(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-02-01
(54)【発明の名称】多重周波数トランスデューサ・アレイのための方法及びシステム
(51)【国際特許分類】
H04R 17/00 20060101AFI20230125BHJP
H04R 31/00 20060101ALI20230125BHJP
A61B 8/00 20060101ALI20230125BHJP
【FI】
H04R17/00 332B
H04R31/00 330
A61B8/00
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022530856
(86)(22)【出願日】2020-11-23
(85)【翻訳文提出日】2022-07-11
(86)【国際出願番号】 US2020061819
(87)【国際公開番号】W WO2021113107
(87)【国際公開日】2021-06-10
(32)【優先日】2019-12-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】319011672
【氏名又は名称】ジーイー・プレシジョン・ヘルスケア・エルエルシー
(74)【代理人】
【識別番号】100105588
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100129779
【氏名又は名称】黒川 俊久
(74)【代理人】
【識別番号】100151286
【氏名又は名称】澤木 亮一
(72)【発明者】
【氏名】ダクルーズ,エドアルド
(72)【発明者】
【氏名】ダロズ,フラビエン
(72)【発明者】
【氏名】バレット,ジェイソン
【テーマコード(参考)】
4C601
5D019
【Fターム(参考)】
4C601EE01
4C601GB06
4C601GB18
4C601GB42
4C601HH25
5D019AA09
5D019BB03
5D019BB18
5D019BB19
5D019BB20
5D019BB21
5D019FF04
5D019GG01
5D019GG06
5D019HH03
(57)【要約】
多重周波数トランスデューサ・アレイのための様々な方法及びシステムを提供する。一例では、トランスデューサ・アレイは、少なくとも一つの小素子が異なる共振周波数を有するような1又は複数の小素子で形成される素子を含んでいる。これにより、トランスデューサ・アレイの周波数範囲を拡大することができる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
1又は複数の小素子で形成される素子であって、少なくとも一つの小素子が異なる共振周波数を有する、素子
を備えたトランスデューサ・アレイ。
【請求項2】
当該トランスデューサ・アレイは少なくとも一つの素子で形成され、該素子は、電気回路により駆動されると共に隣接する素子から電気的に絶縁されている、請求項1に記載のトランスデューサ・アレイ。
【請求項3】
前記1又は複数の小素子の相対比が前記素子において等しく、当該トランスデューサ・アレイの各々の素子が同様の共振周波数を有する、請求項2に記載のトランスデューサ・アレイ。
【請求項4】
前記1又は複数の小素子の幅が当該トランスデューサ・アレイを通じて変化し、前記幅は仰角方向及び方位角方向の一方に沿って定義されている、請求項2に記載のトランスデューサ・アレイ。
【請求項5】
前記1又は複数の小素子の各々の相対比が当該トランスデューサ・アレイに沿って変化し、当該トランスデューサ・アレイの少なくとも一つの素子が異なる周波数範囲を有する、請求項2に記載のトランスデューサ・アレイ。
【請求項6】
前記1又は複数の小素子の各々の前記相対比は、方位角方向及び仰角方向の少なくとも一方に沿って当該トランスデューサ・アレイの各々の素子の間で変化する、請求項5に記載のトランスデューサ・アレイ。
【請求項7】
1よりも多い形式の素子をさらに含んでおり、各々の形式の素子が異なる共振周波数及び周波数範囲を有して当該トランスデューサ・アレイに組み入れられている、請求項1に記載のトランスデューサ・アレイ。
【請求項8】
当該トランスデューサ・アレイの前記1よりも多い形式の素子は、方位角方向及び仰角方向の少なくとも一方に沿って非一様な寸法を有する、請求項7に記載のトランスデューサ・アレイ。
【請求項9】
前記素子における前記1又は複数の小素子の量が当該トランスデューサ・アレイにわたり変化する、請求項1に記載のトランスデューサ・アレイ。
【請求項10】
第二の櫛形構造に結合された第一の櫛形構造であって、該第一の櫛形構造は、第一の共振周波数の第一の形式の素子を有し、前記第二の櫛形構造は、第二の共振周波数の第二の形式の素子を有する、第一の櫛形構造と、
複数の電気回路であって、各々の回路が前記第一の形式の素子及び前記第二の形式の素子の少なくとも一方を含んでおり、方位角方向及び仰角方向の少なくとも一方に沿って周波数アポダイゼーションを提供するために周波数帯域幅を変化させるように構成されている、複数の電気回路と
を備えた多重周波数音響積層体。
【請求項11】
前記第一の櫛形構造は、前記第二の櫛形構造の幾何学的形状に対して相補的な幾何学的形状を有し、前記第一及び第二の櫛形構造の結合が交互嵌合構造を形成する、請求項10に記載の多重周波数音響積層体。
【請求項12】
前記複数の電気回路の各々の電気回路が、前記第一及び第二の形式の素子の少なくとも一方に加えて1又は複数の付加的な形式の素子を含んでおり、該1又は複数の付加的な形式の素子は、前記第一又は第二の形式の素子と異なる共振周波数を有する、請求項10に記載の多重周波数音響積層体。
【請求項13】
各々の電気回路が整合層及びバッキング層に結合されている、請求項10に記載の多重周波数音響積層体。
【請求項14】
前記複数の素子の各々の素子が、非伝導性材料及び空気の一方で充填された切り溝により隣接する素子から分離されている、請求項10に記載の多重周波数音響積層体。
【請求項15】
各々の素子が、個別の集積回路を形成するように正接続及びグランド接続に電気的に結合されている、請求項10に記載の多重周波数音響積層体。
【請求項16】
多重周波数トランスデューサ・アレイを作製する方法であって、
第一の小素子を有する第一の音響積層体及び第二の小素子を有する第二の音響積層体を、相補的な幾何学的形状を有するようにダイシングするステップと、
交互嵌合構造を形成するように前記第一の音響積層体と前記第二の音響積層体とを組み合わせるステップと、
前記交互嵌合構造の両面に共通の整合層及び共通のバッキング層を結合するステップと、
1又は複数のトランスデューサ・アレイを形成するように前記交互嵌合構造を個片化するステップと
を備えた方法。
【請求項17】
前記第一及び第二の音響積層体をダイシングするステップは、前記音響積層体の各々に切り溝を形成することを含んでおり、前記第一の音響積層体は当該第一の音響積層体の上面から下向きに延在する切り溝の第一の集合を有し、前記第二の音響積層体は当該第二の音響積層体の底面から上向きに延在する切り溝の第二の集合を有する、請求項16に記載の方法。
【請求項18】
前記交互嵌合構造をダイシングするステップと、前記整合層とバッキング層との結合に先立って第三の音響積層体を形成するように、前記ダイシングされた交互嵌合構造を、該ダイシングされた交互嵌合構造に対して相補的な幾何学的形状に構成されている基部パッケージに結合するステップとをさらに含んでいる請求項16に記載の方法。
【請求項19】
前記第三の音響積層体を複数のトランスデューサに分離するように、前記整合層とバッキング層との結合に先立って前記第三の音響積層体をダイシングするステップをさらに含んでおり、前記複数のトランスデューサの各々が、前記第一の小素子及び前記第二の小素子の少なくとも一方で形成される素子を含んでいる、請求項18に記載の方法。
【請求項20】
各々の素子に個別の電子回路を形成するように、前記整合層及び前記バッキング層の各々に電気的接続を取り付けるステップをさらに含んでいる請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本書に開示される主題の実施形態は、医療装置用のトランスデューサに関する。
【背景技術】
【0002】
トランスデューサ・プローブは、エネルギを物理的形態から電気的形態へ変換する多様な応用に用いられる。例えば、トランスデューサ・プローブは圧電材料を含む場合があり、圧電材料は自身に働く機械的な応力又は歪みから電圧を生成する。圧電トランスデューサ・プローブは高感度に構成されて、大きい信号振幅、広範囲の周波数にわたる利用のための広い帯域幅、及び高い距離分解能のための短時間インパルスを提供する。かかる特性は、撮像のような医療応用、非破壊評価、及び流体フロー・センシング等に望ましい。さらに、トランスデューサ・プローブの周波数アポダイゼーションによって、信号が発生源から遠ざかるにつれての信号の減弱及び分散による信号分解能損を軽減することができる。
【発明の概要】
【0003】
上述の簡単な説明は、詳細な説明においてさらに記載される様々な概念を単純化された形態で提起するために掲げられていることを理解されたい。かかる記載は、請求される主題の主要な又は本質的な特徴を指定するためのものではなく、請求される主題の範囲は、詳細な説明の後の特許請求の範囲によって一意に画定される。さらに、請求される主題は、上に記載される又は本開示の何れの部分に記載される何れの短所を解決する実施形態にも限定されない。
【図面の簡単な説明】
【0004】
本発明は、以下の非限定的な実施形態の記載を添付図面に関連させて読むことによりさらに十分に理解されよう。
【0005】
【
図1】超音波トランスデューサの音響積層体の一例を示す図である。
【
図2】均一型の多素子トランスデューサ・アレイの一例を示す図である。
【
図3】
図2の多素子トランスデューサ・アレイによって提供される仰角方向に沿ったアポダイゼーション関数の第一のグラフを示す図である。
【
図4】二つの小素子で形成される圧電素子の第一の例を示す図である。
【
図5】二つの小素子で形成される圧電素子の第二の例を示す図である。
【
図6】二つの小素子で形成される圧電素子の第三の例を示す図である。
【
図7】空間的周波数分布を変化させた多素子トランスデューサ・アレイの第一の例を示す図である。
【
図8】空間的周波数分布を変化させた多素子トランスデューサ・アレイの第二の例を示す図である。
【
図9】空間的周波数分布を変化させた多素子トランスデューサ・アレイの第三の例を示す図である。
【
図10】音響積層体ブロックの第一の例を示す図である。
【
図11】
図10の音響積層体ブロックから形成される第一の櫛形構造を示す図である。
【
図12】音響積層体ブロックの第二の例を示す図である。
【
図13】
図12の音響積層体ブロックから形成される第二の櫛形構造を示す図である。
【
図14】
図10の第一の例を
図12の第二の例と結合することにより形成される音響積層体ブロックの第三の例を仰角方向に沿って見た図である。
【
図15】音響積層体ブロックの第三の例を方位角方向に沿って見た図である。
【
図16】音響積層体ブロックの第三の例の基部パッケージとの結合を仰角方向に沿って見た図である。
【
図17】音響積層体ブロックの第三の例の基部パッケージとの結合を方位角方向に沿って見た図である。
【
図18】基部パッケージの第一の例を遠近法視点から示す図である。
【
図19】音響積層体ブロックの第三の例の基部パッケージとの結合から形成される音響積層体ブロックの第四の例を仰角方向に沿って見た図である。
【
図20】音響積層体ブロックの第四の例を方位角方向に沿って見た図である。
【
図21】背面の部分を研削除去した
図19の音響積層体ブロックの第四の例を仰角方向に沿って見た図である。
【
図22】背面の部分を研削除去した
図20の音響積層体ブロックの第四の例を方位角方向に沿って見た図である。
【
図23】研削後の背面に伝導層を結合させた音響積層体ブロックの第四の例を仰角方向に沿って見た図である。
【
図24】研削後の背面に伝導層を結合させた音響積層体ブロックの第四の例を方位角方向に沿って見た図である。
【
図25】音響積層体ブロックの第四の例のダイシングを仰角方向に沿って見た図である。
【
図26】音響積層体ブロックの第四の例のダイシングを方位角方向に沿って見た図である。
【
図27】音響積層体ブロックの第四の例の前面への整合層ブロックの結合及び背面へのバッキング層ブロックの結合を仰角方向に沿って見た図である。
【
図28】音響積層体ブロックの第四の例の前面への整合層ブロックの結合及び背面へのバッキング層ブロックの結合を方位角方向に沿って見た図である。
【
図29】音響積層体ブロックの第四の例の単体化を仰角方向に沿って見た図である。
【
図30】音響積層体ブロックの第四の例の単体化を方位角方向に沿って見た図である。
【
図31】多素子音響積層体の第五の例を示す図である。
【
図32】多素子音響積層体の第六の例を示す図である。
【
図33】多素子音響積層体の第七の例を示す図である。
【
図34】多素子音響積層体の第八の例を示す図である。
【
図35】
図29及び
図30の音響積層体ブロックの第四の例のダイシングの変形を示す図である。
【
図36】音響積層体を四つの小素子で形成するための二つの多素子櫛形構造の組み合わせを示す図である。
【
図37】多重周波数音響積層体を作製するルーチンの一例を示す図である。
【
図38】
図37のルーチンの部分として実行され得る音響積層体用の多重周波数素子を形成する方法の一例を示す図である。
【
図39】不均一な空間的周波数分布を有する多素子トランスデューサ・アレイによって提供される仰角方向に沿ったアポダイゼーション関数の第二のグラフを示す図である。
【
図40】基部パッケージの第二の例を遠近法視点から示す図である。
【
図41】基部パッケージの第三の例を遠近法視点から示す図である。
【
図42】相異なる切り溝寸法を有する櫛形構造から形成される音響積層体の一例を示す図である。
【発明を実施するための形態】
【0006】
以下の記載は、トランスデューサ・プローブ用の音響積層体(スタック)の様々な実施形態に関する。音響積層体は、1よりも多い小素子(sub-element)から形成される圧電素子によって音響積層体を構成することにより、広い周波数帯域幅を有して構成され得る。トランスデューサ・プローブ用の音響積層体の一例を
図1に示す。1よりも多い小素子の各々が、異なる共振周波数を有する異なる形式の素子であってよい。1よりも多い小素子の相対比が、トランスデューサ・プローブの方位角(アジムス)方向及び仰角(エレベーション)方向の両方に沿って一定に保たれて、均一なアレイを形成し得る。均一型の多重周波数トランスデューサ・アレイの一例を
図2に示しており、この均一型多素子(例えば1よりも多い小素子)アレイによって提供される周波数アポダイゼーション関数を示す第一のグラフを
図3に示す。対照的に、トランスデューサ・アレイの各々の素子に含まれる各小素子の含有百分率を変化させた多重周波数トランスデューサ・アレイによって生成され得るテーパ付きアポダイゼーション関数を
図39に示す。前述のように、圧電素子を形成する小素子の相対比は、
図4から
図6に示すように様々であってよい。幾つかの例では、多重周波数トランスデューサ・アレイが、方位角方向及び仰角方向の少なくとも一方に沿って均一でなく、代わりに変化する空間的周波数分布を呈していてもよい。異なる空間的分布の多重周波数トランスデューサ・アレイの例を
図7から
図9に示す。多素子トランスデューサ・アレイは、スケーラブルで低費用の製造を可能にするためにウェハ・スケール・アプローチを介して作製され得る。ウェハ・スケール・アプローチに含まれる様々な工程を
図10から
図36、及び
図40から
図42に示す。ウェハ・スケール・アプローチによってトランスデューサ・プローブ用の多重周波数音響積層体を作製する第一のルーチンの一例を
図37に示す。この音響積層体用の多重周波数素子を形成する第二のルーチンの一例を
図38に示し、このルーチン例は、
図37の第一のルーチンに含まれ得る。
【0007】
図1から
図2、
図4から
図36、及び
図40から
図42は、様々な構成要素の相対的な配置による構成例を示している。互いに直に接している又は直に結合されているように示されている場合には、少なくとも一例では、かかる要素をそれぞれ、直に接している又は直に結合していると称する場合がある。同様に、互いに連続する又は隣接するように示されている要素は、少なくとも一例では、それぞれ互いに対して連続し又は隣接し得る。一例として、互いに面を共有して接触して位置する構成要素を面共有接触と称する場合がある。もう一つの例として、間に空間のみを介して、他の構成要素を介在させず互いから離隔して配置された要素を、少なくとも一例ではそのようなものと称する場合がある。さらにもう一つの例として、互いの対向面で互いに上下に示されている要素、又は互いの左右に示されている要素を、互いに対してそのようなものと称する場合がある。さらに、各図面に示すように、少なくとも一例では最上の要素又は要素の最上点を当該構成要素の「頂部」と称し、最下の要素又は要素の最下点を構成要素の「底部」と称する場合がある。本書で用いる場合に、頂部/底部、上部/下部、上/下は、図の垂直軸に対するものであって、かかる用語を用いて図の要素の互いに対する配置を記述する場合がある。このようなものとして、他の要素の上に示されている要素は、一例では他の要素の垂直方向の上に配置されている。さらにもう一つの例として、図の内部に示されている要素の形状を、これらの形状を有するものと(例えば円形である、直線、平面、曲線、丸み付き、面取りである、又は傾斜付きである等のように)称する場合がある。さらに、互いに交差して示されている要素を、少なくとも一例では交差要素又は互いに交差しているものと称する場合がある。さらにまた、他の要素の内部に示されている要素又は他の要素の外部に示されている要素を、一例ではそのようなものと称する場合がある。
【0008】
圧電素子は、撮像、非破壊試験、診断、及び血流測定等を含めた広範な医療応用向けのトランスデューサ・プローブにおいて実装され得る。圧電素子は、機械的な歪みを受けたときに電気的に分極する分類の結晶材料で形成され得る。応力を受けると、圧電素子は加えられた応力に比例した電圧を出力する。
【0009】
圧電トランスデューサ・プローブ、例えば、エネルギを一形態から他形態へ変換するために圧電効果を利用した装置は、高感度、高い周波数応答、及び高い過渡応答を提供し得る。超音波トランスデューサ・プローブでのような幾つかの例では、圧電素子に電気を印加して材料の変形及び超音波の発生を生じさせる逆圧電効果を利用することができる。このようなものとして、外部の機械的な力は要求されず、圧電トランスデューサ・プローブをコンパクトで可搬容易な装置としてパッケージ化することができる。
【0010】
圧電トランスデューサ・プローブは高感度機器であるが、プローブの動作周波数帯域幅が狭い場合がある。例えば、圧電材料は低周波数、例えば0.5MHzから2.25MHzの間に関連付けられる場合もあるし、高周波数、例えば15.0MHzから25.0MHzの間に関連付けられる場合もあるが、両方に関連付けられることはない。同様に、トランスデューサ・プローブは、送信用にも受信用にも構成され得るが、特定の形式の圧電材料の周波数範囲は集束されているため、両方の応用で高性能を具えるようにはなっていない。広帯域トランスデューサ・プローブは、より広い動作周波数範囲を提供し得るが、電気インピーダンス整合を有するようにプローブを構成するのは困難で、費用も高額になる場合がある。
【0011】
一例では、以上に述べた問題は、多重周波数トランスデューサ・アレイと共に構成される圧電トランスデューサ・プローブによって対処され得る。この多重周波数トランスデューサ・アレイは、各々のトランスデューサにおいて、異なる共振周波数を各々有する1よりも多い小素子から形成される素子を含み得る。換言すると、各々の素子は、全体的な共振周波数が小素子の共振周波数によって改変された混成型素子であり得る。このように、組成を変化させた混成型素子によってトランスデューサ・アレイを構成することにより、このトランスデューサ・アレイは、当該トランスデューサ・アレイを実装した多重周波数トランスデューサ・プローブの感度及び分解能を保ちつつ、一定範囲の周波数にわたって動作することが可能になり得る。さらに、これらのトランスデューサは、方位角方向及び仰角方向の両方でグランド取り出し(リカバリ)、周波数アポダイゼーション、及び周波数可変能力(アジリティ)を提供するウェハ・レベル・アプローチを介して作製され得る。これにより、空間的周波数分布を制御することができ、費用効果の高いスケーラブルな態様を通じてトランスデューサを製造することができる。
【0012】
本書に記載されているような多重周波数圧電トランスデューサは多様な医療装置で利用され得る。例えば、
図1に示すように、超音波信号に基づいて画像を作成するのに用いられる超音波プローブに圧電トランスデューサが含まれ得る。超音波プローブは圧電トランスデューサを用いる医療装置の非限定的な例であって、他の医療装置での圧電トランスデューサの組み込みも思量されていることが認められよう。例えば、非破壊テスタ、噴射器(Jetter)システム、及び高圧電源等においてエネルギを変換するために圧電トランスデューサを用いることができる。以下の
図1の記述は、超音波トランスデューサ・プローブにおいて圧電トランスデューサが如何に実装され得るかについての例示的な概要である。
【0013】
超音波プローブが、超音波信号を発生するための1又は複数の能動的構成要素を含んでいる。
図1の音響積層体100の模式図において、能動的構成要素の一例すなわち超音波プローブの圧電素子102が、中心軸104と共に示されている。一組の参照軸が与えられており、方位角方向101、仰角方向103、及び方位角方向及び仰角方向の両方に垂直な長軸(transverse)方向105を示している。他の例では、これらの参照軸の組が、z軸101、x軸103、及びy軸105を表わしていてもよい。
図1では圧電素子102を方位角方向101に平行な中心軸104と共に示している。
【0014】
図1では、音響積層体100はリニア型の超音波プローブとして構成されて示されており、方位角方向はz軸と平行であると記載しているが、他の例は、圧電素子アレイの形状に応じてz軸に対して傾斜した方位角方向を含み得ることを特記しておく。例えば、超音波プローブは曲線型又はフェーズド・アレイであってもよく、このようにしてz軸に平行でない非線形ビームを生成し得る。
【0015】
図1には単一の圧電素子を示しているが、超音波プローブはアレイを成して配置されて個別に線によって電気エネルギ源に結合されている複数の圧電素子を含み得る。1又は複数の圧電素子で形成される各々の電気回路が(一つの)トランスデューサであり得る。幾つかの例では、トランスデューサは、多様なパタン、すなわち一次元(1D)線形、二次元(2D)方形、及び2D円環形等を含めてマトリクスを成して配置され得る圧電素子のアレイを含み得る。一例では、トランスデューサが1よりも多い形式の圧電素子から形成されて、これにより多重周波数圧電トランスデューサを提供することができる。方位角方向及び仰角方向の各々に沿った周波数分布は、一様に構成されてもよいし、非一様に構成されてもよい。多重周波数圧電トランスデューサのさらなる詳細については、
図2から
図42に関連して後述する。
【0016】
各々のトランスデューサは、隣接するトランスデューサから電気的に絶縁され得るが、方位角方向に関して圧電素子の上下に配置された共通の層に全て結合され得る。複数の圧電素子及び付設の層は超音波プローブの外筐体によって封入されていてよく、外筐体は例えば多様な幾何学的形状のプラスチック・ケースであってよい。例えば、外筐体は矩形ブロック、円筒、又は利用者の手に無理なく収まるように構成された形状であり得る。このようなものとして、
図1に示す構成要素は、超音波プローブの外筐体の内部に収容するのに適した幾何学的形状及び寸法を有するように構成され得る。
【0017】
圧電素子102は、例えば送信器によって電圧が印加されたときに変形して振動する石英のような天然材料又はチタン酸ジルコン酸鉛のような合成材料で形成されるブロックであってよい。幾つかの例では、圧電素子102は、ニオブ酸リチウム及びPMN-PT(Pb(Mg1/3Nb2/3)O3-PbTiO3)のような結晶軸を有する単結晶であってよい。圧電素子102の振動によって超音波で形成される超音波信号が発生し、この超音波は超音波プローブから出て矢印107によって示される方向、例えば方位角方向101に沿って伝達される。圧電素子102はまた、目標物から反射した超音波のような超音波を受け取ることもでき、これらの超音波を電圧へ変換することができる。電圧は超音波イメージング・システムの受信器へ伝達されて、画像になるように処理され得る。
【0018】
電極114が圧電素子102に直に接していてよく、線115を介して電圧を伝達し、電圧を超音波へ変換する。線115は、複数の圧電素子の電極からの複数の線が固定され得る回路基板(不図示)に接続され得る。回路基板は、超音波プローブと受信器との間の電子的連絡を提供する同軸ケーブルに結合され得る。
【0019】
音響整合層120が、方位角方向101に関して圧電素子102の上に配置されて、中心軸104に垂直に配向され得る。音響整合層120は、圧電素子102と撮像目標物との間に配置された材料であってよい。音響整合層120を間に配置することにより、超音波は先ず音響整合層120を通過して、同相で音響整合層220から出ることができ、これにより目標物での反射の可能性を減少させ得る。音響整合層220は超音波信号のパルス長を短くすることができ、これにより信号の距離分解能を高め得る。
【0020】
バッキング126が、z軸に関して圧電素子102の下に配置され得る。幾つかの例では、バッキング126は、超音波プローブの複数の圧電素子の各々が方位角方向101に関してバッキング126の直上に位置するように、仰角方向103に沿って延在する材料のブロックであってよい。バッキング126は、圧電素子102から矢印107によって示される方向の反対方向に向かう超音波を吸収して、超音波プローブの外筐体によって偏向される迷走超音波を減衰させるように構成され得る。超音波信号の帯域幅及び距離分解能を、バッキング126によって高めることができる。
【0021】
圧電トランスデューサ(PZT)プローブは、目標への高い深達度(ペネトレーション)、並びに高い周波数応答及び高い過渡応答を提供することができ、高分解能データを得ることを可能にする。しかしながら、プローブに含まれる一つの形式の圧電素子は、プローブの利用を特定の応用に限定するような周波数帯域幅の範囲内で動作し得る。例えば、低中心周波数の圧電素子のプローブは、深部組織又は深部器官の超音波画像を形成するのに用いられ得るが、十分なキズ分解能力又は厚み測定能力を提供することができない。このように、多様な応用向けの圧電トランスデューサ・プローブを利用しようとすると、異なる圧電素子を有する多数のプローブの入手が必要になり得る。
【0022】
対照的に、静電容量型微細加工超音波トランスデューサ(CMUT)プローブは、超音波応用に用いられるときには、微細加工手法を介してシリコンの上にCMUTを構築するため、より広い帯域幅及びより効率のよい製造を提供し得る。CMUTの帯域幅はより広いので、CMUTプローブはPZTプローブよりも高い距離分解能を達成することができる。しかしながら、CMUTプローブの感度及び深達度はPZTプローブよりも低い場合がある。さらに、CMUTはPZTよりも音響クロストークを生じ易い場合がある。
【0023】
一例では、PZTプローブを、各々が異なる形式の圧電材料である1よりも多い形式の小素子から形成される圧電素子を備えたトランスデューサとして構成することにより、PZTプローブにおいて高い深達度及び広い帯域幅を提供することができる。異なる共振周波数の圧電小素子を組み合わせて一つのトランスデューサにすることにより、多重周波数圧電素子のアレイを提供することができる。多重周波数素子の各々が、小素子の相対比に応じて別個の周波数を有することができるので、これらの多重周波数素子は、単一素子型のトランスデューサ・プローブに比較して広範囲の周波数にわたる信号を送受することができる。
【0024】
例えば、
図2に示すように、多重周波数素子の第一のマトリクス200の一例は、バタフライ型マトリクス・アレイのような均一な二次元アレイであってよく、均一な多重周波数素子202を備える。第一のマトリクス200は、
図1の音響積層体100のような音響積層体のトランスデューサの内部での素子202の構成を表わし得る。音響積層体の少なくとも一つがPZTプローブの内部に組み入れられ得る。第一のマトリクス200は、方位角方向101及び仰角方向103に沿って配向しているように図示されている。
【0025】
素子202の各々が、第一の小素子204と第二の小素子206とを含んでいる。一例として、第一の小素子204が高周波数素子であり、第二の小素子206が低周波数素子であってよく、第一の及び第二の小素子204、206は、
図10から
図38に関連して後にさらに議論される製造手法を介して結合され得る。素子202は互いから隔設されて、これにより隣接する素子202から電気的に絶縁され得る。素子202の各々が電気回路208に結合されることができ、電圧の印加によって素子202の各々の変形を誘発することを可能にし得る。さらに、素子202の各々は、変形によって誘発されたときには個別の信号を伝達し得る。素子202の各々が電気回路208に結合されているが、
図2では簡便のため素子202の最下列のみが電気回路208に直に結合されているように示されていることを特記しておく。
【0026】
第一のマトリクス200は、
図1に示すように音響積層体の他の層、例えば音響レンズ及びバッキング等に結合され得る。第一の小素子204及び第二の小素子206から素子を形成する結果として、素子は広範囲の周波数にわたり送受信することができる。例えば、第一の小素子204は中心(例えば共振)周波数が2.0MHzであってよく、第二の小素子206は中心周波数が15MHzであってよい。第一の小素子204を第二の小素子206と等しい相対比で組み合わせることにより、素子202は第一の小素子204又は第二の小素子206の何れか単独の場合よりも広範囲の周波数にわたり超音波信号を送受することができる。
【0027】
例えば、素子202の各々が1.5MHzから15MHzの周波数範囲を有し得る。第一のマトリクス200での素子202のアレイは、
図3に示すように仰角方向103に沿って対称且つ線形のアポダイゼーション関数を提供し得る。高周波数小素子(例えば
図2の第一の小素子204)及び低周波数小素子(例えば
図2の第二の小素子206)の両方によって提供されるアポダイゼーションをグラフ300に示しており、高周波数小素子をプロット302、低周波数小素子をプロット304によって示す。これらのアポダイゼーション関数は、y軸に沿ってトランスデューサ・アレイの各々の素子での高周波数小素子及び低周波数小素子の相対含有百分率に対してプロットされていると共に、x軸に沿って仰角方向103に対してプロットされている。等比率の高周波数小素子及び低周波数小素子を仰角方向に沿って分布させると、一様なアポダイゼーション関数が得られる。
【0028】
前述のように、対称で且つ非テーパ付きのアポダイゼーション関数は
図2の素子202の高周波数小素子及び低周波数小素子204、206によって提供されており、これらの小素子を等比率にして均一なマトリクス・アレイとし、例えばアレイの各々の多重周波数素子を同様に構成することにより提供され得る。しかしながら、漏れサイドローブを抑制するように標本領域の両縁で標本化された信号をゼロ又は近ゼロまで低下させるために、アポダイゼーション関数をテーパ付きにすることが望まれる場合もある。例えば、高周波数小素子及び低周波数小素子で形成された素子によって提供されるテーパ付きアポダイゼーション関数(非離散化)を
図39の第二のグラフ3900にに示す。
【0029】
プロット3902はトランスデューサ・アレイの各々の素子の高周波数小素子のアポダイゼーション関数を表わし、プロット3904はトランスデューサ・アレイの各々の素子の低周波数小素子のアポダイゼーション関数を表わし、これらの関数は、仰角方向103に沿って含有百分率(y軸)に対して表わされている。プロット3902及びプロット3904は逆相関しており、仰角方向103に沿ったトランスデューサ・アレイの中央領域でのy軸に対する第一のプロット3902の最大値がプロット3904の最小値に対応している。最大値の何れの側でも、プロット3902はy軸に沿って減少し、プロット3904は比例して増加している。高周波数小素子及び低周波数小素子の各々の最大含有百分率が80%に示され、最小含有百分率が20%に示されているが、他の例は、それぞれ100%及び0%のように、他の任意の値の最大含有百分率及び最小含有百分率を含み得る。
【0030】
高周波数アポダイゼーション関数と低周波数アポダイゼーション関数との和がサイド・ローブ低減を提供し得る。例えば、漏れサイド・ローブの最大抑制を達成するために、トランスデューサ・アレイの中央領域に相対的に高比率の高周波数素子を有し、トランスデューサ・アレイの各辺に沿って相対的に高比率の低周波数素子を有することが望ましい場合がある。グラフ3900に示すテーパ付きアポダイゼーション関数は、高周波数小素子及び低周波数小素子の各々の相対比が不等となるようにトランスデューサ・アレイの素子を構成することにより生成され得る。例えば、トランスデューサの中央領域は、外縁よりも高い含有百分率の高周波数小素子を有する素子を含み得る。これによりサイド・ローブの抑制が強化される。
【0031】
不等の小素子比率を有する素子の例を
図4から
図6に示す。不等の分布を有する第一の例の多重周波数素子400を
図4に示す。多重周波数素子400は、
図2の素子202の第一の小素子及び第二の小素子204、206と同様の第一の高周波数小素子402と第二の低周波数小素子404とで形成されている。
【0032】
第一の小素子402の第一の幅406は第二の小素子404の第二の幅408よりも大きくてよい。例えば、第一の幅406は第二の幅408の4倍の大きさで、結果として多重周波数素子400の80%が第一の高周波数小素子402で形成され、20%が第二の低周波数小素子404で形成され得る。他の例では各小素子の相対的な幅が反転していてもよい。第二の例の多重周波数素子500を
図5に示しており、この例は第一の高周波数小素子502と第二の低周波数小素子504とを含んでいる。この第二の例では、第一の小素子502の第一の幅506は第二の小素子504の第二の幅508の2分の1であってよい。
【0033】
不等の分布を有する第三の例の多重周波数素子600では、
図6に示すように、多重周波数素子600は第一の高周波数小素子602と第二の低周波数小素子604とで同様に形成されている。第一の小素子602の第一の幅606も第二の小素子604の第二の幅608よりも小さい。第一の幅606は第二の幅608の例えば4分の1であってよい。
【0034】
図4から
図6に示す小素子を不等に分布させた多重周波数素子の例は、多重周波数素子の非限定的な例である。他の例は素子の第一の小素子と第二の小素子との間の相対比を任意に変化させた多重周波数素子を含み得る。さらに、多重周波数素子の他の例は、二つよりも多い小素子を含み得る。例えば、多重周波数素子を三つ又は四つの小素子で、小素子の各々の比率を様々にして形成することができる。
【0035】
不均一な多重周波数素子のアレイが、
図39に示す周波数アポダイゼーション関数を提供するように構成され得る。このアレイは、アレイに含まれる各々の多重周波数素子を形成する異なる小素子の含有百分率に関して不均一であってよい。換言すると、各々が異なる共振周波数を有する小素子の数、及び各々の素子での小素子の相対比は、アレイにわたり一様でなくてよく、異なる周波数範囲の素子を空間的に分布させることを可能にする。一例では、
図7に示すように、
図39のグラフ3900に示すものと同様のアポダイゼーション関数を提供するように構成されている第二のマトリクス700が、複数の素子702で形成された一次元(1D)アレイの一例となり得る。複数の素子702の第一の横列701、第二の横列703、及び第三の横列705が示されている。第二の横列703と第三の横列705との間の破線は、第二の横列703と第三の横列705との間に配置される選択随意の付加的な横列であって簡便のため
図7から省かれている横列の存在を表わしている。換言すると、第二のマトリクス700は少なくとも1列の横列を有することができ、また任意の数の追加の横列を含み得る。複数の素子702の各々が電気回路に結合されて、各々の素子の組成に基づいて個別の信号を伝達し得る。
【0036】
複数の素子702の各々が第一の高周波数小素子704及び/又は第二の低周波数小素子706を含んでいる。複数の素子702の幾つかは、小素子の幅を互いに対して変化させた第一の小素子704及び第二の小素子706の両方を含んでいる(この幅は仰角方向103に沿って定義される)。また、複数の素子702の幾つかは、第一の小素子704のみ又は第二の小素子706のみを含んでいる。
【0037】
例えば、第二のマトリクス700の中央領域720は、第一の小素子704のみで形成された複数の素子702の部分を含む一方、第二のマトリクス700の中心軸708に対して遠位の辺縁領域722は、第二の小素子706のみで形成されている。第二のマトリクス700の中央領域720と辺縁領域722との間の領域724は、変化する比の第一の小素子704及び第二の小素子706の両方で形成されている。仰角方向103に沿った第一及び第二の小素子704、706の空間的分布の結果として、複数の素子702の各々の共振周波数が仰角方向103に沿って変化し得る。
【0038】
例えば、第二のマトリクス700の中央領域720では、第一の小素子704のみを含む複数の素子702の部分は、第一の小素子704に関連する共振周波数の信号を各々送受する。辺縁領域722では、第二の小素子706のみから形成される複数の素子702の部分は、第二の小素子706に関連する共振周波数の信号を各々送受する。中央領域720と辺縁領域722との間の領域724では、複数の素子702は混成型、例えば第一及び第二の小素子704、706の組み合わせであり、従って、第一の小素子704の共振周波数値の範囲と第二の小素子706の共振周波数値の範囲との間の共振周波数値の範囲を有し得る。
【0039】
一例として、複数の素子702のうち第一の素子707は50%の第一の小素子704と50%の第二の小素子706とで構成され得る。第一の素子707の共振周波数は第一の小素子704の共振周波数と第二の小素子706の共振周波数との間の中間の値であってよい。第一の素子707と第二のマトリクス700の中央領域720との間に配置されている複数の素子702のうち第二の素子709は、第一の素子707に比較して高い組成百分率の第一の小素子704を有し得る。従って、第二の素子709は、第一の素子707の共振周波数よりも高いが第一の小素子704の共振周波数よりも低い共振周波数を有し得る。第一の素子707と左側辺縁領域722との間に位置する複数の素子702の第三の素子711は、第一の素子707よりも高い組成百分率の第二の小素子706を有し得る。従って、第三の素子711は、第一の素子707よりも低いが第二の小素子706よりも高い共振周波数を有し得る。
【0040】
複数の素子702の組成を仰角方向103に沿って次第に変化させることにより、複数の素子702は、第一の小素子704の共振周波数と第二の小素子706の共振周波数との間にわたる連続した共振周波数を有し得る。他の例では、複数の素子702の組成を、仰角方向103の代わりに又は仰角方向103に加えて、方位角方向101に沿って同様に変化させることもできる。従って、第二のマトリクス700は素子の組成が一様なトランスデューサ・アレイよりも広範囲の周波数を通じて信号を送受し得る。
図7に示す例では、最も高い周波数は第二のマトリクスの中央領域720において送受され、最も低い周波数は辺縁領域722において送受され得る。
【0041】
第二のマトリクス700は、方位角方向101に平行な第二のマトリクス700の中心軸708に関して対称であってよい。複数の素子702の間での小素子の分布の変化に関わらず、第二のマトリクスが
図39に示すようなアポダイゼーション関数を提供することを、この第二のマトリクス700の対称性が可能にしている。
【0042】
第三のマトリクス800の一例を
図8に示しており、1.5次元(1.5D)マトリクス・アレイの例となり得る。第三のマトリクス800は、第一の横列804、第二の横列806、及び第三の横列808を成して配置された複数の素子802を含んでいる。同様に、第一の横列804と第二の横列806との間の破線は、第三のマトリクス800の付加的な横列であって簡便のため省かれている横列の存在を示している。第三のマトリクス800は、方位角方向101に平行な中心軸810を有する。
【0043】
第三のマトリクス800の複数の素子802の少なくとも一部は、第一の高周波数小素子812及び第二の低周波数小素子814で形成された多重周波数素子816であってよい。例えば、複数の素子802のうち多重周波数素子816は、仰角方向103に沿って二つの第一の小素子812が二つの第二の小素子814と交互配置したものを含み得る。第三のマトリクス800の中央領域820は第一の小素子812のみで形成され得る一方、第三のマトリクス800の辺縁領域822は第二の小素子814のみで形成され得る。さらに、仰角方向103に沿って定義される複数の素子802の各々の厚みが、第三のマトリクス800の各々の横列にわたり変化していてもよい。
【0044】
仰角方向103に沿った第一及び第二の小素子812、814の空間的分布の結果として、複数の素子802の共振周波数は仰角方向103にわたり変化し得る。例えば、
図7の第二のマトリクス700と同様に、中央領域820の複数の素子802の部分は、第一の小素子812の共振周波数に等しい相対的に高い共振周波数において信号を送受し得る一方、辺縁領域の複数の素子802の部分は、第二の小素子814の共振周波数に等しい相対的に低い共振周波数において信号を送受し得る。中央領域820と辺縁領域822との間の複数の素子802の部分は、第一の小素子812と第二の小素子814との間の中間的な共振周波数を有し得る。従って、第三のマトリクス800によって包含される周波数の範囲は、第三のマトリクス800のアレイにおける単一周波数素子の利用に比較して広くなり得る。
【0045】
第三のマトリクス800は、仰角方向103に沿って中心軸810に関して対称であってよい。
図7の第二のマトリクス700と同様に、第三のマトリクス800の対称性のため、第三のマトリクス800は
図39に示すようなアポダイゼーション関数を提供することが可能になる。1.5Dアレイ(1.75Dアレイも同様)は、トランスデューサ・プローブのアクティブ・アパーチャが変化するのに伴って、最適化されたビーム・パタンを提供し得る。このようなものとして、このアレイは、狭いアパーチャによって近距離場を最適化し、またより大きいアパーチャによって遠距離場を最適化することが可能である。1.5Dアレイ又は1.75Dアレイを
図10から
図38に示す工程を介して製造することにより、この工程は単一のアレイの内部で異なる中心周波数及び周波数範囲の素子を混合することを可能にする。この製造工程はアレイ構成の融通性の増大を提供するが、多大な追加費用を伴う。1.25Dリニア・アレイの一例であり得る第四のマトリクス900の一例を
図9に示す。第四のマトリクス900も、仰角方向103に沿った横列を成して配置された複数の素子902と、方位角方向101に平行な中心軸904とを有している。複数の素子902は、各々が単一の形式の素子で形成されていてよく、混成型素子ではない。
【0046】
第四のマトリクス900は、第一の高周波数小素子906と第二の低周波数小素子908とを含んでいる。複数の素子902の各々が第一の小素子906又は第二の小素子908の何れかで形成されていてよく、仰角方向103に沿った幅が変化し得る。第四のマトリクス900は仰角方向103に沿って中心軸904に関して対称であるため、第四のマトリクス900は仰角方向103に沿ったアポダイゼーションを提供することが可能である。1よりも多い形式の素子を組み入れることにより、第四のマトリクス900がさらに広範囲の周波数にわたり動作することが可能になる。しかしながら、この周波数分布は、混成型素子、例えば1よりも多い小素子で形成される素子の組み入れがなく、
図7及び
図8のマトリクスよりも連続性が低く、離散性が高い場合がある。
【0047】
図7から
図9の複数の素子の各々の素子が、
図1及び
図2に示すような電気回路に結合され得ることを特記しておく。加えて、多重周波数トランスデューサ・アレイの他の例はまた、方位角方向101に沿った周波数アポダイゼーション及び周波数可変能力の制御を含み得る。例えば、多重周波数素子の分布を、仰角方向103に沿って示したものと同様の態様で方位角方向101に沿って変化させることができる。方位角方向に沿った空間的周波数分布の変化は、仰角方向に沿った周波数変化の代替として又はこれに加えてアレイにおいて具現化され得る。方位角方向及び仰角方向の両方に沿ってアレイを多重周波数素子で構成することにより、一様な素子を有するトランスデューサ・アレイでの周波数アポダイゼーションに対してさらに複雑なアポダイゼーションが可能になる。両方向に沿って素子を変化させるための方法を提供することにより、アレイの構成はより融通性が大きくなり、より容易にマトリクスとして具現化され得る。さらに、周波数可変能力、例えばトランスデューサが送信周波数を予め選択された範囲にわたり速やかに移動させて混信や相互干渉を減少させ、又は大気効果を考慮に入れる能力が、方位角方向及び仰角方向の両方に沿って可能になり得る。
【0048】
多重周波数素子をトランスデューサ・アレイに組み入れると、トランスデューサ・アレイの周波数帯域幅を増大させつつ、信号の送受の両方について感度を高めることが可能になり得る。トランスデューサ・プローブの応用に基づいて特定の周波数での信号送信を選択することができ、すると対応する共振周波数を有するトランスデューサ・アレイの多重周波数素子の励振を生じさせることができる。広範囲の周波数を有する素子によってトランスデューサ・アレイを構成することにより、トランスデューサ・プローブの異なる動作が可能になる。これにより、このトランスデューサ・アレイでなければ異なる共振周波数の多数の単一素子型トランスデューサ・プローブの利用を要求していたであろう多様な応用に、このトランスデューサ・プローブを用いることができる。
【0049】
幾つかの例では、トランスデューサ・アレイによって受信された信号の後処理は従来の後処理と同様であってよく、信号を例えば画像へ変換する既存の後処理アルゴリズムを用いてよい。信号の帯域通過フィルタ処理を信号の周波数に基づいて改変することもできる。
【0050】
多重周波数トランスデューサ素子のアレイの製造は、ウェハ・レベル・アプローチを活用した費用効果の高い工程を介して達成され得る。ウェハ・レベル・アプローチは、多数のトランスデューサ・アレイを同時に形成し、これにより効率及びスループットを高めることが可能である。以下、多重周波数トランスデューサ・アレイの製造工程を
図10から
図38及び
図40から
図42に関連して記載する。ウェハ・レベル・アプローチは、
図10に示すような第一の音響積層体1000のブロックから開始することができる。
図10では第一の音響積層体1000は仰角方向に沿って見た図であり、
図1の音響整合層120と同様の整合層1002を含んでおり、整合層1002はグラファイト又は金属のような導電性の層であってよい。整合層1002は、第一の音響積層体1000の垂直軸、例えば長軸方向105に沿って積層された1よりも多い層で形成されることができ、垂直軸に沿って導電性となるように構成され得る。
【0051】
整合層1002は、長軸方向105に対して第一の圧電層1004の上に配置される。超音波トランスデューサ・プローブと目標媒体との間の音響インピーダンス差が整合層1002によって緩衝され得る。第一の圧電層1004は、超音波信号を送受するように構成される圧電材料であって、前述のように超音波トランスデューサ・プローブのトランスデューサ素子を形成するのに用いられる圧電材料で形成される。
【0052】
第一の圧電層1004の下に、整合分離(デマッチング)層1006が配置され得る。整合分離層は、挿入損失を減少させ得ると共にトランスデューサ・プローブの周波数帯域幅を増強し得る高インピーダンス層であり得る。幾つかの例では、整合分離層は選択随意で省かれてもよい。整合分離層1006の下に、
図1のバッキング126と同様にバッキング層1008が配置され得る。バッキング層1008は、例えば複合材のような導電性材料で形成されることができ、圧電材料が送信モードから受信モードヘ切り換わるときに起こり得るリンギング効果を弱めることができる。第一の圧電層1004は、エポキシのような接着剤で整合層1002及び整合分離層1006(又は整合分離層1006が存在しないときにはバッキング層1008)に接着され得る。
【0053】
第一の音響積層体1000の第一の圧電層1004は、長軸方向105に沿って定義される第一の高さ1010を有し得る。第一の高さ1010によって、より高い共振周波数の圧電素子を、
図12及び
図13に示され後に詳述されるより大きい第二の高さ1210の第二の圧電層1204の共振周波数の圧電素子から視覚的に区別することができる。第一の音響積層体1000において長軸方向105に沿って等間隔で切り溝(kerf)1102をダイシングすることにより、
図10の第一の音響積層体1000から第一の櫛形構造1100を形成することができる。切り溝1102は、整合層1002からバッキング層1008の内部まで方位角方向101に沿って下向きに延在しているが、バッキング層1008を完全に貫通している訳ではない。切り溝1102のダイシングによって第一のフィン1104が形成され、第一のフィン1104の各々が切り溝1102の一つによって隣接する第一のフィン1104から隔設されている。第一のフィン1104は、バッキング層1008から方位角方向101に沿って上向きに延在して、仰角方向103に沿って第一の櫛形構造1100の全奥行きを横断して延在し得る。
【0054】
ダイシングは、ウェハに切り溝を刻み込んでウェハの高さを完全には貫通せずに延在する凹部又は溝穴をウェハに形成することを指すことを特記しておく。このように、ダイシングはウェハの部分を電気的に絶縁することができ、例えばある区画を、高さに垂直な平面に沿って隣接する区画から電気的に不連続にするが、ウェハを個別の分離した区画に分割する訳ではない。対照的に、単体化(singulation)は、後述するようにウェハを物理的に分離された個別のトランスデューサ・アレイに個片化(singularize)することを容易にする。本書では、ダイシング及び単体化はウェハの各部分が方位角方向及び仰角方向によって形成される平面に沿ってのみ電気的に絶縁され、且つ/又は物理的に分離されるように、ウェハの高さに沿って、例えば長軸方向に沿ってのみ行なわれる。
【0055】
第一の櫛形構造1100は、第二の櫛形構造(例えば
図13に示す第二の櫛形構造1300)に相補的な又は合致する幾何学的形状にダイシングされる。第二の櫛形構造1300は、
図12に示す第二の音響積層体1200から形成され得る。第二の音響積層体1200は第一の音響積層体1000と同様の層を有していてよく、第一の音響積層体1000の整合層1002と同じ材料又は異なる材料(又は導電性層の積層体)で形成される整合層1202と、
図10の第一の圧電層1004と異なる材料で形成される第二の圧電層1204と、第一の音響積層体1000の整合分離層1006と同様の選択随意の整合分離層1206と、第一の音響積層体1000のバッキング層1008と同じ材料又は異なる材料で形成されるバッキング層1208とを含んでいる。
【0056】
前述のように、方位角方向101に沿って定義される第二の圧電層1204の第二の高さ1210は、第一の音響積層体1000の第一の圧電層1004の高さ1010よりも大きくてよい。第二の圧電層1204から形成される圧電素子は、第一の圧電層1004から形成される圧電素子よりも低い共振周波数を有し得る。例えば第一の櫛形構造1100において第一の圧電層1004に対応するダイシングされた圧電素子を以下では高周波数小素子1004と称し、例えば第二の櫛形構造1300において第二の圧電層1204に対応するダイシングされた圧電素子を以下では低周波数小素子1204と称する。
【0057】
やはり方位角方向101に沿って定義される第二の音響積層体1200の整合層1202の高さは第一の音響積層体1000の整合層1002の高さよりも大きくてよい一方、第二の音響積層体1200のバッキング層1208の高さは第一の音響積層体1000のバッキング層1008の高さよりも小さくてよい。整合層とバッキング層との間の高さの差によって、第一及び第二の櫛形構造1100、1300が単一の構造に組み合わされるときに、これらの櫛形構造の各々の層が望まれる整列性(アラインメント)を有することを可能にし得る。このことについては後に詳述する。
【0058】
第二の音響積層体1200は、
図13に示すように第一の音響積層体1000から反対方向にダイシングされ得る。このようなものとして、第二の音響積層体1200は、切り溝1302が、方位角方向101に沿って上向きにバッキング層1208から整合層1202の内部まで延在するようにダイシングされる。切り溝1302は、整合層1202を完全には貫通せずに延在する。切り溝1302は、長軸方向105に沿って等間隔で隔設され、切り溝1302の各々の間に第二のフィン1304を形成する。第二のフィン1304は、仰角方向103に沿って第二の櫛形構造1300の全奥行きを横断して延在し得る。
【0059】
第二の櫛形構造1300の切り溝1302の各々の幅1306は、第一の櫛形構造1100の第一のフィン1104の各々の幅1106(
図11に示す)と等しくてよい。同様に、第二の櫛形構造1300の第二のフィンの各々の幅1308は、第一の櫛形構造1100の切り溝1102の各々の幅1108(
図11に示す)と等しくてよい。方位角方向101に沿って定義される第二の櫛形構造1300の切り溝1302及び第二のフィン1304の両方の高さ1310は、第一の櫛形構造1100の第一のフィン1104及び切り溝1102の両方の高さと等しくてよい。第一の櫛形構造1100と第二の櫛形構造1300とが相補的な幾何学的形状であるので、仰角方向103に沿って第一の視点1400から見た
図14及び方位角方向101に沿って第二の視点1500から見た
図15に示すように、これらの櫛形構造が咬み合って交互嵌合型の櫛形構造の第三の音響積層体1402を形成することが可能になる。
【0060】
図14に示す第三の音響積層体1402の第一の視点から見た
図1400では、接着剤1404の第一の層が第一の櫛形構造1100と第二の櫛形構造1300との間に配置されて、櫛形構造の貼り合わせを可能にしている。接着剤1404の第一の層は、第一の櫛形構造1100を第二の櫛形構造1300から電気的に絶縁するエポキシのような非伝導性接着剤であってよい。第一の櫛形構造1100及び第二の櫛形構造1300は、当該第一の櫛形構造1100と第二の櫛形構造1300との間に間隙が存在しないように互いに入れ子にされ得る。
【0061】
第三の音響積層体1402の第二の視点から見た
図1500に示すように、第三の音響積層体1402の交互嵌合構造の指形部を各々形成する第一のフィン1104及び第二のフィン1304は、仰角方向103に沿った第三の音響積層体1402の奥行き1502に沿って延在している。第三の音響積層体1402の第一の視点から見た
図1400及び第二の視点から見た
図1500は、音響積層体1402全体ではなく第三の音響積層体の一区画を表わし得ることが認められよう。第三の音響積層体1402は
図14では第一のフィン1104のうち三つと第二のフィン1304のうち三つとで示されているが、第三の音響積層体1402は任意の数のフィンを有し得る。第三の音響積層体1402の幅1406及び奥行き1502は、それぞれ
図14及び
図15に示すよりも大きくても小さくてもよい。
【0062】
加えて、幾つかの例では、第三の音響積層体1402はさらに1又は複数の付加的な櫛形構造と組み合わされて、音響積層体に異なる共振周波数を組み入れて小素子の数を増加させてもよい。例えば、
図36に示すように、第一の多重周波数櫛形構造3602及び第二の多重周波数櫛形構造3604の各々が、第三の音響積層体1402のような音響積層体から形成され得る。
【0063】
第一の多重周波数櫛形構造3602の少なくとも一つの第一のフィン3603が、第一の小素子3606と第二の小素子3608とを含み得る。第一の多重周波数櫛形構造3602は、
図11に示すような第一の音響積層体1000のダイシングと同様に、第一の切り溝3610が長軸方向105に沿って第一の多重周波数櫛形構造3602の頂部から第一の多重周波数櫛形構造3602の高さ3612の部分を通って下向きに延在するように音響積層体をダイシングすることにより形成され得る。
【0064】
第二の多重周波数櫛形構造3604は、第三の小素子3616と第四の小素子3618とを含む少なくとも一つの第二のフィン3614を有し得る。第一、第二、第三、及び第四の小素子3606、3608、3616、3618の各々が異なる共振周波数を有し得る。第二の多重周波数櫛形構造3604は、
図13に示すような第二の音響積層体1200と同様に、第二の切り溝3620が長軸方向105に沿って第二の多重周波数櫛形構造3604の底部から第二の多重周波数櫛形構造3604の高さ3622の部分を通って上向きに延在するようにダイシングされ得る。
【0065】
第一の切り溝3610の幅3624及び高さ3626は、第二のフィン3614の幅及び高さと同様であってよい。また第二の切り溝3620の幅3628及び高さ3630は、第一のフィン3603の幅及び高さと同様であってよい。矢印3632によって示すように、第二の多重周波数櫛形構造3604の第二のフィン3614が第一の多重周波数櫛形構造3602の第一の切り溝3610に挿入される一方、第一のフィン3603が第二の多重周波数櫛形構造3604の第二の切り溝3620の内部に挿入されて、四つの小素子を備えた組み合わされた積層体を形成することができる。後述するように、この組み合わされた積層体は貼り合わされてさらに加工される。
【0066】
図36は、四つの異なる小素子を有する多重周波数音響積層体が如何にして形成され得るかについての非限定的な例を示している。他の例では、第一の多重周波数櫛形構造3602又は第二の多重周波数櫛形構造3604の何れかが単一素子櫛形構造であってもよい。かかる例では、結果として得られる組み合わされた音響積層体は三つの小素子を含み得る。さらに、小素子の各々の方位角方向101に沿って定義される幅は同様であるように示されており、各々の小素子を等比率にした組み合わされた積層体を得ている。しかしながら他の例では、小素子の各々の含有百分率が不等になるように小素子の幅を変化させてもよい。
【0067】
さらに、
図14から
図15の第三の音響積層体1402は、相補的な幾何学的形状を有し、結果として無間隙の櫛形構造の組み合わせ、例えば結合されたときに櫛形構造同士の間に空間が存在しない櫛形構造の組み合わせを生ずるような第一及び第二の櫛形構造1100、1300を示しているが、これらの櫛形構造は非合致の幾何学的形状を有するようにダイシングされていてもよい。例えば、
図42に示すように、代替的な例の音響積層体4200は、組み合わされて交互嵌合構造を形成する第一の櫛形構造4202と第二の櫛形構造4204とを含み得る。
【0068】
第一の櫛形構造4202の切り溝は第二の櫛形構造4204のフィンの寸法と合致した寸法を有していなくてもよく、また第二の櫛形構造4204の切り溝は第一の櫛形構造4202のフィンの寸法と合致した寸法を有していなくてもよい。例えば、第一の櫛形構造4202の第一の切り溝4206は、第二の櫛形構造4204の第一のフィン4212の奥行き4210よりも大きい奥行き4208を有し得る。第二の櫛形構造4204の第一のフィン4212が第一の櫛形構造4204の第一の切り溝4206に挿入されると、例えば方位角方向に沿って第一のフィン4212の周囲に間隙が存在し得る。
【0069】
第一の櫛形構造4202の第二の切り溝4214もまた、第二の櫛形構造4204の第二のフィン4220の奥行き4218よりも大きい奥行き4216を有し得る。第二の櫛形構造4204の第二のフィン4220が第一の櫛形構造4202の第二の切り溝4214に挿入されると、例えば方位角方向101に沿って第二のフィン4220の周囲に間隙が存在し得る。第二のフィン4220の周囲の間隙は、第一の櫛形構造4204の切り溝の奥行きが非一様であること及び/又は第二の櫛形構造4204のフィンの奥行きが非一様であることの何れかのため第一のフィン4212の周囲の間隙よりも大きくなる場合がある。第一の櫛形構造4202のフィンも同様に、第二の櫛形構造4204の切り溝の奥行きが第一の櫛形構造4204のフィンの奥行きよりも大きいため間隙によって包囲される場合がある。
【0070】
図42に示すように、少なくとも二つの櫛形構造を組み合わせることにより形成される音響積層体の多様な幾何学的形状は、切り溝及びフィンの寸法を調節することにより可能になり得る。櫛形構造のダイシング及び組み合わせによって、トランスデューサ・アレイの最終的な構成に高度の融通性が齎される。このように、トランスデューサの改変を効率よく変更することができる。
【0071】
図16から
図17へ移ると、
図16の仰角方向103に沿って第一の視点から見た
図1600、及び
図17の方位角方向101に沿って第二の視点から見た
図1700に示すように、第三の音響積層体1402は、第一の例の基部パッケージ1602と組み合わされることができる。基部パッケージ1602は、グラファイト、樹脂を充填した多孔質グラファイト、ステンレス鋼、及びアルミニウム等のような伝導性材料から形成され得る。基部パッケージ1602は、長軸方向105に沿って延在する第一のフィン1604と、切り溝1606とを有するようにダイシングされ得る。第三の音響積層体1402も、やはり仰角方向103に沿って延在して基部パッケージ1602の第一のフィン1604と幅1610及び高さ1612において合致する第一の切り溝1608を有するようにダイシングされ得る。また、第三の音響積層体1402のダイシングによってブロック1614が形成され、ブロック1614は、基部パッケージ1602の第一のフィン1604と同じ高さ1612を有し、当該ブロック1614の各々の幅1616が基部パッケージ1602の切り溝1606の幅に等しい。
【0072】
第三の音響積層体1402及び基部パッケージ1602のダイシングを
図17にさらに示す。第三の音響積層体1402は、切り溝1606に加えて、方位角方向101に沿って延在する第二の切り溝1702を有し得る。基部パッケージ1602は第二のフィン1704を有し、これらのフィン1704は、第一のフィン1604と連続していてよいが、第一のフィン1604から垂直な方向、例えば方位角方向101に沿って延在している。このようなものとして、第一のフィン1604及び第二のフィン1704は、
図18の遠近
図1800に示すような構造を形成し得る。
【0073】
基部パッケージ1602は遠近
図1800において、基部パッケージ1602の第一のフィン1604、第二のフィン1704、及び切り溝1606の全体的な幾何学的形状を示すように図示されている。第一のフィン1604及び第二のフィン1704は、切り溝1606の各々が一様な矩形の幾何学的形状を有するように、切り溝1606の各々を構成している。しかしながら他の例では、切り溝1606は、円形、六角形、及び正方形等のような多様な他の幾何学的形状を有し得る。このようなものとして、
図10から
図35に示す製造工程によって製造されるトランスデューサは、切り溝1606の幾何学的形状に対応する形状を有し得る。
【0074】
切り溝1606は基部パッケージ1602において凹部を形成しており、第三の音響積層体1402のブロック1614(
図16及び
図17に示す)は切り溝1606の幾何学的形状に合致するように成形されている。このようにして、
図16及び
図17の矢印1618によって示すように、基部パッケージ1602の切り溝1606は第三の音響積層体1402のブロック1614を収容し、第三の音響積層体1402の第一の切り溝1608は基部パッケージ1602の第一のフィン1604を収容し、第三の音響積層体1402の第二の切り溝1702は基部パッケージ1602の第二のフィン1704を収容する。
【0075】
他の例では、基部パッケージが
図18の基部パッケージ1602とは異なるように構成されていてもよい。例えば、
図40に示すように、第二の例の基部パッケージ4000が、仰角方向103に沿って線形且つ連続的に延在する切り溝4002を有し得る。各切り溝4002は平行であり、仰角方向103に沿って定義される奥行きについて基部パッケージ4000の全奥行きにわたり、又は奥行きの少なくとも一部にわたり延在し得る。切り溝4002によって隔設された基部パッケージ4000のフィン4004も仰角方向103に沿って延在し得る。音響積層体は、基部パッケージ4000の切り溝4002及びフィン4004に合致するように仰角方向103に沿って同様にダイシングされ得る。
【0076】
代替的には、基部パッケージは、
図41に示すように完全に方位角方向101に沿ってダイシングされてもよい。
図41は第三の例の基部パッケージ4100を示し、切り溝4102及びフィン4104が方位角方向101に沿って延在している。切り溝4102及びフィン4104は、方位角方向101に沿って定義される基部パッケージ4100の幅を完全に又は部分的に横断して延在し得る。音響積層体は、切り溝及びブロックが基部パッケージ4100の幾何学的形状に合致するように、例えば切り溝及びブロックが方位角方向101に沿って延在するようにしてダイシングされ得る。
【0077】
ここで、
図19の仰角方向に沿って第一の視点から見た
図1900及び
図20の方位角方向101に沿って第二の視点から見た
図2000に移ると、第三の音響積層体1402及び基部パッケージ1602が、当該第三の音響積層体1402と基部パッケージ1602との間に配設された接着剤1904の第二の層で貼り合わされて、第四の音響積層体1902を形成し得る。接着剤1904の第二の層は、当該接着剤1904の第二の層を接着剤1404の第一の層から区別するために破線で示されている。接着剤1904の第二の層も、第三の音響積層体1402を基部パッケージ1602から電気的に絶縁する非伝導性接着剤であってよい。
【0078】
図21の第四の音響積層体1902を仰角方向103に沿って第一の視点から見た
図2100、及び
図22の第四の音響積層体1902を方位角方向に沿って第二の視点から見た
図2200に示すように、第四の音響積層体1902の背面2102が研削を施され得る。基部パッケージ1602の部分、第一の櫛形構造1100のバッキング層1008の部分、及び第二の櫛形構造1300のバッキング層1208の部分(
図14から
図15に示すバッキング層1008、1208)が除去されるように背面2102を研削することにより、仰角方向103及び方位角方向101の両方でのグランド取り出しが可能になる。第四の音響積層体の背面2102は、正端子接続を提供することもできる。第四の音響積層体1902の研削除去された全体的な部分の高さ1906を
図19及び
図20に示す。
【0079】
第四の音響積層体1902の背面2102は、仰角方向103に平行な接着剤1404の第一の層及び接着剤1904の第二の層(
図19及び
図20に示す)の両方の部分が除去されるまで研削される。接着剤層の部分、例えば方位角方向101に対して接着剤層の底部の部分を除去することにより、仰角方向及び方位角方向の両方でのグランド取り出しが可能になる。換言すると、各素子(例えば高周波数小素子1004と低周波数小素子1204と)と、第四の音響積層体1902の背面2102と接して配置される電気接点又は電極(
図21及び
図22には不図示)との間の電気的連続性が、絶縁接着剤層を除去することにより提供される。
【0080】
グランド取り出しはさらに、
図23の仰角方向103に沿って第一の視点から見た
図2300、及び
図24の方位角方向101に沿って第二の視点から見た
図2400に示すように、第四の音響積層体1902の背面2102に金属のような導電性材料の層をスパッタ堆積することを含み得る。方位角方向101に対して上方に反転させた第四の音響積層体1902を
図23及び
図24に示す。スパッタ堆積された層2302が第四の音響積層体1902の背面2102に堆積して、一様な連続膜を形成する。スパッタ堆積された層2302の方位角方向に沿って測定される高さは、第四の音響積層体1902の他の層、例えば整合層、高周波数素子及び低周波数素子、整合分離層、バッキング層の何れの高さよりも小さい。
【0081】
しかしながら他の例では、スパッタ堆積は、基部パッケージ1602の部分が残るように第四の音響積層体1902の背面をより少ない程度まで研削することにより省かれてもよい。例えば、背面を、
図19に示す矢印1907によって示す量だけ研削してもよい。基部パッケージの残部が小素子の各々に共通になることができ、第四の音響積層体1902の背面に沿って導電性層を提供し得る。
【0082】
第四の音響積層体1902は、
図25の第四の音響積層体1902を仰角方向103に沿って第一の視点から見た
図2500及び
図26の方位角方向101に沿って第二の視点から見た
図2600に示すように、スパッタ堆積された層2302の堆積の後にダイシングされ得る。第四の音響積層体1902に複数の切り溝2503が形成されて、長軸方向105に沿って背面2302から第四の音響積層体1902の前面2502へ向かって延在するが第四の音響積層体1902を完全には貫通しない。
【0083】
複数の切り溝2503は、第四の音響積層体1902を複数の素子2501に分離することができる。複数の素子2501は、
図25に示すように多重周波数素子2504と単一周波数素子2506とを含み得る。多重周波数素子2504は各々高周波数小素子1004の一つと低周波数小素子1204の一つとを含んでいる。単一周波数素子2506は、高周波数小素子1004の一つ又は低周波数小素子1204の一つの何れかを含むが、両方は含まない。
【0084】
他の例では、第四の音響積層体1902のような音響積層体の各々の素子を単一素子から形成することができるが、この音響積層体が様々な異なる形式の単一素子を含んでいてもよい。例えば、第一の櫛形構造と第二の櫛形構造とを組み合わせて
図14から
図15の第三の音響積層体1402と同様の音響積層体を形成することができる。この音響積層体を
図16から
図24に関連して前述したように加工することができ、切り溝を、
図25及び
図26に示すように音響積層体にダイシングすることができる。但し、切り溝を各々の櫛形構造の各々のフィンの間に配置することができ、このようにして素子をダイシングされた音響積層体の単一素子指形部に分離する。換言すると、切り溝も高周波数小素子1004を低周波数小素子1204から分離することができる。このように、音響積層体を、1よりも多い小素子から形成される素子ではなく単一素子を有する多重周波数音響積層体とすることができ、各々のトランスデューサが1よりも多い形式の素子を有し、各々の素子を電気回路に結合することができる。
【0085】
図25へ戻ると、多重周波数素子2504の共振周波数は、高周波数小素子及び低周波数小素子1004、1204の各々の含有百分率によって決定され得る。方位角方向101に沿って定義される高周波数小素子1004の第一の幅2510は、低周波数小素子1204の第二の幅2512と同様である。このようなものとして、多重周波数素子2504は各々、50%の高周波数小素子1004と50%の低周波数小素子1204とで形成されることができ、高周波数小素子1004の共振周波数と低周波数小素子1204の共振周波数との間の中間の共振周波数を有し得る。しかしながら他の例では、小素子の幅は変化し、例えば不等であってよく、音響積層体の全体を通じて非一様であってよいので、結果として一定範囲の共振周波数を生じさせることができる。小素子幅の変化を
図31から
図34に示し、また後に詳述する。
【0086】
複数の切り溝2503を電気的絶縁材料で充填し、これにより複数の素子2501の各々を隣接する素子から絶縁することができる。しかしながら他の例では、複数の切り溝2503は、同様に電気的絶縁を提供し得る空気充填空間(例えば如何なる付加的な材料によっても充填されていない)として保たれ得る。さらに、複数の切り溝2503を空間として保つことにより、トランスデューサ・アレイの全体的な物質量を減少させ、アレイの重量を減少させることができる。充填された複数の切り溝2503は、
図27の仰角方向103に沿って第一の視点から見た
図2700、及び
図28の方位角方向101に沿って第二の視点から見た
図2800に示されている。第四の音響積層体1902は
図27及び
図28のウェハ2702に組み込まれて示されている。
【0087】
複数の切り溝2503を充填することに加え、第四の音響積層体1902の前面2502の部分を背面2102の研削と同様に機械的に除去することができ、グランド取り出しをさらに可能にする。第四の音響積層体1902の前面2502は電気的接地を提供し得る。第四の音響積層体1902の前面2502から除去される部分の高さ2508を
図25及び
図26に示す。第四の音響積層体1902の前面2502から研削除去される量によって、
図25に示すように方位角方向101と平行な接着剤1404の第一の層の部分を除去することができる。前面2502の研削はまた、複数の素子2501と第四の音響積層体1902の前面2502に結合される導電性層との間での電気連続性を可能にすることにより、方位角方向及び仰角方向でのグランド取り出しに寄与することができる。このことについては後に詳述する。
【0088】
図27及び
図28へ戻り、整合層ブロック2704が、研削後の第四の音響積層体1902の前面2502に貼り合わされる。
図27及び
図28には示していないが、幾つかの例では、整合層ブロック2704を前面2502に結合する前に、スパッタ堆積された層2302のような伝導層を第四の音響積層体1902の研削後の前面2502にスパッタ堆積させてもよい。整合層ブロック2704は、伝導性接着剤を用いて貼り合わされることができ、第一の櫛形構造1100及び第二の櫛形構造1300それぞれの整合層1002、1202と同じ材料であっても異なる材料であってもよい。例えば、整合層ブロック2704の材料は、金皮膜付き材料、及びばね質量構造のような可撓性伝導性材料等であってよい。整合層ブロック2704は1よりも多い層で形成されてもよく、導電性材料で形成されても非導電性材料で形成されてもよい。
【0089】
整合層ブロック2704は、第四の音響積層体1902の各々のトランスデューサに共通の整合層を提供し、各々のトランスデューサが、複数の素子2501の一つを含んでおり、非伝導性材料で充填された複数の切り溝2503によって長軸方向105に沿って画定される。換言すると、整合層ブロック2704は、第四の音響積層体1902の前面2502を完全に横断して延在する連続層である。同様に、バッキング層ブロック2706が第四の音響積層体1902の背面2102に結合されていてもよく、第四の音響積層体1902の各々のトランスデューサに接続されて、各々のトランスデューサに共通のバッキング層を提供してもよい。バッキング層ブロック2706も、第四の音響積層体1902の背面2102を完全に横断して延在する連続層であってよい。
【0090】
バッキング層ブロック2706は、やはり伝導性接着剤を用いて第四の音響積層体1902の背面2102に貼り合わされて、ウェハ2702を形成し得る。バッキング層ブロック2706は、長軸方向105に沿って積層体を成して貼り合わされる1又は複数の層で形成されることができ、複数の素子2501への電圧印加を可能にする電気経路を提供し得る。幾つかの例では、バッキング層ブロック2706は、特定応用向け集積回路(ASIC)、フレックス伝導性材料、印刷回路基板(PCB)、及び金属ブロック等を含み得る。他の例では、バッキング層ブロック2706の代わりに何らかの形式のバッキングが第四の音響積層体1902の背面2102に結合されてもよい。例えば、バッキングはフレックス回路を音響積層体に接続するインターポーザであってもよい。
【0091】
加えて、他の例は、各々のトランスデューサを横断して連続的に延在しない不連続の整合層ブロック及びバッキング層ブロックと共に構成された音響積層体を含んでいてもよい。例えば、複数のより小さい整合層ブロック及びバッキング層ブロックを、各々のブロックを一つのトランスデューサに取り付けてトランスデューサ・アレイに結合してもよい。代替的には、整合層ブロック及びバッキング層ブロックは、二つ又は三つの隣り合ったトランスデューサのような幾つかのトランスデューサを覆って、複数の区画を成して音響積層体に結合していてもよい。
【0092】
次いで、ウェハ2702を単体化、例えば個片化して、
図29の仰角方向103に沿って第一の視点から見た
図2900、及び
図30の方位角方向101に沿って第二の視点から見た
図3000に示すような個別のトランスデューサ・アレイ2902を形成することができる。トランスデューサ・アレイ2902の各々が複数の素子2501のアレイを含んでおり、複数の素子2501の各々が個別の集積回路に含まれている。単体化は、従来のダイシング、レーザ・ダイシング、スクライブ・アンド・ブレーク、及び研削前ダイシングを含めた様々なダイ単体化方法を含み得る。従って、トランスデューサ・アレイ2902の各々が、単体化の結果として隣接するトランスデューサ・アレイから離隔されて、各々のトランスデューサをトランスデューサ・プローブに組み付けることができる。
【0093】
小素子(例えば高周波数小素子1004及び低周波数小素子1204)の各々の方位角方向101に沿って定義される幅2904、複数の素子2501の各々の幅2906、及びトランスデューサ・アレイ2902の各々の幅2908は、
図29では一様であるように描かれているが、ウェハ2702の上述の構成要素の各々のダイシングを改変して非一様な幅を生成してもよい。小素子、複数の素子、及びトランスデューサの幅の変化を
図31から
図35に示す。
【0094】
非一様トランスデューサ・アレイ3101の第一の例3100では、複数の素子3104の幅3102は方位角方向101に沿って一様であり得る。複数の素子3104は各々、第一の小素子3106と第二の小素子3108とを含み得る。第一の櫛形構造が、第二の小素子3108の幅3112よりも大きい幅3110の第一の小素子3106を形成するようにダイシングされ得る。換言すると、第一の櫛形構造は、第二の小素子3108を形成するための第二の櫛形構造のダイシングよりも幅広の小素子(例えば第一の小素子3106)を形成するようにダイシングされ得る。
【0095】
代替的には、非一様トランスデューサ・アレイ3103の第二の例3200に示すように、第一の櫛形構造は、第一の小素子3106が、第二の櫛形構造のダイシングによって形成される第二の小素子3108の幅3404よりも狭い幅3202を有するようにダイシングされてもよい。複数の素子3104の各々の幅3104は方位角方向101に沿って一様であってよく、第一の小素子3106及び第二の小素子3108の各々の幅は、複数の素子3104の各々において同様であってよい。このように、櫛形構造のダイシングに基づいて小素子の幅を容易に変化させることができる。
【0096】
さらに、櫛形構造は、非一様トランスデューサ・アレイ3101の第三の例3300に示すように、小素子の各々が非一様な幅を有するようにダイシングされてもよい。第一の素子3302が、第二の小素子3310の幅3308と同様の幅3306を有する第一の小素子3304で形成され得る。しかしながら、第一の素子3302に隣接する第二の素子3312では、第一の小素子3304の幅3314は第二の小素子3310の幅3316よりも大きい。第一の素子3302の幅3318は第二の素子3312の幅3320と同様であってよい。他の例では、非一様トランスデューサ・アレイ3103は、第二の小素子3310の幅が第一の小素子3304の幅よりも大きいような素子を含んでいてもよい。
【0097】
加えて又は代替的に、第一の櫛形構造と第二の櫛形構造とを組み合わせることにより形成される音響積層体、例えば
図14から
図17の第三の音響積層体1402のダイシングを、複数の素子の幅を変化させるように改変してもよい。例えば、非一様トランスデューサ・アレイ3101の第四の例3400に示すように、第一の素子3404の幅3402が第二の素子3408の幅3406よりも大きくてもよい。素子の各々の第一の小素子3410の幅及び第二の小素子3412の幅は、第一の素子3404に示すように同様であってもよいし、第二の素子3408に示すように異なっていてもよい。
【0098】
さらに、ウェハの個別のトランスデューサ・アレイへの単体化を調整して、幅の変化するトランスデューサを形成してもよい。
図35に示すように、第一のトランスデューサ・アレイ3502が、第一の幅3504を有するようにダイシングされ得る。第二のトランスデューサ・アレイ3506は、第一のトランスデューサ・アレイ3502の第一の幅3504よりも広い第二の幅3508を有するようにダイシングされ得る。第一及び第二のトランスデューサ・アレイ3502、3506と同じウェハから形成される他のトランスデューサ・アレイも、第一のトランスデューサ・アレイ3502又は第二のトランスデューサ・アレイ3506の何れかと同様の幅を有していてもよいし、第一及び第二のトランスデューサ・アレイ3502、3506の何れとも異なる幅を有していてもよい。各々のトランスデューサ・アレイの素子の各々に組み入れられる第一の小素子3510及び第二の小素子3512の幅も互いに同様であっても異なっていてもよく、またトランスデューサ・アレイを通じて一様であっても非一様であってもよい。
【0099】
単体化の前又は後に、トランスデューサ・アレイの整合層ブロック及びバッキング層ブロックに電気リードを結合することができる。例えば、正電極を整合層ブロックに結合し、グランド電極をバッキング層ブロックに結合することができる。代替的には、正電極をバッキング層ブロックに結合し、グランド電極を整合層ブロックに結合してもよい。これにより、各々のトランスデューサとの個別の回路の形成が、トランスデューサ・アレイを電気リードに結合することにより完成される。
【0100】
このように、
図2及び
図4から
図36に示すような多重周波数素子及びトランスデューサ・アレイを形成するために多重周波数トランスデューサの製造方法を組み立てることができる。
図31から
図35は仰角方向103に沿って見たトランスデューサの図を示しており、仰角方向103に対するトランスデューサ、素子、小素子の幅の変化を記載しているが、方位角方向101に沿って同様の変化を適用し得ることが認められよう。例えば、櫛形構造のダイシングを、方位角方向101に沿って改変して、奥行き(例えば方位角方向101に沿った小素子の厚み)の変化する小素子を提供することができる。仰角方向103に沿って互いに隣り合う小素子の配置の代わりに又はこのことに加えて、小素子が方位角方向101に沿って互いに隣接して配置されるように櫛形構造を組み合わせることもできる。
【0101】
組み合わされた櫛形構造は、仰角方向103に沿って素子の幅を変化させつつ方位角方向101に沿っても奥行きが変化する素子を形成するようにダイシングされ得る。代替的には、素子の幅が仰角方向103に沿って一様に保たれて、方位角方向101に沿って変化してもよい。さらに、単体化トランスデューサの奥行きも同様に、仰角方向103に加えて又は仰角方向103に代えて、方位角方向101に沿って変化してもよい。
【0102】
トランスデューサ、素子、及び小素子の寸法を方位角方向101及び仰角方向103の両方に沿って変化させることを可能にすることにより、トランスデューサのスケーラブルな製造が可能になる。異なる広い帯域幅及び空間的周波数分布を有する多様なトランスデューサを単一のウェハから製造することができる。単体化に先立って電気回路をウェハに結合し、製造効率を高める。多重周波数トランスデューサ・プローブでの相互接続及び制御信号の量は、単一周波数トランスデューサ・プローブに用いられる量と同様となり得る。このように、多重周波数トランスデューサ・アレイの実装がトランスデューサ・プローブに付加的な複雑さを招くことがない。
【0103】
仰角方向及び方位角方向の両方に沿ったグランド取り出しは、プローブでのトランスデューサ・アレイのパッケージ化にさらに大きい融通性を可能にする。例えば、仰角方向の占有面積を減少させたトランスデューサ・アレイが望ましい場合がある。従来の方法では、トランスデューサ・アレイが仰角方向に沿って短くなるとグランド取り出しが困難である場合がある。しかしながら、
図10から
図38及び
図40から
図42に関連して上で述べた製造工程は、代わりに方位角方向に沿ったグランド取り出しを可能にしている。加えて、広帯域幅トランスデューサの空間的周波数分布によって提供されるアポダイゼーション関数が、トランスデューサ・プローブを1よりも多い応用に用いることを可能にし得る。例えば、単一のトランスデューサ・プローブを治療及び撮影の両方に用いることができる。このアポダイゼーション関数によって、強化されたビーム集束プロファイルが可能になるため、近距離場及び遠距離場の両方で画質を最適化することができる。トランスデューサ・プローブの占有面積は、より効率のよいパッケージ化のために最適化され得る。また、
図10から
図36に示すようなトランスデューサ・プローブの音響積層体の製造工程は、全てのトランスデューサ・ポートフォリオに適用可能な一括ウェハ・アプローチに基づく普遍的アーキテクチャを提供することができる。
【0104】
トランスデューサ・プローブ用の多重周波数音響積層体を作製する第一のルーチン3700の一例を
図37に示す。
図38に示すような第二のルーチン3800が、多重周波数素子を形成するルーチンの一例であって、第一のルーチン3700に含まれ得る。第一及び第二のルーチン3700、3800は、
図10から
図36に示す製造工程と同様の工程を記述している。ここで
図37へ移り、ステップ3702では、第一のルーチン3700は第一の音響積層体を形成することを含んでおり、このステップを
図38の第二のルーチン3800に示す。
【0105】
図38のステップ3802では、第二のルーチン3800は、第一の小素子を有する
図11の第一の櫛形構造1100のような第一の櫛形構造を形成することを含んでいる。第一の櫛形構造は、
図10の第一の音響積層体1000のような第一の音響積層体をダイシングすることにより形成され得る。ステップ3804では、第一の小素子と異なる共振周波数の第二の小素子を有する
図13の第二の櫛形構造1300のような第二の櫛形構造が形成される。第二の櫛形構造は、
図12の第二の音響積層体1200のような第二の音響積層体ダイシングすることにより形成され得る。第一の音響積層体及び第二の音響積層体の両方とも、各々整合層、小素子層、選択随意の整合分離層、及びバッキング層を含んでいてよく、これらの層が方位角方向及び仰角方向の両方に垂直な長軸方向に沿って積層されている。
【0106】
第一の音響積層体及び第二の音響積層体は、第一及び第二の櫛形構造に相補的なフィンを付与するように互いから反対の方向に沿ってダイシングされ得る。例えば、
図11に示すように、第一の音響積層体は第一の音響積層体の上面から下向きにダイシングされ、
図13に示すように、第二の音響積層体は第二の音響積層体の底面から上向きにダイシングされ得る。代替的には、第一の音響積層体が底面から上向きにダイシングされ、第二の音響積層体が上面から下向きにダイシングされてもよい。
【0107】
ステップ3806では、第一の櫛形構造を第二の櫛形構造と組み合わせて、
図14の第三の音響積層体1402のような交互嵌合型の組み合わされた積層体を形成する。組み合わされた積層体は、櫛形構造を互いに接着させるように貼り合わされ得る。
【0108】
ステップ3808では、このルーチンは、組み合わされた積層体に追加の小素子を組み入れるか否かを決定することを含んでいる。追加の小素子を含めない場合には、ルーチンは
図37の第一のルーチン3700のステップ3704に続く。少なくとも一つの追加の小素子を組み入れる場合には、ステップ3810において追加の櫛形構造が形成される。追加の櫛形構造は、
図11の第一の櫛形構造1100又は
図13の第二の櫛形構造1300と同様にダイシングされ得る一方、組み合わされた積層体は、ダイシングされた追加の櫛形構造の幾何学的形状と相補的になるように、反対の態様でステップ3812においてダイシングされ得る。追加の櫛形構造は、第一の小素子とも第二の小素子とも異なる共振周波数の第三の小素子を有し得る。
【0109】
幾つかの例では、追加の櫛形構造は、第二のルーチン3800のステップ3802からステップ3806に記載されたものと同様の工程を介して形成される組み合わされた櫛形構造であり得るので、追加の櫛形構造は第三の小素子に加えて第四の小素子を有する。第三及び第四の小素子の両方を有する追加の櫛形構造は、ダイシングされた組み合わされた積層体に対して相補的な幾何学的形状を有するように同様にダイシングされ得る。
【0110】
ステップ3814では、第二のルーチン3800は、ダイシングされた組み合わされた積層体を追加の櫛形構造と組み合わせて新たな組み合わされた積層体を形成することを含んでおり、新たな組み合わされた積層体は、組み合わされた積層体と追加の櫛形構造とを互いに接着するように貼り合わされ得る。貼り合わせ時に、非伝導性接着剤の層を第一の櫛形構造と第二の櫛形構造との間に配設することができる。方法は3808へ戻り、追加の小素子を(新たな)組み合わされた積層体に組み入れるか否かを再び決定する。
【0111】
図37へ戻り、第一のルーチン3700のステップ3704では、第一の音響積層体、例えば、第二のルーチン3800を介して形成された組み合わされた積層体をダイシングする。第一の音響積層体のダイシングによって、第一の音響積層体の複数の切り溝によって離隔される複数のフィンが形成される。ステップ3706では、
図16の基部パッケージ1602のように伝導性材料で形成された基部パッケージが、第一の音響積層体の複数の切り溝と同様の幾何学的形状を有するフィン、及び第一の音響積層体の複数のフィンと同様の幾何学的形状を有する切り溝を設けるようにダイシングされる。
【0112】
ステップ3708では、基部パッケージと第一の音響積層体とが互いに結合され貼り合わされて、第二の音響積層体を形成する。ステップ3710では、第二の音響積層体の背面の部分を研削によって除去してグランド取り出しを提供することができる。例えば、第一の音響積層体のバッキング層の厚みの部分、及び第一の音響積層体を貼り合わせるのに用いられた非伝導性接着剤の部分を除去することができる。バッキング層の部分及び非伝導性接着剤の部分を除去することにより、方位角方向及び仰角方向に沿ったグランド取り出しを可能にすることができる。
【0113】
ステップ3712では、第二の音響積層体の研削後の背面に伝導層がスパッタ堆積される。伝導層は、第二の音響積層体の背面に電気的接続を結合させることを可能にすることができ、これらの電気的接続の各々が第二の音響積層体の加工を介して形成される最終的なトランスデューサ・アレイの集積回路に含まれる。ステップ3714では、第二の音響積層体はダイシングされ、ダイシングによって形成された切り溝を非伝導性材料で充填することができ、これにより第二の音響積層体の各々の集積回路、又はトランスデューサを、隣接する集積回路から電気的に絶縁する。
【0114】
ステップ3716では、第二の音響積層体の前面が研削される。前面は背面の反対側であり、前面の厚みの部分が研削によって除去され得る。例えば、第二の音響積層体の整合層が部分的に除去され得る。ステップ3718では、整合層ブロック及びバッキング層ブロックが、第二の音響の前面及び背面にそれぞれ結合されて、方位角方向及び仰角方向でのグランド取り出しをさらに可能にすることができる。ステップ3720では、第一のルーチン3700は、第二の音響積層体を別個のトランスデューサ・アレイに分割するように第二の音響積層体を単体化することを含んでいる。トランスデューサ・アレイは、トランスデューサ・プローブに各々実装され得る。第一のルーチン3700は終了する。
【0115】
このようにして、多素子トランスデューサ・アレイがトランスデューサ・プローブ用に提供され得る。多素子トランスデューサ・アレイは、均一なパタンで方位角方向及び仰角方向に沿って分布された異なる共振周波数の小素子を含み得る。代替的には、小素子は、方位角方向及び仰角方向の少なくとも一方に沿って変化する空間的周波数分布を提供するように配置され得る。周波数アポダイゼーション及び周波数可変能力が、仰角方向に沿って、且つ異なる構造、例えば1D、1.5D、及び2D等において可能になり、複雑な構造の空間的周波数分布を可能にする。さらに、周波数アポダイゼーション及び周波数可変能力は、ウェハ・スケール・アプローチを通して多素子トランスデューサを作製することにより低費用で達成される。ウェハ・スケール・アプローチの際の音響積層体の加工によって、トランスデューサ・アパーチャにわたり広く分布した周波数内容を得ることができ、これにより一つのトランスデューサ・プローブが多くの応用に用いられることを可能にする。周波数アポダイゼーションによって可能になるビーム集束プロファイルのため、近距離場及び遠距離場の両方で画質を最適化することができる。この多素子トランスデューサ・アレイは、方位角方向及び仰角方向の両方でのグランド取り出しのためトランスデューサ・プローブの内部でさらに効率よくパッケージ化されることができ、多様なトランスデューサ・ポートフォリオに用いられる得る。
【0116】
ウェハ・スケール・アプローチを介してトランスデューサ・アレイを作製する技術的効果は、広い帯域幅のトランスデューサ・アレイが費用効率のよい方法を介して製造されることである。もう一つの技術的効果は、方位角方向及び仰角方向に沿って周波数アポダイゼーション及び周波数可変能力が可能になることである。
【0117】
本書で用いる場合に、単数形で掲げられ、単数不定冠詞を冠した要素又はステップは、明記されていない限り複数の当該の要素又はステップを排除するものと理解すべきでない。さらに、本発明の「一実施形態」への参照は、所載の特徴を同様に組み入れている付加的な実施形態の存在を排除するものと解釈されることを意図しない。また、反対に明記されていない限り、特定の特性を有する1又は複数の要素を「含む(comprising、including)」又は「有する(having)」実施形態は、当該の特性を有しない付加的なかかる要素を含み得る。「含む(including)」及び「ここで(in which)」との用語はそれぞれ「含む(comprising)」及び「ここで(wherein)」との用語の標準言語の均等物として用いられている。また、「第一」「第二」及び「第三」等の用語は標示として用いられているに過ぎず、当該の対象語に数値的な要件又は特定の位置的順序を負わせる意図はない。
【0118】
一実施形態では、トランスデューサ・アレイが、1又は複数の小素子で形成される素子を含んでおり、少なくとも一つの小素子が異なる共振周波数を有する。このトランスデューサ・アレイの第一の例では、トランスデューサ・アレイは少なくとも一つの素子で形成され、この素子は、電気回路によって駆動されると共に隣接する素子から電気的に絶縁されている。トランスデューサ・アレイの第二の例は、選択随意で第一の例を含んでおり、さらに、1又は複数の小素子の相対比が素子において等しく、トランスデューサ・アレイの各々の素子が同様の共振周波数を有することを含んでいる。トランスデューサ・アレイの第三の例は、選択随意で第一及び第二の例の1又は複数を含んでおり、さらに、1又は複数の小素子の幅がトランスデューサ・アレイを通じて変化し、この幅は、仰角方向及び方位角方向の一方に沿って定義されることを含んでいる。トランスデューサ・アレイの第四の例は、選択随意で第一の例から第三の例の1又は複数を含んでおり、さらに、1又は複数の小素子の各々の相対比がトランスデューサ・アレイに沿って変化し、トランスデューサ・アレイの少なくとも一つの素子が異なる周波数範囲を有することを含んでいる。トランスデューサ・アレイの第五の例は、選択随意で第一の例から第四の例の1又は複数を含んでおり、さらに、1又は複数の小素子の各々の相対比は方位角方向及び仰角方向の少なくとも一方に沿ってトランスデューサ・アレイの各々の素子の間で変化することを含んでいる。トランスデューサ・アレイの第六の例は、選択随意で第一の例から第五の例の1又は複数を含んでおり、さらに、1よりも多い形式の素子を含んでおり、各々の形式の素子が異なる共振周波数及び周波数範囲を有してトランスデューサ・アレイに組み入れられている。トランスデューサ・アレイの第七の例は、選択随意で第一の例から第六の例の1又は複数を含んでおり、さらに、トランスデューサ・アレイの1よりも多い形式の素子は、方位角方向及び仰角方向の少なくとも一方に沿って非一様な寸法を有することを含んでいる。トランスデューサ・アレイの第八の例は、選択随意で第一の例から第七の例の1又は複数を含んでおり、さらに、素子における1又は複数の小素子の量がトランスデューサ・アレイにわたり変化することを含んでいる。
【0119】
もう一つの実施形態では、多重周波数音響積層体が、第二の櫛形構造に結合された第一の櫛形構造であって、第一の櫛形構造は第一の共振周波数の第一の形式の素子を有し、第二の櫛形構造は第二の共振周波数の第二の形式の素子を有する、第一の櫛形構造と、複数の電気回路であって、各々の回路が第一の形式の素子及び第二の形式の素子の少なくとも一方を含んでおり、方位角方向及び仰角方向の少なくとも一方に沿って周波数アポダイゼーションを提供するために周波数帯域幅が変化するように構成されている、複数の電気回路とを含んでいる。この音響積層体の第一の例では、第一の櫛形構造は、第二の櫛形構造の幾何学的形状に対して相補的な幾何学的形状を有し、第一及び第二の櫛形構造の結合が交互嵌合構造を形成する。音響積層体の第二の例は、選択随意で第一の例を含んでおり、さらに、複数の電気回路の各々の電気回路が、第一及び第二の形式の素子の少なくとも一方に加えて1又は複数の付加的な形式の素子を含んでおり、1又は複数の付加的な形式の素子は、第一又は第二の形式の素子と異なる共振周波数を有することを含んでいる。音響積層体の第三の例は、選択随意で第一及び第二の例の1又は複数を含んでおり、さらに、各々の電気回路が整合層及びバッキング層に結合されていることを含んでいる。音響積層体の第四の例は、選択随意で第一の例から第三の例の1又は複数を含んでおり、さらに、複数の素子の各々の素子が、非伝導性材料及び空気の一方で充填された切り溝によって隣接する素子から分離されていることを含んでいる。音響積層体の第五の例は、選択随意で第一の例から第四の例の1又は複数を含んでおり、さらに、各々の素子が、個別の集積回路を形成するように正接続及びグランド接続に電気的に結合されていることを含んでいる。
【0120】
さらにもう一つの実施形態では、方法が、第一の小素子を有する第一の音響積層体及び第二の小素子を有する第二の音響積層体を、相補的な幾何学的形状を有するようにダイシングするステップと、交互嵌合構造を形成するように第一の音響積層体と第二の音響積層体とを組み合わせるステップと、交互嵌合構造の両面に共通の整合層及び共通のバッキング層を結合するステップと、1又は複数のトランスデューサ・アレイを形成するように交互嵌合構造を個片化するステップとを含んでいる。この方法の第一の例では、第一及び第二の音響積層体をダイシングするステップは、音響積層体の各々に切り溝を形成することを含んでおり、第一の音響積層体は当該第一の音響積層体の上面から下向きに延在する切り溝の第一の集合を有し、第二の音響積層体は当該第二の音響積層体の底面から上向きに延在する切り溝の第二の集合を有している。方法の第二の例は、選択随意で第一の例を含んでおり、さらに、交互嵌合構造をダイシングするステップと、整合層とバッキング層との結合に先立って第三の音響積層体を形成するように、ダイシングされた交互嵌合構造を、該ダイシングされた交互嵌合構造に対して相補的な幾何学的形状に構成されている基部パッケージに結合するステップとを含んでいる。方法の第三の例は、選択随意で第一及び第二の例の1又は複数を含んでおり、さらに、第三の音響積層体を複数のトランスデューサに分離するように、整合層とバッキング層との結合に先立って第三の音響積層体をダイシングするステップを含んでおり、複数のトランスデューサの各々が、第一の小素子及び第二の小素子の少なくとも一方で形成される素子を含んでいる。方法の第四の例は、選択随意で第一の例から第三の例の1又は複数を含んでおり、さらに、各々の素子に個別の電子回路を形成するように、整合層及びバッキング層の各々に電気的接続を取り付けるステップを含んでいる。
【0121】
この書面の記載は、最適な態様を含めて発明を開示し、また任意の装置又はシステムを製造して利用すること及び任意の組み込まれた方法を実行することを含めて当業者が発明を実施することを可能にするように実例を用いている。特許付与可能な発明の範囲は特許請求の範囲によって画定されており、当業者に想到される他の実例を含み得る。かかる他の実例は、特許請求の範囲の書字言語に相違しない構造要素を有する場合、又は特許請求の範囲の書字言語と非実質的な相違を有する均等構造要素を含む場合には、特許請求の範囲内にあるものとする。
【符号の説明】
【0122】
100 音響積層体
101 方位角方向
102 圧電素子
103 仰角方向
104 中心軸
105 長軸方向
107 超音波伝達方向
114 電極
115 線
120 音響整合層
126 バッキング
200 第一のマトリクス
202 多重周波数素子
204 第一の小素子
206 第二の小素子
208 電気回路
300 対称且つ線形のアポダイゼーション関数
302 高周波数小素子によるアポダイゼーション
304 低周波数小素子によるアポダイゼーション
400、500、600 不等の分布を有する多重周波数素子
402、502、602 第一の高周波数小素子
404、504、604 第二の低周波数小素子
406、506、606 第一の幅
408、508、608 第二の幅
700 第二のマトリクス
701 第一の横列
702 素子
703 第二の横列
704 第一の高周波数小素子
705 第三の横列
706 第二の低周波数小素子
707 第一の素子
708 中心軸
709 第二の素子
711 第三の素子
720 中央領域
722 辺縁領域
724 間の領域
800 第三のマトリクス・アレイ(1.5D)
802 素子
804 第一の横列
806 第二の横列
808 第三の横列
810 中心軸
812 第一の高周波数小素子
814 第二の低周波数小素子
816 多重周波数素子
820 中央領域
822 辺縁領域
900 第四のマトリクス・アレイ(1.25D)
902 素子
904 中心軸
906 第一の高周波数小素子
908 第二の低周波数小素子
1000 第一の音響積層体
1002 整合層
1004 第一の圧電層
1006 整合分離層
1008 バッキング層
1010 第一の高さ
1100 第一の櫛形構造
1102 切り溝
1104 第一のフィン
1106 第一のフィン1104の幅
1108 切り溝1102の幅
1200 第二の音響積層体
1202 整合層
1204 第二の圧電層
1206 整合分離層
1208 バッキング層
1210 第二の高さ
1300 第二の櫛形構造
1302 切り溝
1304 第二のフィン
1306 切り溝1302の幅
1308 第二のフィンの幅
1310 切り溝1302及び第二のフィン1304の高さ
1400 仰角方向から見た図
1402 第三の音響積層体
1404 接着剤の第一の層
1406 第三の音響積層体1402の幅
1500 方位角方向から見た図
1502 第三の音響積層体1402の奥行き
1600 仰角方向に沿って見た図
1602 基部パッケージ
1604 第一のフィン
1606 切り溝
1608 第一の切り溝
1610 幅
1612 高さ
1614 ブロック
1616 ブロック1614の幅
1618 収容方向
1700 方位角方向に沿って見た図
1702 第二の切り溝
1704 第二のフィン
1800 第一のフィン1604及び第二のフィン1704の構造の遠近図
1900 仰角方向に沿って見た図
1902 第四の音響積層体
1904 接着剤の第二の層
1906 研削される部分の高さ
1907 少ない研削量
2000 方位角方向に沿って見た図
2100 第四の音響積層体1902を仰角方向に沿って見た図
2102 第四の音響積層体1902の背面
2200 第四の音響積層体1902を方位角方向に沿って見た図
2300 反転させた第四の音響積層体1902を方位角方向に沿って見た図
2302 スパッタ堆積した層
2400 反転させた第四の音響積層体1902を方位角方向に沿って見た図
2500 第四の音響積層体1902を仰角方向に沿って見た図
2501 素子
2502 第四の音響積層体1902の前面
2503 切り溝
2504 多重周波数素子
2506 単一周波数素子
2508 除去される部分の高さ
2510 高周波数小素子1004の第一の幅
2512 低周波数小素子1204の第二の幅
2600 第四の音響積層体1902を方位角方向に沿って見た図
2700 第四の音響積層体1902を仰角方向に沿って見た図
2702 ウェハ
2704 整合層ブロック
2706 バッキング層ブロック
2800 第四の音響積層体1902を方位角方向に沿って見た図
2900 ウェハ2702を仰角方向に沿って見た図
2902 トランスデューサ・アレイ
2904 小素子の幅
2906 素子の幅
2908 トランスデューサ・アレイの幅
3000 ウェハ2702を方位角方向に沿って見た図
3100 非一様トランスデューサ・アレイの第一の例
3101 非一様トランスデューサ・アレイ
3102 素子の幅
3104 素子
3106 第一の小素子
3108 第二の小素子
3110 第一の小素子の幅
3112 第二の小素子の幅
3200 非一様トランスデューサ・アレイの第二の例
3202 第一の小素子の幅
3204 第二の小素子の幅
3300 非一様トランスデューサ・アレイの第三の例
3302 第一の素子
3304 第一の小素子
3306、3314 第一の小素子の幅
3308、3316 第二の小素子の幅
3310 第二の小素子
3312 第二の素子
3318 第一の素子の幅
3320 第二の素子の幅
3400 非一様トランスデューサ・アレイの第四の例
3402 第一の素子の幅
3404 第一の素子
3406 第二の素子の幅
3408 第二の素子
3410 第一の小素子
3412 第二の小素子
3502 第一のトランスデューサ・アレイ
3504 第一の幅
3506 第二のトランスデューサ・アレイ
3508 第二の幅
3510 第一の小素子
3512 第二の小素子
3602 第一の多重周波数櫛形構造
3603 第一のフィン
3604 第二の多重周波数櫛形構造
3606 第一の小素子
3608 第二の小素子
3610 第一の切り溝
3612 第一の多重周波数櫛形構造3602の高さ
3614 第二のフィン
3616 第三の小素子
3618 第四の小素子3618
3620 第二の切り溝
3622 第二の多重周波数櫛形構造3604の高さ
3624 第一の切り溝3610の幅
3626 第一の切り溝3610の高さ
3628 第二の切り溝3620の幅
3630 第二の切り溝3620の高さ
3632 挿入方向
3700 多重周波数音響積層体を作製する第一のルーチン
3800 多重周波数素子を形成するルーチン
3900 テーパ付きアポダイゼーション関数
3902 高周波数小素子によるアポダイゼーション
3904 低周波数小素子によるアポダイゼーション
4000、4100 基部パッケージ
4002、4102 切り溝
4004、4104 フィン
4200 音響積層体
4202 第一の櫛形構造
4204 第二の櫛形構造
4206 第一の切り溝
4208 第一の切り溝4206の奥行き
4210 第一のフィン4212の奥行き
4212 第一のフィン
4214 第二の切り溝
4216 第二の切り溝4214の奥行き
4218 第二のフィン4220の奥行き
4220 第二のフィン
【国際調査報告】