IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ メドトロニック,インコーポレイテッドの特許一覧

<>
  • 特表-電気的刺激変調 図1
  • 特表-電気的刺激変調 図2
  • 特表-電気的刺激変調 図3
  • 特表-電気的刺激変調 図4
  • 特表-電気的刺激変調 図5
  • 特表-電気的刺激変調 図6
  • 特表-電気的刺激変調 図7
  • 特表-電気的刺激変調 図8
  • 特表-電気的刺激変調 図9
  • 特表-電気的刺激変調 図10
  • 特表-電気的刺激変調 図11
  • 特表-電気的刺激変調 図12
  • 特表-電気的刺激変調 図13
  • 特表-電気的刺激変調 図14
  • 特表-電気的刺激変調 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-03-17
(54)【発明の名称】電気的刺激変調
(51)【国際特許分類】
   A61N 1/36 20060101AFI20230310BHJP
   A61N 1/05 20060101ALI20230310BHJP
【FI】
A61N1/36
A61N1/05
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022544315
(86)(22)【出願日】2021-01-20
(85)【翻訳文提出日】2022-07-21
(86)【国際出願番号】 US2021014185
(87)【国際公開番号】W WO2021150612
(87)【国際公開日】2021-07-29
(31)【優先権主張番号】16/752,224
(32)【優先日】2020-01-24
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】507020152
【氏名又は名称】メドトロニック,インコーポレイテッド
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100119781
【弁理士】
【氏名又は名称】中村 彰吾
(72)【発明者】
【氏名】モリーナ,レネ・エイ
(72)【発明者】
【氏名】ライケ,ロバート・エス
(72)【発明者】
【氏名】スタンスラスキ,スコット・アール
【テーマコード(参考)】
4C053
【Fターム(参考)】
4C053CC10
4C053JJ01
4C053JJ02
4C053JJ04
4C053JJ21
4C053JJ40
(57)【要約】
患者に刺激療法を送達するための技術、システム、およびデバイスが開示されている。一例では、医療デバイスは、患者内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定する。医療デバイスは、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御し得る。医療デバイスは、同調刺激パルスによって同調された電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットをさらに判定し得る。続いて、医療デバイスは、刺激パラメータの第2のセットに従って、非同期刺激パルスを生成するように、刺激生成器を制御し得る。
【選択図】図6
【特許請求の範囲】
【請求項1】
システムであって、
少なくとも1つの電極を備える少なくとも1つの電気的リードを介して送達可能な刺激パルスを生成するように構成された刺激生成器と、
処理回路であって、
患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、
前記刺激パラメータの第1のセットに従って、前記同調刺激パルスを生成するように前記刺激生成器を制御することと、
前記同調刺激パルスによって同調された前記脳の電気的活動の少なくとも一部分を混乱させる(entrain)ように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、前記刺激パラメータの第2のセットが、前記刺激パラメータの第1のセットとは異なる、判定することと、
前記同調刺激パルスを生成した後、前記刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように前記刺激生成器を制御することと、を行うように構成された、処理回路と、を備える、システム。
【請求項2】
前記刺激パラメータの第2のセットを判定するために、前記処理回路が、
前記患者から、生理学的信号を取得することと、
前記生理学的信号から、かつ前記患者に対する、1つ以上のバイオマーカを識別し、
前記患者に対する前記1つ以上のバイオマーカに少なくとも部分的に基づいて、前記刺激パラメータの第2のセットを判定することと、を行うようにさらに構成されている、請求項1に記載のシステム。
【請求項3】
前記刺激生成器および前記処理回路を収容するように構成されたハウジングをさらに備え、前記患者に対する前記1つ以上のバイオマーカを識別するために、前記処理回路が、
前記ハウジングの外部にあり、かつ前記ハウジングとは別個の感知デバイスから、前記生理学的信号を受信することであって、前記感知デバイスが、前記患者からの前記生理学的信号を検出するように構成されている、受信することを行うようにさらに構成されている、請求項2に記載のシステム。
【請求項4】
前記生理学的信号が、前記脳の1つ以上の領域内から発生する局所電場電位(LFP)信号を含み、前記患者に対する前記1つ以上のバイオマーカを識別するために、前記処理回路が、
前記LFPから、前記1つ以上のバイオマーカを識別することであって、前記1つ以上のバイオマーカが、前記患者の神経状態を示すように構成されている、識別することを行うようにさらに構成されている、請求項2または3に記載のシステム。
【請求項5】
前記1つ以上のバイオマーカが、約0.1ヘルツ(Hz)~500Hzの周波数を含む、請求項4に記載のシステム。
【請求項6】
前記刺激パラメータの第1のセットが、前記脳の第1の領域の電気的活動を同調させるように構成されており、前記刺激パラメータの第2のセットが、前記脳の前記第1の領域よりも小さい前記脳の第2の領域内の同調された電気的活動に対して、破壊的干渉を引き起こすように構成されている、請求項1~5のいずれか一項に記載のシステム。
【請求項7】
前記少なくとも1つの電極が、第1の電極と、第2の電極と、を備え、
前記処理回路が、
前記刺激生成器に、前記同調刺激パルスを前記第1の電極に送達させることと、
前記同調刺激パルスが、前記患者に同調されている電気的活動をもたらしたことを判定することと、
前記同調刺激パルスが、前記患者に同調されている電気的活動をもたらしたと判定することに応答して、前記刺激生成器に、前記少なくとも1つの非同期刺激パルスを前記第2の電極に送達させることと、を行うようにさらに構成されている、請求項1~6のいずれか一項に記載のシステム。
【請求項8】
前記刺激パラメータの第1のセットが、約100Hz未満の第1のパルス周波数を含み、
前記刺激パラメータの第2のセットが、前記第1のパルス周波数よりも約30Hz~125Hz高い第2のパルス周波数を含む、請求項1~7のいずれか一項に記載のシステム。
【請求項9】
前記少なくとも1つの非同期刺激パルスが、複数の非同期刺激パルスを含み、前記処理回路が、
第1の事前定義された持続時間の前記同調刺激パルスを生成するように、前記刺激生成器を制御することと、
第2の事前定義された持続時間の前記複数の非同期刺激パルスを生成するように、前記刺激生成器を制御することと、
前記第2の事前定義された持続時間の前記複数の非同期刺激パルスを生成することに応答して、前記第1の事前定義された持続時間の前記同調刺激パルスを再び生成するように、前記刺激生成器を制御することと、を行うようにさらに構成されている、請求項1~8のいずれか一項に記載のシステム。
【請求項10】
前記処理回路が、
前記同調刺激パルスが、同調されている前記患者の電気的活動をもたらしたという指標を受信することと、
前記指標を受信することに応答して、非同期刺激パルスのセットを生成するように、前記刺激生成器を制御することと、
前記同調された電気的活動を混乱させる際の前記非同期刺激パルスのセットの有効性の程度を示すフィードバック信号を受信することと、
前記フィードバック信号に少なくとも部分的に基づいて、前記刺激パラメータの第2のセットの1つ以上のパラメータを調整して、非同期刺激パルスの少なくとも1つの調整されたセットを定義する刺激パラメータの調整されたセットを定義することと、
前記刺激パラメータの調整されたセットに従って、前記少なくとも1つの調整された非同期刺激パルスのセットを生成するように、前記刺激生成器を制御することと、を行うようにさらに構成されている、請求項1~9のいずれか一項に記載のシステム。
【請求項11】
前記処理回路が、
前記同調刺激パルスの生成と前記少なくとも1つの非同期刺激パルスの生成との間の休止位相をインターリーブするように刺激生成器を制御するようにさらに構成されている、請求項1~10のいずれか一項に記載のシステム。
【請求項12】
前記刺激パラメータの第2のセットが、前記刺激パラメータの第1のセットとともに含まれる少なくとも1つの対応するパラメータから変化する少なくとも1つのパラメータを含む、請求項1~11のいずれか一項に記載のシステム。
【請求項13】
前記刺激生成器と、前記処理回路と、を備える埋め込み型医療デバイス(IMD)をさらに備える、請求項1~12のいずれか一項に記載のシステム。
【請求項14】
前記少なくとも1つの電気的リードをさらに備える、請求項13に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2020年1月24日に出願された「ELECTRICAL STIMULATION MODULATION」と題された米国特許出願第16/752,224号の優先権を主張し、その全内容が本明細書に組み込まれる。
【0002】
本開示は、医療デバイス、より具体的には、電気的刺激療法を送達する医療デバイスに関する。
【背景技術】
【0003】
医療デバイスは、様々な病状を治療するために使用され得る。例えば、医療用電気的刺激デバイスは、埋め込まれた電極などの電極を介して、患者に電気的刺激療法を送達し得る。電気的刺激療法は、神経、筋肉、脳組織、または患者内の他の組織の刺激を含み得る。場合によっては、電気的刺激デバイスは、患者内に完全に埋め込まれ得る。電気的刺激デバイスは、電気的刺激生成器と、いくつかの例では、電極を担持する1つ以上の埋め込み型リードと、を含み得る。代替的に、電気的刺激デバイスは、リードレス刺激装置を備え得る。場合によっては、埋め込み型電極は、1つ以上の経皮的リードまたは完全に埋め込まれたリードを介して、外部電気的刺激デバイスに結合され得る。
【0004】
一例では、運動障害または他の神経変性障害に罹患している患者は、疾患または外傷によるかどうかにかかわらず、硬直、動作緩慢(すなわち、遅い身体運動)、リズミカルな運動亢進(例えば、振戦)、非リズミカルな運動亢進(例えば、チック)、または無動症(すなわち、身体運動の喪失)などの筋肉制御および運動の問題を経験し得る。患者内の、脳、脊髄、脚の筋肉、または腕の筋肉などの1つ以上の部位への医療デバイスによる電気的刺激および/または流体(医薬品など)の送達は、他の例示的な障害の中でもとりわけ、そのような障害に関連付けられた症状を緩和すること、および場合によっては、排除することに役立ち得る。そのような例では、電気的刺激デバイスは、運動障害を含む様々な障害の症状を緩和または排除することを助けるために、患者の脳または脳の特定の領域などの患者の標的エリアに電気的刺激パルスを送達し得る。
【発明の概要】
【0005】
概して、開示された技術は、医療デバイスを介して、患者の脳などについて、患者に電気的刺激を送達するためのシステム、デバイスおよび技術に関する。医療デバイスの処理回路は、患者の生体電気信号を変更するために、電気的刺激の送達を変調し得る。例えば、電気的刺激パルスの変調は、脳の生体電気信号を変化させて、所望の挙動を示し、かつ/または望ましくない挙動を停止するように構成され得る。処理回路は、刺激生成器を制御することによって、患者の電気的活動を同調させるために、同調刺激パルス、続いて、同調刺激パルスによって同調された電気的活動を混乱させるように構成された非同期刺激パルス(例えば、治療刺激パルス)を生成して、1つ以上の電極に送達することによって、そのような変調を達成し得る。このようにして、刺激生成器は、脳の電気信号を同調させるプライミング位相と、脳の少なくとも一部分の電気信号を非同期化する非同期位相との間で交互になり得る。このような位相は、最適な治療効果を提供するために、互いにオーバーラップしてもよく、またはしなくてもよい。さらに、処理回路は、患者からの1つ以上の検出された生理学的信号に基づいて、患者に対してテーラリングされた療法を提供するために、経時的に一方または両方の位相を調整し得る。
【0006】
一例では、本開示は、少なくとも1つの電極を備える少なくとも1つの電気的リードを介して送達可能な刺激パルスを生成するように構成された刺激生成器と、処理回路であって、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、第2の複数の刺激パラメータに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を行うように構成された、処理回路と、を備える、システムを対象とする。
【0007】
別の例では、本開示は、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を含む、方法を対象とする。
【0008】
さらに別の例では、実行されると、1つ以上のプロセッサに、少なくとも、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を行わせる、命令をその上に記憶した非一時的なコンピュータ可読記憶媒体。
【0009】
別の例では、本開示は、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定するための手段と、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御するための手段と、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定するための手段であって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定するための手段と、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御するための手段と、を含むシステムを対象とする。
【0010】
本開示の1つ以上の態様の詳細は、添付の図面および以下の説明に記載されている。他の特徴、目的、および利点は、説明および図面から、ならびに特許請求の範囲から明らかになるであろう。
【図面の簡単な説明】
【0011】
図1】例示的な電気的刺激システムを示す概念図である。
図2】例示的な電気的刺激システムの構成要素を示す機能ブロック図である。
図3】例示的な医療デバイスプログラマの構成要素を示す機能ブロック図である。
図4】本開示の1つ以上の技術による、患者の脳に電気的刺激を送達するための例示的な動作を示す流れ図である。
図5】本開示の1つ以上の技術による、患者のバイオマーカを利用することによって、患者の脳に電気的刺激を送達するための例示的な動作を示す流れ図である。
図6】本開示の1つ以上の技術による、電気的刺激パルスの例示的な変調を示す図である。
図7】本開示の1つ以上の技術による、電気的刺激パルスの例示的な変調を示す図である。
図8】本開示の1つ以上の技術による、変調されている例示的な電気的刺激波形を示す図である。
図9】本開示の1つ以上の技術による、変調されている例示的な電気的刺激波形を示す図である。
図10】本開示の1つ以上の技術による、フィードバック信号を利用することによって、患者の脳に電気的刺激を送達するための例示的な動作を示す流れ図である。
図11】本開示の1つ以上の技術による、電気的刺激パルスの例示的な変調および例示的な休止位相を示す図である。
図12】本開示の1つ以上の技術による、電気的刺激パルスの例示的な変調および例示的な休止位相を示す図である。
図13】本開示の1つ以上の技術による、電気的刺激パルスの例示的な変調および例示的な休止位相を示す図である。
図14】本開示の1つ以上の技術による、休止位相を含み、変調されている例示的な電気的刺激波形を示す図である。
図15】本開示の1つ以上の技術による、複数の電極に送達されている例示的な電気的刺激波形を示す図である。
【0012】
同様の参照文字は、図および説明全体で同様の要素を指す。
【発明を実施するための形態】
【0013】
患者に送達された電気的刺激を変調するためのシステム、デバイスおよび技術が説明されている。具体的には、刺激生成器は、医療リードを介して、電気的刺激の異なる位相を生成し、患者に送達し得る。このような刺激は、深部脳刺激(DBS)中に患者の脳の特定の領域に向けられ得るが、同様の刺激は、他の例では、脊髄刺激(SCS)、骨盤刺激、末梢神経刺激、筋肉刺激などとしても送達され得る。
【0014】
一般に、DBS療法は、事前設定された周波数、振幅、またはパルス幅パラメータなどの事前設定された刺激パラメータに従うモノリシック電気的療法を伴い得る。このようにして、単一のパルス周波数、パルス幅および振幅は、開ループ構成で送達されたパルスを定義し得る。しかしながら、そのような電気的刺激は、例えば、そのような電気的刺激の送達が、求められる療法を達成する前、療法の結果後に、しばしば脳の特定の領域に無差別に、かつ患者の特定の状態、電力の節約、刺激時間などを検討することなく適用されるため、効率的な方式で、療法を提供しない場合がある。さらに、脳の電気的活動が、均一または既知のパラメータを有しない場合、そのような電気的刺激は、療法結果を達成するのにより長い時間がかかり得る。したがって、電気的刺激は、患者にとって効果が低いか、より多くの電力を消費するか、またはそうでなければ、患者を治療する際のシステム全体の性能を低下させ得る。他の例では、電気的刺激装置は、電気的活動に影響を与えて特定の挙動を示すようにするために、電気エネルギーのバースト(例えば、パルスのバースト)を使用し得る。しかしながら、そのような電気的刺激のバーストは、電気的刺激療法が、電気的刺激の短いセッション中に、同調されたボリューム内のより小さく、より局所的な活性化領域を効果的に切り離して標的にしなくてもよいように、無差別に適用され得る。このように、そのような電気的刺激はまた、療法を提供する過程で、外部電力を消費し得る。
【0015】
前述の問題は、とりわけ、同調刺激パルス(例えば、プライミング位相パルス)、続いて、または並行して、1つ以上の非同期刺激パルス(例えば、非同期位相パルスのセット)を送達することによって、開示された電気的刺激変調によって対処され得る。具体的には、刺激生成器は、脳の少なくとも一部分を既知の電気的状態にするように構成された同調刺激パルスと、同調された電気的活動の少なくとも一部分を混乱させるように構成された非同期刺激パルスとの間で交互になり得る。
【0016】
DBSを伴う例では、刺激生成器は、第1の周波数で送達されたプライミング位相パルスの送達および第2の周波数で送達された非同期位相パルスの送達を含む電気的刺激療法を生成し、かつ送達し得る。そのような例では、刺激生成器によって送達された同調刺激パルスは、最初に、同調刺激パラメータを使用して、ニューロン活動などの電気的活動のボリュームの同調を引き起こし得る。続いて、刺激生成は、非同期パルスを生成し、かつ送達して、ニューロンの同調された集団の特定の部分(例えば、ニューロンの亜集団またはより小さなボリューム)を標的とし得る。
【0017】
一般に、同調は、生体電気信号の周波数が、電気的刺激または別の刺激(例えば、可聴刺激など)の入力周波数などの入力周波数と整列するときに、発生する。例えば、同調された生体電気信号は、入力刺激の時間的構造と整列し得る。例えば、同調された生体電気信号は、入力刺激のリズムまたは周波数に一致するか、またはほぼ等しいリズムまたは周波数で送信し始め得る。整列の別の例では、同調された生体電気信号は、入力刺激と同期し得、その結果、同調された生体電気信号は、入力刺激のリズムまたは周波数に必ずしも一致しないか、または等しくなくても、入力刺激と同期するリズムまたは周波数で送信する。例えば、同調された生体電気信号は、入力刺激の時間的構造(例えば、周波数、リズムなど)と整列しながら、または整列を維持しながら、入力刺激と位相がずれて、または異なる速度で送信し得る。
【0018】
電気的刺激の場合、脳内の信号などの生体電気信号の同調は、生体電気信号の波形周波数が、電気的刺激の周波数振動と整列するか、または少なくとも整列し始めるときに、発生し得る。つまり、同調とは、一般に、脳の振動と外部刺激との位相整列を指す。場合によっては、同調刺激パルスはまた、アルファ、デルタ、シータ、ベータおよび/またはガンマ同調療法などの療法を患者に提供し得るが、他の例では、同調刺激パルスは、療法を提供するように構成されない。いずれの場合でも、同調刺激パルスは、少なくとも患者の電気的活動(例えば、ニューロン活動、細胞活動など)を同調させるように構成されたパラメータに従って、送達される。
【0019】
次に、刺激生成器は、同調刺激パルスを定義する刺激パラメータのセット(例えば、異なる周波数、異なる電極構成、異なる振幅、異なるパルス幅などのうちの少なくとも1つ)とは少なくとも部分的に異なる刺激パラメータのセットに従って、非同期刺激パルスを生成し、かつ送達し得る。例えば、非同期刺激パルスの周波数は、患者の電気的活動を同調させた同調刺激パルスの周波数の周波数よりも高くなり得る。さらに、または代替的に、非同期刺激パルスの振幅は、同調刺激パルスの振幅よりも低くなり得る。したがって、非同期パルスの電気的刺激は、同調された電気的活動の活性化量(VOA)と比較して、より小さな、かつ/またはより局所的なVOAを動員するように構成され得る。このようにして、刺激生成器は、同調された電気的活動の特定の部分を混乱させるように構成された治療パルスを提供し得る。同調された電気的活動のこの混乱は、振戦の減少などの運動障害に関連する症状の減少を促進し得る。
【0020】
いくつかの例では、刺激生成器は、非同期刺激パルスを生成し、同調刺激を送達するために選択された同じ電極のうちの1つ以上に送達し得る。別の例では、刺激生成器は、非同期刺激パルスを生成し、1つ以上の異なる電極に、または場合によっては、同調刺激を送達するために使用された同じ電極のうちのいくつかにのみ、電極の異なる組み合わせとともに送達し得る。非同期刺激パルスを使用して、神経障害(例えば、パーキンソン病、本態性振戦、てんかんなど)に罹患している患者などの患者に療法を提供するために、同調刺激パルスによって同調された電気的活動、または同調された電気的活動の少なくとも一部分を混乱させ得る。例えば、非同期刺激パルスは、同調された電気的活動に破壊的に干渉するために使用され得る。いずれにせよ、本開示の様々な技術に従って、電気的刺激を提供することにより、医療デバイスが、最初に電気的活動を同調させ、次に、患者固有のネットワーク同期を破壊し、かつ/または神経集団の再同期の自然な進化が発生することを可能にするなど、療法の目的で同調された活動を混乱させることによって、改善された電気的刺激療法を提供することを可能にし得る。例えば、刺激生成器は、局所的なニューロン領域を、同調刺激パルスの送達を通じて動員されたより大きなネットワークから時空間的に切り離す非同期パルスを提供し得、その時点で、刺激生成器は、所与の治療セッションの期間を通して患者にテーラリングされた非同期パルスおよび/または同調パルスを提供し続け得る。
【0021】
いくつかの例では、同調刺激パルスおよび/または非同期刺激パルスのいずれかの刺激パラメータは、症状(振戦)に関連付けられた患者の局所電場電位(LFP)における測定された周波数、電気生理学的マーカ、物理的な患者の運動センサ(例えば、1つ以上の加速度計)、他の電気的脳信号などの患者固有のバイオマーカに基づき得る。したがって、これらのバイオマーカは、1つ以上のデバイスによって感知された生理学的信号の特徴、特性または他の態様を示し得る。場合によっては、生理学的信号および/または患者固有のバイオマーカは、ウェアラブルデバイスなどの外部デバイスから受信され得る。例えば、刺激生成器の回路などの処理回路は、感知された生理学的信号、患者のバイオマーカおよび/または患者の特定の標的領域からの刺激パルスの刺激パラメータを判定し得る。次に、処理回路は、刺激パルスを送達するために、それに応じて1つ以上の刺激パラメータを調整(例えば、1つ以上のそれぞれの刺激パラメータの値を調整)し得る。刺激生成器は、バイオマーカを使用して、刺激が開ループ構成で進行することができる初期刺激パラメータを確立し得る。刺激生成器の処理回路は、患者固有のバイオマーカに基づいて、交互パルスパターン(例えば、パルス周波数および/または持続時間)およびパルスパターン間の遷移をテーラリングし得るが、処理回路は、刺激の有効性を示すバイオマーカまたは他のフィードバックに基づき、刺激中にこれらのパラメータを必ずしも変調しない場合がある。
【0022】
いくつかの例では、刺激生成器は、同調刺激パルスと非同期パルスとの間に休止位相をインターリーブし得る。そのような例では、休止位相のパラメータ(例えば、休止位相の持続時間)もまた、患者の1つ以上のバイオマーカに基づき得る。
【0023】
閉ループ構成では、システムは、追加的に、または代替的に、同調刺激パルス、非同期刺激パルスならびに/または1つ以上のバイオマーカに基づくパルスのパターンの他の任意の態様および/もしくは刺激パルスの有効性に関して受信されたフィードバックを少なくとも部分的に定義する少なくとも1つの刺激パラメータをテーラリングし得る。バイオマーカは、脳信号、運動センサまたは他の任意の生理学的信号に関連付けられ得る。別の例として、フィードバックは、脳の特定の領域を活性化する、または特定のVOAを同調されたVOAから切り離す際の、非同期パルスの有効性に関する指標に基づき得る。フィードバックは、感知機能も提供できる刺激リードの使用を通じて達成され得る。
【0024】
いくつかの例では、電気的刺激は、患者の障害の1つ以上の症状を管理するか、または他の方法で治療するために、医療デバイスによって患者の脳に送達され得る。患者の脳は、広い周波数スペクトルにわたって脳信号を示し得る。しかしながら、いくつかの例では、特定の周波数または周波数帯域もしくは範囲での生体電気脳信号の振動が、患者の障害の1つ以上の症状または脳の状態に関連付けられ得る。例示的な脳の状態は、患者の睡眠状態を含み得る。例えば、特定の周波数範囲で振動する生体電気脳信号は、生体電気脳信号がそのような周波数範囲で振動するときに、そのような症状が頻繁に発生または発現するという意味で、患者の障害の1つ以上の症状に関連付けられ得る。そのような発生は、脳のその領域の正常な機能に干渉する患者の脳の1つ以上の領域内の脳信号振動の結果であり得る。本明細書で使用される場合、周波数または周波数範囲は、そのような周波数または複数の周波数での脳信号の振動が、そのような方法で患者の障害の1つ以上の症状と関連付けられているときに、病理学的周波数または病理学的周波数範囲と称され得る。同様に、1つ以上の病理学的周波数で振動する生体電気脳信号は、病理学的脳信号と称され得る。
【0025】
一例として、パーキンソン病の場合、視床下核(STN)、淡蒼球内節(GPi)、淡蒼球外節(GPe)および/または脳基底核の他のエリアにおけるベータ周波数振動(例えば、約13ヘルツ~約30ヘルツ)は、例えば、硬直、無動症、動作緩慢、ジスキネジア、および/または休止時振戦を含む1つ以上の運動症状に関連付けられ得る。てんかんの場合、ベータ周波数振動は、例えば、視床前核、内包、帯状束、嗅内皮質、海馬、脳弓、乳頭体、または乳頭視床束(MMT)を含む、パペス回路内の1つ以上の部位内で発生し得る。これらの運動症状は、生体電気脳信号がベータ周波数範囲内で振動するときに、そのような症状が頻繁に発生するという意味で、ベータ周波数範囲で振動する生体電気脳信号に関連付けられ得る。例えば、ベータ周波数範囲での高振幅、長い持続時間の振動の持続は、脳内の通常の低振幅、短い持続時間のベータ振動への振動「干渉」をもたらし得る。このような干渉は、脳の上記の領域の正常な機能を制限する場合がある。生体電気脳信号の高振幅、長い持続時間の振動は、生体電気脳信号内の他のより高い周波数の固有信号よりも低い周波数であり得る。
【0026】
ニューロンにおける振動信号のネットワークは、ネットワークの活動を位相ロックさせ、ある周波数で共振させる電気的かつ化学的信号によって同期され得る。いくつかの例では、パーキンソン病またはてんかんの症状は、一般に、高振幅、長い持続時間のベータ周波数範囲の振動の存在と関連して発現し得る。いくつかの例では、症状の発現の頻度は、高振幅、長い持続時間のベータ周波数範囲の振動の存在と関連して増加し得る。さらなる例では、ガンマ振動(例えば、約35ヘルツ~200ヘルツの周波数を含む振動)が、海馬で発生し得る。そのようなガンマ振動はまた、患者の障害の1つ以上の症状に関連付けられ得る。さらなる例では、100ヘルツ~500ヘルツの範囲内の周波数を含む他の高周波振動が、患者の障害の1つ以上の症状に関連付けられ得る。本明細書に記載されるように、異なるパルス周波数、パルス幅および/または振幅で送達された非同期刺激パルスは、同調された電気信号および患者の症状に関連付けられた振動を混乱させ得る。
【0027】
図1は、本開示の例による、例示的な治療システム10を示す概念図である。図1では、例示的な治療システム10は、例えば、患者12の運動障害などの患者の状態を治療するか、または他の方法で管理するための電気的刺激療法を提供し得る。システム10を介したDBSの送達によって治療された運動障害の一例には、パーキンソン病またはてんかんが含まれ得る。患者12は通常、人間の患者になる。しかしながら、場合によっては、治療システム10は、他の哺乳動物または非哺乳動物の非ヒト患者に適用され得る。
【0028】
説明を容易にするために、本開示の例は、主に、運動障害の治療、特に、例えば、パーキンソン病に罹患している患者によって示された症状の発現を低減または予防することによるパーキンソン病の治療に関して説明される。上記のように、そのような症状は、硬直、無動、動作緩慢、ジスキネジアおよび/または休止時振戦を含み得る。しかしながら、本明細書に記載の技術を用いることによる、パーキンソン病以外の1つ以上の患者の障害の治療が企図されている。例えば、記載された技術は、てんかん、精神障害、気分障害、発作障害または他の神経発生障害などであるがこれらに限定されない他の患者の障害の症状を管理するか、または他の方法で治療するために用いられ得る。一例では、そのような技術を用いて、アルツハイマー病を管理するための療法を患者に提供し得る。
【0029】
治療システム10は、医療デバイスプログラマ14と、埋め込み型医療デバイス(IMD)16と、リード延長部18と、それぞれの電極セット24、26を有する1つ以上のリード20Aおよび20B(総称して「リード20」)と、を含む。IMD16は、電気的刺激療法を生成し、かつリード20Aおよび20Bのそれぞれの電極24、26のサブセットを介して、患者12の脳28の1つ以上の領域に送達する刺激生成器を含む刺激療法回路を含む。図1に示される例では、IMD16が脳28内の組織、例えば、脳28の硬膜下の組織部位に直接電気的刺激療法を提供するので、治療システム10は、脳深部刺激(DBS)システムと称され得る。他の例では、リード20は、脳28の表面(例えば、脳28の皮質表面)に治療を提供するように、位置決めされ得る。
【0030】
いくつかの例では、脳28の視床前核(AN)、視床または皮質などの脳28の1つ以上の領域への刺激の送達は、患者12の障害を管理するための効果的な治療を提供する。いくつかの例では、IMD16は、例えば、脳28の皮質の1つ以上の組織部位に電気的刺激を送達することによって、患者12に皮質刺激療法を提供し得る。IMD16が、脳28に電気的刺激を送達して、同調された脳信号を混乱させることによりパーキンソン病を治療する場合、標的刺激部位は、例えば、視床下核(STN)、淡蒼球内節(GPi)、淡蒼球外節(GPe)、大脳脚橋核(PPN)、視床、黒質網様部(SNr)、内包、および/または運動皮質を含む1つ以上の脳基底核部位を含み得る。IMD16が、同調された脳信号を混乱させることによって、てんかんを治療するために、脳28に電気的刺激を送達する場合、標的刺激部位は、例えば、視床前核、内包、帯状束、嗅内皮質、海馬、脳弓、乳頭体、またはMMTを含む、パペス回路内の1つ以上の部位を含み得る。ベータ周波数範囲で振動する脳信号は、病的な脳信号と見なされ得る。以下に説明するように、IMD16は、電気的活動を同調させるように構成された電気的刺激パルスを送達し、次いで、病理学的脳信号の周波数に基づいて、同調された電気的活動を混乱させ得る。特定の疾患(例えば、パーキンソン病)を伴う用例では、IMD16は、DBSを介して、130ヘルツ刺激(例えば、F_stim)での脳振動を同調させ得る。同調された脳の振動は、患者12のSTNおよび皮質に見出され得る。したがって、患者12の同調された脳振動は、同調刺激周波数の半分(例えば、この特定の例では65ヘルツ)でSTNおよび皮質において観察され得る。そのような場合、IMD16は、本明細書に記載されるように非同期パルスのセットを送達することによって、同調された脳振動(例えば、F_stimの半分を含む同調された振動)を混乱させ得る。
【0031】
別の例では、病理学的周波数範囲は、約11ヘルツ~約35ヘルツのベータ周波数範囲である。IMD16が、脳28の1つ以上の部位で、生体電気脳信号を感知して、患者からのフィードバックを受信し、かつ/または患者固有のバイオマーカに基づいて、刺激パルスをテーラリングする例では、患者12の脳28に送達された電気的刺激の標的刺激部位は、感知部位と同じであり、かつ/または異なり得る。
【0032】
図1に示される例では、IMD16は、患者12の鎖骨の上方の皮下ポケット内に埋め込まれ得る。他の例では、IMD16は、患者12の腹部もしくは臀部における、または患者12の頭蓋に近接する皮下ポケットなど、患者12の他の領域内に埋め込まれ得る。埋め込まれたリード延長部18は、コネクタブロック30を介して、IMD16に結合されている。いくつかの例では、電気接点は、リード20によって担持された電極24、26を、IMD16に電気的に結合し得る。リード延長部18は、IMD16の埋め込み部位から、患者12の頭蓋骨を通過して、脳28にアクセスする。IMD16は、処理回路、感知回路、メモリなどの構成要素を実質的に封入するための密閉ハウジング17を備え得る。
【0033】
リード20Aおよび20Bは、脳28の1つ以上の領域に電気的刺激を送達するために、それぞれ脳28の右半球および左半球内に埋め込まれ得、これは、管理するために治療システム10が実装される患者の状態のタイプなどの多くの要因に基づいて、選択され得る。リード20およびIMD16のための他の埋め込み部位が企図されている。例えば、IMD16は、頭蓋32上もしくは頭蓋内に埋め込まれ得るか、またはリード20は、同じ半球内に埋め込まれ得るか、またはIMD16は、脳28の一方もしくは両方の半球に埋め込まれる単一のリードに結合され得る。
【0034】
リード20は、患者12の障害に関連付けられた患者の症状を管理するために、脳28内の1つ以上の標的組織部位に電気的刺激を送達するように位置決めされ得る。リード20は、頭蓋32におけるそれぞれの穴を通して、脳28の所望の場所に電極24、26を位置決めするために埋め込まれ得る。リード20は、電極24、26が治療中に脳28内の標的組織部位に電気的刺激を提供することができるように、脳28内の任意の場所に配置され得る。例えば、パーキンソン病の場合、例えば、リード20を埋め込み、例えば、視床下核(STN)、淡蒼球内節(GPi)、淡蒼球外節(GPe)、大脳脚橋核(PPN)、視床、黒質網様部(SNr)、内包、および/または運動皮質を含む1つ以上の脳基底核部位に電気的刺激を送達し得る。別の例として、てんかんの場合、例えば、リード20を埋め込み、例えば、視床前核、内包、帯状束、嗅内皮質、海馬、脳弓、乳頭体、またはMMTを含む、パペス回路内の1つ以上の部位に電気的刺激を送達し得る。
【0035】
リード20は、共通のリード延長部18に結合されているものとして図1に示されているが、他の例では、リード20は、別個のリード延長部を介してIMD16に結合されるか、またはIMD16に直接結合され得る。さらに、図1は、リード延長部18を介してIMD16に結合された2つのリード20Aおよび20Bを含むものとしてシステム10を示しているが、いくつかの例では、システム10は、1つのリードまたは3つ以上のリードを含み得る。
【0036】
リード20は、発作障害または精神障害などの運動障害に加えて、任意の数の神経障害または疾患を治療するために、電気的刺激を送達し得る。運動障害の例は、筋肉制御の低下、運動障害または硬直、動作緩慢、リズミカルな運動亢進、非リズミカルな運動亢進、ジストニア、振戦および無動などの他の運動の問題を含む。運動障害は、パーキンソン病、ハンチントン病またはてんかんなどの患者の病状に関連付けられ得る。精神障害の例には、MDD、双極性障害、不安障害、心的外傷後ストレス障害、気分変調性障害およびOCDが含まれる。上記のように、本開示の例は、主に、パーキンソン病の治療に関して説明されているが、患者12への電気的刺激の送達を介した、他の患者の障害の治療が企図されている。
【0037】
リード20は、それぞれの穿頭孔を通して、または患者12の頭蓋32の共通の穿頭孔を通してなど、任意の好適な技術を介して、脳28の所望の場所内に埋め込まれ得る。リード20は、リード20の電極24、26が治療中に標的組織に電気的刺激を提供することができるように、脳28内の任意の場所に配置され得る。IMD16の刺激生成器(図示せず)から生成された電気的刺激は、患者の障害に関連付けられた事象の発症を防止するか、または障害の症状を軽減するのに役立ち得る。例えば、IMD16によって脳28に送達された第1の電気的刺激パルス列は、電気的活動を同調させるように構成された周波数(および/または他の刺激パラメータ値)を有し得、一方、第2の非同期電気的刺激パルスまたはパルス列は、同調された生体電気脳信号を混乱させるように構成された周波数を有し得る。
【0038】
図1に示される例では、リード20の電極24、26が、リング電極として示されている。リング電極は、リード20に隣接する任意の組織に電場を送達し得る。他の例では、リード20の電極24、26は、異なる構成を有し得る。例えば、リード20の電極24、26は、成形された電場を生成することができる複雑な電極アレイ形状を有し得る。複雑な電極アレイ形状は、リング電極ではなく、各リード20の周囲の周りに複数の電極(例えば、部分的なリングまたはセグメント化された電極)を含み得る。このようにして、電気的刺激は、リード20から特定の方向に向けられて、治療効果を高め、非同期パルスを使用して、特定の病理学的領域を標的とし、かつ/または同調刺激パルスを使用して、同調のために特定の領域を標的とし得る。
【0039】
いくつかの例では、リードは、セグメント化された電極の1つ以上のリングとともに、1つ以上のリング電極を含み得る。さらに、IMD16のハウジング17は、1つ以上の刺激および/または感知電極を含み得る。さらに、リード20は、パドルリード、球形リード、円筒形リード、湾曲可能なリードまたは患者12を治療するのに有効な任意の他のタイプの形状であり得る。
【0040】
IMD16は、電気的刺激療法を生成し、かつ/または同調刺激パルスを定義する1つ以上の刺激パラメータもしくはパラメータ値および非同期刺激パルスを定義する1つ以上の刺激パラメータもしくはパラメータ値に従って、患者12の脳28に送達し得る。IMD16が、電気パルスの形態で電気的刺激を送達する場合、例えば、刺激は、パルス振幅、パルス速度もしくは周波数、パルス幅またはパルス数などの選択されたパルスパラメータによって、特徴付けられ得る。IMD16が、正弦波の形態で電気的刺激を送達する場合、例えば、刺激は、振幅またはサイクル周波数などの選択された正弦波パラメータによって特徴付けられ得る。本明細書で使用されるいくつかの例では、「刺激パルス」またはパルスは、一般に、文脈に応じて、前述の正弦波などのアナログ波形を引き起こすデジタル信号を指し得るか、または電気パルスを指し得る。いくつかの例では、刺激の送達に異なる電極が利用可能である場合、プログラムは、選択された電極およびそれらのそれぞれの極性を含むことができる異なる電極の組み合わせによって、さらに特徴付けられ得る。電気的刺激の正確なパラメータ値は、特定の患者および患者の状態だけでなく、関与する特定の標的刺激部位(例えば、脳の領域)に固有であり得る。
【0041】
患者12の障害を管理するために、電気的刺激を送達することに加えて、治療システム10は、患者12の1つ以上の生体電気脳信号を監視する。例えば、IMD16は、脳28の1つ以上の領域内の生体電気脳信号を感知する感知回路を含み得る。図1に示される例では、電極24、26によって生成された信号は、導体を介して、IMD16に伝導される。以下でさらに詳細に説明するように、いくつかの例では、IMD16の処理回路は、患者12の脳28内の生体電気信号を感知し、電極24、26を介して、脳28への同調刺激パルスおよび非同期パルスの生成または送達を制御し得る。
【0042】
いくつかの例では、IMD16の感知回路は、電極24、26、または患者12の脳信号を監視するように位置決めされた他の電極から、生体電気信号を受信し得る。電極24、26はまた、脳28内の標的部位に電気的刺激を送達するため、かつ脳28内の脳信号を感知するために使用され得る。ただし、IMD16は、別個の感知電極を使用して、生体電気脳信号を感知することもできる。いくつかの例では、IMD16の感知回路は、脳28に電気的刺激を送達するためにも使用される電極24、26のうちの1つ以上を介して、生体電気脳信号を感知し得る。他の例では、電極24、26のうちの1つ以上を使用して、生体電気脳信号を感知し得、一方で異なる電極24、26のうちの1つ以上を使用して、電気的刺激を送達し得る。別の例では、システム10は、患者12から患者固有のバイオマーカ、または場合によっては生体電気信号を受信するウェアラブルデバイス(図示せず)または外部監視デバイスなどの外部デバイス34を含み得る。次に、外部デバイス34は、テレメトリ回路を介して、バイオマーカ情報および/または生体電気信号情報を、さらなる処理のために、プログラマ14、IMD16、および/または外部サーバ(図示せず)に送信し得る。したがって、IMD16、外部デバイス34およびプログラマ14は、本開示の様々な技術を実行するために、ネットワーク接続を介して、外部サーバとインターフェースし得る。いずれの場合も、外部デバイスは、患者12の手首もしくは足首に装着されたウェアラブルデバイス、患者12の頭部上にもしくは近接して装着されたヘッドピースもしくはイヤピース、バイオマーカを取得するように構成されたポータブルもしくはモバイルデバイスまたは他の外部センサデバイス(例えば、センサを有するスマートフォン)などを含み得る。
【0043】
IMD16によって使用された特定の刺激電極および感知電極に応じて、IMD16は、脳信号を監視し、かつ脳28の同じ領域または脳28の異なる領域に向けて、電気的刺激を送達し得る。いくつかの例では、生体電気脳信号を感知するために使用された電極は、電気的刺激を送達するために使用された同じリード上に位置し得るが、他の例では、生体電気脳信号を感知するために使用された電極は、電気的刺激を送達するために使用された電極とは異なるリード上に位置し得る。いくつかの例では、患者12の脳信号は、外部電極、例えば、外部デバイス34の頭皮電極で監視され得る。さらに、いくつかの例では、脳28の生体電気脳信号を感知する感知回路(例えば、脳28内の活動を示す電気信号を生成する感知回路)は、IMD16のハウジング17から物理的に別個のハウジング内にある。しかしながら、図1に示される例および説明を容易にするために本明細書で主に参照される例では、IMD16の様々な回路は、共通の外部ハウジング17内に封入されている。
【0044】
IMD16によって監視された生理学的信号(例えば、生体電気脳信号)は、脳組織全体の電位差の合計によって生成された電流の変化を反映し得る。監視された生体電気脳信号の例には、脳波(EEG)信号、皮質脳波(ECoG)信号、患者12の脳28の1つ以上の領域内から感知された局所電場電位(LFP)、患者の脳内の単一細胞からの活動電位および/または患者12の脳28内の単一細胞の微小電極記録(MER)が含まれるが、これらに限定されない。他の信号の中でもとりわけ、これらの例示的な生体電気脳信号を使用して、1つ以上のバイオマーカを識別し得る。例えば、処理回路40は、生の、または場合によっては、フィルタリングされた生体電気信号、生理学的信号などの中の1つ以上のバイオマーカを識別し得る。次いで、1つ以上のバイオマーカを使用して、同調刺激パルスおよび/または非同期刺激パルスのパラメータを判定し得る。一例では、処理回路40は、生理学的信号の周波数を、患者12の疾患または他の問題を示すバイオマーカとして識別し得る。すなわち、バイオマーカは、IMD16のような処理回路が、1つ以上の生理学的信号から識別し得る特徴または特性を含み得る。
【0045】
プログラマ14は、電気的刺激情報を提供または検索するために、必要に応じて、IMD16と無線で通信する。プログラマ14は、ユーザ、例えば、臨床医および/または患者12が、IMD16と通信するために使用し得る外部コンピューティングデバイスである。例えば、プログラマ14は、臨床医が、IMD16と通信し、IMD16のための1つ以上の電気的刺激プログラムをプログラムするために使用する臨床医プログラマであり得る。いくつかの例では、プログラマ14は、患者12がプログラムを選択し、かつ/または電気的刺激パラメータを閲覧し、かつ修正することを可能にする患者プログラマであり得る。
【0046】
プログラマ14は、ユーザによって閲覧可能なディスプレイおよびプログラマ14に入力を提供するためのインターフェース(すなわち、ユーザ入力機構)を有するハンドヘルドコンピューティングデバイスであり得る。例えば、プログラマ14は、ユーザに情報を提示するディスプレイスクリーン(例えば、タッチスクリーンディスプレイ)を含み得る。さらに、プログラマ14は、タッチスクリーン、キーパッド、ボタン、周辺ポインティングデバイスまたはユーザがプログラマ14のユーザインターフェースをナビゲートして、入力を提供することを可能にする別の入力機構を含み得る。いくつかの例では、プログラマ14は、IMD16が患者12から生理学的信号を取得し、生理学的信号および患者12からの1つ以上のバイオマーカを識別し得る方法と同様に、患者12から生理学的信号を取得し、生理学的信号からの、および患者12の1つ以上のバイオマーカを識別するように構成され得る。別の例では、プログラマ14またはIMD16は、外部デバイス34などの外部デバイスからバイオマーカ情報を受信するように構成され得る。
【0047】
他の例では、プログラマ14は、専用のコンピューティングデバイスではなく、より大きなワークステーションまたは別の多機能デバイス内の別個のアプリケーションであり得る。例えば、多機能デバイスは、ノートブックコンピュータ、タブレットコンピュータ、ワークステーション、携帯電話、携帯情報端末、またはコンピューティングデバイスがプログラマ14として動作することを可能にするアプリケーションを実行し得る別のコンピューティングデバイスであり得る。コンピューティングデバイスに結合された無線アダプタは、コンピューティングデバイスとIMD16との間の通信を可能にし得る。
【0048】
プログラマ14が臨床医による使用のために構成されているときに、プログラマ14を使用して、初期プログラミング情報をIMD16に送信し得る。この初期情報は、リード20のタイプ、リード20上の電極24、26の配置、脳28内のリード20の位置、電気的刺激パラメータ値を定義するプログラムおよびIMD16へのプログラミングに役立ち得る他の任意の情報などのハードウェア情報を含み得る。
【0049】
臨床医はまた、プログラマ14の助けを借りて、IMD16内にプログラムを記憶し得る。プログラミングセッション中に、臨床医は、患者の症状に対処するために、患者12に効果的な療法を提供し得る1つ以上の電気的刺激パラメータを判定し得る。例えば、臨床医は、同調刺激パルスが送達される1つ以上の電極の組み合わせおよび/または非同期刺激パルスが送達される1つ以上の電極の組み合わせを選択し得る。プログラミングセッション中に、患者12は、評価されている特定の電気的刺激の有効性に関して、臨床医にフィードバックを提供し得る。他の例では、臨床医は、患者12、心拍数、呼吸数、筋活動、灌流指数、LFP信号、EEG信号、ECoG信号などの1つ以上の生理学的パラメータに基づいて、有効性を評価し得る。
【0050】
プログラマ14はまた、同調刺激パルスが送達され、刺激パラメータが、同調刺激パルスに対応するとき、非同期刺激パルスが送達され、刺激パラメータが、非同期刺激パルスに対応するときなどの、電気的刺激が送達されているとき、および休止位相中などに、いずれも送達されていないときに、患者12に指標を提供し得る。いくつかの例では、プログラマ14は、電気的刺激を閉ループ構成から開ループ構成に、またはその逆に切り替える能力を含み得る。
【0051】
プログラマ14が、臨床医または患者の使用のために構成されているかどうかにかかわらず、プログラマ14は、無線通信を介して、IMD16、および任意選択的に別のデバイスと通信するように構成されている。例えば、プログラマ14は、IMD16との無線通信を介して、通信し得る。プログラマ14はまた、有線接続、または802.11もしくはBluetooth(登録商標)仕様セットに従ったRF通信、IRDA仕様セットに従った赤外線(IR)通信、または他の標準もしくは独自のテレメトリプロトコルなどの様々なローカル無線通信技術のうちのいずれかを使用する無線接続を介して、別のプログラマまたは外部デバイスと通信し得る。プログラマ14はまた、磁気もしくは光ディスク、メモリカード、またはメモリスティックなどのリムーバブルメディアの交換を介して、他のプログラミングデバイスまたは外部デバイス34と通信し得る。さらに、プログラマ14は、例えば、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、公衆交換電話網(PSTN)、または携帯電話ネットワークを介して通信する、当技術分野で既知の遠隔テレメトリ技術を介して、IMD16および別のプログラマと通信し得る。
【0052】
治療システム10は、数ヶ月または数年にわたって、患者12に慢性刺激療法を提供するために実装され得る。しかしながら、システム10はまた、完全な埋め込みを行う前に治療を評価するために、試験的に用いられ得る。一時的に実装される場合、システム10のいくつかの構成要素は、患者12内に埋め込まれないことがある。例えば、患者12は、IMD16ではなく、試験刺激装置などの外部医療デバイスに嵌合され得る。外部医療デバイスは、経皮的延長部を介して、経皮的リードまたは埋め込まれたリードに結合され得る。試験刺激装置が、DBSシステム10が患者12に効果的な治療を提供することを示している場合、臨床医は、比較的長期の治療のために、患者12内に慢性刺激装置を埋め込み得る。
【0053】
本開示の技術によれば、IMD16は、リード20に沿って配設された電極24、26を介して、患者12の脳28の1つ以上の生体電気脳信号を感知する。いくつかの例では、IMD16は、病的疾患に関連付けられた周波数で振動する生体電気脳信号の1つ以上の振動を感知する。いくつかの例では、1つ以上の振動は、約11ヘルツ~約35ヘルツのベータ周波数範囲内にある。他の例では、1つ以上の振動は、約4ヘルツ~約12ヘルツのシータ周波数帯域内にある。他の例では、1つ以上の振動は、約35ヘルツ~約200ヘルツのガンマ周波数帯域内にある。いくつかの例では、1つ以上の振動は、振戦、硬直、または動作緩慢などのパーキンソン病の1つ以上の症状に関連付けられている。いくつかの例では、1つ以上の振動は、ジストニア、本態性振戦、トゥーレット症候群、強迫性障害、てんかん、うつ病などの別の疾患の1つ以上の症状に関連付けられている。
【0054】
いくつかの例では、IMD16は、最初に大きな神経回路をプライミングし、次に局所破壊的、治療的刺激または干渉を送達することを目的とする刺激プログラムを実行し得る。例えば、IMD16は、脳領域を同調させ、脳のネットワークを動員するように構成された周波数、パルス幅、および振幅で初期プライミング刺激を送達し得る。例えば、IMD16は、脳28のSTN領域を同調させるように構成された初期プライミング刺激を送達し得る。そのような例では、IMD16は、脳基底核脳ネットワークなどの脳ネットワークを動員し得る。
【0055】
次に、IMD16は、周波数、振幅またはパルス幅の異なる組み合わせで、非同期パルス(例えば、治療パルス、非同期位相パルス列)を送達して、方向性を有する最も効果的なボリュームを標的とするために、より小さく、より局所的なニューロンボリュームを動員し得る。例えば、セグメント化された電極リード20は、電場生成のための方向性を提供するために使用され得る。
【0056】
いくつかの例では、非同期刺激パルスが、同調された電気的活動(例えば、脳28の生体電気脳信号の同調された振動)との破壊的な干渉を引き起こすために、非同期刺激パルスは、120度より大きく240度未満(例えば、約180度など)の位相量だけ、または2π/3ラジアンより大きく4π/3ラジアン未満(例えば、約πラジアンなど)の位相量だけ、1つ以上の同調された振動から位相がずれ得る。さらに、脳28の生体電気脳信号の1つ以上の振動と同位相の非同期刺激パルス(例えば、約0度~120度の範囲、約240度~約360度の範囲、約0ラジアン~約2π/3ラジアンの範囲、または約4π/3ラジアン~2πラジアンの範囲の位相量)を送達することは、1つ以上の振動との建設的な干渉を引き起こし得るか、目標が病的な振動を抑制することである場合に、回避され得るか、または、目標が所望の振動を促進することである場合に、好まれ得ることに留意されたい。いずれにせよ、建設的な干渉は、場合によっては、同調された電気的活動の混乱の一形態を構成し得る。
【0057】
いくつかの例では、IMD10は、患者12のバイオマーカに基づいて選択された非同期パルスを含む電気的刺激療法を送達する。しかしながら、他の例では、電気的刺激の代わりに、IMD10は、他のタイプの療法を送達し得る。例えば、IMD10は、患者12の1つ以上のバイオマーカに基づいて選択された周波数を含む光パルス(例えば、光遺伝学的療法)を送達し得る。さらに別の例では、IMD10は、患者12の1つ以上のバイオマーカに基づいて選択された周波数を含む超音波を送達し得る。いずれの場合でも、非同期パルスは、患者12の同調された電気的活動の少なくとも一部分を混乱させるか、またはそれに干渉するように構成され得る。
【0058】
図2は、例示的なIMD16の構成要素を示す機能ブロック図である。図2に示される例では、IMD16は、メモリ42、処理回路40、刺激生成器44、感知回路46、スイッチ回路48、テレメトリ回路50、および電源52を含む。刺激生成器44および処理回路40は、図2の例に示される他の回路およびモジュールとともに、ハウジング17内に含まれ得る。処理回路40は、任意の1つ以上のマイクロプロセッサ、コントローラ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、個別論理回路、または他の処理回路を含み得る。処理回路40を含む、本明細書で説明されるプロセッサに起因する機能は、ハードウェアデバイスによって提供され、ソフトウェア、ファームウェア、ハードウェア、またはそれらの任意の組み合わせとして具体化され得る。
【0059】
図2に示される例では、感知回路46は、電極24、26の選択された組み合わせを介して、患者12の生体電気脳信号を感知するように構成され得る。感知回路46は、選択電極24、26を介して、特定の領域、例えば、脳28の視床前核、視床、または皮質の電気的活動を測定する回路を含み得る。パーキンソン病の治療のために、感知回路46は、視床下核(STN)、淡蒼球内節(GPi)、淡蒼球外節(GPe)、および/または脳基底核の他のエリアの電気的活動を測定するように構成され得る。てんかんの治療のために、感知回路46は、例えば、視床前核、内包、帯状束、嗅内皮質、海馬、脳弓、乳頭体、またはMMTを含む、パペス回路内の1つ以上の部位の電気的活動を測定するように構成され得る。
【0060】
感知回路46は、生理学的信号を実質的に連続的に、または一定の間隔で、これらに限定されないが、約1ヘルツ~約1000ヘルツ、約250ヘルツ~約1000ヘルツなど、または約500ヘルツ~約1000ヘルツの周波数などでサンプリングし得る。感知回路46は、2つの電極24、26間の電圧差を判定するための回路を含み、これは、概して、脳28の特定の領域内の電気的活動を示す。電極24、26のうちの1つは、参照電極として機能し得、感知回路46が、患者12内に埋め込まれる場合、IMD16のハウジング17または感知回路46がIMD16から分離されている例における感知回路は、生理学的信号を感知するために使用され得る1つ以上の電極を含み得る。
【0061】
感知回路46の出力は、処理回路40によって受信され得る。場合によっては、処理回路40は、生理学的信号に追加の処理を適用し、例えば、生理学的信号を処理し、かつ/または増幅するために出力をデジタル値に変換し得る。さらに、いくつかの例では、感知回路46または処理回路40は、患者12の体内で生成された心臓信号からのノイズなど、信号から望ましくないアーチファクトを除去するために、選択された電極24、26からの信号をフィルタリングし得る。感知回路46は、図2の刺激生成器44および処理回路40を有する共通の外部ハウジング17に組み込まれているが、他の例では、感知回路46は、別個のハウジング内にあり、有線または無線通信技術を介して、処理回路40と通信する。いくつかの例では、生理学的信号は、外部電極(例えば、頭皮電極)を介して、感知され得る。
【0062】
いくつかの例では、感知回路46は、感知された生理学的信号の特定の周波数帯域の電力レベルにチューニングし、かつ抽出するための回路を含み得る。したがって、感知された生理学的信号の特定の周波数帯域の電力レベルは、処理回路40による信号のデジタル化の前に抽出され得る。信号がデジタル化される前に特定の周波数帯域の電力レベルにチューニングし、かつ抽出することにより、信号のデジタル化前に感知された生理学的信号の特定の周波数帯域の電力レベルを抽出する回路を含まないシステムと比較して、比較的遅い速度で周波数領域分析アルゴリズムを実行することが可能であり得る。いくつかの例では、感知回路46は、異なる周波数帯域での同時活動を監視するために、すなわち、感知された生理学的信号の2つ以上の周波数帯域の電力レベルを抽出するために、2つ以上のチャネルを含み得る。これらの周波数帯域は、アルファ周波数帯域(例えば、8ヘルツ~12ヘルツ)、ベータ周波数帯域(例えば、約12ヘルツ~約35ヘルツ)、ガンマ周波数帯域(例えば、約35ヘルツ~約200ヘルツの間)、または他の周波数帯を含み得る。
【0063】
いくつかの例では、感知回路46は、チョッパー安定化をヘテロダイン信号処理と混合して、低雑音増幅器をサポートするアーキテクチャを含み得る。いくつかの例では、感知回路46は、チョッパー安定化スーパーヘテロダイン計装増幅器および信号分析ユニットを含む周波数選択信号モニタを含み得る。周波数選択信号モニタに含まれ得る例示的な増幅器は、「FREQUENCY SELECTIVE MONITORING OF PHYSIOLOGICAL SIGNALS」と題され、2008年9月25日に出願された、本発明の譲受人に譲渡されたDenisonらの米国特許公開第2009/0082691号にさらに詳細に記載されている。Denisonらの米国特許公開第2009/0082691号は、参照によりその全体が本明細書に組み込まれる。
【0064】
Denisonらの米国特許公開第2009/0082691号に記載されているように、周波数選択信号モニタは、ヘテロダイン式チョッパー安定化増幅器アーキテクチャを利用して、生理学的信号の選択された周波数帯域を分析用のベースバンドに変換し得る。生理学的信号は、病理学的周波数で振動する生理学的信号を検出するために、1つ以上の選択された周波数帯域で分析され得る生体電気脳信号を含み得、応答として、処理回路40は、本明細書に記載されている技術のうちのいくつかに従って、電気的刺激を送達し、同調された電気的活動を同調させ、かつ混乱させ得る。
【0065】
いくつかの例では、感知回路46は、IMD16が患者12に療法を送達するのと実質的に同時に、脳信号を感知し得る。他の例では、感知回路46は、脳信号を感知し得、IMD16は、異なる時間に電気的刺激を送達し得る。
【0066】
いくつかの例では、感知回路46は、追加の生理学的信号を監視し得る。好適な患者の生理学的信号は、筋緊張(例えば、筋電図(EMG)を介して感知される)、眼球運動(例えば、筋電図(EOG)またはEEGを介して感知される)および体温が含み得るが、これらに限定されない。いくつかの例では、患者の運動は、アクチグラフィーを介して、監視され得る。一例では、処理回路40は、患者12の筋緊張を反映するEMG信号を監視して、患者の身体運動をバイオマーカとして識別し得る。いくつかの例では、処理回路40は、IMD16に含まれ、かつ/またはIMD16の外部にある1つ以上のモーションセンサを介して患者の身体運動を監視し、かつテレメトリ回路50を介して情報をIMD16に送信し得る。
【0067】
いくつかの例では、感知回路46は、パーキンソン病またはてんかんなどの疾患の症状を示すバイオマーカを監視し得る。例えば、感知回路46は、パーキンソン病の1つ以上の症状に対応し得る筋肉のこわばりまたは運動(遅い運動、振戦、および運動の欠如)を示す1つ以上のパラメータを監視し得る。そのようなパラメータは、EMG信号、アクチグラフィー、加速度計信号および/または他の好適な信号によって検出され得る。いくつかの例では、そのようなパラメータの監視に基づくパーキンソン病の1つ以上の症状の検出に応答して、処理回路40は、特定の周波数で振動するように脳信号を同調させるように選択された電気的刺激を生成し、次に、周波数を調整して、特定の同調で振動していた、または振動している同調された電気的活動の部分を混乱させるように、刺激生成器44を制御し得る。
【0068】
メモリ42は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、不揮発性RAM(NVRAM)、電気的消去可能プログラマブルROM(EEPROM)、フラッシュメモリなどの任意の揮発性または不揮発性媒体を含み得る。メモリ42は、処理回路40によって実行されると、IMD16に、本明細書で説明される様々な機能を実行させるコンピュータ可読命令を記憶し得る。メモリ42は、いくつかの例では、例えば、処理回路40などの1つ以上のプロセッサに、本開示で説明される1つ以上の例示的な技術を実装させる命令を含む非一時的なコンピュータ可読記憶媒体と見なされ得る。「非一時的」という用語は、記憶媒体が搬送波または伝搬信号で具体化されていないことを示している場合がある。しかしながら、「非一時的」という用語は、メモリ42が移動不可能であることを意味すると解釈されるべきではない。一例として、メモリ42をIMD16から取り外して、別のデバイスに移動させ得る。特定の例では、非一時的な記憶媒体は、経時的に変化する可能性のあるデータを(例えば、RAMに)記憶し得る。
【0069】
図2に示す例では、リード20Aの電極24のセットは、4つの電極を含み、リード20Bの電極26のセットは、4つの電極を含む。処理回路40は、電極24、26の選択された組み合わせで、生理学的信号を感知するように、スイッチ回路48を制御する。特に、スイッチ回路48は、生理学的信号、例えば、患者12の脳28の特定の部分を選択的に感知するために、感知回路46と選択された電極24、26との間の電気接続を作成または遮断し得る。処理回路40はまた、刺激生成器44によって生成された刺激信号を、電極24、26の選択された組み合わせに適用するように、スイッチ回路48を制御し得る。例えば、処理回路40は、刺激パラメータに従って、刺激パルスを生成するように、刺激生成器44を制御し得る。次に、処理回路40は、刺激生成器44に、刺激パルスを1つ以上の電極24、26に送達させ得る。特に、スイッチ回路48は、刺激信号をリード20内の選択された導体に結合させもてよく、これは、次に、選択された電極24、26にわたって、刺激信号を送達する。スイッチ回路48は、刺激エネルギーを選択された電極22A、22Bに選択的に結合し、選択された電極24、26で生体電気脳信号を選択的に感知するように構成されたスイッチアレイ、スイッチマトリックス、マルチプレクサ、または任意の他のタイプのスイッチング回路であり得る。したがって、刺激生成器44は、スイッチ回路48およびリード20内の導体を介して、電極24、26に結合される。しかしながら、いくつかの例では、IMD16は、スイッチ回路48を含まない。いくつかの例では、IMD16は、個々の電極ごとに別個の電流ソースおよびシンクを含むことができ、スイッチ回路48が使用されない場合がある。
【0070】
刺激生成器44は、単一のチャネルまたはマルチチャネル刺激生成器であり得る。例えば、刺激生成器44は、単一の電極の組み合わせを介して、所与の時間に、単一の刺激パルス、複数の刺激パルス、もしくは連続信号、または複数の電極の組み合わせを介して、所与の時間に、複数の刺激パルスを送達することが可能であり得る。しかしながら、いくつかの例では、刺激生成器44およびスイッチ回路48は、時間インターリーブベースで、複数のチャネルを送達するように構成され得る。例えば、スイッチ回路48は、刺激エネルギーの複数のプログラムまたはチャネル(例えば、同調刺激パルスおよび非同期刺激パルス)を送達するために、刺激生成器44の出力を、異なる時間に異なる電極の組み合わせにわたって時間分割するように機能し得る。
【0071】
テレメトリ回路50は、処理回路40の制御下で、IMD16とプログラマ14または外部デバイス34との間の無線通信をサポートし得る。場合によっては、外部デバイス34のうちの1つは、外部データサーバ(例えば、リモートサーバ)を含み得る。例えば、IMD16の処理回路40は、生理学的信号、バイオマーカ、特定の睡眠段階の発作確率メトリック、患者12の発作確率プロファイルなどを、テレメトリ回路50を介して、プログラマ14または外部デバイス34内のテレメトリ回路に送信し得る。したがって、テレメトリ回路50は、継続的に、定期的な間隔で、またはIMD16もしくはプログラマ14からの要求に応じて、プログラマ14に情報を送信し得る。
【0072】
電源52は、IMD16の様々な構成要素に動作電力を送達する。電源52は、充電式または非充電式電池、および場合によっては発電回路を含み得る。いくつかの例では、電力要件は、IMD16が患者の運動を利用し、運動エネルギー掃気デバイスを実装して、充電式バッテリをトリクル充電することを可能にするのに十分小さくあり得る。
【0073】
本開示の1つ以上の例によれば、処理回路40および/または別のデバイスの処理回路(例えば、プログラマ14の処理回路)は、電極24、26を介して、患者12の病理学的疾患に関連付けられた生理学的信号(例えば、脳信号)の1つ以上の振動を感知するように、感知回路46を制御し得る。いくつかの例では、1つ以上の振動は、約11ヘルツ~約35ヘルツのベータ周波数範囲内にある。他の例では、1つ以上の振動は、約4ヘルツ~約12ヘルツのシータ周波数帯域内にある。いくつかの例では、1つ以上の振動は、振戦、硬直または動作緩慢などのパーキンソン病の1つ以上の症状に関連付けられている。いくつかの例では、1つ以上の振動は、ジストニア、本態性振戦、トゥーレット症候群、強迫性障害、てんかん、うつ病などの別の疾患の1つ以上の症状に関連付けられている。
【0074】
いくつかの例では、処理回路40は、患者12の脳28内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定し得る。例えば、処理回路40は、テレメトリ回路50を介して、別のデバイスから刺激パラメータを受信し、刺激パラメータが第1の複数の刺激パラメータとして機能することを判定し得る。別の例では、処理回路40は、同調刺激パルスを定義するために使用する刺激パラメータを判定するために、様々なアルゴリズムを実行し得る。したがって、処理回路40は、刺激生成器44に、第1の複数の刺激パラメータに従って、同調刺激パルスを電極24、26の少なくとも1つに送達させ得る。さらに、処理回路40は、同調刺激パルスによって同調された電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定し得る。そのような場合、処理回路は、次に、刺激生成器44に、第2の複数の刺激パラメータに従って、少なくとも1つの非同期刺激パルスを送達させ得る。いくつかの例では、処理回路40は、非同期パルスの送達中に、同調刺激パルスを停止させ得る。別の例では、処理回路40は、同調刺激パルスが(例えば、並列に)依然として送達されている間に、非同期パルスの送達を引き起こし得る。
【0075】
いくつかの例では、患者12の生理学的信号の1つ以上の振動を感知することに応答して、処理回路40および/または別のデバイスの処理回路(例えば、外部プログラマ14の処理回路)は、識別されたバイオマーカに基づいて、同調刺激パルス、非同期パルスまたはその両方を判定し得る。一例では、1つ以上の外部センサは、テレメトリ回路を介して、IMD16、プログラマ14などに生理学的信号を送信し得る。例えば、外部センサは、患者12によって装着され得るか、または他の方法で患者12からの生理学的データを取得するように構成されている外部センサであり得る。例えば、外部センサは、患者12の運動情報を感知し、テレメトリ回路を介して、そのような情報を送信し得る。次に、IMD16の処理回路40は、患者12の1つ以上のバイオマーカを識別するために、生理学的信号情報を利用し得る。処理回路40は、同調刺激パルス、非同期パルスまたはその両方について、患者にテーラリングされた刺激パラメータを判定するために、識別されたバイオマーカ情報を使用し得る。パーキンソン病の治療を伴う例では、処理回路40は、疾患バイオマーカの減少を引き起こすように、非同期パルスのパラメータを判定し得る。本明細書で論じられるように、処理回路40は、生理学的信号情報によって示され得るように、経時的な1つ以上の疾患バイオマーカの状態(例えば、流行性バイオマーカ、減少性バイオマーカなど)に応じて、これらのパラメータを経時的に調整し得る。処理回路40は、最初にそのような信号を使用して、初期刺激パラメータを判定するだけでなく、フィードバック信号などの信号を使用して、経時的に刺激パラメータをさらにテーラリングし得ることが理解されよう。
【0076】
図3は、処理回路60、メモリ62、テレメトリ回路64、ユーザインターフェース66および電源68を含む例示的な外部医療デバイスプログラマ14の概念ブロック図である。処理回路60は、ユーザインターフェース66およびテレメトリ回路64を制御し、情報および命令をメモリ62に記憶し、情報および命令をメモリ62から検索する。プログラマ14は、臨床医プログラマまたは患者プログラマとして使用するように構成され得る。処理回路60は、1つ以上のマイクロプロセッサ、DSP、ASIC、FPGAまたは他の同等の統合もしくは個別論理回路を含む1つ以上のプロセッサの任意の組み合わせを含み得る。したがって、処理回路60は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組み合わせであるかどうかにかかわらず、本明細書で処理回路60に帰属する機能を実行するための任意の好適な構造を含み得る。
【0077】
臨床医または患者12などのユーザは、ユーザインターフェース66を介して、外部デバイス14と相互作用し得る。ユーザインターフェース66は、神経変調システムまたは他のタイプの電気的刺激システムなどの電気的刺激に関連する情報を提示するために、LCDもしくはLEDディスプレイ、タッチスクリーンまたは他のタイプのスクリーンなどのディスプレイ(図示せず)を含む。ユーザインターフェース66はまた、ユーザから、タッチ入力などの入力を受信するための入力機構を含み得る。入力機構は、例えば、ボタン、キーパッド(例えば、英数字キーパッド)、周辺ポインティングデバイス、タッチスクリーンまたはユーザがプログラマ14の処理回路60によって提示されるユーザインターフェースを通じてナビゲートして、入力を提供することを可能にする別の入力機構を含み得る。
【0078】
メモリ62は、ユーザインターフェース66およびテレメトリ回路64を動作させるための、および電源68を管理するための命令を含み得る。メモリ62はまた、バイオマーカ情報、生理学的パラメータ(例えば、EMG信号、脳信号など)など、IMD16から受信された任意の治療データを記憶し得る。メモリ62は、治療中または電気的刺激変調中などに、IMD16から受信された、またはIMD16に送達された刺激パラメータをさらに記憶し得る。メモリ62は、RAM、ROM、EEPROMまたはフラッシュメモリなどの任意の揮発性または不揮発性メモリを含み得る。いくつかの例では、メモリ62はまた、リムーバブルメモリ部分を含み得る。
【0079】
メモリ62は、いくつかの例では、例えば、処理回路60などの1つ以上のプロセッサに、本開示で説明される1つ以上の例示的な技術を実装させる命令を含む非一時的なコンピュータ可読記憶媒体と見なされ得る。「非一時的」という用語は、記憶媒体が搬送波または伝搬信号で具体化されていないことを示している場合がある。しかしながら、「非一時的」という用語は、メモリ62が移動不可能であることを意味すると解釈されるべきではない。一例として、メモリ62をプログラマ14から取り外して、別のデバイスに移動させ得る。特定の例では、非一時的な記憶媒体は、変化する可能性のあるデータを(例えば、RAMに)記憶し得る。
【0080】
プログラマ14における無線テレメトリは、RF通信、または外部プログラマ14およびIMD16の近位誘導相互作用によって達成され得る。この無線通信は、テレメトリ回路64の使用を通じて可能である。テレメトリ回路64は、IMD16のテレメトリ回路に類似し得る。いくつかの例では、プログラマ14は、有線接続を通じて通信するように構成され得る。このようにして、IMD16などの他の外部デバイスは、有線および/または無線接続を通じて、プログラマ14と通信するように構成され得る。
【0081】
電源68は、プログラマ14の構成要素に動作電力を送達し得る。電源68は、電池、場合によっては発電回路を含み得る。いくつかの例では、電源68は再充電可能であり得る。
【0082】
いくつかの例では、1人以上の臨床医または患者12などのユーザは、プログラマ14のユーザインターフェース66を介して、IMD16にアクセスして、構成し得る。例えば、臨床医は、プログラマ14のユーザインターフェース66を介して、同調刺激パルスを定義する、かつ/または非同期刺激パルスを定義する1つ以上の電気的刺激パラメータをプログラムし得る。プログラマ14は、テレメトリ回路64を介して、プログラムされた電気的刺激パラメータをIMD16に送達し得る。さらに、臨床医は、IMD16によって送達された電気的刺激の1つ以上の電気的刺激パラメータを調整し得る。いくつかの例では、プログラマ14またはIMD16は、電気的刺激パラメータを自動的に調整し得る。一例では、プログラマ14の処理回路60は、IMD16から受信されたフィードバックに基づいて、1つ以上の非同期刺激パルスに対して定義された時間、送達電極24、26に対して予定された非同期刺激パルスの数、非同期刺激パルスの周波数および/もしくは振幅、非同期刺激パルスのデューティサイクルまたは1つ以上の他の刺激パラメータを変更し得る。次に、処理回路60は、1つ以上の変更された刺激パラメータを、実行のためにIMD16に送達し得る。いくつかの例では、処理回路60は、電気的刺激療法が、開ループ構成、閉ループ構成、または閉ループ構成に進む開ループ構成のいずれかで動作するというユーザ入力を受信し得る。例えば、ユーザは、ユーザインターフェース66を介して、患者12に電気的刺激を送達するために、これらの構成のうちのいずれか1つを実装するためのオプションを選択し得る。
【0083】
図4は、患者の脳に電気的刺激を送達するための例示的な動作を示す流れ図である。説明を容易にするために、図4の例は、図1の治療システム10に関して説明されている。しかしながら、本開示の技術は、そのように限定されず、脊髄領域、筋肉組織領域などを含む、患者12の1つ以上の領域に電気的刺激を送達するように構成された他の好適なシステムまたはデバイスにおいて使用され得る。さらに、図4の技術を実行するものとして、IMD16の処理回路40に関して説明されているが、本開示の技術はそのように限定されず、場合によっては、本開示の技術は、例えば、プログラマ14の処理回路60またはリモートサーバの処理回路などの別の好適なデバイスの処理回路によって実行され得る。例えば、処理回路60は、電気的刺激パラメータ(例えば、振幅、持続時間、電極極性など)を、テレメトリ回路64を介して、IMD16に送信し得る。同様に、処理回路60は、バイオマーカ、フィードバック信号、刺激パラメータ、病理情報、生理学的信号などに関連する情報を通信することなどによって、テレメトリ回路50を介して、プログラマ14に情報を送信し得る。いずれにしても、当業者は、様々な例が説明目的で使用されており、他の実装例が、本開示の範囲内で達成され得ることを理解するであろう。
【0084】
一例では、IMD16またはプログラマ14のような処理回路は、同調刺激パルスを定義する刺激パラメータの第1のセットを判定し得る(402)。例えば、処理回路40は、同調刺激パルス(例えば、同調刺激パルス列)を定義する刺激パラメータの第1のセットを判定することができる。同調刺激は、患者12(例えば、患者12の脳)の電気的活動を同調させるように構成され得る。刺激パラメータは、周波数パラメータ、パルス幅パラメータ、電圧振幅パラメータ、電流振幅パラメータ、持続時間パラメータなどを含み得る。例えば、処理回路40は、第1の同調刺激パルス列を、電極24、26のうちの少なくとも1つなどの1つ以上の電極に送達するための時間の長さを判定し得る。
【0085】
いくつかの例では、同調刺激パルスを定義する刺激パラメータの第1のセットは、100ヘルツ以下の周波数範囲を含む。例えば、同調刺激パルスは、5ヘルツ~80ヘルツの周波数で送達され得る。刺激パルスは二相性であり得る。さらに、同調刺激パルスを定義する刺激パラメータは、パルス幅範囲を含み得る。例えば、同調刺激パルスのパルス幅の範囲は、30マイクロ秒~300マイクロ秒のパルス幅を含み得る。さらに、同調刺激パルスを定義する刺激パラメータは、振幅範囲を含み得る。例えば、同調刺激パルスの振幅範囲は、0.1~10ボルトまたは0.1~25ミリアンペアの振幅を含み得る。例えば、同調刺激パルスの振幅範囲は、3.5ボルトの振幅を含み得る。一例では、同調刺激パルスは、約2ヘルツ~約150ヘルツの範囲から選択された周波数、および約30マイクロ秒~約300マイクロ秒から選択されたパルス幅を含み得る。電流制御システムの一例では、同調刺激パルスは、約0.2ミリアンペア~約10ミリアンペアから選択された電流振幅、および約30マイクロ秒~約300マイクロ秒から選択されたパルス幅を含み得る。別の例では、同調刺激パルスは、約0.1ミリアンペア~約25ミリアンペアから選択された電流振幅、および約30マイクロ秒~約300マイクロ秒から選択されたパルス幅を含み得る。そのような例では、処理回路40は、約2ヘルツ(例えば、±1ヘルツ)~約150ヘルツ(例えば、±10ヘルツ)の範囲から選択された周波数で、同調刺激パルスを送達し得る。
【0086】
いくつかの例では、処理回路40は、同調刺激パルスを生成するように、刺激生成器44を制御し得る(404)。例えば、処理回路40は、同調刺激パルスを定義するために判定された刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器44を制御し得る。いくつかの例では、処理回路40は、刺激生成器44に、同調刺激パルスを、電極24、26のうちの1つまたは電極24、26の組み合わせなどの少なくとも1つの電極に送達させ得る。いくつかの例では、同調刺激パルスを定義する刺激パラメータは、電気的活動を同調させることと、患者12の脳28の1つ以上の領域内で破壊的干渉を引き起こすことと、の両方を行うように構成され得る。すなわち、同調刺激パルスはまた、患者12にある程度の療法を提供し得る。
【0087】
いくつかの例では、処理回路40は、1つ以上の非同期刺激パルス(例えば、非同期刺激パルス列)の刺激パラメータの第2のセットを判定し得る(406)。場合によっては、非同期刺激パルスを定義する刺激パラメータは、患者にテーラリングされ得る。いずれの場合でも、非同期刺激パルスは、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成され得る。いくつかの例では、非同期刺激パルスは、ニューロンまたは細胞に、同調された電気的活動に固有の規則性に対して不規則な間隔で、または同調された電気的活動と同期せずに、電気信号を送信させ得る。
【0088】
いくつかの例では、非同期刺激パルスを定義する刺激パラメータの第2のセットは、同調刺激パルスを定義する刺激パラメータの第1のセットとは異なり得る。例えば、同調刺激パルスを定義する刺激パラメータの第1のセットは、約100ヘルツ(例えば、100ヘルツ±5Hz)未満の第1のパルス周波数を含み得る。非同期刺激パルスを定義する刺激パラメータの第2のセットは、約100ヘルツ以上の第2のパルス周波数を含み得る。例えば、非同期刺激パルスは、第1のパルス周波数よりも約30ヘルツ~125ヘルツ高い第2のパルス周波数で生成され得る。いくつかの例では、非同期刺激パルスは、約2ヘルツ(例えば、±1.9ヘルツ)~約200ヘルツ(例えば、±5ヘルツ)または約100ヘルツ(例えば、±5ヘルツ)~約200ヘルツ(例:±5ヘルツ)の範囲から選択された周波数を含み得る。刺激パルスは二相性であり得る。さらに、非同期刺激パルスを定義する刺激パラメータは、パルス幅範囲を含み得る。1つの非限定的な例では、非同期刺激パルスのセットを定義するパルス幅は、20マイクロ秒(μs)~450μsの範囲から選択されたパルス幅を含み得る。例えば、非同期刺激パルスのセットを定義するパルス幅は、20μs~60μs、20μs~90μs、20μs~120μs、60μs~90μs、60μs~120μs、60μs~450μs、90μs~120μs、90μs~450μs、または120μs~450μsの範囲から選択されたパルス幅を含み得る。いくつかの例では、パルス幅範囲は、20μs未満または450μsを超えるパルス幅を含む範囲から選択され得る。一例では、非同期刺激パルスのセットを定義するパルス幅は、75μsまたは85μsであり得、20μs~450μs、70μs~90μs、または60μs~120μsの範囲など、上記の例示的な範囲のうちの1つ以上から選択された場合がある。
【0089】
さらに、非同期刺激パルスを定義する刺激パラメータは、振幅範囲を含み得る。例えば、非同期刺激パルスの振幅範囲は、0.1~10ボルトまたは0.1~25ミリアンペアの振幅を含み得る。一例では、非同期刺激パルスは、約2ヘルツ~約200ヘルツの範囲から選択された周波数、および約30マイクロ秒~約300マイクロ秒から選択されたパルス幅を含み得る。電流制御システムの一例では、非同期刺激パルスは、約0.2ミリアンペア(例えば、±0.1ミリアンペア)~約10ミリアンペア(例えば、±3ミリアンペア)の範囲から選択された電流振幅を含み得る。
【0090】
同調刺激パルスを生成した後、処理回路40は、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器44を制御し得る(408)。一例では、処理回路40は、刺激生成器44に、同調刺激パルスに使用されるのと同じ電極または電極の組み合わせに、非同期刺激パルスを送達させ得る。いくつかの例では、処理回路40は、刺激生成器44に、同調刺激パルスに使用された電極に対して電極24、26のうちの異なる電極、または電極24、26の組み合わせに、少なくとも1つの非同期刺激パルスを送達させ得る。
【0091】
いくつかの例では、処理回路40は、刺激生成器44のデューティサイクル、パルス幅、周波数、および/または振幅を変化させることによって、同調刺激パルスと非同期刺激パルスとの間で遷移し得る。例えば、処理回路40は、刺激生成器44のデューティサイクル(例えば、「オン」時間と「オフ」時間の比)を変化させることによって、同調パルスと非同期刺激パルスとの間で遷移し得る。そのような例では、処理回路40は、アナログ波形ではなく、デジタル信号(例えば、説明されたパルス)のデューティサイクルを変化させ得る。別の例では、処理回路40は、同調パルスと少なくとも1つの非同期刺激パルスとの間で遷移するときに、アナログ波形を変化させ得る。いずれの場合も、非同期刺激パルスを定義する刺激パラメータの第2のセットは、同調刺激パルスを定義する刺激パラメータの第1のセットとともに含まれる少なくとも1つの対応するパラメータから変化する少なくとも1つのパラメータを含み得る。例えば、変化するパラメータは、変化する振幅、パルス幅、周波数、および/または場合によっては変化するデューティサイクルのうちの1つ以上を含み得る。用例では、刺激パラメータの第2のセットは、異なる位相または刺激パルスのセットを定義する刺激パラメータの異なるセットとともに含まれる第1の周波数から変化する、または異なる第2の周波数を含み得る。
【0092】
同調刺激パルスが非同期位相中に継続する例では、処理回路40は、同時に、刺激生成器44を、同調刺激パルスと非同期刺激パルスとの間で遷移させることなく、非同期刺激パルスを生成するように、刺激生成器44を制御しながら、非同期刺激パルスを生成するように、刺激生成器44を制御し得る。
【0093】
用例では、処理回路40は、刺激生成器に、同調刺激パルスを、電極24、26のうちの第1の電極に送達させ、次に、刺激生成器に、少なくとも1つの非同期刺激パルスを、電極24、26のうちの第2の電極に送達させ得る。このようにして、処理回路40を介した刺激生成器44は、同調刺激パルスによって同調されたより大きなボリューム内のより小さなボリュームを標的とし得る。いくつかの例では、同調刺激パルスを定義する刺激パラメータの第1のセットは、脳28の第1の領域の電気的活動を同調させるように構成され得る。したがって、非同期パルスを定義する刺激パラメータの第2のセットは、脳28の第2の領域内の同調された電気的活動の少なくとも一部分に対して破壊的な干渉を引き起こすように構成され得る。脳28の第2の領域は、脳28の第1の領域よりも小さくなり得る。さらに、脳28の第2の領域は、脳28の第1の領域の少なくとも一部分内に見出され得る。
【0094】
別の例では、処理回路40は、同調された活動に関して受信されたフィードバックに基づいて、電気的刺激を送達し得る。例えば、処理回路40は、刺激生成器44に、同調刺激パルスを電極24、26のうちの第1の電極に送達させ得る。次に、処理回路40は、同調刺激パルスが、患者12に同調されている電気的活動をもたらしたという指標を受信し得る。同調刺激パルスが、患者12に同調されている電気的活動をもたらしたと判定することに応答して、処理回路40は、刺激生成器44に、少なくとも1つの非同期刺激パルスを電極24、26のうちの第2の電極に送達させ得る。
【0095】
さらに、処理回路40は、同調刺激パルス位相と非同期パルス位相との間で交互になり続け得る。いくつかの例では、処理回路40は、時間が経過するにつれて、いずれかのパルス位相のパラメータを自動的に、または他の方法で調整し得る。
【0096】
IMD16の処理回路40に関して説明されているが、本開示の技術はそのように限定されておらず、本開示の技術は、プログラマ14の処理回路60、または外部デバイス34もしくは外部サーバの処理回路などの他の処理回路によって、(単独で、または別のデバイスの処理回路と組み合わせて)実装され得る。例えば、処理回路60は、刺激パラメータを判定し、刺激パラメータをIMD16に送信し、それにより、IMD16(例えば、刺激生成器44)に、電気的刺激パルスを送達させ得る。さらに、図4のいくつかの技術は、組み合わせられるか、または完全に省略され得ることが理解されよう。例えば、IMD16などの処理回路は、刺激パラメータを判定して、患者12への電気的刺激の送達前または送達中に、同調刺激パルスおよび非同期刺激パルスを並行して定義し得る。
【0097】
図5は、患者のバイオマーカを利用することによって、患者の脳に電気的刺激を送達するための例示的な動作を示す流れ図である。バイオマーカを使用して、同調刺激パルス、非同期刺激パルス、電気的刺激の他の位相(例えば、休止位相期間)のいずれかの刺激パラメータを判定し得る。
【0098】
非同期刺激パルスを定義する刺激パラメータを判定するためにバイオマーカが使用される例では、処理回路40は、(バイオマーカテーラリングの有無にかかわらず)同調刺激パルスを生成するように、刺激生成器44を制御し得る。そのような例では、処理回路40は、患者から、生理学的信号を取得し得る(502)。例えば、生理学的信号は、脳波信号であり得る。いくつかの例では、生理学的信号は、四肢の運動に対応する信号などの振戦信号であり得る。いくつかの例では、生理学的信号は、脳の1つ以上の領域内から発生する局所電場電位(LFP)信号であり得る。
【0099】
処理回路40は、生理学的信号からの、および患者12の、1つ以上のバイオマーカを識別し得る(504)。いくつかの例では、処理回路40は、生理学的信号、または場合によっては、1つ以上のバイオマーカを、外部デバイス34から、または例えば、外部デバイス34などの他のデバイスから受信された患者12のバイオマーカを記憶する外部サーバから、受信するように構成され得る。いくつかの例では、外部デバイス34は、ハウジング17の外部にあり、かつハウジング17とは別個であり得る。例えば、外部デバイス34は、ウェアラブルデバイスであり得る。他の例では、外部デバイスは、図1の治療システム10の外部にあり得る。いくつかの例では、外部デバイス34は、患者12から、生理学的信号を検出するように構成された感知デバイスであり得る。いずれの場合でも、外部デバイス34は、患者12から、生理学的信号を取得するように構成され得る。次に、外部デバイス34は、外部デバイス34のテレメトリ回路を介して、生理学的信号の属性を、IMD16またはプログラマ14に通信し得る。別の例では、外部デバイス34は、生理学的信号から1つ以上のバイオマーカを識別し、外部デバイス34のテレメトリ回路を介して、IMD16またはプログラマ14に通信し得る。場合によっては、プログラマ14は、テレメトリ回路64を介して、生理学的信号属性、または1つ以上のバイオマーカを、さらなる処理のために、IMD16に通信し得る。いずれの場合でも、処理回路40は、外部デバイス34またはプログラマ14などから、直接的または間接的のいずれかで、患者12から、生理学的信号を取得するように構成され得る。
【0100】
一例では、生理学的信号は、局所電場電位(LFP)信号であり得る。そのような例では、処理回路40は、患者12のLFPから、1つ以上のバイオマーカを識別し得る。したがって、1つ以上のバイオマーカは、患者12の神経状態(例えば、振戦)を示し得る。振戦の例は、脳活動の物理的発現を含み得、その結果、LFPバイオマーカは、ベータ周波数帯域などの特定の周波数帯域内の電力レベルが高いときに、患者12の脳28の振戦が発生していることを示し得る。いくつかの例では、バイオマーカは、約0.1ヘルツ~500ヘルツの周波数を含む患者12の神経状態を示し得る。そのような例では、高周波振動(HFO)も患者12の神経状態を示し得るので、そのような周波数は、上記の範囲にまたがるか、場合によっては、範囲を超え得る。特定のLFP信号が、0.1ヘルツ~500ヘルツの範囲にあることが観察されている。例えば、低周波数(例えば、5~10ヘルツ)は、振戦の周波数または状態を示し、ベータ周波数は、パーキンソン病の硬直を示し、ガンマ周波数は、ジスキネジアに相関し得るなどである。
【0101】
用例では、処理回路40は、患者12の脳28の1つ以上の領域内から、1つ以上の振戦信号を受信し得る。1つ以上の振戦信号は、患者12の局所電場電位(LFP)における振戦を示すように構成され得る。上記のように、1つ以上の振戦信号は、0.1ヘルツ~500ヘルツの周波数を含む。したがって、処理回路40は、患者12のLFPの振戦に関連する0.1ヘルツ~500ヘルツのバイオマーカを識別し得る。処理回路は、1つ以上の電気的刺激パルスの刺激パラメータを判定するために、そのようなバイオマーカを使用し得る。いくつかの例では、処理回路40は、LFPバイオマーカを利用して、最大の局所同期が発生する方向および相対距離を判定し得る。次に、処理回路40は、高度に同期された領域を含むように、非同期パルスおよび非同期パルスの方向性をテーラリングする。LFP振戦に関して説明されているが、本開示の技術はそのように限定されず、ベータバイオマーカ、EEG信号バイオマーカ、ECoG信号バイオマーカ、ウェアラブル入力信号バイオマーカ、物理的振戦バイオマーカ、脳電気信号バイオマーカなどの様々な他のバイオマーカが判定され得る。
【0102】
例えば、処理回路40は、患者12に対する1つ以上のバイオマーカに少なくとも部分的に基づいて、非同期刺激パルスを定義する刺激パラメータを判定し得る(506)。そのような例では、処理回路40は、非同期刺激パルスを生成するように、刺激生成器44を制御し得る(508)。例えば、処理回路40は、1つ以上のバイオマーカに基づいて判定された刺激パラメータに従って、刺激生成器44に、非同期刺激パルスを電極24、26のうちの1つに送達させ得る。いずれの場合でも、処理回路40は、バイオマーカ情報を使用して、同調刺激パラメータおよび/または非同期刺激パラメータの刺激パラメータを判定し得る。例えば、処理回路40は、バイオマーカ情報を使用して、非同期刺激パラメータのみを判定し得るが、同調刺激パラメータは、医師または臨床医などによって事前定義され得、かつ/または事前設定された、もしくは事前定義された刺激パラメータのデータベースからなど、メモリから検索され得る。
【0103】
IMD16の処理回路40に関して説明されているが、本開示の技術はそれほど限定されておらず、本開示の技術は、プログラマ14の処理回路60、または外部デバイス34もしくは外部サーバの処理回路などの他の処理回路によって、(単独で、または別のデバイスの処理回路と組み合わせて)実装され得る。例えば、処理回路60は、1つ以上のバイオマーカを受信および/または識別し、1つ以上のバイオマーカに基づいて、1つ以上の刺激パラメータを判定し、刺激パラメータをIMD16に送信し、それにより、IMD16(例えば、刺激生成器44)に、電気的刺激パルスを送達させ得る。さらに、図5のいくつかの技術は、組み合わせられるか、または完全に省略され得ることが理解されよう。例えば、IMD16などの処理回路は、刺激パラメータを判定して、患者12の1つ以上のバイオマーカに基づいて、患者12への電気的刺激の送達前または送達中に、同調刺激パルスおよび非同期刺激パルスを並行して定義し得る。すなわち、処理回路40は、患者12への電気的刺激パルスの送達前または送達中に、1つ以上のバイオマーカを識別し得る。
【0104】
図6は、電気的刺激パルス602の例示的な変調を示す図である。図6は、同調刺激パルス604および非同期刺激パルス606を示す。処理回路40は、刺激生成器44に、第1の刺激周波数を含む第1の複数の刺激パラメータに従って、同調刺激パルス604を送達させ得る。さらに、処理回路40は、刺激生成器44に、第2の刺激周波数を含む第2の複数の刺激パラメータに従って、非同期刺激パルス604を送達させ得る。いくつかの例では、第1の刺激周波数は、第2の刺激周波数とは異なる。例えば、第1の刺激周波数は、非同期刺激パルス606の第2の刺激周波数よりも低くなり得る。いくつかの例では、刺激パラメータは、持続時間パラメータ、または場合によっては、パルスカウントパラメータを含み得る。そのような例では、処理回路40は、1つ以上のスケーリング係数を判定し得る。処理回路40は、スケーリング係数を患者固有のバイオマーカに適用して、各刺激位相を定義するための刺激パラメータを判定し得る。例えば、処理回路40は、スケーリング係数a、b、およびcを判定し得る。これらのスケーリング係数は、すべて異なるスケーリング係数であり得るが、場合によっては、いくつかのスケーリング係数が同じであり得る。そのような場合、処理回路40は、以下の方程式を使用して、各刺激位相を定義するための刺激パラメータを判定し得る:f_1=a*f_patient(例えば、複数の位相のパルスの持続時間成分602)、f_2=b*f_patient(例えば、パルスの持続時間成分604)、およびf_3=c*f_patient(例えば、パルスの持続時間成分606)。そのような例では、f_patientは、外部デバイス34またはプログラマ14のうちの1つから受信または検索された信号などの、患者固有の生理学的信号である。
【0105】
いくつかの例では、処理回路40は、パルスの周波数(例えば、毎秒またはミリ秒当たりのパルス数)との関連と併せて、パルスの数をカウントすることによって、持続時間パラメータが満たされていると判定し得る。いずれの場合でも、同調刺激パルス604、非同期刺激パルス604、または同調刺激パルス604非同期刺激パルス604の両方の持続時間パラメータまたはパルスカウントパラメータは、(例えば、患者12から得られた生理学的信号に基づいて、患者12の患者の病歴に基づいて、など)各特定の患者12に対してテーラリングされ得る。処理回路40は、それぞれの場合について、上限および下限を有する範囲から、持続時間パラメータまたはパルスカウントパラメータを選択し得る。非限定的な例では、処理回路40は、同調刺激パルス604を、1ミリ秒~40ミリ秒、または処理回路40が、外部ウェアラブルデバイスもしくは他の内部デバイスから受信された信号などから同調指標を判定するまで、送達し得る。そのような場合、処理回路40は、テーラリングされたパラメータが、患者12の治療のための許容範囲内に入るように、持続時間またはパルスカウントパラメータを患者12に対してテーラリングし得る。
【0106】
そのような例では、処理回路40は、第1の刺激周波数を増加させて、第2の刺激周波数に到達するように構成され得る。例えば、第1の刺激周波数は、100ヘルツ以下であり得る。そのような例では、処理回路40は、非同期刺激パルス606の第2の刺激周波数を達成するために、第1の刺激周波数を、第1の量だけ増加させ得る。非限定的な例では、第1の量は、約30ヘルツ~125ヘルツであり得る。図6の例では、同調刺激パルス604の振幅およびパルス幅は、非同期刺激パルス606の振幅およびパルス幅よりも大きい。しかしながら、振幅および/またはパルス幅は、他の例における非同期刺激パルス606に対して同じまたはより高くなり得る。図6図7図11図12、および図13のような正方形のようなパルスの立ち上がりエッジおよび立ち下がりエッジの例は、説明目的で示され、本開示の態様はそのように限定されないことが理解されよう。例えば、パルスは、のこぎり、三角形、または他の非正弦波パルスもしくは非正弦波として構成され得る。すなわち、処理回路40は、刺激生成器44に、のこぎりパルス、三角形パルス、正方形パルス(例えば、長方形パルス)などの形で刺激を送達させ得る。
【0107】
図7は、経時的に繰り返される電気的刺激パルスの例示的な変調を示す図である。例えば、処理回路40は、刺激生成器44に、刺激パルス702の第1のセットを送達させ、刺激パルスの繰り返しセット704として刺激パルスを繰り返させ得る。刺激パルスの第1のセットおよび繰り返しセットは、図6からの同調刺激パルス604および非同期刺激パルス606と同様に、同調刺激パルス706および非同期刺激パルス708を含み得る。示されるように、異なる位相の、または位相間の持続時間および/またはパルスカウントは、刺激パルス704の繰り返しセット全体にわたって均一ではない場合がある。
【0108】
図8は、経時的に異なる周波数を含むように変調された例示的な電気的刺激波形を示す図である。図8の例は、開ループ構成で送達されている(例えば、刺激療法の有効性に基づいて、経時的に変化しない)同調刺激波形802および非同期刺激波形804を示す。すなわち、処理回路40は、同調刺激波形802および非同期刺激波形804をインターリーブすることによって、開ループ構成で電気的刺激変調を実行するように構成され得る。波形802、804は、異なる振幅、周波数、または他の刺激パラメータによって定義され得る。図8図9図14および図15に示される例では、例示的な波形は、説明目的で刺激信号として示される。刺激信号は、例えば、図6に示されるように、代わりにパルスとして生成および送達され得ることが理解されよう。すなわち、図8図9図14、および図15に示される例は、周波数、振幅などの変化を例示することを意図しているが、実際の刺激は、必ずしも正弦波信号として送達され得るとは限らない。例えば、図9の刺激信号の例示的な波形は、例えば、図7の特定の部分に示されるものと同様の刺激パルス列に変換し得る。すなわち、例示的な波形は、説明目的で、場合によっては波として示されているが、パルスとして送達され得る。
【0109】
示されるように、同調刺激波形802は、第1の振幅および周波数を有し得るが、非同期刺激波形804は、異なる刺激パラメータ(例えば、より高い周波数、より低い振幅など)を有し得る。図8に示される例示的な波形を含むいくつかの例では、同調刺激波形802および非同期刺激波形804は、異なる振幅を有する同じ周波数を有し得る。すなわち、同調刺激波形802は、A1の振幅を有し得、非同期刺激波形804は、A3の振幅(図示せず)を有し得る。そのような例では、同調刺激波形802および非同期刺激波形804は、互いに同じまたは実質的に同じ周波数、例えば、5~10Hz以内を共有し得る。いくつかの例では、A3は、A1よりも大きくなり得る。ただし、場合によっては、A3が、A1よりも小さくなり得る。
【0110】
図8の振幅は、電気的刺激が電流(例えば、mA)または電圧(例えば、V)に基づくかどうかなどに基づいて、電気的刺激療法の構成に応じて、ボルトまたはアンペアの単位であり得る。図8の時間軸は、ミリ秒の単位であり得る。いくつかの例では、処理回路40は、所定の持続時間、同調刺激パルス802を生成するように、刺激生成器44を制御するように構成され得る。いくつかの例では、処理回路40は、所定の数のパルス数(例えば、1、10、100など)で非同期刺激パルス804を生成するように、刺激生成器44を制御するように構成され得る。別の例では、処理回路40は、事前定義された持続時間、非同期刺激パルス804を生成するように、刺激生成器44を制御するように構成され得る。位相ごとの持続時間は異なる場合があるが、場合によっては、処理回路40は、2つ以上の異なる位相について同じになるように持続時間を判定し得る。そのような例では、1つ以上の非同期刺激パルスの所定の数のパルスの生成に応答して、処理回路40は、非同期刺激波形804に続く同調刺激波形806を生成するように、刺激生成器44を制御し得る。一例では、所定の持続時間、1つ以上の非同期刺激パルスを生成することに応答して、処理回路40は、非同期刺激波形804に続く同調刺激波形806を生成するように、刺激生成器44を制御し得る。処理回路は、事前定義された持続時間、同調刺激波形806を再び生成するように刺激生成器44を制御し得る。同調刺激波形806に対して事前定義された持続時間は、同調刺激波形802に対して定義されたものと同じ持続時間であってもよく、またはそうでなくてもよいことに留意されたい。
【0111】
図9は、経時的に異なる周波数を有するように変調された例示的な電気的刺激波形を示す図である。図9の例は、非同期刺激波形904の振幅が同調刺激波形902と同じであるのに対し、刺激生成器44が周波数を変更したことを除いて、図8と同様である。用例では、周波数は、130ヘルツの周波数に増加されるなど、80ヘルツ~100ヘルツを超えるまで増加され得る。
【0112】
図10は、フィードバック信号を利用することによって患者12の脳28に電気的刺激を送達するための例示的な動作を示す流れ図である。したがって、処理回路40は、刺激生成器44に、閉ループ構成で刺激パルスを送達させ得る。すなわち、処理回路40は、感知回路46から受信されたデータに基づくなど、患者のフィードバックに基づいて、刺激パルス位相の変化をトリガし得る。
【0113】
いくつかの例では、処理回路40は、同調刺激パルスが同調された電気的活動(1002)をもたらしたという指標を受信し得る。例えば、処理回路40は、同調刺激パルスの送達が、同調されている患者12の電気的活動をもたらしたという指標を受信し得る。一例では、1つ以上のバイオマーカは、特定のVOAが同調された波形パターンに従っていることを示し得る。
【0114】
いくつかの例では、処理回路40は、非同期刺激パルスを生成するように、刺激生成器44を制御し得る(1004)。例えば、同調刺激パルスの送達が患者12の電気的活動を同調させたという指標を受信することに応答して、処理回路40は、1つ以上の非同期刺激パルスのセットを生成するように、刺激生成器44を制御し得る。処理回路40は、1つ以上の電極24、26への非同期刺激パルスのセットを生成するように、刺激生成器44を制御し得る。
【0115】
いくつかの例では、処理回路40は、非同期刺激パルスが同調された電気的活動の少なくとも一部分を混乱させた程度を示す1つ以上のフィードバック信号を受信し得る(1006)。例えば、処理回路40は、同調された電気的活動を混乱させる際の非同期刺激パルスのセットの有効性の程度を示すフィードバック信号を受信し得る。いくつかの例では、フィードバック信号は、バイオマーカ特性の変化を示すことによって、混乱の程度を示し得る。例えば、フィードバック信号は、パーキンソン病のベータ(例えば、ベータ活動、ベータ振動など)などの特定の疾患のバイオマーカ特性を示す信号を含み得る。いくつかの例では、フィードバック信号は、バイオマーカ特性の変化の指標を含み得る。パーキンソン病治療の用例では、フィードバック信号は、改善された、またはベータおよび/もしくはより長く持続する所望のベータ(例えば、「良好な」ベータ)を示すベータ変化を示し得る。処理回路40は、そのようなフィードバック信号を利用して、非同期位相のパラメータを調整し得る。非限定的な例では、処理回路40は、患者12におけるそのような改善を示すそのようなフィードバック信号に応答して、非同期位相を短縮し得る。一例では、処理回路40は、ウェアラブルデバイスなどの外部デバイス34のうちの1つから、フィードバック信号を受信し得る。いくつかの例では、フィードバック信号は、同調位相および非同期位相の一方または両方のパラメータを判定するために使用されるのと同じ信号であり得る。例えば、処理回路は、外部デバイス34のうちの1つから受信された信号に基づいて、同調パルスおよび非同期位相の持続時間パラメータを判定し得る。そのような例では、処理回路40は、ベータバイオマーカ特性を識別および追跡するように構成されたウェアラブルデバイスなどの外部デバイス34の同じものから受信された信号に基づいて、治療が進行するにつれて、持続時間パラメータを調整し得る。非同期刺激パルスのセットは、場合によっては、1つの非同期刺激パルスのみを含み得、同様に、非同期刺激パルスのセットは、セットの一部として、少なくとも1つの非同期刺激パルスを含み得ることに留意されたい。
【0116】
いくつかの例では、処理回路40は、刺激パラメータの第2のセットの1つ以上のパラメータを調整して、刺激パラメータの調整されたセットを定義し得る(1008)。刺激パラメータの調整されたセットは、少なくとも1つの調整された非同期刺激パルスを定義し得る。他の例では、刺激パラメータの調整されたセットは、調整された同調刺激パルスを定義し得る。
【0117】
いくつかの例では、処理回路40は、フィードバック信号に少なくとも部分的に基づいて、非同期刺激パルスを調整するための調整された複数の刺激パラメータを判定し得る。例えば、処理回路40は、次の繰り返し位相において、または現在実行中の位相の一部として、非同期刺激パルスの周波数を増加または減少させるように、刺激生成器44を制御し得る。同様に、処理回路40は、次の繰り返し位相において、または現在実行中の位相の一部として、同調刺激パルスの周波数を増加または減少させるように、刺激生成器44を制御し得る。いくつかの例では、処理回路40は、刺激パラメータの調整されたセットに従って、少なくとも1つの調整された非同期刺激パルスを生成するように、刺激生成器44を制御し得る(1010)。したがって、処理回路40は、刺激パラメータの調整されたセットに従って、調整された非同期刺激パルス、または調整された同調刺激パルスを送達するように刺激生成器44を制御し得る。
【0118】
IMD16の処理回路40に関して説明されているが、本開示の技術はそれほど限定されておらず、本開示の技術は、プログラマ14の処理回路60、または外部デバイス34もしくは外部サーバの処理回路などの他の処理回路によって、(単独で、または別のデバイスの処理回路と組み合わせて)実装され得る。例えば、処理回路60は、刺激パラメータへの調整を判定し、調整された刺激パラメータをIMD16に送信し、それにより、IMD16(例えば、刺激生成器44)に、電気的刺激パルスを送達させ得る。さらに、図10のいくつかの技術は、組み合わせられるか、または完全に省略され得ることが理解されよう。例えば、IMD16のような処理回路は、患者12への非同期刺激パルスの第1のセットの送達の前に、非同期刺激パルスを定義する調整された刺激パラメータを判定し得る。そのような場合、非同期刺激パルスの第1のセットはまた、調整された刺激パラメータに基づき得る。
【0119】
図11は、電気的刺激パルス1102の例示的な変調を示す図である。図11の例では、電気的刺激パルス1102は、例示的な休止位相1104、例示的な同調刺激パルス1106、1110、および例示的な非同期パルス1108を含む。いくつかの例では、処理回路40は、示されるように、同調刺激パルス1110の生成と非同期刺激パルス1108の生成との間に、休止位相をインターリーブするように刺激生成器44を制御し得る。このような例では、休止位相の持続時間は、患者固有であり得る。例えば、処理回路40は、以下の例示的な方程式を使用して、休止位相の持続時間を判定し得る:f_4=d*f_patient、式中、dは、スケーリング係数であり、f_4は休止位相持続時間であるか、または特定の例では、休止位相周波数であり、f_patientは、患者固有の信号(例えば、生理学的信号)である。
【0120】
いくつかの例では、処理回路40は、患者12の1つ以上のバイオマーカに少なくとも部分的に基づいて、休止位相の持続時間を、第1の休止位相持続時間から第2の休止位相持続時間に調整し得る。例えば、処理回路40は、休止位相持続時間を短縮するか、または休止位相の持続時間を経時的に長くし得る。例えば、処理回路40は、第2の休止位相の持続時間を、第1の休止位相の持続時間よりも短くなるように調整し得る。すなわち、処理回路40は、経時的に休止位相の持続時間を減少させ得、その結果、後続の休止位相は、先行する休止位相持続時間よりも短い持続時間を有する。1つの用例では、処理回路40は、休止位相が除去されるまで、休止位相の持続時間を減少させ得る(例えば、後続の休止位相は、0秒の持続時間を有する)。
【0121】
図12は、電気的刺激パルス1202の例示的な変調および例示的な休止位相1204を示す図である。電気的刺激パルス1202は、同調刺激パルス1208および非同期刺激パルス1210の両方を含み得る。図12の例では、休止位相は、刺激パルス1202からの非同期パルス1210と、刺激パルス1206からの非同期パルス1212との間にインターリーブされる。いくつかの例では、休止位相1204などの休止位相は、閉ループ構成でのみ使用され得る。
【0122】
図13は、電気的刺激パルス1302、1306、1310、1314の例示的な変調、および例示的な休止位相1304、1308、1312を示す図である。そのような例では、休止または遷移パルスのパルス間期間は、同調刺激パルスの送達と非同期刺激パルスの送達との間でインターリーブすることができる。ネットワーク集団の再同期の自然な進化が起こることを可能にするために、残りの位相1304、1308、1312が含まれ得る。再同期が発生する前に患者の症状が存在しないことがあるため、システムは、患者を治療するために刺激が必要ないときに、電力を節約するために、休止位相1304、1308、1312の間、刺激を差し控え得る。示されるように、いくつかの例では、電気的刺激パルス1302は、例示的な電気的刺激パルス1310におけるように、同調刺激パルス1316、非同期刺激パルス1318、またはその両方を含み得る。
【0123】
図14は、休止位相1304を含む例示的な電気的刺激波形を示す図である。電気的刺激波形は、波形の形態の同調刺激パルス1302および非同期刺激パルス1306を含む。図14の例では、同調刺激パルス1302および非同期刺激パルス1306は、休止位相1304によって分離されている。図8または図9のように、図14の振幅は、電気的刺激療法の構成に応じて、VまたはmAの単位であり得、時間軸は、ミリ秒の単位であり得る。
【0124】
いくつかの例では、処理回路40は、刺激生成器44に、開ループ構成で同調刺激パルスおよび少なくとも1つの非同期刺激パルスを送達させ得る。さらに、処理回路40は、電気的刺激システムからのフィードバックを含む閉ループ構成で、同調刺激パルスおよび非同期刺激パルスを送達するように進行し得る。そのような例では、閉ループ構成は、同調刺激パルスと非同期刺激パルスとの間にインターリーブされた1つ以上の休止位相を有し得る。
【0125】
次に、処理回路40は、脳のニューロン亜集団で得られた同期の程度を判定し得る。例えば、処理回路40は、第1の休止位相の間の同期の程度を判定し得る。さらに、同調刺激パルスおよび閉ループ構成での少なくとも1つの非同期刺激パルスの送達中に、処理回路40は、患者12の1つ以上のバイオマーカに基づいて、第1の休止位相とは異なる第2の休止位相の持続時間を判定し得る。例えば、処理回路は、前の刺激パルスから得られたネットワーク同期の程度に少なくとも部分的に基づいて、第2の休止位相の持続時間を判定し得る。
【0126】
例えば、開ループ構成は、休止位相を有する場合と有しない場合がある。その後、開ループ構成が進行して、閉ループを形成し得る。閉ループ構成では、処理回路40は、開ループ構成が休止位相を有さなかった場合、刺激生成器に休止位相を導入させるか、または場合によっては、刺激生成器44に、刺激の提供を停止させることによってなど、休止位相を提供し続け得る。休止位相の期間は、1つ以上のバイオマーカに基づき得る。休止位相は、標的ニューラルネットワークが同期しているときか、または非同期および/もしくは同調刺激パルスに基づいて判定された予想される動作に従って挙動しているときに、持続時間を増加させ得る。しかしながら、ネットワークが誤挙動を開始した場合、処理回路40は、休止位相を完全に除去することなどによって、休止位相の期間を短縮し得る。
【0127】
図15は、複数の電極に送達されている例示的な電気的刺激波形を示す図である。破線は、パルスの任意選択的な送達を示す。刺激は、同調刺激パルス1502、1508、および任意選択的に1506を含む。刺激はまた、休止位相1512および1510を含む。刺激はまた、非同期刺激パルス1504を含む。そのような例では、非同期刺激パルス1504は、同調刺激パルス1506と実質的に同時に送達され得る。図8図9、または図14のように、図15の振幅は、電気的刺激療法の構成に応じて、VまたはmAの単位であり得、時間軸は、ミリ秒の単位であり得る。
【0128】
別の例では、処理回路40は、非同期刺激パルスを定義する刺激パラメータを判定するために、患者12の脳28における病理の原因を判定し得る。例えば、処理回路40は、病理学的原因を示す生理学的信号またはバイオマーカを受信し得る。したがって、処理回路40は、患者12の脳28における病理の原因を判定し得る。そのような例では、処理回路40はまた、病状の原因に関連する患者12の脳28のニューロン亜集団を識別し得る。したがって、処理回路40は、病理の原因に関連する識別されたニューロン亜集団に少なくとも部分的に基づいて、非同期刺激パルスを定義する刺激パラメータを判定し得る。特に、処理回路40は、非同期刺激パルスを使用して、ニューロン亜集団を標的とするように、刺激パラメータを判定し得る。
【0129】
いくつかの例では、処理回路40は、患者病理の変化を判定し得る。そのような例では、処理回路40は、少なくとも部分的に病理の判定された変化に基づいて、少なくとも1つの非同期刺激パルスの方向性を、第1の亜集団を標的とするものから第2の亜集団を標的にするものに変更し得る。
【0130】
病理学的脳信号がどのように識別されるかに関係なく、1つ以上の病理学的周波数領域内の非同期刺激パルスを使用して、生体電気脳信号の振動を混乱させることにより、特定の周波数振動が存在するときに発現する運動症状は、この開示の様々な例を使用して、低減されるか、または実質的に排除され得る。
【0131】
以下の実施例を本明細書に記載する。実施例1:少なくとも1つの電極を備える少なくとも1つの電気的リードを介して送達可能な刺激パルスを生成するように構成された刺激生成器と、処理回路であって、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、第2の複数の刺激パラメータに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を行うように構成された、処理回路と、を備える、システム。
【0132】
実施例2:刺激パラメータの第2のセットを判定するために、処理回路が、患者から、生理学的信号を取得することと、生理学的信号からの、および患者に対する、1つ以上のバイオマーカを識別することと、患者に対する1つ以上のバイオマーカに少なくとも部分的に基づいて、刺激パラメータの第2のセットを判定することと、を行うようにさらに構成されている、実施例1に記載のシステム。
【0133】
実施例3:刺激生成器および処理回路を収容ように構成されたハウジングをさらに備え、患者に対する1つ以上のバイオマーカを識別するために、処理回路が、ハウジングの外部にあり、かつハウジングとは別個の感知デバイスから、生理学的信号を受信することであって、感知デバイスが、患者からの生理学的信号を検出するように構成されている、受信することを行うようにさらに構成されている、実施例2に記載のシステム。
【0134】
実施例4:生理学的信号が、脳の1つ以上の領域内から発生する局所電場電位(LFP)信号を含み、患者に対する1つ以上のバイオマーカを識別するために、処理回路が、LFPから1つ以上のバイオマーカを識別することであって、1つ以上のバイオマーカが、患者の神経状態を示すように構成されている、識別することを行うようにさらに構成されている、実施例2および3のいずれかに記載のシステム。
【0135】
実施例5:1つ以上のバイオマーカが、約0.1ヘルツ(Hz)~500Hzの周波数を含む、実施例4に記載のシステム。
【0136】
実施例6:刺激パラメータの第1のセットが、脳の第1の領域の電気的活動を同調させるように構成されており、刺激パラメータの第2のセットが、脳の第1の領域よりも小さい脳の第2の領域内の同調された電気的活動に対して、破壊的干渉を引き起こすように構成されている、実施例1~5のいずれか一項に記載のシステム。
【0137】
実施例7:少なくとも1つの電極が、第1の電極および第2の電極を備え、処理回路が、刺激生成器に、同調刺激パルスを第1の電極に送達させることと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたことを判定することと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたと判定することに応答して、刺激生成器に、少なくとも1つの非同期刺激パルスを第2の電極に送達させることと、を行うようにさらに構成されている、実施例1~6のいずれか一項に記載のシステム。
【0138】
実施例8:刺激パラメータの第1のセットが、約100Hz未満の第1のパルス周波数を含み、刺激パラメータの第2のセットが、第1のパルス周波数よりも約30Hz~125Hz高い第2のパルス周波数を含む、実施例1~7のいずれか一項に記載のシステム。
【0139】
実施例9:少なくとも1つの非同期刺激パルスが、複数の非同期刺激パルスを含み、処理回路が、第1の事前定義された持続時間の同調刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間の複数の非同期刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間、複数の非同期刺激パルスを生成することに応答して、第1の事前定義された持続時間、同調刺激パルスを再び生成するように、刺激生成器を制御することと、を行うようにさらに構成されている、実施例1~8のいずれか一項に記載のシステム。
【0140】
実施例10:処理回路が、同調刺激パルスが同調されている患者の電気的活動をもたらしたという指標を受信することと、指標を受信することに応答して、非同期刺激パルスのセットを生成するように、刺激生成器を制御することと、同調された電気的活動を混乱させる際の非同期刺激パルスのセットの有効性の程度を示すフィードバック信号を受信することと、フィードバック信号に少なくとも部分的に基づいて、刺激パラメータの第2のセットの1つ以上のパラメータを調整して、非同期刺激パルスの少なくとも1つの調整されたセットを定義する刺激パラメータの調整されたセットを定義することと、刺激パラメータの調整されたセットに従って、非同期刺激パルスの少なくとも1つの調整されたセットを生成するように、刺激生成器を制御することと、を行うようにさらに構成されている、実施例1~9のいずれか一項に記載のシステム。
【0141】
実施例11:処理回路が、同調刺激パルスの生成と少なくとも1つの非同期刺激パルスの生成との間の休止位相をインターリーブするように刺激生成器を制御するようにさらに構成されている、実施例1~10のいずれか一項に記載のシステム。
【0142】
実施例12:刺激パラメータの第2のセットが、刺激パラメータの第1のセットとともに含まれる少なくとも1つの対応するパラメータから変化する少なくとも1つのパラメータを含む、実施例1~11のいずれか一項に記載のシステム。
【0143】
実施例13:刺激生成器と、処理回路と、を備える埋め込み型医療デバイス(IMD)をさらに備える、実施例1~12のいずれか一項に記載のシステム。
【0144】
実施例14:少なくとも1つの電気的リードをさらに備える、実施例13に記載のシステム。
【0145】
実施例15:患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を含む、方法。
【0146】
実施例16:刺激パラメータの第2のセットを判定することが、患者から、生理学的信号を取得することと、生理学的信号から、かつ患者に対する、1つ以上のバイオマーカを識別することと、患者に対する1つ以上のバイオマーカに少なくとも部分的に基づいて、刺激パラメータの第2のセットを判定することと、を含む、実施例15に記載の方法。
【0147】
実施例17:刺激パラメータの第15のセットが、脳の第1の領域の電気的活動を同調させるように構成されており、刺激パラメータの第2のセットが、脳の第1の領域よりも小さい脳の第2の領域内の同調された電気的活動に対して、破壊的干渉を引き起こすように構成されている、実施例15および16のいずれか一項に記載の方法。
【0148】
実施例18:刺激生成器に、同調刺激パルスを第1の電極に送達させることと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたことを判定することと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたと判定することに応答して、刺激生成器に、少なくとも1つの非同期刺激パルスを第2の電極に送達させることと、を行うことをさらに含む、実施例15~17のいずれか一項に記載の方法。
【0149】
実施例19:刺激パラメータの第1のセットが、約100Hz未満の第1のパルス周波数を含み、刺激パラメータの第2のセットが、第1のパルス周波数よりも約30Hz~125Hz高い第2のパルス周波数を含む、実施例15~18のいずれか一項に記載の方法。
【0150】
実施例20:少なくとも1つの非同期刺激パルスが、複数の非同期刺激パルスを含み、方法が、第1の事前定義された持続時間の同調刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間の複数の非同期刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間、複数の非同期パルスを生成することに応答して、第1の事前定義された持続時間、同調刺激パルスを再び生成するように、刺激生成器を制御することと、をさらに含む、実施例15~19のいずれか一項に記載の方法。
【0151】
実施例21:実行されると、1つ以上のプロセッサに、患者の脳内の電気的活動を同調させるように構成された同調刺激パルスを定義する刺激パラメータの第1のセットを判定することと、刺激パラメータの第1のセットに従って、同調刺激パルスを生成するように、刺激生成器を制御することと、同調刺激パルスによって同調された脳の電気的活動の少なくとも一部分を混乱させるように構成された少なくとも1つの非同期刺激パルスを定義する刺激パラメータの第2のセットを判定することであって、刺激パラメータの第2のセットが、刺激パラメータの第1のセットとは異なる、判定することと、同調刺激パルスを生成した後、刺激パラメータの第2のセットに従って、少なくとも1つの非同期刺激パルスを生成するように、刺激生成器を制御することと、を行わせる、命令をその上に記憶した非一時的なコンピュータ可読記憶媒体。
【0152】
実施例22:命令が実行されると、1つ以上のプロセッサに、患者から、生理学的信号を取得することと、生理学的信号から、かつ患者に対する、1つ以上のバイオマーカを識別することと、患者に対する1つ以上のバイオマーカに少なくとも部分的に基づいて、刺激パラメータの第2のセットを判定することと、をさらに行わせる、実施例21に記載の非一時的なコンピュータ可読記憶媒体。
【0153】
実施例23:刺激パラメータの第1のセットが、脳の第1の領域の電気的活動を同調させるように構成されており、刺激パラメータの第2のセットが、脳の第1の領域よりも小さい脳の第2の領域内の同調された電気的活動に対して、破壊的干渉を引き起こすように構成されている、実施例21および22のいずれか一項に記載の非一時的なコンピュータ可読記憶媒体。
【0154】
実施例24:少なくとも1つの電極が、第1の電極および第2の電極を備え、命令が実行されると、1つ以上のプロセッサに、刺激生成器に、同調刺激パルスを第1の電極に送達させることと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたことを判定することと、同調刺激パルスが、患者に同調されている電気的活動をもたらしたと判定することに応答して、刺激生成器に、少なくとも1つの非同期刺激パルスを第2の電極に送達させることと、をさらに行わせる、実施例21~23のいずれか一項に記載の非一時的なコンピュータ可読記憶媒体。
【0155】
実施例25:少なくとも1つの非同期刺激パルスが、複数の非同期刺激パルスを含み、命令が実行されると、1つ以上のプロセッサに、第1の事前定義された持続時間の同調刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間の複数の非同期刺激パルスを生成するように、刺激生成器を制御することと、第2の事前定義された持続時間、複数の非同期刺激パルスを生成することに応答して、第1の事前定義された持続時間、同調刺激パルスを再び生成するように、刺激生成器を制御することと、をさらに行わせる、実施例21~24のいずれか一項に記載の非一時的なコンピュータ可読記憶媒体。
【0156】
本開示に記載される技術は、少なくとも部分的に、ハードウェア、ソフトウェア、ファームウェア、またはそれらのいずれかの組み合わせで実装され得る。例えば、記載された技術の様々な態様は、1つ以上のマイクロプロセッサ、DSP、ASIC、FPGA、あるいは他の同等の統合または個別論理回路、およびそのような構成要素のいずれかの組み合わせを含む、1つ以上のプロセッサまたは処理回路内に実装され得る。「プロセッサ」または「処理回路」という用語は、一般に、単独で、または他の論理回路と組み合わせた前述の論理回路のいずれか、または他の同等の回路を指し得る。ハードウェアを含む制御ユニットはまた、本開示の1つ以上の技術を実行し得る。
【0157】
そのようなハードウェア、ソフトウェア、ファームウェアは、本開示に記載の様々な動作および機能をサポートするために、同じデバイス内または別個のデバイス内で実装され得る。加えて、記載されたユニット、回路、または構成要素のいずれかは、離散的ではあるが相互運用可能な論理デバイスとして一緒にまたは別々に実装され得る。異なる機能を回路またはユニットとして表現することは、異なる機能的な側面を強調することを意図しており、必ずしもそのような回路またはユニットが別個のハードウェアまたはソフトウェア構成要素によって実現されなければならないことを意味するものではない。むしろ、1つ以上の回路またはユニットに関連する機能は、別個のハードウェアもしくはソフトウェア構成要素によって実行され得るか、共通もしくは別個のハードウェアまたはソフトウェア構成要素内に統合され得る。
【0158】
本開示に記載される技術はまた、非一時的媒体として記述され得る命令を含む、コンピュータ可読記憶媒体などのコンピュータ可読媒体において具体化または符号化され得る。コンピュータ可読記憶媒体に埋め込まれたまたは符号化された命令は、例えば、命令が実行されたときに、プログラム可能なプロセッサまたは他のプロセッサにその方法を実行させることができる。コンピュータ可読記憶媒体は、RAM、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、ハードディスク、CD-ROM、フロッピーディスク、カセット、磁気媒体、光学媒体、または他のコンピュータ可読媒体を含み得る。
【0159】
さらに、本明細書に記載のシステムは、ヒト患者の治療に限定されない場合があることに留意されたい。代替的な例では、これらのシステムは、霊長目、犬、ウマ、ブタ、およびネコなどの非ヒト患者に実装され得る。これらの動物は、この開示の主題から私の利益となる臨床的または研究的治療を受ける可能性がある。
【0160】
本開示の様々な実施例を、記載してきた。これらおよび他の例は、以下の特許請求の範囲の範囲内にある。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
【国際調査報告】