシミュレートされた配向またはシミュレートされた位置を調整することに基づき、最終トランスデューサアレイレイアウトマップを決定することとをさらに含む、実施形態。
【0109】
実施形態13:実施形態11~12のいずれか1つに記載の実施形態であって、解剖学的制限パラメータは、電界分布マップの決定における使用から除外されるべきROIの横断面の1つまたは複数の位置を示す、実施形態。
【0110】
実施形態14:実施形態11~13のいずれか1つに記載の実施形態であって、角度制限パラメータは、トランスデューサアレイの複数の対の間の直交角度を示す、実施形態。
【0111】
実施形態15:実施形態11~14のいずれか1つに記載の実施形態であって、角度制限パラメータは、トランスデューサアレイの複数の対の間の角度の範囲を示す、実施形態。
【0112】
実施形態16:実施形態11~15のいずれか1つに記載の実施形態であって、ROIの中心に基づき、被験者の身体の一部分を横断する平面を決定することであって、平面が平面の輪郭に沿ったトランスデューサアレイの対に対する位置の複数の対を含む、決定することと、解剖学的制限パラメータに基づき、位置の複数の対のうちの1つまたは複数の位置を調整して修正済み平面を生成することとをさらに含む、実施形態。
【0113】
実施形態17:実施形態11~16のいずれか1つに記載の実施形態であって、複数の線量メトリックは、トランスデューサアレイの2つの対の複数の組合せのうちの各組合せに対して生成されたシミュレートされた電界に基づく、実施形態。
【0114】
実施形態18:装置であって、1つまたは複数のプロセッサと、プロセッサ実行可能命令を記憶するメモリであって、この命令は1つまたは複数のプロセッサによって実行されたときに、装置に実施形態11~17のいずれか1つに記載の実施形態の方法を実行させる、メモリとを備える装置。
【0115】
実施形態19:プロセッサ実行可能命令を記憶する1つまたは複数の非一時的コンピュータ可読媒体であって、この命令はプロセッサによって実行されたときに、プロセッサに実施形態11~17のいずれか1つに記載の実施形態の方法を実行させる、非一時的コンピュータ可読媒体。
【0116】
特に断りのない限り、本明細書において述べられている任意の方法が、それのステップが特定の順序で実行されることを要求すると解釈されることを決して意図されていない。したがって、方法請求項に、それのステップが続くべき順序を実際に記載していないか、またはステップが特定の順序に限定されるべきであると請求項または説明において他の何らかの形で特に記載されていない場合、いかなる点においても、順序が推論されることは決して意図されていない。これは、ステップの配列もしくは動作の流れに関する論理の問題、文法構成もしくは句読点から導出される明白な意味、明細書において説明されている実施形態の数または種類を含む、解釈に対する可能ないかなる非明示的な根拠にも当てはまる。
【0117】
方法およびシステムは、好ましい実施形態および特定の例に関連して説明されてきたが、本明細書における実施形態はすべての点で制限的ではなくむしろ例示的であることが意図されているので、範囲が記載されている特定の実施形態に限定されることは意図されていない。
【0118】
特に断りのない限り、本明細書において述べられている任意の方法が、それのステップが特定の順序で実行されることを要求すると解釈されることを決して意図されていない。したがって、方法請求項に、それのステップが続くべき順序を実際に記載していないか、またはステップが特定の順序に限定されるべきであると請求項または説明において他の何らかの形で特に記載されていない場合、いかなる点においても、順序が推論されることは決して意図されていない。これは、ステップの配列もしくは動作の流れに関する論理の問題、文法構成もしくは句読点から導出される明白な意味、明細書において説明されている実施形態の数または種類を含む、解釈に対する可能ないかなる非明示的な根拠にも当てはまる。
【0119】
当業者には、範囲または精神から逸脱することなく様々な修正および変更が加えられ得ることは明らかであろう。他の実施形態は、本明細書で開示されている明細および実施を考察すると当業者に明らかになるであろう。明細および例は、例示的なものとしてのみ考慮されることが意図されており、真の範囲および精神は次の請求項によって示される。
【符号の説明】
【0120】
100 装置
102 電界発生器
104 トランスデューサアレイ
104a トランスデューサアレイ
104b トランスデューサアレイ
106 プロセッサ
108 信号発生器
110 制御ソフトウェア
112 導電性リード
114 出力
116 電極
118 可撓性回路基板
120 低刺激性医療用絆創膏
120aおよび120b 低刺激性医療用絆創膏
302 皮膚表面
304 腫瘍
306 骨組織
308 脳組織
310 交番電界
600 システム
602 患者支持システム
606 電界発生器(EFG)構成アプリケーション
608 患者モデリングアプリケーション
610 画像データ
800 三次元アレイレイアウトマップ
1000 方法
1102 横断面
1104 関心領域
1106 位置
1106A:1106F 位置
1106B:1106G 対向位置
1106D:1106H 対向位置
1106E:1106I 対向位置
1106B:1106C 位置
1108 電界
1202 有効ゾーン
1402 解剖学的制限
1404 解剖学的制限
1900 環境
1908 プロセッサ
1910 メモリシステム
1912 入力/出力(I/O)インターフェース
1914 ネットワークインターフェース
1916 ローカルインターフェース
1918 オペレーティングシステム(O/S)
2000 方法
2100 方法
【国際調査報告】