IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ディープサイト テクノロジー インコーポレイテッドの特許一覧

特表2023-504589センシング用途のためのウィスパリングギャラリーモード共振器
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-02-03
(54)【発明の名称】センシング用途のためのウィスパリングギャラリーモード共振器
(51)【国際特許分類】
   G01H 9/00 20060101AFI20230127BHJP
   A61B 8/00 20060101ALI20230127BHJP
   H04R 1/40 20060101ALI20230127BHJP
   H04R 23/00 20060101ALI20230127BHJP
   G02B 6/26 20060101ALI20230127BHJP
   G02B 6/12 20060101ALI20230127BHJP
   G02B 6/42 20060101ALI20230127BHJP
【FI】
G01H9/00 Z
A61B8/00
H04R1/40 330
H04R23/00 330
G02B6/26
G02B6/12 341
G02B6/12 365
G02B6/42
G02B6/12 301
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022560174
(86)(22)【出願日】2020-12-09
(85)【翻訳文提出日】2022-06-08
(86)【国際出願番号】 US2020064094
(87)【国際公開番号】W WO2021119182
(87)【国際公開日】2021-06-17
(31)【優先権主張番号】62/945,538
(32)【優先日】2019-12-09
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】520196081
【氏名又は名称】ディープサイト テクノロジー インコーポレイテッド
【氏名又は名称原語表記】DeepSight Technology, Inc.
【住所又は居所原語表記】944 Lundy Lane,Los Altos,California United States 94024
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ヤン, ラン
(72)【発明者】
【氏名】ジュー, ジアンガン
(72)【発明者】
【氏名】ジャオ, グアンミン
(72)【発明者】
【氏名】ミラー, スコット エー.
(72)【発明者】
【氏名】ジャオ, ダンフア
(72)【発明者】
【氏名】ジュー, リレン
【テーマコード(参考)】
2G064
2H137
2H147
4C601
5D019
【Fターム(参考)】
2G064AB01
2G064AB02
2G064AB13
2G064BD02
2G064CC43
2H137AA08
2H137AA14
2H137AB05
2H137AB06
2H137BA01
2H137BA06
2H137BA21
2H137BB02
2H137BB12
2H137BC31
2H137CC01
2H137EA03
2H137EA07
2H147AA02
2H147AB04
2H147AB16
2H147AC09
2H147BB01
2H147BD01
2H147BD03
2H147CA01
2H147CB01
2H147CB03
2H147CC12
2H147EA13C
2H147EA14A
2H147EA14C
2H147EA16A
2H147EA16C
2H147FB01
2H147FB09
4C601EE09
4C601EE16
4C601GB03
4C601GB06
4C601GB25
4C601GB48
5D019FF04
(57)【要約】
センシング装置およびセンシング装置を作製する方法が本明細書に開示される。一部の変形例では、センシング装置は、少なくとも1つの光導波路と、ウィスパリングギャラリーモード(WGM)のセットを伝搬するように構成された少なくとも1つのWGM共振器(1602a~c)とを含むことができ、WGM共振器(1602a~c)は、WGMのセットに対応する信号のセットを少なくとも1つの光導波路(1601a~c)に伝達する。一部の変形例では、ポリマー構造は、少なくとも1つのWGM共振器および/または少なくとも1つの光導波路を封入することができる。さらに、一部の変形例では、WGM共振器は、センシングのための異なる帯域幅および感度を伴う1つ以上の選択可能モードを有し得、それにより、例えば、ある帯域幅および/または感度要件を有する特定の用途にセンシング装置を調整することが可能となり得る。
【選択図】図16
【特許請求の範囲】
【請求項1】
少なくとも1つの光導波路と、
複数のウィスパリングギャラリーモード(WGM)共振器であって、各WGM共振器が、ウィスパリングギャラリーモード(WGM)の第1のセットを伝搬するように構成されている、複数のWGM共振器と、
前記少なくとも1つの光導波路と、前記複数のWGM共振器のうちの少なくとも1つのWGM共振器とを封入しているポリマー構造と、を含み、
前記少なくとも1つのWGM共振器が、WGMの前記第1のセットに対応する信号の第1のセットを前記少なくとも1つの光導波路に伝達するように構成されるように、前記少なくとも1つのWGM共振器が前記少なくとも1つの光導波路に光学的に結合されている、装置。
【請求項2】
前記ポリマー構造が、
残留超音波エコーを減衰させて残響を防止するように構成されたバッキング領域と、
前記複数のWGM共振器のWGM周波数応答の帯域幅を増加させるように構成された整合領域と、のうちの少なくとも1つを含む、請求項1に記載の装置。
【請求項3】
前記整合領域が、前記複数のWGM共振器への超音波伝送を改善するようにさらに構成されている、請求項2に記載の装置。
【請求項4】
前記バッキング領域および前記整合領域のうちの少なくとも1つが、前記少なくとも1つの光導波路の第2の屈折率よりも低い第1の屈折率を有する、請求項3に記載の装置。
【請求項5】
前記少なくとも1つの光導波路が、前記ポリマー構造の前記バッキング領域内に埋め込まれている、請求項2に記載の装置。
【請求項6】
前記少なくとも1つの光導波路が、前記ポリマー構造の前記整合領域内に埋め込まれている、請求項2に記載の装置。
【請求項7】
前記少なくとも1つのWGM共振器が、前記ポリマー構造の前記整合領域内に埋め込まれている、請求項2に記載の装置。
【請求項8】
前記ポリマー構造の有効屈折率が、前記少なくとも1つのWGM共振器の屈折率よりも低い、請求項1に記載の装置。
【請求項9】
前記ポリマー構造が、超音波増強材料を含む、請求項1に記載の装置。
【請求項10】
前記ポリマー構造の有効音響インピーダンスが、前記少なくとも1つのWGM共振器の音響インピーダンスと整合する、請求項1に記載の装置。
【請求項11】
前記少なくとも1つのWGM共振器が、微小球およびマイクロバブルのうちの少なくとも1つを含む、請求項1に記載の装置。
【請求項12】
前記少なくとも1つのWGM共振器が、
複数の超音波エコーを受信することと、
前記複数の超音波エコーに応答して、WGMの第2のセットを伝搬させることと、を行うように構成されている、請求項1に記載の装置。
【請求項13】
前記少なくとも1つのWGM共振器が、前記少なくとも1つの光導波路に、WGMの前記第2のセットに対応する信号の第2のセットを伝達するようにさらに構成されている、請求項12に記載の装置。
【請求項14】
前記少なくとも1つの光導波路に通信可能に結合された光検出器をさらに含み、前記少なくとも1つの光導波路が、信号の前記第1のセットおよび信号の前記第2のセットを前記光検出器に伝搬するように構成されている、請求項13に記載の装置。
【請求項15】
前記少なくとも1つの光導波路が、光ファイバまたは集積フォトニック導波路を含む、請求項1に記載の装置。
【請求項16】
前記少なくとも1つの光導波路が、光源に結合されている、請求項1に記載の装置。
【請求項17】
前記光源が、広帯域光源または波長可変レーザ源を含む、請求項16に記載の装置。
【請求項18】
前記少なくとも1つのWGM共振器が、中空チャンバを含む、請求項1に記載の装置。
【請求項19】
前記中空チャンバが、超音波増強材料を含む、請求項18に記載の装置。
【請求項20】
前記複数のWGM共振器の各WGM共振器が、前記少なくとも1つの光導波路に光学的に結合されている、請求項1に記載の装置。
【請求項21】
前記少なくとも1つの光導波路が、複数の光導波路を含み、前記複数のWGM共振器の各WGM共振器が、前記複数の光導波路のそれぞれの光導波路に光学的に結合されている、請求項1に記載の装置。
【請求項22】
前記WGM共振器の少なくとも一部が、線形配置でグループ化されている、請求項1に記載の装置。
【請求項23】
前記線形配置における前記WGM共振器が、等間隔で離間されている、請求項22に記載の装置。
【請求項24】
前記線形配置における前記WGM共振器が、不等間隔で離間されている、請求項22に記載の装置。
【請求項25】
前記複数のWGM共振器が、円形配置に束ねられている、請求項1に記載の装置。
【請求項26】
前記WGM共振器の少なくとも一部が、等しいサイズである、請求項1に記載の装置。
【請求項27】
前記WGM共振器の少なくとも一部が、等しくないサイズである、請求項1に記載の装置。
【請求項28】
請求項12に記載の装置と、超音波信号のセットを生成するように構成された複数のアレイ要素とを含むシステムであって、前記複数の超音波エコーが、超音波信号の前記セットに対応する、システム。
【請求項29】
前記アレイ要素が、圧電センサ、単結晶材料センサ、圧電マイクロマシン超音波トランスデューサ(PMUT)、および容量性マイクロマシン超音波トランスデューサセンサ(CMUT)からなる群から選択される少なくとも1つのアレイ要素を含む、請求項28に記載のシステム。
【請求項30】
複数のウィスパリングギャラリーモード(WGM)共振器内を伝搬するWGMの第1のセットに対応する信号の第1のセットを少なくとも1つの光導波路から受信することであって、前記少なくとも1つの光導波路および前記複数のWGM共振器が、ポリマー構造内にある、受信することと、
前記少なくとも1つの光導波路から、前記複数のWGM共振器内を伝搬するWGMの第2のセットに対応する信号の第2のセットを受信することであって、WGMの前記第2のセットが、前記複数のWGM共振器が複数の超音波エコーを受信することに応答して伝搬する、受信することと、
信号の前記第1のセットと信号の前記第2のセットとの間の差のセットを検出することと、を含む、方法。
【請求項31】
前記ポリマー構造が、
残留超音波エコーを減衰させて残響を防止するように構成されたバッキング領域と、
前記複数のWGM共振器のWGM周波数応答の帯域幅を増加させるように構成された整合領域と、のうちの少なくとも1つを含む、請求項30に記載の方法。
【請求項32】
前記整合領域が、前記複数のWGM共振器への超音波伝送を改善するようにさらに構成されている、請求項31に記載の方法。
【請求項33】
前記バッキング領域および前記整合領域のうちの少なくとも1つが、前記少なくとも1つの光導波路の第2の屈折率よりも低い第1の屈折率を有する、請求項31に記載の方法。
【請求項34】
前記少なくとも1つの光導波路が、前記ポリマー構造の前記バッキング領域内にある、請求項33に記載の方法。
【請求項35】
前記少なくとも1つの光導波路が、前記ポリマー構造の前記整合領域内にある、請求項33に記載の方法。
【請求項36】
前記複数のWGM共振器が、前記ポリマー構造の前記整合領域内にある、請求項33に記載の方法。
【請求項37】
前記ポリマー構造の有効屈折率が、前記複数のWGM共振器の屈折率よりも低い、請求項30に記載の方法。
【請求項38】
前記ポリマー構造が、超音波増強材料を含む、請求項30に記載の方法。
【請求項39】
前記ポリマー構造の有効音響インピーダンスが、前記複数のWGM共振器の音響インピーダンスと整合する、請求項30に記載の方法。
【請求項40】
前記複数のWGM共振器のうちの少なくとも1つのWGM共振器が、微小球およびマイクロバブルのうちの少なくとも1つを含む、請求項30に記載の方法。
【請求項41】
前記複数のWGM共振器の各々が、前記少なくとも1つの光導波路に光学的に結合されている、請求項30に記載の方法。
【請求項42】
前記複数の超音波エコーが、複数の超音波信号に対応する、請求項30に記載の方法。
【請求項43】
信号の前記第1のセットおよび信号の前記第2のセットに対して合成開口(SA)演算を実行し、前記SA演算に少なくとも部分的に基づいて物体の画像を生成することをさらに含む、請求項30に記載の方法。
【請求項44】
信号の前記第1のセットおよび信号の前記第2のセットに対して圧縮センシング(CS)演算を実行し、前記CS演算に少なくとも部分的に基づいて物体の画像を生成することをさらに含む、請求項30に記載の方法。
【請求項45】
ウィスパリングギャラリーモード(WGM)のセットを伝搬するように構成されたWGM共振器であって、前記WGM共振器が、曲面を含む、WGM共振器を含み、
前記曲面が、前記WGM共振器の第1のモードに対応する第1の球状セグメントと、前記WGM共振器の第2のモードに対応する第2の球状セグメントとを含み、前記第2のモードが、前記第1のモードよりも高い周波数であり、
前記第2の球状セグメントが、前記第2のモードを減衰させるように構成されたポリマーで被覆されている、装置。
【請求項46】
前記WGM共振器が、微小球またはマイクロバブル共振器である、請求項45に記載の装置。
【請求項47】
前記第1の球状セグメントが、前記ポリマーによって被覆されていない、請求項45に記載の装置。
【請求項48】
前記第1のモードが、前記WGM共振器の基本モードである、請求項45に記載の装置。
【請求項49】
前記第2の球状セグメントが、前記WGM共振器の球状キャップである、請求項45に記載の装置。
【請求項50】
前記球状キャップの基部が、前記WGM共振器の赤道面から約3μm~15μmの距離にある、請求項49に記載の装置。
【請求項51】
前記WGM共振器が、ステム側と、前記ステム側と反対の極性である非ステム側とを含む、請求項49に記載の装置。
【請求項52】
前記球状キャップが、前記WGM共振器の前記ステム側にある、請求項51に記載の装置。
【請求項53】
前記球状キャップが、前記WGM共振器の前記非ステム側にある、請求項51に記載の装置。
【請求項54】
前記第2の球状セグメントが、前記ポリマーでコーティングされている、請求項45に記載の装置。
【請求項55】
前記第2の球状セグメントが、前記ポリマーによって封入されている、請求項45に記載の装置。
【請求項56】
前記ポリマーが、前記WGM共振器の屈折率よりも高い屈折率を有する、請求項45に記載の装置。
【請求項57】
前記ポリマーが、光学接着剤を含む、請求項45に記載の方法。
【請求項58】
前記WGM共振器に光学的に結合された光導波路をさらに含む、請求項45に記載の装置。
【請求項59】
請求項58に記載の装置と、超音波信号のセットを生成するように構成された複数のアレイ要素とを含むシステムであって、前記WGM共振器が、超音波信号の前記セットに対応する複数の超音波エコーを受信することに応答して、WGMの前記セットを伝搬するように構成されている、システム。
【請求項60】
ウィスパリングギャラリーモード(WGM)共振器を作製する方法であって、前記方法が、
曲面を含むWGM共振器を提供することであって、前記曲面が、前記WGM共振器の第1のモードに対応する第1の球状セグメントと、前記WGM共振器の第2のモードに対応する第2の球状セグメントとを含み、前記第2のモードが、前記第1のモードとは異なる周波数である、提供することと、
前記第2の球状セグメントを、前記第2のモードを減衰させるように構成されたポリマーで被覆することと、を含む、方法。
【請求項61】
前記WGM共振器が、微小球またはマイクロバブル共振器である、請求項60に記載の方法。
【請求項62】
前記ポリマーが、前記第1の球状セグメントを被覆しない、請求項60に記載の方法。
【請求項63】
前記第1のモードが、前記WGM共振器の基本モードである、請求項60に記載の方法。
【請求項64】
前記第2の球状セグメントが、前記WGM共振器の球状キャップである、請求項60に記載の方法。
【請求項65】
前記WGM共振器が、ステム側と、前記ステム側と反対の極性である非ステム側とを含む、請求項64に記載の方法。
【請求項66】
前記球状キャップが、前記WGM共振器の前記ステム側にある、請求項65に記載の装置。
【請求項67】
前記球状キャップが、前記WGM共振器の前記非ステム側にある、請求項65に記載の装置。
【請求項68】
前記第2の球状セグメントを前記ポリマーで被覆することが、前記球状キャップを前記ポリマーでコーティングすることを含む、請求項64に記載の方法。
【請求項69】
前記第2の球状セグメントを前記ポリマーで被覆することが、前記球状キャップを前記ポリマーを含む溶液に浸漬することを含む、請求項64に記載の方法。
【請求項70】
前記ポリマーが、前記WGM共振器の屈折率よりも高い屈折率を有する、請求項60に記載の方法。
【請求項71】
前記ポリマーが、光学接着剤を含む、請求項60に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年12月9日に出願された米国特許出願第62/945,538号の優先権を主張するものであり、参照によりその全体が本明細書に組み込まれる。
【0002】
本開示は、概して、センシングプラットフォームの分野に関し、特に、超音波センシングのためにウィスパリングギャラリーモード(WGM)共振器を使用する方法およびデバイスに関する。
【背景技術】
【0003】
超音波センシングを使用するセンシング用途は、それが提供する利点のために広く好まれている。例えば、医療撮像の分野では、超音波撮像は有利な非侵襲的な撮像形態であることが知られている。
【0004】
従来の超音波センシングでは、チタン酸ジルコン酸鉛(PZT)、ポリマー厚膜(PTF)およびポリフッ化ビニリデン(PVDF)などの圧電材料が使用されている。これらの材料には、いくつかの欠点がある。例えば、圧電材料の使用に関連する課題の一部には、高い動作電圧要件、高い電界要件(絶縁破壊および故障を引き起こし得る)、高いヒステリシスを伴う非線形応答、および限定された検出角度が含まれる。
【0005】
したがって、超音波センシングを含む種々のセンシング用途のための新しい改善されたデバイスおよび方法が必要とされている。
【発明の概要】
【課題を解決するための手段】
【0006】
概して、一部の変形例では、装置は、少なくとも1つの光導波路と、1つ以上ウィスパリングギャラリーモード(WGM)共振器(例えば、複数のWGM共振器)と、ポリマー構造とを含み得る。各WGM共振器は、WGMの第1のセットを伝搬するように構成され得る。ポリマー構造は、少なくとも1つの光導波路と、複数のWGM共振器のうちの少なくとも1つのWGM共振器とを封入し得る。少なくとも1つのWGM共振器は、少なくとも1つのWGM共振器がWGMの第1のセットに対応する信号の第1のセットを少なくとも1つの光導波路に伝達することができるように、少なくとも1つの光導波路に光学的に結合され得る。
【0007】
一部の変形例では、ポリマー構造は、バッキング領域および/または整合領域を含み得る。バッキング領域は、残留超音波エコーを減衰させて残響を防止するように構成され得る。整合領域は、1つ以上のWGM共振器のWGM周波数応答の帯域幅を増加させるように構成され得る。さらに、整合領域は、1つ以上のWGM共振器への超音波伝送を改善するようにさらに構成され得る。
【0008】
一部の変形例では、少なくとも1つの光導波路は、バッキング領域内に埋め込まれ得る。代替的に、少なくとも1つの光導波路は、整合領域内に埋め込まれ得る。バッキング領域および/または整合領域は、少なくとも1つの光導波路の屈折率よりも低い屈折率を有し得る。
【0009】
一部の変形例では、少なくとも1つのWGM共振器は、ポリマー構造の整合領域内に埋め込まれ得る。ポリマー構造の有効屈折率は、少なくとも1つのWGM共振器の屈折率よりも低くてもよい。一部の変形例では、ポリマー構造は、超音波増強材料を含む。ポリマー構造の有効音響インピーダンスは、少なくとも1つのWGM共振器の有効音響インピーダンスと整合し得る。
【0010】
一部の変形例では、超音波エコーを受信することに応答して、少なくとも1つのWGM共振器は、WGMの第2のセットを伝搬するように構成され得る。少なくとも1つのWGM共振器は、WGMの第2のセットに対応する信号の第2のセットを少なくとも1つの光導波路に伝達し得る。装置は、少なくとも1つの光導波路に通信可能に結合された光検出器をさらに含み得る。少なくとも1つの光導波路は、信号の第1のセットおよび信号の第2のセットを光検出器に伝搬するように構成され得る。一部の変形例では、装置および複数のアレイ要素(例えば、圧電センサ、単結晶材料センサ、圧電マイクロマシン超音波トランスデューサ(PMUT)、および容量マイクロマシン超音波トランスデューサセンサ(CMUT))を含むシステムは、超音波信号のセットを生成するように構成され得る。超音波エコーは、超音波信号のセットに対応し得る。
【0011】
一部の変形例では、少なくとも1つの光導波路は、光ファイバまたは集積フォトニック導波路を含み得る。一部の変形例では、少なくとも1つの光導波路は、光源に結合され得る。光源は、広帯域光または波長可変レーザ源を含み得る。
【0012】
一部の変形例では、少なくとも1つのWGM共振器は、微小球共振器またはマイクロバブル共振器であり得る。一部の変形例では、少なくとも1つのWGM共振器は、中空チャンバ(例えば、マイクロバブル共振器)を含み得る。中空チャンバは、超音波増強材料を含み得る。
【0013】
一部の変形例では、複数のWGM共振器の各WGM共振器は、少なくとも1つの光導波路に光学的に結合され得る。一部の変形例では、少なくとも1つの光導波路は、2つ以上の光導波路(例えば、複数の光導波路)を含み得る。各WGM共振器は、それぞれの光導波路に光学的に結合され得る。
【0014】
一部の変形例では、WGM共振器の少なくとも一部は、線形配置にグループ化され得る。WGM共振器は、等間隔で離間していてもよく、不等間隔で離間されていてもよい。他の変形例では、1つ以上のWGM共振器は、円形配置で一緒に束ねられ得る。一部の変形例では、1つ以上のWGM共振器のうちの少なくとも一部のWGM共振器は、等しいサイズであり得る。代替的に、WGM共振器のうちの少なくとも一部は、等しくないサイズであり得る。
【0015】
概して、超音波撮像の方法は、少なくとも1つの光導波路から信号の第1のセットを受信することを含む。信号の第1のセットは、1つ以上のWGM共振器(例えば、複数のWGM共振器)内を伝搬するWGMの第1のセットに対応し得る。方法はまた、少なくとも1つの光導波路から信号の第2のセットを受信することを含み得、信号の第2のセットは、1つ以上のWGM共振器が複数の超音波エコーを受信することに応答して1つ以上のWGM共振器内を伝搬するWGMの第2のセットに対応し得る。方法はまた、信号の第1のセットと信号の第2のセットとの間の差のセットを検出することを含む。少なくとも1つの光導波路および複数のWGM共振器は、ポリマー構造であり得る。
【0016】
一部の変形例では、ポリマー構造は、バッキング領域および/または整合領域を含み得る。バッキング領域は、残留超音波エコーを減衰させて残響を防止するように構成され得る。整合領域は、1つ以上のWGM共振器のWGM周波数応答の帯域幅を増加させるように構成され得る。加えて、整合領域はまた、1つ以上のWGM共振器への超音波伝送を改善し得る。
【0017】
一部の変形例では、少なくとも1つの光導波路は、バッキング領域内にあり得る。代替的に、少なくとも1つの光導波路は、整合領域内にあり得る。バッキング領域および/または整合領域は、少なくとも1つの光導波路の屈折率よりも低い屈折率を有し得る。一部の変形例では、1つ以上WGM共振器は、ポリマー構造の整合領域内にあり得る。ポリマー構造の有効屈折率は、1つ以上のWGM共振器の屈折率よりも低くてもよい。
【0018】
一部の変形例では、ポリマー構造は、超音波増強材料を含み得る。ポリマー構造の有効音響インピーダンスは、1つ以上のWGM共振器の音響インピーダンスと整合し得る。複数のWGM共振器のうちの少なくとも1つのWGM共振器は、微小球およびマイクロバブルのうちの少なくとも1つを含み得る。
【0019】
一部の変形例では、1つ以上のWGM共振器の各WGM共振器は、少なくとも1つの光導波路に光学的に結合され得る。一部の変形例では、複数の超音波エコーは、複数の超音波信号に対応し得る。
【0020】
一部の変形例では、超音波撮像の方法は、信号の第1のセットおよび信号の第2のセットに対して合成開口(SA)演算を実行することをさらに含み得る。物体の画像は、SA演算に少なくとも部分的に基づいて生成され得る。一部の変形例では、超音波撮像の方法は、信号の第1のセットおよび信号の第2のセットに対して圧縮センシング(CS)演算を実行することをさらに含み得る。物体の画像は、CS演算に少なくとも部分的に基づいて生成され得る。
【0021】
概して、装置は、WGMのセットを伝搬するように構成されたWGM共振器を含み得る。WGM共振器は曲面を含み得る。曲面は、WGM共振器の第1のモードに対応する第1の球状セグメントと、WGM共振器の第2のモードに対応する第2の球状セグメントとを含み得る。第2のモードは、第1のモードよりも高い周波数であり得る。第2の球状セグメントは、第2のモードを減衰させるように構成されたポリマーで被覆され得る。装置は、WGM共振器に光学的に結合された光導波路をさらに含み得る。
【0022】
一部の変形例では、装置を含むシステムは、超音波信号のセットを生成するように構成された複数のアレイ要素をさらに含み得る。WGM共振器は、超音波信号のセットに対応する複数の超音波エコーを受信することに応答してWGMのセットを伝搬するように構成され得る。
【0023】
一部の変形例では、WGM共振器は、微小球またはマイクロバブル共振器であり得る。第1の球状セグメントは、ポリマーによって被覆されなくてもよい。第1のモードは、WGM共振器の基本モードであり得る。一部の変形例では、第2の球状セグメントは、WGM共振器の球状キャップであり得る。球状キャップの基部は、WGM共振器の赤道面から3μm~15μmの距離であり得る。
【0024】
一部の変形例では、WGM共振器は、ステム側と、ステム側と反対の極性である非ステム側とを含み得る。一部の変形例では、球状キャップは、WGM共振器のステム側にあり得る。代替的または追加的に、球状キャップは、WGM共振器の非ステム側にあり得る。一部の変形例では、第2の球状セグメントは、ポリマーでコーティングされ得る。一部の変形例では、第2の球状セグメントは、ポリマーによって封入され得る。一部の変形例では、ポリマーは、WGM共振器の屈折率より高い屈折率を有し得る。一部の変形例では、ポリマーは、光学接着剤を含み得る。
【0025】
概して、一部の変形例では、WGM共振器を作製するための方法は、曲面を含むWGM共振器を含み得る。曲面は、WGM共振器の第1のモードに対応する第1の球状セグメントと、WGM共振器の第2のモードに対応する第2の球状セグメントとを含み得る。第2のモードは、第1のモードとは異なる周波数であり得る。方法は、第2のモードを減衰させるように構成されたポリマーで第2の球状セグメントを被覆することをさらに含み得る。第1のモードは、WGM共振器の基本モードであり得る。
【0026】
一部の変形例では、ポリマーは、第1の球状セグメントを被覆しない。第2の球状セグメントは、WGM共振器の球状キャップであり得る。一部の変形例では、WGM共振器は、ステム側と、ステム側と反対の極性である非ステム側とを含み得る。球状キャップは、WGM共振器のステム側にあり得る。代替的または追加的に、球状キャップは、WGM共振器の非ステム側にあり得る。一部の変形例では、第2の球状セグメントをポリマーコーティングで被覆することは、球状キャップをポリマーでコーティングすることを含む。一部の変形例では、第2の球状セグメントをポリマーコーティングで被覆することは、球状キャップをポリマーを含む溶液に浸漬することを含む。ポリマーは、WGM共振器の屈折率より高い屈折率を有することができ、かつ/またはポリマーは光学接着剤を含み得る。一部の変形例では、WGM共振器は、微小球またはマイクロバブル共振器であり得る。
【図面の簡単な説明】
【0027】
図1】ウィスパリングギャラリーモード(WGM)微小球共振器の例示的な変形例を示す。
図2】WGMマイクロバブル共振器の例示的な変形例の概略図である。
図3】WGMマイクロバブル共振器の種々の幾何形状の例示的な変形例の概略図である。
図4】マイクロバブルの壁厚を変化させた場合のWGMマイクロバブル共振器の品質係数を示す。
図5】例示的なWGMマイクロバブル共振器のモード分布の概略図である。
図6A】WGM共振器の例示的な変形例における基本モードの場分布の描写である。
図6B】WGM共振器の例示的な変形例における高次モードの場分布の描写である。
図6C】WGM共振器の例示的な変形例における高次モードの場分布の描写である。
図7】球状WGMマイクロバブル共振器と光導波路との間の例示的な光結合の概略図である。
図8】ポリマー構造におけるWGM共振器および導波路の例示的な変形例を示す。
図9】基板上に配置され、光導波路に光学的に結合されたWGM共振器の例示的な変形例を示す。
図10】基板上に配置され、光導波路に光学的に結合されたWGM共振器の例示的な変形例を示す。
図11】基板上に配置されたチップスケール光導波路に光学的に結合されたWGM共振器の例示的な変形例を示す。
図12】例示的なWGM共振器アレイの概略図である。
図13】例示的なWGM共振器アレイの概略図である。
図14】例示的なWGM共振器アレイの概略図である。
図15】例示的なWGM共振器アレイの概略図である。
図16】例示的なWGM共振器アレイの概略図である。
図17A】例示的なWGM共振器アレイの側面図である。
図17B図17Aの例示的なWGM共振器アレイの上面図である。
図18A】ポリマー構造にパッケージ化されたWGM共振器アレイの例示的な変形例の概略図である。
図18B】ポリマー構造内にパッケージ化されたWGM共振器アレイの例示的な変形例の概略図である。
図19】パッケージ化されたWGM共振器アレイの例示的な変形例の概略図である。
図20A】光ファイバの少なくとも一方の端部に切断部分を形成することにより、WGM微小球共振器を製造する方法の例示的な変形例を示す。
図20B】切断部分を有する光ファイバを用いてWGM微小球共振器を製造する方法の例示的な変形例を示す。
図21A】種々のサイズのWGM微小球共振器を製造する際に使用するためのテーパ状の光ファイバ先端の例示的な変形例を示す。
図21B】テーパ状の光ファイバ先端を使用して製造されたWGM微小球共振器の例示的な変形例を示す。
図21C】テーパ状の光ファイバ先端を使用して製造されたWGM微小球共振器の例示的な変形例を示す。
図22】ポリマーファイバから製造されたWGM微小球共振器の例示的な変形例を示す。
図23A】移送デバイスを使用してWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図23B】移送デバイスを使用してWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図23C】移送デバイスを使用してWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図24A】浸漬コーティングプロセスを用いてWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図24B】浸漬コーティングプロセスを用いてWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図24C】浸漬コーティングプロセスを用いてWGM微小球共振器を製造する方法の例示的な変形例の概略図である。
図25】WGMマイクロバブル共振器を製造する方法の例示的な変形例の概略図である。
図26】単一のファイバに沿ったWGM共振器アレイのための個々のWGM共振器を作製する方法の例示的な変形例を示す。
図27】WGMマイクロバブル共振器アレイを製造し、WGMマイクロバブル共振器を光導波路に結合する方法の例示的な変形例の概略図である。
図28】ポリマーコーティングを有するWGM微小球共振器の例示的な変形例を示す。
図29】高次モードを減衰させる方法の例示的な変形例を示す。
図30】ポリマーコーティングを有するWGM微小球共振器の例示的な変形例を示す。
図31】WGM微小球共振器をポリマー中に浸漬して高次モードを減衰させる方法の例示的な変形例を示す。
図32A】WGM共振器および光導波路を封入する例示的な方法の概略図である。
図32B】WGM共振器および光導波路を封入する例示的な方法の概略図である。
図33】WGM共振器アレイを使用して超音波エコーのセットをセンシングする例示的な方法の概略図である。
図34】WGM共振器アレイの光応答を測定する例示的な方法の概略図である。
図35】WGM共振器アレイの光応答を測定する例示的な方法の概略図である。
図36】例示的なWGM共振器アレイの光応答の図である。
図37】例示的な超音波プローブの概略図である。
図38】例示的な超音波プローブの概略図である。
【発明を実施するための形態】
【0028】
本発明の種々の態様および変形例の非限定的な例が本明細書に記載され、添付の図面に示される。
【0029】
光学センシングプラットフォームのためのシステムおよびかかる装置を作製する方法が、本明細書に開示される。より具体的には、ウィスパリングギャラリーモード(WGM)共振器を含む装置およびかかる装置を作製する方法が本明細書で説明される。
【0030】
光学センシングプラットフォームは、多くの場合、単純かつ高感度である。それらは、種々の異なる用途(例えば、バイオセンサ、化学センサ、機械センサなど)において使用することができる。しかしながら、従来の光学センシングプラットフォームは、いくつかの欠点を有している。例えば、一部の従来の光学センシングプラットフォームは、脆弱であり、物理的損傷を受けやすい。そのため、従来の光学プラットフォームは、物理的損傷から保護するために、嵩張るようにパッケージされていることがある。これにより、例えば、一部の従来の光学センシングプラットフォームは、可搬性の低いものである場合がある。
【0031】
さらに、従来の光学センシングプラットフォームは、環境の影響からの干渉を受けやすい場合がある。例えば、光学センシングプラットフォームが配置される環境における周囲光が、光学センシングプラットフォームの動作に影響を及ぼす場合がある。これは、ひいては、光学センシングプラットフォームの精度に影響を及ぼし得る。加えて、一部の従来の光学センシングプラットフォームの動作周波数は、制御することが困難な場合がある。例えば、多くのセンシング用途では、疎な周波数スペクトル内で動作する光学センシングプラットフォームが好ましい場合がある。これにより、対応するモードを追跡可能かつ識別可能にすることができ、これは、ほとんどのセンシング用途において有利となり得る。しかし、一部の従来の光学センシングプラットフォームは、動作を疎な周波数のスペクトルに制限する能力を有しない場合がある。換言すれば、従来の光学センシングプラットフォームにおける非必須周波数を減衰させることが困難な場合がある。
【0032】
したがって、コンパクトで可搬性であり、センシング用途によく適した精巧な光学センシングプラットフォームが必要とされている。
【0033】
センシング用途のための装置
本明細書で開示されるシステムおよび装置は、光導波路に光学的に結合されたウィスパリングギャラリーモード(WGM)共振器を含む。光が(例えば、光導波路を介して)WGM共振器に結合されると、WGM共振器は、WGM共振器の表面に沿ってWGMのセットを伝搬することができる。WGM共振器は、WGMのセットに対応する光信号を光導波路に伝達することができる。
【0034】
一部の変形例では、WGM共振器および光学的に結合された光導波路は、ポリマー構造内に封入することができる。ポリマー構造は、光学的に結合されたWGM共振器および光導波路を物理的損傷から保護することができる。換言すれば、光導波路に結合されたWGM共振器は、パッケージが壊れにくく可搬性であるように、ポリマー構造内にパッケージ化することができる。ポリマー構造は、環境の影響による干渉からWGM共振器を保護することができる。加えて、ポリマー構造は、WGM共振器のセンシング能力を高める材料を含み得る。例えば、ポリマー構造の屈折率、ヤング率、弾性光学係数、および/または音響インピーダンスは、センシング用途に基づいて、WGM共振器のセンシング能力を高めることができる。
【0035】
一部の変形例では、WGM共振器の少なくとも一部は、1つ以上の非必須周波数のWGMを減衰させるためのポリマーコーティングまたは他の構造を含み得る。換言すれば、WGM共振器の表面上のポリマーコーティングは、対応するモードが識別可能かつ追跡可能であるように、WGM共振器の動作を疎な周波数のスペクトルに制限することができる。
【0036】
一部の変形例では、装置の感度を増加させるために、複数のWGM共振器をアレイとして一緒に配置することができる。例えば、複数のWGM共振器を束ねてセンサアレイを形成してもよい。別の例として、複数のWGM共振器は、互いから特定の距離で線形に配置されてもよい(例えば、線形、矩形などであり得る規則的または不規則的なアレイ)。センサアレイは、超音波センシング、内視鏡検査などのための好適なセンシングプラットフォームに組み込まれ得る。
【0037】
WGM共振器
ウィスパリングギャラリーモード(WGM)共振器は、体積内に光を高度に閉じ込めて捕捉することができるため、高感度用途に適している。一部の変形例では、WGM共振器は、透明媒体の閉ループ(例えば、閉凹面、閉円形経路など)を含み得る。これは、一部の許容周波数の光が閉ループ内を連続的に伝搬することを可能にし、閉ループ内に許容周波数の光の光エネルギーを蓄積することを可能にし得る。換言すれば、WGM共振器は、WGM共振器の表面を進行し、光の許容周波数に対応するウィスパリングギャラリーモード(WGM)の伝搬を許容し得る。WGMは、WGM共振器の周囲を循環する。WGMからの各モードは、光の特定の周波数に対応する。
【0038】
一部の変形例では、WGM共振器は、音波に対するWGM共振器の応答を最適化するために、音響的および光学的に透明な材料を含み得る。加えて、一部の変形例では、WGM共振器は、ポリマーおよびプラスチック材料などの高い弾性光学係数を有する材料を含み得る。したがって、WGM共振器は、超音波センシング(例えば、超音波スキャン、内視鏡検査など)などのセンシング用途に非常に適している。WGM共振器は、超音波(例えば、超音波エコー)に応答したWGM共振器の光弾性効果および/または物理的変形を介して超音波を直接測定することができる。例えば、超音波(または任意の圧力)の存在下で、WGM共振器内を移動するWGMは、屈折率の変化および超音波によって誘発されるWGM共振器の形状の変化によって引き起こされるスペクトルシフトを受けることがある。これらのスペクトル変化により、容易に監視および分析して、超音波センシング用途に有用かつ適合するセンサ信号を生成することができる。
【0039】
上記の段落では、WGM共振器を超音波センシングに適したものにするWGM共振器の特性を説明したが、本明細書に記載されるWGM共振器は、任意の他のタイプのセンシング用途に使用され得ることが容易に明らかとなるはずである。例えば、マイクロ波フィルタなどの一部のフォトニックフィルタは、WGM共振器を含んでもよい。他の例示的な用途としては、分光法、化学的および/または生物学的薬剤の分析、機械的センサ、レーザ、スイッチおよび変調器、それらのセットみ合わせなどが挙げられる。
【0040】
上述したように、WGM共振器は、適切に光学的および/または音響的に透明な材料を含み得る。例えば、WGM共振器は、例えば、ガラス、透明ポリマー、シリカガラス、窒化ケイ素、二酸化チタン、および/または任意の他の適切な光学的に透明な材料などの光学的に透明な材料を含んでもよい。一部の変形例では、WGM共振器は、例えば、ポリフッ化ビニリデン、パリレン、ポリスチレン、および/または同等物などの超音波増強材料を含んでもよい。さらに、WGM共振器は、超音波によって誘発される機械的変形を増加させるように、低いヤング率を有する材料(例えば、2GPaより小さいヤング率を有する材料)を含んでもよい。
【0041】
一部の変形例では、WGM共振器は、実質的に湾曲した部分(例えば、球状部分、トロイド形状部分、リング形状部分など)を含み得る。実質的に湾曲した部分は、ステム部分によって支持され得る。一部の変形例では、WGM共振器の実質的に湾曲した部分およびステム部分は、同じ材料から形成され得る。
【0042】
一部の変形例では、WGM共振器の実質的に湾曲した部分およびステム部分は、一緒に形成することができる。例えば、実質的に湾曲した部分は、ファイバ先端および/または毛細管上の標的部分に熱を加えることによって形成されてもよい。熱に供されないファイバ先端および/または毛細管の別の部分は、WGM共振器のステム部分を形成してもよい。
【0043】
WGM共振器の形状(例えば、WGM共振器の実質的に湾曲した部分の形状)は、任意の好適な形状であり得る。例えば、WGM共振器の形状は、球状(すなわち、中実球)、バブル形状(すなわち、キャビティを有する球状)、円筒形、楕円形、リング、ディスク、トロイドなどであってもよい。WGM共振器の一部の非限定的な例としては、マイクロボトル共振器、マイクロバブル共振器、マイクロシリンダ共振器、マイクロディスク共振器、マイクロトロイド共振器などが挙げられる。
【0044】
WGM共振器の構造および機能は、微小球およびマイクロバブル共振器に関して示され、説明されているが、これは単に例示の目的のためである。本明細書で説明されるWGM共振器の態様は、WGMマイクロボトル共振器、WGMマイクロシリンダ共振器、WGMマイクロディスク共振器、WGMマイクロトロイド共振器、および/または同様のものなど、他の形状のWGM共振器に拡張され得ることが容易に明らかになるはずである。本明細書で説明する装置および方法は、任意の好適な形状の1つ以上のWGM共振器を使用することができる。
【0045】
WGM微小球共振器
図1は、WGM微小球共振器102の例示的な変形例である。WGM微小球共振器102は、実質的に湾曲した部分102a(例えば、球状部分)を含み得る。実質的に湾曲した部分102aは、ステム部分102bによって支持することができる。一部の変形例では、WGM微小球共振器102の実質的に湾曲した部分102aは、WGM微小球共振器102のステム部分102bの上にあってもよい。
【0046】
上述したように、WGM微小球共振器102は、特定の周波数の光を捕捉することができる。光の周波数は、WGM微小球共振器102の実質的に湾曲した部分102a内を循環することができ、それによって、WGM微小球共振器102の表面に沿った(例えば、実質的に湾曲した部分102aの円周に沿った)ウィスパリングギャラリーモードの伝搬を可能にする。WGM微小球共振器102によって伝搬されるWGMの各セットは、WGM微小球共振器102内の1つ以上の平面に閉じ込めることができる。例えば、基本周波数に対応するWGMのセット(すなわち、WGMの基本モード)を、WGM微小球共振器102内の赤道面内で伝搬させてもよい。
【0047】
WGM微小球共振器102の実質的に湾曲した部分102aは、半径Rを有し得る。WGM微小球共振器102内で伝搬されるWGMは、WGM微小球共振器102の半径Rおよび/またはWGM微小球共振器102の有効厚さを含むパラメータに依存する共振周波数のセットに対応し得る。追加的または代替的に、共振周波数のセットは、WGM微小球共振器102の材料の屈折率などのパラメータに依存し得る。
【0048】
上述したように、WGM微小球共振器102は、WGM微小球共振器102の光弾性効果および/またはWGM微小球共振器102の物理的変形を介して、超音波の強度を直接測定することができる。超音波は、屈折率の変化を誘発することができ、かつ/またはWGM微小球共振器102の物理的変形を引き起こすことができる。これは、WGMにおける共振周波数シフトにつながり得、共振周波数シフトは、屈折率の変化および/または物理的変形の量に比例し得る。例えば、WGM微小球共振器102の物理的変形は、WGM微小球共振器102の半径Rに対する変化であり得る。半径Rの変化により、WGM微小球共振器の共振周波数のセットは変化し得る。共振周波数シフトは、以下の式に従う。
【数1】
および
【数2】
式中、neffは光学モードの有効屈折率であり、光学的に透明な材料における光場の部分と、共振器および周囲の屈折率とによって決定され、Δneffは微小球共振器102におけるWGMの有効屈折率変化であり、λは動作周波数であり、Δλは共振周波数シフトであり、ΔRはWGM微小球共振器102の半径Rに対する変化である。
【0049】
図1に示すWGM微小球共振器は球状を有しているが、実質的に湾曲した部分102aは、任意の好適な形状であり得る。概して、WGM共振器102の性能は、その形状に依存し得る。例えば、概して、より球状の微小球は、WGMを閉じ込める際により良好な性能を有し得る。WGM微小球共振器102の一部の好適な変形例は、(例えば、約0~約0.9などのある程度の偏心を有する)楕円形であってもよい。
【0050】
WGM微小球共振器102は、例えば、ガラス、透明ポリマー、シリカガラス、またはWGM微小球共振器102の動作波長で光学的に透明な任意の他の適切な材料などの光学的に透明な材料を含む光ファイバから作製することができる。一部の変形例では、WGM微小球共振器102は、光学的に透明な材料から作製されたファイバの端部を操作することによって製造することができる。例えば、ファイバの端部(例えば、ファイバ先端)は、ファイバの端部を熱に供することによって(例えば、CO2レーザ、アーク放電器、加熱コイル、または任意の他の好適な熱源を使用して)溶融させることができる。溶融したファイバの先端は、表面張力により球状になる。換言すれば、WGM微小球共振器102は、ファイバの端部にリフロープロセスを施すことによって製造することができる。追加的または代替的に、針またはシリンジを使用して、光学的に透明な材料をテーパ状または非テーパ状のファイバ先端の端部に移送することができる。液滴がテーパ状または非テーパ状のファイバ先端の端部に移送されると、液滴は、好適な硬化プロセスを使用して(例えば、熱、水分、紫外線(UV)光などを使用して)硬化させることができる。光学的に透明な材料の表面張力により、球状が維持され、それによってWGM微小球共振器102が形成される。追加的または代替的に、テーパ状または非テーパ状のファイバの先端を、光学的に透明な材料のプールに浸漬することができる。テーパ状または非テーパ状のファイバを後退させると、光学的に透明な材料の表面張力により球状が形成される。球状部分は、好適な硬化プロセスを使用して(例えば、熱、水分、紫外線(UV)光などを使用して)硬化され得る。WGM微小球共振器の製造を以下にさらに詳細に記載する。
【0051】
WGM微小球共振器102の半径Rを含むWGM微小球共振器102の幾何学的寸法は、光学的に透明なファイバの端部をテーパ状に引っ張ることによって変更することができる。追加的または代替的に、WGM微小球共振器102の半径Rは、加熱プロセスを制御することによって操作することができる。WGM微小球共振器102の動作周波数は、WGM微小球共振器102の表面の一部にポリマーコーティングを適用することによって設定することができる(以下でさらに詳細に説明する)。音響波(または圧力波)に応答してWGM微小球共振器102内を伝搬するWGMの周波数の変化は、センシング用途(例えば、超音波センシング)のために測定することができる。
【0052】
WGMマイクロバブル共振器
図2は、WGMマイクロバブル共振器202の例示的な変形例の概略図である。WGMマイクロバブル共振器202は、実質的に湾曲した部分202a(例えば、中空キャビティを有する球状部分)を含み得る。WGMマイクロバブル共振器202の実質的に湾曲した部分202aは、Rによって示される半径を有する外側マイクロバブル表面202a’と、rによって示される半径を有する内側マイクロバブル表面202a’’とを含むことができ、それにより、(R-r)に等しい共振器壁厚が画定される。内部マイクロバブル表面202a’’の内側の空間は、中空(例えば、キャビティ)であってもよく、または以下にさらに詳細に記載されるような超音波増強材料などの材料を含んでもよい。
【0053】
上述したように、WGMマイクロバブル共振器202は、特定の周波数の光を捕捉することができる。光の周波数は、WGMマイクロバブル共振器202の実質的に湾曲した部分202a内を循環することができ、それによって、WGMマイクロバブル共振器202の表面に沿った(例えば、実質的に湾曲した部分202aの円周に沿った)ウィスパリングギャラリーモードの伝搬を可能にする。WGMマイクロバブル共振器202によって伝搬されるWGMの各セットは、WGMマイクロバブル共振器202内の1つ以上の平面に閉じ込めることができる。例えば、基本周波数に対応するWGMのセット(すなわち、WGMの基本モード)を、WGMマイクロバブル共振器202内の赤道面内で伝搬させてもよい。
【0054】
WGMマイクロバブル共振器202内で伝搬されるWGMは、外側マイクロバブル表面202a’の半径R、内側マイクロバブル表面202a’’の半径r、および/またはWGMマイクロバブル共振器202の壁厚を含むパラメータに依存する共振周波数のセットに対応し得る。追加的または代替的に、共振周波数のセットは、WGMマイクロバブル共振器202の材料の屈折率などのパラメータに依存し得る。
【0055】
上述のように、WGMマイクロバブル共振器202は、WGMマイクロバブル共振器202の光弾性効果および/またはWGMマイクロバブル共振器202の物理的変形を介して、超音波の強度を直接測定することができる。超音波は、屈折率の変化を誘発することができ、かつ/またはマイクロバブル共振器202の物理的変形を引き起こすことができる。これは、WGMにおける共振周波数シフトにつながり得、共振周波数シフトは、屈折率の変化および/または物理的変形の量に比例し得る。例えば、WGMマイクロバブル共振器202の物理的変形は、外側マイクロバブル202a’の半径Rの変化であり得る。半径Rの変化により、WGMマイクロバブル共振器202の共振周波数のセットは変化し得る。共振周波数シフトは、以下の式に従う。
【数3】
および
【数4】
式中、neffは光学モードの有効屈折率であり、光学的に透明な材料中の光場の部分と、共振器および周囲の屈折率とによって決定され、Δneffはマイクロバブル共振器202中のWGMの有効屈折率変化であり、λは動作周波数であり、Δλは共振周波数シフトであり、ΔRは外側マイクロバブル202a’の半径Rに対する変化である。
【0056】
図2に示されるWGMマイクロバブル共振器202は球状を有するが、実質的に湾曲した部分202aは任意の好適な形状であり得る。概して、WGM共振器202の性能は、その形状に依存し得る。例えば、より球状のマイクロバブルは、WGMを閉じ込める際により良好な性能を有し得る。WGMマイクロバブル共振器202の一部の好適な変形例は、(例えば、約0~約0.5、0~約0.3、約0~約0.2、約0~約0.1など、ある程度の偏心を有する)楕円形であってもよい。図3は、WGMマイクロバブル共振器の種々の幾何学的形状の例示的な変形例を描写している。例えば、WGMマイクロバブル共振器は、楕円形マイクロバブル(例えば、より偏心したマイクロバブル302またはあまり偏心していないマイクロバブル302’)または球状マイクロバブル302’’であり得る。上述のように、球状WGMマイクロバブル共振器302’’は、楕円形WGMマイクロバブル共振器302および302’と比較して、より良好な共振器性能を有し得る。
【0057】
図2に戻って参照すると、WGMマイクロバブル共振器202は、毛細管201などの毛細管から作製することができる。毛細管201は、例えば、ガラス、透明ポリマー、窒化ケイ素、二酸化チタン、またはWGMマイクロバブル共振器202の動作波長において適切に光学的に透明である任意の他の材料などの、光学的に透明な材料から作製することができる。共振器壁(例えば、(R-r)に等しい壁厚で示される共振器壁)は、例えば、毛細管201と同じ材料などの材料を含んでもよい。内部マイクロバブル共振器表面202a’’の内側の空間は、中空チャンバであってもよく、または例えば、ポリフッ化ビニリデン、パリレン、ポリスチレンなどの超音波増強材料で充填されていてもよい。光学WGMマイクロバブル共振器202内部の超音波増強材料は、マイクロバブル共振器の感度を増加させることができる。例えば、超音波増強材料は、比較的高い弾性光学係数を有することができ、その結果、超音波エコーのセットを受信するWGMマイクロバブル共振器202に応答して、超音波増強材料の屈折率は、(例えば、超音波エコーのセットによって誘発される機械的応力または歪みを受けると)共振器壁の材料の屈折率よりも大きく変化する。
【0058】
一部の変形例では、WGMマイクロバブル共振器202は、毛細管(例えば、毛細管201)を操作することによって形成することができる。毛細管201は、光学的に透明な材料例えば、ガラス、透明なポリマー、窒化ケイ素、二酸化チタン、および任意の他の好適な光学的に透明な材料などから製造され得る。毛細管201は、WGMマイクロバブル共振器202の実質的に湾曲した部分202aが望まれる毛細管201上の位置で加圧および加熱することができる。毛細管201の加熱は、圧力源を用いて毛細管201内の圧力を安定に保ちながら、COレーザ、アーク放電器、加熱コイルなど、任意の好適な熱源を用いることで行うことができる。WGMマイクロバブル共振器の製造を以下にさらに詳細に記載する。
【0059】
一部の変形例では、例えば、熱源は、1つ以上のレンズ、ビームスプリッタ、ミラー、熱伝導性表面などのセットを用いて、(例えば、熱方向、集束エネルギーなどを制御するために)操作されてもよい。外側マイクロバブル202a’の半径R、内側マイクロバブル202a’’の半径r、および図2に関して説明されるような壁厚を含む、マイクロバブル共振器の幾何学的寸法は、制御された加熱および/または加圧プロセスに依存し得る。例えば、製造プロセスの正確な制御により、好適な形状のWGMマイクロバブル共振器(例えば、図3の楕円形WGMマイクロバブル共振器302もしくは302’、および/または図3の球状WGMマイクロバブル共振器302’’)を製造することができる。一部の変形例では、毛細管201は、WGMマイクロバブル共振器202の中空チャンバ内に、上述のような超音波増強材料を部分的または全体的に充填することによって、さらに処理することができる。例えば、超音波増強材料は、毛細管201の開放端を通してWGMマイクロバブル共振器202に注入されてもよい。
【0060】
WGMマイクロバブル共振器202の動作周波数は、WGMマイクロバブル共振器202の表面の一部にポリマーコーティングを適用することによって設定することができる(以下でさらに詳細に説明する)。音響波(または圧力波)に応答してWGMマイクロバブル共振器202内を伝搬するWGMの周波数の変化は、センシング用途(例えば、超音波センシング)のために測定することができる。
【0061】
上述したように、WGM微小球共振器102およびWGMマイクロバブル共振器202は、単に例示の目的で詳細に記載されている。以下のセクションでは、任意の好適なWGM共振器(例えば、WGM微小球共振器、WGMマイクロバブル共振器、WGMマイクロボトル共振器、WGMマイクロトロイド共振器、WGMマイクロディスク共振器、WGMマイクロリング共振器など)の特性を説明する。
【0062】
品質係数(Q値)
閉ループ内の光の許容周波数を捕捉する能力は、WGM共振器の高い品質係数(Q値)に起因し得、これにより、WGM共振器は高感度用途に非常に適したものとなる。WGM共振器のQ値は、WGM共振器の幾何学的パラメータ、透明媒体の屈折率、および/またはWGM共振器を取り囲む環境の屈折率を含む要因に基づき得る。例えば、球状WGM共振器は、それらの幾何学的形状に起因して高いQ値を有していてもよい。
【0063】
超音波センシングの感度は、WGM共振器のQ値を増加させることによって改善することができる。Q値は、WGM共振器の形状、WGMマイクロバブル共振器の壁厚R-r、WGM微小球共振器の半径RなどのWGM共振器の物理的因子によって制御することができる。例えば、WGM共振器の形状は、WGM共振器内の光場の閉じ込めに影響を与え、これは次にWGM共振器のQ値に影響を及ぼす。WGM共振器内の光場の閉じ込めは、他の要因の中でも、WGM共振器の周囲の壁の周りを伝搬する間の光場の光損失に依存し得る。光場の光損失は、円周の曲げ半径を含む幾何学的パラメータ、およびWGM共振器の材料の吸収係数を含む物理的パラメータに依存し得る。概して、より強い光場閉じ込めは、受信された超音波エコーによって誘発された圧力に対するWGM共振器の応答を強化するのに役立ち得る。概して、球状、楕円形、円筒形、トロイド形、リング形などの形状を有するWGM共振器は、より良好な共振器性能を有し得る。例えば、図3において、球状バブル302’’は、楕円形バブル302および302’よりも低い光損失を有し、高感度用途により適したより高いQ値を示す。
【0064】
同様に、WGM共振器の壁の厚さもまた、Q値に影響を及ぼし得る。図4は、WGMマイクロバブル共振器の壁厚が変化するときの、WGMマイクロバブル共振器の放射損失によって制限されるQ値の変化を示している。材料吸収損失のような他の損失は、シミュレーションにおいて考慮していない。内部マイクロバブル表面半径を増加させることおよび/または壁厚を減少させることによって、概してQ値は減少する。Q値は、WGMマイクロバブル共振器およびその周囲媒体の幾何学的パラメータおよび屈折率に応じて、特定の半径から減少し得る。グラフ401は、1の屈折率を有する空気によって囲まれた10μmの外側マイクロバブル直径および2の屈折率を有するWGMマイクロバブル共振器のQ値を示している。401に示すように、壁厚が減少するとQ値は低下し、壁厚が0.06μmよりも薄いと、WGMマイクロバブル共振器は光をほとんど閉じ込めることができない。グラフ402は、1.33の屈折率を有する材料によって囲まれた10μmの外側マイクロバブル直径および2の屈折率を有する同様のWGMマイクロバブル共振器のQ値を示している。402に見られるように、周囲の材料の屈折率が高いため、Q値は、壁厚が0.26μmに近いときに著しく低下し始め、WGMマイクロバブル共振器は、壁厚が0.16μmより薄いときに光をほとんど閉じ込めることができない。グラフ401およびグラフ402は、単に例示目的のためのQ値の値を含むことが容易に理解されるはずある。例えば、グラフ401およびグラフ402は、WGMマイクロバブル共振器のQ値の1つ以上の傾向を示すにすぎない。Q値自体の値は、種々の要因に応じて変化し得る。しかしながら、Q値の一般的な傾向は、グラフ401およびグラフ402に示される傾向と同様であり得る。
【0065】
WGMモード
上述したように、WGM共振器は、特定の周波数の光を捕捉することができる。これらの周波数の光は、WGM共振器の表面に沿って循環することができ、それによってWGMの伝搬を可能にする。したがって、WGM共振器が(例えば、光導波路を使用して)光と結合されると、異なる空間分布を有する光に対応する多数のモードがWGM共振器内で励起され得る。
【0066】
図5は、種々のWGMマイクロバブル共振器におけるモード分布の概略図である。WGMマイクロバブル共振器は、(図2においてさらに詳細に説明したように)Rによって示される半径を有する外側マイクロバブル表面と、rによって示される半径を有する内側マイクロバブル表面とを含み得る。10μmの外側マイクロバブル表面半径および0μmの内側マイクロバブル表面半径を有するWGMマイクロバブル共振器におけるウィスパリングギャラリーモード(WGM)を介した光伝搬が、モード分布501に示されている。10μmの外側マイクロバブル表面半径および8μmの内側マイクロバブル表面半径を有するWGMマイクロバブル共振器におけるWGMを介した光伝搬が、モード分布502に示されている。10μmの外側マイクロバブル半径および9.8μmの内側マイクロバブル半径を有するWGMマイクロバブル共振器におけるWGMを介した光伝搬が、モード分布503に示されている。10μmの外側マイクロバブル半径および9.94μmの内側マイクロバブル半径を有するWGMマイクロバブル共振器におけるWGMを介した光伝搬が、モード分布504に示されている。上述のすべてのモード分布において、マイクロバブル材料の屈折率は2である。
【0067】
モード分布501およびモード分布502では、外側表面半径が10μmであるマイクロバブルと、内側表面半径が0μmであるマイクロバブルと、壁の厚さが2μmであるマイクロバブルとの間に小さな差が存在する。しかしながら、0.06μmの壁厚を有するWGMマイクロバブル共振器の場合、WGMマイクロバブル共振器は損失が多くなり、壁厚内に光を閉じ込めることができない(例えば、モード分布504を参照)。10μmの外側マイクロバブル表面半径および9.9μmの内側マイクロバブル表面半径を有するWGMマイクロバブル共振器におけるWGMを介した光伝搬が、モード分布505に示されている。1.33のより低い屈折率を有し、10μmの外側マイクロバブル半径および9.9μmの内側マイクロバブル半径を有するポリマー構造によって囲まれた、パッケージ化されたWGMマイクロバブル共振器(例えば、ポリマー構造内に封入されたWGMマイクロバブル共振器)内のWGMを介した光伝搬が、モード分布506に示されている。パッケージ化されたWGMマイクロバブル共振器は損失が多くなり、壁厚内に光を閉じ込めることができない。これは、WGMマイクロバブル共振器の壁厚が非常に薄く(すなわち0.1μm)、光の波長よりも小さいためである。
【0068】
図5に見られるように、異なる空間分布(本明細書では「場分布」とも称される)を有する多数のモードのWGMをWGM共振器内で励起することができる。各モードの場分布は、概して、1つ以上の特定の平面内に閉じ込めることができる。換言すれば、特定の周波数に対応するWGMのセットがWGM共振器の表面に沿って伝搬するとき、そのWGMのセットの場分布は、概して、WGM共振器の表面内の1つ以上の特定の平面の緯度方向の範囲に閉じ込められ得る。例えば、図6Aは、WGM共振器602における基本モードの場分布の描写の例示的な変形例である。基本周波数に対応するWGMの基本モードは、平面606a内で伝搬され得る。WGM共振器の実質的に湾曲した部分が球状である場合(例えば、WGM微小球共振器、WGMマイクロバブル共振器など)、WGMは赤道面内で伝搬し得る。基本モードは、基本モードのより薄い場分布に起因して、高次モードよりも超音波センシングに対してより広範な帯域幅応答を有し得る。
【0069】
基本周波数以外の周波数(例えば、基本周波数よりも高い周波数)に対応する高次モードの場分布は、基本周波数の場分布を超えて半径方向または極方向(北および南)に延在するより広い範囲内に閉じ込められ得る。例えば、図6Bは、WGM共振器602’の例示的な変形例における第1の高次モードの場分布の描写である。図6Bに見られるように、第1の高次モードの場分布は、赤道面606aから半径方向または極方向に延在する。換言すれば、第1の高次モードの場分布は、平面606bと平面606cとの間に延在している。平面606bおよび平面606cは、赤道面606aから等距離にあってもよい。平面606bおよび平面606cはまた、赤道面606aに平行であってもよい。
【0070】
図6Cは、WGM共振器602’’の例示的な変形例における(図6Bに関して上述した第1の高次モードよりも高次の)第2の高次モードの場分布の描写である。図6Bに描写される高次モードの場分布と同様に、図6Cの高次モードの場分布は、赤道面606aから半径方向または極方向に延在する。このシナリオにおける場分布は、平面606fから平面606gまで延在する。換言すれば、より高次の場分布は、a)赤道面606a、b)一方向の平面606f、606d、および606b、ならびにc)極性が反対の方向の平面606g、606c、および606eの間に及ぶ緯度に閉じ込められ得る。平面606fおよび平面606gは、赤道面606aから等距離にあってもよい。同様に、赤道面606aから、平面606dおよび平面606eは等距離にあってもよく、平面606bおよび平面606cは等距離にあってもよい。上述したように、図6Cに描写される高次モードの場分布の北および南の境界は、それぞれ平面606fおよび平面606gである。図6Bに示す高次モードの場分布と比較して、図6Cの高次モードの場分布は、赤道面606aからさらに北および南に延在している。例えば、平面606fおよび平面606gは、平面606bおよび平面606cとは対照的に、赤道面606aからより大きな距離にあってもよい。したがって、図6Cにおける高次モードは、図6Bにおける高次モードよりも高いモード体積を有し得る。図6Cにおける高次モードについての光損失は、図6Bにおける高次モードについての光損失よりも大きくなり得る。
【0071】
上述のように、形状が球状であるWGM共振器では、基本モードの場分布は概して赤道面に閉じ込められ得るが、高次モードの場分布は、赤道面から半径方向および/または極方向に沿って延在し得る。WGM共振器は、その多数の方位角モードおよび半径方向モードのために、密なスペクトル特徴を示している。密なスペクトルは、キャビティ量子電磁力学などの用途にとって非常に魅力的であり得る。しかしながら、ほとんどのセンシング用途では、追跡可能かつ識別可能なモードを有する疎なスペクトルが好ましい場合がある。さらに、より低次のモードは、より高次のモードと比較してより高いQ値を有し得る。さらに、より低次のモードは、より高次のモードと比較してより小さいモード体積を有し得る。
【0072】
モードのスペクトルは、WGM共振器の音響インピーダンス、WGM共振器の屈折率、WGM共振器の幾何学的パラメータ(例えば、WGM共振器の半径、WGM共振器の有効厚さ、WGM共振器の壁厚など)、WGM共振器を取り囲む環境の音響インピーダンス、および/またはWGM共振器を取り囲む環境の屈折率に依存し得る。したがって、WGM共振器の材料および/またはその周囲の材料の音響インピーダンスおよび/または屈折率、ならびにWGM共振器のサイズは、共振モードの帯域幅を調整するように適合させることができる。
【0073】
追加的にまたは代替的に、高次モードは、電界に近い選択された点でWGM共振器および/またはその周囲の形状を破壊することによって選択的に減衰され、それによって透過スペクトルに存在する高次モードの数を低減することができる。例えば、一部の変形例では、WGM共振器の一部にポリマーコーティングを適用することによって、高次モードを選択的に減衰させることができる(以下でさらに詳細に説明する)。例えば、WGM共振器の周囲の一部にポリマーコーティングを適用することで、コーティングされた部分に沿ったWGM共振器の幾何学的形状の連続性が破壊され、それによってWGM共振器の動作モードが変化し得る。ポリマーコーティングが、以下でさらに詳細に説明されるように球状セグメントに適用されるとき、コーティングは、WGM共振器の(極方向に沿った)有効「厚さ」をさらに変化させ得る。換言すれば、ポリマーコーティングは、WGM共振器の有効厚さを減少させ、それによって高次モードの少なくとも一部を減衰させることができる。このように、WGM共振器は、センシング用途に非常に適し得る。これについては、以下でさらに詳細に説明する。
【0074】
導波路
WGM共振器を光と結合することで、WGM共振器のセンシング能力が可能になり得る。光は、単にWGM共振器上に光を照射することによって結合することができる。しかしながら、これは、WGM共振器を励起するための非効率的な方法であり得る。これは、光を結合することによってWGM共振器のセンシング能力を可能にするために、共振光と入射光との間の位相整合が必要とされ得るからである。したがって、光をWGM共振器に結合するより効率的な方法は、位相整合を達成するように特定の特性を有する光導波路を使用することである。光導波路は、WGM共振器のセンシング能力を利用し得る制御可能でロバストな光を提供することができる。
【0075】
しかしながら、光導波路に結合されるWGM共振器の感度は、光導波路のタイプ、光導波路の効率、光導波路とWGM共振器との間の結合のタイプ、光導波路の形状、WGM共振器の形状などに依存して変化し得る。したがって、WGM共振器を光導波路と結合するときにこれらの要因を考慮することが重要であり得る。
【0076】
上述したように、WGM共振器の感度は、それが結合される光導波路の効率に依存し得る。光導波路の効率は、位相同期、WGM共振器のモードと光導波路のモードとの間の最適な重なり、および臨界に依存し得る。例えば、光導波路の効率は、WGM共振器に位相整合し得る全透過光パワーの割合に基づいてもよい。光導波路は、最大量の光をWGM共振器に結合することができるものが最も効率的であると考えられ得る。
【0077】
追加的にまたは代替的に、WGM共振器の感度は、光導波路とWGM共振器との間の結合に依存し得る。光導波路とWGM共振器との間の最適な光結合は、複数の要因に依存し得る。これらの要因の一部の非限定的な例には、WGM共振器からの光導波路上の結合点の距離、WGM共振器に対する光導波路上の結合点の整列などが含まれる。最適な結合により、ウィスパリングギャラリーモード(WGM)動作は、WGMのセットに対応する共振周波数のセットの高いQ値で達成される。
【0078】
一部の変形例では、WGM共振器と1つ以上の光導波路との間の光結合は、少なくとも部分的に、WGM共振器を1つ以上の光導波路に近接して配置することによって達成され得る。例えば、WGM共振器および光導波路は、光導波路がWGM共振器の最大直径に整列されるように位置決めされてもよい。一例では、WGM共振器は楕円形状を有してもよく、WGM共振器の最大円直径は、1つ以上の光導波路に整列させることができる。
【0079】
図7は、球状WGMマイクロバブル共振器702と光導波路701との間の例示的な光結合の概略図である。結合点703は、球状WGMマイクロバブル共振器702から最も近い距離を有する光導波路701上の点である。光導波路701と球状WGMマイクロバブル共振器702との間の良好な結合を達成するために、光導波路701は、結合点703が球状WGMマイクロバブル共振器702から最も近い距離にあるように整列させることができる。例えば、光導波路701は、結合点703が球状WGMマイクロバブル共振器702から最も近い距離にあるように配置されてもよい。
【0080】
一部の変形例では、光導波路は、光源から光を受け取る光ファイバ、オンチップ光源から光を受け取る集積フォトニック導波路、光源からの光を伝搬する光ファイバに結合された集積フォトニック導波路、または光源からの光をWGM共振器から結合点に伝搬する任意の他の好適な媒体であり得る。光導波路の一部の非限定的な例としては、光ファイバ、集積フォトニクス導波路、チップスケール導波路、スラブ導波路、プリズム、角度研磨ファイバカプラ、テーパファイバカプラ、ベントファイバカプラなどが挙げられる。
【0081】
ポリマー構造
一部の変形例では、光導波路およびWGM共振器の少なくとも一部は、ポリマー構造内に埋め込まれ、それによって、光導波路およびWGM共振器を封入することができる。上述したように、WGM共振器は脆弱であり得、物理的損傷を受けやすい。ポリマー構造は、WGM共振器および光導波路を物理的損傷から保護することができる。換言すれば、ポリマー構造は、WGM共振器および光導波路を一緒にパッケージ化することができる。光導波路を有するパッケージ化されたWGM共振器が、超音波センシング(例えば、内視鏡検査などの超音波撮像など)などのセンシング用途に使用される変形例では、ポリマー構造の有効屈折率は、WGM共振器の有効屈折率よりも低くてもよい。これにより、パッケージ化されたWGM共振器が、高い超音波減衰を有しながら、広範囲の周波数のWGMに応答することが可能となり得る。高い超音波減衰により、光導波路を有するパッケージ化されたWGM共振器が超音波センシング用途に使用されているときに、超音波エコーの残響を防止することができる。
【0082】
ポリマー構造は、1)バッキング領域(本明細書では「バッキングポリマー」とも称される)および/または音響整合領域(本明細書では「整合ポリマー」とも称される)と、2)封入領域と、3)一部の変形例では、基板とを含み得る。例えば、図18Aを参照すると、ポリマー構造は、整合領域1808、封入領域1814、基板1806、およびバッキング領域1810を含み得る。
【0083】
音響整合領域1808は、超音波伝送を促進するように構成することができる。例えば、整合領域1808は、WGM共振器への超音波エコーの伝送のインピーダンスを低減するために、低屈折率を有するポリマー材料を含んでもよい。整合領域1808は、WGM共振器の屈折率および1つ以上の光導波路の屈折率と比較して低い屈折率を有し得る。
【0084】
バッキング領域1810は、超音波エコーの残響を防止するために高い超音波減衰を有しながら広範なウィスパリングギャラリーモード(WGM)周波数応答を得るように構成された、低屈折率を有するポリマー材料などの減衰材料を含み得る。一部の変形例では、バッキング領域1810の減衰材料の音響インピーダンスは、例えば、WGM共振器をパッケージ化するために利用される整合ポリマーの音響インピーダンスと整合することができる。
【0085】
一部の変形例で論じたように、ポリマー構造は、基板(例えば、基板1806)を含み得る。基板は、シリコン、シリカ、石英、プラスチック、および/または任意の他の好適な材料を含み得る。基板として機能する好適な材料は、残留振動を排除し、超音波エコーを最小化する減衰材料を含み得る。基板は、1つ以上のコーティング材料(例えば、「コーティング層」)でコーティングされ得る。一部の変形例では、コーティング層は、超音波をWGM共振器に跳ね返すように反射面として機能する1つ以上の材料を含み得る。一部の変形例では、コーティング層は、バッキングポリマーおよび/または整合ポリマーをさらに含み得る。例えば、基板は、バッキングポリマーおよび/または整合ポリマーを含むコーティング材料でコーティングされてもよい。一部の変形例では、バッキングポリマーおよび/または整合ポリマーの層は、基板上に堆積されてもよい。
【0086】
WGM共振器は、基板1806上に配置され、封入領域1814内に封入され得る。換言すれば、封入領域1814は、WGM共振器が封入領域1814内に封入され得るように、整合領域1808とバッキング領域1810との間に挟まれ得る。
【0087】
一部の変形例では、封入領域1814は、ポリフッ化ビニリデン、パリレン、ポリスチレン、および/または同等物などの超音波増強材料を含み得る。超音波増強材料は、WGM共振器の感度を増加させることができる。例えば、超音波増強材料は、超音波エコーのセットを受信するWGM共振器に応答して、超音波増強材料の屈折率が、非超音波増強材料の屈折率と比較して実質的に変化し得る(例えば、超音波エコーのセットによって誘発される機械的応力または歪みを受けると)ように、高い弾性光学係数を有してもよい。これにより、超音波信号に対するWGM共振器の応答が増加する。
【0088】
代替的な配置では、図32Aを参照すると、ポリマー構造は、整合領域3208a、バッキング領域3210a、および基板3206aを含み得る。この配置では、整合領域3208aは封入領域として機能することができる。換言すれば、WGM共振器は、整合領域3208a内に封入され得る。したがって、整合領域3208aは、超音波増強材料を含み得る。バッキング領域3210aは、整合領域3208aに隣接し、整合領域3208aと基板3206aとの間に挟まれ得る。かかる変形例では、バッキングポリマーの層が基板3206a上に堆積されてもよい。さらに、整合ポリマーの層が基板上のバッキングポリマー上に堆積されてもよい。
【0089】
一部の変形例では、ポリマー構造の音響インピーダンス(例えば、整合領域の音響インピーダンス、バッキング領域の音響インピーダンス、および/または封入領域の音響インピーダンス)は、WGM共振器の音響インピーダンスと整合してもよく、それによって、超音波信号からの音響エネルギーの大部分がWGM共振器を通過することを可能にする。これにより、出力信号を増加させることができる。
【0090】
一部の変形例では、光導波路およびWGM共振器は、整合ポリマー内に埋め込まれ得る。代替的に、光導波路はバッキングポリマー内に埋め込まれてもよく、一方、WGM共振器は整合ポリマー内に埋め込まれる。一部の変形例では、光導波路は、バッキングポリマー内に部分的に埋め込まれ、整合ポリマー内に部分的に埋め込まれてもよい。一部の変形例では、光導波路は、WGM共振器がポリマー構造内に含まれる基板上にあり、一方、光導波路が基板の上方となるように、WGM共振器と結合されてもよい。一部の変形例では、光導波路は、WGM共振器および光導波路が両方ともポリマー構造に含まれる基板と直接接触するように、WGM共振器と結合されてもよい。光導波路およびWGM共振器をポリマー構造内に封入することについて、以下でさらに詳細に説明する。WGM共振器が2つ以上の光導波路に光学的に結合され得ることは容易に明らかなはずである。したがって、WGM共振器は、結合された光導波路の各々とともに、ポリマー構造内に埋め込まれてもよい。
【0091】
したがって、上述のように、WGM共振器および/または1つ以上の光導波路は、ポリマー構造(例えば、バッキングポリマーおよび整合ポリマーを含むポリマー構造)内に封入することができる。一部の変形例では、センシングデバイスおよび/またはセンシング装置は、上記のようなポリマー構造内にパッケージ化された1つ以上の光導波路と結合された少なくとも1つのWGM共振器を含み得る。換言すれば、センシングデバイスおよび/またはセンシング装置は、ポリマー構造内にパッケージ化された単一の光導波路と結合された単一のWGM共振器を含み得る。代替的に、センシングデバイスおよび/またはセンシング装置は、ポリマー構造内にパッケージ化された2つ以上の光導波路と結合された単一のWGM共振器を含み得る。さらに別の変形例では、センシングデバイスおよび/またはセンシング装置は、ポリマー構造内にパッケージ化された単一の光導波路と結合されたWGM共振器のアレイ(以下でさらに詳細に説明される)を含み得る(例えば、WGM共振器のアレイ内の各WGM共振器は、同じ光導波路に結合される)。さらに別の変形例では、センシングデバイスおよび/またはセンシング装置は、ポリマー構造内にパッケージ化された2つ以上の光導波路と結合されたWGM共振器のアレイを含み得る(例えば、WGM共振器のアレイ内の少なくとも一部のWGM共振器は、異なる光導波路に結合されてもよい)。
【0092】
ポリマー構造は、例えば、i)WGM共振器および1つ以上の光導波路の保護を提供し、これにより、例えば、センシングデバイスおよび/もしくはセンシング装置の可搬性を改善することができ、ii)センシングデバイスおよび/もしくはセンシング装置によってセンシングされる入射超音波エコーに対するWGM共振器の応答を向上させ、かつ/またはiii)センシングデバイスおよび/もしくはセンシング装置の動作帯域幅を広げることができる。一部の変形例では、ポリマー構造はまた、WGM共振器と1つ以上の光導波路との間の距離の一貫性を維持することなどによって、WGM共振器と1つ以上の光導波路との間の光結合特性を維持するのに役立つ。
【0093】
一変形例では、以下に説明するように、整合領域を含むポリマー構造により、センシングデバイスおよび/またはセンシング装置の動作帯域幅を広げることができる。概して、超音波センシング用途では、入力光の動作周波数は、共振周波数を中心とするWGM共振器の共振に合わせて調整することができる。入射超音波エコーは、WGM共振器の材料の屈折率を変調することによって、またはWGM共振器を変形させることによって、WGM共振器の共振周波数を変化させ、共振シフトを生成する。共振の線幅が狭すぎる場合、共振シフトは共振の線幅よりもはるかに大きくなり得、共振シフトがセンシングデバイスおよび/またはセンシング装置のダイナミックレンジから外れる場合がある。しかしながら、整合領域により、より光共振モードの線幅を広げて、より大きな共振シフトをより良好に捕捉することができる。例えば、WGM共振器から整合領域まで延在するエバネッセント波は、余分な損失を受け、光共振モードの線幅広がりとして反映される光子寿命の減少につながることがある。この線幅広がりために、センシングデバイスおよび/またはセンシング装置は、入射超音波信号によって誘発されるより広い範囲の共振周波数シフトを許容することができる。換言すれば、WGM共振器を封入する整合ポリマーは、センシングデバイスおよび/またはセンシング装置の動作帯域幅を広げて、センシングデバイスおよび/またはセンシング装置のダイナミックレンジを改善することができ、共振シフトがセンシングデバイスおよび/またはセンシング装置のダイナミックレンジから外れることを防止することができる。したがって、整合層は、センシングデバイスおよび/またはセンシング装置の動的センシング範囲を向上させることができる。
【0094】
例示的なパッケージ化
図8は、ポリマー構造804内のWGM共振器802および光導波路801の例示的な変形例を示している。図8に見られるように、WGM共振器802および光導波路801の両方がポリマー構造内に埋め込まれている。一変形例では、光導波路801は、ポリマー構造804内に埋め込まれてもよく、次いで、WGM共振器802は、光導波路801がWGM共振器802と光学的に結合するように、ポリマー構造804内に埋め込まれてもよい。代替的に、WGM共振器802はポリマー構造804内に埋め込まれてもよく、次いで、光導波路801がWGM共振器802と光学的に結合するように、光導波路801がポリマー構造804内に埋め込まれてもよい。別の代替的な変形例では、光導波路801とWGM共振器802とを光学的に結合することができる。光結合に続いて、結合された光導波路801およびWGM共振器802は、ポリマー構造804内に埋め込まれ得る。このようにして、ポリマー構造804は、WGM共振器802および光導波路801を封入する。一変形例では、WGM共振器802はWGM微小球共振器であってもよく、光導波路801はファイバテーパであってもよい。
【0095】
上述したように、ポリマー構造は、整合領域、バッキング領域、基板、および封入領域を含み得る。一変形例では、WGM共振器は、WGM共振器が基板と直接接触するように基板上に配置され得る。基板を有するWGM共振器は、整合領域とバッキング領域との間に挟まれ得る。一部の変形例では、整合領域と基板との間の空間は、WGM共振器を封入する封入領域であり得る。
【0096】
図9は、基板906上に配置され、光導波路901と光学的に結合されたWGM共振器902の例示的な変形例を示している。図9に見られるように、WGM共振器902は基板906と直接接触している。例えば、WGM共振器902は、基板906上に(例えば、ポリマー接着剤などの接着剤を用いて)固定されてもよい。代替的に、WGM共振器902は、基板906内に埋め込まれてもよい。しかしながら、光導波路901は、光導波路901が基板906の上方にあり、基板906と直接接触しないように、WGM共振器902と結合される。上述のように、WGM共振器902および光導波路901を有する基板906は、バッキング領域と整合領域との間に挟まれ得る。換言すれば、WGM共振器902および光導波路901は、バッキング領域と整合領域との間にある封入領域に封入され得る。一変形例では、WGM共振器のアレイは、図9と同様の方法で基板906上に配置され得る。かかる変形例では、光導波路901などの光導波路は、WGM共振器のアレイ内の2つ以上のWGM共振器に結合することができる。一部の変形例では、WGM共振器902はWGM微小球共振器であってもよく、光導波路901はファイバテーパであってもよい。
【0097】
図9とは対照的に、図10は、WGM共振器1002および光導波路1001の両方が基板1006と直接接触するように光導波路1001と結合されたWGM共振器1002を示している。換言すれば、WGM共振器1002および光導波路1001の両方が、基板1006上に(例えば、接着剤を用いて)固定され得る。代替的に、WGM共振器1002と光導波路1001との両方が基板1006内に埋め込まれていてもよい。基板1006の屈折率は、光導波路1001の屈折率よりも低くてもよい。図9と同様に、基板1006、WGM共振器1002、および光導波路1001は、バッキング領域と整合領域との間に挟まれ得る。換言すれば、WGM共振器1002および光導波路1001は、バッキング領域と整合領域との間にある封入領域に封入され得る。一部の変形例では、WGM共振器および光導波路が両方とも基板1006と直接接触するように(図10と同様)、WGM共振器のアレイを基板1006上に配置することができる。かかる変形例では、光導波路1001などの光導波路は、WGM共振器のアレイ内の2つ以上のWGM共振器と結合することができる。一変形例では、WGM共振器1002はWGM微小球共振器であってもよく、光導波路1001はファイバテーパであってもよい。
【0098】
図11は、チップスケール光導波路1101が基板1106上に配置されるようにチップスケール光導波路1101と結合されたWGM共振器1102の例示的な変形例を示している。本変形例では、チップスケール光導波路1101は、基板1106と直接接触し得る。基板1106の屈折率は、チップスケール光導波路1101の屈折率よりも低くてもよい。しかしながら、WGM共振器1102は、チップスケール導波路1101に光学的に結合されているが、基板1106と直接接触していなくてもよい。例えば、チップスケール導波路1101は、基板1106上に配置されてもよい(例えば、接着剤を用いて基板1106上に固定されてもよいし、基板1106内に埋め込まれてもよい)。WGM共振器1102は、基板1106と接触することなく、チップスケール導波路1101上に配置されてもよい(例えば、チップスケール導波路1101に光学的に結合されてもよい)。図9および図10と同様に、基板1106、WGM共振器1102、および光導波路1101は、バッキング領域と整合領域との間に挟まれてもよい。
【0099】
WGM共振器アレイ
一部の変形例では、複数のWGM共振器は、アレイ内に一緒にパッケージ化され得る。WGM共振器のアレイは、センシングデバイスおよび/またはセンシング装置において使用することができる。WGM共振器のアレイは、センシング領域(すなわち、単一のWGM共振器の面積に対する複数のWGM共振器の面積)の増加により、センシングデバイスおよび/またはセンシング装置の感度を増加させることができる。加えて、WGM共振器のアレイ内の各WGM共振器は、それらが集合的に音響波および/または圧力波に応答するように協調することができる。この集合的応答は、出力信号の強度を増加させ、それによって、センシングデバイスおよび/またはセンシング装置の感度を増加させ得る。
【0100】
WGM共振器のアレイは、1つ以上の光導波路に光学的に結合され得る。ポリマー構造は、WGM共振器および光導波路の光学的に結合されたアレイを封入することができる。上述したように、ポリマー構造は、WGM共振器および/または光導波路を封入する封入領域と、整合領域と、バッキング領域と、任意選択的に基板とを含み得る。一部の変形例では、整合領域および/またはバッキング領域は、封入領域として機能し得る。例えば、WGM共振器のアレイは、ポリマー構造の整合領域に含まれてもよい。各WGM共振器が1つ以上の光導波路と光学的に結合され得るように、1つ以上の光導波路をポリマー構造内に位置決めすることができる。各光導波路は、バッキング領域、整合領域、またはその両方にあってもよい。追加的または代替的に、WGM共振器のアレイにおける各WGM共振器および/または1つ以上の光学的に結合された光導波路は、基板上に配置され得る。WGM共振器のアレイおよび光導波路は、整合領域とバッキング領域との間に挟まれた封入領域内にあってもよい。
【0101】
図12図17に示すように、複数のWGM共振器は、1つ以上の光導波路に対して、種々の好適な種類のアレイおよび種々の好適な方法で配置することができる。例えば、図12は、個々のWGM共振器の各々が固有のそれぞれの光導波路に結合されているWGM共振器アレイ1202の概略図である。例えば、WGM共振器アレイ1202内のWGM共振器は、基板(基板は図12には示されていない)上に平行に線形に配置されてもよい。次いで、WGM共振器アレイ1202からの各WGM共振器は、(図7に記載されるような)整列プロセスなどによって、1つ以上の別個の光導波路1201と光学的に結合され得る。少なくとも一部の変形例では、アレイ1201内のWGM共振器は、互いから等距離であり得る。追加的または代替的に、アレイ1201内のWGM共振器のうちの少なくとも一部は、異なる距離によって分離され得る。
【0102】
図13は、例示的なWGM共振器アレイ1302の概略図である。WGM共振器アレイ1302は、図12に示す配置と同様に、基板1306上に平行に線形に配置することができる。一部の変形例では、アレイ1302内のWGM共振器のうちの少なくとも一部は、互いから等距離であり得る。追加的または代替的に、アレイ1302内の少なくとも一部のWGM共振器は、異なる距離によって分離することができる。しかし、図12に示す配置とは対照的に、アレイ1302内の複数のWGM共振器はすべて、単一の光導波路1301と光学的に結合することができる。したがって、複数のWGM共振器からの信号を単一の光導波路に結合し、単一の光導波路によって伝達することができる。
【0103】
図14は、例示的なWGM共振器アレイ1402の概略図である。WGM共振器アレイ1402は、種々の直径を有し、種々のウィスパリングギャラリーモード(WGM)を伝搬するWGM共振器を含み得る。一部の変形例では、アレイ1402内のWGM共振器は、同じサイズでなくてもよい。かかる変形例では、図13に描写される配置と同様に、それらの各々を単一の光導波路に光学的に結合することが困難な場合がある。この課題を克服するために、WGM共振器アレイ1402内の各WGM共振器は、基板1406の主面から種々の垂直距離で基板1406上に非線形に配置することができる。図14に示すように、アレイ1402の中央にあるWGM共振器は、アレイ1402の端部にあるWGM共振器よりも基板の主面から遠い。光導波路1401は、WGM共振器アレイ1402内の各WGM共振器と整列して配置され、次いで、光導波路1401およびWGM共振器アレイ1402の位置を固定した後に、光導波路1401がWGM共振器アレイ1402内のすべてのWGM共振器に光学的に結合されるように緊結することができる。
【0104】
図15は、例示的なWGM共振器アレイ1502の概略図である。WGM共振器アレイ1502は、WGM共振器アレイ1502および光導波路1501の屈折率と比較して低い屈折率を有する基板1506などの基板1506上に、線形に配置することができる。整列の手順は、光導波路1501と結合されるWGM共振器アレイ1502内のWGM共振器の数が増加するにつれて困難になる場合がある。これを軽減するために、光導波路1501は、最初に、基板1506内に埋め込まれるか、またはその上部に固定され得る。次いで、WGM共振器は、個々に(例えば、1つずつ、または他の好適なグループ分けで)、基板1506および光導波路1501の上部に平行に線形に配置することができる。
【0105】
図16は、例示的なWGM共振器アレイの概略図である。WGM共振器アレイ1602は、共振器アレイを集合的に形成するために、WGM共振器の複数の行を含み得る。例えば、図16において、アレイ1602は、WGM共振器の行1602a、行1602b、および行1602cを含む。WGM共振器の行1602a、1602b、および1602cは、WGM共振器が集合的にアレイ1602を形成するように配置することができる。アレイ1602は、矩形アレイであってもよい。しかしながら、図16に示す配置は単なる例示であり、矩形アレイ内のWGM共振器アレイは、任意の好適な数の行、列などを有することができ、各行は任意の好適な数のWGM共振器を有することができることを理解されたい。さらに、アレイは、任意の好適な形態(例えば、放射状アレイ、六角形アレイなど)を有し得る。
【0106】
一部の変形例では、複数の光導波路(例えば、チップスケール光導波路)が、基板上に一緒に配置される。基板1606上には、例えば、光導波路1601a,1601b,1601cが配置されている。それらは、直線的に互いから等距離で基板1606上に(例えば、接着剤を使用して)固定され得る。代替的に、光導波路1601a、1601bおよび1601cは、互いに異なる距離で基板1606上に固定され得る。一部の変形例では、光導波路1601a、1601b、および1601cは、互いから所定の距離で基板1606内に埋め込まれ得る。各光導波路は、WGM共振器のそれぞれの行に光学的に結合することができる。例えば、光導波路1601aは行1602a内のWGM共振器に光学的に結合され、光導波路1601bは行1602b内のWGM共振器に光学的に結合され、光導波路1601cは行1602c内のWGM共振器に光学的に結合される。各行1602a、1602b、および1602c内のWGM共振器は、個々に(例えば、1つずつ、または他の好適なグループ分けで)、それらのそれぞれの光導波路1601a、1601b、および1601cの上部に線形に配置することができる。
【0107】
一部のセンシング用途では、センシングデバイスおよび/またはセンシング装置が特定の形状を有することが有利であり得る。例えば、内視鏡検査などの用途では、センシングデバイスおよび/またはセンシング装置が円形または他のコンパクトな断面形状を有することが有利であり得る。同様に、円形形状のセンシングデバイスおよび/またはセンシング装置は、カテーテルにおける使用に最も適する場合がある。例えば、内視鏡またはカテーテルは、終端センシング端を有する細い管または他の部材を含んでもよい。したがって、一部の変形例では、複数のWGM共振器は、WGM共振器アレイがセンシングデバイスおよび/またはセンシング装置の終端センシング端を形成するように、WGM共振器アレイを形成するために円形配置で一緒に束ねられてもよい。
【0108】
図17Aは、例示的なWGM共振器アレイ1702の側面図である。図1で論じたように、一部のWGM共振器は、実質的に湾曲した部分とステム部分とを含み得る。図17Aでは、WGM共振器アレイ1702内のWGM共振器の各々は、実質的に湾曲した部分とステム部分とを含む(例えば、実質的に湾曲した部分はステム部分によって支持される)。例えば、アレイ1702内の1つのWGM共振器は、実質的に湾曲した部分1702aとステム部分1702bとを含み得る。アレイ1702内の別のWGM共振器は、実質的に湾曲した部分1702a’とステム部分1702b’とを含み得る。WGM共振器のステム部分は、円形形状に一緒に束ねられ得る。すなわち、WGM共振器のステム部分は、集合的にそれらが円内にあり得るように一緒に束ねられ得る。代替的に、WGM共振器のステム部分は、集合的に楕円内にあり得るように、一緒に束ねられ得る。各WGM共振器のステム部分は、互いに平行であり得る。例えば、ステム部分1702bおよびステム部分1702b’は、互いに平行である。WGM共振器アレイ1702は、センシングデバイスおよび/またはセンシング装置の終端センシング端を形成することができる。例えば、WGM共振器のステム部分は、共通の平面上に円形に一緒に配置されてもよく、または別様にコンパクトな断面形状に配置されてもよい。代替的に、WGM共振器のステム部分は、それらが円形形状または別様にコンパクトな断面形状を形成するように、共通の平面上に整列され得る。WGM共振器の実質的に湾曲した部分は、センシングデバイス(例えば、カテーテルまたは内視鏡)の終端部を集合的に形成することができる。
【0109】
図17Bは、例示的なWGM共振器アレイ1702の上面図を示している。図17Bに見られるように、WGM共振器の実質的に湾曲した部分は、集合的に円(センシングデバイスおよび/またはセンシング装置の終端部であり得る)内にある。光導波路は、アレイ1702内のWGM共振器の各々と結合され得る。束状のWGM共振器は、ポリマー構造内に埋め込まれ、次いで、センシングデバイスおよび/またはセンシング装置に含まれ得る。
【0110】
図12図17に関して上述した結合配置のいずれも、任意の好適な方法で組み合わせることができることを理解されたい。一部の変形例では、WGM共振器アレイは、すべて(例えば、同様のサイズ、同様の厚さ、同様の材料)が同様であり得るWGM共振器を含み得る。代替的に、WGM共振器アレイは、アレイ内の他のWGM共振器の少なくとも一部が異なる(例えば、異なるサイズ、異なる厚さ、異なる材料)WGM共振器を含み得る。類似または非類似のWGM共振器の選択は、WGM共振器アレイが使用され得るセンシング用途に依存し得る。同様に、アレイ内のWGM共振器の数もまた、センシング用途に応じて変動し得る。
【0111】
例示的なパッケージ化されたWGM共振器アレイ
1つ以上の光導波路をWGM共振器アレイと整列させた後、1つ以上の光導波路およびWGM共振器アレイを、上述のようにポリマー構造内に封入することができる。ポリマー構造は、WGM共振器アレイからの1つ以上の光導波路の距離を維持するのに役立ち得る。ポリマー構造は、1つ以上の光導波路およびWGM共振器アレイの屈折率よりも低い屈折率を有し得る。一部の変形例では、WGM共振器の屈折率とポリマー構造との間の差を増加させることで、より小さい直径を伴うWGM共振器がセンシング用途のために利用されることが可能になり得る。したがって、アレイ内のWGM共振器の屈折率とポリマー構造の屈折率との間のコントラストは、アレイ内により小さい直径を有するWGM共振器を含むように高くすることができる。これにより、WGM共振器アレイを含むセンシングデバイスおよび/またはセンシング装置の動作帯域幅を増加させることができる。
【0112】
図18Aは、ポリマー構造内にパッケージ化されたWGM共振器アレイ1802の例示的な変形例を示している。アレイ1802内のWGM共振器は、基板1806上に配置することができる。例えば、WGM共振器は、各WGM共振器がアレイ1802内の後続のWGM共振器から等しい距離にあり得るように、基板1806上に固定されてもよい。代替的に、WGM共振器は、少なくとも一部のWGM共振器がそれらの後続のWGM共振器から異なる距離にあり得るように、基板1806上に固定されてもよい。さらに別の変形例では、WGM共振器は、互いから所定の距離で基板1806内に埋め込まれてもよい。WGM共振器アレイ1802は、基板1806とともに、バッキング領域1810と整合領域1808との間に挟まれてもよい。基板1806上のWGM共振器アレイ1802を封入する整合領域1808とバッキング領域1810との間の空間により、封入領域1814を形成することができる。
【0113】
図18Aに見られるように、アレイ1802内のWGM共振器は、WGM共振器のサイズが昇順になるように配置することができる。例えば、WGM共振器1802aはアレイ1802内で最小であり、WGM共振器1802gはアレイ1802内で最大である。最小のWGM共振器1802aがアレイ1802の一方の端部にあり、最大のWGM共振器1802gがアレイ1802の他方の端部にある。
【0114】
対照的に、図18Bは、サイズが特定の順序とならないようにWGM共振器が配置されるように、ポリマー構造内にパッケージ化されたWGMアレイ1802’の例示的な変形例を示している。換言すれば、WGM共振器アレイ1802’は、ランダムに分布したサイズの(例えば、昇順または降順で配置されていない)WGM共振器を含み得る。例えば、最大のWGM共振器1802f’は、アレイ1802’のいずれの端部にも存在していない。ただし、アレイ1802’の一方の端部に配置されたWGM共振器1802g’は、アレイ1802’内で最大でもなく、アレイ1802’内で最小でもない。図18Aと同様に、WGM共振器アレイ1802’が基板1806’とともに整合領域1808’とバッキング領域1810’との間に挟まれ得る(例えば、WGM共振器アレイ1802’が封入領域1814’内に封入され得る)ように、WGM共振器アレイ1802はパッケージ化され得る。
【0115】
図19は、パッケージ化されたWGM共振器アレイ1902の例示的な変形例の概略図である。ポリマー構造は、整合領域1908、バッキング領域1910、および1つ以上のコーティング層1912を含み得る。一部の変形例では、コーティング層1912および整合領域1908は、同一の材料を含み得る。例えば、整合領域1908およびコーティング層1912は、好適な整合材料の複数の層を含んでもよい。代替的に、一部の変形例では、ポリマー構造内の材料特性(例えば、音響インピーダンス)は、段階的に変化してもよく(例えば、整合領域1908から1つ以上のコーティング層1912への材料特性の段階的変化)、これにより、ポリマー構造内のWGM共振器アレイ1902への音波の伝送を最大化し、かつ/または超音波の望ましくない反射を最小化し得る。他の変形例では、コーティング層1912および整合領域1908は、異なる材料を含み得る。例えば、整合領域1908は、WGM共振器の材料よりも低い屈折率を有するポリマーを含んでもよく、かつ/またはWGM共振器により良好に光を運ぶために低い光損失を有する材料を含んでもよい。WGM共振器アレイ1902は、整合領域1908内に埋め込まれてもよい。
【0116】
超音波センシング中に使用されるとき、超音波エコーのセット1901は、整合ポリマー1908および/または他のコーティング層1912を透過して、以下の係数の透過強度でWGM共振器アレイ1902に到達することができる。
【数5】
式中、Zは整合ポリマー1908および/または他のコーティング層1912の上の環境の音響インピーダンスを示し、Zは整合ポリマー1908の音響インピーダンスを示し、Zはアレイ1902内のWGM共振器の音響インピーダンスを示し、dは整合ポリマー1908の厚さを示している。
【数6】
かつd=λ/4(λは超音波エコーのセットの波長を示す)であるとき、伝送強度は1である。
【数7】
の関係に従う整合ポリマー1908が見つからない場合には、整合ポリマー1908の厚さをd=λ/4に設定することが望ましい。なぜならば、
【数8】
であり、0<Z<Z<Zについて、
【数9】
であるためである。
【0117】
したがって、cos(kd)=0の場合でも、最大透過率を得るためにd=λ/4が望ましい場合がある。さらに、WGM共振器アレイ1902が光を閉じ込めて高いQ値を有するWGMを生成することができるように、整合ポリマー1908が低い屈折率を有することも望ましい。
【0118】
センシングデバイスおよび/またはセンシング装置の作製
上述のセンシングデバイスおよび/またはセンシング装置を作製する一部の例示的な変形例が本明細書に記載される。上述したように、センシングデバイスおよび/またはセンシング装置の動作帯域幅は、他の要因の中でも、WGM共振器のサイズ、WGM共振器の屈折率、およびWGM共振器を製造するために使用される材料の音響インピーダンスに依存し得る。したがって、WGM共振器を製造するための所望の材料は、センシング用途およびその用途の動作帯域幅に基づいて選択することができる。
【0119】
例えば、超音波センシングの場合、WGM共振器の材料は、材料の音響インピーダンスがポリマー構造(例えば、バッキング領域および整合領域を含むポリマー構造)の音響インピーダンスと整合するように選択されてもよい。これにより、センシングデバイスおよび/またはセンシング装置におけるエコーを排除し、WGM共振器とポリマー構造との間の音響インピーダンス不整合を最小化し、WGM共振器に侵入する音波を増強することができる。これは、ひいては、WGM共振器の弾性光学効果および/または物理的変形を通して、WGM共振器の応答を増加させることができる。さらに、超音波によって材料内に誘発される機械的変形を増加させるように、材料が低いヤング率を有することが望ましい場合がある。加えて、WGM共振器を製造するための材料は、材料の屈折率と周囲媒体(例えば、ポリマー構造)の屈折率とのコントラストを増加させるように選択され得る。これにより、直径の小さいWGM共振器の動作帯域幅を増やすことができ、それによって、センシングデバイスおよび/またはセンシング装置の感度を増加させることができる。一部の変形例では、WGM共振器を製造するための材料として、例えば、ポリフッ化ビニリデン、パリレン、ポリスチレン、および/または同等物などの超音波増強材料が挙げられ得る。超音波増強材料は、WGM共振器の感度を増加させることができる。例えば、超音波増強材料は比較的高い弾性光学係数を有していてもよい。したがって、超音波エコーのセットが受信されると、超音波増強材料の屈折率は、(例えば、超音波エコーのセットによって誘発される機械的応力または歪みを受けた際に)非増強材料の屈折率よりも大きく変化し得る。これにより、超音波信号に対するセンシングデバイスおよび/またはセンシング装置の応答を増加させることができる。
【0120】
センシング用途に基づいてWGM共振器の材料を選択することに加えて、センシング用途に基づいてWGM共振器のサイズを操作することができる。例えば、内視鏡用途のために、より小さいサイズのWGM共振器(例えば、100ミクロン未満のサイズを有するWGM共振器)を有することが望ましい場合がある。WGM共振器のサイズは、加熱プロセスを制御することによって操作することができる。例えば、加熱プロセスは、非常に特異的かつ正確な位置に熱を加えるように、正確に制御されてもよい。代替的または追加的に、WGM共振器のサイズは、加えられる熱の量を制御することによって操作され得る。追加的または代替的に、WGM共振器のサイズを操作するために、WGM共振器を製造するために使用されるファイバおよび/または毛細管のサイズが操作されてもよい。
【0121】
WGM共振器の製造
図20Aは、光ファイバ2002’の少なくとも一方の端部に切断部分を形成することによりWGM微小球共振器を製造する方法の例示的な変形例を示している。一部の変形例では、シリカファイバまたはポリマーファイバなどの光学透明ファイバが、WGM微小球共振器を製造するために使用されてもよい。一部の変形例では、光ファイバ2002’は、ガラス、透明ポリマー(例えば、ポリジメチルシロキサン)、シリカガラス、窒化ケイ素、二酸化チタン、および/または任意の他の適切な光学的に透明な材料であってもよい。光ファイバ2002’は、例えば、その屈折率、音響特性、ヤング率、および/または直径に基づいて選択されてもよい。WGM微小球が使用され得るセンシング用途は、光ファイバ2002’を選択するときに考慮される要因であり得る。例えば、光ファイバ2002’の直径は、WGM微小球共振器のサイズに影響を及ぼす場合がある。
【0122】
一部の変形例では、光ファイバ2002’が選択されると、光ファイバ2002’の一方の端部(例えば、端部2002b’)から(例えば、ファイバコーティングストリッパを使用して)クラッドを剥離し、それによって光ファイバ2002’の内部コアを露出させることができる。一方の端部2002b’(例えば、クラッドが剥離された端部)は、(例えば、光ファイバクリーバを用いて)切断されてもよい。光ファイバを切断する場合(例えば、ワイヤカッターを使用する場合)とは対照的に、切断は滑らかで均一な切断を生成し、後続のプロセスで均一なリフローを引き起こすことができる。光ファイバ2002’は、メタノール、エタノール、イソプロピルアルコールなどを使用して洗浄することができる。一変形例では、光ファイバ2002’は、クラッドを剥離した後に洗浄されてもよい。別の変形例では、光ファイバ2002’は、光ファイバを切断した後に洗浄されてもよい。さらに別の変形例では、光ファイバ2002’は、クラッドの剥離および切断の両方の後に洗浄されてもよい。
【0123】
図20Bは、切断端2002b’を有する光ファイバ2002’を用いてWGM微小球共振器2002を製造する方法の例示的な変形例を示している。WGM微小球共振器2002は、リフロープロセスを用いて光ファイバ2002’から製造することができる。切断された光ファイバ2002’は、一方の端部2002b’(例えば、切断された光ファイバの端部)において熱に供され得る。COレーザ、アーク放電器、加熱コイル、または任意の他の好適な熱源を使用して、光ファイバの端部を加熱することができる。一部の変形例では、熱源は、光ファイバに加えられる熱の量を制御するように操作され得る。例えば、熱方向は、1つ以上のレンズ、ビームスプリッタ、ミラー、熱伝導性表面などのセットを用いて制御されてもよい。溶融した光ファイバの端部は、溶融した光ファイバの表面張力により球状2002bを形成する。一部の変形例では、光ファイバは、単一モードファイバであってもよい。
【0124】
一部の変形例では、切断された光ファイバ2002’の一方の端部(例えば、切断された光ファイバの端部)を溶融スプライサ内に配置して、WGM微小球共振器の球状部分2002bを生成することができる。上述したように、一部のWGM共振器はステム部分を含み得る。熱に供されない切断された光ファイバ2002’の部分により、WGM微小球共振器のステム部分2002abを形成することができる。一部の変形例では、WGM微小球共振器の球状部分2002bの直径は、約15μm~約500μmであってもよい。一部の変形例では、WGM微小球共振器の直径は、300μmであってもよい。
【0125】
上述のように、WGM微小球共振器のサイズは、光ファイバ上の直径を変化させることによって変更することができる。一変形例では、より小さいWGM微小球共振器を製造するために、光ファイバの一方の端部をテーパ状にすることができる。図21Aは、種々のサイズのWGM微小球共振器を製造する際に使用するためのテーパ状の光ファイバ先端2102の例示的な変形例を示している。光ファイバ(例えば、図20Aおよび図20Bの光ファイバと同様の材料を含む光ファイバ)の一方の端部は、好適な熱源を使用して端部を加熱しながら光ファイバの端部を穏やかに延伸することによってテーパ状にすることができる。光ファイバは軟質となる。光ファイバの端部を延伸することにより、光ファイバを少なくとも一部の長さにわたってより薄くすることができる。換言すれば、光ファイバの端部を延伸することで、少なくとも延伸された端部において光ファイバの直径を減少させることができる。このようにして、テーパ状のファイバ先端2102を生成することができる。WGM微小球共振器は、図20Aおよび図20Bで説明した方法などのリフロープロセスを使用して、テーパ状のファイバ先端2102から製造することができる。
【0126】
図21Bは、テーパ状の光ファイバ先端2012を使用して製造されたWGM微小球共振器2102’の例示的な変形例を示している。換言すれば、テーパ状のファイバ先端2102の端部は、WGM微小球共振器2102’の実質的に湾曲した部分(例えば、球状部分)を生成するために、切断され、加熱され得る。テーパ状のファイバ先端2102を使用して製造されるWGM微小球共振器2102’は、より小さい直径を有し得る。例えば、WGM微小球共振器2102’の実質的に湾曲した部分の直径は、130μmであってもよい。WGM微小球共振器2102’のサイズを大きくするために、ファイバ先端2102のより大きな部分を加熱する必要があり得る。ファイバ先端2102のより多くを加熱することは、実質的に湾曲した部分にリフローされ得る材料の量を増加させる。図21Cは、テーパ状の光ファイバ先端2102を使用して製造されたより大きいサイズのWGM微小球共振器2102’’の方法の例示的な変形例を示している。WGM共振器2102’’は、熱に供されるファイバ先端2102の部分の量を増加させることによって製造することができる。この例では、WGM微小球共振器2102’’の実質的に湾曲した部分の直径は180μmである。
【0127】
上述したように、WGM微小球共振器は、図20および/または図21に開示したプロセスを使用してシリカファイバから製造することができる。図20および図21に描写されるWGM微小球共振器は、シリカファイバから製造される。図22は、ポリマーファイバから製造されたWGM微小球共振器の例示的な変形例を示している。例えば、ポリマーファイバはポリジメチルシロキサンを含んでもよい。図22のWGM微小球共振器は、以下で説明する図23A~23Cおよび/または図24A~24Cで説明するプロセスを使用して製造することができる。
【0128】
図23A~23Cは、移送デバイス2314を使用してWGM微小球共振器を製造する方法の例示的な変形例の概略図である。本方法は、移送デバイス2314を使用して、材料をファイバ先端2316上に移送することを含む。例えば、移送デバイス2314を使用して、WGM微小球共振器を製造するための好適な材料を抽出してもよい。一部の変形例では、移送デバイス2314は、針であってもよい。一部の変形例では、移送デバイス2314は、シリンジであってもよい。さらに別の変形例では、移送デバイス2314は、一方の端部に針を有するシリンジであってもよい。一部の変形例では、材料は、ガラス、透明ポリマー(例えば、ポリジメチルシロキサン)、シリカガラス、窒化ケイ素、二酸化チタン、または任意の他の好適な光学的に透明な材料であってもよい。
【0129】
光学的に透明な材料が移送デバイス2314を使用して抽出されると、光学的に透明な材料は、移送デバイス2314上に液滴2302’を形成することができる。WGM微小球共振器のサイズは、液滴2302’のサイズに依存し得る。液滴のサイズは、移送デバイス2314に印加される圧力の量を変化させること、移送デバイス2314上のノズルのサイズを変化させること、および/または移送デバイス2314上の針のサイズを変化させることによって変動し得る。このようにして、種々のサイズのWGM微小球共振器を制御された方法で製造することができる。
【0130】
抽出された液滴2302’は、ファイバ先端2316の端部に配置することができる(例えば、液滴2302’’)。一部の変形例では、ファイバ先端2316は、液滴2302’’と同一の材料を含み得る。一部の変形例では、ファイバ先端2316は、液滴2302’’とは異なる光学的に透明な材料を含み得る。一部の変形例では、ファイバ先端2316の一方の端部(例えば、液滴が配置される端部)は、テーパ状であり得る。一部の変形例では、ファイバ先端は、テーパ状でなくてもよい。一部の変形例では、ファイバ先端2316は、ガラスファイバ先端であってもよい。液滴2302’’がファイバ先端2316上に配置されると、移送デバイス2314は、後にWGM共振器の実質的に湾曲した部分を形成する球状部分2302を形成するように後退させることができる。材料(すなわち、液滴の材料)の表面張力により、球状が維持され得る。球状部分2302は、WGM微小球共振器を形成するために、熱、湿気、紫外線などを使用して硬化され得る。
【0131】
図24A~24Cは、浸漬コーティングプロセスを使用してWGM微小球共振器を製造する方法の例示的な変形例の概略図である。一変形例では、光ファイバ2416は、(図24Bに示されるように)光学的に透明な材料のプール2418に浸漬され得る。例えば、プール2418は、ガラス、透明ポリマー(例えば、ポリジメチルシロキサン)、シリカガラス、窒化ケイ素、二酸化チタン、または任意の他の適切な光学的に透明な材料を含んでもよい。一部の変形例では、プール2418に浸漬される光ファイバ2416の端部は、テーパ状であってもよい。一部の変形例では、光ファイバ2416は、テーパ状でなくてもよい。プール2418は、光学的に透明なポリマーを含んでもよい。光ファイバ2416は、シリカファイバまたはガラスであってもよい。
【0132】
光ファイバ2416が(図24Cに示されるように)プール2418から後退した場合、光ファイバ2416の後退端は、後退端上の光学的に透明な材料が球状2402の形状であるように、プール2418からの光学的に透明な材料を含み得る。光学的に透明な材料の表面張力により、球状が維持され得る。球状の光学的に透明な材料2402は、WGM微小球共振器の実質的に湾曲した部分を形成するために(例えば、熱、湿気、紫外線などを使用して)硬化され得る。プールに浸漬されず、熱に供されない光ファイバ2416の部分により、WGM微小球共振器のステム部分を形成することができる。WGM微小球共振器のサイズ(例えば、球状部分の直径)は、プール2418に浸漬された光ファイバ2416の端部の直径、光ファイバ2416がプール2418から後退する速度などに基づき得る。
【0133】
別の変形例では、光学的に透明な材料のフィラメントをプール2418から抽出することができる。かかる変形例では、フィラメントは、好適な熱源(例えば、炉、ブタン炎、水素炎、またはレーザ)を使用して加熱され得る。熱により、光学的に透明な材料を溶融させることができる。フィラメントの溶融部分は、リフロープロセス(例えば、図20に説明されるリフロープロセス)を使用して、WGM微小球共振器の実質的に湾曲した部分(例えば、球状部分)を形成することができる。
【0134】
図25は、WGMマイクロバブル共振器を製造する方法の例示的な変形例の概略図である。製造プロセスは、毛細管2501Bの一方の端部2505Bを封止することを含み得る。端部2505B上の封止は、例えば、プラグ材料(例えば、エポキシ)から、毛細管2501Bの開放端部を加熱およびピンチオフすることなどによって形成されてもよい。代替的に、毛細管2501Bは、閉鎖端部2505Bを伴って成形されてもよい。封止端部2505Bの反対側の端部は、毛細管2501B内のガス流を制御するために圧力源(例えば、ポンプまたはコンプレッサ)に接続され得る。ガス流2503Bを使用して、安定した圧力が端部2505Bで封止された毛細管2501Bの内部で維持され得る。本方法はまた、抵抗加熱要素2503Bのセットを使用して、1つ以上の標的マイクロバブル位置で毛細管を加熱することを含み得る。各抵抗加熱要素2503Bは、それぞれの標的WGMマイクロバブル共振器位置において毛細管2501Bを囲む(例えば、取り囲む)ことができ、その結果、抵抗加熱要素のセットは、標的WGMマイクロバブル共振器位置のセットに熱を正確に加えることができる。WGMマイクロバブル共振器のセットの製造プロセスは、図2に関して説明したように、外側マイクロバブルの半径Rおよび内側マイクロバブルの半径rならびに壁厚を含むマイクロバブル共振器2502Bの所望の幾何学的寸法を有するWGMマイクロバブル共振器のセットを一貫して再現するように、正確な制御性で繰り返すことができる。製造プロセスの正確な制御性を用いて、WGMマイクロバブル共振器のセットがセンシングするように設計された超音波エコーのセットの波長よりも小さい壁厚を有するように、WGMマイクロバブル共振器のセットを製造することができる。
【0135】
WGM共振器は、図20図25に記載された方法のいずれか1つまたは組み合わせを使用して、任意の好適な光学的に透明な材料を使用して製造することができることは容易に理解されるはずである。
【0136】
WGM共振器アレイの製造
上述のように、一部の変形例では、センシングデバイスおよび/またはセンシング装置は、WGM共振器のアレイを含み得る。WGM共振器アレイは、各個別のWGM共振器を製造し、WGM共振器が1つ以上の光導波路と結合するように、1つ以上の光導波路をWGM共振器に整列させることによって製造することができる。WGM共振器アレイの各個別のWGM共振器は、同時に製造することができる。代替的に、WGM共振器アレイの少なくとも一部のWGM共振器は、WGM共振器アレイの一部の他のWGM共振器とは異なる時間に(例えば、順次に)製造されてもよい。
【0137】
一部の変形例では、WGM共振器アレイの個々のWGM共振器は、単一のファイバおよび/または毛細管に沿って製造することができる。図25に戻って参照すると、図25に関して上述した例示的な方法を使用して、単一の毛細管2501Bから複数のWGMマイクロバブル共振器を製造することができる。これらの複数のWGMマイクロバブル共振器は、正確な位置に同時に抵抗加熱要素のセットを使用することによって同時に製造することができる。図25に関して上述したように、各WGMマイクロバブル共振器のサイズは、正確な方法で制御することができる。したがって、異なるサイズのWGMマイクロバブル共振器を有するWGM共振器アレイは、同じ毛細管2501Bから製造することができる。同様に、同じサイズのWGMマイクロバブル共振器を有するWGM共振器アレイは、同じ毛細管2501Bから製造することができる。
【0138】
図26は、単一の光ファイバ2601に沿ったWGM共振器アレイのための個々のWGM共振器を作製する方法の例示的な変形例を示している。光ファイバ2601は、任意の好適な光学的に透明な材料を含み得る。WGM共振器アレイの各WGM共振器は、図20図22に関して上述した1つ以上の方法を使用するなど、リフロープロセスを使用して製造することができる。図25に示されるものと同様に、光ファイバ2601上の標的位置は、(同時にまたは順次)熱に供され得る。リフロープロセスは、WGM共振器の実質的に湾曲した部分(例えば、部分2602a~2602d)を生成する。
【0139】
図25または図26に関して上述した方法を使用して個々のWGM共振器ごとに実質的に湾曲した部分を製造した後、光ファイバおよび/または毛細管を特定の位置で切断して、個々のWGM共振器を生成することができる。例えば、光ファイバおよび/または毛細管は、各個々のWGM共振器が実質的に湾曲した部分およびステム部分を含み得るように切断することができる。代替的に、光ファイバおよび/または毛細管は、各個々のWGM共振器が実質的に湾曲した部分のみを含み得るように切断されてもよい。
【0140】
一部の変形例では、WGM共振器アレイ内の複数のWGM共振器の各々は、図23および/または図24に関して上述した方法を用いて個々に製造することができる。例えば、複数のWGM共振器は、単一の光ファイバまたは毛細管から集合的に製造されるのではなく、複数のそれぞれの光ファイバおよび/または毛細管から製造されてもよい。製造されたWGM共振器の各々は、WGM共振器アレイ(例えば、図12図19に示される配置などの任意の好適な配置)を形成するように一緒に配置することができる。
【0141】
上述したように、WGM共振器アレイ内の各WGM共振器は、1つ以上の導波路に光学的に結合され得る。図27は、WGMマイクロバブル共振器アレイを製造し、WGMマイクロバブル共振器を光導波路に結合する方法の例示的な変形例の概略図である。WGMマイクロバブル共振器アレイ2702は、単一の毛細管から製造することができ、線形配置で複数のWGMマイクロバブル共振器を含み得る。換言すれば、複数のWGMマイクロバブル共振器を、単一の毛細管に沿って直列に形成することができる(例えば、図25に記載される方法)。例えば、毛細管は、WGMマイクロバブル共振器アレイ2702内の共振器を位置決めすることが望ましい複数の位置で加熱されてもよい。さらに、WGMマイクロバブル共振器アレイ2702の複数のインスタンスを(例えば、並列に)組み合わせて、WGMマイクロバブル共振器アレイを形成することができる。図27に示すように、複数の光導波路2701のセット内の各光導波路は、次いで、光導波路2701をWGMマイクロバブル共振器に光学的に結合するように、WGMマイクロバブル共振器アレイ2701内のそれぞれのWGMマイクロバブル共振器に整列させることができる。追加的にまたは代替的に、WGMマイクロバブル共振器アレイ2702内の2つ以上のWGMマイクロバブル共振器は、単一の光導波路(例えば、図13図15に示されるものと同様)に整列させることができる。
【0142】
WGM共振器における高次モードの減衰
上述したように、球状部分を含むWGM共振器内の赤道面に閉じ込められた基本モードから開始して、球状部分を含むWGM共振器内で極方向および半径方向に延在する高次モードまで、多数のモードをWGM共振器内で励起することができる。異なる空間分布を有する各モードは、異なる帯域幅および感度を有し得る。例えば、基本モードは、高次モードよりも広い帯域幅を有する。したがって、WGM共振器のQ値および感度を増加させるように、センシング用途のための高次モードを排除することが有利であり得る。
【0143】
高次モードを減衰させる1つの方法は、WGM共振器の実質的に湾曲した部分にポリマーのコーティングを適用することを含み得る。図28は、ポリマーコーティング2820を有するWGM微小球共振器の例示的な変形例を示している。WGM微小球共振器は、球状部分2802aおよびステム部分2802bを含み得る。ポリマーコーティング2820は、WGM微小球共振器の球状部分2802a上に適用され得る。ポリマーコーティング2820は、WGM微小球共振器の球状部分2802aの外面上に適用され得る。例えば、ポリマーコーティング2820は、球状部分2802aの周囲のほぼ半分を被覆し、それによって、WGM微小球共振器を部分的にコーティングしてもよい。WGM微小球を部分的にコーティングすることにより、高次モードを減衰させることができる。換言すれば、WGM微小球の動作周波数は、基本モード(WGM微小球の赤道面に閉じ込められたモード)に限定され得る。
【0144】
光導波路2801は、WGM微小球共振器と結合され得る。一部の変形例では、光導波路2801は、ポリマーコーティング2820の適用前にWGM微小球共振器と結合され得る。一部の変形例では、ポリマーコーティング2820は、高粘度を有する光学的に透明な液体フォトポリマーを含み得る。さらに、ポリマーコーティング2820は接着特性を含み得る。一部の変形例では、ポリマーコーティングの屈折率は、WGM微小球共振器の屈折率よりも高くてもよい。例えば、ポリマーコーティングの屈折率は1.5より高くてもよい。一部の変形例では、ポリマーコーティング2820は、Norland Optical Adhesive 68(「NOA68」)を含み得る。
【0145】
一部の変形例では、ポリマーコーティング2820は、球状部分2802aの最高点/最上点(例えば、天頂)に適用され得る。一部の変形例では、ポリマーコーティング2820は、球状部分2802aの最上部に位置する極めて低い高さの球状キャップ上に適用され得る。例えば、ポリマー2820コーティングは、最高点上に注入されてもよい。ポリマーコーティング2820は、最高点から球状部分2802aの下部領域へと下方に流れ、それによって球状部分2802aの球状キャップを被覆することができる。その高い粘度のために、ポリマーコーティング2820は、球状部分2802aの下部領域に向かって流れるのに時間がかかる。ポリマーコーティング2820が球状部分2802a(例えば、赤道面から好適な距離にある基部を有する球状キャップ)の周囲の好適な量を被覆すると、ポリマーコーティング2820は(例えば、紫外線を使用して)硬化され得る。例えば、ポリマーコーティング2820が球状部分2802aの周囲のほぼ半分を被覆した場合に、ポリマーコーティング2820を硬化させてもよい。ポリマーコーティング2820を硬化させる時間は、ポリマーコーティング2820の厚さ、硬化に使用される紫外線の強度などに依存し得る。
【0146】
ポリマーコーティングがWGM共振器の球状キャップを被覆することを検討する。球状キャップの基部は、赤道面から距離dにあり得る。共振器内のWGMの励起を基本モードに制限するために、dの値は、一部の変形例では、約3μm~約15μmであってもよい。
【0147】
図29は、高次モードを減衰させる方法の変形例を示す。ポリマーコーティング2920が、WGM微小球共振器の球状部分2902aの円周上の好適な量の領域を被覆するように適用されると、制御光2922は、WGM微小球共振器のステム部分2902bを通って球状部分2902aに伝送され得る。ポリマーコーティング2920は、制御光2922からのパワーを吸収することができる。一部の変形例では、ポリマーコーティング2920が制御光2922から吸収するパワーの量は、ポリマーコーティング2920に含まれる材料に依存し得る。例えば、ポリマーコーティング2920は、制御光2922から大量のパワー(例えば、50パーセント超、約60パーセント超、約70パーセント超、約80パーセント超、または約90パーセント超)を吸収し得る材料を含んでもよい。制御光2922からのパワーのこの強い吸収は、ポリマーコーティング2920と重複する高次モードに損失をもたらす場合がある。
【0148】
これは、ポリマーコーティングの温度を変化させ得、それによって、WGM微小球共振器の共振周波数を変化させる。例えば、温度の変化は、制御光2922のパワー、ポリマーコーティング2920の熱光学係数、およびWGM微小球共振器の材料に依存し得る。ポリマーコーティング2920の温度変化は、熱光学効果に起因して、WGM微小球共振器の共振周波数のシフトを引き起こし得る。
【0149】
一部の変形例では、ポリマーコーティング3020は、図30に示されるように、WGM微小球共振器の球状部分3002aおよびステム部分3002bの両方に適用され得る。例えば、ポリマーコーティング3020は、球状部分3002aの周囲のほぼ半分に、およびステム部分3002bの少なくとも一部分に適用されてもよい。一部の変形例では、WGM微小球共振器は、図31に示されるように、ポリマーコーティング3120のプールに浸漬され得る。微小球共振器の有効厚さは、ステム部分3120bの適切な領域をポリマーコーティング3120のプールに浸漬させることによって制御することができる。
【0150】
ポリマー構造内への結合WGM共振器の封入
製造されたWGM共振器および/またはWGM共振器アレイならびに1つ以上の光導波路は、ポリマー構造内に封入することができる。一変形例では、光導波路は、ポリマー構造内に埋め込まれてもよく、次いで、WGM共振器は、光導波路がWGM共振器と光学的に結合するように、ポリマー構造内に埋め込まれてもよい。代替的に、WGM共振器はポリマー構造内に埋め込まれてもよく、次いで、光導波路がWGM共振器と光学的に結合するように、光導波路がポリマー構造内に埋め込まれてもよい。別の代替的な変形例では、光導波路とWGM共振器とを光学的に結合することができる。光結合に続いて、結合された導波路およびWGM共振器は、ポリマー構造内に埋め込まれ得る。
【0151】
図32Aは、パッケージ化されたWGM共振器を生成するために、WGM共振器3202aおよび/または光導波路3201aをポリマー構造に封入する例示的な方法の概略図である。ポリマー構造は、バッキング領域3210aおよび/または整合領域3208aを含み得る。一部の変形例では、バッキング領域3210aおよび/または整合領域3208aは、以下でさらに詳細に説明されるように、基板3206上に堆積された層であり得る。
【0152】
WGM共振器3202aをパッケージ化する方法は、例えば、シリコン、シリカ、石英、プラスチック、またはセンシングデバイスの基板として機能するのに適した任意の他の材料などの基板3206aの表面を洗浄することを含み得る。基板3206aとして機能する好適な材料は、残留振動を排除し、WGM共振器3202a内の超音波エコーを最小化するための減衰材料を含み得る。図32Aを参照すると、次いで、基板3206aを、バッキングポリマー3210aを含む1つ以上のコーティング材料のセットでコーティングすることができる。バッキングポリマー3210aは、広範なウィスパリングギャラリーモード(WGM)周波数応答を得る一方で、WGM共振器3202aがセンシングするように設計された超音波エコーのセットの残響を防止するために高い超音波減衰を有するように構成された低屈折率を有するポリマー材料などの減衰材料であり得る。一部の変形例では、バッキングポリマー3210aの減衰材料の音響インピーダンスは、例えば、以下でさらに説明されるように、WGM共振器3202aをパッケージ化するために利用される整合ポリマー3208aの層の音響インピーダンスと整合することができる。
【0153】
図32Aに示すように、光ファイバまたは集積フォトニック導波路などの1つ以上の光導波路3201aをバッキングポリマー3210a内に配置することができる。光導波路は、光源から光を受け取る光ファイバ、オンチップ光源から光を受け取る集積フォトニック導波路、光源からの光を伝搬する光ファイバに結合された集積フォトニック導波路、または光源からの光をWGM共振器から結合点に伝搬する任意の他の好適な媒体であり得る。一部の変形例では、1つ以上の光導波路3201aは、バッキングポリマー3210aを硬化させる前に、バッキングポリマー3210a内に配置することができる。1つ以上の光導波路3201aを未硬化のバッキングポリマー上に配置することにより、1つ以上の光導波路がバッキングポリマー3210a内に埋め込まれ得る。1つ以上の光導波路3201aを配置した後、バッキングポリマー3210aを予め設定された温度でベーキングすることなどによって、バッキングポリマー3210aが硬化され得る。
【0154】
WGM共振器3202aをパッケージ化する方法は、WGM共振器を少なくとも1つの光導波路に光学的に結合するように、WGM共振器3202aを1つ以上の光導波路3201aに近接して配置することをさらに含み得る。例えば、WGM共振器3202aおよび光導波路3201aは、光導波路がWGM共振器の最大直径と整列するように位置決めされてもよい。一例では、WGM共振器3202aは楕円形状を有してもよく、WGM共振器3202aの最大円直径は、1つ以上の光導波路3201aに整列させることができる。WGM共振器をパッケージ化する方法は、WGM共振器の前に光導波路を配置することで主に説明されるが、一部の変形例では、WGM共振器は光導波路の前に配置されてもよいことを理解されたい。
【0155】
図32Aを参照すると、WGM共振器3202aをパッケージ化する方法は、WGM共振器3202a、バッキングポリマー3210a、および/または基板3206aを整合ポリマー3208aでコーティングすることをさらに含み得る。整合ポリマーは、超音波センサ(WGM共振器を具現化する)が接触する媒体からの超音波伝送を促進するように構成され得る。例えば、整合ポリマー3208aの層は、WGM共振器3202aへの超音波エコーのセットの伝送のインピーダンスを低減するために、低屈折率を有するポリマー材料であってもよい。整合ポリマー3208aは、WGM共振器3202aの屈折率および1つ以上の光導波路3201aの屈折率と比較して低い屈折率を有し得る。WGM共振器3202aをパッケージ化する方法は、整合ポリマーの層を硬化させることを含み得る。
【0156】
図32Aの例示的な概略図は、バッキングポリマー内に埋め込まれた光導波路3201aを描写しているが、一部の変形例では、光導波路は、整合ポリマー内にあり得る。例えば、図32Bに示されるように、1つ以上の光導波路3201bは、バッキングポリマー3210bを硬化させた後、かつWGM共振器3202b、バッキングポリマー3210b、および/または基板3206bが整合ポリマー3208bでコーティングされる前に、バッキングポリマー3210bの上部に配置することができ、それにより、光導波路3201bがバッキングポリマーの代わりに整合ポリマー内に埋め込まれる。さらに、一部の変形例では、光導波路は、バッキングポリマー内に部分的に埋め込まれ、整合ポリマー内に部分的に(例えば、その断面積の約半分がバッキングポリマー内に、その断面積の約半分が整合ポリマー内に)埋め込まれてもよい。さらに、ポリマー内に複数の光導波路を有するデバイスの実施形態では、光導波路の一部は、バッキングポリマー内に全体的または部分的に埋め込まれてもよく、一方、光導波路の別の部分は、任意の好適な組み合わせで整合ポリマー内に全体的または部分的に埋め込まれてもよいことを理解されたい。
【0157】
一部の実施形態では、パッケージ化されたWGM共振器3202a、3202bは、図32Aおよび図32Bに概して示される形態の超音波センサとして使用することができる。しかしながら、代替的に、一部の変形例では、WGM共振器をパッケージ化する方法は、基板がパッケージ化されたWGM共振器の残りの部分から解放され得るように、基板をバッキングポリマーでコーティングする前に、剥離剤(例えば、ポリビニルアルコール、ポリアクリル酸、ポリスチレン、フルオロシラン、自己組織化単分子膜、OmniCoat、AZシリーズなどのいくつかのタイプのフォトレジストなど)で基板をプレコーティングすることを含み得る。基板の除去は、例えば、WGM共振器がセンシングするように設計された超音波エコーのセットの残響の量を低減するのに役立ち得る。
【0158】
センシング用途
本明細書に記載されるようなWGM共振器および共振器アレイは、音響光学センサデバイスなどの超音波センサデバイスにおいて使用することができる。音響光学センサデバイス内の1つ以上の要素は、超音波信号のセットを生成するように構成することができる。これらの要素の一部の非限定的な例として、圧電センサ、単結晶材料センサ、圧電マイクロマシン超音波トランスデューサ(PMUT)、容量性マイクロマシン超音波トランスデューサセンサ(CMUT)などが挙げられ得る。超音波信号は、WGM共振器の屈折率および/または物理的構造の変化を誘発することができる。かかる変化は、図33図38に付随する説明でさらに説明されるように測定することができる。
【0159】
図33は、音響光学センサデバイス3303を使用した超音波エコーのセンシングの概略図である。音響光学センサデバイス3303は、WGM共振器アレイを含む。WGM共振器は、互いから所定の距離dで線形に配置されるように示されているが、一部の変形例では、共振器の少なくとも一部は、互いから異なる距離で配置されてもよいことを理解されたい。WGM共振器アレイは、光源からの光を伝搬する1つ以上の光導波路に光学的に結合されるように構成することができる。光源は、広帯域光源、波長可変レーザ源、デジタル変調方法もしくはカー4波混合(FWM)方法のいずれかを使用する光周波数コム(OFC)レーザ源、または音響光学センサデバイス3303の動作周波数帯域に適した任意の他の光源であり得る。光は、WGM共振器アレイから各WGM共振器の周囲の壁の周りにウィスパリングギャラリーモード(WGM)の第1のセットを伝搬するために、WGM共振器アレイに結合され得る。WGMの第1のセットの伝搬により、WGMの第1のセットの共振周波数に対応する光信号の第1のセットが生成される。
【0160】
使用時、音響光学センサデバイス3303は、物体3301から生成および/または反射された超音波エコー3302のセットを受信するように構成することができる。超音波エコーのセットは、個々のWGM共振器への種々の移動時間(t、t、tなど)を有し得る。すなわち、同じ物体からの超音波エコーは、わずかに異なる時間にアレイ内の各センサに到達する。各センサとこれらの測定されたわずかな遅延との間の既知の距離を用いて、物体の位置がより良好に(例えば、より良好な空間分解能で)計算される。超音波エコーのセットは、WGM共振器材料の半径および/もしくは屈折率、ならびに/またはWGM共振器内の超音波増強材料の屈折率に対する変化のセットを誘発することができる。この変化のセットにより、WGM共振器アレイから各WGM共振器の周囲の壁の周りにWGMの第2のセットを伝搬することができる。WGMの第2のセットの伝搬により、WGMの第2のセットの共振周波数に対応する光信号の第2のセットが生成される。光信号の第1のセットおよび光信号の第2のセットは、1つ以上の光導波路内を光検出器まで伝搬するように構成され得る。光検出器は、光信号の第1のセットと光信号の第2のセットとの差を検出するためにコンピュータデバイスに接続することができる。
【0161】
図34は、超音波エコーのセット(本明細書では「超音波信号」とも称される)をセンシングする音響光学センサデバイス3405からの信号のセットの処理に使用され得る例示的な測定セットアップを描写している。測定セットアップは、光ファイバ3402内で光を伝搬する広帯域光源または波長可変レーザ3401と、光の偏光を制御するように構成され得るファイバ偏光コントローラ3403とを含み得る。測定セットアップは、音響光学デバイス3405に含まれるWGM共振器アレイにおけるウィスパリングギャラリーモード(WGM)の第1のセットの伝搬に基づいて光信号の第1のセットを伝搬するように構成され得る音響光学センサデバイス3405をさらに含み得る。音響光学センサデバイス3405は、超音波信号のセット3404を受信し、WGM共振器アレイ内を伝搬するWGMの第2のセットの伝搬に基づいて光信号の第2のセットを伝搬するように構成され得る。音響光学センサデバイス3405は、光信号の第1のセットおよび/または光信号の第2のセットを光ファイバ3402に伝送するようにさらに構成され得る。測定セットアップは、光信号の第1のセットおよび/または光信号の第2のセットを受信し、それらを電気信号の第1のセットおよび/または電気信号の第2のセットに変換する光検出器(photodetector)(本明細書では「光検出器(optical detector)」とも称される)3406をさらに含み得る。光検出器3406はさらに、電気信号の第1のセットおよび/または電気信号の第2のセットを、コンピュータデバイス3410に動作可能に接続されたオシロスコープ3407に伝送して、信号の第1のセットおよび/または信号の第2のセットを処理および分析するように構成され得る。オシロスコープ3407は、分析された信号のセットをファンクションジェネレータ3408に伝送するようにさらに構成され得る。ファンクションジェネレータは、光ファイバ3402内の光の伝搬を制御するために、発生信号のセットを生成して広帯域光源または波長可変レーザ3401に伝送するように構成され得る。
【0162】
図35は、超音波エコーのセットをセンシングする音響光学センサデバイス3504からの信号のセットの処理に使用され得る例示的な測定セットアップを描写している。測定セットアップは、レーザ光を生成するために、例えば、デジタル変調方法またはカー4波混合(FWM)方法のいずれかを使用して生成された光周波数コム(OFC)レーザ源、または音響光学センサデバイス3504の動作周波数帯域に適した任意の他のレーザなどのレーザ3501を含み得る。測定セットアップは、例えば、50:50ビームスプリッタ、80:20ビームスプリッタ、または任意の他のビームスプリッタなどのビームスプリッタ3502をさらに含み得る。ビームスプリッタは、レーザ光を第1のレーザ光および第2のレーザ光に分割するように構成され得る。測定セットアップは、第1のレーザ光を電気光学変調器3503に向けて、変調されたレーザ光を生成して伝送するように構成され得る。測定セットアップは、ウィスパリングギャラリーモード(WGM)の第1のセットに対応する信号の第1のセットを生成するために、変調されたレーザ光を音響光学センサデバイス3501に向けるようにさらに構成され得る。音響光学センサデバイス3501は、超音波信号のセットを受信し、WGMの第2のセットに対応する信号の第2のセットを生成するように構成され得る。測定セットアップは、信号の第1のセット、信号の第2のセット、および/または第2のレーザ光をコヒーレント受信器3505に向けて、第2のレーザ光を信号の第1のセットおよび/または信号の第2のセットと混合し、電子周波数信号を生成するようにさらに構成され得る。測定セットアップは、計算デバイスに動作可能に接続された高速フーリエ変換(FFT)モジュール3506に電子周波数信号を伝送して、信号の第1のセットと信号の第2のセットとの間の差を処理および分析するように構成され得る。一例では、OFCレーザは、櫛形ビームのセットを生成することができ、櫛形ビームのセットからの各櫛形ビームは、信号の第1のセットと信号の第2のセットとの間の差を検出するためのデータ点を生成することができる。この例では、櫛形ビームの1つのセットは、櫛形ビームのセットに対応するデータ点のセットを生成することができる。一部の実施形態では、OFCレーザ源の使用は、有利には、センシング時間をミリ秒からマイクロ秒程度のセンシング時間に短縮することができる。
【0163】
図36は、音響光学センサデバイス3601の光応答の概略図である。音響光学センサデバイス3601は、(例えば、図34および/または図35に関してさらに詳細に説明されるように)任意の角度に位置決めされた物体3602から超音波エコーのセットを受信し、WGM共振器のセットを使用して超音波エコーを検出するように構成することができる。一例では、音響光学センサデバイス3601は、約160度の検出角度3603を有し得る。換言すれば、音響光学デバイス3601は、従来の圧電超音波センサよりも広範な検出角を有する。
【0164】
超音波プローブ
一部の実施形態では、本明細書に説明されるようなWGM共振器アレイは、超音波プローブ(本明細書では「超音波システム」とも称される)内に含まれ得る。超音波プローブは、光を伝搬するための少なくとも1つの光導波路を含み得る。超音波プローブは、超音波信号のセットを生成するために複数の圧電要素をさらに含み得る。超音波プローブは、超音波信号のセットに対応する超音波エコーのセットを受信するための複数の圧電要素をさらに含み得る。超音波プローブは、ポリマー構造内に複数のWGM共振器をさらに含むことができ、各WGM共振器は、複数の超音波エコーを受信し、ウィスパリングギャラリーモード(WGM)のセットを伝搬するように構成される。少なくとも1つのWGM共振器は、WGM共振器がWGMの第1のセットに対応する信号の第1のセットを少なくとも1つの光導波路に伝達するように構成されるように、少なくとも1つの光導波路に光学的に結合される。
【0165】
例えば、図37は、本明細書に記載されているようなWGM共振器を利用する超音波プローブの概略図である。図38は、図37に描写されたプローブの断面図である。超音波プローブは、WGM共振器アレイ3701と、整合層3702と、圧電結晶アレイ3703と、電気接続アレイ3704と、光ファイバのセット3705と、バッキング材料3706と、音響絶縁体3707と、超音波データ取得に接続されたケーブル3708とを含み得る。超音波プローブは、本明細書でさらに詳細に説明されるような動作手順を実行するために、制御システムおよびディスプレイに結合することができる。バッキング材料は、動作環境の残留振動を排除し、可搬性を改善し、センサ構造内で生成されるエコーを最小化するために、プローブのパッケージの背面に結合された減衰材料を含み得る。
【0166】
超音波プローブは、光源からの光のセットをWGM共振器アレイ3701のセットに伝搬させて、WGM共振器アレイ3701内の各WGM共振器内を伝搬するWGMの第1のセットに対応する光信号の第1のセットを生成するように構成することができる。圧電結晶アレイ3703は、ケーブル3708および電気接続アレイ3704を介して制御システムから電気信号を受信して、反射超音波エコーのセットが超音波プローブに向かう方向に生成されるように、物体に向かう超音波信号のセットを生成するように構成することができる。超音波プローブは、超音波エコーのセットを受信した後に、WGM共振器アレイ3701内のWGMの第2のセットに対応する光信号の第2のセットを生成するようにさらに構成することができる。超音波プローブは、任意選択的に、超音波エコーのセットを受信して電気信号のセットを生成するように構成することができる。超音波プローブは、光ファイバのセット3705を介して信号の第1のセットおよび/または信号の第2のセットを伝送し、および/または任意選択的に、電気接続アレイ3704を介して、超音波データ取得、制御システム、またはディスプレイに接続されたケーブル3708に電気信号のセットを伝送するようにさらに構成することができる。
【0167】
一部の変形例では、図37および図38に関して上記で説明されるような超音波プローブは、圧電結晶アレイのフェーズドアレイを使用することによって、視野を横断して走査しながら、操作手順を繰り返すように構成することができる。そうすることにより、各WGM共振器アレイセンサに対して、圧電結晶アレイを用いたラインごとの画像と、横方向の1つの低解像度画像とが得られる。次いで、既知の合成開口(SA)アルゴリズムを使用して、高解像度WGM共振器アレイセンサ画像を生成することができる。
【0168】
さらに、一部の実施形態では、圧電要素のうちの1つ以上は、伝送された超音波信号のセットに対応する超音波エコーを受信し、これらの受信された超音波エコーに基づいてセンサ信号を生成するように構成することができる。例えば、圧電要素によって生成されたセンサ信号は、任意の好適な方法で(例えば、マルチモーダルセンサ画像を提供するために)、WGM共振器によって伝達された信号を補足するか、またはそれと組み合わされてもよい。
【0169】
加えて、または代替的に、一部の実施形態では、図37および図38に関して上記で説明されるような超音波プローブは、例えば、超音波信号を伝送するために圧電結晶要素または圧電結晶の群を使用する一方で、超音波エコーのセットを受信するために圧電結晶アレイ内のすべての圧電結晶要素を使用するなど、異なる励起パターンを使用するように構成することができ、圧縮センシング(CS)法としても公知である。CS法の一般的なアプローチは、画像からの信号取得のプロセスを表す線形モデル(フォワードモデルとしても知られる)を形成し、画像を得るために一次方程式を解くことである。
【0170】
前述の記載は、説明の目的で、本発明の完全な理解を提供するために特定の命名法が使用された。しかしながら、本発明を実施するために特定の詳細が必要とされないことは当業者には明らかであろう。したがって、本発明の特定の実施形態の前述の記載は、例示および記載の目的で提示されている。それらは、網羅的であること、または本発明を開示された正確な形態に限定することが企図されるものではなく、明らかに、上記の教示を考慮すると、多くの修正および変形例が可能である。実施形態は、本発明の原理およびその実際の用途を説明するために選択および記載され、それにより、当業者が、企図される特定の使用に適した様々な修正を加えて本発明および様々な実施形態を利用することを可能にする。以下の特許請求の範囲およびそれらの均等物が本発明の範囲を定義することが意図される。
図1
図2
図3
図4
図5
図6A-6C】
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17A
図17B
図18A
図18B
図19
図20A
図20B
図21A
図21B
図21C
図22
図23A
図23B
図23C
図24A
図24B
図24C
図25
図26
図27
図28
図29
図30
図31
図32A
図32B
図33
図34
図35
図36
図37
図38
【国際調査報告】