IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サイロジカ コーポレイションの特許一覧

<>
  • 特表-センサの較正 図1
  • 特表-センサの較正 図2
  • 特表-センサの較正 図3
  • 特表-センサの較正 図4
  • 特表-センサの較正 図5
  • 特表-センサの較正 図6
  • 特表-センサの較正 図7
  • 特表-センサの較正 図8
  • 特表-センサの較正 図9
  • 特表-センサの較正 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-04-12
(54)【発明の名称】センサの較正
(51)【国際特許分類】
   G01N 21/64 20060101AFI20230405BHJP
   G01N 21/78 20060101ALI20230405BHJP
   A61B 5/1459 20060101ALI20230405BHJP
【FI】
G01N21/64 F
G01N21/64 B
G01N21/78 C
A61B5/1459
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022549278
(86)(22)【出願日】2021-02-16
(85)【翻訳文提出日】2022-10-07
(86)【国際出願番号】 GB2021050373
(87)【国際公開番号】W WO2021165663
(87)【国際公開日】2021-08-26
(31)【優先権主張番号】16/792,563
(32)【優先日】2020-02-17
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】20165007.4
(32)【優先日】2020-03-23
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】521478072
【氏名又は名称】サイロジカ コーポレイション
(74)【代理人】
【識別番号】110000855
【氏名又は名称】弁理士法人浅村特許事務所
(72)【発明者】
【氏名】バーウェル、ニコラス ポール
(72)【発明者】
【氏名】クレイン、バリー コリン
(72)【発明者】
【氏名】マッケンジー、アラスデア アラン
(72)【発明者】
【氏名】パーキンス、ロバート
(72)【発明者】
【氏名】サガー、プラヴェーン
【テーマコード(参考)】
2G043
2G054
4C038
【Fターム(参考)】
2G043AA01
2G043BA01
2G043BA14
2G043BA16
2G043CA03
2G043DA05
2G043DA09
2G043EA01
2G043EA02
2G043FA03
2G043FA06
2G043FA07
2G043HA05
2G043JA01
2G043KA02
2G043KA05
2G043KA08
2G043KA09
2G043LA01
2G043MA03
2G043NA01
2G043NA13
2G054AA07
2G054AB02
2G054AB10
2G054CA01
2G054CA03
2G054CA10
2G054CA21
2G054CA25
2G054CD04
2G054CE02
2G054EA03
2G054EA07
2G054EB01
2G054EB02
2G054EB03
2G054EB05
2G054FA02
2G054FA08
2G054FA12
2G054FA16
2G054FA28
2G054FA29
2G054FA32
2G054FA33
2G054FA39
2G054FA43
2G054FB02
2G054GA03
2G054GA04
2G054GA05
2G054GA08
2G054GB02
2G054JA01
2G054JA08
2G054JA11
4C038KK07
4C038KL01
4C038KL07
4C038KM03
(57)【要約】
分析物の濃度に依存するルミネセンスを有する発光性化合物と、上記発光性化合物が発する光を検出するように構成された検出器とを含むセンサを較正する方法であって、既知の第1の濃度での上記分析物への上記発光性化合物の曝露を維持するパッケージ内に上記発光性化合物を含むコンポーネントを準備するステップと、上記コンポーネントを上記センサに組み付け、上記発光性化合物が上記第1の濃度での上記分析物に曝露されている間に上記発光性化合物の上記ルミネセンスの特性の第1の値を測定するステップと、上記発光性化合物が上記第1の濃度とは異なる既知の第2の濃度での上記分析物に曝露されている間に上記発光性化合物の上記ルミネセンスの上記特性の第2の値を測定するステップと、上記第1の値及び上記第2の値を用いて上記分析物の濃度への上記ルミネセンスの上記特性の依存性を表すパラメータを求めるステップとを含む方法が提供される。
【特許請求の範囲】
【請求項1】
分析物の濃度に依存するルミネセンスを有する発光性化合物と、前記発光性化合物が発する光を検出するように構成された検出器とを含むセンサを較正する方法であって、
既知の第1の濃度での前記分析物への前記発光性化合物の曝露を維持するパッケージ内に前記発光性化合物を含むコンポーネントを準備するステップと、
前記コンポーネントを前記センサに組み付け、前記発光性化合物が前記第1の濃度での前記分析物に曝露されている間に前記発光性化合物の前記ルミネセンスの特性の第1の値を測定するステップと、
前記発光性化合物が前記第1の濃度とは異なる既知の第2の濃度での前記分析物に曝露されている間に前記発光性化合物の前記ルミネセンスの前記特性の第2の値を測定するステップと、
前記第1の値及び前記第2の値を用いて前記分析物の濃度への前記ルミネセンスの前記特性の依存性を表すパラメータを求めるステップと
を含む方法。
【請求項2】
前記コンポーネントを前記センサに組み付けるステップは、前記コンポーネントが前記パッケージ内に保持される状態で行われ、前記第1の値を測定するステップは、前記コンポーネントが前記パッケージ内にある間に行われる、請求項1に記載の方法。
【請求項3】
前記第1の値を測定するステップは、前記発光性化合物が前記第1の濃度での前記分析物に曝露されているままである前記パッケージから前記コンポーネントを取り外した後、所定の時間期間中に行われる、請求項1に記載の方法。
【請求項4】
前記所定の時間期間は多くとも5分である、請求項3に記載の方法。
【請求項5】
前記第1の濃度はゼロである、請求項1から4までのいずれか一項に記載の方法。
【請求項6】
前記第2の値を測定するステップは、前記発光性化合物が前記第2の濃度での前記分析物を含む血液に曝露されている間に行われる、請求項1から5までのいずれか一項に記載の方法。
【請求項7】
前記第2の濃度は、血液分析器を用いての前記血液の試料の分析によって求められる、請求項6に記載の方法。
【請求項8】
前記第2の値を測定するステップは、in vivo(生体内)で行われる、請求項6又は7に記載の方法。
【請求項9】
前記第2の値を測定するステップは、前記発光性化合物が前記既知の第2の濃度での前記分析物を含む予め調製された流体に曝露されている間に行われる、請求項1から5までのいずれか一項に記載の方法。
【請求項10】
前記センサを医療デバイスにおける生体液用の流動ラインに組み付けるステップをさらに含み、前記予め調製された流体は、前記医療デバイスの設定において使用するプライミング流体である、請求項9に記載の方法。
【請求項11】
前記ルミネセンスは、前記発光性化合物の温度に依存し、前記パラメータは、前記分析物の前記濃度及び前記発光性化合物の前記温度の双方への前記ルミネセンスの前記特性の前記依存性を表す、請求項1から10までのいずれか一項に記載の方法。
【請求項12】
前記方法は、
前記第1の値を測定するステップが行われる場合に前記発光性化合物の第1の温度を測定するステップと、
前記第2の値を測定するステップが行われる場合に前記発光性化合物の第2の温度を測定するステップと
をさらに含み、
前記分析物の濃度への前記ルミネセンスの前記特性の前記依存性を表すパラメータを求めるステップは、前記第1の値及び前記第2の値に加え、前記第1の温度及び前記第2の温度を用いる、請求項11に記載の方法。
【請求項13】
前記パラメータは、前記発光性化合物の前記温度への前記ルミネセンスの前記特性の前記依存性を表す温度パラメータを含む、請求項12に記載の方法。
【請求項14】
前記温度パラメータは所定の値を有する、請求項13に記載の方法。
【請求項15】
前記方法は、
前記発光性化合物が前記第1の温度とは異なる第3の温度で前記第1の濃度での前記分析物に曝露されている間に前記発光性化合物の前記ルミネセンスの前記特性の第3の値を測定するステップと、
前記第3の値を測定するステップが行われる場合に前記発光性化合物の前記第3の温度を測定するステップと
をさらに含み、
前記分析物の濃度への前記ルミネセンスの前記特性の前記依存性を表すパラメータを求めるステップは、前記第1の値、前記第2の値、前記第1の温度、及び前記第2の温度に加え、前記第3の値及び前記第3の温度を用いる、請求項13に記載の方法。
【請求項16】
前記ルミネセンスは、前記発光性化合物の前記温度に依存し、前記パラメータは、所定の温度における前記分析物の前記濃度への前記ルミネセンスの前記特性の前記依存性を表す、請求項1から10までのいずれか一項に記載の方法。
【請求項17】
前記発光性化合物の前記ルミネセンスの前記特性は、前記ルミネセンスの強度である、請求項1から16までのいずれか一項に記載の方法。
【請求項18】
前記発光性化合物の前記ルミネセンスの前記特性は、2つの異なる波長での前記ルミネセンスの前記強度の比である、請求項1から16までのいずれか一項に記載の方法。
【請求項19】
前記特性の前記依存性は、1対1のホスト-ゲスト結合モデルを用いてモデル化される、請求項1から18までのいずれか一項に記載の方法。
【請求項20】
前記依存性を表すパラメータを求めるステップは、前記発光性化合物と前記分析物との間の結合の強さについての所定の値を用いるステップを含む、請求項19に記載の方法。
【請求項21】
前記分析物の前記濃度[X]への前記特性Cの前記依存性は、以下の方程式、すなわち、
【数1】

を用いてモデル化され、
は、前記分析物の前記濃度がゼロである場合の前記発光性化合物の前記ルミネセンスの前記特性の値であり、
は、前記分析物の前記濃度が無限である場合の前記発光性化合物の前記ルミネセンスの前記特性の値であり、
Kは、前記発光性化合物と前記分析物との間の結合の強さであり、
前記依存性を表すパラメータを求めるステップは、C及びCを求めるステップを含む、請求項19又は20に記載の方法。
【請求項22】
前記パラメータは、前記発光性化合物の前記温度への前記ルミネセンスの前記特性の前記依存性を表す温度パラメータαを含み、
及びCは、前記温度Tへの以下の依存性、すなわち、
(T)=C0c(1+α(T-Tc))
(T)=C∞c(1+α(T-Tc))
を用いてモデル化され、
0cは、温度TcにおけるCの値であり、C∞cは、温度TcにおけるCの値である、請求項21に記載の方法。
【請求項23】
Kは、前記温度Tへの以下の依存性、すなわち、
【数2】

を用いてモデル化され、
は、温度Tにおける結合定数であり、
βは、結合温度定数である、請求項21又は22に記載の方法。
【請求項24】
前記コンポーネントは、前記センサの交換可能なコンポーネントである、請求項1から23までのいずれか一項に記載の方法。
【請求項25】
分析物の濃度に依存するルミネセンスを有する発光性化合物と、前記発光性化合物が発する光を検出するように構成された検出器とを含むセンサを用いて、試料中の前記分析物の前記濃度を測定する方法であって、
請求項1から24までのいずれか一項に記載の方法を用いて前記センサを較正するステップと、
前記発光性化合物が前記試料に曝露されている間に前記発光性化合物の前記ルミネセンスの前記特性の値を測定するステップと、
前記測定された値と、前記分析物の濃度への前記ルミネセンスの前記特性の前記依存性を表す、前記求められたパラメータとを用いて、前記試料中の前記分析物の前記濃度を導出するステップと
を含む方法。
【請求項26】
前記試料は生体液であり、前記ルミネセンスの前記特性の前記値は、in vivo(生体内)で測定される、請求項25に記載の方法。
【請求項27】
前記試料は生体液であり、前記ルミネセンスの前記特性の前記値は、in vitro(生体外)で測定される、請求項25に記載の方法。
【請求項28】
医療デバイスにおける生体液用の流動ラインに前記センサを組み付けるステップをさらに含み、前記試料は前記流動ライン内にある、請求項27に記載の方法。
【請求項29】
前記生体液は血液又は間質液である、請求項26から28までのいずれか一項に記載の方法。
【請求項30】
前記センサは、前記発光性化合物を励起するように構成された光源をさらに含み、前記発光性化合物の前記ルミネセンスの前記特性の値を測定するステップは、前記光源を用いて前記発光性化合物を励起するステップと、前記検出器を用いて前記発光性化合物が発する光を検出するステップとを含む、請求項25から29までのいずれか一項に記載の方法。
【請求項31】
前記分析物は、二酸化炭素、水素イオン、ナトリウム、カリウム、マグネシウム、及びカルシウムのうちの1つのである、請求項25から30までのいずれか一項に記載の方法。
【請求項32】
前記発光性化合物は蛍光性化合物を含む、請求項25から31までのいずれか一項に記載の方法。
【請求項33】
前記蛍光性化合物は、8-ヒドロキシピレン-1,3,6-トリスルホン酸を含む、請求項32に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、発光性化合物を含むセンサを較正する方法に関し、特に、環境中の分析物の濃度を検出するセンサの較正に関する。
【背景技術】
【0002】
環境中の、いくつかの異なる物質の混合物を含み得る特定の分析物の濃度を求めることができることが、多くの領域において望ましい。例えば、透析治療のような又は集中治療での患者の監視のようないくつかの臨床設定では、患者の血液中の二酸化炭素濃度又はカリウム若しくはナトリウム等のイオン濃度をリアルタイムで正確に求めることができることが重要であり、救急治療設定における臨床医に、連続的なリアルタイム測定データを供給することは、多くの場合、治療管理をガイドする手段として極めて有益である。別の例は、食品産業での制御された環境の監視であり、そこでは、酸素又は他の汚染物質の存在が、食品の腐敗を引き起こすリスクの原因となるため、望ましくない可能性がある。
【0003】
或る既知の種類のセンサは、発光性化合物、例えば、標的分析物の濃度に依存する特性を有するルミネセンスを有する蛍光有機色素を使用する。分析物を含む試料に発光性化合物が曝露されている間に該発光性化合物を励起するとともにそのルミネセンスを測定することによって、試料中の分析物の濃度を求めることができる。この種のセンサは、連続して動作されることができ、そのため、分析又は他の同様に面倒な手技のために、試料、例えば血液の試料又は食品が保存されている雰囲気の試料を定期的に採取する必要がないという利点を有する。
【0004】
しかしながら、センサによって報告される濃度の値を信頼することができるようにするには、分析物の濃度へのルミネセンスの特性の依存性を求めるためにセンサを較正する必要がある。従来的に、例えば血液ガスの濃度を測定するための発光センサの較正は、該センサを較正するために、特定の分析物の制御された濃度を提供するように専用のトノメータ装置を利用する、複雑な多点較正手順を必要としてきた。これらの装置は複雑であるとともに保守及び運転にコストがかかり、多点較正手順は多くの場合、時間がかかる。これら要因は、センサを較正するプロセスが貴重なユーザ時間を消費するとともにかなりのコストを生じさせることを意味する。ユーザは、時間の制約がある状況で較正を全くなしで済ましさえすることで、信頼できない測定値の危険な可能性のある使用を引き起こしかねない。最近の開発により、そのような装置のサイズが縮小するともに必要とされる較正点の数が減ってきているが、別個の較正装置及び較正手順は依然として必要とされており、これにはコスト及び時間がかかる。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Tusa & He, J. Mater. Chem., 2005:15:2640-2647; de Silva et al.,Org. Biomol. Chem., 2008:6:2468-2481
【非特許文献2】Lee et al., Anal. Chem., 2009:81:538
【非特許文献3】Martinez-Zaguila et al., Cell Physiol. Biochem., 1998:8:158
【非特許文献4】Ge et al., “High-stability non-invasive autoclavable naked optical CO2 sensor”, Biosensors and Bioelectronics, 2003:18:857-865
【非特許文献5】Ge et al., “Study on low-cost calibration-free pH sensing with disposable optical sensors”, Analytica Chimica Acta, 2012:734:79-87
【非特許文献6】Rovati et al, “Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix”, MOH. YASIN Sulaiman W. Harun and Hamzah AROF, eds. Fiber Optic Sensors
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、専門的な較正装置の必要性を減らすか又はなくすとともに、較正を行うのに必要とされるオペレータ時間を短縮する、この種のセンサのための較正手順が必要とされている。本発明の一目的は、この課題に少なくとも部分的に対処することである。
【課題を解決するための手段】
【0007】
分析物の濃度に依存するルミネセンスを有する発光性化合物と、上記発光性化合物が発する光を検出するように構成された検出器と、を含むセンサを較正する方法であって、既知の第1の濃度での上記分析物への上記発光性化合物の曝露を維持するパッケージ内に上記発光性化合物を含むコンポーネントを準備することと、上記コンポーネントを上記センサに組み付けるとともに、上記発光性化合物が上記第1の濃度での上記分析物に曝露されている間に上記発光性化合物の上記ルミネセンスの特性の第1の値を測定することと、上記発光性化合物が上記第1の濃度とは異なる既知の第2の濃度での上記分析物に曝露されている間に上記発光性化合物の上記ルミネセンスの上記特性の第2の値を測定することと、上記第1の値及び上記第2の値を用いて上記分析物の濃度への上記ルミネセンスの上記特性の依存性を表すパラメータを求めることと、を含む方法が提供される。
【0008】
既知の濃度の分析物に曝露されるようにパッケージされた発光性化合物を含むセンサのコンポーネントを準備することによって、専用の装置又はいかなるユーザ準備も必要とすることなく第1の較正点が提供されることができる。これにより、センサを較正するのに必要とされる時間が実質的に短縮され、第1の較正点を提供する別個の装置の必要性が除かれ、それにより、システムを運転するユーザに対する時間及びリソースのコストが削減される。
【0009】
一実施例では、上記コンポーネントをセンサに組み付けるステップは、上記コンポーネントが上記パッケージ内に保持されることで行われ、上記第1の値を測定するステップは、上記コンポーネントが上記パッケージ内にある間に行われる。パッケージは、上記パッケージ内にコンポーネントがある状態の間にセンサが接続されることができるように設計されることができる。したがって、第1の較正点は単に、コンポーネントをパッケージから取り外す前にコンポーネントをセンサに接続すること(既存のシステムではユーザによって既に行われているであろう動作)によって、測定されることができる。
【0010】
一実施例では、上記第1の値を測定するステップは、上記発光性化合物が上記第1の濃度での上記分析物に曝露されたままである上記パッケージから上記コンポーネントを取り外した後、所定の時間期間中に行われる。代替として、コンポーネントの設計及び発光性化合物の特質は、コンポーネントがパッキングから取り外された後、所定の時間の間、発光性化合物のルミネセンスの特性が実質的に変化しないようなものであってもよい。したがって、第1の較正点は、コンポーネントをパッケージから取り外した直後にコンポーネントをセンサに接続すること(同様に既存のシステムではユーザによって既に行われているであろう動作)によって測定されることができる。一実施例では、所定の時間期間は多くとも5分である。これは、本明細書に開示されるコンポーネントの実施例の典型である。
【0011】
一実施例では、第1の濃度はゼロである。このことは、分析物がない場合の特性、つまり、共通の較正パラメータが、複数の測定から算出されるのではなく直接求められることが可能となるため、特に好都合である。
【0012】
一実施例では、上記第2の値を測定するステップは、上記発光性化合物が上記第2の濃度での上記分析物を含む血液に曝露されている間に行われる。このことは、センサが血液中の分析物の濃度を測定するのに使用される、第2の値についての測定の好都合な選択であり、その理由は、測定が、センサが使用される構成にセンサを設定した後で行われることができるからである。したがって、較正目的のために必要とされる中断が最小限に抑えられ、その理由は、使用のために、ユーザが単にセンサを組み付けるとともに装置を設定するだけでよく、較正測定が設定手順の適切な段階で自動的に行われるからである。
【0013】
一実施例では、上記第2の濃度は、血液分析器を用いての上記血液の試料の分析によって求められる。血液分析器は一般に、患者試料の分析のために臨床設定内にある。したがって、較正目的のために第2の濃度を求めるのにさらなる装置はいっさい必要とされない。
【0014】
一実施例では、上記第2の値を測定するステップはin vivo(生体内)で行われる。上記で論じたように、このことは、上記第2の値を測定する前又は測定した後でさらなる設定ステップがいっさい必要とされないことを意味するため、特に有利である。
【0015】
一実施例では、上記第2の値を測定するステップは、上記発光性化合物が上記既知の第2の濃度での上記分析物を含む予め調製された流体に曝露されている間に行われる。予め調製された流体を用いることは、状況によってはより好都合であり得るが、その理由は、いかなるさらなる分析もなしに既知の第2の濃度を提供するからである。
【0016】
一実施例では、上記方法は、上記センサを医療デバイスにおける生体液用の流動ラインに組み付けることをさらに含み、上記予め調製された流体は上記医療デバイスの設定において使用するプライミング流体である。いくつかの臨床状況、例えば透析では、プライミング流体は設定時に使用される。このプライミング流体を用いて第2の濃度を提供することにより、ユーザによっていずれにしても行われるであろう方法ステップに較正がさらに組み入れられ、それにより、較正を行うのに必要とされるさらなる時間が短縮される。
【0017】
一実施例では、上記ルミネセンスは、上記発光性化合物の温度に依存し、上記パラメータは、上記分析物の上記濃度及び上記発光性化合物の上記温度の双方への上記ルミネセンスの上記特性の上記依存性を表す。監視中に生じ得る温度変化を考慮することにより、較正手順の精度及び確実性が高まる。
【0018】
一実施例では、上記方法は、上記第1の値を測定するステップが行われる場合に上記発光性化合物の第1の温度を測定することと、上記第2の値を測定するステップが行われる場合に上記発光性化合物の第2の温度を測定することと、をさらに含み、上記分析物の濃度への上記ルミネセンスの上記特性の上記依存性を表すパラメータを求めるステップは、上記第1の値及び上記第2の値に加え、上記第1の温度及び上記第2の温度を用いる。2つの較正点で温度を測定することにより、ルミネセンスの特性に影響を及ぼし得る2つの濃度での温度間のいかなる差についても較正パラメータが調整されることを可能にすることができ、それにより、精度及び確実性がさらに高まる。
【0019】
一実施例では、上記パラメータは、上記発光性化合物の上記温度への上記ルミネセンスの上記特性の上記依存性を表す温度パラメータを含む。特定の温度パラメータを用いることは、温度依存性が容易に定量化されるとともに考慮されることができることを意味する。
【0020】
一実施例では、上記温度パラメータは所定の値を有する。いくつかの実施例では、コンポーネントの挙動は、製造時に温度パラメータが求められることができるほど一定である。これにより較正時に求められる温度パラメータの必要性が除かれ、それにより、較正の複雑さが低減する。
【0021】
一実施例では、上記方法は、上記発光性化合物が上記第1の温度とは異なる第3の温度で上記第1の濃度での上記分析物に曝露されている間に上記発光性化合物の上記ルミネセンスの上記特性の第3の値を測定することと、上記第3の値を測定するステップが行われる場合に上記発光性化合物の上記第3の温度を測定することと、をさらに含み、上記分析物の濃度への上記ルミネセンスの上記特性の上記依存性を表すパラメータを求めるステップは、上記第1の値、上記第2の値、上記第1の温度及び上記第2の温度に加え、上記第3の値及び上記第3の温度を用いる。第1の濃度で2つの温度における特性の値を測定することにより、所定の値に頼ることができない場合に温度パラメータが正確に求められることが可能となる。それでもなお、これにはユーザからのさらなるステップを必要としないが、その理由は、コンポーネントをセンサに取り付けた後で自動的に測定が行われることができるからである。
【0022】
一実施例では、上記ルミネセンスは、上記発光性化合物の上記温度に依存し、上記パラメータは、所定の温度における上記分析物の上記濃度への上記ルミネセンスの上記特性の上記依存性を表す。較正測定の温度と動作時の測定の温度とが略同じである場合、温度依存性を定量化するためにさらなる測定又はパラメータの必要はない。
【0023】
一実施例では、上記発光性化合物の上記ルミネセンスの上記特性は、上記ルミネセンスの強度である。強度は、光検出器を用いて直接測定されることができる、特性の好都合な選択である。
【0024】
一実施例では、上記発光性化合物の上記ルミネセンスの上記特性は、2つの異なる波長での上記ルミネセンスの上記強度の比である。強度の比を用いることは、特定タイプのエラーに対する測定の感度を下げるため、有利である。
【0025】
一実施例では、上記特性の上記依存性は、1対1のホスト-ゲスト結合モデルを用いてモデル化される。このモデルは、多くの一般に入手可能な発光性化合物をモデル化するのに適切である。
【0026】
一実施例では、上記依存性を表すパラメータを求めることは、上記発光性化合物と上記分析物との結合の強さについての所定の値を用いることを含む。相互作用のこの結合の強さは、結合定数と呼ばれる。結合定数は、コンポーネント間で概ね一定であり、したがって、製造時に求められることができ、所定の値が使用点で用いられる。
【0027】
一実施例では、上記分析物の上記濃度[X]への上記特性Cの上記依存性は、以下の方程式、すなわち、
【数1】

を用いてモデル化され、
式中、Cは、上記分析物の上記濃度がゼロである場合の上記発光性化合物の上記ルミネセンスの上記特性の値であり、Cは、上記分析物の上記濃度が無限である場合の上記発光性化合物の上記ルミネセンスの上記特性の値であり、Kは、上記発光性化合物と上記分析物との結合の強さ(結合定数)であり、上記依存性を表すパラメータを求めることは、C及びCを求めることを含む。これは、1対1のホスト-ゲスト結合モデルを表現する数学的形式の好都合且つ適切な特定の選択である。
【0028】
一実施例では、上記パラメータは、上記発光性化合物の上記温度への上記ルミネセンスの上記特性の上記依存性を表す温度パラメータαを含み、C及びCは、上記温度Tへの以下の依存性、すなわち、
(T)=C0c(1+α(T-Tc))
(T)=C∞c(1+α(T-Tc))
を用いてモデル化され、
式中、C0cは、温度TcにおけるCの値であり、C∞cは、温度TcにおけるCの値である。温度へのルミネセンスの特性の線形依存性を用いることは、この種のセンサが一般に使用される温度範囲にわたって十分に正確である。したがって、これは単純且つ有効なモデルとして有利に働く選択である。
【0029】
一実施例では、Kは、上記温度Tへの以下の依存性、すなわち、
【数2】

を用いてモデル化され、
式中、Kは、温度Tでの結合定数であり、βは、結合温度定数である。結合定数の指数関数的依存性は、センサが一般に使用される条件でその温度依存性を正確に示す。
【0030】
分析物の濃度に依存するルミネセンスを有する発光性化合物と、上記発光性化合物が発する光を検出するように構成された検出器と、を含むセンサを用いて、試料中の上記分析物の上記濃度を測定する方法であって、上記に開示された、センサを較正する方法の一実施例を用いて上記センサを較正することと、上記発光性化合物が上記試料に曝露されている間に上記発光性化合物の前記ルミネセンスの特性の値を測定することと、測定された値と、上記分析物の濃度への上記ルミネセンスの上記特性の依存性を表す、求められたパラメータとを用いて、上記試料中の上記分析物の上記濃度を導出することと、を含む方法がさらに提供される。前述の較正方法を用いる、濃度を測定する方法を行うことは、濃度の正確な測定をもたらし、センサの設定時にユーザにかかる負担が低減するため、有利である。
【0031】
一実施例では、上記試料は生体液であり、上記ルミネセンスの上記特性の上記値はin vivo(生体内)で測定される。in vivo(生体内)測定により、分析のために血液試料を定期的に採取する必要はなく、連続的に監視することを可能にすることができる。これにより、臨床医が試料を定期的に採取する時間を費やす必要なく、監視のより多くの時間分解能がもたらされる。
【0032】
一実施例では、上記試料は生体液であり、上記ルミネセンスの上記特性の上記値はin vitro(生体外)で測定される。このことは、生体液が連続的に流れているとともにin vitoro(生体外)での測定に利用できる、透析治療等の状況においてより好都合であり得る。例えば、一実施例では、上記方法は、医療デバイスにおける生体液用の流動ラインに上記センサを組み付けることをさらに含み、上記試料は上記流動ライン内にある。
【0033】
一実施例では、上記生体液は血液又は間質液である。これらは双方とも、体内における重要な代謝産物のレベルを測定するための好適な試料であり、そのため、患者の健康状態を監視する場合の有利な選択である。
【0034】
いずれの方法の一実施例でも、コンポーネントは、センサの交換可能なコンポーネントである。このことは、コンポーネントが臨床状況で使用される場合に滅菌状態に維持するために有利である。
【0035】
いずれの方法の一実施例でも、上記センサは、上記発光性化合物を励起するように構成された光源をさらに含み、上記発光性化合物の上記ルミネセンスの上記特性の値を測定することは、上記光源を用いて上記発光性化合物を励起することと、上記検出器を用いて上記発光性化合物が発する光を検出することと、を含む。これにより、発光性化合物に送達される光を制御することによって測定プロセスに対してより多くの制御が可能となる。これにより、濃度を導出するのに用いられる寿命測定の精度が高まる。
【0036】
いずれの方法の一実施例でも、上記分析物は、二酸化炭素、水素イオン、ナトリウム、カリウム、マグネシウム、及びカルシウムのうちの1つである。二酸化炭素センサ又は酸素センサの正確な較正は、臨床手技中に患者が低酸素にならないことを保証するために重要である。他の代謝産物もまた、患者の健康状態を確保するために集中治療での測定のための重要な標的である。
【0037】
いずれの方法の一実施例でも、上記発光性化合物は蛍光性化合物を含む。蛍光性化合物は、燐光性化合物よりも高い強度で光を発し、そのため、より容易に検出される。一実施例では、蛍光性化合物は、8-ヒドロキシピレン-1,3,6-トリスルホン酸を含む。これは、二酸化炭素又はpHを検知するための蛍光性化合物の特に好適な選択である。
【0038】
ここで、本発明の実施例を添付の図面を参照しながら非限定的な例として説明する。
【図面の簡単な説明】
【0039】
図1】本発明が実施されることができるセンサ装置の概略図である。
図2】血液中の分析物濃度の体外測定のためのセンサ・プローブの可能な構成の概略図である。
図3】血液中の分析物濃度の血管内測定のためのセンサ・プローブの可能な構成の概略図である。
図4】血液中の分析物濃度の皮下測定のためのセンサ・プローブの可能な構成の概略図である。
図5図1に示されたセンサ装置のセンサを較正する方法のフローチャートである。
図6】パッケージ内に封止されたまま第1の値が測定されることができるようにパッケージされたコンポーネントの概略図である。
図7】コンポーネントがパッケージから取り外された後で第1の値が測定されることができるように設計及びパッケージされたコンポーネントの概略図である。
図8】発光性化合物のルミネセンスの特性の測定への分析物濃度の変化の影響を示すグラフである。
図9】分析物の濃度への特性の依存性のモデルとのルミネセンスの特性の測定された値の適合のグラフである。
図10図1に示されたセンサ装置を用いて試料中の分析物の濃度を測定する方法のフローチャートである。
【発明を実施するための形態】
【0040】
本開示は、センサを較正する方法を提供する。図1は、本明細書に開示される方法が用いられることができる種類のセンサ4を含むセンサ装置を示す。そのようなセンサ4の一例は、二酸化炭素濃度を検知するpHセンサとすることができる。センサ4は、発光性化合物9と、分析システム30とを含む。
【0041】
センサ4は、発光性化合物を励起するように構成された光源10を含む。光源10は、発光性化合物9を励起するのに適切な波長で光を発するように構成されている。例えば、光源10は、発光性化合物9を励起するのに必要とされる波長及び強度で光を発することが可能な任意の光源とすることができる。例えば、光源10は、レーザ・ダイオード又はLEDを含むことができる。光源10は、連続光源、振動強度を用いる光源、又はパルス光源であってもよい。
【0042】
センサ4は、発光性化合物9が発する光を検出するように構成された検出器14をさらに含む。検出器14は、発光性化合物9が発する波長で光を受けることに応答して信号を生成することが可能な任意のデバイスとすることができる。例えば、検出器14は、電荷結合デバイス、能動画素センサ、フォトダイオード、又はフォトレジスタを含むことができる。検出器14によって出力される信号は、発光性化合物9から受ける光の強度を表すことができる。
【0043】
センサ4は、発光性化合物9への光及び該発光性化合物からの光を誘導するように配置された光ファイバ16を含む。光ファイバは、全内部反射を用いて光が該ファイバから損失されないようにする。このことは、光が効率的に発光性化合物9へ伝送及び該発光性化合物から伝送されることができ、信号を向上させ、より高品質でより確実な測定に備えることを意味する。それらはまた、小さく且つ可撓性にされることができ、そのため、患者の体内に挿入されねばならないセンサに特に適している。例えば、光ファイバ16は、PMMAファイバ光学部品を含むことができる。光ファイバ16は、光導波路として機能し、適切な場合、任意の他の好適な光導波路が光ファイバ16の代わりに用いられることができる。
【0044】
発光性化合物9を含むコンポーネントが準備され、このコンポーネントはセンサ4に組み付けられる。図1において、コンポーネントは、発光性化合物9を含むセンサ・プローブ8である。コンポーネントは、センサ装置の動作時、分析物を含んでいる試料に曝露される。一実施例では、試料は血液を含む。センサ4は、センサ・プローブ8を光源10及び検出器14に接続するように構成されたコネクタ21をさらに含む。一実施例では、コンポーネントは、センサ4の交換可能なコンポーネントである。センサ4の一部又は全部は使い捨てとすることができ、特に交換可能なコンポーネントは使い捨てとすることができる。このことは、センサ4が患者の体内で分析物濃度を測定するのに使用される臨床状況において簡便である。そのような場合では、センサ4のうち患者に挿入される部分は滅菌されていなければならず、患者間で再使用され得ない。例えば、発光性化合物9を含むセンサ・プローブ8のみが使い捨てとすることができ、検出器14又は光源10は使い捨てでなくともよい。
【0045】
分析システム30は、センサ4を制御するとともに検出器14から受信した信号の処理を行うことによって、方法を実行するように構成されている。分析システム30は、センサを較正するように、及び/又は、センサ4からの測定値に基づいて分析物の濃度の測定値を導出するように構成されることもできる。分析システム30は、有線接続、例えばシリアル若しくはイーサネット(登録商標)接続、又は、センサ装置用に特別に設計された別のインタフェースの種類を介して、センサ4に接続されることができる。代替的に、ブルートゥース(登録商標)又はWi-Fi等の無線接続が用いられてもよい。分析システムは、検出器14によって出力される信号を受信し、それら信号をセンサ4に送信して、例えば光源10を制御することもできる。
【0046】
図2図4は、臨床状況において、また、センサ4がセンサ・プローブ8を含む場合に用いる、センサ4の特定例の実施例を示す。
【0047】
図2は、センサ4がバイパス・センサである実施例を示す。そのようなセンサは、ポンピングされる血液中の分析物の濃度を監視するために、外部血液ポンプ内で使用されることができる。分析物濃度、特に酸素又は二酸化炭素の測定値は、例えば血液の適切な酸素供給レベルを維持するために、外部血液ポンプによる血液ポンピング速度の制御の一部として用いられることができる。この場合、コンポーネントは、バイパス・ループ61に取り付けられた使い捨てセンサ・プローブ8であり、そのため、発光性化合物9が、バイパス・ループを通る血液に曝露される。コネクタ21は、使い捨てセンサ・プローブ8をセンサ4の残りの部分に接続する。サーミスタ又は別の好適な温度センサ20が、血液の温度を測定するためにセンサ・プローブ8内に取り付けられている。
【0048】
図3は、センサ4が血管内センサである実施例を示す。発光性化合物9は、カテーテルを介して患者に挿入される光ファイバ16の先端に位置付けられている。コンポーネントは、温度センサ20とともにファイバ光学部品16を含むセンサ・プローブ8である。センサ・プローブ8は、コネクタ21を介してセンサ4の残りの部分に接続されている。
【0049】
図4は、センサ4が間質液センサである実施例を示す。この場合、センサ4は、センサ・プローブ8を含むコンポーネントと、外側部品54とを含む。センサ・プローブ8は皮膚52を穿刺し、間質液中の分析物濃度を測定する。皮膚52を穿刺するために格納式針が使用されることができ、センサ4は分析システム30に無線接続される。代替的に、分析システム30は外側部品54内に配置されてもよい。皮膚温度を測定するために温度センサが設けられる。この温度センサは、皮膚52に貫入しているセンサ・プローブ8内に設けられることができるか、又は、外側部品54内において皮膚52の近くに設けられることができる。
【0050】
発光性化合物9は、分析物の濃度に依存するルミネセンスを有する任意の好適な物質とすることができる。発光性化合物9は、ポリマー層内に固定されたセンサ・プローブ8内に設けられることができる。
【0051】
いくつかの実施例では、方法において測定されるルミネセンスの特性は、ルミネセンス発光強度(蛍光発光強度又は燐光発光強度等)とすることができる。代替的に、ルミネセンスの特性は、ルミネセンス寿命(蛍光寿命又は燐光寿命等)であってもよい。
【0052】
発光性化合物9の量が少ない用途では、励起光の背景に対し発光性化合物9による吸収を検出することが困難である可能性がある。したがって、発光性化合物は、該発光性化合物が励起される波長範囲とは異なる波長範囲にわたって光を発することが好ましく、その理由は、これにより、励起光と発光性化合物9から発せられた光とが容易に区別されるからである。
【0053】
ルミネセンスは、蛍光又は燐光とすることができる。しかしながら、燐光は、スピン禁制遷移に関係するため、蛍光よりも一般的に弱い。したがって、発光性化合物9に励起光への強い光応答を与えるために、発光性化合物9は、該発光性化合物が分析物と相互作用すると変化する蛍光を有する蛍光性化合物であることが好ましい。
【0054】
したがって、発光性化合物9は蛍光体を含むことが好ましい。蛍光体は、蛍光発光による光を吸収及び光を再び発することができる部分である。通常、蛍光体は、電磁スペクトルの可視領域内の光を吸収する。蛍光体は通常、電磁スペクトルの可視領域内の光も発する。「電磁スペクトルの可視領域」とは、約400nm~約700nmの波長を有する電磁放射線を意味する。蛍光体はまた、電磁スペクトラムの可視領域外で放射線を吸収及び/又は発することもできる。したがって、好ましい実施例では、発光性化合物9は、蛍光体を含む発光性化合物であり、蛍光体の蛍光発光スペクトルは、分析物の存在下で変化する。
【0055】
ルミネセンスの特性(発光性化合物の発光スペクトル等)の変化は、分析物との相互作用によって引き起こされる。分析物と発光性化合物との相互作用の可能な形態は、以下、すなわち
イオン相互作用と、
可逆的共有相互作用の形成(すなわちボロン酸エステルの形成)と、
1:1のホスト-ゲスト錯体をもたらす任意の他の非共有相互作用、すなわち水素結合、CH-π相互作用、疎水効果、ファン・デル・ワールス相互作用等と、
を含む。
【0056】
相互作用の他の形態が可能である。これらの相互作用は、ルミネセンスの1つ又は複数の特性を変え、これら特性は光学的に検出されることができる。
【0057】
いくつかの場合において、分析物と発光性化合物との相互作用が発光性化合物の衝突消光に関与する場合のように、分析物は発光性化合物に結合されない。しかしながら、他の場合では、イオン結合又は共有結合等の化学結合が、分析物と発光性化合物との間に形成されることができる。そのような場合、発光性化合物は受容体部分を含むことができる。受容体部分は、分析物に結合することができる部分である。受容体部分が一般に、好都合には分析物に結合し、他の化学種には結合しないため、発光性化合物は受容体部分を含むことが好ましいであろう。したがって、受容体部分を含む発光性化合物は一般に、分析物に特に関連付けられた光信号を生成し、この光信号は他の種からの干渉に対しては低い感度を有する。種々の分析物に使用されることができる発光性化合物の多くの例を、単に例示目的で以下に挙げる。
【0058】
一例では、発光性化合物は、式(I)、すなわち
【化1】

の部分又はその誘導体を含むことができる。波線は、別の部分への結合点を示し、この部分は例えば、ポリマー層のポリマー、又はアルキル基等の有機部分とすることができる。式(I)の種は、受容体(Naを結合させることができるクリプタンド)と、多環式アリール部分を含む蛍光体との双方を含む。Naがクリプタンドに結合すると、この部分の蛍光発光が変わる。
【0059】
別の例では、発光性化合物は、式(II)、すなわち
【化2】

の部分又はその誘導体を含むことができる。波線は、別の部分への結合点を示し、この部分は例えば、ポリマー層のポリマー、又はアルキル基等の有機部分とすることができる。式(II)の種は、受容体(Kを結合させることができるクリプタンド)と、多環式アリール部分を含む蛍光体との双方を含む。Kがクリプタンドに結合すると、この部分の蛍光発光が変わる。
【0060】
別の例では、発光性化合物は、式(III)、すなわち
【化3】

の部分又はその誘導体を含むことができる。例えば、非特許文献1を参照のこと。波線は、別の部分への結合点を示し、この部分は例えば、ポリマー層のポリマー、又はアルキル基等の有機部分とすることができる。式(III)の種は、受容体(Ca2+を結合させることができるカルボン酸イオン対を含む部分)と、多環式アリール部分を含む蛍光体との双方を含む。Ca2+が受容体に結合すると、この部分の蛍光発光が変わる。
【0061】
別の例では、発光性化合物は、式(IV)又は(V)、すなわち
【化4】

【化5】

の部分又はその誘導体を含むことができる。例えば、非特許文献2又は3を参照のこと。式(IV)又は(V)の部分は、ポリマー層に含まれるポリマーに任意の点において結合されることができる。これら化合物は、それぞれMag-fluo-4(化合物(IV))及びMag-fura-2(化合物(V))として知られている。式(IV)及び(V)の種は、メチルエステル部分を介してMg2+イオンに結合する。したがって、化合物(V)は2つ以上の受容体を含む発光性化合物の一例である。これら化合物はまた、多環式アリール部分を含む蛍光体を含む。Mg2+がこれら化合物のいずれかに結合すると、その蛍光発光が変わる。
【0062】
別の例において、発光性化合物は、式(VI)、すなわち、
【化6】

の部分すなわちピラニン又はその誘導体を含むことができる。例えば、非特許文献4を参照のこと。この部分は、ヒドロキシ基以外の任意の点においてポリマー層のポリマーに結合されることができる。式(VI)の化合物は、別個の受容体及び蛍光体を含まず、蛍光体自体が受容体として働く。式(VI)の部分は、COが水の存在下で酸(炭酸)を形成するため、酸又はCOを検出するのに用いられることができる。酸(COによって形成される炭酸等)の存在下で、式(VI)の部分のヒドロキシ基がプロトン化される。しかしながら、酸又はCOの濃度が下がるにつれ、ヒドロキシル部分が脱プロトン化し、蛍光体中全体で非局在化した負電荷を残し、化合物の蛍光発光スペクトル及び蛍光吸収スペクトルを変える。この変化は、式(VI)の部分を含む発光性化合物が相関移動剤とともに高分子マトリックス中に固定される場合に特に促進される。例示的な相関移動剤は、ヘキサデシルトリメチルアンモニウムヒドロキシドである。
【0063】
用いられることができる好適なピラニン誘導体は、式(VII)、すなわち、
【化7】

の部分である。
【0064】
例えば、非特許文献5を参照のこと。
【0065】
別の例では、発光性化合物は、式(VIII)、すなわち
【化8】

の部分又はその誘導体を含むことができる。この部分は、ポリマー層のポリマーに任意の点において結合されることができる。式(VIII)の化合物は、式(VI)の部分及び(VII)の部分と同様にして挙動する、すなわち、別個の受容体及び蛍光体を含まず、蛍光体自体が受容体として働く。酸(COによって形成される炭酸等)の存在下で、式(VIII)の部分のヒドロキシ基がプロトン化される。しかしながら、酸又はCOの濃度が下がるにつれ、ヒドロキシル部分が脱プロトン化し、蛍光体中全体で非局在化した負電荷を残し、化合物の蛍光発光スペクトル及び蛍光吸収スペクトルを変える。
【0066】
他の発光性化合物が知られており、多くの場合、商業的に入手可能であり、これら化合物もまた、発光性化合物として使用されることができる。いくつかの実施例では、発光性化合物は、8-ヒドロキシピレン-1,3,6-トリスルホン酸(HPTS)を含む。酸又はCOを検出するために使用されることができる発光性化合物のなおもさらなる例は、以下、すなわち
【化9】

である。
【0067】
例えば、非特許文献6を参照のこと。
【0068】
上記から、センサが多種多様な分析物の光学検知に使用されることができることは明確であろう。分析物は例えば、イオン、ガス、無機化合物又は有機化合物であり得る。分析物は試料中にガスとして存在していてもよく、又は代替的に、別の物質、例えば、間質液又は血液等の液体中に溶解又は懸濁されていてもよい。分析物は、有機化合物である場合、一般に、小有機化合物、例えば、20個未満の炭素原子を含む有機化合物である。小有機化合物の特定の例は、糖類、糖アルコール、及び、尿素又はケトン等の代謝産物を含む。分析物の特に好ましい例は、Na、K、Ca2+、Mg2+、CO、及び酸(H、すなわちpHセンサ)である。一実施例では、分析物は二酸化炭素である。
【0069】
図5は、図1のセンサを較正する方法の一実施例のフローチャートを示す。
【0070】
ステップS10において、方法は、既知の第1の濃度での分析物への発光性化合物9の曝露を維持するパッケージ31内に発光性化合物9を含むコンポーネントを準備することを含む。図1では、コンポーネントはセンサ・プローブ8である。パッケージ31の例が図6及び図7に示されている。コンポーネントをパッケージ31内に設けることによって、該パッケージ31内に、較正方法時に第1の較正点として用いられる、既知の第1の濃度の分析物が提供される。第1の濃度は、コンポーネントの製造時に制御されることができ、そのため、ユーザが、例えば、従来技術のデバイスにおいて必要とされるような特定の較正装置を動作させることによって、この第1の濃度を提供せねばならない必要性がない。一実施例では、第1の濃度はゼロである。以下でさらに論じられるように、ゼロ濃度での特性の値はまさに、分析物の濃度への特性の依存性のパラメータであり得る。したがって、較正に用いられる値のうちの1つとしてゼロ濃度を有することは、依存性のパラメータを求めることを簡単にする。
【0071】
ステップS12において、方法はコンポーネントをセンサ4に組み付けることを含む。図1では、これは、コンポーネントをセンサ4のコネクタ21に接続することを含む。コンポーネントをセンサ4に組み付けることにより、センサ4が、発光性化合物9を励起するとともに発光性化合物9が発する光を検出することが可能となり、それにより、測定が行われてセンサ4を較正することが可能となる。
【0072】
ステップS14において、方法は、発光性化合物9が第1の濃度での分析物に曝露されている間に該発光性化合物のルミネセンスの特性の第1の値を測定することを含む。第1の濃度は、センサ4を較正するための、分析物の既知の第1の濃度を呈する。第1の濃度での特性の値を決定することによって、分析システム30が外挿して、特性の値の他の測定に基づいた他の濃度での濃度を求めることができる。このことは、以下でより詳細に論じられる。図1のセンサ4は、発光性化合物9を励起するように構成された光源10を含む。ステップS14は、光源10を用いて発光性化合物9を励起することと、検出器14を用いて発光性化合物9が発する光を検出することと、を含む。
【0073】
一実施例では、パッケージ31は図6のパッケージであり、ステップS12は、コンポーネントがパッケージ31内に保持されることで行われ、ステップS14は、コンポーネントがパッケージ31内にある間に行われる。これにより、第1の値が測定されている間、既知の第1の濃度への発光性化合物9の曝露が維持されることが可能となる。この実施例は、パッケージ31を開封することなくコンポーネントがセンサ4に接続されることができるようにパッケージ31が設計されることを必要とする。図6では、パッケージ31がコンポーネントのファイバ光学部品16の周りに封止された状態のまま、該ファイバ光学部品16の一部がパッケージ31から突出している。代替的に、パッケージ31の一部としてアダプタが提供されてもよく、パッケージ31はこのアダプタの周りに封止された状態であり、アダプタは、パッケージ31の内部のコンポーネントに接続され、ステップS12においてセンサ4のコネクタ21に接続されるように構成されている。
【0074】
一実施例では、パッケージ31は図7のパッケージであり、ステップS14は、発光性化合物9が第1の濃度での分析物に曝露されたままであるパッケージ31からコンポーネントを取り外した後、所定の時間期間中に行われる。発光性化合物9の選択及びコンポーネントの設計に応じて、ルミネセンスの特性は、コンポーネントをパッケージ31から取り外すとすぐには変化し得ない。したがって、発光性化合物9が第1の濃度での分析物に曝露されたままである間、第1の値が測定されることができる時間期間が存在し得る。図7では、コンポーネントは、図2に示されたものと同様のバイパス・センサ・プローブ8であり、例えば透析システムのバイパス・ループに接続されるチュービングのセクション33を含む。チュービング33は、第1の濃度での分析物を含む流体で事前に充填されている。コンポーネントをパッケージ31から取り外した後、流体中の分析物の濃度が変化するには幾分時間がかかり、したがって、この期間の間に、ステップS14が行われることができる。一実施例では、所定の時間期間は多くとも5分、好ましくは多くとも3分、より好ましくは多くとも1分である。
【0075】
ルミネセンスの特性は、多くの特性のうちの1つであり得る。例えば、特性はルミネセンスの寿命であり得る。
【0076】
一実施例では、発光性化合物9のルミネセンスの特性はルミネセンスの強度である。ルミネセンスの特性が強度である場合、ステップS14は、第1の波長の光を用いて発光性化合物9を励起することと、第2の波長で発せられた光の強度を測定することと、を含む。第1の波長は、発光性化合物9が最大の光吸収を有する波長であるように選択されることができる。第2の波長は、発せられた光の強度が最も大きいか又は発光性化合物9の発光スペクトルが最大値を有する波長であるものとすることができる。特定の励起波長及び検出波長は、発光性化合物9の選択に応じて決まる。
【0077】
一実施例では、発光性化合物9のルミネセンスの特性は、2つの異なる波長でのルミネセンスの強度の比である。2つの異なる波長での強度の比を用いることは、特性の測定された値への特定タイプのエラーの影響を低減又は排除する上で有利であろう。この場合、ルミネセンスの特性の値は、種々のやり方で測定されることができ、発光性化合物9の選択に応じてある程度決まる。上述したように、発光性化合物9は好ましくは、蛍光性化合物である。例えば、上述したようにファイバ光学部品16を含むセンサ4は、単波長の光によって励起されると2つの重複する発光ピークをもたらす単一の吸収ピークを有する蛍光性化合物で展開されている。
【0078】
蛍光の特性が2つの異なる波長でのルミネセンスの強度の比である実施例では、ステップS14は、第1の波長の光を用いて発光性化合物9を励起することと、2つの異なる波長のそれぞれで発せられる光の強度を測定することと、を含み、第1の波長は2つの異なる波長のそれぞれについて同じである。この実施は、発光スペクトルにおいて2つの重複するピークを生じさせるのに単波長の光のみが必要であるため、いくつかの状況において好ましいものであり得る。これにより光源10の複雑性が低減し、さらに、光源10からの出力のいかなる変化も発光ピークの双方に等しく影響する。これにより変化が比の算出によりエラーとして効果的に取り除かれることが可能となる。しかしながら、これには、検出器14が種々の波長での光間を区別することができることが必要とされる。
【0079】
HPTS等の他の発光性化合物について、種々の波長での励起により結果として単一の発光ピークが得られる。例えば、HPTSを405nm、470nm、及び418nmで励起することによる信号により、結果として525nmの単一の蛍光発光が得られる。図7は、二酸化炭素濃度の増加に伴う、HPTSを含むセンサ4の吸収スペクトルを示し、矢印は、二酸化炭素濃度の増加に伴うピーク移動を示す。ルミネセンスの特性が2つの異なる波長でのルミネセンスの強度の比である、そのような実施例では、ステップS14は、2つの異なる波長のそれぞれについて、2つの異なる波長のうちの1つにおける光を用いて発光性化合物9を励起することと、第2の波長で発光性化合物9によって発せられた光の強度を測定することと、を含み、第2の波長は、2つの異なる波長のそれぞれについて同じである。このことは、検出器14がもっぱら光の強度を検出することができ、波長を検出することはできないが、光源10が2つの異なる波長で光を発することができることを必要とする場合に好ましいであろう。
【0080】
コンポーネントがパッケージ31内にある間に、又は、コンポーネントをパッケージ31から取り外した直後にステップS14を行うことは、較正に必要とされる測定のうちの1つが、較正が行われない場合(すなわち、ステップS10及びS12)であっても行われる必要がある、センサ4の設定の一部において、測定されるという利点を有する。これにより、第1の較正値を得るためにさらなる装置を動作させる必要がないか又はさらなる措置を行う必要がないため、ユーザ時間が節約される。
【0081】
ステップS16において、方法は、発光性化合物9が第1の濃度とは異なる既知の第2の濃度での分析物に曝露されている間に、該発光性化合物のルミネセンスの特性の第2の値を測定することを含む。分析物の濃度への発光性化合物9の特性の依存性は、動作時に確実な濃度測定を行うようにセンサ4を適切に較正するために少なくとも2つの較正測定が必要とされるようなものである。第2の値もまた、較正が必要とされない場合であってもセンサ4の設定の一部として行われるステップ時に測定されることが好ましい。
【0082】
いくつかの実施例では、ステップS16は、発光性化合物9が第2の濃度での分析物を含む血液に曝露されている間に行われる。多くの場合、センサ4は血液中の分析物の濃度を測定するために用いられ、これらの場合、センサ4は患者の血液に曝露されるように設定されねばならない。したがって、第2の値を求めるために血液中の分析物の濃度を用いることもまた、いかなる専用の較正装置にもセンサ4を配置することを必要としない。一実施例では、第2の濃度は、血液分析器を用いての血液の試料の分析によって求められる。血液分析器は一般に、患者からの血液試料を分析するために臨床環境内にある。したがって、使用者がそのような分析器への便利なアクセスを有する可能性が高い。センサ4が血液に曝露されている間に、特性の第2の値を測定することと同時に血液の試料を採取することによって、第2の濃度を試料から求めることができ、その第2の濃度を用いて第1の値とともにセンサ4を較正することができる。
【0083】
一実施例では、ステップS16はin vivo(生体内)で行われる。例えば、図2及び図3に示されたコンポーネントの実施例では、コンポーネントは患者の体内に少なくとも部分的に挿入され、発光性化合物9が体液に曝露される。発光性化合物9は、上記で既に述べたように血液に曝露されることができるか、又は、間質液、尿素等のような他の流体に曝露されることもできる。
【0084】
一実施例では、ステップS16は、発光性化合物9が、既知の第2の濃度での分析物を含む予め調製された流体に曝露される。予め調製された流体を用いることは、流体が既知の濃度の分析物を有するように調製されているという利点を有し、そのため、分析物の濃度を別個に求めることは必要とされない。一実施例では、ステップS12は、医療デバイスにおける生体液用の流動ラインにセンサ4を組み付けることを含み、予め調製された流体は、医療デバイスの設定において用いるプライミング流体である。このことは、予め調製された流体の使用に特に好都合な状況であり、その理由は、いくつかの医療デバイス(例えば、透析システム)の設定には、医療デバイスの設定においてプライミング流体が流動ラインを通ることが必要とされるからである。これを用いて既知の第2の濃度を提供することは、センサ4の設定において、第2の値を測定するのにさらなるステップはいっさい必要とされないことを意味する。
【0085】
ステップS18において、方法は、第1の値及び第2の値を用いて分析物の濃度へのルミネセンスの特性の依存性を表すパラメータを求めることを含む。パラメータは、分析物の濃度へのルミネセンスの特性の依存性を記述する数学的モデルのパラメータとすることができる。上記で論じたように、分析物と発光性化合物との相互作用は、多様なやり方で発光性化合物9及びそのルミネセンスに影響を及ぼす。分析物と発光性化合物9との特定の組合せに応じて、種々のモデルが分析物の濃度への特定の依存性に適切であり得る。方法の出力は、分析物の濃度へのルミネセンスの特性の依存性を表す、求められるパラメータを含む、較正データ40である。
【0086】
一実施例では、ステップS18において用いられる特性の依存性は、1対1のホスト-ゲスト結合モデルを用いてモデル化される。このモデルが好適である、分析物と発光性化合物9との組合せの一例は、HPTSを用いたpH(又はCO濃度)の検知である。このモデル形式は、分析物の単分子が発光性化合物の各分子と(H)結合するか、又は、二酸化炭素の場合は、二酸化炭素の1つの分子がHPTSイオン対と相互作用するものとする。他の組合せ、例えば、部分(I)を用いたナトリウムの検知、部分(II)を用いたカリウムの検知、及び部分(III)を用いたカルシウムの検知が、上記に開示された発光性化合物に関して説明される。
【0087】
方程式1が、1対1のホスト-ゲスト結合モデルの一例であり、分析物[X]の濃度への特性Cの依存性が以下の方程式、すなわち
【数3】

を用いてモデル化され、式中、Cは、分析物の濃度がゼロである場合の発光性化合物のルミネセンスの特性の値であり、Cは、分析物の濃度が無限である場合の発光性化合物のルミネセンスの特性の値であり、Kは、発光性化合物9と分析物との結合の強さである。この特定のモデルが用いられる場合、ステップS18は、C及びCを求めることを含む。
【0088】
図9は、特性の測定された値と比較した、方程式1に基づいたルミネセンスの特性の予測値の比較を示す。図9の場合、特性は、2つの異なる波長での強度比であり、発光性化合物は、図8に示されているような発光スペクトルを有するHPTSであり、分析物は、二酸化炭素である。強度の測定は、図8に示された2つのピークの波長(405nm/470nm)でなされる。図9は、ルミネセンスの特性が、方程式1の二次の1対1のホスト-ゲスト結合モデルに適合することを示す。
【0089】
従来的に、センサ4を較正するには、方程式1のモデルが好適である場合、二次曲線に適合するとともにC、C、及びKが求められることを可能にするのに少なくとも3つの較正点が必要とされる。しかしながら、コンポーネントが種々のセンサに接続される際、又は、センサ4が種々のセンサ装置に接続される場合、センサ4によって測定されるルミネセンスの特性が様々であるにもかかわらず、パラメータのいくつかは同じままとなる。特に、分析物と発光性化合物9との特定の組合せに関して、それらの化学的相互作用に応じて、結合の強さは一定であるべきである。したがって、方程式1においてKによって示された、結合の強さは、コンポーネントの製造時点で決定されることができ、このパラメータを較正時に求める必要はなく、それにより、センサ4の較正を達成するのに必要とされる測定数が減る。一定に機能するコンポーネントを製造プロセスが生成する場合、較正時にC、Cを求めるだけでよい。したがって、一実施例では、ステップS18は、発光性化合物9と分析物との結合の強さについて所定の値を用いることを含む。
【0090】
1対1のホスト-ゲスト結合モデルは、ゼロの分析物濃度、すなわち方程式1におけるCでの、ルミネセンスの特性の値が、依存性のパラメータである場合のモデルである。したがって、既知の第1の濃度がゼロである場合、Cは、ステップS14において測定される特性の値のようにステップS18において直接求められることができる。Cの値は、Cを用いてステップS18において求められることができ、特性の値は、以下の方程式、すなわち
【数4】

を用いてステップS16において測定されることができ、式中、Cは、分析物の濃度が[X]である場合に、ステップS16において測定される特性の値である。既知の第1の濃度がゼロでない場合、Cの値は、ステップS14及びS16において測定された、特性の値を双方とも用いて、ステップS18において求められることもできる。
【0091】
いくつかの発光性化合物について、ルミネセンスは発光性化合物9の温度に依存する。ステップS14及びS16が、分析物の濃度のその後の測定が較正後になされるのと同じ温度で行われる場合、温度変化を考慮する必要はない。このことは、後の動作時の予期された温度変化が小さい傾向があるとともにルミネセンスの特性への影響が小さい傾向がある状況に特に当てはまる。したがって、いくつかの実施例では、ルミネセンスは、発光性化合物9の温度に依存し、ステップS18において求められるパラメータは、所定の温度での分析物の濃度へのルミネセンスの特性の依存性を表す。
【0092】
しかしながら、他の場合では、後の動作時の温度変化はかなりのものであることが予測され得るか、又は、後の動作について予測されるのと同じ温度でステップS14及びS16を行うことは不都合であり得る。これらの場合、発光性化合物9のルミネセンスの特性への温度の影響を考慮することが有利であろう。したがって、いくつかの実施例では、ルミネセンスは、発光性化合物9の温度に依存し、ステップS18において求められるパラメータは、分析物の濃度及び発光性化合物9の温度の双方へのルミネセンスの特性の依存性を表す。この場合、較正データ40は、分析物の濃度及び発光性化合物9の温度の双方へのルミネセンスの特性の依存性を表す、求められるパラメータを含む。温度変化を考慮することは、報告値の精度及び確実性を高める傾向がある。
【0093】
一実施例では、ステップS18において求められるパラメータは、発光性化合物9の温度へのルミネセンスの特性の依存性を表す温度パラメータを含む。ルミネセンスの特性の依存性のモデルが方程式1によって示される場合、ステップS18において求められるパラメータは、発光性化合物9の温度へのルミネセンスの特性の依存性を表す温度パラメータαを含み、C及びCは、温度Tへの以下の依存性、すなわち、
(T)=C0c(1+α(T-Tc))
方程式3
(T)=C∞c(1+α(T-Tc))
方程式4
を用いてモデル化され、式中、C0cは、温度TcにおけるCの値であり、C∞cは、温度TcにおけるCの値である。このモデルは、方程式1のパラメータのうちの2つが温度依存性であっても、特性の温度依存性をモデル化するのに1つの温度パラメータαしか必要とされないため、有利である。
【0094】
種々の温度でのパラメータの値を求めるには、発光性化合物9の温度を測定することが必要である。一実施例では、ステップS14は、第1の値を測定する場合に発光性化合物9の第1の温度を測定することを含み、ステップS16は、第2の値を測定する場合に発光性化合物9の第2の温度を測定することを含み、ステップS18は、第1の値及び第2の値に加え、第1の温度及び第2の温度を用いる。一実施例では、方程式3及び方程式4におけるTcは、第1の温度及び第2の温度のうちの一方とすることができる。Tcを第1の温度であるように選択することは、これによりC0cが第1の値として直接測定されることが可能となるため、特に好都合である。したがって、C∞cは、以下、すなわち
【数5】

から求められることができ、式中、C=C([X],T)は、分析物の濃度が[X]である場合に、ステップS16においてTで測定される、特性の値であり、C0cは、分析物の濃度がゼロである場合に、ステップS14においてTで測定される、特性の値である。コンポーネントは、例えば図2に示されているように、発光性化合物9の温度を測定するために温度センサ20を含むことができる。代替的に、温度は、別のコンポーネントによって測定されてもよく、分析システム30に報告されて、パラメータを求める際に用いられてもよい。
【0095】
一実施例では、温度パラメータαは所定の値を有する。結合の強さと同様に、いくつかの実施例では、コンポーネント間及び/又はセンサ・システム間での温度パラメータの変化は、小さいものであり得る。特に、その変化は、製造時に得られる標準値を用いてモデルから得られた値の精度に著しく影響を与えないほど小さいものであり得る。このことは、ステップS18において温度パラメータを求める必要がなく、それにより、較正の複雑性を減らし、較正に必要とされる時間も減らす可能性があるという利点を有する。
【0096】
いくつかの実施例では、温度パラメータαの変化は、コンポーネント間又はセンサ装置間で、ステップS18において温度パラメータを求めることが望ましいほど大きいものであり得る。代替的に、いくつかの状況において精度の増加が必要とされ、所定の温度パラメータを用いることによってもたらされる精度のレベルは、特定の用途には不十分である場合がある。この場合、ステップS14は、発光性化合物9が第1の温度とは異なる第3の温度で第1の濃度での分析物に曝露されている間に発光性化合物9のルミネセンスの特性の第3の値を測定することと、第3の値を測定する場合に発光性化合物9の第3の温度を測定することと、をさらに含む。ステップS18は、第1の値、第2の値、第1の温度及び第2の温度に加え、第3の値及び第3の温度を用いる。分析物の既知の第1の濃度で第3の値を測定することは、専用の別個のいかなる較正装置も準備する必要が依然としてないことから、使用者にとって利便性が保たれることを意味する。この実施例では、αは、以下の方程式、すなわち
【数6】

を用いて算出されることができ、式中、Cは、ステップS14において、第3の温度Tで測定された、特性の第3の値である。一実施例では、コンポーネントは、発光性化合物9を加熱するように構成されたヒータを含むことができる。これにより、コンポーネントが依然としてパッケージ内にある間に、又はコンポーネントをパッケージから取り外した直後にステップS14において発光性化合物の温度が変わることが可能となる。第3の温度は、第1の温度と異なるものとすべきであるが、第2の温度と同じであってもよい。一実施例では、第1の温度及び第2の温度は同じであり、第3の温度は、第1の温度及び第2の温度の双方とも異なる。
【0097】
結合の強さもまた、温度に依存し得る。ルミネセンスの特性の依存性のモデルが方程式1によって示される一実施例では、Kは、温度Tへの以下の依存性、すなわち、
【数7】

を用いてモデル化され、式中、Kは、温度Tでの結合定数であり、βは、結合温度定数である。上述したように、多くの実施例では、結合の強さは、コンポーネント間のその変化が小さいため、予め定められている。いくつかの実施例では、結合温度定数も予め定められており、センサ4の較正時に測定される必要がない。
【0098】
ここで、較正方法を実行する実例を提供する。上述した、方程式1~7で示されたモデルを、分析物濃度及び温度へのルミネセンスの特性の依存性について用いる。Kc及びβの値は予め定められており、そのため、センサ4の較正時に求められる必要がない。したがって、求められるべきパラメータはC0c、C∞c、及びαである。コンポーネントは、ステップS10において準備され、ステップS12においてセンサに組み付けられる。
【0099】
ステップS14において、C0cは、第1の温度Tをゼロとして選択することによって第1の温度T(例えば室温)で直接測定され、つまり、方程式1において[X]=0及びT=Tであり、そのため第1の値C=C(0,T=T)=C0cである。C0cは、上述したようにコンポーネント及びパッケージ31の設計に応じて、コンポーネントをパッケージから取り外す前又は取り外した直後に測定されることができる。
【0100】
また、ステップS14において、発光性化合物9がゼロの第1の濃度での分析物に曝露されている間に、特性の第3の値が第3の温度で測定される。それにより、ステップS18において、αは、方程式6を用いることによって第3の値C=C(0,T)から求められることができる。
【0101】
この後、C∞cは、ステップS18において求める唯一の残りのパラメータである。ステップS16において、特性の第2の値Cは、発光性化合物9が第2の濃度[X]での分析物に曝露されている間に、第2の温度Tで測定され、そのため、C=C([X]、T)である。それにより、C∞cは、方程式5を用いてステップS18において求められることができる。
【0102】
このようにして、温度依存性の場合でのパラメータのすべてを、3つの温度で測定された、特性の3つの値から、求めることができる。この方法の2つのバリエーションについてパラメータを求めるやり方を以下の表1にまとめる。
【表1】
【0103】
上記の任意選択を実施する複数のやり方がある。図4における間質液センサのような間質液センサのための好適な較正方法は、以下である、すなわち
1.室温でC0cを測定し、方程式3を用いることによって検知温度(すなわち、分析物濃度のその後の測定がなされることになる温度)でC(T)についての値と、αについての所定の値とを得る。
2.センサを患者に適用し、特性の第2の値を測定する。
3.センサの適用と同じ時点で採取された血液試料を用いて分析物の第2の濃度を求め、それにより、方程式2を用いてC∞cと、K、α、及びβについてのデフォルト値とを求める。
【0104】
表1の2つのバリエーションは双方とも、2点較正方法を実施し、2点とは、分析物濃度の2つの異なる値のみが必要とされることを意味する。2点較正方法は、変調が低いセンサの拒絶を可能にし、図3の血管内センサのようなセンサについての性能検証として依然として働く。変調は、以下の方程式、すなわち
【数8】

を用いて定義される。
【0105】
上記で論じた較正方法を用いてのセンサの較正後、センサを用いて試料中の分析物の濃度を測定することができる。図1のセンサ装置を用いて試料中の分析物の濃度を測定する方法の一実施例が図10に示されている。上記で論じたように、センサ4は、分析物の濃度に依存するルミネセンスを有する発光性化合物9と、発光性化合物9が発した光を検出するように構成された検出器14と、を含む。
【0106】
ステップS20において、方法は、発光性化合物9が試料に曝露されている間に該発光性化合物のルミネセンスの特性の値を測定することを含む。特性の値は、発光性化合物の性質と光源及び検出器の構成とに応じて、上記で論じた技法のうちの1つを用いて測定されることができる。ルミネセンスが発光性化合物9の温度に依存するとともに、パラメータが分析物の濃度及び発光性化合物9の温度の双方へのルミネセンスの特性の依存性を表す実施例では、ステップS20は、発光性化合物9が試料に曝露されている間に該発光性化合物の温度を測定することをさらに含む。
【0107】
一実施例では、試料は生体液であり、ルミネセンスの特性の値はin vivo(生体内)で測定される。生体液は例えば、血液又は間質液であり得る。方法は、臨床応用に特に適しており、そのため、血液が、分析物の濃度を求めるための有利な標的である。図3及び図4に示されたセンサは、in vivo(生体内)測定に適している。
【0108】
代替的な実施例では、試料は生体液であり、ルミネセンスの特性の値はin vitro(生体外)で測定される。図2に示されたセンサのようなセンサは、生体液が患者の体外で流れる、in vitro(生体外)測定に適している。例えば、一実施例では、濃度を測定する方法は、医療デバイスにおける生体液用の流動ラインにセンサ4を組み付けることをさらに含むことができ、試料は流動ライン内にある。このことは、例えば、血液の透析又は体外式膜型人工肺を受けている患者の監視において、特に有利であろう。
【0109】
ステップS22において、方法は、測定された値と、分析物の濃度へのルミネセンスの特性の依存性を表す、求められたパラメータとを用いて、試料中の分析物の濃度を導出することを含む。較正データ40は方法の入力であり、センサ4の較正から求められたパラメータを含む。上記モデルを用いる場合、モデルのパラメータは、C0c、C∞c、α、K、及びβである。方程式1、3、4、及び7を組み合わせる結果、濃度についての以下の方程式、すなわち
【数9】

が得られ、これは、以下、すなわち
【数10】

に再構成されることができ、
式中、Cは、ステップS20において、温度Tで測定された、特性の値である。方程式9を用いる場合、分析物の濃度は、較正時に求められたパラメータと、ステップS20において得られた測定値とを用いて導出されることができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
【国際調査報告】