IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ギャップウェーブス アーベーの特許一覧

特表2023-511766改良された取付手段を有したアンテナ配列およびマイクロ波デバイス
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-03-22
(54)【発明の名称】改良された取付手段を有したアンテナ配列およびマイクロ波デバイス
(51)【国際特許分類】
   H01Q 21/00 20060101AFI20230314BHJP
   H01P 1/00 20060101ALI20230314BHJP
   H01P 3/123 20060101ALI20230314BHJP
   H01P 3/12 20060101ALI20230314BHJP
   H01P 5/12 20060101ALI20230314BHJP
   H01P 5/08 20060101ALI20230314BHJP
【FI】
H01Q21/00
H01P1/00 Z
H01P3/123
H01P3/12
H01P5/12 Z
H01P5/08 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022546584
(86)(22)【出願日】2020-11-20
(85)【翻訳文提出日】2022-09-28
(86)【国際出願番号】 EP2020082921
(87)【国際公開番号】W WO2021151538
(87)【国際公開日】2021-08-05
(31)【優先権主張番号】2030028-1
(32)【優先日】2020-01-31
(33)【優先権主張国・地域又は機関】SE
(81)【指定国・地域】
(71)【出願人】
【識別番号】515096169
【氏名又は名称】ギャップウェーブス アーベー
(74)【代理人】
【識別番号】100120031
【弁理士】
【氏名又は名称】宮嶋 学
(74)【代理人】
【識別番号】100127465
【弁理士】
【氏名又は名称】堀田 幸裕
(74)【代理人】
【識別番号】100196047
【弁理士】
【氏名又は名称】柳本 陽征
(72)【発明者】
【氏名】マグヌス、エロブソン
(72)【発明者】
【氏名】マティアス、ユウレニウス
【テーマコード(参考)】
5J011
5J014
5J021
【Fターム(参考)】
5J011CA01
5J014DA01
5J021AA09
5J021AB05
5J021CA02
5J021FA32
5J021HA04
5J021JA08
(57)【要約】
積層された層状構造を有したアンテナ配列(100)。アンテナ配列は、1つ以上の放射要素(111)を含む放射層(110)と、放射層(110)に対して対向した分配層(120)と、を含む。分配層(120)は、1つ以上の放射要素(111)に対して無線周波数信号を分配するように構成されている。分配層(120)は、少なくとも1つの分配層給電部(224)を含む。分配層(120)および放射層(110)のいずれかは、分配層(120)と放射層(110)との中間に少なくとも1つの第1導波路を形成するように構成された第1電磁バンドギャップ構造(121)すなわち第1EBG構造(121)を含む。第1EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、少なくとも1つの分配層給電部(224)と、1つ以上の放射要素(111)と、を通過する方向以外の方向に伝搬することを阻止するように、構成されている。放射層(110)および分配層(120)は、それぞれの変形可能なテール(102)を含む1つ以上の固定部材(101)によって、互いに取り付けられている。
【特許請求の範囲】
【請求項1】
積層された層状構造を有したアンテナ配列(100)であって、
1つ以上の放射要素(111)を含む放射層(110)と、
前記放射層(110)に対して対向した分配層(120)であり、前記1つ以上の放射要素(111)に対して無線周波数信号を分配するように構成されているとともに、少なくとも1つの分配層給電部(224)を含む、分配層(120)と、を含み、
前記分配層(120)および前記放射層(110)のいずれかは、前記分配層(120)と前記放射層(110)との中間に少なくとも1つの第1導波路を形成するように構成された第1電磁バンドギャップ構造(121)すなわち第1EBG構造(121)を含み、前記第1EBG構造は、また、動作周波数帯域内の電磁放射が、前記少なくとも1つの第1導波路から、前記少なくとも1つの分配層給電部(224)と、前記1つ以上の放射要素(111)と、を通過する方向以外の方向に伝搬することを阻止するように、構成されており、
前記放射層(110)および前記分配層(120)は、それぞれの変形可能なテール(102)を含む1つ以上の固定部材(101)によって、互いに取り付けられている、アンテナ配列(100)。
【請求項2】
前記固定部材(101)の少なくとも1つは、前記分配層(120)上において一体的に好ましくはモノリシックに形成されており、特定の前記固定部材(101)の前記テール(102)は、前記放射層(110)上の対応する係合穴(103)内に配置されている、請求項1に記載のアンテナ配列(100)。
【請求項3】
前記固定部材(101)の少なくとも1つは、前記放射層(110)上において一体的に好ましくはモノリシックに形成されており、特定の前記固定部材(101)の前記テール(102)は、前記分配層(120)上の対応する係合穴内に配置されている、請求項1または2に記載のアンテナ配列(100)。
【請求項4】
少なくとも1つの前記固定部材(101)の前記テール(102)は、何らかのステーキングによって変形を受ける、請求項1~3のいずれか一項に記載のアンテナ配列(100)。
【請求項5】
前記固定部材(101)の少なくとも1つは、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかである、請求項1~4のいずれか一項に記載のアンテナ配列(100)。
【請求項6】
前記1つ以上の放射要素(111)の少なくとも1つは、開口を含む、請求項1~5のいずれか一項に記載のアンテナ配列(100)。
【請求項7】
前記第1EBG構造(121)は、突出要素(122)からなる繰り返し構造を含む、請求項1~6のいずれか一項に記載のアンテナ配列(100)。
【請求項8】
前記突出要素(122)は、前記EBG構造(121)を含む前記層(110、120)上においてモノリシックに形成されている、請求項1~7のいずれか一項に記載のアンテナ配列(100)。
【請求項9】
前記分配層(120)および前記放射層(110)のいずれかは、少なくとも1つの導波路リッジ(223)を含み、これにより、前記分配層(120)と前記放射層(110)との中間に少なくとも1つの第1リッジギャップ導波路を形成している、請求項1~8のいずれか一項に記載のアンテナ配列(100)。
【請求項10】
前記分配層(120)に対して対向したプリント回路基板層(131)すなわちPCB層(131)をさらに含み、前記PCB層は、少なくとも1つのPCB層給電部を含む、請求項1~9のいずれか一項に記載のアンテナ配列(100)。
【請求項11】
前記PCB層(131)に対して対向したシールド層(132)をさらに含む、請求項10に記載のアンテナ配列(100)。
【請求項12】
前記固定部材(101)の少なくとも1つは、前記分配層(120)上において一体的に好ましくはモノリシックに形成されており、特定の前記固定部材(101)の前記テール(102)は、前記PCB層(131)上の対応する係合穴内に、および/または前記シールド層(132)の対応する係合穴内に、配置されている、請求項11に記載のアンテナ配列(100)。
【請求項13】
前記固定部材(101)の少なくとも1つは、前記シールド層(132)上において一体的に好ましくはモノリシックに形成されており、特定の前記固定部材(101)の前記テール(102)は、前記PCB層(131)上の対応する係合穴内に、および/または前記分配層(120)上の対応する係合穴内に、配置されている、請求項11または12に記載のアンテナ配列(100)。
【請求項14】
前記固定部材(101)の少なくとも1つは、前記シールド層(132)上において一体的に好ましくはモノリシックに形成されており、特定の前記固定部材(101)の前記テール(102)は、前記PCB層(131)上の対応する係合穴内に、前記分配層(120)上の対応する係合穴内に、および前記放射層(120)上の対応する係合穴内に、配置されている、請求項11~13のいずれか一項に記載のアンテナ配列(100)。
【請求項15】
前記シールド層(132)は、前記シールド層と前記PCB層(131)との中間に少なくとも1つの第2導波路を形成するように構成された第2EBG構造を含み、前記第2EBG構造は、また、動作周波数帯域内の電磁放射が、前記少なくとも1つの第2導波路から、前記少なくとも1つのPCB層給電部を通過する方向以外の方向に伝搬することを阻止するように、構成されている、請求項11~14のいずれか一項に記載のアンテナ配列(100)。
【請求項16】
前記第2EBG構造は、突出要素からなる繰り返し構造を含み、前記PCB層は、接地平面と、少なくとも1つの平面伝送線路と、を含み、これにより、前記シールド層(132)と前記PCB層(131)との中間に少なくとも1つの第2ギャップ導波路を形成している、請求項15に記載のアンテナ配列(100)。
【請求項17】
請求項1~16のいずれか一項に記載のアンテナ配列(100)を含む、電気通信トランシーバまたはレーダトランシーバ。
【請求項18】
互いに対向した第1導電層(411)および第2導電層(412)を含むマイクロ波デバイス(400)であって、
前記第1導電層および前記第2導電層のいずれかは、前記第1導電層(411)と前記第2導電層(412)との中間に少なくとも1つの第1導波路を形成するように構成された電磁バンドギャップ構造(421)すなわちEBG構造(421)を含み、前記EBG構造は、また、動作周波数帯域内の電磁放射線が、前記少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止するように構成されており、
前記第1導電層(411)および前記第2導電層(412)は、それぞれの変形可能なテール(102)を含む1つ以上の固定部材(101)によって、互いに取り付けられている、マイクロ波デバイス(400)。
【請求項19】
前記マイクロ波デバイスは、導波路、伝送線路、導波回路、伝送線回路、およびアンテナシステムの無線周波数部分、のいずれかである、請求項18に記載のマイクロ波デバイス(400)。
【請求項20】
前記固定部材の少なくとも1つは、前記第1導電層(411)上において一体的に好ましくはモノリシックに形成されており、前記固定部材の前記テールは、前記第2導電層(412)上の係合穴内に配置されている、請求項18または19に記載のマイクロ波デバイス(400)。
【請求項21】
少なくとも1つの前記固定部材の前記テールは、ステーキングによって変形を受ける、請求項18~20のいずれか一項に記載のマイクロ波デバイス(400)。
【請求項22】
前記固定部材の少なくとも1つは、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかである、請求項18~21のいずれか一項に記載のマイクロ波デバイス(400)。
【請求項23】
前記EBG構造(421)は、突出要素(422)からなる繰り返し構造を含む、請求項18~22のいずれか一項に記載のマイクロ波デバイス(400)。
【請求項24】
前記突出要素(411)は、前記第1導電層(411)および前記第2導電層(412)のいずれか上においてモノリシックに形成されている、請求項23に記載のマイクロ波デバイス(400)。
【請求項25】
前記第1導電層(411)および前記第2導電層(412)のいずれかは、少なくとも1つの導波路リッジ(423)を含み、これにより、前記第1導電層(411)と前記第2導電層(412)との中間に少なくとも1つの第1リッジギャップ導波路を形成している、請求項18~24のいずれか一項に記載のマイクロ波デバイス(400)。
【請求項26】
マイクロ波デバイス(400)を製造するための方法であって、
電磁バンドギャップ構造(421)すなわちEBG構造(421)を有した第1導電層(411)を準備すること(S1)と、
前記第1導電層(411)の上方に前記第2導電層(412)を設置すること(S2)であり、これにより、前記EBG構造(421)を取り囲むとともに、前記第1導電層(411)と前記第2導電層(412)との中間に少なくとも1つの第1導波路を形成し、前記EBG構造(421)は、動作周波数帯域内の電磁放射が、前記少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止することと、
それぞれの変形可能なテール(102)を含む1つ以上の固定部材(101)によって、前記第1導電層(411)および前記第2導電層(412)を、互いに取り付けること(S3)と、を含む、方法。
【請求項27】
前記マイクロ波デバイス(400)は、導波路、伝送線路、導波回路、伝送線回路、またはアンテナシステムの無線周波数部分、のいずれかである、請求項26に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、導波路、伝送線路、導波回路、伝送線回路、またはアンテナシステムの無線周波数部分、などのマイクロ波デバイスに関し、特に、アンテナアレイに関する。マイクロ波デバイスおよびアンテナアレイは、例えば、電気通信トランシーバおよびレーダトランシーバでの使用に好適である。
【背景技術】
【0002】
無線通信ネットワークは、セルラーアクセスネットワークで使用される無線基地局、例えばコアネットワークへのバックホールなどに使用されるマイクロ波無線リンクトランシーバ、および、軌道上の衛星と通信する衛星トランシーバ、などの無線周波数トランシーバを含む。レーダトランシーバは、また、無線周波数(RF)信号を送受信することのために、すなわち電磁信号を送受信することのために、無線周波数トランシーバでもある。
【0003】
例えば、高指向性、ビームステアリング、および/または複数のビーム、に関して、アレイが、放射パターンの成形を高度に制御し得ることにより、トランシーバの放射配列は、多くの場合、アンテナアレイを含む。アンテナアレイは、波長がトランシーバの動作周波数に対応する場合に、通常は1波長未満の離間間隔で配置された複数の放射要素を含む。一般に、アレイ内の放射要素の数が多いほど、放射パターンの制御は、より良好となる。
【0004】
放射要素の数および動作周波数の、一方または両方が増加するにつれて、アンテナアレイに関する製造公差が、困難となり始める。この問題は、100個を超える放射要素を含み得るミリ波周波数のアンテナアレイで、特に深刻である。1つの特定の問題点は、アンテナ配列内における様々な層の取付である。現在の解決策では、ネジ止めまたはハンダ付けの使用が通常的であるけれども、これらは、大量にかつ高歩留まりでかつ低コストで利用することが困難である。このような解決策は、また、望ましくない電磁漏洩という問題点も有している。
【発明の概要】
【0005】
本開示の目的は、とりわけ、製造公差に対する敏感さが改良されたかつ製造の単純さが改良された改良型の取付組立技術を使用することにより、高い製造歩留まりを提供するのと同時に、例えば損失および漏洩の点で、高性能を提供する、新たなアンテナ配列を、より一般的には、新たなマイクロ波デバイスを、提供することである。
【0006】
この目的は、少なくとも部分的には、積層された層状構造を有したアンテナ配列によって得られる。アンテナ配列は、1つ以上の放射要素を含む放射層と、放射層に対して対向した分配層と、を含む。分配層は、1つ以上の放射要素に対して無線周波数信号を分配するように構成されている。分配層は、少なくとも1つの分配層給電部を含む。分配層および放射層のいずれかは、分配層と放射層との中間に少なくとも1つの第1導波路を形成するように構成された第1電磁バンドギャップ構造すなわち第1EBG構造を含む。第1EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、少なくとも1つの分配層給電部と、1つ以上の放射要素と、を通過する方向以外の方向に伝搬することを阻止するように、構成されている。放射層および分配層は、それぞれの変形可能なテールを含む1つ以上の固定部材によって、互いに取り付けられている。
【0007】
従来的な導波路構造を含むアンテナ配列の組立は、製造公差に対する要求が厳しいことのために、複雑であってコストが嵩むものである。本開示は、アンテナ配列がEBG構造を含むことにより、および、変形可能なテールを含む固定手段によってアンテナ配列の層どうしを一緒に取り付けることにより、複雑さおよびコストを低減させる。このような固定手段の例は、リベット、ボス、およびスタッド、である。このタイプの取付は、EBG構造では必要な製造公差が小さいため、EBG構造によって可能とされる。EBG構造は、また、漏洩という問題点を、すなわち、例えば隣接した導波路どうしの間での望ましくない電磁結合という問題点を、克服する。EBG構造は、また、コンパクトな設計と、低損失と、をもたらす。この結果、分配層内でのEBG構造の使用および配置に基づき、より大きな信号対雑音比を維持することができ、有利である。別の利点は、導波路を構成する2つの層どうしの間で、電気的コンタクトが不要であることである。電気的コンタクトを確認する必要がないため、高精度な組立が不要であることが利点である。しかしながら、層どうしの間の電気的コンタクトも、1つの選択肢である。
【0008】
固定部材は、機械的な固定手段である。変形可能なテールを有した固定部材は、リベット、ボス、またはスタッド、とすることができる。変形可能なテールを有した固定部材は、ネジ、ボルト、または同種のもの、ではない。ネジ、ボルト、および同種のもの、とは異なり、変形可能なテールを有した固定部材は、2つの部材どうしの間に、恒久的な結合を形成する。
【0009】
ボスは、部材の一体化部分であってもよい、あるいは、層上においてモノリシックに形成されたものであってさえよい、すなわち、層からの単なる突起であってもよい。ボスは、また、部材上へとはんだ付けすることができる、あるいは、他の態様で取り付けることができる。ボスを、他方の部材の対応する係合穴内へと配置した後に、ボスのテールを、すなわちボスの端部を、変形させて拡張させ、これにより、部材どうしを一緒に結合する。
【0010】
態様によれば、固定部材の少なくとも1つは、分配層上において一体的に好ましくはモノリシックに形成されており、特定の固定部材のテールは、放射層上の対応する係合穴内に配置されている。他の態様によれば、固定部材の少なくとも1つは、放射層上において一体的に好ましくはモノリシックに形成されており、特定の固定部材のテールは、分配層上の対応する係合穴内に配置されている。これは、低コストでの製造と、容易な組立と、を可能とする。
【0011】
態様によれば、少なくとも1つの固定部材のテールは、何らかのステーキングによって変形を受ける。これは、低コストでの製造と、容易な組立と、を可能とする。
【0012】
態様によれば、固定部材の少なくとも1つは、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかである。
【0013】
態様によれば、1つ以上の放射要素の、少なくとも1つは、開口を含む。放射層の開口は、例えば、放射層を貫通して延びるスロット開口であってもよい。開口を含む放射要素は、低損失かつ製造が容易な放射層を可能とする。
【0014】
態様によれば、第1EBG構造は、突出要素からなる繰り返し構造を含む。これは、製造が容易であり、第1導波路内における低損失を提供するとともに、少なくとも1つの第1導波路から、少なくとも1つの分配層給電部と、1つ以上の放射要素と、を通過する方向以外の方向に伝搬する動作周波数帯域内の電磁放射を、大きく減衰させる、EBG構造を可能とする。
【0015】
態様によれば、突出要素は、EBG構造を含む層上においてモノリシックに形成されている。これは、低コストでの製造と、容易な組立と、を可能とする。
【0016】
態様によれば、分配層および放射層のいずれかは、少なくとも1つの導波路リッジを含み、これにより、分配層と放射層との中間に少なくとも1つの第1リッジギャップ導波路を形成している。これは、低コストでの製造と、容易な組立と、を可能とする。
【0017】
態様によれば、アンテナ配列は、分配層に対して対向したプリント回路基板層すなわちPCB層をさらに含み、PCB層は、少なくとも1つのPCB層給電部を含む。更なる態様によれば、アンテナ配列は、PCB層に対して対向したシールド層をさらに含む。
【0018】
態様によれば、固定部材の少なくとも1つは、分配層上において一体的に好ましくはモノリシックに形成されており、特定の固定部材のテールは、PCB層上の対応する係合穴内に、および/またはシールド層の対応する係合穴内に、配置されている。他の態様によれば、固定部材の少なくとも1つは、シールド層上において一体的に好ましくはモノリシックに形成されており、特定の固定部材のテールは、PCB層上の対応する係合穴内に、および/または分配層上の対応する係合穴内に、配置されている。更なる態様によれば、固定部材の少なくとも1つは、シールド層上において一体的に好ましくはモノリシックに形成されており、特定の固定部材のテールは、PCB層上の対応する係合穴内に、分配層上の対応する係合穴内に、および放射層上の対応する係合穴内に、配置されている。これは、低コストでの製造と、容易な組立と、を可能とする。
【0019】
態様によれば、シールド層は、シールド層とPCB層との中間に少なくとも1つの第2導波路を形成するように構成された第2EBG構造を含む。第2EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第2導波路から、少なくとも1つのPCB層給電部を通過する方向以外の方向に伝搬することを阻止するように、構成されている。第2EBG構造は、低損失かつ低漏洩なコンパクトな設計を可能とする、すなわち、例えば隣接した導波路どうしの間における、または隣接したRFICどうしの間における、望ましくない電磁波伝搬が小さな、コンパクトな設計を可能とする。さらに、第2EBG構造は、アンテナ配列の外部からの電磁放射から、PCB層を遮蔽する。
【0020】
態様によれば、第2EBG構造は、突出要素からなる繰り返し構造を含み、PCB層は、接地平面と、少なくとも1つの平面伝送線路と、を含み、これにより、シールド層とPCB層との中間に少なくとも1つの第2ギャップ導波路を形成している。これは、低コストでの製造と、容易な組立と、を可能とする。
【0021】
態様によれば、アンテナ配列を含む、電気通信トランシーバまたはレーダトランシーバである。
【0022】
本明細書では、また、互いに対向した第1導電層および第2導電層を含むマイクロ波デバイスも、開示する。第1導電層および第2導電層のいずれかは、第1導電層と第2導電層との中間に少なくとも1つの第1導波路を形成するように構成された電磁バンドギャップ構造すなわちEBG構造を含む。EBG構造は、また、動作周波数帯域内の電磁放射線が、少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止するように構成されている。第1導電層および第2導電層は、それぞれの変形可能なテールを含む1つ以上の固定部材によって、互いに取り付けられている。
【0023】
従来的な導波路構造を含むマイクロ波デバイスの組立は、製造公差に対する要求が厳しいことのために、複雑であってコストが嵩むものである。本開示は、マイクロ波デバイスがEBG構造を含むことにより、および、変形可能なテールを含む固定手段によってマイクロ波デバイスの層どうしを一緒に取り付けることにより、複雑さおよびコストを低減させる。このような固定手段の例は、リベット、ボス、およびスタッド、である。このタイプの取付は、EBG構造では必要な製造公差が小さいため、EBG構造によって可能とされる。EBG構造は、また、漏洩という問題点を、すなわち、例えば隣接した導波路どうしの間での望ましくない電磁結合という問題点を、克服する。EBG構造は、また、コンパクトな設計と、低損失と、をもたらす。利点は、導波路を構成する2つの層どうしの間で、電気的コンタクトが不要であることである。電気的コンタクトを確認する必要がないため、高精度な組立が不要であることが利点である。しかしながら、層どうしの間の電気的コンタクトも、1つの選択肢である。
【0024】
固定部材は、機械的な固定手段である。変形可能なテールを有した固定部材は、リベット、ボス、またはスタッド、とすることができる。変形可能なテールを有した固定部材は、ネジ、ボルト、または同種のもの、ではない。ネジ、ボルト、および同種のもの、とは異なり、変形可能なテールを有した固定部材は、2つの部材どうしの間に、恒久的な結合を形成する。
【0025】
ボスは、部材の一体化部分であってもよい、あるいは、層上においてモノリシックに形成されたものであってさえよい、すなわち、層からの単なる突起であってもよい。ボスは、また、部材上へとはんだ付けすることができる、あるいは、他の態様で取り付けることができる。ボスを、他方の部材の対応する係合穴内へと配置した後に、ボスのテールを、すなわちボスの端部を、変形させて拡張させ、これにより、部材どうしを一緒に結合する。
【0026】
態様によれば、マイクロ波デバイスは、導波路、伝送線路、導波回路、伝送線回路、およびアンテナシステムの無線周波数部分、のいずれかである。
【0027】
態様によれば、固定部材の少なくとも1つは、第1導電層上において一体的に好ましくはモノリシックに形成されており、固定部材のテールは、第2導電層上の係合穴内に配置されている。これは、低コストでの製造と、容易な組立と、を可能とする。
【0028】
態様によれば、少なくとも1つの固定部材のテールは、ステーキングによって変形を受ける。
【0029】
態様によれば、固定部材の少なくとも1つは、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかである。
【0030】
態様によれば、EBG構造は、突出要素からなる繰り返し構造を含む。これは、低コストでの製造と、容易な組立と、を可能とする。
【0031】
態様によれば、突出要素は、第1導電層および第2導電層のいずれか上においてモノリシックに形成されている。これは、低コストでの製造と、容易な組立と、を可能とする。
【0032】
態様によれば、第1導電層および第2導電層のいずれかは、少なくとも1つの導波路リッジを含み、これにより、第1導電層と第2導電層との中間に少なくとも1つの第1リッジギャップ導波路を形成している。これは、低コストでの製造と、容易な組立と、を可能とする。
【0033】
本明細書では、また、マイクロ波デバイスを製造するための方法も、開示する。方法は、
電磁バンドギャップ構造すなわちEBG構造を有した第1導電層を準備することと、
第1導電層の上方に第2導電層を設置することであり、これにより、EBG構造を取り囲むとともに、第1導電層と第2導電層との中間に少なくとも1つの第1導波路を形成し、EBG構造は、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止することと、
それぞれの変形可能なテールを含む1つ以上の固定部材によって、第1導電層および第2導電層を、互いに取り付けることと、を含む。
【0034】
態様によれば、上記の方法におけるマイクロ波デバイスは、導波路、伝送線路、導波回路、伝送線回路、またはアンテナシステムの無線周波数部分、のいずれかである。
【0035】
本明細書に開示した方法は、異なる装置に関連して上述したのと同じ利点と関連している。本明細書では、本明細書で説明した動作のいくつかを制御するように構成された制御ユニットを、さらに開示している。
【0036】
一般に、特許請求の範囲において使用されるすべての用語は、本明細書において明示的に別段の定義がない限り、技術分野における通常的な意味に従って解釈されるものとする。「1つの(a)/1つの(an)/その(the)、要素、装置、構成要素、手段、ステップ、等」へのすべての言及は、明示的に別段の記載がない限り、その要素、装置、構成要素、手段、ステップ、等の少なくとも1つの実例を指すものとして、オープンに解釈されるものとする。本明細書で開示するあらゆる方法におけるステップは、明示的な記載がない限り、開示した厳密な順序で実行される必要はない。本発明の更なる特徴、および本発明による利点は、添付の特許請求の範囲を、および以下の説明を、検討することにより、明らかとなるであろう。当業者であれば、本発明の範囲を逸脱することなく、本発明の異なる特徴どうしを組み合わせて、以下に説明する実施形態以外の実施形態を作成し得ることは、理解されよう。
【0037】
以下においては、本開示につき、添付図面を参照して、より詳細に説明する。
【図面の簡単な説明】
【0038】
図1A図1Aおよび図1Bは、例示的なアンテナ配列を示している。
図1B図1Aおよび図1Bは、例示的なアンテナ配列を示している。
図2A図2Aおよび図2Bは、例示的なアンテナ配列を示している。
図2B図2Aおよび図2Bは、例示的なアンテナ配列を示している。
図3A図3Aは、例示的なアンテナ配列を概略的に示している。
図3B図3Bは、変形可能なテールを有した例示的な固定部材を、概略的に示している。
図4A図4Aおよび図4Bは、例示的なマイクロ波デバイスを示している。
図4B図4Aおよび図4Bは、例示的なマイクロ波デバイスを示している。
図5図5は、方法を示すフローチャートである。
図6A図6A図6B、および図6Cは、電磁バンドギャップ構造の例を示している。
図6B図6A図6B、および図6Cは、電磁バンドギャップ構造の例を示している。
図6C図6A図6B、および図6Cは、電磁バンドギャップ構造の例を示している。
図7A図7A図7B図7C、および図7Dは、例示的な対称パターンを示している。
図7B図7A図7B図7C、および図7Dは、例示的な対称パターンを示している。
図7C図7A図7B図7C、および図7Dは、例示的な対称パターンを示している。
図7D図7A図7B図7C、および図7Dは、例示的な対称パターンを示している。
【発明を実施するための形態】
【0039】
以下においては、本開示の態様につき、添付図面を参照して、より完全に説明する。しかしながら、本明細書で開示する異なるデバイスおよび方法は、多くの異なる形態で実現することができ、本明細書で記載した態様に限定されるものとして解釈されるべきではない。図面中における同様の符号は、全体を通して同様の構成要素を指す。
【0040】
本明細書で使用する用語は、本開示の態様を説明するためだけのものであり、本発明を限定することを意図するものでない。本明細書で使用した際には、「1つの(a)」、「1つの(an)」、および「その(the)」という単数形は、文脈が明らかに別段のことを示していない限り、複数形も含むことを意図している。
【0041】
本明細書では、様々なタイプのアンテナ配列を開示する。図1A図1B図2A図2B、および図3Aは、積層された層状構造を有したアンテナ配列を示している。積層された層状構造は、層と称される複数の平面要素を含む構造である。各平面要素は、2つの側面または2つの面を有しており、厚さと関連付けられる。厚さは、面の寸法と比較して、はるかに小さい、すなわち、層は、平坦なまたはほぼ平坦な要素であり、すなわち、円弧形状のようなものである。いくつかの態様によれば、層は、矩形または正方形である。しかしながら、円形または楕円形のディスク形状を含めて、より一般的な形状も、また、適用可能である。積層された層状構造は、複数の層が互いの上に配置されているという意味で、積層されている。言い換えれば、層状構造は、サンドイッチ構造として見ることができる。
【0042】
図1Aのアンテナ配列は、複数の放射要素111を有した放射層110を含む。図1における例示的なアンテナ配列では、放射要素は、スロットアンテナである。スロットアンテナは、開口の一例である。一般に、分配層120(図2A図2B、および図3A、に示す)が、複数の放射要素内の、1つ以上の放射要素に対して、1つ以上の無線周波数信号を、分配する。
【0043】
放射要素の数および動作周波数の、一方または両方が増加するにつれて、アンテナアレイに関する製造公差が、困難となり始める。この問題は、100個を超える放射要素を含み得るミリ波周波数のアンテナアレイで、特に深刻である。1つの特定の問題点は、アンテナ配列内における様々な層の取付である。特に、2つの部分を含む従来的な導波路の組立には、高い精度が要求される。そのような2つの部分は、通常的にはネジまたはハンダ付けを使用して互いに取り付けられるけれども、これは、製造の観点から見ると、複雑でコストが嵩むものである。そのような取付方法は、また、多くの場合、漏洩という問題点を有している、すなわち、例えば隣接した導波路どうしの間で、望ましくない電磁結合が発生するという問題点を有している。リベットなどの安価で複雑性の低い取付手段は、製造公差を満たすことができないため、不可能である。リベットは、例えば、そのテールと、対応する係合穴と、の間におけるスリップ嵌合を必要とすることが多く、これは、配置公差を低下させる。
【0044】
電磁バンドギャップ構造すなわちEBG構造は、コンパクトな設計と、低損失と、低漏洩と、寛容な製造公差および組立公差と、を提示する。アンテナ配列におけるEBG構造は、2つの層の中間に少なくとも1つの導波路を形成するように構成されている。EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの導波路を通過しない限りは、層に沿って伝搬しないようにも、構成されている。よって、EBG構造は、隣接した導波路どうしの間にわたって望ましくない電磁波を伝搬させないように構成されてもよい。少なくとも1つの導波路は、動作帯域内の電磁信号を、1つ以上の給電部に対して、および/または、1つ以上の放射要素に対して、結合する。EBG構造は、減衰による伝搬を防止する。本明細書では、減衰とは、無線周波数信号などの電磁放射の振幅またはパワーを著しく減少させることとして解釈される。減衰は、好ましくは完全なものであり、その場合、減衰と阻止とは、同等であるけれども、そのような完全な減衰が常に達成可能ではないことは、理解されよう。
【0045】
EBG構造は、磁気導体として機能する表面を形成する。磁気的伝導性表面が電気的伝導性表面に対して対向していて、それら2つの表面が中心周波数の1/4よりも小さな距離で配置されている場合には、すべての平行平板モードが動作周波数帯域では遮断されることのために、理想的なケースでは、その動作周波数帯域内の電磁波は、中間面に沿って伝搬することができない。中心周波数は、動作周波数帯域の中央にある。現実的なシナリオでは、動作周波数帯域内の電磁波は、中間面に沿って長さごとに減衰する。
【0046】
多数のEBG構造が存在する。EBG構造のEBG素子は、図7A図7Dに関連してより詳細に後述するように、1次元、2次元、または3次元における、周期的なパターンで、または準周期的なパターンで、配置される。本明細書では、準周期的なパターンとは、局所的には周期的であるものの、長距離秩序を示さないパターンを意味するとして、解釈される。準周期的なパターンは、1次元、2次元、または3次元で、実現され得る。一例として、準周期的パターンは、EBG素子間隔の10倍未満の長さスケールでは周期的であり得るけれども、EBG素子間隔の100倍を超える長さスケールでは周期的ではない。
【0047】
EBG構造は、少なくとも2つのタイプのEBG素子を含んでもよく、その場合、第1タイプのEBG素子は、導電性材料を含み、第2タイプのEBG素子は、電気絶縁性材料を含む。第1タイプのEBG素子は、銅またはアルミニウムなどの金属から形成されてもよい、あるいは、金または銅などの導電性材料製薄膜によってコーティングされた、PTFEまたはFR-4などの、非導電性材料から形成されてもよい。第1タイプのEBG素子は、また、カーボンナノ構造または導電性ポリマーなどの、金属と同等の電気伝導度を有した材料から形成されてもよい。一例として、第1タイプのEBG素子の電気伝導度は、10シーメンス/メートル(S/m)を超えるものとすることができる。好ましくは、第1タイプのEBG素子の電気伝導度は、10S/mを超える。言い換えれば、第1タイプのEBG素子の電気伝導度は、第1タイプのEBG素子内において電磁放射が電流を誘導し得るよう充分に大きなものであり、第2タイプのEBG素子の電気伝導度は、第2タイプのEBG素子内において電流を誘導し得ないよう充分に小さなものである。第2タイプのEBG素子は、任意選択的に、非導電性ポリマー、真空、または空気、であってもよい。そのようなタイプの非導電性EBG素子の例は、また、FR-4PCB材料、PTFE、プラスチック、ゴム、およびシリコン、を含む。
【0048】
図7A図7Dを参照すると、第1タイプのEBG素子および第2タイプのEBG素子は、並進対称(図7Aにおける701)、回転対称(図7Bにおける702)、または映進対称(図7Cにおける対称線703を参照されたい)、あるいは、周期的な、準周期的な、または不規則な、パターン(図7Dを参照されたい)、のいずれかによって特徴づけられるパターンで配列されてもよい。
【0049】
第2タイプのEBG素子の物理的特性は、また、EBG構造を超えての電磁波伝搬の減衰を得るために必要な寸法を、決定する。したがって、第2タイプの材料が空気とは異なるように選択されている場合には、第1タイプのEBG素子に関する必要な寸法が、変化する。その結果、第1タイプの素子および第2タイプの素子に関する材料選択を変更することによって、小型化されたサイズのアンテナアレイを、得ることができる。有利には、小型化されたサイズのアンテナアレイは、そのような選択から得られてもよい。
【0050】
第1タイプのEBG素子は、いくらかの間隔を空けて周期的なパターンで配列されてもよい。第1タイプのEBG素子どうしの間に位置した空間は、第2タイプの素子を構成している。言い換えれば、第1タイプのEBG素子は、第2タイプのEBG素子と交互に配置されている。第1タイプのEBG素子と第2タイプのEBG素子との交互配置は、1次元で、2次元で、または3次元で、達成することができる。
【0051】
第1タイプのEBG素子または第2タイプのEBG素子の、一方または両方のサイズは、周波数帯域内の電磁放射の、空気中における波長よりも小さい。一例として、中心周波数を、周波数帯域内の中央の周波数として定義すると、EBG素子のサイズは、中心周波数における電磁放射の、空気中における波長の、1/5~1/50である。ここで、EBG素子サイズとは、電磁波が減衰する方向における、例えば、磁気導体として機能する表面に沿った方向における、EBG素子のサイズとして解釈される。一例として、断面が円形の鉛直方向ロッドを含み、電磁放射が水平方向平面内を伝搬するEBG素子の場合には、EBG素子のサイズは、ロッドがなす断面の、長さまたは直径に対応する。
【0052】
図6A図6B、および図6Cは、第1タイプのEBG素子および第2タイプのEBG素子が、EBG構造内においてどのように配置され得るかに関する例を示している。図6Aに示すタイプのEBG構造601は、導電性基板620上に、導電性突起610を含む。突起610は、任意選択的に、誘電体材料内に封入されたものであってもよい。図6Aの例では、導電性突起は、第1タイプのEBG素子を構成しており、突起どうしの間の空間は、任意選択的には非導電性材料によって充填されるものであって、第2タイプのEBG素子を構成している。突起610が異なる形状で形成され得ることは、理解されよう。図6Aは、突起が正方形断面を有している例を示しているけれども、突起は、また、円形、楕円形、矩形、またはより一般的な形状の、断面形状を有して形成されてもよい。
【0053】
また、例えば導電性基板上に円柱状ロッドが設けられ、そのロッドの頂面上に、平坦な導電性の円を有しているようにして、突起をマッシュルーム形状とすることもでき、その場合、円は、ロッドの断面よりも大きい断面を有しているものの、EBG構造内の円どうしの間に、第2タイプのEBG素子のための空間を残すよう、充分に小さなものとされる。このようなマッシュルーム形状の突起は、PCB内に形成されてもよく、その場合、ロッドは、貫通穴を含み、この貫通穴は、導電性材料によって充填されても充填されなくてもよい。
【0054】
突起は、導電性基板から離間する方向に、長さを有している。一般に、第2タイプのEBG素子が空気である場合には、突起の長さは、中心周波数において空気中における波長の1/4に対応する。その場合、突起の頂部に沿った表面は、中心周波数において完全な磁気導体に近いものである。突起の長さが単一周波数で1/4波長であったとしても、このタイプのEBG構造では、EBG構造が導電性表面に対して対向している時には、電磁波が減衰し得る周波数帯域がなおも存在する。非限定的な例では、中心周波数は、15GHzであり、EBG構造と導電性表面との中間を伝搬する10GHz~20GHzという周波数帯域内の電磁波が、減衰する。
【0055】
別の例として、図6Bに示すタイプのEBG構造602は、内部に空洞630が導入された、導電性材料640からなる単一スラブから構成されている。空洞は、空気によって充填されてもよい、あるいは、非導電性材料によって充填されてもよい。空洞が様々な形状で形成され得ることは、理解されよう。図6Bは、楕円形断面の穴が形成された例を示しているけれども、穴は、円形、矩形、またはより一般的な断面形状で、形成されてもよい。図6Bの例では、スラブ640が、第1タイプのEBG素子を構成しており、穴630が、第2タイプのEBG素子を構成している。一般に、長さ(導電性基板から遠ざかる方向における長さ)は、中心周波数における波長の1/4に対応している。
【0056】
図6Cは、例示的な第3タイプのEBG構造603を概略的に示しており、このEBG構造603は、任意選択的にロッドまたはスラブとされる拡張された導電性EBG素子650から構成されており、これらEBG素子650は、ある層内のロッドが直前の層のロッドに対して斜めに配置されている態様で、複数の層へと積層されている。図6Cの例では、ロッドが、第1タイプのEBG素子を構成しており、それらの間の空間が、第2タイプのEBG素子を構成している。図6Cの例は、第1タイプのEBG素子と第2タイプのEBG素子との交互配置が3次元的に達成されたEBG構造を示している。
【0057】
上述したように、従来的な導波路構造を含むアンテナ配列の組立は、製造公差に対する要求が厳しいことのために、複雑であってコストが嵩むものである。本開示は、アンテナ配列がEBG構造を含むことにより、および、変形可能なテールを含む固定手段によってアンテナ配列の層どうしを一緒に取り付けることにより、複雑さおよびコストを低減させる。このような固定手段の例は、リベット、ボス、およびスタッド、である。このタイプの取付は、EBG構造では必要な製造公差が小さいため、EBG構造によって可能とされる。
【0058】
言い換えれば、本明細書では、積層された層状構造を有したアンテナ配列100を開示する。アンテナ配列は、1つ以上の放射要素111を含む放射層110を含む。アンテナ配列は、放射層110に対して対向した分配層120をさらに含む。分配層120は、1つ以上の放射要素111に対して無線周波数信号を分配するように構成されている。分配層120は、少なくとも1つの分配層給電部224を含む。分配層120および放射層110のいずれかは、分配層120と放射層110との中間に少なくとも1つの第1導波路を形成するように構成された、第1電磁バンドギャップ構造121すなわち第1EBG構造121を含む。第1EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、少なくとも1つの分配層給電部224と、1つ以上の放射要素111と、を通過する方向以外の方向に伝搬することを阻止するように、構成されている。さらに、放射層110および分配層120は、それぞれの変形可能なテール102を含む1つ以上の固定部材101によって、互いに取り付けられる。
【0059】
固定部材101は、機械的な固定手段である。変形可能なテール102を含む開示する固定部材101の一例が、図3Bに示されている。変形可能なテールを有した固定部材は、リベット、ボス、またはスタッド、とすることができる。変形可能なテールを有した固定部材は、ネジ、ボルト、または同種のもの、ではない。ネジ、ボルト、および同種のもの、とは異なり、変形可能なテールを有した固定部材は、2つの部材どうしの間に、恒久的な結合を形成する。
【0060】
リベットは、多くの場合、2つの部材とは別個のものとされている。リベットは、一端にヘッドを有しかつ他端にテールを有した、円筒形シャフトから構成することができる。シャフトおよびヘッドに関する様々な形状が可能である。2つの部材を組み立てる際には、リベットは、各部材のそれぞれの穴を通して配置され、テールが、変形(すなわち、アップセットまたは座屈)して拡張し、これにより、部材どうしを一緒に結合する。この変形は、テールの一部を、追加的なヘッドへと、変形させる。
【0061】
ボスは、部材の一体化部分であってもよい、あるいは、層上においてモノリシックに形成されたものであってさえよい、すなわち、層からの単なる突起であってもよい。ボスは、また、部材上へとはんだ付けすることができる、あるいは、他の態様で取り付けることができる。ボスを、他方の部材の対応する係合穴内へと配置した後に、ボスのテールを、すなわちボスの端部を、変形させて拡張させ、これにより、部材どうしを一緒に結合する。ボスは、変形した状態では、中実の平坦なヘッド、中実の皿頭、中実のドームヘッド、などの、様々なタイプの形状を有することができる。変形したヘッドには、変形を制御するための、クロスハッチパターンが含まれてもよい。さらに、ボスは、中実とも、中空とも、することができる。
【0062】
開示したアンテナ配列において、変形可能なテールを有した固定部材を使用する様々な態様について、以下でさらに説明する。
【0063】
図1Aおよび図2Aは、固定部材101のテール102が変形を受ける前の組立時における、例示的なアンテナ配列を示している。図1Bは、テールが変形を受けた後における、同じアンテナ配列を示している。
【0064】
少なくとも1つの分配層給電部224は、分配層を通して無線周波数信号を伝達するように構成された貫通穴として設置された導波路であってもよい。分配層給電部は、また、分配層から離間してRF信号を通過させるための第1導波路の延長部分を含むことができる。態様によれば、少なくとも1つの分配層給電部は、RF信号を、アンテナ配列100から離間して、例えばモデムへと伝達するように構成されている。
【0065】
分配層120および放射層110のいずれかが、第1EBG構造121を含む。言い換えれば、分配層のみがEBG構造を含むことができる、あるいは、放射層のみがEBG構造を含むことができる、あるいは、両方の層がEBG構造を含むことができる。後者の場合には、2つの層は、EBG構造がオーバーラップしているセクションと、オーバーラップしていないセクションと、を有することができる。ここでは、セクションは、層全体を意味してもよい。
【0066】
分配層120は、放射層100に対して直接的に接触して配置される、あるいは、放射層110から距離をおいて配置され、この場合、その距離は、アンテナ配列100の動作中心周波数における波長の1/4より小さい。直接的な接触は、2つの層のセクションのみが接触していることを、意味することができる。
【0067】
分配層内でのEBG構造の使用は、導波路の損失が少ないことだけでなく、隣接した導波路内での無線周波数信号どうしの間の干渉が少ないことを提供する。この結果、分配層内でのEBG構造の使用および配置に基づき、より大きな信号対雑音比を維持することができ、有利である。別の利点は、導波路を構成する2つの層どうしの間で、電気的コンタクトが不要であることである。電気的コンタクトを確認する必要がないため、高精度な組立が不要であることが利点である。しかしながら、層どうしの間の電気的コンタクトも、1つの選択肢である。
【0068】
矩形の分配層120に関する例示的な寸法は、5mmという厚さ、ならびに、100mmおよび100mmという側辺、である。しかしながら、分配層は、必ずしも矩形である必要はなく、円形または六角形などの他の形状も可能である。
【0069】
放射層および分配層120は、鋳造された、成形された、打抜加工された、および/または、機械加工された、銅または真鍮などの金属を含んでもよい。金属は、高い電気伝導性を有したコーティングを含んでもよい、例えば、銀または銅によってコーティングされたアルミニウムを含んでもよい、あるいは、銀または銅によってコーティングされた亜鉛を含んでもよい。また、いずれかの層が、例えば、プラスチックを含んだ金属化足場構造を含むこともできる。プラスチックの金属化は、多くの異なる態様で行うことができる。例えば、プラスチック表面を所望の金属によってコーティングする前に、まず、プラスチック表面上に、下塗り剤を適用することができる。プラスチックの金属化のための所望の金属は、損失が少なく電気伝導度が大きいものであり、例えば、銅、銀、および金である。多くの他の金属および合金も可能である。適切な下塗り剤の例は、ニッケル、クロム、パラジウム、およびチタンであるけれども、多くの他の材料も可能である。プラスチック表面を所望の形状へと形成する態様には、例えば、鋳造、成形、および/または機械加工など、多くの異なる態様がある。
【0070】
固定部材の形状は、材料および製造技術に依存して、選択することができる。例えば、ダイカスト層上のボスは、高い鋳造歩留まりをもたらす形状を有したボスを含むことができる。
【0071】
開示するアンテナ配列100における、1つ以上の放射要素111の、少なくとも1つは、開口を含んでもよい。放射層110の開口は、例えば、放射層を貫通して延びるスロット開口であってもよい。スロット開口は、好ましくは矩形であるけれども、正方形、円形、またはより一般的な形状、などの他の形状も可能である。スロット開口は、好ましくは、放射層110のサイズと比較して小さいものとされ、放射層上において平行線状に構成されるけれども、他の構成も可能である。すべての放射要素がスロットを含む場合には、放射層110は、例えば、(例えば銅製または真鍮製の)金属シートを含んでもよい。放射層は、各放射要素と分配層との間に各空洞を形成するように構成された、空洞の副層を含んでもよい。放射要素の別の例は、ボウタイアンテナである。第3の例として、放射要素は、パッチアンテナであってもよい。有利なことに、ボウタイアンテナもパッチアンテナも、製造が容易である。すべての放射要素がパッチアンテナを含む場合には、放射層110は、例えば、接地平面を有したPCBを含んでもよく、その場合、接地平面は、分配層に対して対向している。他のタイプの放射要素も可能であることは、理解されよう。
【0072】
第1EBG構造121は、任意選択的に、突出要素122からなる繰り返し構造を含む。そのような突出要素122は、EBG構造121を含む層110、120上において、すなわち、放射層110上においておよび/または分配層120上において、モノリシックに形成されてもよい。分配層120および放射層110のいずれかは、任意選択的に、少なくとも1つの導波路リッジ223を含み、これにより、分配層120と放射層110との中間に少なくとも1つの第1ギャップ導波路を形成している。突起を含むEBG構造に関する詳細については、図6Aに関連して上述した通りである。図3Aにさらに図示されているものは、導波路リッジ223に対して隣接して配置された分配給電部224である。
【0073】
図3Aに示すように、アンテナ配列100は、分配層120に対して対向した、プリント回路基板層131すなわちPCB層131を、さらに含んでもよく、その場合、PCB層は、少なくとも1つのPCB層給電部を含む。分配層内におけるEBG構造の使用は、PCB層131上のPCB層給電部から、分配給電部224を介して、少なくとも1つの第1導波路への、移行における高効率での結合を可能とし、これにより、低損失が得られる。PCB層131は、任意選択的に、PCB層の一方または両方の面上に配置された少なくとも1つのRF集積回路(IC)を含む。少なくとも1つのPCB層給電部は、1つ以上のRF ICから、PCBの反対側の面へと、さらに分配層内へと、無線周波数信号を伝達するように構成されてもよい。一例によれば、少なくとも1つのPCB層給電部は、分配層120の対応する開口に対して接続された貫通穴であり、この場合、貫通穴は、少なくとも1つのマイクロストリップラインによって供給される。これに代えて、あるいはこれと組み合わせて、少なくとも1つのPCB層給電部は、PCBの、分配層に対して対向した面上の、少なくとも1つのRF ICから、分配層内へと、無線周波数信号を伝達するように構成されてもよい。態様によれば、少なくとも1つのPCB層給電部は、アンテナ配列100から離間して、例えばモデムへと、無線周波数信号を伝達するように構成される。PCB層は、接地平面として、または補完的な接地平面として、打ち抜き加工されたまたはエッチングされた金属プレートを含んでもよい。
【0074】
図3Aに示すように、アンテナ配列100は、PCB層131に対して対向したシールド層132をさらに含んでもよい。
【0075】
シールド層132は、任意選択的に、シールド層132とPCB層131との中間に少なくとも1つの第2導波路を形成するように構成された第2EBG構造を含む。第2EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第2導波路から、少なくとも1つのPCB層給電部を通過する方向以外の方向に伝搬することを阻止するように、構成されている。第2EBG構造は、低損失かつ低漏洩なコンパクトな設計を可能とする、すなわち、例えば隣接した導波路どうしの間における、または隣接したRFICsどうしの間における、望ましくない電磁波伝搬が小さな、コンパクトな設計を可能とする。さらに、第2EBG構造は、アンテナ配列の外部からの電磁放射から、PCB層を遮蔽する。
【0076】
第2EBG構造は、任意選択的に、突出要素からなる繰り返し構造を含み、PCB層は、任意選択的に、接地平面と、少なくとも1つの平面伝送線路と、を含み、これにより、シールド層132とPCB層131との中間に少なくとも1つの第2ギャップ導波路を形成している。少なくとも1つの第2ギャップ導波路は、例えば、反転マイクロストリップギャップ導波路であってもよい。シールド層は、2つのタイプの突出要素を含んでもよい。例えば、幅の狭いトールピンと、幅の広いショートピンと、を含んでもよい。幅の広いショートピンは、シールド層とPCB層との間で、RFICsに適合するように構成することができる。ピンは、熱伝達の目的で、RFICsに対して接触してもよい。
【0077】
態様によれば、分配層120は、第3EBG構造を含み、この第3EBG構造は、第1EBG構造121とは反対側の面上に配置される、すなわち、第3EBG構造は、PCB層131に対して対向している。このようにして、分配層120とPCB層131との中間にギャップ導波路を形成してもよい。これらのギャップ導波路は、PCB層131上のRFICsとPCB層給電部との間における電磁信号の結合のために使用されてもよい。第3EBG構造は、低損失かつ低漏洩なコンパクトな設計を可能とする、すなわち、例えば隣接した導波路どうしの間における、または隣接したRFICsどうしの間における、望ましくない電磁波伝搬が小さな、コンパクトな設計を可能とする。さらに、第3EBG構造は、アンテナ配列の外部からの電磁放射から、PCB層を遮蔽する。
【0078】
態様によれば、電気通信トランシーバまたはレーダトランシーバは、アンテナ配列100を含む。
【0079】
固定部材101は、いずれかの層上において、一体的に形成されてもよく、好ましくはモノリシックに形成されてもよく、そのテールは、1つの層の対応する係合穴を貫通してもよく、あるいは、複数の層の対応する係合穴を貫通してもよい。言い換えれば、テールは、1つの層内の対応する係合穴を貫通した後に変形を受けてもよい、あるいは、複数の層内の対応する係合穴を貫通した後に変形を受けてもよい。このように、固定部材は、2つ以上の層を互いに結合してもよい。固定部材は、ダイフォーミング製造プロセス、鋳造プロセス、または同種のプロセスにおいて、いずれかの層上に形成されてもよい。
【0080】
上述したように、態様によれば、いずれかの層は、金属化されたプラスチックである。そのため、固定部材101は、同じプラスチックと、同じ金属化と、を含んでもよい。また、固定部材が、同じプラスチックを含むものの異なる金属化を含むこともできる、あるいは、金属化を全く含まないこともできる。このような実施形態は、金属化されるべきプラスチック部材の一部を覆うことによって、製造することができる。
【0081】
以下においては、固定部材101に関する異なる構成を有した異なる実施形態について説明する。これらすべての実施形態は、互いに組み合わせて使用されてもよく、また、互いに組み合わせて使用されなくてもよい。
【0082】
固定部材101の少なくとも1つは、分配層120上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、放射層110上の対応する係合穴103内に配置される。
【0083】
固定部材101の少なくとも1つは、放射層110上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、分配層120上の対応する係合穴内に配置される。
【0084】
固定部材101の少なくとも1つは、分配層120上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、PCB層131上の対応する係合穴内に、および/またはシールド層132の対応する係合穴内に、配置される。
【0085】
固定部材101の少なくとも1つは、シールド層132上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、PCB層131上の対応する係合穴内に、および/または分配層120上の対応する係合穴内に、配置される。
【0086】
固定部材101の少なくとも1つは、シールド層132上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、PCB層131の、分配層120の、および放射層120の、対応する係合穴内に配置される。
【0087】
固定部材101の少なくとも1つは、放射層110上において一体的に好ましくはモノリシックに形成されてもよく、その特定の固定部材101のテール102は、分配層120の、PCB層131の、およびシールド層132の、対応する係合穴内に配置される。
【0088】
態様によれば、少なくとも1つの固定部材101のテール102は、ステーキングによって変形を受ける。ステーキングは、多くの異なる態様で行うことができる。1つの態様は、ステーキングパンチを使用することである、すなわち、テールを径方向に拡張させるとともに軸線方向に圧縮させる力を、テールに対して印加することである。熱可塑性ステーキングは、熱ステーキングとも称されるもので、プラスチックを含む固定部材を変形させるために使用することができる。このような技術は、迅速であるとともに、費用対効果が高く、さらに、一貫性がある。プラスチック製固定部材を、様々な材料に対して結合することができる。プラスチック製固定部材が、1つの層からなる一体化部材である場合には、他の層は、例えば、金属、PCB、他のプラスチック材料、等とすることができる。熱可塑性プラスチックステーキング技術のいくつかの例は、熱ツーリング、冷間成形、熱パンチ(または、熱間パンチ)、超音波ステーキング、冷間成形、赤外線ステーキング、高温エア冷間アップセット、およびインパルスステーキング、である。スピンリベットも、また、1つの変形方法である。また、多くの他の適切な変形方法が存在する。
【0089】
態様によれば、固定部材101の少なくとも1つは、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかである。また、他のタイプのリベットも可能である。
【0090】
いずれかの層は、任意選択的に、1つ以上の位置合わせ部材を含む。1つ以上の位置合わせ部材は、層どうしを互いに位置合わせするように構成されている。1つ以上の位置合わせ部材は、1つ以上の対応する位置合わせ部材に対して、係合するように構成されている。位置合わせ部材と、対応する位置合わせ部材とは、例えば、ピンおよび穴であってもよい。1つ以上の対応する位置合わせ部材は、放射層110上に、分配層120上に、PCB層131上に、および/またはシールド層132上に、配置されてもよい。態様によれば、位置合わせ部材の1つ以上は、エッジ位置合わせ部材である。1つ以上のエッジ位置合わせ部材は、いずれかの層が単一の適正な向きにのみ組み立てられ得るように構成されている。言い換えれば、1つ以上のエッジ位置合わせ部材は、層を(分配層に沿って延びる平面内において)回転に関して非対称なものとする。これは、アンテナ配列100の組立において有利である。
【0091】
本明細書では、また、互いに対向して配置された第1導電層411および第2導電層412を含むマイクロ波デバイス400も、開示する。第1導電層および第2導電層のいずれかは、第1導電層411と第2導電層412との中間に少なくとも1つの第1導波路を形成するように構成された、電磁バンドギャップ構造421すなわちEBG構造421を含む。EBG構造は、また、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止するように、構成されている。第1導電層411および第2導電層412は、それぞれの変形可能なテール102を含む1つ以上の固定部材101によって、互いに取り付けられている。
【0092】
マイクロ波デバイス400は、導波路、伝送線路、導波回路、伝送線回路、およびアンテナシステムの無線周波数部分、のいずれであってもよい。図4Aおよび図4Bは、開示するマイクロ波デバイスの異なる例を示している。
【0093】
意図した導波経路とは、導波路が電磁放射を導くことを意図した経路である。例えば、マイクロ波デバイスが、2つの別個の導波路を含む場合には、2つの導波路を離間することが意図され、意図した導波経路は、各導波路に沿ったものである。EBG構造421は、2つの導波路の間における離間を提供する。意図した導波経路の他の例は、統合された給電ネットワーク、分配給電部と放射要素とを接続する導波路、および、PCB上の異なる統合部材どうしを接続する導波路、である。
【0094】
マイクロ波デバイス400の固定部材は、アンテナ配列100におけるものと同じタイプの固定部材101とすることができ、図3Bにおける例示的な固定部材とすることができる。
【0095】
開示したマイクロ波デバイス400は、デバイスがEBG構造を含むことにより、ならびに、リベット、ボス、またはスタッドなどの、変形可能なテールを含む固定手段によって、第1層と第2層とを一緒に取り付けることにより、複雑さおよびコストを低減させる。このような取付は、EBG構造では必要な製造公差が小さいため、EBG構造によって可能とされる。
【0096】
少なくとも1つの固定部材は、第1導電層411上において一体的に好ましくはモノリシックに形成されてもよく、その固定部材のテールは、第2導電層412上の係合穴内に配置される。態様によれば、少なくとも1つの固定部材のテールは、ステーキングによって変形を受ける。
【0097】
少なくとも1つの固定部材は、中実リベット、ブラインドリベット、半管状リベット、および自己貫通リベット、のいずれかであってもよい。
【0098】
マイクロ波デバイス400のEBG構造421は、突出要素422の繰り返し構造を含んでもよい。態様によれば、突出要素422は、第1導電層411および第2導電層412のいずれか上において、モノリシックに形成されている。
【0099】
第1導電層411および第2導電層412のいずれかは、少なくとも1つの導波路リッジ423を含んでもよく、これにより、第1導電層411と第2導電層412との中間に少なくとも1つの第1リッジギャップ導波路を形成している。リッジギャップ導波路は、図4Bの例示的なマイクロ波デバイス400において実証される。
【0100】
本明細書では、また、マイクロ波デバイス400を製造するための方法も開示する。方法は、
電磁バンドギャップ構造421すなわちEBG構造421を有した第1導電層411を準備することS1と、
第1導電層411の上方に第2導電層412を設置することS2であり、これにより、EBG構造421を取り囲むとともに、第1導電層411と第2導電層412との中間に少なくとも1つの第1導波路を形成し、EBG構造421は、動作周波数帯域内の電磁放射が、少なくとも1つの第1導波路から、意図した導波経路に沿った方向以外の方向に伝搬することを阻止することと、
それぞれの変形可能なテール102を含む1つ以上の固定部材101によって、第1導電層411および第2導電層411を互いに取り付けること(S3)と、を含む。
【0101】
本方法におけるマイクロ波デバイス400は、導波路、伝送線路、導波回路、伝送線回路、またはアンテナシステムの無線周波数部分、のいずれであってもよい。
図1A
図1B
図2A
図2B
図3A
図3B
図4A
図4B
図5
図6A
図6B
図6C
図7A
図7B
図7C
図7D
【国際調査報告】