IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ランパート コミュニケーションズ,エルエルシーの特許一覧

特表2023-512886単一入力単一出力(SISO)物理層鍵交換
<>
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図1
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図2
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図3
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図4
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図5
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図6
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図7A
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図7B
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図8A
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図8B
  • 特表-単一入力単一出力(SISO)物理層鍵交換 図8C
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-03-30
(54)【発明の名称】単一入力単一出力(SISO)物理層鍵交換
(51)【国際特許分類】
   H04J 13/18 20110101AFI20230323BHJP
   H04L 27/00 20060101ALI20230323BHJP
【FI】
H04J13/18
H04L27/00 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022536843
(86)(22)【出願日】2021-02-08
(85)【翻訳文提出日】2022-08-10
(86)【国際出願番号】 US2021017043
(87)【国際公開番号】W WO2021162974
(87)【国際公開日】2021-08-19
(31)【優先権主張番号】16/787,290
(32)【優先日】2020-02-11
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.JAVASCRIPT
2.JAVA
3.PYTHON
(71)【出願人】
【識別番号】519169742
【氏名又は名称】ランパート コミュニケーションズ,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ロビンソン,マシュー ブランドン
(57)【要約】
第1の通信デバイスへ結合されたプロセッサは、送信中にチャネル変換を符号化ベクトルへ適用する通信チャネルを介し、第2の通信デバイスへ第1の符号化ベクトル及び第2の符号化ベクトルを生成し送信する。第2の通信デバイスへ結合されたプロセッサは、変換された信号を受信し、変換された信号に基づき行列を構築し、その有効チャネルを検出し、及び有効チャネルの左右特異ベクトルを識別する。プリコーディング行列が、ユニタリ行列のコードブックからメッセージに基づき選択され、第2の既知のベクトル、プリコーディング行列、左特異ベクトルの複素共役及び右特異ベクトルに基づき、第2の符号化ベクトルが生成される。第2の符号化ベクトルの第1のシンボル及び第2の符号化ベクトルの第2のシンボルは、メッセージの識別のために第1の通信デバイスへ送信される。
【特許請求の範囲】
【請求項1】
ユニタリ行列のコードブックにアクセスすることができる第1の通信デバイスと、
ユニタリ行列の前記コードブックにアクセスすることができる第2の通信デバイスと、
前記第1の通信デバイスへ作動可能に結合された少なくとも1つのプロセッサであって、前記第1の通信デバイスの前記少なくとも1つのプロセッサは、
第1の既知ベクトル及びユニタリ行列を使用して、第1の符号化ベクトルを生成し、
前記第1の符号化ベクトルの第1のシンボルを表す信号を、第1の変換済みシンボルを生成するために送信中にチャネル変換を前記第1のシンボルへ適用する通信チャネルを介し、前記第2の通信デバイスへ送信し、及び
前記第1の符号化ベクトルの第2のシンボルを表す信号を、第2の変換済みシンボルを生成するために送信中にチャネル変換を前記第2のシンボルへ適用する通信チャネルを介し、前記第2の通信デバイスへ送信する
ように構成される、少なくとも1つのプロセッサと、
前記第2の通信デバイスへ作動可能に結合された少なくとも1つのプロセッサであって、前記第2の通信デバイスの前記少なくとも1つのプロセッサは、
前記第1の変換済みシンボルを含む第1の変換済み信号を受信し、
前記第2の変換済みシンボルを含む第2の変換済み信号を受信し、
前記第1の変換済み信号及び前記第2の変換済み信号に基づき行列を構築し、
前記通信チャネルに関連する有効チャネルの表現を前記行列に基づき検出し、
前記有効チャネルの前記表現の特異ベクトルを識別するために、前記有効チャネルの前記表現の特異値分解を行い、
送信のためのメッセージのインデックスに関連するプリコーディング行列を、送信のための前記メッセージに基づきユニタリ行列の前記コードブックから選択し、
第2の既知のベクトル、前記プリコーディング行列、及び前記特異ベクトルの複素共役に基づき、第2の符号化ベクトルを生成し、並びに
(1)前記第2の符号化ベクトルの第1のシンボルを表す信号、及び(2)前記第2の符号化ベクトルの第2のシンボルを表す信号を、前記通信チャネルを介し、前記メッセージの識別のために前記第1の通信デバイスへ送信する
ように構成された少なくとも1つのプロセッサと
を含むシステム。
【請求項2】
前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、
中間行列を生成するために、前記特異ベクトルの前記複素共役に前記プリコーディング行列を乗算すること、及び
前記第2の符号化ベクトルを生成するために、前記中間行列にトレーニング値を乗算すること
により、前記第2の符号化ベクトルを生成するように構成される、請求項1に記載のシステム。
【請求項3】
ユニタリ行列の前記コードブックは公的にアクセス可能である、請求項1に記載のシステム。
【請求項4】
前記プリコーディング行列は第1のプリコーディング行列であり、前記メッセージは第1のメッセージであり、及び前記インデックスは第1のインデックスであり、前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、
送信のための第2のメッセージの第2のインデックスに関連する第2のプリコーディング行列をユニタリ行列の前記コードブックから選択し、
第3の既知のベクトル、前記第2のプリコーディング行列、及び前記特異ベクトルの複素共役に基づき、第3の符号化ベクトルを生成し、並びに
(1)前記第3の符号化ベクトルの第1のシンボルを表す信号、及び(2)前記第3の符号化ベクトルの第2のシンボルを表す信号を、前記通信チャネルを介し、前記第2のメッセージの識別のために前記第1の通信デバイスへ送信する
ようにさらに構成される、請求項1に記載のシステム。
【請求項5】
前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、所定数のメッセージが送信されるまで、複数の追加の符号化ベクトルを表す信号を、前記通信チャネルを介し前記第1の通信デバイスへ送信するようにさらに構成される、請求項1に記載のシステム。
【請求項6】
ユニタリ行列のコードブックにアクセスすることができる第1の通信デバイスと、
ユニタリ行列の前記コードブックにアクセスすることができる第2の通信デバイスと、
前記第1の通信デバイスへ作動可能に結合された少なくとも1つのプロセッサであって、前記第1の通信デバイスの前記少なくとも1つのプロセッサは、
第1の既知ベクトル及びユニタリ行列を使用して第1の符号化ベクトルを生成し、
前記第1の符号化ベクトルの第1のシンボルを表す信号を、送信中にチャネル変換を前記第1のシンボルへ適用する通信チャネルを介し、前記第2の通信デバイスへ送信し、及び
前記第1の符号化ベクトルの第2のシンボルを表す信号を、送信中にチャネル変換を前記第2のシンボルへ適用する通信チャネルを介し、前記第2の通信デバイスへ送信する
ように構成される、少なくとも1つのプロセッサと、
前記第2の通信デバイスへ作動可能に結合された少なくとも1つのプロセッサであって、前記第2の通信デバイスの前記少なくとも1つのプロセッサは、
前記チャネル変換により変換された前記第1のシンボルのバージョンを含む第1の変換済み信号を受信し、
前記チャネル変換により変換された前記第2のシンボルのバージョンを含む第2の変換済み信号を受信し、
前記第1の変換済み信号及び前記第2の変換済み信号に基づき行列を構築し、
前記通信チャネルに関連する有効チャネルの表現を前記行列に基づき検出し、
前記有効チャネルの前記表現の左特異ベクトル及び前記有効チャネルの前記表現の右特異ベクトルを識別するために、前記有効チャネルの前記表現の特異値分解を行い、
送信のためのメッセージに基づき、ユニタリ行列の前記コードブックから、送信のための前記メッセージのインデックスに関連するプリコーディング行列を選択し、
第2の既知ベクトル、前記プリコーディング行列、前記左特異ベクトルの複素共役、及び前記有効チャネルの前記表現の前記右特異ベクトルに基づき、第2の符号化ベクトルを生成し、並びに
(1)前記第2の符号化ベクトルの第1のシンボルを表す信号、及び(2)前記第2の符号化ベクトルの第2のシンボルを表す信号を、前記通信チャネルを介し、前記メッセージの識別のために前記第1の通信デバイスへ送信する
ように構成される、少なくとも1つのプロセッサと
を含むシステム。
【請求項7】
前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、
中間行列を生成するために、前記左特異ベクトルの複素共役に前記プリコーディング行列を乗算すること、及び
前記第2の符号化ベクトルを生成するために、前記中間行列に前記有効チャネルの前記表現の前記右特異ベクトルを乗算すること
により、前記第2の符号化ベクトルを生成するように構成される、請求項6に記載のシステム。
【請求項8】
ユニタリ行列の前記コードブックは公的にアクセス可能である、請求項6に記載のシステム。
【請求項9】
前記プリコーディング行列は第1のプリコーディング行列であり、前記メッセージは第1のメッセージであり、及び前記インデックスは第1のインデックスであり、前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、
ユニタリ行列の前記コードブックから、送信のための第2のメッセージの第2のインデックスに関連する第2のプリコーディング行列を選択し、
第3の既知ベクトル、前記第2のプリコーディング行列、前記有効チャネルの前記表現の、前記左特異ベクトルの複素共役、及び前記右特異ベクトルに基づき、第3の符号化ベクトルを生成し、及び
(1)前記第3の符号化ベクトルの第1のシンボルを表す信号、及び(2)前記第3の符号化ベクトルの第2のシンボルを表す信号を、前記通信チャネルを介し、前記第2のメッセージの識別のために前記第1の通信デバイスへ送信する
ようにさらに構成される、請求項6に記載のシステム。
【請求項10】
前記第2の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、所定数のメッセージが送信されるまで、複数の追加の符号化ベクトルを表す信号を、前記通信チャネルを介し前記第1の通信デバイスへ送信するようにさらに構成される、請求項6に記載のシステム。
【請求項11】
前記第1の通信デバイスへ作動可能に結合された前記少なくとも1つのプロセッサは、
前記チャネル変換により変換された、前記第2の符号化ベクトルの前記第1のシンボルのバージョンを含む第3の変換済み信号を受信するように、及び
前記チャネル変換により変換された、前記第2の符号化ベクトルの前記第2のシンボルのバージョンを含む第4の変換済み信号を受信するように、さらに構成され、
前記メッセージの識別は、前記第3の変換済み信号及び前記第4の変換済み信号のそれぞれから前記有効チャネルの前記表現の前記右特異ベクトルの表現を除去することを含む、請求項6に記載のシステム。
【請求項12】
第1の符号化ベクトルの第1のシンボル及びチャネル変換を表す第1の信号を、第1の通信デバイスを介し及び第1のプロセッサにおいて受信することと、
前記第1の符号化ベクトルの第2のシンボル及びチャネル変換を表す第2の信号を、前記第1の通信デバイスを介し及び前記第1のプロセッサにおいて受信することと、
前記第1の信号及び前記第2の信号に基づき、有効チャネルの表現を前記第1のプロセッサを介し検出することと、
前記有効チャネルの前記表現の左特異ベクトル及び前記有効チャネルの前記表現の右特異ベクトルを識別するために、前記有効チャネルの前記表現の特異値分解を前記第1のプロセッサを介し行うことと、
送信のためのメッセージのインデックスに関連付けられたプリコーディング行列を、ユニタリ行列のコードブックから前記第1のプロセッサを介し選択することと、
第2の既知ベクトル、前記プリコーディング行列、前記有効チャネルの前記表現の前記左特異ベクトルの複素共役、及び前記右特異ベクトルに基づき、前記第1のプロセッサを介し第2の符号化ベクトルを生成することと、
(1)前記第2の符号化ベクトルの第1のシンボルを表す信号、及び(2)前記第2の符号化ベクトルの第2のシンボルを表す信号を、第2の通信デバイスに関連付けられた第2のプロセッサにおける前記メッセージの識別のために、通信チャネルを介し前記第2の通信デバイスへ送信することと
を含む方法。
【請求項13】
前記第2の符号化ベクトルを生成することは、
中間行列を生成するために前記左特異ベクトルの前記複素共役に前記プリコーディング行列を乗算することと、
前記第2の符号化ベクトルを生成するために前記中間行列に前記有効チャネルの前記表現の前記右特異ベクトルを乗算することと
を含む、請求項12に記載の方法。
【請求項14】
ユニタリ行列の前記コードブックは公的にアクセス可能である、請求項12に記載の方法。
【請求項15】
前記プリコーディング行列は第1のプリコーディング行列であり、前記メッセージは第1のメッセージであり、及び前記インデックスは第1のインデックスである、請求項12に記載の方法であって、前記方法はさらに、
ユニタリ行列の前記コードブックから、送信のための第2のメッセージの第2のインデックスに関連する第2のプリコーディング行列を選択することと、
第3の既知ベクトル、前記第2のプリコーディング行列、前記有効チャネルの前記表現の前記左特異ベクトル及び前記右特異ベクトルの複素共役に基づき、第3の符号化ベクトルを生成することと、
前記第3の符号化ベクトルを表す信号を前記第2のメッセージの識別のために、前記通信チャネルを介し前記第2の通信デバイスへ送信することと
を含む、方法。
【請求項16】
所定数のメッセージが送信されるまで、複数の追加の符号化ベクトルを表す信号を前記通信チャネルを介し前記第2の通信デバイスへ送信することをさらに含む、請求項12に記載の方法。
【請求項17】
第1の既知ベクトル及びユニタリ行列を使用して、第1の符号化ベクトルを第1の通信デバイスの第1のプロセッサにおいて生成することと、
前記第1の符号化ベクトルの第1のシンボルを表す第1の信号を、通信チャネルを介し第2の通信デバイスへ送信することであって、前記通信チャネルは送信中にチャネル変換を前記第1の信号へ適用する、送信することと、
前記第1の符号化ベクトルの第2のシンボルを表す第2の信号を、前記通信チャネルを介し前記第2の通信デバイスへ送信することであって、前記通信チャネルは送信中にチャネル変換を前記第2の信号へ適用する、送信することと、
第2の符号化ベクトルの第1のシンボル及び前記チャネル変換を表す第3の信号を、前記第2の通信デバイスから及び前記第1のプロセッサにおいて、受信することと、
前記第2の符号化ベクトルの第2のシンボル及び前記チャネル変換を表す第4の信号を、前記第2の通信デバイスから及び前記第1のプロセッサにおいて、受信することと、
前記第3の信号及び前記第4の信号に基づき、前記プロセッサを介し有効チャネルの表現を検出することと、
前記有効チャネルの前記表現の特異ベクトルを識別するために、前記有効チャネルの前記表現の特異値分解を前記プロセッサを介し行うことと、
前記第3の信号及び前記第4の信号に関連付けられたメッセージを識別するために、前記有効チャネルの表現の前記特異ベクトル及び前記ユニタリ行列に基づきユニタリ行列のコードブックを照会することと
を含む方法。
【請求項18】
ユニタリ行列の前記コードブックは公的にアクセス可能である、請求項17に記載の方法。
【請求項19】
所定数のメッセージが受信されるまで、前記第2の通信デバイスから前記通信チャネルを介し、複数の追加の符号化ベクトルを表す複数の追加信号を前記第2の通信デバイスから及び前記プロセッサにおいて受信することをさらに含む、請求項17に記載の方法。
【請求項20】
前記メッセージのインデックスに関連するプリコーディング行列を前記プロセッサを介し検出することであって、ユニタリ行列の前記コードブックの前記照会は、前記プリコーディング行列に基づく、検出すること
をさらに含む、請求項17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本出願は、その全体をすべての目的のために全体として参照により本明細書に援用する2020年2月11日申請の米国非仮出願特許出願第16/787,290号:題名“SINGLE INPUT SINGLE OUTPUT (SISO) PHYSICAL LAYER KEY EXCHANGE”の優先権を主張するとともにその継続出願である。
【0002】
[0002] 本出願は、その開示をすべての目的のために全体として参照により本明細書に援用する2016年11月14日申請の米国非仮出願特許出願第15/351,428号:題名“RELIABLE ORTHOGONAL SPREADING CODES IN WIRELESS COMMUNICATIONS”(現在、米国特許第10,020,839号)、2019年7月1日申請の米国非仮出願特許出願第16/459,245号:題名“SYSTEMS, METHODS AND APPARATUS FOR SECURE AND EFFICIENT WIRELESS COMMUNICATION OF SIGNALS USING A GENERALIZED APPROACH WITHIN UNITARY BRAID DIVISION MULTIPLEXING”、及び2019年6月31日申請の米国非仮出願特許出願第16/527,240号:題名“COMMUNICATION SYSTEM AND METHOD USING UNITARY BRAID DIVISIONAL MULTIPLEXING (UBDM) WITH PHYSICAL LAYER SECURITY”に関する。
【0003】
連邦政府利益に関する陳述
[0003] 米国政府は、すべての米国政府目的のためのライセンスを与える権限により、本発明における非排他的で取り消し不能なロイヤルティ無償ライセンスを保持する。
【0004】
技術分野
[0004] 本開示は、電子通信のために無線信号を送信するためのシステム及び方法に関し、特に、無線通信のデータ速度を増加し及び通信複雑性を低減することに関する。
【0005】
[0005] 多重アクセス通信では、複数のユーザデバイスが信号を所与の通信チャネル上で受信側へ送信する。これらの信号は重畳され、及び当該チャネル上で伝播する合成信号を形成する。次に、受信側は、合成信号から1つ又は複数の個々の信号を復元するために合成信号に対し分離操作を行う。例えば、各ユーザデバイスは異なるユーザに属するセルラ電話であり得、受信側はセルラ塔であり得る。様々なユーザデバイスにより送信される信号を分離することにより、様々なユーザデバイスは干渉無しに同じ通信チャネルを共有し得る。
【0006】
[0006] 送信器は、キャリア又はサブキャリヤの状態を変更することにより(例えばキャリアの振幅、位相及び/又は周波数を変更することにより)様々なシンボルを送信し得る。各シンボルは1つ又は複数のビットを表し得る。これらのシンボルはそれぞれ、複素平面内の離散値へマッピングされ得、これにより直交振幅変調を生成するか、又は各シンボルを離散周波数へ割り当てることにより、周波数シフトキーイングを生成する。次に、シンボルは、シンボル伝送速度の少なくとも2倍であるナイキスト速度でサンプリングされる。結果信号は、デジタル/アナログ変換器を介しアナログへ変換され、次に、送信のために搬送周波数へアップ変換される。様々なユーザデバイスが通信チャネル上でシンボルを同時に送信する場合、これらのシンボルにより表される正弦波は、受信器において受信される合成信号を形成するために重畳される。
【0007】
[0007] 無線信号通信に対する既知の手法は、複数の搬送周波数上でデジタルデータを符号化する方法である直交FDM(OFDM:orthogonal frequency-division multiplexing)である。OFDM方法は通信チャネルの過酷な条件(減衰、干渉及び周波数選択フェーディングなど)に対処する信号通信を許容するように適応化されてきた。しかし、このような手法は信号送信の安全性の物理層の要望に対処しない。さらに、OFDM信号は、高いピーク対平均電力比を扱い得る送信器をしばしば含む、非常に大きなダイナミックレンジにわたる信号振幅を含む。したがって、信号の無線通信に対する安全且つ電力効率が良い手法のための改善されたシステム、装置及び方法の必要性がある。
【発明の概要】
【0008】
概要
[0008] いくつかの実施形態では、第1の通信デバイスへ結合されたプロセッサが、第1の符号化ベクトル(encoded vector)及び第2の符号化ベクトルを生成し、及びこれらを、送信中にチャネル変換を符号化ベクトルへ適用する通信チャネルを介し第2の通信デバイスへ送信する。第2の通信デバイスへ結合されたプロセッサは、変換された信号を受信し、変換された信号に基づき行列を構築し、その有効チャネルを検出し、及び有効チャネルの左右特異ベクトルを識別する。プリコーディング行列がメッセージに基づきユニタリ行列のコードブックから選択され、第2の既知ベクトル、プリコーディング行列、左特異ベクトルの複素共役及び右特異ベクトルに基づき、第2の符号化ベクトルが生成される。第2の符号化ベクトルの第1のシンボル及び第2の符号化ベクトルの第2のシンボルが、メッセージの識別のために第1の通信デバイスへ送信される。
【0009】
[0009] いくつかの実施形態では、物理層セキュリティを有するUBDM又はOFDMを使用する通信方法は、第1の符号化ベクトルの第1のシンボル及びチャネル変換を表す第1の信号を、第1の通信デバイスを介し及び第1のプロセッサにおいて受信することを含む。本方法はまた、第1の符号化ベクトルの第2のシンボル及びチャネル変換を表す第2の信号を、第1の通信デバイスを介し及び第1のプロセッサにおいて受信することを含む。第1のプロセッサは、第1の信号及び第2の信号に基づき有効チャネルの表現を検出する。第1のプロセッサは、有効チャネルの表現の左特異ベクトル及び有効チャネルの表現の右特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う。第1のプロセッサは、送信のためのメッセージのインデックスに関連するプリコーディング行列をユニタリ行列のコードブックから選択する。第1のプロセッサは、第2の既知ベクトル、プリコーディング行列、有効チャネルの表現の、左特異ベクトルの複素共役、及び右特異ベクトルに基づき、第2の符号化ベクトルを生成する。本方法はまた、(1)第2の符号化ベクトルの第1のシンボルを表す信号、及び(2)第2の符号化ベクトルの第2のシンボルを表す信号を、第2の通信デバイスに関連付けられた第2のプロセッサにおけるメッセージの識別のために、通信チャネルを介し第2の通信デバイスへ送信することを含む。
【図面の簡単な説明】
【0010】
図面の簡単な説明
図1】[0010]いくつかの実施形態による安全且つ効率的なユニタリブレイド分割多重化(UBDM:Unitary Braid Divisional Multiplexing)システムの概略図である。
図2】[0011]いくつかの実施形態によるUBDMシステム内の信号送信器の概略図である。
図3】[0012]いくつかの実施形態によるUBDMシステム内の信号受信器の概略図である。
図4】[0013]いくつかの実施形態による単一入力単一出力(SISO)実施物理層セキュリティ(PLS:physical layer security)を有するUBDM又はOFDMを使用する通信システムの概略図である。
図5】[0014]いくつかの実施形態によるSISO実施PLSを有するUBDM又はOFDMを行う第1の方法を示すフローチャートである。
図6】[0015]いくつかの実施形態によるSISO実施PLSを有するUBDM又はOFDMを行う第2の方法を示すフローチャートである。
図7A】[0016]一実施形態によるUBDMシステムを操作する方法を示すフローチャートである。
図7B】[0017]一実施形態によるUBDMシステムを操作する方法を示すフローチャートである。
図8A】[0018]OFDMシステムの信号送信器における信号の処理の概略図である。
図8B】[0019]一実施形態によるUBDMシステムの信号送信器における信号の処理の概略図である。
図8C】[0020]一実施形態によるUBDMシステムの信号送信器における信号の処理の概略図である。
【発明を実施するための形態】
【0011】
詳細な説明
[0021] 本開示は、単一入力単一出力(SISO)構成を介し実装される物理層セキュリティ(PLS)を含むUBDM又はOFDMシステム実装形態が続く変調ベース通信セキュリティのためのユニタリブレイド分割多重化(UBDM)システム(本明細書では一般化UBDM(gUBDM:generalized UBDM)システムとも呼ぶ)について記載する。PLSは、「強化型MOPRO」と呼ばれることがあり、及びMIMO-OFDM Precoding with Rotation(MOPRO)と呼ばれる鍵交換アルゴリズムの修正版を含む。
【0012】
[0022] いくつかの実施形態では、SISO実施PLSを有するユニタリブレイド分割多重化(UBDM)を使用する通信方法は、第1の符号化ベクトルの第1のシンボル及びチャネル変換を表す第1の信号を第1の通信デバイスを介し及び第1のプロセッサにおいて受信することを含む。本方法はまた、第1の符号化ベクトルの第2のシンボル及びチャネル変換を表す第2の信号を、第1の通信デバイスを介し及び第1のプロセッサにおいて受信することを含む。有効チャネルの表現は、第1の信号及び第2の信号に基づき第1のプロセッサを介し検出される。第1のプロセッサは、有効チャネルの表現の左特異ベクトル及び有効チャネルの表現の右特異ベクトルを識別するために、有効チャネルの表現の特異値分解を行う。第1のプロセッサは、送信のためのメッセージのインデックスに関連付けられたプリコーディング行列を、ユニタリ行列のコードブックから選択する。第1のプロセッサは、第2の既知ベクトル、プリコーディング行列、有効チャネルの表現の左特異ベクトルの複素共役、及び右特異ベクトルに基づき、第2の符号化ベクトルを生成する。本方法はまた、(1)第2の符号化ベクトルの第1のシンボルを表す信号及び(2)第2の符号化ベクトルの第2のシンボルを表す信号を、第2の通信デバイスに関連付けられた第2のプロセッサにおけるメッセージの識別のために通信チャネルを介し第2の通信デバイスへ送信することを含む。
【0013】
[0023] いくつかの実施形態では、SISO実施PLSを有するUBDM又はOFDMを使用する通信方法は、第1の符号化ベクトルを、既知ベクトル及びユニタリ行列を使用して第1の通信デバイスのプロセッサにおいて生成することを含む。第1の符号化ベクトルの第1のシンボルを表す第1の信号及び第1の符号化ベクトルの第2のシンボルを表す第2の信号は、送信中にチャネル変換を第1の信号及び第2の信号へ適用する通信チャネルを介し第2の通信デバイスへ送信される。第2の符号化ベクトルの第1のシンボル及びチャネル変換を表す第3の信号及び第2の符号化ベクトルの第2のシンボル及びチャネル変換を表す第4の信号は、プロセッサにおいて及び第2の通信デバイスから受信される。プロセッサは有効チャネルの表現を第3の信号及び第4の信号に基づき検出する。プロセッサは有効チャネルの表現の右特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う。本方法はまた、第3の信号及び第4の信号に関連付けられたメッセージを識別するためにユニタリ行列のコードブックを有効チャネルの表現の特異ベクトル及びユニタリ行列に基づき照会することを含む。
【0014】
[0024] 本明細書に記載のいくつかの実施形態では、SISO実施PLSを有するUBDMシステムは、修正型直交周波数分割多重化(OFDM:Orthogonal Frequency Divisional Multiplexing)システムを含む。修正されたOFDMシステムは、非修正OFDMシステムと共通な、いくつかの部品を含み得るが、OFDM部品の一般化バージョン(例えば、OFDMの機能性のサブセット)も含む。UBDMシステムは、送信される変換済み信号を生成するために信号送信器において信号の逆高速フーリエ変換(iFFT)(又は高速フーリエ変換FFT)を行うことと、次に信号を復元するために受信器において高速フーリエ変換(FFT)(又は逆フーリエ変換iFFT)を変換済み信号に対し行うこととを含む、ペア操作を実行するために、操作中に修正済みOFDM工程を(例えばハードウェアで、及び/又はハードウェアにより実行される又はその中に格納されたソフトウェアで)実施するように設計され得る。修正は、送信器により行われるiFFT/FFTを任意変換(任意行列(例えば任意ユニタリ行列)により表される)へ一般化することを含む。
【0015】
[0025] 本明細書においてSISO実装PLSと共に説明され、及びOFDMシステムの上記修正を有する実施形態を含むUBDMシステムのいくつかの実施形態は、無線通信チャネル上の信号の送信の際に、例外的な安全性及び効率を与え得る。本明細書において説明されるUBDMの実施形態の他の恩恵は、非線形変換を使用する能力だけでなく、一例として等角タイトフレーム(ETF:equiangular tight frame)変換又は略等角タイトフレーム(NETF:nearly equiangular tight frame)変換に関わる一般化実施形態も含む。標準OFDMはETF/NETF「過負荷」への一般化を許容しない。
【0016】
[0026] 本明細書において説明される、UBDMシステム内に実装される任意ユニタリ行列へ一般化することはまた、各シンボル又はベクトルのエネルギーを、様々なサブキャリヤにわたって送出される信号内に拡散する効果を有し得る。各シンボル又はベクトルのエネルギーを、送信すべき信号内に拡散することは、信号のピーク対平均電力比(PAPR)を低減し、及び直接シーケンス拡散スペクトラム(DSSS:Direct Sequence Spread Spectrum)システムなどのシステムに相当する拡散度(及びしたがって干渉排除)を提供し得る。送信すべき信号内に各シンボル又はベクトルのエネルギーを拡散することはまた、多重化の際に追加の自由度を提供し得る。換言すれば、標準周波数分割多重化及び時分割多重化に加えて、UBDMシステムは、信号伝送システムにおいて多重化するための強力な自由度を追加する符号分割多重化を導入し得る。
【0017】
[0027] 「物理層セキュリティ」(PLS)は、秘密情報の交換の目的のために通信システムのユーザ間の通信チャネルの物理的性質の梃入れ(lEveraging)を指す。前述のUBDM実装形態のいくつかは、物理層におけるセキュリティの適用を説明するが、これらは厳密な意味では、2人のユーザ間の共有チャネルの物理的性質の活用に関与するPLSを取り込まない。例えば、PLSでは、ユーザは、秘密情報のための対称暗号/セキュリティ方式(例えば高度暗号化標準(AES:Advanced Encryption Standard))の秘密鍵を通信チャネルの物理的特性に基づき生成する。盗聴者が、通信チャネルの物理的特性を直接測定するために(又は近似するために十分な情報を集めるために)ユーザのうちの1人に十分に近い受信器を有しない限り、盗聴者は共有秘密にアクセスすることができなくなる。以下に記載される実施形態によると、PLSは、通信のセキュリティを強化するためにUBDM(又は一般化UBDM)、OFDM、又は任意の他の通信システムと組み合わせて実装され得る。
【0018】
[0028] 本明細書で使用されるように、「送信器」(又は「信号送信器」)は信号の送信において使用される部品の任意の集合(限定しないがアンテナ、増幅器、ケーブル、デジタル/アナログ変換器、フィルタ、アップコンバータ、プロセッサ(例えば、ビットを読み出すための及び/又はビットをベースバンドへマッピングするための)などのうちの1つ又は複数のものの任意の組み合わせを含む)を指す。同様に、本明細書で使用されるように、「受信器」(又は「信号受信器」)は、信号を受信する際に使用される部品の任意の集合(限定しないがアンテナ、増幅器、ケーブル、アナログ/ディジタ変換器、フィルタ、ダウンコンバータ、プロセッサなどのうちの1つ又は複数のものの任意の組み合わせを含む)を指す。
【0019】
SISO実施強化型MOPROの信号を送受信すること
[0029] 図1は、一実施形態による安全且つ効率的なユニタリブレイド分割多重化システム(本明細書では「UBDMシステム」又は「システム」とも呼ぶ)100の概略図である。UBDM100は無線電子通信を安全且つ効率的なやり方で送信及び/又は受信するように構成される。UBDMシステム100は図1に示すように信号送信器101、信号受信器103、及び通信ネットワーク106を含む。UBDMシステム100は任意選択的に信号送信器102及び信号受信器104を含む。UBDMシステム100は、信号送信器101からの及び/又は任意選択的に信号送信器102からの信号を処理し、及びこれを通信ネットワークを介し定義される1つ又は複数の通信チャネルを介し信号受信器103へ及び/又は任意選択的に信号受信器104へ送信するように構成される。信号送信器101及び/又は102から信号受信器103及び/又は104へ送信される信号を所与として、UBDMシステム100は、信号送信器101及び/又は102が信号受信器103及び/又は104へ送信される変換済み信号を生成するために任意変換を適用することにより信号を処理し得るように構成される。任意変換は、1つ又は複数のハードウェア(例えばフィールドプログラマブルゲートアレイ)及び/又はソフトウェアを使用して適用され得る。信号送信器101及び/又は102はまた、適用された任意変換の指示を信号受信器103及び/又は104へ送信する(例えば信号を送信する前に)。信号受信器103及び/又は104は、変換済み信号と信号送信器により適用される任意変換の指示とを受信し、及び変換済み信号から信号を復元するために任意変換の逆を適用するように構成される。システム100は2つの信号送信器101、102及び2つの信号受信器103、104を含むように示されるが、同様なUBDMシステムは、任意数の信号送信器及び/又は信号受信器を含み得る。
【0020】
[0030] いくつかの実施形態では、通信ネットワーク106(「ネットワーク」とも呼ばれる)は、データを転送するように構成された1つ又は複数の有線及び/又は無線通信チャネル(公共及び/又は私設ネットワーク上で動作する)を含む、任意の好適な通信ネットワークであり得る。示さないが、いくつかの実装形態では、信号送信器101、102及び信号受信器103、104(又はその一部)は、例えばデータセンタ(例えばクラウドコンピュータ環境)、コンピュータシステム、1つ又は複数のサーバ/ホストデバイスなど内で動作するように構成され得る。いくつかの実装形態では、信号送信器101、102及び信号受信器103、104は、1つ又は複数のデバイス及び/又は1つ又は複数のサーバデバイスを含み得る、様々なタイプのネットワーク環境内で機能し得る。例えば、ネットワーク106は私設ネットワーク、仮想私設ネットワーク(VPN:Virtual Private Network)、マルチプロトコルラベルスイッチング(MPLS:Multiprotocol Label Switching)回路、インターネット、イントラネット、ローカルエリアネットワーク(LAN:local area network)、広域ネットワーク(WAN:wide area network)、都市域ネットワーク(MAN:metropolitan area network)、マイクロ波ネットワークのための世界規模相互運用性(WiMAX(登録商標):worldwide interoperability for microwave access network)、Bluetooth(登録商標)ネットワーク、仮想ネットワーク、及び/又はこれらの任意の組み合せであってもよいしこれらを含んでもよい。いくつかの事例では、通信ネットワーク106は、例えばWi-Fi又は無線ローカルエリアネットワーク(「WLAN:Wi-Fi or wireless local area network」)、無線広域ネットワーク(「WWAN:wireless wide area network」)、及び/又はセルラネットワークなどの無線ネットワークであり得る。
【0021】
[0031] 通信ネットワーク106は、例えばゲートウェイデバイス、ブリッジ、スイッチなどを使用して実装される、有線ネットワーク及び/又は無線ネットワークであってもよいし、これらを含んでもよい。有線ネットワーク又は無線ネットワークは1つ又は複数の通信チャネル(例えば無線周波数(RF)通信チャネル、極低周波(ELF)通信チャネル、超低周波数(ULF)通信チャネル、低周波数(LF)通信チャネル、中間周波数(MF)通信チャネル、超高周波数(UHF)通信チャネル、極高周波(EHF)通信チャネル、光ファイバcomminationチャネル、電子通信チャネル、衛星通信チャネル等々)を使用し得る。ネットワーク106は、1つ又は複数のセグメントを含み得る、及び/又はインターネットプロトコル(IP)及び/又はプロプライアタリプロトコルなどの様々なプロトコルに基づく部分を有し得る。通信ネットワーク106はインターネットの少なくとも一部を含み得る。いくつかの事例では、通信ネットワーク106は例えばネットワークブリッジ、ルータ、スイッチ、ゲートウエイなど(図示せず)により互いに作動可能に結合された複数のネットワーク又はサブネットワークを含み得る。
【0022】
[0032] 図2は、一実施形態による図1を参照して上に説明されたUBDMシステム100などのUBDMシステムの一部であり得る例示的信号送信器201の概略ブロック図である。信号送信器201は、図1を参照して上に示され説明されたシステム100の信号送信器101及び信号送信器102と構造的且つ機能的に同様であり得る。いくつかの実施形態では、信号送信器201はメモリ内に格納された命令を処理するように構成されたプロセッサであり得る又はそれを含み得る。信号送信器201は、例えばサーバ、デスクトップコンピューティングデバイス、スマートフォン、タブレット、ウェアラブルデバイス、ラップトップなどのハードウェアベースコンピューティングデバイス及び/又はマルチメディアデバイスであり得る。信号送信器201はプロセッサ211、メモリ212(例えば、データストレージを含む)及び通信インターフェース213を含む。
【0023】
[0033] プロセッサ211は例えば、一組の命令又はコードを実行するように構成されたハードウェアベース集積回路(IC)又は任意の他の好適な処理デバイスであり得る。例えば、プロセッサ211は、汎用プロセッサ、中央処理ユニット(CPU:central processing unit)、加速処理ユニット(APU:accelerated processing unit)、特定用途向け集積回路(ASIC:application specific integrated circuit)、フィールドプログラム可能ゲートアレイ(FPGA:field programmable gate array)、プログラム可能論理アレイ(PLA:programmable logic array)、コンプレックスプログラム可能論理デバイス(CPLD:complex programmable logic device)、プログラム可能論理コントローラ(PLC:programmable logic controller)、グラフィック処理ユニット(GPU:graphics processing unit)、ニューラルネットワークプロセッサ(NNP:neural network processor)等々であり得る。プロセッサ211はシステムバス(例えば、図示しないアドレスバス、データバス及び/又は制御バス)を介しメモリ212へ作動可能に結合される。
【0024】
[0034] プロセッサ211は、送信すべき信号を受信するように、及びこの信号を任意変換を適用することにより変換済み信号へ変換するための処理を行うように構成され得る。いくつかの実装形態では、プロセッサ211は、変換済み信号がUBDMシステムを使用して安全且つ効率的なやり方で送信され得るように、ユニタリ変換であるように定義される任意変換を適用し得る。
【0025】
[0035] プロセッサ211は、変換器214、任意変換選択器215及び任意変換適用器216を含む一組の部品を含み得る。プロセッサ211は、一組の信号221及び222を受信し、一組の任意変換231及び232を行い、並びに一組の変換済み信号241及び242を送信し得る。
【0026】
[0036] いくつかの実施形態では、変換器214、任意変換選択器215及び任意変換適用器216のそれぞれは、メモリ212内に格納されプロセッサ211により実行されるソフトウェアであり得る。例えば、プロセッサ211の上述部分のそれぞれは、プロセッサ211に変換器214、任意変換選択器215及び任意変換適用器216を実行させるためのコードであり得る。コードはメモリ212及び/又はハードウェアベースデバイス(例えばASIC、FPGA、CPLD、PLA、PLCなど)内に格納され得る。他の実施形態では、変換器214、任意変換選択器215及び任意変換適用器216のそれぞれはそれぞれの機能を行うように構成されたハードウェアであり得る。いくつかの実施形態では、部品のそれぞれはソフトウェアベース及びハードウェアの組み合わせであり得る。いくつかの実施形態では、プロセッサ211の部品(例えば変換器214、任意変換選択器215、任意変換適用器216)のうちの1つ又は複数は、1又は複数のタイプのハードウェア、ソフトウェア、ファームウェア、オペレーティングシステム、実行時ライブラリなどを含み得る1つ又は複数のプラットホーム(例えば1つ又は複数の同様な又は異なるプラットホーム)に基づき動作するように構成され得る。いくつかの実装形態では、信号送信器の部品はデバイスのクラスタ(例えばサーバファーム)内で動作するように構成され得る。このような実施形態では、信号送信器201の部品の機能性及び処理は、デバイスのクラスタのうちのいくつかのデバイスへ分配され得る。信号送信器201及び信号受信器(図3において示され説明される信号受信器301など)の部品は、属性を処理するように構成された任意のタイプのハードウェア及び/又はソフトウェアであり得るか、又はそれを含み得る。
【0027】
[0037] 変換器214は、送信すべき信号を受信し、及び任意変換を使用してプロセッサ211により変換され得る形式の信号を用意するように構成され得る。例えば、いくつかの実施形態では、プロセッサ211は並列組のシンボルbの形式の信号を受信し得る。変換器214は、並列組のシンボルbを直列組のシンボルへ変換するためにパラレル・ツー・シリアル計算を並列組のシンボルbに対し行うよう(シフトレジスタを使用して)に構成され得る。他のいくつかの実施形態では、変換器214は、直列組のシンボルを並列組のシンボルへ変換するシリアル・ツー・パラレル計算を行う(例えばシフトレジスタを使用して)ための構成を含み得る。いくつかの実施形態では、変換器214は一組のシンボルに基づき複数のベクトル(例えば信号221及び221の組を表す)を生成し得る。いくつかの実装形態では、変換器214は複数の入力ビットの形式の信号を受信し得る。変換器214は、複数の入力ビットに基づき複数のシンボルを生成するように構成され得る。変換器214はさらに、複数のブロックの各ブロックが複数のベクトル(例えば信号221及び222の組を表す)からのベクトルを表す複数のシンボルに基づき、複数のブロックを生成するように構成され得る。代替的に、変換器214はさらに、複数のシンボルに基づき、複数組の複数のブロックを生成するように構成され得る。ここで、複数組の複数のブロックの各複数のブロックは、複数のベクトル(例えば信号221及び222の組を表す)からのベクトルを表す。
【0028】
[0038] 任意変換選択器215は、複数のベクトル(例えば信号221及び221の組を表す)へ適用される任意変換(例えば任意変換231及び232)を、送信すべき信号又は変換器214により生成される複数のベクトルに少なくとも部分的に基づいて選択し、UBDMシステムに関連付けられた信号送信器201から1つ又は複数の受信器へ、ベクトルを安全且つ効率的に送信するように構成され得る。任意変換(例えば任意変換231及び232)は、非線形変換、ユニタリ変換、ETF変換、又はNETF変換のうちの1つを、又はこれらの任意の組み合わせを含み得る。いくつかの実施形態では、任意変換選択器215は、信号を送信するために選択され得る設計(例えば任意変換231及び232)によってユニタリである、任意変換のライブラリへアクセスし得る。任意変換選択器215は、例えば変換タイプに基づき、及び/又はテレコミュニケーションハンドシェークを介し2つの通信実体間で交渉されるか、又はそうでなければ通信システム内の参加者により入力される判断基準に基づき、任意変換を選択し得る。判断基準は、例えば所望安全レベル、待ち時間閾値、誤り率閾値、最小データ速度、最大データ速度などのうちの1つ又は複数を含み得る。特に、信号の全電力を不変なままにするユニタリ変換は、シンボルのベクトルに対し行われ得る最大級の変換である。非ユニタリ変換が使用されると、受信器における逆変換は受信されたシンボルのうちのいくつかのシンボル内の雑音を必然的に増幅することになるが、これはユニタリ変換には当てはまらない。
【0029】
[0039] いくつかの事例では、任意変換選択器215は、単位行列若しくは離散的フーリエ行列ではないか又はフーリエ行列の任意の他の直和である変換を選択するように構成され得る。例えば、いくつかの実装形態では、任意変換選択器215は、ユニタリ変換のライブラリを有し得、及び一組のガイドラインに基づき、1つのユニタリ変換Uを選択し、Uが単位行列若しくは離散的フーリエ行列であるか又は一組のフーリエ行列の任意の他の直和であるかを照査するための計算を行う。Uが3つの上記カテゴリの1つであれば、いくつかの実施形態では、任意変換選択器215はUを捨て、上記3つのカテゴリのうちのいかなるものでもないというガイドラインを満足し得る別の変換を選択し得る。任意変換選択器215は、単位行列若しくは離散的フーリエ行列ではないか又はフーリエ行列の任意の他の直和である変換Uを選び出すならば、当該実施形態によるUBDMシステムを使用して送信される信号を変換する事例に使用される任意変換Aとして、Uを割り当てることができる。
【0030】
[0040] いくつかの実装形態では、任意変換選択器215は、プロセッサ211により受信される一組の入力に基づき選択を行い得る。いくつかの実装形態では、任意変換選択器215は、信号、複数のベクトル、信号送信の性質に関連付けられた一組のパラメータ(例えば安全要件、信号内の情報内容の感度、信号送信の経路など)に基づき選択を行い得る。いくつかの実装形態では、任意変換選択器215は、プロセッサ211により受信された一組の入力(例えば、プロセッサ211により受信された一組のユーザ入力)に従って任意変換を定義し生成するように構成され得る。
【0031】
[0041] 任意変換適用器216は、複数の変換済みベクトル(例えば、変換済みベクトル241及び242)を生成するために、選択された任意変換を複数のベクトル(例えばベクトル221及び222)に対して適用し得る。いくつかの実装形態では、複数の変換済みベクトルは、複数のベクトルの全大きさにほぼ等しい全大きさを有し得る。いくつかの実装形態では、例えば、任意変換適用器216は、変換行列Aを一組のベクトルに対し適用して、変換済みベクトルを生成するために行列演算を行うように構成され得る。いくつかの実装形態では、任意変換適用器216は、任意変換を適用する前に、任意の好適な数の手順(例えば、信号処理手順、好適な行列演算)を一組のベクトルに対して行うように構成され得る。次に、複数の変換済みベクトルは、信号送信器アンテナ217へ送信され得、及び任意選択的に、信号受信器に関連付けられた1つ又は複数の信号受信器へ送信されるために通信器213に含まれる信号送信器アンテナ218へ送信され得る。上述のように2つの信号送信器アンテナ217、218を含むように示されたが、同様な信号送信器は、単一入力単一出力(SISO)動作を行うように構成された、いくつかの実施形態による単一送信器アンテナ(例えば信号送信器アンテナ217)を含み、及びこれを使用する可能性がある。別の他の実施形態によると、同様な信号送信器は任意の好適なより多数の信号送信器アンテナ(すなわち3つ以上の送信器アンテナ)を含む可能性がある。いくつかの実施形態では、信号送信器201は多入力多出力(MIMO:Multiple Input Multiple Output)動作を行うように構成された複数のアンテナアレイを含み得る。
【0032】
[0042] 信号送信器201のメモリ212は、例えばランダムアクセスメモリ(RAM)、メモリバッファ、ハードドライブ、読み出し専用メモリ(ROM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、フラッシュドライブ、セキュアディジタル(SD)メモリカード、埋め込み型マルチタイムプログラム可能(MTP:multi-time programmable)メモリ等々であり得る。メモリ212は、例えばプロセッサ211に1つ又は複数の処理、機能など(例えば変換器214、任意変換選択器215、及び/又は任意変換適用器216に関連付けられた機能)を行わせる命令を含み得る、1つ又は複数のソフトウェアモジュール及び/又はコードを格納し得る。いくつかの実施形態では、メモリ212は、増分的に追加され使用され得る拡張可能ストレージユニットを含み得る。いくつかの実装形態では、メモリ212は、プロセッサ211へ作動可能に結合され得るポータブルメモリ(例えばフラッシュドライブ、ポータブルハードディスクなど)であり得る。他の事例では、メモリは信号送信器201と遠隔的に作動可能に結合され得る。例えば、遠隔データベースサーバがメモリとして働き、及び信号送信器201へ作動可能に結合され得る。
【0033】
[0043] 通信インターフェース213は、プロセッサ211及びメモリ212へ作動可能に結合されたハードウェアデバイス及び/又はプロセッサ211により実行される、メモリ212内に格納されたソフトウェアであり得る。通信インターフェース213は、信号送信器アンテナ217と任意選択的に信号送信器アンテナ218とを含み得る。送信器アンテナ217に加えて、第2の送信器アンテナ218が図2に示されるが、いくつかの実施形態によると、信号送信器201と同様な信号送信器は、いくつかの実施形態によると単一信号送信器アンテナだけを有し得るか、いくつかの実施形態によると任意数の送信器アンテナを有し得る。通信インターフェース213は、例えばネットワークインターフェースカード(NIC:network interface card)、Wi-Fi(商標)モジュール、Bluetooth(登録商標)モジュール、及び/又は任意の他の好適な有線及び/又は無線通信デバイスであり得る。さらに、通信インターフェース213は、スイッチ、ルータ、ハブ及び/又は任意の他のネットワークデバイスを含み得る。通信器213は、計算器201を通信ネットワーク(図1に関連して上に示す通信ネットワーク106など)へ接続するように構成され得る。いくつかの事例では、通信インターフェース213は、1つ又は複数の通信チャネルを介し通信ネットワーク(例えばインターネット、イントラネット、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、都市域ネットワーク(MAN)、Worldwide Interoperability for Microwave Access(WiMAX(登録商標))、光ファイバベースネットワーク、Bluetooth(登録商標)ネットワーク、仮想ネットワーク、及び/又はそれらの任意の組み合せなど)へ接続するように構成され得る。
【0034】
[0044] いくつかの事例では、通信インターフェース213は、ファイル及び/又は一組のファイルを通信ネットワーク(例えば図1を参照して示し説明した通信ネットワーク106)を通り1つ又は複数の通信チャネルを介し受信及び/又は送信することを容易にし得る。いくつかの事例では、受信されたファイルは本明細署においてさらに詳細に説明されるようにプロセッサ211により処理され得る及び/又はメモリ212内に格納され得る。いくつかの事例では、先に説明したように、通信インターフェース213は、複数の変換済みベクトルを、信号送信器アンテナ217を介し、通信ネットワークへ接続される少なくとも1つの信号受信器に関連付けられた少なくとも1つの信号受信器アンテナへ送信するように構成され得る。通信インターフェース213はまた、任意変換システムのライブラリに関連付けられたデータを送信及び/又は受信するように構成され得る。
【0035】
[0045] 図3は、一実施形態による図1を参照し上に説明されたUBDMシステム100などのUBDMシステムの一部であり得る例示的信号受信器301の概略ブロック図である。信号受信器301は、図1を参照して上に示され説明されたシステム100の信号受信器101及び信号送信器102と構造的且つ機能的に同様であり得る。いくつかの実施形態では、信号受信器301はメモリ312内に格納された命令を処理するように構成されたプロセッサ311であり得る又はそれを含み得る。信号受信器301は、例えばサーバ、デスクトップコンピューティングデバイス、スマートフォン、タブレット、ウェアラブルデバイス、ラップトップなどのハードウェアベースコンピューティングデバイス及び/又はマルチメディアデバイスであり得る。信号受信器301はプロセッサ311、メモリ312及び通信インターフェース313を含む。
【0036】
[0046] プロセッサ311は例えば一組の命令又はコードを実行するように構成されたハードウェアベース集積回路(IC)又は任意の他の好適な処理デバイスであり得る。例えば、プロセッサ311は一組の命令又はコードを実行するように構成されたハードウェアベース集積回路(IC)又は任意の他の好適な処理デバイスであり得る。例えば、プロセッサ311は、汎用プロセッサ、中央処理ユニット(CPU)、加速処理ユニット(APU)、特定用途向け集積回路(ASIC)、フィールドプログラム可能ゲートアレイ(FPGA)、プログラム可能論理アレイ(PLA)、コンプレックスプログラム可能論理デバイス(CPLD)、プログラム可能論理コントローラ(PLC)、グラフィック処理ユニット(GPU)、ニューラルネットワークプロセッサ(NNP)等々であり得る。プロセッサ311はシステムバス(例えばアドレスバス、データバス及び/又は制御バス、図示せず)を介しメモリ312へ作動可能に結合される。
【0037】
[0047] プロセッサ311は例えば、一組の命令又はコードを実行するように構成されたハードウェアベース集積回路(IC)又は任意の他の好適な処理デバイスであり得る。例えば、プロセッサ311は、汎用プロセッサ、中央処理ユニット(CPU)、加速処理ユニット(APU)、特定用途向け集積回路(ASIC)、フィールドプログラム可能ゲートアレイ(FPGA)、プログラム可能論理アレイ(PLA)、コンプレックスプログラム可能論理デバイス(CPLD)、プログラム可能論理コントローラ(PLC)、グラフィック処理ユニット(GPU)、ニューラルネットワークプロセッサ(NNP)等々であり得る。プロセッサ311はシステムバス(例えばアドレスバス、データバス及び/又は制御バス、図示せず)を介しメモリ312へ作動可能に結合される。
【0038】
[0048] プロセッサ311は、送信すべき信号を受信するように、及びこの信号を任意変換を適用することにより変換済み信号へ変換するための処理を行うように構成され得る。プロセッサ311はまた、又は代替的に、通信ネットワーク(例えば図1のネットワーク106)内で定義された1つ又は複数の通信チャネルを介し安全に送信された変換済み信号を受信し;変換済み信号を生成するために使用された任意変換に関連付けられた情報を取得し;及び原信号がgUBDMシステムを使用して安全且つ効率的なやり方で送付先により受信され得るように原信号を復元するために変換済み信号をこの情報に基づき処理する(例えば任意変換の逆を適用することにより)ように構成され得る。いくつかの実装形態では、プロセッサ311は、変換済み信号がUBDMシステムを使用して安全且つ効率的なやり方で送信され得るようにユニタリ変換であるように定義される任意変換を適用し得る。
【0039】
[0049] プロセッサ311は、変換器314、任意変換識別器315及び任意変換反転器316を含む一組の部品を含み得る。プロセッサ311は、信号受信器301がその一部であるUBDMシステムの一部である信号送信器の1つ又は複数の送信器アンテナ(例えば、図2に関して示され説明された信号送信器201の送信器アンテナ217又は送信器アンテナ218)から受信された変換済み信号を表す複数の変換済みベクトル341、342を含み得る、又はメモリ312からそれにアクセスし得る。プロセッサ311は、信号送信器から受信された信号に関連付けられた情報に基づき識別された一組の任意変換331、332、識別された任意の変換に基づき計算された一組の逆変換351、352、及び一組の原信号を表す複数のベクトル321、322を含み得る又はメモリ312内でそれにアクセスし得る。
【0040】
[0050] 任意の変換識別器315は、信号受信器アンテナ317を介し及び任意選択的に信号受信器アンテナ318を介し受信された変換済み信号(例えば変換済みベクトル341、342により表される変換済み信号)に関連付けられた情報(変換済み信号を生成する際に使用された任意の変換の識別子の指示を含む情報)を受信するように構成され得る。任意変換識別器315は、変換済み信号(例えば変換済み信号341及び342)から原信号(例えば複数のベクトル321及び322により表される原信号)を復元するために使用され得る任意変換をこの情報に基づき識別するように構成される。
【0041】
[0051] 任意変換反転器316は、識別された任意変換の影響を反転して変換済み信号から原信号を復元するように構成される、逆変換とも呼ばれる識別された任意変換の逆(例えば逆変換351及び352)を、任意変換の識別子に基づき生成する。例えば、いくつかの実施形態では、任意変換反転器316は、逆変換(A’)351が任意変換(A)331の効果を反転して、原信号を表す複数のベクトル321及び322を復元し得るように、変換済み信号を表す複数の変換済みベクトル341及び342に対し適用されるように構成され、並びに信号受信器301により受信される逆変換(A’)351を生成する。別の例では、いくつかの実施形態では、任意の変換反転器316は、行列を構築し、複数の変換済みベクトル341、342へ適用されるように構成された行列に基づき逆変換(A’)を生成し、及び複数のベクトル321、322を復元する。
【0042】
[0052] 変換器314は、原信号を表す復元された複数のベクトル(例えば321、322)を受信し及び復元された複数のベクトルから原信号を再生するように構成され得る。例えば、いくつかの実施形態では、プロセッサは並列組のシンボルbを受信し得る。変換器314は、直列組のシンボルbを原信号と同様であり得る並列組のシンボルへ変換するためにシリアル・ツー・パラレル計算を一組のシンボルbに対し行う(例えば位相レジスタを使用して)ように構成され得る。一事例では、変換器314は、パラレル・ツー・シリアル計算を行う(例えばシフトレジスタを使用して)ための構成を含み得る。いくつかの実施形態では、変換器314は、複数の復元されたベクトル(例えばベクトル321及び322)を受信し、及びこれらのベクトルに基づき、一組のシンボルを含む原信号を生成し得る。いくつかの実施形態では、変換器314は、複数の復元されたベクトル(例えばベクトル321及び322)を受信し、及び復元されたベクトルに基づき、各複数組のブロックが複数のベクトルのうちの1つのベクトルを表す複数の複数組のブロックを生成し得る。次に、変換器314は原信号を復元し得る複数の入力ビットを複数の複数組のブロックに基づき生成し得る。
【0043】
[0053] 信号受信器301のメモリ312は、例えば、ランダムアクセスメモリ(RAM)、メモリバッファ、ハードドライブ、読み出し専用メモリ(ROM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、フラッシュドライブ、セキュアディジタル(SD)メモリカード、埋め込み型マルチタイムプログラム可能(MTP)メモリ等々であり得る。メモリ312は、例えばプロセッサ311に1つ又は複数の処理、機能など(例えば変換器314、任意変換識別器315、及び/又は任意変換反転器316に関連付けられた機能)を行わせる命令を含み得る1つ又は複数のソフトウェアモジュール及び/又はコードを格納し得る。いくつかの実施形態では、メモリ212は、増分的に追加され使用され得る拡張可能ストレージユニットを含み得る。いくつかの実装形態では、メモリ312は、プロセッサ311へ作動可能に結合され得るポータブルメモリ(例えばフラッシュドライブ、ポータブルハードディスクなど)であり得る。他の事例では、メモリは信号受信器301と遠隔的に作動可能に結合され得る。例えば、遠隔データベースサーバはメモリとして働き、及び信号受信器301へ作動可能に結合され得る。
【0044】
[0054] 通信インターフェース313は、プロセッサ311及びメモリ312へ作動可能に結合されたハードウェアデバイス及び/又はプロセッサ311により実行されるメモリ312内に格納されたソフトウェアであり得る。通信インターフェース313は信号受信器アンテナ317と任意選択的に信号受信器アンテナ318とを含み得る。受信器アンテナ317に加えて第2の受信器アンテナ318が図3に示されるが、信号受信器301と同様な信号受信器は、いくつかの実施形態によると単一送信器アンテナだけを有し得る、又はいくつかの他の実施形態によると任意数の送信器アンテナを有し得る。通信インターフェース313は例えばネットワークインターフェースカード(NIC)、Wi-Fi(商標)モジュール、Bluetooth(登録商標)モジュール、及び/又は任意の他の好適な有線及び/又は無線通信デバイスであり得る。さらに、通信インターフェース313はスイッチ、ルータ、ハブ及び/又は任意の他のネットワークデバイスを含み得る。通信器213はコンピューティングデバイス301を通信ネットワーク(図1に関して上に示された通信ネットワーク106など)へ接続するように構成され得る。いくつかの事例では、通信ネットワーク313は1つ又は複数の通信チャネルを介し通信ネットワーク(例えばインターネット、イントラネット、ローカルエリアネットワーク(LAN)、広域ネットワーク(WAN)、都市域ネットワーク(MAN)、WiMAX(登録商標)、光ファイバベースネットワーク、Bluetooth(登録商標)ネットワーク、仮想ネットワーク、及び/又はそれらの任意の組み合わせなどの)へ接続するように構成され得る。
【0045】
[0055] いくつかの事例では、通信インターフェース313は、ファイル及び/又は一組のファイルを通信ネットワーク(例えば図1のUBDMシステム100内の通信ネットワーク106)内で定義された1つ又は複数の通信チャネルを介し受信及び/又は送信することを容易にし得る。いくつかの事例では、受信されたファイルは、本明細署においてさらに詳細に説明されるように、プロセッサ311により処理され得る、及び/又はメモリ312内に格納され得る。いくつかの事例では、先に説明したように、通信インターフェース313は、信号受信器アンテナ317、及び任意選択的に信号受信器アンテナ318が、UBDMシステムの一部として通信ネットワークへ接続された1つ又は複数の信号送信器に関連する1つ又は複数の信号送信器アンテナにより安全且つ効率的に送信された変換済み信号を受信するために、所定帯域内の特定の所定中心周波数の変換済み信号を受信するようにチューニングされた1つ又は複数のアンテナを含むように構成され得る。通信インターフェース313はまた、任意変換システムのライブラリに関連付けられたデータを送信及び/又は受信するように構成され得る。いくつかの実施形態では、信号受信器301は多重入力多重出力(MIMO)操作を行うように構成された複数のアンテナアレイを含み得る。
【0046】
SISO実施強化型MOPRO入門
[0056] 本開示の例示的実施形態では、第1の通信デバイスは、4つのサブキャリヤを使用してシンボルbを送信するための指示を受信する:
【数1】
【0047】
[0057] チャネルベクトルhを有する通信チャネルを介しシンボルbを送信した後、チャネルベクトルhはシンボルbを変換済みシンボルへ変換する。第2の通信デバイスにおいて受信された変換済みシンボルはシンボルbとチャネルベクトルhとのアダマール(Hadamard)積である。第2の通信デバイスは変換済みシンボルを4×1行列として受信する:
【数2】
【0048】
[0058] 第2の通信デバイスは、変換済みシンボルを2×2行列内へ配置する(例えば図3に関して示され説明された変換器314を使用して)。
【数3】
【0049】
[0059] 第2の通信デバイスはさらに、2×2行列を2×2チャネル変換行列と2×2シンボル行列との積として表すために行列分解を行う。
【数4】
【0050】
[0060] そうすることにより、第2の通信デバイスは、MOPRO操作又は強化型MOPRO操作の効率及び物理層セキュリティに恩恵をもたらす一方で、単一入力単一出力(SISO)動作のために特別設計された4成分ベクトルを2×2行列に変換する。
【0051】
強化型MOPRO-MIMO
[0061] 一実施形態では、MOPRO操作又は強化型MOPRO操作はMIMOシステムに対し行われ得る。一例では、MIMOシステムはユーザ「Bob」及び「Alice」により使用される2×2MIMOシステムであり得る。この例は単一サブキャリヤに関して行われることになる。以下の手順は複数のサブキャリヤを有するシステム内の各サブキャリヤに対し行われ得る。Aliceは当初任意のユニタリ行列G∈U(2)を選択する。ここでUはユニタリ行列を表す。次に、AliceはBobへの送信のための符号化値を生成するために2つのシンボルb及びb(2つの別個のシンボル内の)の公知の/合意されたトレーニングシーケンスBにGを乗算する:
【数5】
【0052】
[0062] 次に、Aliceは符号化値をBobへ送信する。SVD H=BDAを有するチャネルHを経由した後(ここで、Dはチャネル特異値の対角及び正定値行列であり、BはチャネルのBobの「側」の特異ベクトル(左特異値)であり、AはチャネルのAliceの「側」の特異ベクトル(右特異値)である)、Bobはr=Ht=HGb=BDAGbを受信することになる。Bobは、b(例えばb=1、b=-1など)内のトレーニング値の知識を有しており、及び行列HG=BDAG=BD(GA)を分離するために、受信されたrにb-1を右側乗算する。いくつかの実装形態では、b内のトレーニング値は、1つ又は複数のデジタル変調方式により変調された信号の1つ又は複数のコンステレーション図からの要素に対応する又はそれに基づく。デジタル変調方式の例は、限定しないが2進位相シフトキーイング(BPSK)、直交位相シフトキーイング(QPSK)、8位相シフトキーイング(8PSK)、16QAM、32QAM、64QAMなどの直交振幅変調(QAM)フォーマット等々を含む。
【0053】
[0063] HGの特異値分解を行うと、Bobは{B,D,GA}を取得する。次に、Bobはt’=B(GA)bによりAliceに応答する。
【0054】
[0064] ここで、★は複素共役を表すが、転置を表さず、且つFはユニタリ行列の公開コードブックの要素の1つである(Bobは、例えば共有秘密ビットを符号化する手段としてこの行列を選択し得る)。「どの行列Fが送信されているかをEveが判断できることがあってはならない」ということが望まれる。
【0055】
[0065]t’をAliceへ送信し戻した後、Aliceはチャネルの転置により歪曲されたt’のバージョンであるr’を受信する(チャネル相互性を仮定する):
r’=Ht’=HGb=(BDAGb=ADB†gerGb=ADFGb.
【0056】
[0066](公開)トレーニングシーケンスbを知っているので、Aliceはこれを、この行列にb-1を右側乗算することにより除去し、行列ADFGを分離する。Aliceは次に、
【数6】

を取得するために、この行列の特異値分解(SVD:singular value decomposition)を行い得る。
【0057】
[0067] AliceはGを知っているので、右特異ベクトルにGを乗算し、
【数7】

を残す。Aliceは次に、
【数8】

に左特異ベクトルの転置を乗算し、
【数9】

を残す。これは
【数10】

を残し、これから、Aliceは、これがコードブック内の行列のうちどの行列であるかを判断し、そして共有秘密ビットを復元し得る。
【0058】
[0068] 前述したことは、強化型MOPROがどのように働くかの一例である。通常のMOPROでは、BobはAliceへの応答内にAGという因数を含まないので、Aliceはそれを除去する必要がない。米国特許出願第16/527,240号(参照により本明細書に援用される)に記載されるMOPRO及び強化型MOPROシステムは、SISOシステムとは対照的にMIMOシステムを使用して動作する。これは、例えば、2×2行列がスカラーに帰されれば、SVDはもはや適用可能ではなくなり、及び上に示されたアルゴリズムは実現不能になり得るからである。本明細書に記載のように、MOPRO及び強化型MOPROは、SISOシステムを使用して、及び本明細書に記載のシステム及び方法を使用して行われ得る。
【0059】
SISO実施MOPRO及び強化型MOPRO
[0069] 一実施形態では、MOPRO操作又は強化型MOPRO操作は単一入力単一出力(SISO)システムに対し行われ得る。一例では、SISOシステムは2×2行列を処理し、MOPRO及び/又は強化型MOPRO操作を行い得るが、この処理はまた、任意の行列サイズを使用して実施され得る。Aliceは(例えば、図2に関して示され説明された信号送信器201を介し)、シンボルb、bの公知のトレーニングシーケンスにより始まり、任意のユニタリ行列G∈U(2)を構築し、及びユニタリ行列Gと公知のトレーニングシーケンスとの積を計算する:
【数11】
【0060】
[0070] ユニタリ行列Gと公知のトレーニングシーケンスとの積のすべての4成分は通信チャネル(本明細書では「チャネル」とも呼ぶ)を介しBob(例えば図3に関して示され説明された信号受信器301)へ送信される。したがって、AliceはGbの4成分を2つのシンボル
【数12】

と、
【数13】

へ分割することになる(2つの別個の「ボー」が、連続的やり方で次から次へと送信される)。
【数14】
【0061】
[0071] 2つのシンボルからの各シンボルでは、各成分は一周波数ビン(本明細書では「サブキャリヤ」とも呼ぶ)内にある。これは、「チャネルを経由し及び一組の係数を2つのシンボルに適用した後に、Bobは次のものを受信する」ということを意味する:
【数15】

これらの2つのベクトルから、Bobは次の2×2行列を構築する:
【数16】
【0062】
[0072] ここで、積Gbは第2の等式から最後の等式までを得るために使用される。Alice及びBobが成分を分解する可能性がある、いくつかの他のやり方が存在する。いくつかの実装形態では、Aliceは成分を任意のやり方で並べ替え得、及びBobはそれに応じて、上述のように2×2行列を依然として構築し得る。
【0063】
[0073] この時点で、問題はMOPRO又は強化型MOPROのMIMOバージョンとほぼ同一である。唯一の差異は「この例のランク2性質が、2×2行列を得るために複数のアンテナに依存するのではなくむしろ複数の周波数サブキャリヤ値を2×2行列に分割することにより考案された」ということである。しかし、数学的には、これらは同一問題である。したがって、Bobは、HGを計算するために行列HGbにb-1を右側乗算し、及び次に、行列HGに対して特異値分解(SVD)を行う。HのSVDがH=BDAであれば、Bobが得ることになるSVDは
HG=BDAG=BD(GA)→{B,D,(GA)}
となる。次に、Bobは行列t’を
【数17】

として構築する。ここで、各行列は、MIMOシステム上の強化型MOPROの上記例におけるものと同じ意味を有する。
【0064】
[0074] 構築されたt’行列から、Bobは、Aliceが使用したのと同じ周波数サブキャリヤ上で送信される2つのシンボル(次から次へと送信される2つの別個のボーに対応する)を構築する。
【数18】
【0065】
[0075]
【数19】

及び
【数20】

は同じ周波数サブキャリヤ上で送信されているので、及びBobはチャネルが変更されない(又はほぼ変更されない)ように十分に迅速に応答するという仮定下で、チャネルは予測された一組のチャネル係数を適用し、及びAliceは次のものを受信することになる:
【数21】
【0066】
[0076] 実装形態に依存して、チャネルは、Bobがローカルエリアネットワーク(LAN)プロトコルIEEE802.11では10~20ミリ秒内に、又はロングタームエボリューション(LTE)4G移動体通信標準規格では500マイクロ秒(例えば250~500マイクロ秒)内に応答すれば、静態(static)である(すなわち、ほぼ変更されていない)と考えられ得る。チャネルは、チャネルに影響又は干渉する要因が不変である期間、静態であり得る。このような要因は、限定しないが、気象条件(例えば湿度、霧、雨など)、固定物体の有無及び特性、移動物体の有無及び特性、地形の有無及び特性、並びに送信装置及び/又は受信装置の静止を含み得る。チャネルが静態である場合、受信信号からの当該チャネルの影響を除去するために(すなわちチャネルを「等化する」ために)受信信号へ適用される補正は、一定なままであり得る。
【0067】
[0077] 上記ベクトルから、Aliceは次のような2×2行列を構築する:
【数22】
【0068】
[0078] このSISOシステム動作例において計算された行列ADF(GA)bは、MIMOシステム動作例に関して上に計算された行列ADF(GA)bと同一である。したがって、AliceはMIMOシステムにおいて操作される強化型MOPROと同じ手順に従う(すなわちbを除去し、SVDを取り、Fを分離し、共有秘密ビットを復元する)。したがって、Alice及びBobは、上述のようにSISOシステムを操作することにより、強化型MOPROの機能性を完全に模倣し得る。
【0069】
[0079] 上に提示された例は、SISOシステムを使用して2×2MIMOシステムのMOPRO又は強化型MOPRO操作を行う実装形態を示すが、サイズに関する制限は無く、及び任意のn×nMIMOシステムのMOPRO又は強化型MOPRO操作がSISOシステム上で実装され得る。いくつかの事例では、2×3、3×2、3×3、17×48又は任意のn×nMIMOシステムが実装され得る。SISOにおいて実装されるn×nシステム内のnの値が大きければ大きいほどより多くのサブキャリヤが使用され得る。一例では、SISOシステム内に実装される3×3MIMOシステムのMOPRO又は強化型MOPRO操作は合計9つのサブキャリヤを使用し得る。別の例では、SISOシステム内に実装される17×48MIMOシステムのMOPRO又は強化型MOPRO操作は17×48=816の合計サブキャリヤを使用し得る。
【0070】
[0080] いくつかの実装形態では、上述のSISOシステムは、Aliceの近傍に追加の物理的セキュリティを含み得、EveがAliceに近づくことを困難にする。その代わりに又はそれに加えて、2つの意図された通信エンティティはそれぞれ、異なる時間にAlice及びBobの役割(上述のような)を果たし得る。例えば、エンティティ1はAliceに関して上に概説された工程を行い得る一方でエンティティ2はBobに関して上に概説された工程を行い得る(エンティティ2に由来し及びエンティティ1と共有される秘密ビットを生じる)。次に、エンティティ2はAliceに関して上に概説された工程を行い得る一方でエンティティ1はBobに関して上に概説された工程を行い得る(エンティティ1に由来し及びエンティティ2と共有される秘密ビットを生じる)。両エンティティは、各エンティティが共有ビットの総数の略1/2を生成するように、これを交互に続け得る。この場合、Eveだけがエンティティのうちの1つのエンティティの近傍に存在していれば、Eveだけが秘密ビットの1/2を復元する。十分な数のビットがエンティティの両方により生成され、及び秘密が(例えば)両組のハッシュであれば、Eveが秘密を復元することは無理である。
【0071】
[0081] 上記例では、Alice及びBobは、それらの符号化ベクトルを、近隣サブキャリヤであるように見えるものの2つの別個の4成分シンボルに分けたが、そうすることは必ずしも必要ではないかもしれない。最初に、Alice及びBobは、任意の4つのサブキャリヤを使用することを選択し得る。互いに近くない4つのサブキャリヤを使用することが望ましいこともあり得る。これは、そうすることが、チャネル係数間のより高い分散の機会を増加し、したがって、大きな特異値を有するフルランク(full rank)チャネル行列を得る確率を増加する(これは望ましい)ためである。例えば、Alice及び/又はBobはサブキャリヤ1、11、21、31を第1のSISO実施MOPRO交換のためのサブキャリヤにし得る。次に、Alice及び/又はBobは、第1のSISO実施MOPROと並列な第2のSISO実施MOPRO交換としてサブキャリヤ2、12、22、32を同時に使用し得る。次に、Alice及び/又はBobはサブキャリヤ3、13、23、33などを使用し得る。
【0072】
[0082] さらに、上記例では、Alice及びBobの両者は自身のメッセージを2つの別個の4成分シンボルへ分割するが、そうすることは必ずしも必要ではないかもしれない。いくつかの事例では、サブキャリヤ間隔は近隣サブキャリヤが同じチャネル係数を有するように選択され得る。この場合、すべての8つの成分(例えば
【数23】


【数24】

からの)は同時に送信される可能性がある。上記例に加えて、サブキャリヤ1、11、21、31において2つの連続4成分メッセージを送信する代わりに、Alice(及び応答する際はBob)は、シンボル
【数25】

をサブキャリヤ1、11、21、31に入れ、及びシンボル
【数26】

をサブキャリヤ2、12、22、32に入れ得る。
【0073】
[0083] SISOシステムを使用してMOPRO操作を行う際、SISOシステムを使用して強化型MOPRO操作を行うことと比較される1つの差異は、Bobにより送信される行列が行列内に(GA)という因数を有しなかったであろうということだろう。したがって、項(GA)は、識別子項により単純に置換される可能性がある。この結果、Bobは行列BbをAliceへ送信する。次に、Aliceは行列ADFbを受信する。Aliceはbを除去し得、SVDはAliceにFを直ちに与えることになる。
【0074】
[0084] 任意のOFDMのようなシステム又はUBDMのようなシステムでは、巡回プレフィックス(cyclic prefix)による適切な巡回化を仮定すると、チャネルの働きは、各サブキャリヤ値に関する単一複素係数である。換言すれば、(b,b,b,b,…)のシンボルは(h,h,h,h,…)となる。どれだけhがhi+1及びhi-1と異なるかは、選択又は修正され得るサブキャリヤ間隔に依存する。より数学的な言葉では、チャネルは、送信されたシンボル
【数27】

を取り、及びチャネルベクトル
【数28】

との「アダマール(Hadamard)」積を行うことになる。アダマール積は
【数29】

で表され、及び次のように定義される:
【数30】
【0075】
[0085] いくつかの事例では、SISOシステムを使用してMOPRO及び/又は強化型MOPROを行う方法は、一群のベクトル
【数31】

で開始すること(iは或るインデックス集合内のもの)と、一組のベクトル
【数32】

を得るために或る線形変換を適用すること(ここで、Mは一組の線形演算子を表す)とを含む。本方法はさらに、受取人が形式
【数33】

へ再配置して戻し得る出力を
【数34】

に対するチャネル
【数35】

のアダマール作用が生成するように、ベクトル
【数36】

の成分を新しい一組のベクトル
【数37】

内へ配置することを含み得る。ここで、Hは、その成分が何らかの方法でチャネルベクトルhに依存する行列である。
【0076】
[0086] 図4は、一実施形態による上述のSISO実施MOPRO及び強化型MOPRO処理を行うことができるSISO実施物理層セキュリティを有するUBDM又はOFDMを使用するPLS通信システムの概略図である。図4に示すように、通信システム400は、通信媒体440(例えば自由空間、多経路無線環境など)を介し互いに通信可能に結合された第1組の通信デバイス401及び第2組の通信デバイス411を含む。第1組の通信デバイス401は第1のプロセッサ404へ通信可能に結合され、第2組の通信デバイス411は第2のプロセッサ414へ通信可能に結合される。第1のプロセッサ404はメモリ405へ作動可能に結合され、第2のプロセッサ414はメモリ415へ作動可能に結合される。第1のプロセッサ404及び第2のプロセッサ414のそれぞれは、ユニタリ行列450のコードブック(公的にアクセス可能であり得る)を格納するストレージレポジトリへ作動可能に結合される。PLS通信システム400の動作中、プロセッサ404は、第1の符号化ベクトル及び第2の符号化ベクトルを生成し、及び第1の符号化ベクトル及び第2の符号化ベクトルを通信媒体440の通信チャネルを介し第2組の通信デバイス411へ送信する。通信チャネルは送信中にチャネル変換を第1の符号化ベクトル及び第2の符号化ベクトルへ適用し、これにより第1の変換済み信号及び第2の変換済み信号を生成する。第2のプロセッサ414は、第1の変換済み信号及び第2の変換済み信号を受信し、第1の変換済み信号及び第2の変換済み信号から行列を構築し、その有効チャネル表現/行列を判断し、及び有効チャネルの左右特異ベクトルを識別する。第2のプロセッサ414は、メッセージに基づきユニタリ行列450のコードブックからプリコーディング行列を選択し、及び第3の符号化ベクトル及び第4の符号化ベクトルを第2の既知のベクトル、プリコーディング行列及び特異ベクトルの複素共役に基づき生成する。次に、第2のプロセッサ414はメッセージの識別のために第2の符号化ベクトルを第1組の通信デバイス401へ送信する。次に、第1組の通信デバイス401は、第3の符号化ベクトル及び第4の符号化ベクトルを第2組の通信デバイス411から受信し得る。プロセッサ404は、第3の符号化ベクトル及び第4の符号化ベクトルに基づき有効チャネルの表現を検出し、及び有効チャネルの表現の特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う。次に、プロセッサ404は、第3の符号化ベクトル及び第4の符号化ベクトルに関連付けられたメッセージを識別するために、ユニタリ行列450のコードブック上で照会を行う。
【0077】
[0087] 本明細書に提示される方法及び装置は、SISOシステムを使用してMOPRO及び/又は強化型MOPROを行い得るよりむしろ他の時間的及び/又はスペクトル的次元をカバーする多くの他の可能な方法及び装置を表す。いくつかの実施形態では、SISOシステムを使用してMOPRO及び/又は強化型MOPROを行う方法及び装置は時間的コヒーレンス手法及び周波数/スペクトルコヒーレンス手法をカバーし得る。
【0078】
[0088] 図5はいくつかの実施形態によるSISO実施PLSを有するUBDM又はOFDMを行う第1の方法500を示すフローチャートである。方法500は、上述のSISO実施MOPRO及び強化型MOPRO処理を行うために例えば図4のシステム400により実施され得る。図5に示すように、方法500は、502において、第1の符号化ベクトルの第1のシンボル及びチャネル変換を表す第1の信号を、第1の通信デバイス(例えば図4の第1組の通信デバイス401からの通信デバイス)を介し及び第1のプロセッサ(例えば図4のプロセッサ404)において受信することを含む。方法500はまた、504において、第1の符号化ベクトルの第2のシンボル及びチャネル変換を表す第2の信号を、第1の通信デバイスを介して第1のプロセッサにおいて受信することを含む。
【0079】
[0089] 第1のプロセッサは、506において第1の信号及び第2の信号に基づき有効チャネルの表現を検出し、及び508において有効チャネルの表現の左特異ベクトル及び有効チャネルの表現の右特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う。第1のプロセッサは510においてプリコーディング行列をユニタリ行列のコードブック(任意選択的に公的にアクセス可能なコードブック)から選択する。プリコーディング行列は送信のためにメッセージのインデックスに関連付けられる。第1のプロセッサは、512において、第2の既知ベクトル、プリコーディング行列、有効チャネルの表現の左特異ベクトルの複素共役、及び右特異ベクトルに基づき、第2の符号化ベクトルを生成する。方法500はまた、514において、(1)第2の符号化ベクトルの第1のシンボルを表す信号及び(2)第2の符号化ベクトルの第2のシンボルを表す信号を、第2の通信デバイスに関連付けられた第2のプロセッサにおけるメッセージの識別のために通信チャネルを介し第2の通信デバイス(例えば、図4の通信デバイス411)へ送信することを含む。方法500は任意選択的にまた、所定数のメッセージが送信されるまで、複数の追加の符号化ベクトルを表す信号を、通信チャネルを介し第2の通信デバイスへ送信することを含む。
【0080】
[0090] いくつかの実装形態では、第2の符号化ベクトルを生成することは、中間行列を生成するために左特異ベクトルの複素共役にプリコーディング行列を乗算すること、及び第2の符号化ベクトルを生成するために中間行列に有効チャネルの表現の右特異ベクトルを乗算することを含む。その代わりに又はそれに加えて、プリコーディング行列は第1のプリコーディング行列であり得、メッセージは第1のメッセージであり得、及びインデックスは第1のインデックスであり得、方法500はさらに、第2のプリコーディング行列をユニタリ行列のコードブックから選択すること(第2のプリコーディング行列は送信のための第2のメッセージの第2のインデックスに関連する)、及び第3の符号化ベクトルを、第3の既知ベクトル、第2のプリコーディング行列、有効チャネルの表現の左特異ベクトルの複素共役、及び右特異ベクトルに基づき生成することを含む。次に、第3の符号化ベクトルを表す信号は、第2のメッセージの識別のために第2の通信デバイスへ通信チャネルを介し送信される。
【0081】
[0091] 図6はいくつかの実施形態によるSISO実施PLSを有するUBDM又はOFDMを行う第2の方法を示すフローチャートである。方法600は、上述のSISO実施MOPRO及び強化型MOPRO処理を行うために例えば図4のシステム400により実施され得る。図6に示すように、方法600は、620において、第1の符号化ベクトルを既知のベクトル及びユニタリ行列を使用して第1の通信デバイス(例えば図4の第1組の通信デバイス401の通信デバイス)のプロセッサにおいて生成することを含む。方法600はまた、622において、第1の符号化ベクトルの第1のシンボルを表す第1の信号を第2の通信デバイス(例えば図4の第2組の通信デバイス411の通信デバイス)へ及び通信チャネルを介し送信することを含む。通信チャネルは送信中にチャネル変換を第1の信号へ適用する。方法600はまた、624において、第1の符号化ベクトルの第2のシンボルを表す第2の信号を第2の通信デバイスへ及び通信チャネルを介し送信することを含む。通信チャネルはまた、送信中にチャネル変換を第2の信号へ適用する。プロセッサは、(1)第2の符号化ベクトルの第1のシンボル及びチャネル変換を表す第3の信号を(626において)及び(2)第2の符号化ベクトルの第2のシンボル及びチャネル変換を表す第4の信号を(628において)第2の通信デバイスから受信する。プロセッサは、630において第3の信号及び第4の信号に基づき有効チャネルの表現を検出し、及び632において有効チャネルの表現の特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う。方法600はまた、634において、第3の信号及び第4の信号に関連付けられたメッセージを有効チャネルの表現の特異ベクトル及びユニタリ行列に基づき識別するためにユニタリ行列のコードブック(任意選択的に公的にアクセス可能なコードブック)を照会することを含む。
【0082】
[0092] いくつかの実装形態では、方法600はまた、第2の通信デバイスから通信チャネルを介し複数の追加の符号化ベクトルを表す複数の追加信号を、所定数のメッセージが受信されるまで第2の通信デバイスから及びプロセッサにおいて受信することを含む。その代わりに又はそれに加えて、方法600はまた、メッセージのインデックスに関連するプリコーディング行列をプロセッサを介し検出することを含み、ユニタリ行列のコードブックの照会はプリコーディング行列に基づく。
【0083】
[0093] 図7Aは、一実施形態によるUBDMシステムを使用して安全且つ効率的なやり方で第1の通信デバイス(図2に関して示され説明された信号送信器201など)を使用して信号を作成し、生成し、及び送信する方法700Aのフローチャートである。図7Aに示すように、方法700Aは、工程701Aにおいて、第1の既知のベクトル及びユニタリ行列を使用して、第1の符号化ベクトルを、第1の通信デバイスへ作動可能に結合された少なくとも1つのプロセッサを介し生成することを含む。方法700Aはさらに、工程702Aにおいて、第1の変換済みシンボルを生成するために送信中にチャネル変換を第1のシンボルへ適用する通信チャネルを介し、第1の符号化ベクトルの第1のシンボルを表す信号を第2の通信デバイスへ送信することを含む。方法700Aはさらに、工程703Aにおいて、第2の変換済みシンボルを生成するために送信中にチャネル変換を第2のシンボルへ適用する通信チャネルを介し、第1の符号化ベクトルの第2のシンボルを表す信号を第2の通信デバイスへ送信することを含む。
【0084】
[0094] いくつかの実施形態では、第1の通信デバイスは、安全且つ効率的なやり方で送信される原信号を表すデータを受信する。データはまた、信号に関連付けられた属性(例えば信号の性質に関する情報、入力ビットの性質、含まれる情報のサイズ、感度、セキュリティ要件など)を表し得る。いくつかの事例では、信号送信器は、それぞれがデジタル複素ベースバンド信号内のパルスとして説明される複数のシンボルを生成し得る。いくつかの実装形態では、シンボルは、通信ネットワーク内で定義された通信チャネルを介し送信される際に、状態又は条件が一定期間の間維持するように通信チャネルの状態又は有意条件を変更/修正及び/又は維持し得る波形又は状態であり得る。いくつかの事例では、第1の通信デバイスは、データを、以下にさらに説明されるようにSISO送信システム及びMIMO送信システムを使用して並列に修正及び/又は送信され得る複数のシンボルへ分解し得る。いくつかの事例では、信号送信器は、並列データを直列データへ変換するために変換器(例えば変換器214)を使用し得る。いくつかの他の事例では、信号送信器は直列データを並列データへ変換するために変換器を使用し得る。いくつかの実装形態では、複数のシンボルをデータに基づき生成することはビット・ツー・シンボル・マップを使用することを介し得る。
【0085】
[0095] いくつかの実施形態では、第1の通信デバイスは、直列信号に関連付けられた複数の直列シンボルを生成し、及び複数の直列シンボルを、それぞれが複数のベクトルからのベクトルを表す複数のブロックへ分解し、ベクトルは、本明細書で説明されるSISO送信システムを使用して直列に符号化及び/又は送信されるように構成される。いくつかの事例では、信号送信器は、複数の並列シンボルを複数の直列ブロックに変換するために変換器(例えば図2の変換器214)を使用し得る。
【0086】
[0096] いくつかの実装形態では、第1の通信デバイスは、複数の符号化ベクトルを生成するためにベクトルへ適用されるように構成された任意変換を複数のベクトルに少なくとも部分的に基づき選択する。例えば、信号送信器は、ユニタリ変換、等角タイトフレーム(ETF)変換、及び略等角タイトフレーム(NETF)変換を含む、周知の任意変換ライブラリへアクセスし得る。信号送信器は、複数の符号化ベクトルを生成するために複数のベクトルへ適用される任意変換(例えばユニタリ変換)を選択するために任意変換選択器(例えば、図2に関連して示され説明されるような任意変換選択器215)を使用し得る。いくつかの事例では任意変換は等角タイトフレーム(ETF)変換を選択し得るか、又はいくつかの他の事例では、任意変換選択器は略等角タイトフレーム(NETF)変換を選択し得る。いくつかの実装形態では、任意変換選択器は、選択された任意変換が、単位行列又は離散的フーリエ行列ではない行列に基づくように構成され得る。いくつかの実装形態では、任意変換選択器は、選択された任意変換が、離散的フーリエ行列の直和ではない行列に基づくように構成され得る。第1の通信デバイスは、複数の符号化ベクトルを生成するために任意変換を複数のベクトルの各ベクトルへ適用する。いくつかの事例では、任意変換を適用することは、複数の符号化ベクトルが複数のベクトルの全大きさにほぼ等しい全大きさを有するように行われ得る。
【0087】
[0097] いくつかの実装形態では、第1の通信デバイスは、第1の変換済みシンボルを生成するために送信中にチャネル変換を第1のシンボルへ適用する通信チャネルを介し、第1の符号化ベクトルの第1のシンボルを表す信号を複数の符号化ベクトルから第2の通信デバイス(図3に関して示され説明された信号受信器301など)へ送信する(例えば702Aにおいて)。いくつかの事例では、第1の通信デバイスは、第1の符号化ベクトルを表す信号の少なくとも1つのアンテナから第2の通信デバイスへの送信のために、第1の符号化ベクトルの第1のシンボルを表す信号を少なくとも1つの送信器アンテナへ送信する。いくつかの事例では、複数の符号化ベクトルは、第1の通信デバイスに関連付けられた少なくとも1つの送信器アンテナ(例えば図2に関して示され説明された信号送信器201に関連付けられた信号送信器アンテナ217)を介し直列に及び少なくとも1つの通信チャネルを介し送信されるように構成され得る。直列に送信される第1の符号化ベクトルは、使用されているUBDMシステムに関連付けられた少なくとも1つの受信器により受信され得る。例えば、少なくとも1つの受信器は少なくとも1つのアンテナを含み得、少なくとも1つの受信器は第2の通信デバイス(例えば信号受信器301)に関連付けられ得、及び少なくとも1つの送信器アンテナは第1の通信デバイス(例えば信号送信器201)に関連付けられ得、第1の通信デバイス及び第2の通信デバイスは単一入力単一出力(MIMO)動作を行うように構成される。
【0088】
[0098] いくつかの実装形態では、第1の通信デバイスは、第2の変換済みシンボルを生成するために送信中にチャネル変換を第2のシンボルへ適用する通信チャネルを介し、第1の符号化ベクトルの第2のシンボルを表す信号を第2の通信デバイス(図3に関して示され説明された信号受信器301など)へ送信する(例えば703Aにおいて)。いくつかの事例では、第1の通信デバイスは、第1の符号化ベクトルを表す信号の少なくとも1つのアンテナから第2の通信デバイスへの送信のために、第1の符号化ベクトルの第2のシンボルを表す信号を少なくとも1つの送信器アンテナへ送信する。いくつかの事例では、複数の符号化ベクトルは、第1の通信デバイスに関連付けられた少なくとも1つの送信器アンテナ(例えば図2に関して示され説明された信号送信器201に関連付けられた信号送信器アンテナ217)を介し直列に及び少なくとも1つの通信チャネルを介し送信されるように構成され得る。直列に送信された第1の符号化ベクトルは、使用されているUBDMシステムに関連付けられた少なくとも1つの受信器により受信され得る。例えば、少なくとも1つの受信器は少なくとも1つのアンテナを含み得、少なくとも1つの受信器は第2の通信デバイス(例えば信号受信器301)に関連付けられ得、及び少なくとも1つの送信器アンテナは第1の通信デバイス(例えば信号送信器201)に関連付けられ得、第1の通信デバイス及び第2の通信デバイスはSISO動作を行うように構成される。
【0089】
[0099] いくつかの実装形態では、信号は第1の符号化ベクトルに関連付けられた一組の変換済みシンボルを含み、第1の通信デバイス(例えば信号送信器201)は、固定された既知のシンボルレートで通信チャネル(例えば信号送信器アンテナ217を介し)上に一組の変換済みシンボルを置き得る。第2の通信デバイス(例えば信号受信器301)は、第1の符号化ベクトルを再構築するために一系列の変換済みシンボルを検出するタスクを行い得る。
【0090】
[0100] いくつかの実装形態では、第1の通信デバイスは、第1の符号化ベクトルを表す信号を、開放型システム間相互接続モデル(OSI:open system interconnection model)に関連する物理層を介し、複数の送信器へ送信するように構成され得る。OSIモデルは、標準通信プロトコルを使用して多様な通信システムの相互運用性を実現するゴールを有する根底にある内部構造及び技術を問わず、テレコミュニケーションシステム又はコンピュータシステムの通信機能を特徴付け及び標準化する概念的モデルである。OSIモデルは通信ネットワークの通信チャネルを介し交換された情報の抽象化層(例えば7層)内への分割を使用する。各層は特定タイプの情報を含む。
【0091】
[0101] 例えば、層は、信号送信器と物理的伝送媒体(例えば、図1に関連して示され説明されるような通信ネットワーク106などの通信ネットワーク内の無線通信チャネル)との間の未構造化生データの送信及び受信に使用される物理層を含み得る。層は、送信される信号に含まれるデータを電気的信号、無線信号、又は光信号へ変換するように構成される。層仕様は、電圧レベル、電圧変化のタイミング、物理的データ速度、最大伝送距離、変調方式、チャネルアクセス方法及び物理的コネクタなどの特徴を定義する。層仕様は、無線デバイスのピンのレイアウト、電圧、線路インピーダンス、ケーブル仕様、信号タイミング及び周波数を含む。ビットレート制御は、物理層において行われ、及び送信モードをシンプレックス、半二重、及び全二重として定義し得る。物理層の部品はネットワークトポロジーの観点で説明され得る。信号を送信するために使用される通信チャネルは物理層の仕様を有し得る。
【0092】
[0102] いくつかの事例では、第1の任意の変換は第1の符号化ベクトルを生成するために使用され、第2の任意の変換は第2の符号化ベクトルを生成するために使用される。第1の任意の変換及び/又は第2の任意の変換を表す信号を提供することは第1の任意の変換を表す第1の信号を提供することと第2の任意の変換を表す第2の信号を提供することとを含み得る。いくつかの実装形態では、第1の変換済み信号を送信すること及び第1の任意変換を表す第1の信号を提供することは、第1の受信器に関連する第1の受信器に対するものであり得、並びに第2の任意変換を使用して生成される第2の変換済み信号を送信すること及び第2の任意変換を表す第2の信号を提供することは、第1の受信器とは異なる第2の受信器に関連する、第2の受信器アンテナに対するものであり得る。いくつかの事例では、第1の任意変換及び第2の任意変換を表す第1及び第2の信号は、第1及び第2の信号受信器を含む広範な聴取者へ纏めて同報通信され得る。いくつかの事例では、第2の任意変換を表す第2の信号が提供又は同報通信されるまで、第1の信号受信器は第1の符号化ベクトルを復元することができるが、第2の受信器は第2の符号化ベクトルを復元することができないように、任意変換を表す第1の信号は広く同報通信され得るが、任意変換を表す第2の信号は広く同報通信され得ない。
【0093】
[0103] 最大組の相互直交拡散符号を生成するために、ユニタリ行列A∈U(N)が選択される。Aのn番目列(又は行、一貫性がある限りどちらでもよい)が
【数38】

として表されるとき、N個の符号は、n∈[1,...,N]について
【数39】

である。1つのデバイスがすべてのN符号に関するデータを送信することになれば、その1つのデバイスはN個のシンボルbを取り、各シンボルbにその拡散符号のあらゆる成分を乗算し、及び次に、結果ベクトルを纏めて加算することができるようになる。したがって、送信されるベクトル
【数40】

は:
【数41】

であり、ここで、bはシンボルである。
【0094】
[0104] 送信器は、通常は複素数(倍精度浮動小数点など)であるシンボルb∈Cに
【数42】

のすべてのM≒N成分を乗算する。これはN個のシンボルbすべてに関して反復される。したがって、それぞれが符号のN個の成分により乗算されたN個のシンボルが存在する。これは、広帯域アプリケーションに関して禁止的であり且つOFDM(O(NlogN)の複雑性を有する)の複雑性と比較して大きい複雑性O(N)を生じる。
【0095】
[0105] 特に、各ユーザが符号のサブセットを与えられる多重アクセスアプリケーションに関し、多重アクセスアプリケーションはO(N)仕事をするだけでよく、これはOFDMより良い。これはDSSS実装を多重アクセスアプリケーションに関して好適な選択肢にする。
【0096】
[0106] OFDM再解釈に整合するためにO(NlogN)の程度である複雑性を有するUBDMを取得するために、送信されるボーは次のようになる:
【数43】

これは、シンボル
【数44】

の離散的フーリエ変換と解釈され得る(正規化に到るまで)。
【0097】
[0107] 図7Bは、一実施形態によるUBDMシステムを使用して安全且つ効率的なやり方で、第1組の信号を受信し、第1組の信号から情報を取り出し、及び第2の通信デバイス(図3に関して示され説明された信号受信器301など)を使用して第2組の信号を送信する方法700B(図7Aの方法700Aから続く)を説明するフローチャートを示す。方法700Bは第2の通信デバイス(例えば信号受信器301)に関連付けられたプロセッサにより実施され得る。図7Bに示すように、方法700Bは、工程701Bにおいて、第1の変換済みシンボルを含む第1の変換済み信号を第2の通信デバイスにおいて受信することを含む。方法700Bはさらに、工程702Bにおいて、第2の変換済みシンボルを含む第2の変換済み信号を受信することを含む。方法700Bはさらに、工程703Bにおいて、第1の変換済み信号及び第2の変換済み信号に基づき行列を構築することを含む。方法700Bはさらに、工程704Bにおいて、通信チャネルに関連付けられた有効チャネルの表現を行列に基づき検出することを含む。方法700Bはさらに、工程705Bにおいて、有効チャネルの表現の特異ベクトルを識別するために有効チャネルの表現の特異値分解を行うことを含む。方法700Bはさらに、工程706Bにおいて、送信のためのメッセージのインデックスに関連付けられたプリコーディング行列を送信のためのメッセージに基づきユニタリ行列のコードブックから選択することを含む。方法700Bはさらに、工程707Bにおいて、第2の符号化ベクトルを第2の既知のベクトル、プリコーディング行列、及び特異ベクトルの複素共役に基づき生成することを含む。方法700Bはさらに、工程708Bにおいて、(1)第2の符号化ベクトルの第1のシンボルを表す信号及び(2)第2の符号化ベクトルの第2のシンボルを表す信号をメッセージの識別のために通信チャネルを介し第1の通信デバイスへ送信することを含む。方法700Bは以下にさらに詳細に説明される。
【0098】
[0108] いくつかの実装形態では、第2の通信デバイスは第1の変換済みシンボルを含む第1の変換済み信号を受信する(例えば701Bにおいて)。第2の通信デバイスは少なくとも1つの受信器アンテナ(例えば図3に関して示され説明された信号受信器アンテナ317)を含み得る。いくつかの事例では、第2の通信デバイスは、第1の通信デバイスからの少なくとも1つのアンテナからの第1の符号化ベクトルを表す信号の受信のための少なくとも1つの受信器アンテナから第1の符号化ベクトルの第1のシンボルを表す第1の変換済み信号を受信する。いくつかの事例では、複数の符号化ベクトルは、第2の通信デバイスに関連付けられた少なくとも1つの受信器アンテナ(例えば図3に関して示され説明された信号受信器301に関連付けられた信号受信器アンテナ317)を介し、直列に及び少なくとも1つの通信チャネルを介し受信されるように構成され得る。例えば、少なくとも1つの受信器は少なくとも1つのアンテナを含み得、少なくとも1つの受信器は第2の通信デバイス(例えば信号受信器301)に関連付けられ得、及び少なくとも1つの送信器アンテナは第1の通信デバイス(例えば信号送信器201)に関連付けられ得、第1の通信デバイス及び第2の通信デバイスはSISO動作を行うように構成される。
【0099】
[0109] いくつかの実施形態では、第2の通信デバイスは第2の変換済みシンボルを含む第2の変換済み信号を受信する(例えば702Bにおいて)。いくつかの事例では、第2の通信デバイスは、第1の通信デバイスからの少なくとも1つのアンテナからの第1の符号化ベクトルを表す信号の受信のための少なくとも1つの受信器アンテナから第1の符号化ベクトルの第2のシンボルを表す第2の変換済み信号を受信する。いくつかの事例では、複数の符号化ベクトルは、第2の通信デバイスに関連付けられた少なくとも1つの受信器アンテナを介し直列に及び少なくとも1つの通信チャネルを介し受信されるように構成され得る。例えば、少なくとも1つの受信器は少なくとも1つのアンテナを含み得、少なくとも1つの受信器は第2の通信デバイス(例えば信号受信器301)に関連付けられ得、少なくとも1つの送信器アンテナは第1の通信デバイス(例えば信号送信器201)に関連付けられ得、第1の通信デバイス及び第2の通信デバイスはSISO動作を行うように構成される。
【0100】
[0110] いくつかの実装形態では、第2の通信デバイスは、第1の変換済み信号の第1の変換済みシンボル及び第2の変換済み信号の第2の変換済みシンボルに基づき行列を構築する(例えば703Bにおいて)。いくつかの事例では、第2の通信デバイスは、この行列を、第1の変換済みシンボル及び第2の変換済みシンボルの要素を少なくとも2行及び2列を有する行列へ配置することにより構築する。第2の通信デバイスはこの行列を少なくとも1つのシンボル行列及び通信チャネル行列へ分解する。404Bにおいて、第2の通信デバイスは、この行列と通信チャネルに関連付けられた有効チャネルとに基づき有効チャネルの表現を検出する。
【0101】
[0111] いくつかの実装形態では、第2の通信デバイスは、有効チャネルの表現の特異ベクトルを識別するために有効チャネルの表現の特異値分解を行う(例えば705Bにおいて)。一例では、特異値分解は実数又は複素数行列の因数分解(例えば有効チャネルの表現の因数分解など)であり得る。706Bにおいて、第2の通信デバイスは、送信のためのメッセージのインデックスに関連するプリコーディング行列を送信のためのメッセージに基づきユニタリ行列のコードブックから選択する。プリコーディング行列は、公的に利用可能又は利用不能であり得るユニタリ行列のコードブックから選択され得る。
【0102】
[0112] いくつかの実装形態では、第2の通信デバイスは、第2の符号化ベクトルを第2の既知のベクトル、プリコーディング行列、及び特異ベクトルの複素共役に基づき生成する(例えば707Bにおいて)。708Bにおいて、第2の通信デバイスは、(1)第2の符号化ベクトルの第1のシンボルを表す信号及び(2)第2の符号化ベクトルの第2のシンボルを表す信号を通信チャネルを介しメッセージの識別のために第1の通信デバイスへ送信する。通信チャネルは、符号化ベクトルを第2の符号化ベクトルの変換済みシンボルへ変換するチャネルベクトルhを有し得る。
【0103】
[0113] いくつかの実施形態では、UBDMシステム(例えばUBDMシステム100)は、直交周波数分割多重化(OFDM)システムに構造及び/又は機能の点で部分的に似たいくつかの態様におけるものであり得る。例えば、OFDMシステム800Aの例示的パイプラインは図8Aに示すように一組の操作を含み得、ここで、ベクトルbは一組のシンボルbであり得る。
【0104】
[0114] 上述のOFDMシステム800Aと比較して、本明細書において説明されるUBDMシステム800B(例えばUBDMシステム100)により行われる操作を図8Bに示す。UBDM800Bは図8Bに示すようにS/Pブロック802BとiFFTブロックとの間に余分な演算子(例えば線形演算子)「A」を含み得る。使用中、図8Bに関連付けられた例示的実施形態によると、UBDM800Bは「シンボルbが、信号送信器により受信され、及び変換された組のベクトルを生成するために最初にシリアル・ツー・パラレルブロック(例えば信号送信器201の変換器214と同様な変換器)に通される」ように動作する。次に、変換された組のベクトルは一組の変換済みベクトルを生成するために線形変換Aに付される。例えば、線形変換Aは、任意変換選択器216と同様な任意変換適用器803Bにより行われ、及び任意変換選択器215と同様な任意変換選択器により選択され得る。いくつかの実施形態では、変換済みベクトルは第2の変換済みベクトルを生成するためにiFFTブロックを通され、及びその結果の第2の変換済みベクトルはUBDMシステム内の1つ又は複数の受信器へ送信され得る。
【0105】
[0115] いくつかの他の実施形態では、iFFTブロックはスキップされ得、及び、任意変換適用器により生成された変換済みベクトルはUBDMシステム内の1つ又は複数の受信器へ送信され得る。別のやり方で表現すると、
【数45】

(ここで、Fは離散フーリエ行列である)。いくつかの実施形態では、Aは、本明細書で説明されるように設計によりユニタリであり得、及びFはユニタリであることが知られている。グループとしてのユニタリ行列の特性により、積FAもまたユニタリとなる。したがって、Aは任意のユニタリであり得るので、iFFT行列を含むことは不要であり、及びいくつかの実施形態によると、UBDMシステムは、一実施形態による任意変換適用器803Cを含むUBDMシステム800C内の動作を示す図8Cに示すように、iFFTブロックを任意ユニタリ行列Aで置換することにより構成され得る。
【0106】
[0116] 上記説明に続き、OFDMシステム(例えば図8AのOFDMシステム800A)により操作可能な信号送信器及び信号受信器は、変換を反転するために送信器において線形演算子Aを及び信号受信器において線形演算子A’と共にFFTを使用してiFFT操作を任意変換操作で置換した、本明細書において説明されるUBDMシステムと共に使用されるように、容易に適応化され得る。OFDMシステムの他の詳細はそのままであり得る。
【0107】
[0117] 本明細書において説明されるいくつかの実施形態は方法に関する。このような方法はコンピュータ実施方法(例えばメモリ内に格納されプロセッサ上で実行される命令)であり得るということを理解すべきである。上述の方法が、或る順番で発生するいくつかの事象を指示すると、いくつかの事象の順序付けは修正され得る。加えて、事象のいくつかは、繰り返し(可能ならば並列処理で同時に)行われ得るだけでなく、上述のように順次行われ得る。さらに、いくつかの実施形態は1つ又は複数の説明された事象を省略し得る。
【0108】
[0118] 本明細書で規定及び使用されたすべての定義は辞書定義、参照により援用された文献における定義、及び/又は定義された用語の通常の意味を支配するものと理解されるべきである。
【0109】
[0119] コンピュータコードの例は、限定しないがマイクロコード又はマイクロ命令、コンパイラにより生成されるようなマシン命令、ウェブサービスを生成するために使用されるコード、及びインタープリタを使用してコンピュータにより実行されるハイレベル命令を含むファイルを含む。例えば、実施形態は、Python, Java, JavaScript, C++及び/又は他のプログラミング言語並びに開発ツールを使用して実装することができる。コンピュータコードの追加例は、限定しないが、制御信号、暗号化コード及び圧縮コードを含む。
【0110】
[0120] 添付図面は、主として例示目的のためのものであり、したがって、ここで説明する本発明の主題の範囲を制限するように意図されていない。添付図面は必ずしも原寸に比例しなく、いくつかの事例では、本明細書で開示される主題の様々な態様は、様々な特徴の理解を容易にするために添付図面において誇張又は拡大されて示され得る。添付図面では、同様な参照符号は概して、同様な特徴(例えば、機能的に同様及び/又は構造的に同様な要素)を指す。
【0111】
[0121] 開示方法の一部として行われる行為は、任意の好適なやり方で順序付けされ得る。したがって、例示的実施形態において連続行為として示されたとしても、示されたものとは異なる順序で処理又は工程が行われる実施形態であって、いくつかの工程又は処理を同時に行うことを含み得る実施形態が構築され得る。別の言い方をすると、このような特徴は必ずしも実行の特定順序に限定されていないことがあり得、むしろ、任意数のスレッド、処理、サービス、サーバなどは本開示に準拠するやり方で例えば直列に、非同期に、同時に、並列に、同時に、同期的に実行し得るということを理解すべきである。したがって、これらの特徴のうちのいくつかは、単一実施形態において同時に存在し得ないという意味で相互矛盾し得る。同様に、いくつかの特徴は、新規性の一態様に適用可能であるが他の態様に適用不能である。
【0112】
[0122] 或る範囲の値が提供される場合、当該範囲の上限及び下限との間の各介在値(文脈が別途明確に規定しない限り下限の単位の1/10までの)及び当該指定範囲内の任意の他の指定値又は介在値は本開示に包含されるということが理解される。「これらの小範囲の上限及び下限は小範囲内に独立に含まれ得る」ということも本開示に包含され、指定範囲内の任意の特別に除外された限度に従う。指定範囲が限度の一方又は両方を含む場合、これらの含まれた限度のいずれか又は両方を除いた範囲も本開示に含まれる。
【0113】
[0123] 本明細書及び実施形態において使用される語句「及び/又は」は、そのように結合された要素の「いずれか又は両方」(すなわち、いくつかのケースでは結合された状態で存在し他の場合では分離された状態で存在する要素)を意味するものと理解されるべきである。「及び/又は」で列挙された複数の要素は同様に(すなわち、そのように結合された要素のうちの「1つ又は複数」を意味するものと)解釈されるべきである。語句「及び/又は」により特に識別された要素以外の他の要素は、特に識別された当該要素に関係しても関係しなくても任意選択的に存在し得る。したがって、非限定例として、「A及び/又はB」への参照は「含む」などの開放言語と共に使用されると、一実施形態ではAだけ(任意選択的にB以外の要素を含む)を参照し得;別の実施形態ではBだけ(任意選択的にA以外の要素を含む)を参照し得;さらに別の実施形態ではAとB両方(任意選択的に他の要素を含む)を参照し得る等々である。
【0114】
[0124] 本明細書及び実施形態において使用されるように、「又は」は上に定義された「及び/又は」と同じ意味を有するものと理解すべきである。例えば、リスト内のアイテム同士を分離する場合、「又は」又は「及び/又は」は包括的である(すなわち、多くの要素又はそのリスト、及び任意選択的に追加の未列挙アイテムのうちの少なくとも1つの包含であるが2つ以上も含む)と解釈されるものとする。それと反対に明示される用語(「のうちのただ1つだけ」又は「のうちの正確に1つ」など)又は実施形態において使用される場合の用語「からなる」だけは多くの要素又はそのリストのうちの正確に1つの要素の包含を指す。一般的に、本明細書で使用される用語「又は」は、「いずれか」、「のうちの1つ」、「のうちの1つだけ」、又は「のうちの正確に1つ」などの排他的用語により先行されると、排他的代替物(すなわち「一方又は他方であるが両方ではない」)を示すとのみ、解釈されるものとする。実施形態において使用される「から本質的になる」は、特許法の分野において使用されるようにその通常の意味を有するものとする。
【0115】
[0125] 本明細書と実施形態とにおいて使用されるように、1つ又は複数の要素のリストを参照した語句「少なくとも1つ」は、要素のリスト内の要素のうちの任意の1つ又は複数から選択された少なくとも1つの要素を意味するが、要素のリスト内に特に列挙されたありとあらゆる要素のうちの少なくとも1つを必ずしも含むものではなく、及び要素のリスト内の要素のいかなる組み合わせも排除しないものと理解すべきである。この定義はまた、要素のリスト内で特に識別された要素(語句「少なくとも1つ」が参照する)以外の要素が、特に識別された当該要素に関係しても関係しなくても任意選択的に存在し得るということを許容する。したがって、非限定的例として、「AとBの少なくとも1つ」(又は、等価的に「A又はBの少なくとも1つ」、又は等価的に「A及び/又はBの少なくとも1つ」)は、一実施形態では、Bの存在無しに(及び、任意選択的にB以外の要素を含む)少なくとも1つのA(任意選択的に2つ以上を含む)を指し得、別の実施形態では、Aの存在無しに(及び、任意選択的にA以外の要素を含む)少なくとも1つのB(任意選択的に2つ以上を含む)を指し得、さらに別の実施形態では、少なくとも1つのA(任意選択的に2つ以上を含む)と少なくとも1つのB(任意選択的に2つ以上を含む)(及び任意選択的に他の要素を含む)を指し得る、等々である。
【0116】
[0126] 実施形態だけでなく上記明細書では、「含む」、「担持する」、「有する」、「含む」、「関与する」、「保持する」、「から構成される」などのすべての移行句は、開放的である(すなわち、含むが限定しないことを意味する)と理解される。移行句「からなる」と「から本質的に構成される」だけは、米国特許局の特許審査官手順マニュアル(United States Patent Office Manual of Patent Examining Procedures)セクション2111.03に記載されるように、それぞれ閉鎖移行句又は準閉鎖移行句であるものとする。
図1
図2
図3
図4
図5
図6
図7A
図7B
図8A
図8B
図8C
【国際調査報告】