(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-04-13
(54)【発明の名称】ケトジェニックライフスタイルのための意思決定支援を提供するためのデータの評価
(51)【国際特許分類】
G06Q 50/22 20180101AFI20230406BHJP
G16H 20/00 20180101ALI20230406BHJP
A61B 5/145 20060101ALN20230406BHJP
【FI】
G06Q50/22
G16H20/00
A61B5/145
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022552621
(86)(22)【出願日】2021-03-01
(85)【翻訳文提出日】2022-09-01
(86)【国際出願番号】 US2021020278
(87)【国際公開番号】W WO2021178307
(87)【国際公開日】2021-09-10
(32)【優先日】2020-03-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】504016422
【氏名又は名称】デックスコム・インコーポレーテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】マーク・エドワード・セランダー
(72)【発明者】
【氏名】アレクサンダー・マイケル・ディーナー
(72)【発明者】
【氏名】ライアン・リチャード・ルール
(72)【発明者】
【氏名】カザンナ・カレ・ハメス
(72)【発明者】
【氏名】マーク・ダグラス・ケンプキー
(72)【発明者】
【氏名】チャド・マイケル・パターソン
(72)【発明者】
【氏名】アプルヴ・ウラス・カマス
(72)【発明者】
【氏名】マシュー・ローレンス・ジョンソン
(72)【発明者】
【氏名】ジェイソン・エム・ハラク
(72)【発明者】
【氏名】デイヴィッド・エー・プライス
(72)【発明者】
【氏名】ピーター・シー・シンプソン
(72)【発明者】
【氏名】デヴォン・エム・ヘッデン
(72)【発明者】
【氏名】サミュエル・イサック・エプスタイン
【テーマコード(参考)】
4C038
5L099
【Fターム(参考)】
4C038KK10
4C038KL01
4C038KL05
4C038KL07
5L099AA15
(57)【要約】
データ分析とユーザガイダンスのための技術が提供される。ユーザの1つ以上の現在の分析物レベルの1つ以上の現在の測定値がセンサーから受信される。パターンは、1つ以上の現在の測定値と1つ以上の過去の測定値に基づいて生成される。次に、第1のユーザ目標との第1の一致度が、パターンに基づいて決定され、第1のユーザ目標は、ユーザの精神状態または身体状態のうちの1つ以上に関連する。決定された第1の一致度に基づいて、第1の結果がユーザに出力される。
【特許請求の範囲】
【請求項1】
システムであって、
ユーザの1つ以上の現在の分析物レベルを検出するように構成されたセンサーであって、前記1つ以上の現在の分析物レベルが前記ユーザのケトンの現在のレベルと相関している、センサーと、
前記ユーザの1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶するメモリ回路であって、前記1つ以上の過去の分析物レベルが前記ユーザのケトンの1つ以上の過去のレベルと相関している、メモリ回路と、
前記センサーおよび前記メモリ回路とデータ通信を行うプロセッサであって、前記プロセッサは、
前記センサーから、前記ユーザの前記1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、
前記センサーから受信した前記1つ以上の現在の測定値と、前記メモリ回路に記憶されている前記1つ以上の過去の測定値と、に基づいてパターンを生成することと、
生成された前記パターンに基づいて、第1のユーザ目標との第1の一致度を決定することであって、前記第1のユーザ目標は、前記ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、
決定された前記第1の一致度に基づいて、第1の結果を前記ユーザに出力することと、を行うように構成されたプロセッサと、を備える、システム。
【請求項2】
前記1つ以上の現在の分析物レベルが、グルコースレベル、乳酸レベル、またはケトンレベルのうちの1つ以上を含む、請求項1に記載のシステム。
【請求項3】
前記第1の結果は、行動の勧めを含む、請求項1に記載のシステム。
【請求項4】
前記行動の前記勧めは、1つ以上の食品を食べることを控えることの勧め、1つ以上の食品を食べることの勧め、1つ以上の活動に参加することの勧め、または1つ以上の活動を控えることの勧めのうちの1つ以上を含む、請求項3に記載のシステム。
【請求項5】
前記プロセッサは、前記ユーザの現在のケトン状態または前記ユーザの予測される将来のケトン状態のうちの1つ以上を示すユーザインターフェースに前記第1の結果を出力するように構成されている、請求項1に記載のシステム。
【請求項6】
前記プロセッサは、前記ユーザの現在の体重または前記ユーザの予測される将来の体重のうちの1つ以上を示すユーザインターフェースに前記第1の結果を出力するように構成されている、請求項1に記載のシステム。
【請求項7】
前記プロセッサは、前記ユーザの現在の精神状態または前記ユーザの予測される将来の精神状態のうちの1つ以上を示すユーザインターフェースに前記第1の結果を出力するように構成されている、請求項1に記載のシステム。
【請求項8】
前記プロセッサは、
前記1つ以上の現在の測定値に基づいて前記パターンを洗練し、
前記ユーザの1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信し、かつ
洗練された前記パターンに基づいて、前記第1のユーザ目標との第2の一致度を決定するようにさらに構成されている、請求項1に記載のシステム。
【請求項9】
前記1つ以上の過去の測定値は、1つ以上の過去の精神状態と相関し、前記第1のユーザ目標は、前記精神状態に関連し、前記第1の結果は、前記ユーザの予測された精神状態を含む、請求項1に記載のシステム。
【請求項10】
前記プロセッサは、前記ユーザと関連する身体活動の指示を受信し、前記身体活動の前記指示にさらに基づいて前記パターンを生成するようにさらに構成されている、請求項1に記載のシステム。
【請求項11】
前記第1のユーザ目標は、ケトンレベルに関連する、請求項1に記載のシステム。
【請求項12】
前記第1の結果は、前記第1のユーザ目標が将来達成されると予測されるかどうかを示す、請求項1に記載のシステム。
【請求項13】
前記パターンを生成するために、前記プロセッサは、前記1つ以上の現在の測定値および前記1つ以上の過去の測定値に基づいて、前記ユーザの1つ以上の分析物レベルの変化率を決定し、
決定された前記変化率に基づいて、前記ユーザのトレンドラインを生成し、かつ
前記トレンドラインに基づいて前記ユーザの将来の状態を推定するように構成されている、請求項1に記載のシステム。
【請求項14】
前記プロセッサは、
前記ユーザと関連付けられた複数のユーザ目標を識別するようにさらに構成され、前記複数のユーザ目標は、(i)体重減少、(ii)メンタルヘルス、(iii)グルコースレベル、(iv)インスリン感受性、および(v)グルコース感受性に関するユーザ指定の目標を含む、請求項1に記載のシステム。
【請求項15】
前記第1のユーザ目標との前記第1の一致度を決定するために、前記プロセッサは、
前記ユーザの現在の状態が前記第1のユーザ目標と一致しているかどうかを決定し、かつ
前記ユーザの予測される将来の状態が前記第1のユーザ目標と一致しているかどうかを決定するように構成されている、請求項1に記載のシステム。
【請求項16】
前記プロセッサは、
前記ユーザの前記予測される将来の状態が前記第1のユーザ目標と一致しないとの決定に応答して、第1の勧めを生成するようにさらに構成され、前記第1の勧めは、前記予測される将来の状態が前記第1のユーザ目標と一致する可能性を高める行動を含み、前記第1の結果が前記第1の勧めを含む、請求項15に記載のシステム。
【請求項17】
コンピュータ実装方法であって、
プロセッサにおいて、センサーからユーザの1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、
メモリ回路において、前記ユーザの1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶することであって、前記1つ以上の過去の分析物レベルは、前記ユーザのケトンの1つ以上の過去のレベルと相関している、記憶することと、
前記プロセッサにおいて、前記センサーから受信した前記1つ以上の現在の測定値および前記メモリ回路に記憶された前記1つ以上の過去の測定値に基づいてパターンを生成することと、
前記プロセッサにおいて、生成された前記パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、前記第1のユーザ目標は、前記ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、
前記プロセッサにおいて、決定された前記第1の一致度に基づいて、第1の結果を前記ユーザに出力することと、を含む、コンピュータ実装方法。
【請求項18】
前記1つ以上の現在の測定値に基づいて前記パターンを洗練することと、
前記ユーザの1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、
洗練された前記パターンに基づいて、前記第1のユーザ目標との第2の一致度を決定することと、をさらに含む、請求項17に記載のコンピュータ実装方法。
【請求項19】
前記パターンを生成することは、
前記1つ以上の現在の測定値および前記1つ以上の過去の測定値に基づいて、前記ユーザの1つ以上の分析物レベルの変化率を決定することと、
決定された前記変化率に基づいて、前記ユーザのトレンドラインを生成することと、前記トレンドラインに基づいて、前記ユーザの将来の状態を推定することと、を含む、請求項17に記載のコンピュータ実装方法。
【請求項20】
動作を実行するように電子デバイスを構成するように動作可能な命令で符号化された非一時的なコンピュータ可読記憶媒体であって、前記動作は、
プロセッサにおいて、センサーからユーザの1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、
メモリ回路において、前記ユーザの1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶することであって、前記1つ以上の過去の分析物レベルは、前記ユーザのケトンの1つ以上の過去のレベルと相関している、記憶することと、
前記プロセッサにおいて、前記センサーから受信した前記1つ以上の現在の測定値および前記メモリ回路に記憶された前記1つ以上の過去の測定値に基づいてパターンを生成することと、
前記プロセッサにおいて、前記パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、前記第1のユーザ目標は、前記ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、
前記プロセッサにおいて、決定された前記第1の一致度に基づいて、第1の結果を前記ユーザに出力することと、を含む、非一時的なコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年3月2日に出願された「EVALUATION OF DATA TO PROVIDE DECISION SUPPORT FOR A KETOGENIC LIFESTYLE」と題される米国特許出願第62/984,238号の利益を主張するものであり、当該特許出願は、参照によりその全体が本明細書に組み込まれる。
【背景技術】
【0002】
本出願は、概して医療デバイスに関する。より具体的には、本出願は、1つ以上のデバイスによって収集されたデータを使用して、ケトジェニックライフスタイルのためのユーザの意思決定を支援するための技術に関する。
【0003】
関連技術の説明
ますます、個人は健康的な生活を楽しむために自分たちの飲食物および活動を管理しようと努めている。一部の個人は、ケトジェニックダイエットを追求し、体がグルコースではなく脂肪を代謝するときの状態であるケトーシスに体を入らせる。そのためには、個人が飲食物を注意深く管理する必要がある(通常、脂肪が多く炭水化物が少ない食べ物や飲み物を摂取することによって)。ケトーシスにある間、ケトンが個人の肝臓において作られる。ケトンは、生体組織に必要なエネルギーを提供するために脂肪(グルコースとは対照的に)が処理されるときに肝臓において生じる化合物である。個人のケトンのレベルは、その個人がケトーシスにあるかどうかを判断するために使用することができる。ケトーシスを維持しながら、多くの個人が、血糖値とインスリンレベルの低下、インスリン感受性の改善、体重減少、2型糖尿病のインスリン依存性の低下または欠如などによる糖尿病管理の改善、心臓の健康の改善、癌とてんかんのリスクの減少、にきびの減少、集中力および/または学習の改善などの脳機能の改善、パーキンソン病、アルツハイマー病、睡眠障害などの病気の治療、多嚢胞性卵巣症候群への効果など、多種多様な健康上の利益を経験すると報告している。
【発明の概要】
【課題を解決するための手段】
【0004】
本開示の特定の実施形態によれば、システムが提供される。システムは、ユーザの1つ以上の現在の分析物レベルを検出するように構成された1つ以上のセンサーであって、1つ以上の現在の分析物レベルは、ユーザのケトンの現在のレベルと相関している、1つ以上のセンサーと、ユーザの1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶するメモリ回路であって、1つ以上の過去の分析物レベルは、ユーザの1つ以上の過去のケトンレベルと相関している、メモリ回路と、動作を実行するように構成されたプロセッサと、を含む。操作は、センサーから、ユーザのための1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいてパターンを生成することと、パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、第1の目標は、ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、決定された第1の一致度に基づいて、第1の結果をユーザに出力することと、を含む。
【0005】
本開示の特定の実施形態によれば、1つ以上の現在の分析物レベルは、グルコースレベル、乳酸レベル、またはケトンレベルのうちの1つ以上を含む。
【0006】
本開示の特定の実施形態によれば、第1の結果は、行動の勧めを含む。
【0007】
本開示の特定の実施形態によれば、行動の勧めは、1つ以上の食品を食べることを控える勧め、1つ以上の食品を食べることの勧め、1つ以上の活動に参加することの勧め、または1つ以上の活動を控えることの勧めのうちの1つ以上である。
【0008】
本開示の特定の実施形態によれば、第1の結果は、ユーザの現在のケトン状態またはユーザの予測される将来のケトン状態のうちの1つ以上を示すユーザインターフェースを含む。
【0009】
本開示の特定の実施形態によれば、第1の結果は、ユーザの現在の体重またはユーザの予測される将来の体重のうちの1つ以上を示すユーザインターフェースを含む。
【0010】
本開示の特定の実施形態によれば、第1の結果は、ユーザの現在の精神状態またはユーザの予測される将来の精神状態のうちの1つ以上を示すユーザインターフェースを含む。
【0011】
本開示の特定の実施形態によれば、動作は、1つ以上の現在の測定値に基づいてパターンを洗練することと、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、洗練されたパターンに基づいて、第1のユーザ目標との第2の一致度を決定することと、をさらに含む。
【0012】
本開示の特定の実施形態によれば、1つ以上の過去の測定値は、1つ以上の過去の精神状態と相関し、第1の目標は精神状態に関連し、第1の結果はユーザの予測された精神状態を含む。
【0013】
本開示の特定の実施形態によれば、1つ以上の過去の測定値は、1つ以上の過去の体重と相関し、第1の目標は、ユーザの体重に関連し、第1の結果は、ユーザの予測された体重を含む。
【0014】
本開示の特定の実施形態によれば、動作は、ユーザと関連する身体活動の指示を受信することをさらに含み、パターンの生成は、身体活動の指示にさらに基づく。
【0015】
本開示の特定の実施形態によれば、第1のユーザ目標は、ケトンレベルである。
【0016】
本開示の特定の実施形態によれば、第1の結果は、第1のユーザ目標が将来の時点で達成されると予測されるかどうかを示す。
【0017】
本開示の特定の実施形態によれば、パターンを生成することは、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいて、ユーザの1つ以上の分析物レベルの変化率を決定することと、決定された変化率に基づいて、ユーザのトレンドラインを生成することと、トレンドラインに基づいて、ユーザの将来の状態を推定することと、を含む。
【0018】
本開示の特定の実施形態によれば、動作は、ユーザと関連する複数のユーザ目標を識別することをさらに含み、複数のユーザ目標は、(i)体重減少、(ii)メンタルヘルス、(iii)グルコースレベル、(iv)インスリン感受性、および(v)グルコース感受性に関する、ユーザ指定の目標を含む。
【0019】
本開示の特定の実施形態によれば、第1のユーザ目標との第1の一致度を決定することは、ユーザの現在の状態が第1の目標と一致するかどうかを決定することと、ユーザの予測される将来の状態が第1の目標と一致するかどうかを決定することと、を含む。
【0020】
本開示の特定の実施形態によれば、動作は、ユーザの予測される将来の状態が第1の目標と一致しないことを決定すると、第1の勧めを生成することをさらに含み、第1の勧めは、予測される将来の状態が第1の目標と一致する可能性を高める行動を含み、第1の結果は、第1の勧めを含む。
【0021】
本開示の特定の実施形態によれば、コンピュータ実装方法が提供される。方法は、センサーから、ユーザのための1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいてパターンを生成することと、パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、第1の目標は、ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、決定された第1の一致度に基づいて、第1の結果をユーザに出力することと、を含む。
【0022】
本開示の特定の実施形態によれば、方法は、1つ以上の現在の測定に基づいてパターンを洗練することと、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、洗練されたパターンに基づいて、第1のユーザ目標との第2の一致度を決定することと、をさらに含む。
【0023】
本開示の特定の実施形態によれば、パターンを生成することは、1つ以上の現在の測定に基づいてパターンを洗練することと、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、洗練されたパターンに基づいて、第1のユーザ目標との第2の一致度を決定することと、を含む。
【0024】
本開示の特定の実施形態によれば、非一時的なコンピュータ可読記憶媒体が提供される。コンピュータ可読記憶媒体は、動作を実行するように電子デバイスを構成するように動作可能な命令で符号化されている。動作は、センサーから、ユーザのための1つ以上の現在の分析物レベルの1つ以上の現在の測定値を受信することと、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいてパターンを生成することと、パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、第1の目標は、ユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、決定された第1の一致度に基づいて、第1の結果をユーザに出力することと、を含む。
【0025】
本開示の特定の実施形態によれば、動作は、1つ以上の現在の測定値に基づいてパターンを洗練することと、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、洗練されたパターンに基づいて、第1のユーザ目標との第2の一致度を決定することと、をさらに含む。
【0026】
別の態様は、システムであって、ユーザのための1つ以上の現在の分析物レベルを検出するように構成されたセンサーであって、1つ以上の現在の分析物レベルが、ユーザのケトンの現在のレベルに相関している、センサーと、ユーザのための1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶するメモリ回路であって、1つ以上の過去の分析物レベルが、ユーザのケトンの1つ以上の過去のレベルに相関している、メモリ回路と、センサーおよびメモリ回路とデータ通信するプロセッサであって、プロセッサは、ユーザのための1つ以上の現在の分析物レベルの1つ以上の現在の測定値をセンサーから受信し、センサーから受信した1つ以上の現在の測定値およびメモリ回路に記憶された1つ以上の過去の測定値に基づいてパターンを生成し、生成されたパターンに基づいて第1のユーザ目標との第1の一致度を決定し、第1のユーザ目標はユーザの精神状態または身体状態のうちの1つ以上に関連し、決定された第1の一致度に基づいて、第1の結果をユーザに出力することと、を行うように構成されたプロセッサとを、備えるシステムである。
【0027】
上記のシステムでは、1つ以上の現在の分析物レベルは、グルコースレベル、乳酸レベル、またはケトンレベルのうちの1つ以上を含む。上記のシステムでは、第1の結果は行動の勧めを含む。上記のシステムにおいて、行動の勧めは、1つ以上の食品を食べることを控える勧め、1つ以上の食品を食べることの勧め、1つ以上の活動に参加することの勧め、または1つ以上の活動を控えることの勧めのうちの1つ以上を含む。
【0028】
上記のシステムでは、プロセッサは、ユーザの現在のケトン状態またはユーザの予測される将来のケトン状態のうちの1つ以上を示すユーザインターフェースに第1の結果を出力するように構成される。上記のシステムでは、プロセッサは、ユーザの現在の体重またはユーザの予測される将来の体重のうちの1つ以上を示すユーザインターフェースに第1の結果を出力するように構成される。上記のシステムでは、プロセッサは、ユーザの現在の精神状態またはユーザの予測される将来の精神状態のうちの1つ以上を示すユーザインターフェースに第1の結果を出力するように構成される。
【0029】
上記のシステムでは、プロセッサは、1つ以上の現在の測定に基づいてパターンを洗練し、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信し、洗練されたパターンに基づいて第1のユーザ目標との第2の一致度を決定するようにさらに構成されている。
【0030】
上記のシステムでは、1つ以上の過去の測定値は、1つ以上の過去の精神状態と相関し、第1のユーザ目標は精神状態に関連し、第1の結果はユーザの予測された精神状態を含む。上記のシステムでは、プロセッサは、ユーザと関連する身体活動の指示を受信し、身体活動の指示にさらに基づいてパターンを生成するようにさらに構成されている。
【0031】
上記のシステムでは、第1のユーザ目標はケトンレベルに関する。上記のシステムでは、第1の結果は、第1のユーザ目標が将来の時点で達成されると予測されるかどうかを示す。上記のシステムでは、パターンを生成するために、プロセッサは、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいて、ユーザの1つ以上の分析物レベルの変化率を決定し、決定された変化率に基づいて、ユーザのトレンドラインを生成し、トレンドラインに基づいて、ユーザの将来の状態を推定するように構成されている。
【0032】
上記のシステムでは、プロセッサは、ユーザと関連付けられた複数のユーザ目標を識別するようにさらに構成され、複数のユーザ目標は、(i)体重減少、(ii)メンタルヘルス、(iii)グルコースレベル、(iv)インスリン感受性、および(v)グルコース感受性に関してユーザ指定の目標を含む。上記のシステムでは、第1のユーザ目標との第1の一致度を決定するために、プロセッサは、ユーザの現在の状態が第1のユーザ目標と一致するかどうかを決定し、ユーザの予測される将来の状態が第1のユーザ目標と一致するかどうかを決定するように構成されている。
【0033】
上記のシステムでは、プロセッサは、ユーザの予測される将来の状態が第1のユーザ目標と一致しないとの決定に応答して、第1の勧めを生成するようにさらに構成され、第1の勧めは、予測された将来の状態が第1のユーザ目標と一致する可能性を高める行動を含み、第1の結果が第1の勧めを含む。
【0034】
別の態様は、コンピュータ実装方法であって、プロセッサにおいて、センサーからユーザのための1つ以上の分析物レベルの1つ以上の現在の測定値を受信することと、メモリ回路において、ユーザのための1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶することであって、1つ以上の過去の分析物レベルが、ユーザのケトンの1つ以上の過去のレベルに相関している、記憶することと、プロセッサにおいて、センサーから受信された1つ以上の現在の測定値およびメモリ回路に記憶された1つ以上の過去の測定値に基づいてパターンを生成することと、プロセッサにおいて、生成されたパターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、第1のユーザ目標はユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、プロセッサにおいて、決定された第1の一致度に基づいてユーザに第1の結果を出力することと、を含む、コンピュータ実装方法である。
【0035】
上記の方法は、さらに、1つ以上の現在の測定に基づいてパターンを洗練することと、ユーザのための1つ以上の追加の分析物レベルの1つ以上の追加の測定値を受信することと、洗練されたパターンに基づいて、第1のユーザ目標との第2の一致度を決定することと、を含む。上記の方法では、パターンを生成することは、1つ以上の現在の測定値および1つ以上の過去の測定値に基づいて、ユーザの1つ以上の分析物レベルの変化率を決定することと、決定された変化率に基づいて、ユーザのトレンドラインを生成することと、トレンドラインに基づいてユーザの将来の状態を推定することと、を含む。
【0036】
別の態様は、動作を実行するように電子デバイスを構成するように動作可能な命令で符号化された非一時的コンピュータ可読記憶媒体であって、動作は、プロセッサにおいて、センサーからユーザのための1つ以上の分析物レベルの1つ以上の現在の測定値を受信することと、メモリ回路において、ユーザのための1つ以上の過去の分析物レベルの1つ以上の過去の測定値を記憶することであって、1つ以上の過去の分析物レベルが、ユーザのケトンの1つ以上の過去のレベルに相関している、記憶することと、プロセッサにおいて、センサーから受信された1つ以上の現在の測定値およびメモリ回路に記憶された1つ以上の過去の測定値に基づいてパターンを生成することと、プロセッサにおいて、パターンに基づいて第1のユーザ目標との第1の一致度を決定することであって、第1のユーザ目標はユーザの精神状態または身体状態のうちの1つ以上に関連する、決定することと、プロセッサにおいて、決定された第1の一致度に基づいてユーザに第1の結果を出力することと、を含む、非一時的コンピュータ可読記憶媒体である。
【0037】
ある態様の特徴のいずれも、本明細書で特定されるすべての態様に適用可能である。さらに、態様の特徴のいずれも、いかなる方式によっても、本明細書に記載される他の態様と部分的または全体的に独立して組み合わせ可能であり、例えば、1つ、2つ、または3つ以上の態様が、全体的または部分的に組み合わせ可能であり得る。さらに、態様の特徴のいずれも、他の態様に対して任意選択的であり得る。方法のいずれの態様も、システムの別の態様を含むことができ、システムのいずれの態様も、別の態様の方法を実行するように構成することができる。
【図面の簡単な説明】
【0038】
【
図1】本明細書に開示される特定の実施形態による、ユーザの意思決定を導くためのデータの収集および分析のためのエコシステムを示す。
【
図2】本明細書に開示される特定の実施形態による、ユーザの意思決定を導くためのデータの収集および分析のための方法を示す流れ図である。
【
図3】本明細書に開示される特定の実施形態による、1つ以上のパターンを構築するためのワークフローを示す。
【
図4】本明細書に開示される特定の実施形態による、ユーザデータに基づいて現在および将来のユーザ状態を決定するためのワークフローを示す。
【
図5】本明細書に開示される特定の実施形態による、ユーザデータに基づいて生成されたユーザトレンドラインを示す。
【
図6】本明細書に開示される特定の実施形態による、ユーザを支援するためのパターンを構築および洗練するための方法を示す流れ図である。
【
図7】本明細書に開示される特定の実施形態による、一致度を決定するためにユーザパターンをユーザ目標と相関させるための方法を示す流れ図である。
【
図8】本明細書に開示される特定の実施形態による、意思決定を支援するためにユーザデータを分析するように構成されたコンピューティングデバイスを示すブロック図である。
【発明を実施するための形態】
【0039】
問題
ただし、ケトーシスを維持するには、微妙なバランスがしばしば必要になる。血中に存在するケトンが多すぎると、ケトアシドーシスが発生する可能性があり、これは生命を脅かす可能性のある代謝状態である。存在するケトンが少なすぎると、最適な範囲と比較して、個人の健康上の利益が減少(または排除)される。ケトンの最適な範囲は、任意の数の生物学的要因に基づいて個々のユーザによって大幅に異なり、これがケトーシスを維持することを困難または不可能にしている。さらに、望ましいケトーシスレベルを維持するために、どの食品(および適切な量の食品)を摂取するか、およびどの活動に参加するかを決定することは困難または不可能である。
【0040】
さらに、ケトジェニックダイエットには他にも多くのリスクと欠点がある。多くの人にとって、この食事療法は持続不可能であるか、従うのが非常に困難である。例えば、この食事療法では通常、炭水化物をほとんど摂取する必要がないため、ユーザのカロリーの大部分(75%超)は脂肪を介して摂取される。通常、今日の個人は、バランスの取れた飲食物を作り、自分たちの渇望を満たすために、パン、果物、肉および野菜を含む、はるかに幅広い種類の食品に依存している。自分自身をはるかにより限られた飲食物に制限することは難しく、苛立たしい。
【0041】
さらに、個人が楽しむ典型的な食品を排除することは、多くの生理学的および精神的苦痛を引き起こす可能性がある。しばしば「ケトインフルエンザ」と称されるが、個人は、この食事療法を始めるときに、倦怠感、頭痛、注意力の低下、痛み、および一般的な欲求不満などの症状を頻繁に経験する。これらの症状は通常一時的なものであり、ケトジェニックダイエットへの移行中にのみ現れるが、それでもかなりの影響があり、多くの人に完全な利益を達成し始める前に食事療法計画を諦めさせる。
【0042】
さらに、ユーザがケトーシスにうまく入ると、維持するのが困難または不可能になる可能性がある。通常楽しむ食品の大部分はもはや許容されていないため、この食事療法を維持する能力を著しく低下させる可能性がある。例えば、社会的な状況では、適切な食品オプションを特定することが困難または不可能な可能性がある。さらに、この食事療法の複雑さにより、消費することができる量が非常に限られているため、個人が仲間に嘲笑されまたは軽蔑されるように感じる可能性がある。
【0043】
さらに、ケトーシスが維持されている場合でも、飽和脂肪含有量の高い飲食物を選択するなど、ケトーシスを維持するための食事の選択が不十分な場合、体内のLDLコレステロールの増加など、他の健康への悪影響が生じる可能性があり、これは心臓や他の健康上の合併症を引き起こすことが知られている。
【0044】
ケトジェニックダイエットは、個人の短期および長期の健康を改善するという顕著な期待を示すが、この食事療法の複雑さと制限は、重大な身体的および精神的困難の可能性と相まって、多くの個人がこの食事療法の恩恵を受けるのを妨げる可能性がある。
【0045】
多くの人にとって、ケトーシスは、体重減少、インスリン抵抗性または感受性およびグルコース感受性の改善、にきびの減少、および心臓の健康の改善につながる可能性があるため、非常に望ましい状態である。ケトーシスはまた、癌、てんかん、糖尿病、内分泌および代謝障害を含む多くの状態に関して、他の多くの治療上の利益と関連している。ケトーシスの重要な要因は、ユーザの飲食物である。いくつかの既存のソリューションは、事前定義された許容および禁止された食品オプションを使用して、ユーザをケトーシスに導くのに役立つ情報をユーザに提供しようと試みた。ただし、これらのリストは静的であり、個人化されていないため、多くの人にとってははるかに不足したものとなっている。例えば、特定の食品が一般集団に与える影響を推定することはできるが、既存のシステムでは、所与の食品がユーザが消費した他の食品、ユーザが従事した活動などとどのように相互作用するかを説明することができない。
【0046】
さらに、既存のソリューションでは、個人のニーズと独自性に対応できない。「ケトフレンドリー」なレシピの単純な静的リストでは、異なる個人がしばしば同じ食品に異なる方式で反応するという事実を説明することができない。この異なる反応は、個人の人口統計を含む多種多様な要因に基づく可能性がある。特定の実施形態では、個人の人口統計は、例えば、個人の性別、年齢、民族性などを含むことができる。さらに、反応の違いは、しばしば、ユーザの遺伝や活動を含む、目に見えない要因による。さらに、時間帯などの単純な要因が、食事がユーザのケトンレベルにどのように影響するかに影響を与える可能性がある。既存のシステムでは、これらの要因を単純に説明することができない。
【0047】
さらに、既存のシステムはユーザの活動を理解せず、これに反応しない。例えば、異なる運動や活動は、ケトンレベルに大きく異なる影響を与える可能性がある。運動の強度、期間、およびタイミングは、ケトンレベルに大きな影響を与える可能性があるが、既存のシステムはしばしばこれらの要因を無視している。身体活動に関してアドバイスが与えられたとしても、既存のシステムは、具体的で個別化された科学ベースのコーチングではなく、幅広い一般化に依存している。
【0048】
さらに、既存のシステムは通常、最小限の頻度の低い測定に依存しているため、個人が達成することができる成功は劇的に減少する。例えば、既存の技術は通常、比較的まれな時間におけるユーザによる手動の血液検査に依存している。ユーザが時間どおりに検査を実行したとしても、データが返されるまでにデータはしばしば古くなり、役に立たない。さらに、ユーザは、利便性やうっかりなどの様々な理由で、このような評価を頻繁にスキップする。
【0049】
一般的なソリューションの概要
最終的に、これらの要因およびその他の要因により、ケトーシスは到達および/または維持が困難な状態になり、一般的なユーザが単純に実行することができない非常に複雑な意思決定が必要になる。要因と決定の数と多様性はすぐに圧倒し、ユーザのステータスをリアルタイムで追跡するためのハードデータの不足により、多数の個人を完全に諦めさせる。そのために、本開示の特定の実施形態は、ユーザのケトンレベルに相関する分析物レベルを能動的かつ継続的に監視し、監視に基づいて1つ以上の結果を提供する技術を提供する。結果はユーザ固有であり、リアルタイムデータに基づいて提供され、ユーザにケトンレベルをより適切に通知し得る。結果は、ケトジェニックライフスタイルをより良く導くためにユーザに提案される行動を提供し得る。
【0050】
特定の実施形態では、分析物は、ケトン、グルコース、および/または乳酸のうちの1つ以上である。さらに、本明細書の説明は、測定、処理などされる分析物として、ケトン、グルコース、および/または乳酸のうちの1つ以上に言及しているが、他の分析物も同様に使用され得る。特定の実施形態では、他の分析物は、例えば、アセトン、アセト酢酸、ベータヒドロキシ酪酸、グルカゴン、アセチル-CoA、トリグリセリド、酪酸、クエン酸回路の中間体、コリン、インスリン、コルチゾール、テストステロンなどを含むことができる。例えば、異なる分析物がケトンレベルと相関し得る。例えば、血糖値はケトン値と相関している。さらに、乳酸レベルはケトンレベルと相関している。
【0051】
特定の実施形態では、結果は、現在の分析物レベル、予測される分析物レベル、現在のケトンレベル、将来のケトンレベル、現在の状態、および/または将来の状態のうちの1つ以上を含む。特定の実施形態では、現在の状態および/または将来の状態は、ユーザがケトーシスにあるかどうかを示すケトン状態であり得る。特定の実施形態では、現在の状態および/または将来の状態は、ユーザの精神的および/または身体状態であり得る。例えば、身体状態は、体重、病状、インスリン抵抗性または感受性、グルコース感受性などのうちの1つ以上であり得る。特定の実施形態において、本開示は、監視された分析物レベルに基づいて、望ましい状態を達成および/または維持するためのユーザへの勧めを提供する技術を提供する。いくつかの実施形態において、所望の状態は、特定のケトン、グルコースまたは乳酸レベルまたは他の分析物レベルであり得る。特定の実施形態において、所望のケトン状態はケトーシスである。他の実施形態では、所望の状態は病状であり得る。特定の実施形態では、勧めは、勧められる行動、勧められる不作為、励まし、アラームなどのうちの1つ以上であり得る。特定の実施形態では、結果は、監視された累積データを含む。特定の実施形態では、結果は、本明細書で考察されるようなデータの表示を含む。
【0052】
例えば、特定の実施形態では、ユーザの現在の分析物レベルに基づいて、決定モジュールが現在の状態を決定するために使用される。さらに、特定の実施形態では、決定モジュールは、予測される将来の状態を決定するために使用される。特定の実施形態では、状態は、ユーザが所望の状態に到達しているかどうかを示す(例えば、ケトーシスにおいて)。特定の実施形態では、モジュールは、ユーザの予測される将来の状態を示す1つ以上のパターンを生成する。特定の実施形態では、1つ以上のパターンは、データモデル、変化率、トレンドラインなどのうちの1つ以上を含む。特定の実施形態では、1つ以上のパターンは、コンピュータモデリング、機械学習、パターン識別、ボーラス計算機、関数、またはアルゴリズムのうちの1つ以上を使用して生成される。いくつかの実施形態では、システムは、ユーザ固有のデータを利用して、ユーザと関連付けられた1つ以上のパターンを生成する。例えば、システムは、分析物レベルなどのデータを継続的に収集して、1つ以上のパターンを生成し得る。
【0053】
特定の実施形態では、システムは、1つ以上のパターンを洗練するためにユーザによって実行される行動に関するデータを収集し得る。例えば、身体活動などの様々な行動は、ケトンおよび/または他の分析物レベルに影響を与える可能性がある。例えば、特定の実施形態では、行動は、身体活動、食物および/または飲料の消費、文脈情報などのうちの1つ以上を含む。特定の実施形態では、ユーザは、ユーザデバイス上の入力を介して情報を提供する。これにより、システムは、特定の食品、飲料、および身体活動がユーザのケトンまたは他の分析物レベルにどのように影響するかを予測することができる、より堅牢なパターンを構築することを可能にし得る。
【0054】
さらに、少なくとも1つの実施形態では、システムは、ユーザの状態に関連する情報を追加的に収集する。例えば、ユーザは、現在の空腹のレベル、精神状態、身体状態などを報告することができる。別の例では、現在のユーザ状態は、様々なセンサーまたは入力デバイスを使用してユーザの健康または活動情報を監視することに基づいて決定され得る。特定の実施形態では、システムへの様々な入力は、1つ以上の活動トラッカー、血糖計、インスリン計などから収集されたデータを含むことができる。例えば、データは、ユーザによって取られたいくつかのステップのうちの1つ以上、ユーザの心拍数、ユーザの血圧、ユーザのグルコースレベル、ユーザのインスリンレベル、ユーザの心電図 (ECG)等を含むことができる。いくつかの実施形態では、入力データは、ユーザと関連付けられた食事ログからの情報を含むことができる。例えば、ユーザは、自分たちが消費した食物および/または飲料の指示を記録し得る。いくつかの実施形態では、食事情報は、食品のタイプ、食品の量、食品の栄養含有量などのうちの1つ以上の指示を含む。この食事情報は、ユーザの状態を決定するために使用することができる。特定の実施形態では、入力データは、ユーザ上またはユーザの近くに配置されたカメラまたは他のデバイスからのデータを含むことができる。例えば、カメラを使用して、ユーザが消費した、および/または消費している食事の画像を記録することができる。次に、これらの画像を分析して、消費されている食事と量を識別することができる。この情報は、ユーザの状態の決定をさらに支援することができる。
【0055】
特定の実施形態では、精神状態は、例えば、彼らが苛立っているかどうか、満足しているかどうか、不安を感じているかどうかなどを含むことができる。このデータを使用すると、システムは、1つ以上の現在の分析物測定値、1つ以上の過去の分析物測定値、および/または1つ以上の行動が与えられた場合に、将来のユーザの状態をより正確に予測することができる。例えば、特定の実施形態では、システムは、現在の分析物レベルが与えられると、ユーザは現時点で空腹を感じている可能性が高いが、ユーザが食事を控えると、空腹感が治まり、ケトーシスが維持されることを学習し得る。
【0056】
特定の実施形態では、システムは、ユーザの精神状態に関するデータを収集し、精神状態を分析物レベルと相関させ得る。例えば、システムは、分析物レベルと相関する精神状態のパターンを生成し得る。例えば、相関する精神状態を使用して、予測される将来の分析物レベルに基づいて、ユーザの将来の精神状態を予測し得る。システムは、特定の実施形態では、他の身体状態を分析物レベルと相関させ得る。特定の態様では、システムは、予測される将来の分析物レベルに基づいて、ユーザの将来の身体状態を予測する。例えば、システムは、分析物レベルと相関する1つ以上の身体状態について1つ以上のパターンを生成し得る。
【0057】
さらに、特定の実施形態は、所望の状態が達成または維持されることを確実にするための1つ以上の行動を識別する。一例では、所望の状態は、所望の身体状態を含み得る。例えば、ケトーシスのケトン状態に到達するための1つ以上の行動が識別され得る。別の例では、1つ以上のパターンに基づいてケトーシスのケトン状態が維持されること、および/または特定の精神状態が達成されることを確実にするために、1つ以上の行動が識別され得る。特定の実施形態では、1つ以上の行動は、特定の食品を消費すること、特定の食品を消費することを控えること、特定の身体活動に参加すること、特定の身体活動に参加することを控えることなどのうちの1つ以上を含む。特定の実施形態では、ケトーシスのケトン状態が維持されることを確実にする代わりに、1つ以上の行動は、所望の身体的または精神状態が達成および維持される確率を高め得る。好適な状態を優先順位で確実にするために、1つ以上の行動が識別され得る。いくつかの実施形態では、ユーザは、独立して、または他の所望の状態に関連して、異なる身体的および/または精神状態の好みを示し得、それに応じて、行動提案が優先付けられるか、または提供され得る。例えば、ユーザは、特定の望ましい精神状態が特定の身体状態(例えば、ケトーシス)を達成するよりも重要である、またはその逆を示し得、それに応じて行動が提案される。
【0058】
特定の実施形態では、システムは、体重、心拍数、血圧、活動レベル、分析物レベルのうちの1つ以上などの他のデータの測定値を提供する様々な他のデバイスとさらに統合することができる。特定の実施形態では、他のデバイスには、ウェイトトラッカー、心拍/心拍数モニター、または他のセンサーが含まれる。これらの測定値は、1つ以上のパターンを生成するシステムに提供することができる。測定値は、1つ以上のパターンと相関され得る。したがって、特定の実施形態では、1つ以上のパターンを、相関された測定値に基づいて、1つ以上のユーザの将来の状態を予測するために、または1つ以上の行動を勧めるために使用することができる。いくつかの実施形態では、システムは、クラウド内で少なくとも部分的に実行される。別の実施形態では、システムは、1つ以上のローカルデバイス上で少なくとも部分的に実行される。特定の実施形態では、1つ以上のローカルデバイスは、ユーザのスマートフォンを含む。特定の実施形態では、システムは、パターンを識別し、特定のユーザの身体が特定の行動にどのように反応するかを説明する個人化された勧めを返すことを可能にする相関を作ることができる。
【0059】
有利には、本開示の実施形態は、ユーザの改善された結果を可能にする1つ以上のパターンを動的に生成および洗練することができる。いくつかの実施形態では、デバイスのエコシステムが相互作用して、各デバイスの機能およびエコシステム全体を共同で改善する。例えば、分析物センサーを使用して、リアルタイムまたはほぼリアルタイムのデータを決定モジュールに戻し、現在のシステムでは不可能な新しい機能を提供することができる。特定の実施形態では、新しい機能は、より高解像度のデータ評価および応答を含むことができる。さらに、特殊なパターンおよび/または相関関係は、個々のユーザに新しくかつ慣用的でない洞察を提供し、より良い経験をもたらすことができる。
【0060】
例示的なシステムおよびシステムの動作の概要
図1は、本明細書に開示される特定の実施形態による、ユーザの意思決定を導くためのデータの収集および分析のためのエコシステム100を示している。図示の実施形態では、インテリジェントシステム120は、ユーザ105と関連付けられたセンサー110および/またはデバイス115を利用して、1つ以上のパターン125を構築する。特定の実施形態では、センサー110は、本明細書で考察されるように1つ以上の分析物のレベルを測定し、1つ以上の分析物レベルを示す情報をデバイス115に転送するように構成される。特定の態様では、デバイス115は、1つ以上の分析物レベルに基づいて、ユーザの予測ケトンレベル、ユーザの予測された精神状態、またはユーザの予測された身体状態のうちの1つ以上を示す1つ以上のパターン125を生成するように構成される。特定の態様では、デバイス115は、1つ以上のパターン125をローカルに構築する。特定の態様では、デバイス115および/またはセンサー110は、情報をクラウドシステムに直接送信し、クラウドシステムは、1つ以上のパターン125を構築する。デバイス115は、特定の実施形態では、1つ以上のパターン125を処理し、ユーザ105に有用な結果を提供するようにさらに構成される。エコシステム100の機能性は、特定の実施形態におけるエコシステム100の機能性を示す
図2の流れ図に関してより詳細に説明される。
【0061】
図2は、本明細書に開示される特定の実施形態による、ユーザの意思決定を導くためのデータの収集および分析のための方法200を示す流れ図である。方法200のブロックは、必ずしも本明細書に記載されている順序で実行されるとは限らないことに留意されたい。さらに、本明細書のいくつかのブロックまたは状態は省略され得、および/または追加のブロックまたは状態が追加され得る。方法200は、ブロック205で始まり、ここで、センサー110は、ユーザの1つ以上の現在の分析物レベルを測定する。特定の実施形態では、1つ以上の現在の分析物レベルは、考察されるように、ユーザのケトンの現在のレベルと相関している。
【0062】
さらに、ブロック210で、センサー110は、1つ以上の現在の分析物レベルの1つ以上の電流測定値を示すデータをデバイス115に通信する。特定の実施形態では、デバイス115は、さらなる分析のために、1つ以上の電流測定値を、クラウドシステムなどの別のデバイスにさらに通信し得る。特定の実施形態では、さらなる分析は、デバイス115上でローカルに実行される。特定の実施形態では、さらなる分析がクラウドシステムで実行され、結果がデバイス115に送信される。特定の実施形態では、さらなる分析は、デバイス115および1つ以上の追加のデバイスによって共同で実行される。したがって、分析の特定のステップは、理解を容易にするためおよび簡潔さのためにデバイス115によって実行されるものとしてさらに説明されるが、そのような分析のステップは、デバイス115に加えてまたはデバイス115に代わる1つ以上の他のデバイスによって実行され得ることに留意されたい。
【0063】
続けて、ブロック215で、デバイス115は、1つ以上の現在の測定値に基づいて、およびデバイス115がセンサー110から受信した分析物レベルの1つ以上の過去の測定値に基づいて、1つ以上のパターン125を生成する。特定の実施形態では、1つ以上のパターン125は、考察されるように、ユーザの現在または予測されるケトンレベル、ユーザの予測された精神状態、または将来のユーザの予測された身体状態のうちの1つ以上を示す。特定の実施形態では、1つ以上のパターン125は、1つ以上のデータモデル、変化率、トレンドラインなどを含む。特定の実施形態では、1つ以上のパターン125は、コンピュータモデリング、機械学習、パターン識別、ボーラス計算機、関数、またはアルゴリズムのうちの1つ以上を使用して生成される。特定の実施形態では、デバイス115は、1つ以上のパターン125を生成するために、1つ以上の現在の測定値および/または1つ以上の過去の測定値と相関する追加のデータをさらに収集する。例えば、追加のデータは、特定の実施形態では、ユーザの身体状態データまたは精神状態データのうちの1つ以上を含む。
【0064】
さらに、ブロック220で、デバイス115は、1つ以上のパターン125を1つ以上の目標と相関させる。特定の実施形態では、1つ以上の目標は、デバイス115を介するなど、ユーザ105で定義されている。特定の実施形態において、1つ以上の目標は、考察されるように、ケトーシスにあることと関連するケトン範囲を含む。別の例では、ケトン範囲は、ユーザの人口統計および経時的に収集され、ケトーシスにあることと関連するユーザ固有のケトン範囲を決定するために処理される人口統計データに基づくなど、ユーザ固有であり得る。1つ以上の目標は、特定の実施形態では、ユーザ105の所望の身体状態または精神状態のうちの1つ以上を含む。
【0065】
ブロック225で、デバイス115は、相関の1つ以上の結果をユーザ105に出力する。例えば、デバイス115は、1つ以上の目標が満たされているかどうかを示す。特定の実施形態では、デバイス115は、ユーザ105が1つ以上の目標を達成する、または1つ以上の目標を維持するのを助けるための勧めを提供する。特定の実施形態では、デバイス115は、相関および/または測定された分析物レベルに関する情報をユーザ105に提供する。
【0066】
方法200の様々なブロックの各々は、様々な実施形態に関して、本明細書においてさらに具体的かつ詳細に説明される。
【0067】
センサーと分析物の測定
センサー110は、ケトンと相関する1つ以上の分析物を測定するように構成される。特定の実施形態において、1つ以上の分析物は、ケトン、グルコース、および/または乳酸のうちの1つ以上である。さらに、本明細書の説明は、測定される、処理されるなどの分析物としてケトン、グルコースおよび/または乳酸のうちの1つ以上に言及しているが、例えば、アセトン、アセト酢酸、ベータヒドロキシ酪酸、グルカゴン、アセチル-CoA、トリグリセリド、脂肪酸、クエン酸サイクルの中間体、コリン、インスリン、コルチゾール、試験ステロンなどを含む他の分析物も同様に使用してもよい。例えば、異なる分析物がケトンレベルと相関し得る。例えば、グルコースレベルは、ケトンレベルと相関し得る。さらに、乳酸レベルはケトンレベルと相関している。例えば、システム120は、いくつかの分析物の値を推定するために、事前定義された相関またはアルゴリズム、および/またはユーザ固有のモデルを使用し得る。いくつかの実施形態では、グルコースおよび/または乳酸の測定値が与えられると、システム120は、ケトンレベルを推測することができる。
【0068】
特定の実施形態では、センサー110は、単一の分析物を測定するように構成される。特定の実施形態では、センサー110は、複数の分析物を測定するように構成される。特定の実施形態では、単一のセンサー110が示されているが、いくつかの実施形態では、所与のユーザ105によって使用される任意の数のセンサー110が存在し得る。
【0069】
特定の実施形態では、センサー110は、ユーザ105の体内で動作するように構成された埋め込み型または摂取可能なデバイスである。特定の実施形態では、センサー110はまた、ウェアラブルデバイス、ハンドヘルドデバイスなどを含むことができる。特定の実施形態では、ウェアラブルデバイスは、ユーザ105の皮膚に取り付けられた、またはユーザ105の体に装着されたデバイスを含むことができる。特定の実施形態では、ハンドヘルドデバイスは、ユーザ105によって管理される別個のモニターまたはデバイスを含むことができる。いくつかの実施形態では、センサー110は、ユーザの介入なしに、リアルタイムまたはほぼリアルタイムで比較的連続的に分析物レベルを測定する。すなわち、センサー110は、ユーザ105が手動で記録を開始することを必要とせずに、測定値を連続的にまたは定義された間隔で記録および送信することができる。例えば、センサー110は、毎秒、5秒ごと、毎分、5分ごとなどに関連するデータを記録することができる。いくつかの実施形態では、センサー110は、オンデマンド構成で動作することができ、ユーザ105は、測定データの収集を手動でトリガーする。この詳細な情報により、システム120はデータ分析フェーズ中、より正確に実行することができる。
【0070】
特定の実施形態では、センサー110の特定の構成は、測定されるケトンのタイプまたは他のデータに部分的に依存し得る。例えば、特定の実施形態では、センサー110は、ユーザのアセト酢酸レベルを測定するように構成され得る(例えば、尿検査を介して)。アセト酢酸は、一般にケトーシス中に産生される最初のケトンであり、グルコースが利用できないかまたは低い場合に代替エネルギー源として体によって使用することができる。アセト酢酸は、一般に脂肪酸の分解中に生成され、エネルギーとして使用することができる(または、以下で考察される他のケトンに変換または分解され得る)。いくつかの実施形態では、センサー110は、アセト酢酸の測定値を戻すために、ユーザの尿を評価するように構成される。例えば、センサー110は、尿検査ストリップを含み得る。そのようなセンサー110の1つの利点は、それらが手頃な価格で、容易に入手可能であり、取り扱いが容易かつ非侵襲的であることである。ただし、アセト酢酸の測定には、少なくとも部分的に、常に利用できるとは限らない尿が必要であるという単純な事実のために、読み取りの精度が低くなり得る。したがって、アセト酢酸の読み取りは、変化する条件に応じて迅速な測定を送ることができない場合がある。
【0071】
いくつかの実施形態では、アセト酢酸を測定することに加えて、またはその代わりに、センサー110は、アセトンレベルを測定するように構成され得る(例えば、ユーザの呼吸の分析を介して)。アセトンは、ケトーシス中に産生される小さなケトン体である。例えば、アセト酢酸が体内で分解すると、アセトンが産生され得る。アセトンは通常、ユーザにエネルギーを供給しないが、代わりにケトーシスの副産物である。一般的に、アセトンはユーザの肺に拡散し、呼吸中に吐き出される。したがって、1つのそのような実施形態では、センサー110は、ユーザの呼吸中のアセトンレベルを測定するように構成される。例えば、ユーザは、センサー110に定期的に吹き込み得る。そのようなセンサー110の1つの利点は、それらが非侵襲的で操作が簡単であることである。しかしながら、ユーザがセンサー110に息を吹き込むことを要求することによって、それらは追加の不便を課し、それによってシステムの有効性を低下させ得る。
【0072】
いくつかの実施形態では、センサー110は、ベータヒドロキシ酪酸レベルを測定するように構成される。これには、例えば、血液分析の実施、間質液の分析などが含まれ得る。ベータヒドロキシブチレートは、肝臓で合成され得るケトンである(例えば、アセト酢酸から変換される)。ベータヒドロキシブチレートは、体全体にエネルギーを運ぶ(特に、グルコースなどの他の運搬体が少ないか利用できない場合)。いくつかの実施形態では、センサー110によって戻されるベータヒドロキシブチレート測定値は、ベータヒドロキシブチレートレベルがヒトにおいて変化する急速な性質のために、正確で応答性のある測定値である。すなわち、ベータヒドロキシブチレートレベルを測定することにより、センサー110は、ベータヒドロキシブチレートレベルが急速に変化するために、システムがユーザの変化する状態を迅速に検出および評価することを可能にする(特に、薬物または食物摂取などの行動または療法に応答して)。これは、センサー110が、測定のためにリアルタイム(またはほぼリアルタイム)のサンプルを収集することができる埋め込み型またはウェアラブルデバイスである場合に特に当てはまる。特定の実施形態では、尿、呼吸、および/または血液を監視することに加えて、またはその代わりに、システムは、センサー110を使用して、ユーザの汗を介して分析物レベルを監視することもできる。
【0073】
いくつかの実施形態では、センサー110は、グルコースまたはケトンなどの別の分析物の濃度または存在を示す物質の濃度を測定するグルコースセンサーを含む。いくつかの実施形態では、グルコースセンサーは、連続デバイス、例えば、皮下、経皮、経皮、非侵襲的、眼内、血管内、および/または静脈内デバイスである。いくつかの実施形態では、デバイスは、複数の断続的な血液サンプルを分析することができる。グルコースセンサーは、酵素的、化学的、物理的、電気化学的、光学的、光化学的、蛍光ベース、分光光度的、分光学的、光吸収分光法、ラマン分光法、偏光測定、熱量測定、イオン泳動、放射測定などを含むがこれらに限定されない、グルコース測定の任意の方法を使用することができる。
【0074】
グルコースセンサーは、ホストの分析物の濃度を示すデータストリームを提供するために、侵襲的、低侵襲的、非侵襲的感知技術を含む任意の既知の検出方法を使用することができる。データストリームは通常、センサーを使用し得る患者や医療専門家(HCP)などのユーザに分析物の有用な値を提供するために使用される生データ信号である。特定の実施形態では、医療専門家は、例えば、医師、医師、看護師、介護者などを含むことができる。
【0075】
本明細書のいくつかの例は、ホストのグルコースの濃度を測定することができるグルコースセンサーに向けられているが、実施形態のシステムおよび方法は、任意の測定可能な分析物に適用することができる。本明細書に説明されるデバイスおよび方法は、分析物の濃度を検出することができ、分析物の濃度を表す出力信号を提供することができる任意のデバイスに適用することができることが理解されるべきである。例えば、考察されるように、特定の実施形態では、センサー110は、ケトンおよび/または乳酸を測定することができる。
【0076】
いくつかの実施形態では、センサー110のタイプは、ケトンを測定するために異なり得る。例えば、センサー110は、電気化学的酸化加水分解センサーを使用して血中ベータヒドロキシブチレート(ベータHBA)濃度を測定するように構成され得る。特定の態様では、センサー110は、酵素3-ヒドロキシ酪酸デヒドロゲナーゼ(3HBDH、EC1.1.1.30)の存在下でのケトン3-β-ヒドロキシ酪酸(3HB)およびNAD+(ニコチンアミドアデニンジヌクレオチド、酸化型)の反応生成物である還元型ニコチンアミドアデニンジヌクレオチドを測定する。
【0077】
いくつかの実施形態では、分析物センサーは、米国特許第6,001,067号および米国特許出願第2011/0027127-A1号を参照して記載されているような埋め込み型センサーである。いくつかの実施形態では、分析物センサーは、米国特許出願公開第2006/0020187-A1号を参照して記載されているような経皮センサーである。さらに他の実施形態では、分析物センサーは、米国特許出願公開第2009/0137887-A1号を参照して記載されているような二重電極分析物センサーである。さらに他の実施形態では、センサーは、米国特許出願公開第2007/0027385-A1号に記載されているように、ホスト血管にまたは体外に埋め込まれるように構成される。これらの特許および出願公開は、参照によりそれらの全体が本明細書に組み込まれる。
【0078】
特定の実施形態では、センサー110は、複数の分析物を測定するために分析物感知能力を備える単一の作用電極センサーを利用することができる。したがって、特定の実施形態では、センサー110は、測定電子機器を使用して複数の分析の測定に対応する複数の信号を分離またはデマルチプレックスするように構成される。特定の実施形態では、測定電子機器は、複数の信号を分離するために電位(+/-電圧)、インピーダンス測定、デューティサイクルなどを変更するように構成される。関連する実施形態では、個々の分析物を一度に1つずつ、各々最適化された期間中、単一の作用電極をデューティサイクルすることができる。そのような実施形態は、メディエーター選択性を必要とし得る。
【0079】
特定の実施形態では、センサー110は、複数の分析物を測定するために、皮膚上参照電極および1つ以上の皮膚下作用電極を含む。特定の実施形態では、1つ以上のセンサーの各々は、異なる化学材料または他の構成で形成された膜を有する。したがって、特定の実施形態では、センサーが異なる分析物をより良く測定することができるように、各膜は分析物ごとに構成される。
【0080】
センサーおよびデバイスの通信
特定の実施形態では、センサー110は、ユーザ105と関連付けられたデバイス115と通信可能に結合されている。すなわち、センサー110は、考察されたように、その測定値をデバイス115に送信する。特定の実施形態では、デバイス115は、測定値を記憶するように構成されたメモリを含む。例えば、デバイス115は、現在と過去の両方の測定値を記憶する。
【0081】
特定の実施形態では、センサー110は、WiFi、Bluetoothなどの従来の通信デバイスを使用するなど、デバイス115に無線で結合される。
【0082】
特定の実施形態では、センサー110は、ボディエリアネットワーク(BAN)を使用してデバイス115に結合される。特定の実施形態では、BANは、身体の電気的および/または化学的経路を利用して、それによって、身体に結合されたデバイス間でデータを転送する。例えば、特定の実施形態では、センサー110は、身体に結合された1つ以上のワイヤまたは電極を含み、1つ以上のワイヤまたは電極を介して身体に電気信号を送るように構成される。特定の実施形態では、電気信号は、1つ以上の分析物レベルを示す情報などのデータで変調される。電気信号は、身体自体をネットワークとして使用して身体を通過し、1つ以上のワイヤまたは電極を介して身体に結合されたデバイス115によって受信される。例えば、特定の実施形態では、デバイス115は、スマートウォッチなどの身体に装着されるスマートデバイスであり得る。デバイス115は、特定の実施形態では、データを抽出するために受信信号を復調する。
【0083】
特定の実施形態では、デバイス115およびセンサー110は、複数のデバイスが情報を確実に接続および通信することを可能にする身体無線メッシュネットワークを形成する。例えば、特定の態様では、デバイス115は、身体無線メッシュネットワーク内の複数のセンサー110と結合する。特定の実施形態では、本明細書でさらに説明するようなフィットネストラッカー、スマートウォッチなどの追加のデバイスもまた、身体無線メッシュネットワークに参加して、追加のデータおよび/または処理能力を提供する。
【0084】
特定の実施形態では、身体無線メッシュネットワークは、BANを使用して形成される。特定の実施形態では、身体無線メッシュネットワークは、Wifi、またはBluetooth Low Energy(BLE)などのBluetoothを使用して形成される。特定の実施形態では、身体無線メッシュネットワークは、性能および/またはバッテリ寿命を最適化するためなどに、1つ以上の通信プロトコルを使用して形成される。例えば、特定の実施形態では、センサー110は、低電力プロセッサを含み、通信のためにBANを使用する。特定の実施形態では、センサー110は、中電力プロセッサと、通信のためにBANおよびBLEの両方を使用する。特定の実施形態では、センサー110または別のデバイスは、高出力プロセッサと、通信のためにBANおよびBLEの両方を使用する。特定の実施形態では、考察されたように、データの処理は、デバイス115以外の1つ以上のデバイスで発生する可能性がある。特定の実施形態では、処理は、身体無線メッシュネットワーク内の1つ以上のデバイスによって実行される。特定の実施形態では、使用される処理位置および通信プロトコルは、性能を最適化するためのものである。特定の実施形態では、使用される処理位置および通信プロトコルは、バッテリ寿命を最適化するためのものである。特定の実施形態では、処理位置は複数のデバイスに分散されている。
【0085】
デバイスデータ収集
特定の実施形態では、デバイス115は、分析および/または評価のために他の様々なデータを考慮することができる。これは、ユーザ105の身体状態、精神状態、および/または活動のうちの1つ以上を含むことができる。身体状態は、例えば、体重、病状、インスリン抵抗性または感受性、グルコース感受性、ユーザ105の心拍数などのうちの1つ以上を含むことができる。
【0086】
いくつかの実施形態では、ユーザの精神状態は、一般に、ユーザ105の感情的および精神的反応を含む。これには、例えば、ユーザ105が苛立つ、満足する、不安を感じる、集中するなどを感じるかどうかの1つ以上を含めることができる。特定の実施形態では、精神状態は、ユーザが経験している空腹のレベルを含む。
【0087】
いくつかの実施形態では、追加のデータは、1つ以上の方式で収集することができる。特定の実施形態では、情報の一部またはすべてをユーザ入力として提供することができる。例えば、特定の実施形態では、ユーザ105は、身体状態または精神状態のうちの1つ以上を示すためにデバイス115を使用し得る。特定の実施形態では、ユーザ105は、指示を提供するために、デバイス115上のグラフィカルユーザインターフェース(GUI)を利用する。いくつかの実施形態では、ユーザ105は、最近行われたまたは現在行われている身体運動などの1つ以上の活動、食べられたまたは現在食べられている食品などを指定することができる。
【0088】
特定の実施形態では、追加データの一部またはすべては、デバイス115にデータを提供する1つ以上の他のデバイスを使用して収集される。例えば、どのようにセンサー110がデバイス115に結合するのかと同様に、1つ以上の他のデバイスがデバイス115に結合し得る。例えば、ユーザ105の心拍数は、心拍数モニターを使用して決定され得る。特定の実施形態では、追加のデータの一部を収集するために1つ以上の活動またはフィットネストラッカーを使用が使用される。特定の実施形態では、活動またはフィットネストラッカーは、スマートウォッチおよび同様のデバイスを含むことができる。いくつかの実施形態では、身体運動などのユーザの行動は、同様に、活動またはフィットネストラッカーによって識別される。
【0089】
いくつかの実施形態では、追加のデータは、時間に基づいて1つ以上の分析物測定値と相関させることができる。例えば、精神状態、身体状態、および/または行動は、それらがいつ発生したかに基づいてタイムスタンプを付けることができ、その結果、デバイス115は、任意の所与の時点でのユーザ105の分析物測定値を、ユーザが経験していた対応する精神状態および/または身体状態と関連付けることができる。同様に、デバイス115は、分析物の測定値を、その時点でユーザが行っていた活動または行動と関連付けることができる。
【0090】
パターン生成
特定の実施形態では、1つ以上のパターン125は、収集されたユーザデータに基づいて生成される。特定の実施形態では、ユーザデータは、センサー110からの分析物レベルの1つ以上の測定値を含む。特定の実施形態では、ユーザデータは、デバイス115によって受信された追加のデータを含む。特定の実施形態では、1つ以上のパターン125は、ユーザ105の分析物レベルを示すパターン125を含む。特定の実施形態では、1つ以上のパターン125は、ユーザ105の身体状態を示すパターン125を含む。特定の実施形態では、1つ以上のパターン125は、ユーザ105の精神状態を示すパターン125を含む。特定の実施形態では、パターン125は、糖尿病性ケトアシドーシス(DKA)を予測するためにユーザのグルコースおよびケトンレベルを監視するためのパターン125を含む。関連する実施形態では、パターン125はまた、乳酸または水和マーカー(カリウムまたはナトリウムなど)、他のバイオマーカー(例えば、心拍数変動、温度変化、血圧変化など)などを監視するために使用され得る。
【0091】
特定の実施形態では、ユーザ105の分析物レベルを示すパターン125は、センサー110からの分析物レベルの1つ以上の測定に基づいて生成される。特定の実施形態では、ユーザ105の身体状態を示すパターン125は、ユーザ105の身体状態に関連する追加のデータに基づいて生成される。特定の実施形態では、ユーザ105の精神状態を示すパターン125は、ユーザ105の精神状態に関連する追加のデータに基づいて生成される。
【0092】
図3は、本明細書に開示される特定の実施形態による、1つ以上のパターン125を構築するためのワークフロー300を示している。図示のワークフロー300は、1つ以上のパターン125を生成するために使用されるいくつかの入力を示している。特に、考察されるように、
図3に示されるように、入力の数は、センサー110などの1つ以上の分析物センサー305からの1つ以上の分析物レベルの1つ以上の測定値を含むことができる。特定の実施形態では、入力の数は、1つ以上の活動センサー310からの活動またはその他の身体状態の1つ以上の測定値を含むことができる。特定の実施形態では、入力の数は、デバイス115からのような、身体状態または精神状態の1つ以上のユーザ入力315を含むことができる。特定の実施形態では、1つのパターン125を生成するために、分析物レベル、身体状態、ユーザ活動、または精神状態などの1つのタイプの入力が使用される。特定の実施形態では、1つのパターン125を生成するために複数のタイプの入力が使用される。
【0093】
いくつかの入力が示されているが、いくつかの実施形態では、任意の入力が別個に提供され得る。例えば、特定の時点で、ユーザの分析物レベルが入力として利用され得るが、ユーザの精神状態は不明であり得る。例えば、いくつかの実施形態では、ユーザが自分の精神状態を示す応答または入力を提供していないため、精神状態が不明である可能性がある。特定の実施形態では、それにもかかわらず、システムは、他のいくつかの入力がない場合でも、利用可能な入力を評価するためにパターン125を利用することができる。
【0094】
上で考察されたように、パターン125は、データモデル、変化率、トレンドライン、パターンおよびトレンド、相関、訓練された機械学習(ML)モデルなどのうちの1つ以上を含むことができる。一般に、パターン125は、提供された入力に基づいて、ユーザ固有のデータを表すために使用される。例えば、特定の態様では、パターン125は、過去、現在、および将来の予測値を表す。特定の態様では、パターン135は、過去および現在の値に基づくなど、将来の予測値を示す。パターン125に応じて、特定の実施形態では、値は、分析物レベル、身体状態、または精神状態のうちの1つ以上であり得る。
【0095】
いくつかの実施形態では、パターン125は、個々のユーザに関連するデータに基づいて構築される個人化されたパターンである。特定の実施形態では、パターン125は、個人化されたパターンではなく、人口統計的に固有のパターンである。例えば、パターンを生成するために、特定の人口統計を有する複数のユーザからのデータを相関させる。人口統計は、年齢、性別、民族性、活動レベルなどのうちの1つ以上の類似を有するユーザに基づき得る。いくつかの実施形態では、パターン125は、ユーザの人口統計に基づく区別を含む、ユーザ固有の身体のニーズに基づいて構築される。このユーザ固有のデータを使用することにより、いくつかの実施形態では、システムは、最適化され個人化されたパスを構築し、ユーザ固有のデータをユーザの全体的な結果および/または個々のゴールと比較することができる。さらに、少なくとも1つの実施形態では、パターン125は包括的であり、任意の個々のユーザに使用することができる。いくつかの実施形態では、パターン125は、ユーザ固有のデータ、ならびに人口統計固有のデータまたは他の一般的なデータの両方の組み合わせを使用して構築される。
【0096】
特定の実施形態では、入力は、1つ以上のパターン125を構築および更新するために使用される。例えば、特定の実施形態では、デバイス115は、将来の値を予測するために過去の値と現在の値との間の変化率(ROC)を決定する。特定の実施形態では、デバイス115は、コンピュータモデリング、機械学習、パターン識別、ボーラス計算機、関数、またはアルゴリズムのうちの1つ以上を使用して、1つ以上のパターン125を生成する。
【0097】
特定の実施形態では、1つ以上のパターン125は、ユーザ状態を分類および予測するために、リアルタイムまたはほぼリアルタイムのデータを使用して生成または更新することができる。したがって、ユーザは自分の状態と進行状況を予測するために食事を記録したりカロリーを数えたりする必要がない場合がある。
【0098】
図4は、本明細書に開示される特定の実施形態による、ユーザデータに基づいて1つ以上のパターン125を形成する現在および将来のユーザ状態を決定するためのワークフロー400を示す。図示のように、ユーザデータ405は、1つ以上のパターン125に対応し得る1つ以上の現在の状態415および1つ以上の将来の状態420を生成するために決定モジュール410に提供される。一般に、ユーザデータ405は、ユーザに関連する任意のデータを含むことができ、現在の状態415および将来の状態420は、任意の分析物レベル、精神的、および/または身体状態に対応することができる。
【0099】
特定の実施形態では、考察されたように、ユーザデータ405は、ユーザと関連付けられた現在のデータを含むことができる。特定の実施形態では、ユーザデータ405は、現在の分析物測定値を含む。特定の実施形態では、ユーザデータ405は、ユーザの精神的特徴を含む。特定の実施形態では、ユーザデータ405は、ユーザの最近の活動を含む。特定の実施形態では、最近の活動は、ユーザが所定の期間内に従事した身体活動を含む。特定の実施形態では、ユーザデータ405は、ユーザの現在の活動を含む。特定の実施形態では、ユーザデータ405は、ユーザの計画された将来の活動を含む。
【0100】
特定の実施形態では、決定モジュール410は、ユーザに対応する過去のデータを利用する。いくつかの実施形態では、1つ以上のパターン125は、訓練された機械学習モデルを含む。したがって、いくつかの実施形態では、決定モジュール410は、ユーザデータを使用して1つ以上のパターン125を繰り返し訓練して、現在のユーザデータを入力として受信し、推定または予測された将来の状態を出力として出力することができる。特定の実施形態では、決定モジュール410は、入力としてユーザデータを受信し、予測された状態を戻す、コンピュータモデリング、機械学習、パターン識別、ボーラス計算機、関数、またはアルゴリズムのうちの1つ以上を含む。特定の実施形態では、決定モジュール410は、1つ以上のパターン125および/または以前のデータに基づいて構築された相関を更新する。
【0101】
この分析に基づいて、決定モジュール410は、現在の状態415および/または将来の状態420を戻すことができる。現在の状態415および将来の状態420の両方は、分析物レベル、ユーザの身体状態、ユーザの精神状態などのうちの1つ以上を含む様々な要素を含むことができる。
【0102】
特定の実施形態では、将来の状態420は、予測された空腹レベルを含むことができる。特定の実施形態では、将来の状態420は、ユーザが過敏性または注意力を感じるかどうか、またはユーザが予測または考慮したい他の感情または状態を含む。少なくとも1つの実施形態では、将来の状態420は、状態がいつ始まると予想されるかについてのタイムライン、遅延、待ち時間、または他のインジケータと関連付けられている。特定の実施形態では、将来の状態420は、状態がどのくらい続くかに関する指示を含む。これは、以前のデータ収集から学習することができる。特定の実施形態では、遅延は、ユーザの以前の傾向およびパターンに基づいて学習される。
【0103】
一例として、特定の実施形態では、ユーザが糖尿病性ケトアシドーシス(DKA)に入るかどうか、ならびにDKAに入る前の緊急性または遅延を予測するために、パターン125が生成され、使用され得る。例えば、パターン125および現在のユーザデータ405(例えば、グルコースおよび/またはケトンレベル)および/または現在の状態415に基づいて、決定モジュール410は、約1時間で始まる状態の開始とともに、将来の状態420がDKAを含むと決定し得る。様々な実施形態において、DKAを予測するために使用されるパターン125はまた、例えば、水和レベル(例えば、カリウム、ナトリウム、またはその他の測定によって検出される)、感染の初期マーカー(例えば、心拍変動(HRV)、乳酸レベル、温度変化など)の検出、ならびに血圧および/または心拍数の変化などの他の要素の検出などの多種多様な他の要素に基づくことができる。
【0104】
十分に早く捕らえられた場合、DKAは、積極的な水分補給(ケトンを洗い流すため)、インスリン治療、またはその組み合わせを使用して可逆的であり得る。ただし、早期に検出されない場合、DKAは一般的に即時入院を必要とする。したがって、一実施形態では、将来の状態420は、ユーザが適切に迅速に応答することを可能にするために、DKAの発症までの推定待ち時間を示す。この待ち時間に基づいて、システムは、どのように応答するかを参加者に指示し、臨床医などに連絡するなど、いくつかの行動を実行し得る。
【0105】
いくつかの実施形態では、パターン125は、詳細レベルで将来の状態420を識別および/または予測するために使用することができる。特定の実施形態では、システムは、ユーザがケトアシドーシスにあるか、またはケトアシドーシスに入るのか、ならびに特定のタイプのケトアシドーシスに入るのかを予測することができる。例えば、システムは、ユーザが特定のタイプのケトアシドーシスを入力することにつながる、ユーザのケトンおよび/またはグルコースレベルのパターンを識別し得る。これらのタイプは、例えば、高血糖性ケトアシドーシス、正常血糖性ケトアシドーシス、飲食物に基づくケトアシドーシスなどを含むことができる。したがって、特定の実施形態では、特定のタイプの懸念または問題につながる特定の傾向および測定値を識別するためにパターン125を使用することができる。これにより、ユーザは、自分たちに関連する特定の懸念事項だけでなく、どのようにそれらを回避するかも決定することができる。
【0106】
そのような実施形態は、ユーザが消費する薬物に関してなど、ユーザが非典型的な特徴を示す場合に特に有用であり得る。例えば、SGLT2クラスの薬は、ユーザが2型糖尿病か1型糖尿病かによって、ユーザに異なる影響を与える可能性がある。2型糖尿病のユーザは、心配することなく、またはほとんど心配することなくSGLT2クラスの薬を消費することができるが、SGLT2クラスの薬を消費する1型糖尿病のユーザは、高血糖でない場合でも血中にケトンを蓄積する可能性がある。これにより、そのようなユーザは糖尿病性ケトアシドーシス(DKA)に入る可能性がある。これらの懸念を改善するために、本開示のいくつかの実施形態は、ケトアシドーシスの原因およびタイプを決定するためにグルコースおよびケトンの両方のレベルを監視し、これは、患者の結果を改善する。
【0107】
特定の実施形態では、これらのパターン125は、ケトアシドーシスなどの懸念の治療を改善するために同様に使用することができる。例えば、ユーザが糖尿病性ケトアシドーシスに入るとき、典型的な治療は、ユーザの血糖値をできるだけ早く下げることを含む。これは、ユーザの血糖値を下げ、ユーザの血液からケトンを取り除くためにインスリンを利用することを含み得る。例えば、ケトーシスとケトン尿症は、高血糖のみよりも高い程度のインスリン欠乏を反映している。ケトンの存在は、インスリン濃度が低すぎて血糖値を制御しないだけでなく、脂肪の分解(脂肪分解)を防がないことを示し得る。特に、血中の高ケトンは高レベルの酪酸と関連しており、一緒になってインスリン抵抗性を生み出す。重大なケトン血症を患っているユーザは、血糖値を制御するために通常よりも多くのインスリンを必要とし得る。したがって、ユーザの血糖値を下げ、ユーザの血液からケトンを取り除くためにインスリンを利用することは、このような状況では特に重要である。
【0108】
したがって、特定の実施形態では、グルコース、ケトン、および/またはインスリン間の接続を識別するように構成されたパターン125が、糖尿病性ケトアシドーシスに入るユーザをより良く識別および/または治療するために使用され得る。例えば、システムは、ユーザにインスリンを提供するように構成されたインスリンポンプとインターフェースし得る。いくつかの実施形態では、システムは、ケトンおよびグルコースレベルに基づいてインスリンの適切な量を自動的に決定および投与することができる。いくつかの実施形態では、システムは、糖尿病性ケトアシドーシスを示すケトンおよびグルコースレベルに基づいて、投与するためのインスリンの適切な量の指示をユーザに提供し得る。
【0109】
いくつかの実施形態では、予測される将来の状態420が十分に遠い将来である場合(例えば、ユーザ固有であり得る、および/または以前のデータに基づいて学習され得る定義された閾値を超えている)、システムは、インスリン投与を促進または開始するなどの介入を行うことができる。少なくとも1つの実施形態では、他のアプローチ(水分補給など)を提案することができる。例えば、システムは、可能な限り水分補給するようにユーザに警告し、アドバイスし得る。いくつかの実施形態では、システムは、処方された量の水分補給(例えば、2リットルの水)を摂取するようにユーザに指示し得る。この量は、例えば、医療提供者の臨床的入力または指示に基づいて決定され得る。
【0110】
対照的に、DKAの予測される発症がより差し迫っている場合、自宅でそれを元に戻すのに十分な時間がないため、システムは代わりにユーザにすぐに病院または緊急治療室に行くように促すまたは警告し得る。少なくとも1つの実施形態では、システムは、ユーザを監視するために医療提供者の遠隔チームに警告および/または接続すること、病院などへの輸送を手配することによってなど、この支援をさらに容易にし得る。
【0111】
別の例として、ケトーシスは、一部の患者のてんかんおよび/または片頭痛の治療に有益であることが示されている。いくつかの実施形態では、将来の状態420としてケトーシスの存在を予測することに加えて、またはその代わりに、決定モジュール410は、患者のてんかん、片頭痛、またはその他の状態が制御されたままであるかどうかを予測することができる。いくつかの態様では、効果的なケトーシス管理(本明細書に記載のシステムの助けを借りて)は、てんかん、片頭痛、およびその他の状態に対する他の従来の治療(薬物療法など)の削減または排除を可能にし得る。抗てんかん薬や抗けいれん薬にうまく反応しない難治性てんかんの患者など、一部の患者では、栄養ケトーシスを使用して状態を完全に制御し得る。つまり、ケトーシスは、薬物療法とは関係なく、代替の一次療法として使用され得る。
【0112】
さらに別の例として、ケトーシスは癌治療に有益であり得る。例えば、いくつかの場合ケトンが腫瘍の成長を遅らせるまたは止めるのを助けることができるという証拠がある。したがって、その後の治療(例えば、化学療法による)は、より低い用量を必要とし、より少ない負の副作用をもたらし得る。したがって、いくつかの態様では、システムは、治療を支援するために、そのような癌状態に関して将来の状態420を予測することができる。少なくとも1つの実施形態では、ケトーシスを単に維持することに加えて、またはその代わりに、システムは、ユーザが特定のケトンレベル(例えば、0.5mmol/L~1.5mmol/L)を維持するのを支援し、これは、治療結果を改善するために(特に、化学療法などの他の治療法と組み合わせて)最適な効果を達成することを助け得る。
【0113】
パターンの改善
特定の実施形態では、改善された1つ以上のパターン125を生成するのを助けるために、デバイス115は、試験食、サプリメント、および活動のうちの1つ以上を評価するようにユーザに提案し得る。例えば、デバイス115は、ユーザの現在の状態を記録し得る。次に、デバイス115は、ユーザによって試験される食品、サプリメント、または活動のうちの1つ以上を示し、その後、ユーザによって試験が完了した後、結果として生じるユーザの状態を記録し得る。したがって、デバイス115は、結果として生じる状態に基づいて、同様の食品、サプリメント、または活動が将来どのようにユーザに影響を及ぼすことができるかを予測することができる。特定の実施形態では、デバイス115は、ユーザによって実行されると示された1つ以上の行動に基づいてユーザ状態をより良く予測するために、考察されたようにパターン125を生成するときにそのような情報を利用する。これにより、意思決定支援システムは、単にデータを受動的に収集するのではなく、具体的な実世界のデータに基づいてパターンをより迅速に改善することが可能になる。
【0114】
例えば、特定の実施形態では、そのような試験を利用することによって、システムは、サプリメントの有効性および投薬量を決定することができる。特定の実施形態では、サプリメントはケトンダイエットサプリメントである。つまり、指定された時間にサプリメントを消費するようにユーザに指示し、続いてユーザの分析物を分析することにより、システムは、サプリメントがユーザをケトーシスに保つのを助けるかどうか、またはユーザがケトーシスに到達するのを助けるかどうかを学習することができる。同様に、システムは、ユーザの身体が試験投与量および時間にどのように反応するかを観察することに基づいて、最適投与量、最適投与タイミングなどを学習することができる。
【0115】
ユーザトレンドラインとしてのパターン
特定の実施形態では、パターン125は、ユーザの1つ以上の分析物における1つ以上のトレンドに関連するデータを含む。ユーザトレンドラインとしてのパターンは、
図5を参照して説明する。
【0116】
図5は、本明細書に開示される特定の実施形態による、ユーザデータに基づいて生成されたユーザトレンドラインを示している。図示のプロットでは、1つ以上の分析物の値が、時間(横軸510にプロットされている)の関数として縦軸505に示されている。いくつかの実施形態では、トレンドラインは、ユーザデータに基づいて、時間の経過とともに学習されたパターン125を示している。図示の実施形態では、線の実線部分(515とマークされている)は、ユーザの実際の分析物測定値を示しているのに対し、点線部分(520とマークされている)は、分析物の推定値または予測値を示している。さらに、特定の実施形態では、横の点線(525および530でマークされている)は、分析物の最適範囲を示している。
【0117】
特定の実施形態において、最適範囲は、ケトーシスと相関するケトンレベルと相関するケトンレベルまたは分析物レベルの範囲である。例えば、ケトーシス状態は、ユーザの血液中のケトン濃度が1リットル当たり約0.5ミリモル(mmol/L)~3.0mmol/Lであると定義され得る。
【0118】
特定の実施形態では、最適範囲は、任意の数の方式で決定することができる。特定の実施形態では、ユーザは、自分の好みに基づいて範囲を指定する。いくつかの実施形態では、範囲は、ユーザの人口統計に基づいてデバイス115によって決定される。例えば、デバイス115は、ユーザの人口統計に基づいて、ユーザにとって理想的な範囲を決定するために科学文献および/または研究を参照することができる。特定の実施形態では、科学文献に示されているように、女性ユーザの最適範囲は、男性ユーザの最適範囲とは異なり得る。したがって、デバイス115は、ユーザの人口統計に最も適した範囲を設定することができる。
【0119】
特定の実施形態では、デバイス115は、ユーザによって指定されたゴールに基づいて最適範囲を識別する。例えば、特定の分析物の最適範囲は、ユーザが体重を減らしたいかどうかによって異なり得る。ユーザが目標またはゴールを提供すると、デバイス115は、ユーザがこれらのゴールを達成するための最適な範囲を決定するために科学文献を評価することができる。
【0120】
特定の実施形態では、デバイス115は、経時的に分析物の値を追跡し、このデータを使用してトレンドラインを生成する。示されているように、ユーザの分析物測定値は、最初は最適範囲を下回り、一定期間にわたって最適範囲に引き上げられた。その後、レベルは再び最適範囲外に下がり、その後再び最適範囲に上昇し始めた。実施形態では、これらの変化は、ユーザの活動、消費された食事など、考察されたような様々な入力に起因する可能性がある。特定の実施形態では、分析物を監視することに加えて、デバイス115は、ユーザの行動をシフトする分析物と相関させるためにユーザの活動を監視する。
【0121】
例えば、デバイス115は、ユーザが食べる時間、ならびに消費された特定の食事を記録し得る。これは、消費カロリー、消費された特定の食品などを含むことができる。いくつかの実施形態では、監視される活動は、運動などのユーザの身体的行動を含む。これらの行動および活動を分析物値の決定された傾向に対してマッピングすることにより、デバイス115は、1つ以上のパターン125および相関を生成し、特定の活動および行動が分析物レベルにどのように影響するかを学習することができる。したがって、これらのパターンを使用して、デバイス115は、現在および計画された行動が分析物にどのように影響するかを予測することができる。
【0122】
図示の実施形態では、生成された1つ以上のパターン125に基づいて、デバイス115は、分析物レベルが、横ばいになる前に、最適範囲外になるまで上昇し続けると推定する。特定の実施形態では、デバイス115は、1つ以上の分析物の現在の分析物レベル、ならびに現在のトレンドに基づいてこの予測を行う。例えば、分析物レベルが現在増加しているので、デバイス115は、それが継続して増加すると推測することができる。少なくとも1つの実施形態では、予測は、分析物の変化率に部分的に基づいている。例えば、デバイス115は、分析物が、少なくとも一定期間、現在変化しているのとほぼ同じ速度で変化し続けるであろうと推測することができる。
【0123】
いくつかの実施形態では、デバイス115は、ユーザの以前のパターンに基づいて将来の測定値を予測する。例えば、デバイス115が、ユーザが特定の時間に特定の食事を消費したことを知っている場合、デバイス115は、特定の食事がユーザの分析物にどのように影響したかを知るために、トレンドラインによって反映される分析物のその後の変化を分析することができる。デバイス115が、ユーザが最近類似または同一の食事を消費したことを知る場合、それにより、トレンドラインを使用して、分析物が以前にどれだけ変化したかに少なくとも部分的に基づいて、分析物がどれだけ変化するかを予測することができる。特定の実施形態では、デバイス115は、予測されたレベルを決定する際に、計画された行動を同様に評価する。例えば、ユーザは、後で身体活動に従事することを計画していること、または後で食事をとることを計画していることを示し得る。これらの行動および以前に生成されたパターンに基づいて、デバイス115は、分析物レベルが応答してどのように変化するかを予測することができる。
【0124】
継続的なパターン更新
特定の実施形態では、デバイス115は、将来の予測が正確であり続けることを保証するために、ユーザのために1つ以上のパターン125を反復的かつ継続的に更新および修正することができる。連続的なパターン更新は、
図6を参照して説明する。
【0125】
図6は、本明細書に開示される特定の実施形態による、ユーザを支援するために1つ以上のパターン125を構築および洗練するための方法を示す流れ図である。方法600は、ブロック605で始まり、ここで、デバイス115は、ユーザのデータを決定する。上で考察されたように、これは、1つ以上のセンサーからのデータの受信、ユーザからのデータの直接の要求または収集などを含むことができる。
【0126】
少なくとも1つの実施形態では、デバイス115は、調査または要求をユーザにプッシュし、ユーザに自分たちの気分、空腹感などを示すように要求することによって、データとしてユーザの精神状態を決定する。特定の実施形態では、デバイス115は、調査の有無にかかわらず、ユーザがデータを提供するのを待つことによってこのデータを収集する。特定の実施形態では、デバイス115は、ユーザがデータとして最近従事した、または現在従事している行動を決定する。特定の実施形態では、行動が事前定義された期間内に発生した場合、その行動は「最近」とみなされる。いくつかの実施形態では、行動は、データが最後に収集された後に発生した場合、検討するのに十分に最近のものである。例えば、ユーザが午後1時に最初の行動を実行し、デバイス115が午後1時5分にデータを収集して評価し、次にユーザが午後1時10分に2番目の行動を実行し、デバイス115が1時15分にデータを再度収集して評価したとする。このような特定の実施形態では、最初の行動は「最近」とみなされるか、午後1時5分に収集されたデータと関連付けられるが、最近とはみなされず、1:15に収集されたデータに関連しない。
【0127】
次に、方法600は、ブロック620へと続き、そこでデバイス115は、収集されたデータに基づいて、1つ以上のパターン125を生成、構築、訓練、更新、および/または洗練する。いくつかの実施形態では、デバイス115は、現在受信されているデータを反映するように1つ以上のパターン125を更新することによってそうする。これには、現在のトレンドと値への測定値の追加、トレンドの適切なポイントで行われた活動の指示の追加などが含まれる。これにより、デバイス115は、1つ以上のパターン125を継続的に更新することができ、その結果、その後の評価が改善される。
【0128】
特定の実施形態では、1つ以上のパターン125がMLモデルを含む場合、デバイス115は、1つ以上の以前の記録をユーザの現在の状態でラベル付けすることによってモデルを更新し、元のデータ収集と現在の状態との間の待ち時間または遅延を示す。次に、デバイス115は、これらのラベル付けされた記録を使用してモデルを洗練し、それにより、データモデルがユーザの将来の状態だけでなく、その将来の状態が発生する時刻もより良く予測することができる。次に、図示の実施形態では、この方法600が繰り返される。これにより、デバイス115は、ユーザのステータスを継続的に監視して更新を提供し、1つ以上のパターン125を絶えず洗練することが可能になる。
【0129】
パターン相関
特定の実施形態では、1つ以上のパターン125が使用のために生成されると、デバイス115は、1つ以上のパターン125を、ユーザと関連付けられた1つ以上の目標と相関させることができる。パターン相関は、
図7を参照して説明する。
【0130】
図7は、本明細書に開示される特定の実施形態による、一致度を決定するために1つ以上のパターン125をユーザ目標と相関させるための方法700を示す流れ図である。方法700のブロックは、必ずしも本明細書に記載されている順序で実行されるとは限らないことに留意されたい。さらに、本明細書のいくつかのブロックまたは状態は省略され得、および/または追加のブロックまたは状態が追加され得る。
【0131】
方法700は、ブロック705から始まり、ここで、デバイス115は、ユーザと関連付けられた1つ以上の目標を識別する。特定の実施形態では、ユーザ目標は、一般に、ユーザのゴールまたは要望を示す。例えば、ユーザ目標は、所望の分析物レベル、精神状態、または身体状態のうちの1つ以上を示し得る。例えば、限定されないが、目標は、ケトーシスなどを達成するために、体重減少、メンタルヘルス、グルコース感受性、グルコースレベル、インスリン抵抗性または感受性のうちの1つ以上を含むことができる。いくつかの実施形態では、目標は、所望の大きさまたは値を示すことができる。例えば、目標は、特定の実施形態においてケトーシスを達成するための所望のケトン範囲を示し得る。さらに、特定の実施形態では、目標は、所望の体重、インスリン抵抗性または感受性の所望のレベルなどのうちの1つ以上を示し得る。次に、方法700は、ブロック710へと続き、そこでデバイス115は、以前に生成された1つ以上のパターン125をユーザの目標と相関させる。
【0132】
いくつかの実施形態では、1つ以上のパターン125と目標との間に直接的な相関関係がある。例えば、パターン125が経時的なユーザの分析物レベルを示し、目標が特定の分析物レベルである場合、相関関係は、1つ以上のパターン125が、分析物レベルが目標を満たすかまたは目標と一致するかどうかだけであり得る。例えば、特定の実施形態におけるデバイス115は、1つ以上のパターン125が、目標が現在達成されていることを示しているかどうかを相関させる。別の例では、特定の実施形態では、デバイス115は、1つ以上のパターン125が、将来、目標が達成されることを示すかどうかを相関させる。特定の態様では、相関関係は、単純に、1つ以上のパターン125が、精神状態および/または身体状態が目標を満たすか、または目標と一致することを示すかどうかであり得る。
【0133】
いくつかの実施形態では、1つ以上のパターン125を1つ以上の目標と相関させることは、1つ以上のパターン125、および特定の実施形態では追加のデータと、1つ以上の目標との間の重複または一致度を識別することを含む。特定の実施形態では、1つ以上のパターン125によって表されるデータおよび/またはデバイス115に入力される他のデータは相互に関連している。例えば、特定の実施形態では、1つのパターン125における値および/またはトレンドは、別のパターン125に影響を与える。さらに、特定の実施形態では、1つ以上のパターン125は、ユーザの活動および消費に部分的に依存している。したがって、特定の実施形態では、1つ以上のパターン125を目標に対して相関させることは、いくつかの寸法を評価して、所望の状態と実際の状態との間のありそうな効果および不一致を識別することを含むことができる。
【0134】
いくつかの実施形態では、考察されたように、データ収集中に、追加のデータを、時間に基づいて1つ以上の分析物測定値と相関させることができる。例えば、精神状態、身体状態、および/または行動は、それらがいつ発生したかに基づいてタイムスタンプを付けることができ、その結果、デバイス115は、任意の所与の時点でのユーザ105の分析物測定値を、ユーザが経験していた対応する精神状態および/または身体状態と関連付けることができる。したがって、特定の実施形態では、1つ以上のパターン125と目標との相関は、データ収集に基づいて、特定の分析物レベルまたは分析物レベルのROCが特定の精神状態および/または身体状態と相関するかどうかを決定することを含み得る。特定の実施形態では、1つ以上のパターン125と目標との相関は、特定の分析物レベルまたは分析物レベルのROCが、ユーザの人口統計データに基づいて特定の精神状態および/または身体状態と相関するかどうかを決定することを含み得る。特定の実施形態では、1つ以上のパターン125と目標との相関は、特定の分析物レベルまたは分析物レベルのROCが、一般的な母集団データに基づいて特定の精神状態および/または身体状態と相関するかどうかを決定することを含み得る。いくつかのそのような実施形態では、相関する精神状態および/または身体状態は、1つ以上の目標と相関し得る。
【0135】
特定の実施形態では、1つ以上のパターン125と目標とを相関させることは、それらの間の一致度を決定することを含む。特定の実施形態では、この一致度は、身体状態および/または精神状態、ならびに組み合わせを含むことができる。特定の実施形態では、身体状態と精神状態の組み合わせの一致度を決定することは、例えば、精神状態と身体状態との間の相関関係を含むことができる。
【0136】
いくつかの実施形態では、複数の目標を定義することができる。少なくとも1つの実施形態では、デバイス115が最も重要な目標を識別し、それに応じて一致度を調整または重み付けできるように、各目標を重みまたは重要度と関連付けることができる。特定の実施形態では、一致度を評価することは、一致度を表す値を生成することを含む。これは、状態と目標が一致しているかどうかを示す1つ以上のバイナリ値を含むことができる。いくつかの実施形態では、値はまた、目標と状態との間の任意の差の大きさを示す値を含む。
【0137】
ブロック715で、デバイス115は現在の状態の一致度を評価する。すなわち、デバイス115は、ユーザの現在の状態が目標状態と一致するかどうかを決定する。特定の実施形態では、この一致度は、決定された現在の精神状態を所望のまたは目標の精神状態と比較することを含む。例えば、ユーザは空腹感を最小限に抑えるための好みを示し得る。いくつかの実施形態では、一致度はまた、ユーザの決定された現在の身体状態を目標の身体状態と比較することを含むことができる。例えば、ケトーシスがゴールである場合、デバイス115は、ユーザが現在ケトーシスにあるかどうかを決定することができる。ユーザがインスリンの最小の好ましいレベルを定義した場合、デバイス115は、ユーザの現在のレベルがこの閾値を満たすかどうかを決定することができる。実施形態では、この評価は、任意の数の比較を含むことができ、しばしばはるかに複雑である。
【0138】
特定の実施形態では、ユーザは、複数の状態にわたる相関および比較を必要とする目標を定義することができる。これは、個々のパターン125間の相関を必要とし得る。特定の実施形態では、複数のパターン125間の相関は、ユーザの精神状態に関連する精神的パターンと、ユーザの身体状態に関連する身体的パターンとの間の相関を含む。そのような複合目標の例として、いくつかの実施形態では、ユーザは、空腹レベルが閾値を超えない限り、ケトーシスを維持したいことを指定し得る。したがって、現在の一致度を評価する際に、システムは、ユーザがケトーシスにあるかどうかを決定するための身体的パターンだけでなく、空腹レベルが閾値を超えるかどうかを決定するための精神的パターンも相関され得る。特定の実施形態では、デバイス115は、現在の一致度を示す第1の値または値のセットを生成する。
【0139】
別の例として、妊娠がケトーシスに影響を与え得るといういくつかの証拠がある。例えば、場合によっては、妊娠はケトーシスの加速および長期化状態として概念化することができる。ケトンの存在が成長中の胎児の脳の発達に悪影響を与え得ることを示唆する証拠があり、これは、ケトンの存在が少ないか、まったくないことが望ましいことを意味する。さらにまたは代わりに、ケトンが妊娠中のユーザに存在する場合、システムは、ユーザが適切な発達に重要な十分な量の炭水化物を消費していないと推測し得る。したがって、いくつかの局面において、一致度評価は、ユーザ(妊娠している場合)がケトーシスにないこと、またはケトーシスに入らないことを確実にすることができる。
【0140】
ブロック720で、デバイス115は、ユーザの予測された状態と所望の状態との間の将来の一致度を評価する。上記のように、特定の実施形態では、これは、精神状態、身体状態、および組み合わせの考慮を含むことができる。例えば、ユーザがケトーシスをできるだけ長く維持したい場合、システムは現在および将来の状態がケトーシスを維持すると予想されるかどうかを決定することができる。別の例として、1つの目標が体重を減らすことである場合、デバイス115は、現在および/または将来の状態が体重減少につながると予測されるかどうかを決定することができる。いくつかの実施形態では、そのような決定は、パターン/状態間の相互相関を必要とし得る。例えば、システムは、現在および/または将来の状態を、減量を予測するためにユーザのために生成されたパターン125などの減量モデルと相関させて、状態が一致しているかどうかを決定し得る。特定の実施形態では、デバイス115は、将来の一致度を示す第2の値または値のセットを生成する。
【0141】
特定の実施形態では、デバイス115は、一致度を決定するために、パターン/状態間の相互相関を含む、任意の数および様々な相関を実行することができる。次に、ブロック725で、システムは、決定された一致度を戻す。例えば、分析がクラウドで実行される場合、システムは、一致度の指示をデバイス115に送信することができる。
【0142】
結果の生成
特定の実施形態では、デバイス115は、上で考察された評価の組み合わせを使用して、ユーザ105のための結果または応答を生成する。少なくとも1つの実施形態では、これは、デバイス115上のGUIを介するなどして、一致度の指示をユーザに出力することを含む。他の出力例には、オーディオ出力、振動などの使用を含むことができる。
【0143】
特定の実施形態では、デバイス115は、1つ以上のパターン125が、現在および/または将来の状態が1つ以上の目標と一致するかどうかを示すかどうかに関する出力を生成する。例えば、特定の実施形態では、デバイス115は、ユーザが現在ケトーシスにあるかどうかを示す。特定の実施形態では、デバイス115は、ユーザがケトーシスに留まるかどうかを示す。
【0144】
特定の実施形態では、デバイス115は、収集されたデータを使用して、ユーザ固有の堅牢なフィードバックおよび結果をユーザに提供するように構成される。例えば、そのようなフィードバックおよび結果は、記載されたシステム120なしでは不可能であり得る。
【0145】
特に、特定の実施形態では、デバイス115は、1つ以上のパターン125および収集された追加のデータを利用して、考察されたように、異なるユーザ状態間の接続および相関を行うように構成される。デバイス115は、特定の実施形態では、接続および相関を示す情報をユーザに提示し得、その結果、ユーザは、情報に基づく決定を行うことができる。特定の実施形態では、デバイス115自体が、どのように目標またはゴールを達成するかについてユーザに勧めを提供する。このような情報は、ケトーシスを維持するためのより良い情報に基づいてユーザの自己啓発がより良い決定を下すことができるため、ケトジェニックライフスタイルを維持するユーザに説明責任を提供し、コーチングの必要性を減らすことを助け得る。
【0146】
ケトンからユーザ状態情報
特定の実施形態では、デバイス115は、ケトンレベルを示す分析物レベルとユーザ状態との間の相関関係を示す情報を提供する。例えば、デバイス115は、ユーザの精神状態をケトンレベルに相関させる情報を提供する。特定の実施形態では、デバイス115は、絶対ケトンレベルを精神状態に相関させる。特定の実施形態では、デバイス115は、ケトンレベルの変化のトレンドまたは速度を精神状態に相関させる。したがって、ユーザは、どのようにケトンレベルが精神状態に影響し得るかを決定するためにそのような情報を使用することができる。
【0147】
特定の実施形態では、デバイス115は、ユーザの身体状態をケトンレベルに相関させる情報を提供する。特定の実施形態では、デバイス115は、絶対ケトンレベルを身体状態に相関させる。特定の実施形態では、デバイス115は、ケトンレベルの変化のトレンドまたは速度を身体状態に相関させる。したがって、ユーザは、どのようにケトンレベルが身体状態に影響し得るかを決定するためにそのような情報を使用することができる。
【0148】
特定の実施形態では、デバイス115は、ユーザの空腹レベルをケトンレベルに相関させる情報を提供する。特定の実施形態では、デバイス115は、絶対ケトンレベルを食べた空腹レベルに相関させる。特定の実施形態では、デバイス115は、ケトンレベルの変化のトレンドまたは速度を空腹レベルに相関させる。したがって、ユーザは、どのようにケトンレベルが空腹レベルに影響し得るかを決定するためにそのような情報を使用することができる。
【0149】
そのような情報は、ユーザがケトンレベルが自分の体にどのように影響するかについての知識を持つことができるという点で、ユーザにとって有用であり得る。そのような情報はまた、本明細書で考察されるように、ユーザへの勧めを開発および作成するのに役立ち得る。
【0150】
影響レポート
特定の実施形態では、考察されたように、デバイス115は、食べた食事または実行された活動などのユーザ行動が1つ以上のユーザ状態にどのように影響するかを示す影響レポートを提供することができる。例えば、データに基づいて、1つ以上の行動が体重、インスリン感受性、ケトンレベル、またはユーザがケトーシスにあった時間のうちの1つ以上にどのように影響したかを示す1つ以上の影響レポートを生成することができる。したがって、ユーザは、ユーザ目標にトライしかつそれを満たすためになどんな行動をなすべきかについてより良い情報に基づく決定をなすためにこの情報を使用することができる。
【0151】
食事情報
デバイス115は、ユーザによって消費された食事とユーザの状態との間の相関関係を提供することができる。特に、考察されたように、ケトジェニックダイエットの重要な部分は、どんな食品をユーザが消費するかである。なぜならば、これがケトンレベルに影響を与えるからである。そのような情報を備えたユーザは、望ましいゴールを達成するために、何を食べるか、何を食べないか、いつ食べるか、いつ食べないかについて、より良い情報に基づく決定を下すことができる。
【0152】
特定の態様では、デバイス115は、異なる食事がユーザにどのように影響するかについてのシミュレーションおよび/または予測を示すことができる。例えば、ユーザは、食事によってユーザがケトーシスから抜け出すかどうかなど、特定の食事を食べることがユーザにどのように影響するかを正確に決定することができる。特定の実施形態では、シミュレーションおよび/または予測は、例えば、ケトーシスにとどまっている間にユーザが少量の炭水化物を安全に食べることを可能にするなど、ユーザが確信していなかった特定の食事が安全に食べられることを示すことができる。
【0153】
いくつかの実施形態では、デバイス115は、上で考察されたパターンおよび相関関係を使用して、ユーザがどの食品を消費することができるかまたは消費すべきかだけでなく、どの食品を避けるべきかを学習および理解するのを支援することができる。多くの場合、ケトジェニックダイエット(したがってデバイス115)は、多数の直感に反する制限や勧めを示唆する可能性がある。例えば、多くのケトン体生成レジメンは、カロリー含有量に対して比較的大量の脂肪を含み、これは、直感に反して、大幅な脂肪と体重の減少につながる。同様に、レジメンは、炭水化物の大幅な削減を含むことができ、これは、従来のコアカロリーを提供する食品を除外する。デバイス115は、特定の食事を一貫して提案し、および/またはユーザに他の食事を控えるように一貫してアドバイスすることにより、ユーザが問題のあるオプションを回避することを学ぶのを助けることができる。最終的に、ユーザは、所与の食事が受け入れられないことを知るために、デバイス115に全く依存する必要がない場合がある。
【0154】
特定の実施形態では、考察されたように、デバイス115は、ユーザによって実行される活動とユーザの状態との間の相関関係を提供することができる。特に、考察されたように、ケトジェニックダイエットの重要な部分は、どんな活動をユーザが実行するかである。なぜならば、これがケトンレベルに影響を与えるからである。そのような情報を備えたユーザは、望ましいゴールを達成するために、何をし、何をしないか、いつ何かをするか、いつ何かをしないかについて、より良い情報に基づく決定を下すことができる。
【0155】
いくつかの実施形態では、通常はユーザの飲食物から除外されている食品または飲料を消費するための最適または好ましい日および/または時間を決定するために意思決定支援システムを使用することができる。特定の実施形態では、これらの時間および日は、しばしば、口語的にチート日およびチート時間と称される。例えば、ユーザが今後のイベントを指定し、または意思決定支援システムが、誕生日パーティー、休暇、特別な行事などの事前定義された特定のイベントの記録を含むことができる。特定の実施形態では、意思決定支援システムは、どのように最適にチートするかについてユーザを導くことができる。これは、「チート」がそれらの進行を妨げないことを確実にするために、イベントの前および/または後に活動を変更するようにユーザに指示することを含むことができる。関連する実施形態では、意思決定支援システムは、計画された身体活動または運動に備えるために炭水化物または他の物質の摂取を増やすための最適な時間を同様に提案することができる。
【0156】
このようにして、ユーザは、どの食品を消費するか(もしあれば)、およびどのような行動を取るかについて、より多くの情報に基づいた決定を下すことができる。例えば、システムが、ユーザに現在の空腹感が30分以内に終わると予想されることを保証する場合、ユーザはケトーシスを維持するために食事を控えることを決定し得る。ただし、モデルが、空腹感が持続または悪化すると予想されることを示す場合、または過敏性の増加などの他の問題が発生し得ることを示す場合、ユーザはケトーシスを解消して食物を消費することを決定し得る。
【0157】
アラーム
特定の実施形態では、デバイス115は、様々な理由でアラームを生成することができる。いくつかの実施形態では、ユーザ状態と所望の状態との間の現在の不一致により、デバイス115はアラームを生成する。特定の実施形態では、特定の不一致のみがアラームをトリガーする。いくつかの実施形態では、ユーザは、どの目標、したがってどの一致度寸法がアラームと関連付けられるべきかを指定し得る。例えば、ユーザは、ケトンと血糖値の即時アラートを希望し得る。そのような実施形態では、不一致がそのような目標に関係する場合、デバイス115は、アラームまたはアラートを生成することができる。実施形態では、アラームは、ユーザの注意を引くための視覚的プロンプト、音、振動などを含むことができる。いくつかの実施形態では、ケトンまたはグルコースアラームなどのアラームは、ユーザが所望の範囲外にあるときの食物摂取などの行動を思いとどまらせるためのリアルタイムのリマインダーとして提供される。
【0158】
いくつかの実施形態では、デバイス115は、他のデバイスまたは個人へのアラーム、アラート、および/または情報共有を容易にする。そのような一実施形態では、デバイス115は、ユーザが、1つ以上の他のデバイスまたはユーザと(自動的にまたは要求に応じて)更新を共有することを可能にする。同様に、他の人はこれらの更新を購読またはフォローし得る。例えば、デバイス115は、更新(例えば、分析物の測定値、現在および/または将来の状態、状態の一致度など)を他の人(例えば、ユーザの両親、医師または他の医療提供者など)と自動的に共有するように構成され得る。いくつかの態様では、この共有は、測定値(または予測された状態)が定義された基準を満たすときに(例えば、DKAが発生すると予測されるときまたは発生しているときに)トリガーされ得る。このような共有とフォローは、医療提供者がユーザのステータスを評価し続けるために、また他の人(例えば、幼児や若年成人の両親)がユーザの健康を監視し続けることを可能にするために特に役立ち得る。
【0159】
いくつかの実施形態では、システムは、繰り返されるパターンまたは条件に対して同様のアラートを提供することができる。例えば、ユーザ(またはケア提供者などの別人)は、所与の条件または状態が、定義された頻度を超えて、ある期間内の回数を超えて、などで到達された(または予測される)ときを検出するようにデバイス115を構成し得る。そのような一実施形態では、ユーザがDKAまたは他の定義された条件または状態に繰り返し接近する場合(例えば、週に3回を超える)、システムは、監視を増やすように指定されたケア提供者(例えば、親またはヘルスケア提供者)に警告し得る。例えば、これは、糖尿病ユーザがインスリンを制限しているため、健康を維持するために必要な量よりも少ない量を受けていることが原因であり得る。このようなパターンを検出して他の人に警告することにより、システムは、ユーザが必要なケアを確実に受けられるようにすることができ、これは、追加の指示や支援、およびその他の介入を含み得る。
【0160】
いくつかの実施形態では、システムは、ユーザの状態が(想定される)入力と矛盾する方法で変化しているときを識別し、適切な応答またはアラートを生成するように構成され得る。これは、例えば、機器の故障の検出、報告された行動における不正または誤解の検出などを含み得る。そのような一実施形態では、システムは、機器の推測された故障に基づいて、ユーザおよび/または他の人にアラートを生成し得る。例えば、システムが、ユーザの状態を維持することを助けるためにインスリンポンプとインターフェースすると仮定する。ポンプがインスリンを供給するように指示された場合でも、システムがユーザの状態に影響がないように見えることを検出したと仮定する(例えば、ユーザのレベルが変化しない、または以前に移動していた方向と速度で継続する)。そのような検出に基づいて、システムは、ポンプが故障していると判断し、ユーザおよび/または他の人に適切なアラートを生成することができる。同様に、ポンプがインスリンを供給するように指示されていない場合でも、ユーザの状態がインスリンに応答して変化しているように見える場合、システムはポンプが漏れていると判断し、対応するアラートを生成し得る。
【0161】
勧められる行動
特定の実施形態では、勧めは、ゴールと現在および/または将来の状態との間の識別された不一致を改善する1つ以上の行動を含む。例えば、デバイス115は、適切なグルコースおよび/またはケトンレベルを確保するために消費する1つ以上の食品を提案するか、またはユーザによって提案または要求されたものに代わる食品を識別し得る。例えば、デバイス115は、「ケーキの代わりに、一握りのクルミはどうですか?」と提案し得る。別の例として、デバイス115は、ユーザの現在および/または差し迫ったDKA状態に応じて、即時の水分補給および/またはインスリン、または即時の入院を提案し得る。特定の実施形態では、これらの行動は、ルールベースの表を使用して識別される。例えば、ルールは、ケトンが低すぎる場合、適切な行動は食物を控えることであると指定し得る。ケトンが高すぎる場合、適切な行動は食物を消費することであり得る。当然のことながら、実際には、特定のルールはより複雑になる可能性があり、多くの要因や提案を含むことができる。別の実施形態では、デバイス115は、パターン125を使用して代替案を繰り返し評価することによって行動を識別し、将来の状態をより受け入れやすくする行動を選択する。
【0162】
特定の実施形態では、勧めは、肯定的な行動と不作為の両方を含むことができる。少なくとも1つの実施形態では、勧めは、パターン125を繰り返し使用して、潜在的な行動をとることによって引き起こされる結果の状態を推定または決定することによって識別される。結果として得られる予測を使用して、最適な前方パスを識別することができる。特定の実施形態では、予測を使用して、負の影響を最小限に抑えながら、最適なケトーシスが維持される確率を保証または増加させる1つ以上の行動を識別することができる。このような勧めを提供することにより、システムはユーザの意思決定をより良く支援することができる。つまり、モデルは、単に将来の状態を予測するのではなく、ユーザがそれらの状態を改善するために実行できる実行可能なステップを動的かつインテリジェントに識別することができる。
【0163】
特定の実施形態では、勧めは、例えば、ユーザが食事および/または飲料を消費すること、そうすることを控えること、身体活動に従事すること、運動または他の計画された活動を控えることなどを勧めることを含むことができる。特定の実施形態では、食事が勧められる場合、またはユーザが食事の提案を要求した場合、勧められる行動は、許容可能な食事のタイプ、量、カロリー量などの指示を含むことができる。上で考察されたように、ケトーシスは複雑で繊細な状態であり、しばしば脂肪、タンパク質、炭水化物の注意深いバランスを必要とする。多くの場合、最適範囲から外れるのを防ぐために、バランスを注意深く追跡しなければならない。いくつかの実施形態では、食事のタイプを提案することに加えて、意思決定支援システムは、食事を取得する場所をさらに提案することができる。例えば、システムは、レストラン名、住所、および/またはレストランへの道順などを提案することができる。
【0164】
いくつかのそのような実施形態では、代替案は、ユーザの現在の場所、および/またはユーザが現在利用できる食品オプションに基づいて識別される。次に、デバイス115は、潜在的な代替の食事ごとの影響を推定することができる。特定の実施形態では、システムは、ユーザから事前定義された距離内にあるレストランおよび他の飲食物のオプションを識別することができる。レストランの場合、システムは各々についてメニューを取得し、メニューオプションを評価して、安全に消費することができる場所および/またはメニューアイテムを識別することができる。特定の実施形態では、システムは、自宅の冷蔵庫またはパントリーなど、ユーザ105が現在所有している食品および飲料に関するデータを同様に取得し、そのような各オプションを評価することができる。このようにして、将来の状態が関連する基準/目標状態と一致する確率を保証または改善する1つ以上の食事オプションが見つかる。
【0165】
ユーザインターフェース
最終的に、特定の実施形態では、意思決定支援システムは、決定された一致度および/または勧めをユーザに出力する。いくつかの実施形態では、例えば、意思決定支援システムは、デバイス115を介してそうする。例えば、デバイス115は、生成されたアラームを反映するようにGUIを更新し、テキストによる提案などを提供することができる。いくつかの実施形態では、デバイス115は、音声および/または触覚フィードバックを使用して、アラームおよび勧めを出力する。少なくとも1つの実施形態では、出力は、単に行動を述べるのではなく、提案された行動を示す自然言語を含む。例えば、単に「食べるな」や「クルミを食べなさい」と述べるのではなく、出力は、「少しの間食事を控えることができれば、ゴールに向かって順調に進んでいる!」または「そのリンゴの代わりに、一握りのクルミはどうですか?」と述べる場合がある。上で考察されたように、ケトーシスは微妙なバランスを必要とし、失敗しやすい。自然言語の提案は、ユーザを快適にし、ゴールを確実に達成することを助けることができる。
【0166】
いくつかの実施形態では、意思決定支援システムは、それが効果的である可能性が高いときに出力を提供する。ケトーシスに到達しようとすると、多くの個人は、利益が実現する前に、空腹感の増加のために諦める。したがって、いくつかの実施形態では、意思決定支援システムは、増大する空腹感を識別することができる。特定の実施形態では、システムは、ユーザ入力に基づいて、および/またはパターン125を使用して、増大する空腹感を識別し、先制的にユーザに食事を提案する。これは、予測される将来の不一致に基づく可能性がある。例えば、特定の実施形態において、増大する空腹感は、ユーザが食べる可能性の増加と相関し、それはケトーシスを妨げるであろう。
【0167】
特定の実施形態では、意思決定支援システムは、様々な測定基準にわたって、および経時的に健康追跡を可能にする統合GUIを提供する。少なくとも1つの実施形態では、GUIは、ユーザ105のための多種多様なデータを反映する全身ダッシュボードを含む。特定の実施形態では、GUIは、人の輪郭を描写する体のシルエットを含み、様々なデータがユーザに示される。特定の実施形態では、シルエットは、ユーザの進行状況、および/またはユーザの将来の予測を示すことができる。例えば、シルエットには、現在の進行状況/状態に重ねられた個別のレイヤーとして、将来の予測を含み得る。様々な実施形態において、GUIは、グルコースまたはケトンレベルのような分析物の現在の測定値、過去の傾向、および/または予測値、ならびに体重の傾向、インスリン感受性の傾向、脂肪燃焼などを含むことができる。少なくとも1つの実施形態では、GUIは、ユーザが空腹感を示すために使用することができるボタンまたは他の入力を含む。これにより、システムは、他の測定基準および測定値と相関して、空腹感のパターンを検出することが可能になる。
【0168】
いくつかの実施形態では、GUIは、関連する分析物の範囲内の時間を示す。例えば、システムは、所与の分析物のユーザのレベルが定義された最適または好ましい範囲内にある期間を決定し、この時間の指示を出力することができる。いくつかの実施形態では、これは、ユーザが現在範囲内にいる期間を含む。特定の実施形態では、これは、ある期間にわたる範囲内の合計時間を示す累積値を含む。特定の実施形態では、期間は、例えば、その日の範囲内の時間、先週にわたる時間などを含むことができる。これにより、ユーザは励まされ、より多くの情報を得ることができる。特定の実施形態では、GUIはまた、グルコースおよび/またはケトンなどの様々な分析物の現在および/または以前の変化率(RoC)を示す。この情報は、ユーザにどのように体が変化しているかをさらに知らせ、レベルが目的のゾーン内に維持されるのを確実にすることを助けることができる。
【0169】
特定の実施形態では、GUIは、予想される進行と比較して、ユーザの進行を示す。例えば、GUIは、予想される脂肪燃焼と比較したユーザの実際の脂肪燃焼を表示することができる。これにより、ユーザは、ゴールの達成に役立つ行動、ならびに進行を助けない、または積極的に妨げない行動を識別して理解することが可能になる。少なくとも1つの実施形態では、GUIは、ユーザのゴールに基づいて、ユーザにカスタマイズ可能なビューを提供することができる。つまり、ユーザのゴールに基づいて、システムはどのメトリックが最も関連性があるか、または重要であるかを判断し、これらのメトリックをより目立つように反映するようにGUIを個人化し得る。例えば、主なユーザのゴールがインスリン抵抗性または感受性を改善することである場合、システムは、体のシルエットの上のGUIの上部にインスリン抵抗性または感受性に関連するメトリックを提供し、ユーザが減量などの他のそれほど重要でないメトリックを手動で選択して見ることを可能にすることができる。いくつかの関連する実施形態では、GUIは、ユーザのゴールに向けた計画またはガイドを設定するのを助けるために、ユーザのためにスタートアップキットを提供する。このキットは、例えば、目標に向けたタイムラインに関する予測、目標自体の指示、ユーザがゴールに到達するために実行した、および/または実行する必要のある行動、および/またはユーザの目標に向けた進捗状況を含むことができる。
【0170】
特定の実施形態では、意思決定支援システムは、任意の数の他のサービスおよび処理をユーザに提供することができる。例えば、この統合環境を使用して、システムは病状の危険因子を示す測定値の組み合わせを決定することができる。次に、意思決定支援システムは、これらのメトリックをユーザおよび/または医療提供者に提供して、マーカーを理解し、敗血症、ケトアシドーシス、低血糖などの潜在的なリスクを示す新しい相関関係を識別することができる。
【0171】
少なくとも1つの実施形態では、システムは、多種多様なユーザから情報を収集し、それを集約してデータマイニングを可能にすることができる。実施形態では、情報は、ユーザのプライバシーを保護するために最初に匿名化することができる。このような集計データは、人口統計全体の人口の健康状態を評価したり、各人口統計のリスク要因を特定したりするために利用することができる。
【0172】
特定の実施形態では、意思決定支援システムを使用して、パターンおよび傾向をユーザに視覚的に描写し、ユーザがそれらがどのように変化および改善したかを容易に把握することを可能にし得る。そのようなパターンは、例えば、インスリンおよびグルコースの感受性および/または耐性、気分および精神状態、身体状態、空腹レベル、ユーザの体重などを含むことができる。例えば、特定の実施形態において、耐糖能/感受性の改善測定基準は、ケトンレベルが範囲内にとどまるので、以前にグルコースレベルを所望の範囲外に押し出した他の活動または作用にもかかわらず、グルコースレベルも範囲内にとどまる傾向があることを含み得る。いくつかの実施形態では、ユーザは、意思決定支援システムを使用してゴールを設定することができ、意思決定支援システムは、ゴールを達成するためのユーザの進捗状況を決定および描写することができる。特定の実施形態では、ユーザのゴールは、例えば、ゴールの重み、ケトーシスの時間などを含むことができる。
【0173】
いくつかの実施形態では、意思決定支援システムは、遡及的情報、ならびに状態ベースの予測を提供する。例えば、遡及的情報は、ユーザが何を消費したか、どれだけ消費したか、ユーザが実行した活動などの指示を含むことができる。この遡及的情報は、ケトンレベルなどの結果として生じる状態の指示をさらに含むことができる。予測に関して、いくつかの実施形態では、システムは、状態変化がいつ発生するかについての予測をユーザに示す。例えば、これは、ユーザがケトーシスに入る時期、副作用が終了すると予想される時期、予想される体重減少などを含む。特定の実施形態において、副作用は、例えば、空腹感、過敏性などを含むことができる。
【0174】
教育
本明細書で説明するように、ケトン体生成レジメンは非常に複雑であり、ドメインに関する重要な知識を必要とする。いくつかの実施形態では、参入障壁を低減するために、GUIは、ケトン体生成レジメンについてユーザおよび他の人を教育するのを助ける情報を含む。例えば、特定の実施形態では、システムは、全体的な健康の測定値として、ボディマス指数(BMI)の代替物に関する記事および情報を提供する。これらの代替案は、ケトンおよびグルコースレベル、グルコース感受性など、システムによって収集された測定値を含むことができる。さらなる実施形態では、システムは、この食事療法の健康上の利点に関する情報を提供する。特定の実施形態では、情報は、例えば、記事、研究などを含むことができる。上で考察されたように、これらの利点は広範囲であり、体重減少、インスリン抵抗性または感受性およびグルコース感受性の改善、にきびの減少、多嚢胞性卵巣症候群(PCOS)症状の改善、血糖値とインスリンレベルの低下、2型糖尿病に対するインスリン依存性が低いまたはないことを介する糖尿病管理の改善、心臓の健康の改善、癌およびてんかんのリスクの減少、集中力および/または学習の改善などの脳機能の改善、パーキンソン病、アルツハイマー病、睡眠障害などの疾患の治療などを含む。
【0175】
少なくとも1つの実施形態では、GUIは、他の人の教育を支援するための情報を提供する。例えば、ユーザはレジメンの利点を認識し得るが、この食事療法のニュアンスや複雑さについて他の人と話し合う準備ができていない場合がある。したがって、特定の実施形態では、GUIは、ユーザによって共有されるスニペットまたはクイックヒント、おもしろい事実、記事などを提供することができる。これにより、この食事療法を維持するユーザの能力が劇的に向上し、他の人の参加を促すことができる。
【0176】
実施形態では、システムは、現在および/または将来の一致度を分析して、任意の数の出力を生成することができる。これらの出力は、アラーム、勧め、提案、教材、励ましなどを含むことができる。
【0177】
特定の実施形態では、意思決定支援システムは、ユーザがケトン体生成レジメンを開始するときに、ユーザを動的にサポートすることができる。上で考察されたように、ユーザはしばしば食事療法の初期段階で特に否定的な副作用を感じる(しばしばケトインフルエンザと称される)。これらの困難を克服するのを助けるために、いくつかの実施形態では、意思決定支援システムは、上で考察されたように、食事療法への緩和に関するガイダンスを提供する。いくつかの実施形態では、意思決定支援システムは、ユーザが諦めないことを確実にするために、これらの初期段階中にコーチングおよび励ましをさらに提供することができる。同様に、特定の実施形態では、意思決定支援システムは、ユーザの進行に関して、この段階でユーザに比較的頻繁な更新を提供する。これは、モチベーションを高め、ユーザを軌道に乗せるのを助けることができる。
【0178】
ゴールと期待の設定
いくつかの実施形態では、意思決定支援システムは、コミュニティの双方向性を促進するためのプラットフォームとして機能する。いくつかの実施形態では、これは、ユーザが互いにサポートすることを可能にすることを含む。特定の実施形態では、ユーザの相互作用およびサポートは、例えば、励まし、ヒント、自分たちの成功を自慢する機会などを含むことができる。特定の実施形態では、これは、ユーザ間の比較および競争を可能にすることを含む。例えば、意思決定支援システムは、友人のグループ間でハイスコアのリストを提供し、各々がどのように進行しているかを示すことができる。これは、ユーザが進行にもっと関与し続けることによって、ケトジェニックライフスタイルをより良く維持するようにユーザを促すのを助けることができる。
【0179】
いくつかの実施形態では、意思決定支援システムは、ゴールに向けたユーザの実際の進捗と比較して、1つ以上のゴールに向けて予想される進捗に関するメトリックを出力する。例えば、特定のそのような実施形態では、システムは、それらの測定基準、人口統計、行動などを与えられたユーザの予想または予測された体重減少を出力することができる。システムは、このタイムラインでユーザの実際の体重減少をさらに出力することができる。特定の実施形態では、意思決定支援システムは、それによって、個々のユーザにとって最も効果的なアプローチを識別することができる。少なくとも1つの実施形態では、システムは、実際の進捗が予想される進捗から逸脱したタイムライン内のポイントを識別し、その時間の前後にどのユーザ行動が発生したかを決定することによってそうする。いくつかの実施形態では、システムは、同様に、ユーザの進行が予想される進行とより密接に一致し始めたポイントを識別し、これらの時間に発生する行動を識別する。意思決定支援システムは、ユーザの意思決定を導くために、これらの行動の指示を出力することができる。
【0180】
特定の実施形態では、意思決定支援システムは、ユーザのゴールに対する最適な範囲および相関関係を追跡し、これらの決定された最適な範囲および/または相関関係の指示を出力する。これは、最適な減量、インスリン感受性の改善、またはその他の健康指標の範囲を含むことができる。例えば、システムは、パターン125の履歴データにおいて、ユーザの進歩が最も重要であった期間を識別し得る。次に、システムは、これらのウィンドウでユーザと関連付けられた分析物レベルまたは他のデータを識別し、過去のデータに基づいて、これらのレベルがユーザにとって望ましいまたは最適であるという指示を出力することができる。特定の関連する実施形態では、システムは、同様にこの分析を使用して効率追跡を実行し、任意の所与の時点でユーザがゴールに向かってどれだけ効率的であるかの指示を出力することができる。特定の実施形態では、システムは、提案をさらに最適化して、ユーザが以前のデータに基づいてゴールに向かって効率的な経路をたどることを確実にすることができる。例えば、システムは、特定の活動を実行すること、特定のものを食べることを控えることなどによって、自分たちがより速くゴールを達成することができることをユーザに示すことができる。いくつかの実施形態では、システムは、ユーザが、ゴールを達成するために順調に進んでいながら、場合によっては食物消費を増やすことができることを学習し、示すことができる。
【0181】
特定の実施形態では、システムは、この効率分析を使用して、ユーザを最適な体重減少レベルに導くことができる。例えば、行動、測定値、および体重減少の間の識別された相関に基づいて、システムは、高いまたはそうでなければ最適な体重減少と関連する行動および/または食事を識別することができる。次に、システムは、これらの最適なレベルに再び到達するための指示または提案をユーザに提供することができる。いくつかの実施形態では、システムは、同様に、インスリン感受性などの他の健康測定基準の最適な結果に向けてユーザを案内する。
【0182】
いくつかの実施形態では、システムは、最適な範囲を識別して提供することに加えて、必要に応じて、ユーザをさらに最適な範囲に戻すように案内する。特定の実施形態では、システムは、パターンを使用して、行動と影響との間の待ち時間/タイムラグ、および/または分析物の変化率を識別して、ユーザを範囲に戻すように案内する。例えば、食事や運動などの行動と、その結果として生じるケトンのシフトとの間の遅延に基づいて、システムは、どの行動を実行するか、いつ実行するかをユーザに指示して、最適な範囲に再び入ることができる。いくつかの実施形態では、取るべき行動およびそれらをいつ取るべきかを決定するのを助けるために、システムはさらに、ケトンの現在の変化率に基づいてユーザを案内する。
【0183】
少なくとも1つの実施形態では、意思決定支援システムは、ケトーシスまたは別の状態に向けてユーザにカスタマイズ可能な経路を提供することができる。多くの場合、個人は通常の飲食物からケトジェニックダイエットに移行するのが困難である。したがって、この移行を支援するために、意思決定支援システムは、ユーザの現在の習慣を評価し、ユーザが時間の経過とともにケトーシスに陥りやすくなるように段階的な変更を提案することができる。特定の実施形態では、変更は、ユーザが指定した期間にわたってユーザが食事療法に入るのを容易にするように設計されている。例えば、意思決定支援システムは、ユーザを現在の習慣から1週間、1か月などで完全にケトジェニックな生活に徐々に導くカスタムパスを生成し得る。これは、例えば、ケトーシスへの移行を確実に達成しながら、最初の空腹感やその他の悪影響を最小限に抑えるために、週の様々な日および一日の様々な時点の提案された食品を含むことができる。少なくとも1つの実施形態では、このカスタマイズされたパスは、所与の日にケトーシスに費やされる目標時間の長さを含み、時間は最終ゴールまでゆっくりと増加する。
【0184】
カスタマイズ可能なパスの例として、ユーザが現在、平均して1日2回炭水化物を含む食品を消費していると仮定する。典型的なケトジェニックレジメンは、特にユーザが男性の場合、ユーザがこの炭水化物摂取量を大幅に減らす(またはおそらく完全に排除する)ことを要求する可能性がある。ただし、炭水化物の摂取量をすぐにゼロに減らすと、倦怠感、頭痛、注意力の低下、痛み、一般的な欲求不満など、ユーザに他の副作用を引き起こす可能性がある。したがって、カスタムパスを生成して、ユーザがゆっくりと食事療法を始められるようにし得る。これは、1日2回ではなく、指定された時間に1日1回炭水化物を消費するようにユーザに指示することを含み得る。最終的には、必要に応じて、指示が炭水化物なしに移行することができる。別の例として、ユーザが現在週に1回運動しているが、システムが週に3回の方が最適であると判断したとする。特定の実施形態では、システムは、最適なレベルに到達するまで、一定期間、トレーニングを徐々に増やすようにユーザに求めることができる。特定の実施形態では、増加したトレーニングは、例えば、週に1日を超えるトレーニング、毎日徐々に長くなるトレーニングに従事することなどを含み得る。
【0185】
図8は、本明細書に開示される特定の実施形態による、意思決定を支援するためにユーザデータを分析するように構成されたコンピューティングデバイス800を示すブロック図である。物理デバイスとして示されているが、実施形態では、コンピューティングデバイス800は、仮想デバイスを使用して、かつ/またはクラウド環境などのいくつかのデバイスにわたって実装されてもよい。図示のように、コンピューティングデバイス800は、プロセッサ805、メモリ810、ストレージ815、ネットワークインターフェース825、および1つ以上のI/Oインターフェース820を含む。図示の実施形態では、プロセッサ805は、メモリ810に記憶されたプログラミング命令を検索し、実行するだけでなく、ストレージ815に常駐するアプリケーションデータを記憶し、検索する。プロセッサ805は、概して、単一のCPUおよび/またはGPU、複数のCPUおよび/またはGPU、複数の処理コアを有する単一のCPUおよび/またはGPUなどを表す。メモリ810は、概して、ランダムアクセスメモリを表すために含まれている。ストレージ815は、ディスクドライブ、フラッシュベースのストレージデバイスなどの任意の組み合わせであってもよく、固定ディスクドライブ、リムーバブルメモリカード、キャッシュ、光ストレージ、ネットワーク接続ストレージ(NAS)、またはストレージエリアネットワーク(SAN)などの固定および/またはリムーバブルストレージを含んでもよい。
図8に示されるコンピューティングデバイス800は、単なる例示的なデバイスであり、特定の要素が変更または削除され、および/または他の要素または機器が追加され得る。
【0186】
いくつかの実施形態では、入力および出力(I/O)デバイス835(キーボード、モニターなど)は、I/Oインターフェース820を介して接続することができる。さらに、ネットワークインターフェース825を介して、コンピューティングデバイス800は1つ以上の他のデバイスおよび構成要素と通信可能に結合することができる。特定の実施形態では、コンピューティングデバイス800は、インターネット、ローカルネットワークなどを含み得るネットワークを介して他のデバイスと通信可能に結合される。ネットワークには、有線接続、無線接続、または有線接続と無線接続の組み合わせが含まれてもよい。図示のように、プロセッサ805、メモリ810、ストレージ815、ネットワークインターフェース825、およびI/Oインターフェース820は、1つ以上の相互接続830によって通信可能に結合されている。特定の実施形態では、コンピューティングデバイス800は、ユーザと関連付けられたデバイス115を表す。特定の実施形態では、上で考察されたように、デバイス115は、ユーザのラップトップ、コンピュータ、スマートフォンなどを含むことができる。別の実施形態では、コンピューティングデバイス800は、クラウド環境において実行されるサーバーである。
【0187】
図示の実施形態では、ストレージ815は、1つ以上のパターン865、および1つ以上の履歴データ870のセットを含む。特定の実施形態では、コンピューティングデバイス800がクラウド環境で動作している場合、コンピューティングデバイス800は、任意の数のパターン865および履歴データ870のセットを維持し得る。例えば、ストレージ815は、システムと関連付けられた各ユーザのために、別個の個人化されたパターン865および別個の履歴データ870のセットを含むことができる。
【0188】
さらに、特定の実施形態では、ストレージ815は、1つ以上の集合パターン865および/または履歴データ870のセットを含む。例えば、個人化されたモデルやデータを利用できないユーザに使用される汎用/デフォルトのパターン865があり得る。関連する実施形態では、ストレージ815は、人口統計情報を提供したが、履歴データ870に十分な個人データを持たないユーザに使用される、人口統計固有のパターン865を含むことができる。上で考察されたように、パターン865は、一般に、将来の状態を予測するため、および/または最適な行動を提案するために、ユーザからのデータを評価するために使用される。
【0189】
いくつかの実施形態では、履歴データ870は、一般に、ある期間にわたって収集された、ユーザと関連するデータを含む。特定の実施形態では、履歴データ870は、記録のセットを含み、各記録は、ユーザの識別子および記録と関連付けられた日時の指示とともに、所与の時点でのユーザの状態を示す。状態は、例えば、ユーザの現在の生物学的および/または精神状態、ユーザが最近またはその時点で積極的に従事している行動などを含むことができる。特定の実施形態では、履歴データ870は、記録内の他のデータが与えられた場合に、コンピューティングデバイス800によって提案された行動の指示をさらに含む。
【0190】
図示のように、メモリ810は、意思決定支援アプリケーション840を含む。メモリ810に常駐するソフトウェアとして示されているが、実施形態では、意思決定支援アプリケーション840の機能は、ハードウェア、ソフトウェア、またはハードウェアとソフトウェアの組み合わせを使用して実装することができる。特定の実施形態では、意思決定支援アプリケーション840は、上記の支援および意思決定機能の様々な側面を実行する。
【0191】
これらの非限定的な実施例の各々は、それ自体で独立することができ、または様々な順列もしくは他の実施例のうちの1つ以上との組み合わせで組み合わされ得る。
【0192】
上記の詳細な説明は、詳細な説明の部分を形成する添付の図面への参照を含む。図面は、例証として、本発明を実施することができる特定の実施形態を示している。これらの実施形態はまた、本明細書では「実施例」と称される。そのような実施例は、図示または説明されたものに加えて要素を含むことができる。しかしながら、本発明者らはまた、図示または説明された要素のみが提供される実施例を企図する。さらに、本発明者らはまた、特定の実施例(またはその1つ以上の態様)に関すること、または本明細書に示され、もしくは説明される他の実施例(またはその1つ以上の態様)に関することのいずれかで示され、または説明された要素(またはその1つ以上の態様)の任意の組み合わせまたは順列を使用する実施例を企図する。
【0193】
この文書と、参照により組み込まれているいくつかの文書との間に一貫性のない使用法がある場合には、この文書の使用法が優先される。
【0194】
この文書では、「a」または「an」という用語は、特許文書で一般的であるように、「少なくとも1つ」または「1つ以上」の他の実例または使用法とは関係なく、1つまたは2つ以上を含むように使用される。この文書では、「または」という用語は、他に指定されていない限り、「AまたはB」が「AであるがBではない」、「BであるがAではない」、および「AおよびB」を含むように、非排他的な「または」を指すように使用される。この文書では、「含む(including)」および「ここで(in which)」という用語は、「含む(comprising)」および「ここで(wherein)」というそれぞれの用語の平易な英語の同等語として使用される。また、以下の特許請求の範囲において、「含む」および「備える」という用語は制限のないものであり、すなわち、特許請求の範囲のそのような用語の後に列挙されている要素に加えて要素を含むシステム、デバイス、物品、組成物、製剤、またはプロセスは、依然としてその特許請求の範囲の範囲内にあるとみなされる。さらに、以下の特許請求の範囲において、「第1」、「第2」、および「第3」などの用語は、単にラベルとして使用され、それらのオブジェクトに数値的要件を課すことを意図しない。
【0195】
「平行」、「垂直」、「円形」、または「四角」などの幾何学用語は、文脈で別の指示がない限り、絶対的な数学的精度を必要とすることを意図しない。代わりに、そのような幾何学用語は、製造または同等の機能による変動を許容する。例えば、要素が「円形」または「概して円形」と記述されている場合、正確に円形ではない構成要素(例えば、やや長方形または多辺の多角形)がまた、この説明に包含される。
【0196】
本明細書で説明される方法の例は、少なくとも部分的に機械またはコンピュータで実装されることができる。いくつかの例は、上記の例で説明した方法を実行するように電子デバイスを構成するように動作可能な命令によって符号化されたコンピュータ可読媒体または機械可読媒体を含むことができる。そのような方法の実装形態は、例えば、マイクロコード、アセンブリ言語コード、より高水準の言語コード等のコードを含むことができる。そのようなコードは、様々な方法を実行するためのコンピュータ可読命令を含むことができる。コードは、コンピュータプログラム製品の部分を形成することができる。さらに、一例では、コードは、実行中または他の時間中に、1つ以上の揮発性、非一時的、または不揮発性の有形のコンピュータ可読媒体に有形に記憶されることができる。これらの有形のコンピュータ可読媒体の実施例には、ハードディスク、取り外し可能な磁気ディスク、取り外し可能な光ディスク(例えば、コンパクトディスクおよびデジタルビデオディスク)、磁気カセット、メモリカードまたはスティック、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)などが含まれ得るが、これらに限定されない。
【0197】
上記の説明は、例示を意図したものであり、限定を意図したものではない。例えば、上述の実施例(またはその1つ以上の態様)は、互いに組み合わせて使用され得る。上記の説明を検討して、例えば、当業者は、他の実施形態を使用することができる。要約は、読者が技術的開示の性質を迅速に確認することを可能にするために、米国特許法施行規則第1.72条(b)に準拠するように提供されている。それは、特許請求の範囲の範囲または意味を解釈または制限するために使用されないことを理解して提出されている。また、上記の詳細な説明では、本開示を簡素化するために、様々な特徴をグループ化することができる。このことは、特許請求されていない開示された特徴がいかなる特許請求項に不可欠であることを意図するものとして解釈されるべきではない。むしろ、発明の主題は、特定の開示された実施形態のすべての特徴よりも少ない場合がある。したがって、その結果、以下の特許請求の範囲は、実施例または実施形態として詳細な説明に組み込まれ、各特許請求項は、別個の実施形態として独立し、そのような実施形態は、様々な組み合わせまたは置換で互いに組み合わされ得ることが企図される。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる等価物の全範囲とともに決定されるべきである。
【符号の説明】
【0198】
100 エコシステム
105 ユーザ
110 センサー
115 デバイス
120 インテリジェントシステム
125 1つ以上のパターン
300 1つ以上のパターン125を構築するためのワークフロー
305 分析物センサー
310 活動センサー
315 ユーザ入力
400 ユーザ状態を決定するためのワークフロー
405 ユーザデータ
410 決定モジュール
415 現在の状態
420 将来の状態
505 縦軸
510 横軸
515 実線部分
520 点線部分
525 横の点線
530 横の点線
800 計算デバイス
805 プロセッサ
810 メモリ
820 I/Oインターフェース
825 ネットワークインターフェース
830 相互接続(バス)
835 I/Oデバイス
840 意思決定支援アプリケーション
865 パターン
870 履歴データ
【国際調査報告】