IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コムスコープ テクノロジーズ リミティド ライアビリティ カンパニーの特許一覧

特表2023-515923デジタル干渉キャンセルのためのシステムおよび方法
<>
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図1
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図2
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図3A
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図3B
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図4
  • 特表-デジタル干渉キャンセルのためのシステムおよび方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-04-17
(54)【発明の名称】デジタル干渉キャンセルのためのシステムおよび方法
(51)【国際特許分類】
   H04B 1/525 20150101AFI20230410BHJP
   H04B 1/10 20060101ALI20230410BHJP
【FI】
H04B1/525
H04B1/10 L
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022549752
(86)(22)【出願日】2021-01-27
(85)【翻訳文提出日】2022-08-18
(86)【国際出願番号】 US2021015316
(87)【国際公開番号】W WO2021167763
(87)【国際公開日】2021-08-26
(31)【優先権主張番号】62/978,413
(32)【優先日】2020-02-19
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519407091
【氏名又は名称】コムスコープ テクノロジーズ リミティド ライアビリティ カンパニー
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100092624
【弁理士】
【氏名又は名称】鶴田 準一
(74)【代理人】
【識別番号】100114018
【弁理士】
【氏名又は名称】南山 知広
(74)【代理人】
【識別番号】100153729
【弁理士】
【氏名又は名称】森本 有一
(72)【発明者】
【氏名】ジョハネス スタイガート
(72)【発明者】
【氏名】ダニエル スワブ
【テーマコード(参考)】
5K011
5K052
【Fターム(参考)】
5K011BA03
5K011DA02
5K011DA12
5K011DA27
5K011KA05
5K052AA01
5K052BB01
5K052DD19
5K052FF32
5K052FF33
5K052GG31
5K052GG32
5K052GG48
5K052GG57
(57)【要約】
一例では、通信デバイスは、送信および受信信号経路、送信および受信信号経路に結合されたデュプレクサ、ならびに送信信号経路に結合されたフィードバック信号経路を含み、送信信号の一部分は、フィードバック信号としてフィードバック信号経路内に結合解除される。通信デバイスは、フィードバックおよび受信信号をデジタルフィードバックおよび受信信号に変換するためのADCをさらに含む。通信デバイスは、デジタルフィードバックおよび受信信号を受信するデジタル干渉キャンセル回路をさらに含み、デジタル干渉キャンセル回路は、デジタルフィードバック信号の振幅および位相を修正して、修正されたフィードバック信号を生成することと、修正されたフィードバック信号を、結合チャネルのインパルス応答に対して補償して、補償された修正されたフィードバック信号を生成することと、補償された修正されたフィードバック信号をデジタル受信信号と合成して、干渉をキャンセル、低減、減衰、または排除することと、を行うように構成されている。
【選択図】図1
【特許請求の範囲】
【請求項1】
通信デバイスであって、
送信信号経路と、
受信信号経路と、
前記送信信号経路および前記受信信号経路に通信可能に結合されたデュプレクサであって、前記デュプレクサが、アナログ送信信号をアンテナに提供するように構成されており、前記デュプレクサが、前記受信信号経路にアナログ受信信号を提供するように構成されている、デュプレクサと、
前記送信信号経路に通信可能に結合されたフィードバック信号経路であって、前記アナログ送信信号の一部分が、フィードバック信号として前記送信信号経路から前記フィードバック信号経路内に結合解除される、フィードバック信号経路と、
前記フィードバック信号をデジタルフィードバック信号に変換し、かつ前記アナログ受信信号をデジタル受信信号に変換するように構成されたアナログデジタル変換器と、
前記デジタルフィードバック信号および前記デジタル受信信号を受信するように構成されたデジタル干渉キャンセル回路であって、前記デジタル干渉キャンセル回路が、
前記デジタルフィードバック信号の振幅および位相を修正して、修正されたフィードバック信号を生成することと、
前記修正されたフィードバック信号を、前記送信信号経路と前記受信信号経路との間の結合チャネルのインパルス応答に対して補償して、補償された修正されたフィードバック信号を生成することと、
前記補償された修正されたフィードバック信号を前記デジタル受信信号と合成することであって、前記受信信号との前記補償された修正されたフィードバック信号の合成が、前記デジタル受信信号における干渉をキャンセル、低減、減衰、または排除する、合成することと、を行うように構成されている、デジタル干渉キャンセル回路と、を備える、通信デバイス。
【請求項2】
前記送信信号経路が、
デジタル送信信号を前記アナログ送信信号に変換するように構成されたデジタルアナログ変換器と、
前記デジタルアナログ変換器に通信可能に結合された電力増幅器であって、前記電力増幅器が、前記アナログ送信信号の前記振幅を調節するように構成されている、電力増幅器と、
前記電力増幅器に通信可能に結合された第1の方向結合器であって、前記第1の方向結合器が、前記アナログ送信信号の一部分を前記送信信号経路から前記フィードバック信号経路に結合解除するように構成されている、第1の方向結合器と、を備え、
前記フィードバック信号経路が、
前記第1の方向結合器に通信可能に結合されており、かつ前記フィードバック信号を受信するように構成された第1のアナログデジタル変換器であって、前記第1のアナログデジタル変換器が、前記フィードバック信号を前記デジタルフィードバック信号に変換するように構成されている、第1のアナログデジタル変換器を備え、
前記受信信号経路が、
前記デュプレクサに通信可能に結合されており、かつ前記デュプレクサから前記アナログ受信信号を受信し、かつ前記アナログ受信信号の前記振幅を調整するように構成された低ノイズ増幅器と、
前記低ノイズ増幅器に通信可能に結合された第2のアナログデジタル変換器であって、前記第2のアナログデジタル変換器が、前記低ノイズ増幅器から前記アナログ受信信号を受信し、かつ前記アナログ受信信号を前記デジタル受信信号に変換するように構成されている、第2のアナログデジタル変換器と、を備える、請求項1に記載の通信デバイス。
【請求項3】
前記デジタルキャンセル回路が、
フィードバック信号経路であって、
前記デジタルフィードバック信号の前記振幅を修正するように構成された第1の振幅オフセットブロックと、
前記デジタルフィードバック信号の前記位相を修正するように構成された位相シフタと、
前記修正されたフィードバック信号を、前記送信信号経路と前記受信信号経路との間の結合チャネルのインパルス応答と畳み込んで、前記補償された修正されたフィードバック信号を生成するように構成された事前畳み込み回路と、を含む、フィードバック信号経路と、
適応フィルタであって、前記補償された修正されたフィードバック信号の前記振幅および/または位相を、前記適応フィルタの伝達関数に従って修正するように構成されており、前記適応フィルタの前記伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正される、適応フィルタと、
受信信号経路であって、
前記デジタル受信信号の前記振幅を修正するように構成された第2の振幅オフセットブロックと、
前記適応フィルタに通信可能に結合されたデジタル総和であって、前記デジタル総和が、前記補償された修正されたフィードバック信号を前記デジタル受信信号と合成するように構成されている、デジタル総和と、を含む、受信信号経路と、を備える、請求項1に記載の通信デバイス。
【請求項4】
前記デジタルキャンセル回路が、
フィードバック信号経路であって、
前記デジタルフィードバック信号の前記振幅を修正するように構成された第1の振幅オフセットブロックと、
前記デジタルフィードバック信号の前記位相を修正するように構成された位相シフタと、
適応フィルタであって、前記修正されたフィードバック信号の前記振幅および/または位相を、前記適応フィルタの伝達関数に従って修正するように構成されており、前記適応フィルタの前記伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正されて、前記修正されたフィードバック信号を、前記送信信号経路と前記受信信号経路との間の結合チャネルのインパルス応答に対して補償する、適応フィルタと、を含む、フィードバック信号経路と、
受信信号経路であって、
前記デジタル受信信号の前記振幅を修正するように構成された第2の振幅オフセットブロックと、
前記適応フィルタに通信可能に結合されたデジタル総和であって、前記デジタル総和が、前記補償された修正されたフィードバック信号を前記デジタル受信信号と合成するように構成されている、デジタル総和と、を含む、受信信号経路と、を備える、請求項1に記載の通信デバイス。
【請求項5】
内部信号生成器をさらに備え、前記通信デバイスが、前記内部信号生成器を使用して、前記デジタル干渉キャンセル回路の第1の振幅オフセットブロック、第2の振幅オフセットブロック、および/または位相シフタを動的に較正するように構成されている、請求項1に記載の通信デバイス。
【請求項6】
前記送信信号経路が、
白色ガウス雑音信号生成器に結合されるように構成された方向結合器であって、前記方向結合器が、較正中に前記白色ガウス雑音信号を前記送信信号経路に注入するように構成されている、方向結合器と、
前記送信信号経路内のデジタルアナログ変換器に結合されたスイッチであって、前記スイッチが、第1の構成と第2の構成との間で構成可能であり、前記第1の構成では、前記スイッチが、前記方向結合器に通信可能に結合され、前記第2の構成では、前記スイッチが、前記送信信号経路内の電力増幅器に通信可能に結合されている、スイッチと、を備える、請求項1に記載の通信デバイス。
【請求項7】
前記帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器または前記通信デバイスの内部信号生成器によって生成される、請求項6に記載の通信デバイス。
【請求項8】
前記送信信号経路と前記受信信号経路との間の結合チャネルの前記インパルス応答が、前記デュプレクサのインパルス応答と、前記受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、請求項1に記載の通信デバイス。
【請求項9】
通信デバイスのデジタル干渉キャンセル回路であって、
フィードバック信号経路であって、
デジタル化されたフィードバック信号の電力レベルを均等化するように構成された第1の振幅オフセットブロックであって、前記デジタル化されたフィードバック信号が、通信デバイスの送信経路からの送信信号から導出される、第1の振幅オフセットブロック、
前記デジタル化されたフィードバック信号に位相オフセットを適用して、修正されたフィードバック信号を生成するように構成された位相シフタ、
前記修正されたフィードバック信号を、前記通信デバイスの送信信号経路と受信信号経路との間の結合チャネルのインパルス応答と畳み込むように構成された事前畳み込み回路、を含む、フィードバック信号経路と、
受信信号経路であって、
デジタル化された受信信号の電力レベルを均等化するように構成された第2の振幅オフセットブロックであって、前記デジタル化された受信信号が、通信デバイスのデュプレクサからの受信信号から導出される、第2の振幅オフセットブロックと、
前記畳み込まれた修正されたフィードバック信号を前記デジタル化された受信信号と合成して、前記デジタル化された受信信号からの干渉をキャンセル、低減、減衰、または排除するように構成されたデジタル総和と、を含む、受信信号経路と、を備える、デジタル干渉キャンセル回路。
【請求項10】
前記フィードバック信号経路が、前記デジタル化されたフィードバック信号を窓掛けして、窓掛けされたデジタル化されたフィードバック信号を生成するように構成された第1の窓掛け回路をさらに備え、前記窓掛けされたデジタル化されたフィードバック信号が、前記第1の振幅オフセットブロックに提供され、
前記受信信号経路が、前記デジタル化された受信信号を窓掛けして、窓掛けされたデジタル化されたフィードバック信号を生成するように構成された第2の窓掛け回路をさらに備え、前記窓掛けされたデジタル化された受信信号が、前記第2の振幅オフセットブロックに提供される、請求項9に記載のデジタル干渉キャンセル回路。
【請求項11】
前記フィードバック信号経路が、前記事前畳み込み回路と前記デジタル総和との間に通信可能に結合された適応フィルタをさらに備え、前記適応フィルタが、前記適応フィルタの伝達関数に従って前記畳み込まれた修正されたフィードバック信号の前記振幅および/または位相を修正するように構成されており、前記適応フィルタの前記伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正される、請求項9に記載のデジタル干渉キャンセル回路。
【請求項12】
前記帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器によって生成され、前記通信デバイスの前記送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して前記通信デバイスの前記送信信号経路に注入される、請求項11に記載のデジタル干渉キャンセル回路。
【請求項13】
前記帯域幅制限された白色ガウス雑音信号が、前記通信デバイスの内部信号生成器によって生成され、前記通信デバイスの前記送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して前記通信デバイスの前記送信信号経路に注入される、請求項11に記載のデジタル干渉キャンセル回路。
【請求項14】
プロセッサが、前記通信デバイスの内部信号生成器を使用して、前記第1の振幅オフセットブロック、前記第2の振幅オフセットブロック、および/または前記位相シフタを動的に較正するように構成されている、請求項11に記載のデジタル干渉キャンセル回路。
【請求項15】
前記送信信号経路と前記受信信号経路との間の結合チャネルの前記インパルス応答が、前記デュプレクサのインパルス応答と、前記受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、請求項11に記載のデジタル干渉キャンセル回路。
【請求項16】
通信デバイスのデジタル干渉キャンセル回路であって、
フィードバック信号経路であって、
デジタル化されたフィードバック信号の電力レベルを均等化するように構成された第1の振幅オフセットブロックであって、前記デジタル化されたフィードバック信号が、通信デバイスの送信経路からの送信信号から導出される、第1の振幅オフセットブロック、
前記デジタル化されたフィードバック信号に位相オフセットを適用して、修正されたフィードバック信号を生成するように構成された位相シフタ、
前記位相シフタ回路とデジタル総和との間に通信可能に結合された適応フィルタであって、前記適応フィルタが、前記修正されたフィードバック信号の前記振幅および/または位相を、前記適応フィルタの伝達関数に従って修正するように構成されており、前記適応フィルタの前記伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正されて、前記修正されたフィードバック信号を、前記通信デバイスの前記送信信号経路と前記受信信号経路との間の結合チャネルのインパルス応答に対して補償する、適応フィルタ、を含む、フィードバック信号経路と、
受信信号経路であって、
デジタル化された受信信号の電力レベルを均等化するように構成された第2の振幅オフセットブロックであって、前記デジタル化された受信信号が、通信デバイスのデュプレクサからの受信信号から導出される、第2の振幅オフセットブロックと、
前記補償された修正されたフィードバック信号を前記デジタル化された受信信号と合成して、前記デジタル化された受信信号からの干渉をキャンセル、低減、減衰、または排除するように構成されたデジタル総和と、を含む、受信信号経路と、を備える、デジタル干渉キャンセル回路。
【請求項17】
前記帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器によって生成され、前記通信デバイスの前記送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して前記通信デバイスの前記送信信号経路に注入される、請求項16に記載のデジタル干渉キャンセル回路。
【請求項18】
前記帯域幅制限された白色ガウス雑音信号が、前記通信デバイスの内部信号生成器によって生成され、前記通信デバイスの前記送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して前記通信デバイスの前記送信信号経路に注入される、請求項16に記載のデジタル干渉キャンセル回路。
【請求項19】
プロセッサが、前記通信デバイスの内部信号生成器を使用して、前記第1の振幅オフセットブロック、前記第2の振幅オフセットブロック、および/または前記位相シフタを動的に較正するように構成されている、請求項16に記載のデジタル干渉キャンセル回路。
【請求項20】
前記送信信号経路と前記受信信号経路との間の結合チャネルの前記インパルス応答が、前記デュプレクサのインパルス応答と、前記受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、請求項16に記載のデジタル干渉キャンセル回路。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年2月19日出願の「SYSTEMS AND METHODS FOR DIGITAL INTERFERENCE CANCELLATION」と題された米国特許仮出願第62/978,413号の利益を主張し、これは、参照により本明細書に組み込まれる。
【背景技術】
【0002】
現代の通信ネットワークでは、モバイルデバイスおよび基地局は、送信機および受信機区分を含む。モバイルデバイスの送信機は、アップリンクで動作し、モバイルデバイスの受信機は、ダウンリンクで動作する。基地局の送信機は、ダウンリンクで動作し、基地局の受信機は、アップリンクで動作する。通信に利用される二重方式および送受信機の電力クラスに応じて、送信機と受信機との間の結合チャネルが異なる。現代の通信システムでは、送信機相互変調製品は、基地局およびモバイルデバイスの送信機対受信機のクロストークの主因となる可能性が高い。低電力送受信機のための結合チャネル(例えば、周波数分割二重化(FDD)システムにおけるデュプレクサまたは時間分割二重化(TDD)システムにおけるサーキュレータ/スイッチ)のための絶縁要件は、困難であり得るが、高電力送受信機の絶縁要件は、特に達成が困難である。高電力FDDシステムの場合、高絶縁要件は、大型デュプレクサを必要とし、開発コストおよびデュプレクサ設計にかかる時間を増加させる。デュプレクサ設計に伴う難しさのいくつかは、デジタルキャンセル技術を使用して改善され得る。
【発明の概要】
【0003】
一例では、通信デバイスは、送信信号経路、受信信号経路、ならびに送信信号経路および受信信号経路に通信可能に結合されたデュプレクサを含む。デュプレクサは、アナログ送信信号をアンテナに提供し、アナログ受信信号を受信信号経路に提供するように構成される。通信デバイスは、送信信号経路に通信可能に結合されたフィードバック信号経路をさらに含み、アナログ送信信号の一部分が、フィードバック信号として送信信号経路からフィードバック信号経路内に結合解除される。通信デバイスは、フィードバック信号およびアナログ受信信号をデジタルフィードバック信号およびデジタル受信信号に変換するように構成されたアナログデジタル変換器をさらに含む。通信デバイスは、デジタルフィードバック信号およびデジタル受信信号を受信するように構成されたデジタル干渉キャンセル回路をさらに含む。デジタル干渉キャンセル回路は、デジタルフィードバック信号の振幅および位相を修正して、修正されたフィードバック信号を生成するように構成される。デジタル干渉キャンセル回路は、修正されたフィードバック信号を、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答に対して補償して、補償された修正されたフィードバック信号を生成するようにさらに構成される。デジタル干渉キャンセル回路は、補償された修正されたフィードバック信号をデジタル受信信号と合成するようにさらに構成され、受信信号との補償された修正されたフィードバック信号の合成が、デジタル受信信号における干渉をキャンセル、低減、減衰、または排除する。
【0004】
図面が例示的な実施形態のみを示し、したがって、範囲の制限とみなされるものではないことを理解すると、例示的な実施形態は、添付の図面の使用を通して追加の特異性および詳細とともに説明されることになる。
【図面の簡単な説明】
【0005】
図1】例示的な通信デバイスのブロック図である。
【0006】
図2】例示的なデジタル干渉キャンセル回路のブロック図である。
【0007】
図3A】デジタル干渉キャンセル回路用の例示的な較正システムのブロック図である。
図3B】デジタル干渉キャンセル回路用の例示的な較正システムのブロック図である。
【0008】
図4】デジタル干渉キャンセル回路を含む例示的な分散アンテナシステムのブロック図である。
【0009】
図5】デジタル干渉キャンセル回路を含む例示的な単一ノード中継器のブロック図である。
【0010】
一般的慣行によれば、様々な説明される特徴は、縮尺で描かれていないが、例示的な実施形態に関連する特定の特徴を強調するために描かれている。
【発明を実施するための形態】
【0011】
以下の詳細な説明では、本明細書の一部を形成し、かつ特定の例示的な実施形態の例示によって示される、添付図面を参照する。しかしながら、他の実施形態が使用されてもよく、論理的、機械的、および電気的変更が行われてもよいことが理解されるべきである。それゆえに、以下の詳細な説明は、限定された意味では取らないものとする。
【0012】
現在の動的デジタルキャンセル技術の1つの制限は、フィルタの適合が干渉周波数のみで実施されることである。マルチキャリア、マルチオペレータシステムの場合、受信機の干渉は、静的でも予測可能でもない。現在の技術は、ハードウェア製造者が、設計に基づく動的デジタルキャンセルシステムの規制準拠動作を確保することを可能にせず、これが保証されることができないとき、動的デジタルキャンセルを利用するのは困難である。
【0013】
本明細書に説明される例示的なシステムおよび方法は、デジタル処理を使用して、受信機の全周波数範囲にわたって干渉のデジタルキャンセルを改善する。本明細書に説明されるいくつかの例では、システムの静的較正は、動作中に動的較正と組み合わせて利用される。いくつかの例では、広帯域白色ガウス雑音信号は、動作中に現場で大きい変化(リスク)が予期されないように、デジタル干渉キャンセル回路を較正するために使用される。したがって、これらの例示的なシステムおよび方法は、現在の相互変調歪みのみに対処する現在の適応方法による懸念を軽減する。
【0014】
いくつかの例では、システムは、フィードバック信号の振幅および位相を修正し、かつ修正されたフィードバック信号をデュプレクサのインパルス応答および1つ以上の無線周波数成分(または送信機と受信機との間の他の結合チャネル)と畳み込む、デジタル干渉キャンセル回路を含む。そのようなデジタル干渉キャンセル回路は、畳み込まれた修正されたフィードバック信号を受信信号とさらに合成して、受信信号における干渉をキャンセル、低減、減衰、または排除する。いくつかの例では、デジタル干渉キャンセル回路は、生産のばらつきおよび経時変化を考慮して静的に較正される伝達関数を適用する適応フィルタをさらに含む。いくつかの例では、デジタル干渉キャンセル回路によって実施される振幅および/または位相修正は、動作中の環境または経時変化の影響を考慮するために、内部信号生成器を使用して動作中に動的に較正される。
【0015】
他の例では、システムは、フィードバック信号の振幅および位相を修正するデジタル干渉キャンセル回路を含み、生産のばらつきおよび経時変化に加えて、結合チャネルのインパルス応答を考慮する、静的に較正される伝達関数を適用する適応フィルタを含む。いくつかのそのような例では、デジタル干渉キャンセル回路によって実施される振幅および/または位相修正は、動作中の環境または経時変化の影響を考慮するために、内部信号生成器を使用して動作中に動的に較正される。
【0016】
図1は、例示的な通信デバイス100のブロック図である。図1の例では、通信デバイス100は、デジタル干渉キャンセル回路103を有するプロセッサ102と、デジタルアナログ変換器104と、電力増幅器106と、方向結合器108と、デュプレクサ110と、低ノイズ増幅器112と、2つのアナログデジタル変換器114-1、114-2と、を含む。各構成要素の単一の例が図1に示されるが、これは、例示を容易にするためであり、通信デバイス100は、図1に示される構成要素のうちの1つ以上を含み得ることを理解されたい。例えば、通信デバイス100は、プロセッサ102への複数の送信または受信信号経路および対応する入力/出力を含み得る。図1に示されていない他の構成要素もまた、通信デバイス100の要件または所望の動作に応じて、信号経路に含められ得る。
【0017】
図1に示される例では、プロセッサ102は、送信出力(TX)、フィードバック入力(FB)、および受信入力(RX)を含む。プロセッサ102は、通信デバイス100によって受信された信号からの干渉を、デジタルでキャンセル、低減、減衰、または排除するように構成されたデジタル干渉キャンセル回路103をさらに備える。いくつかの例では、プロセッサ102は、フィールドプログラマブルゲートアレイ(FPGA)である。
【0018】
図1に示される例では、デジタルアナログ変換器104は、プロセッサ102の送信出力に通信可能に結合されている。デジタルアナログ変換器104は、プロセッサ102によって出力される信号をアナログ信号に変換するように構成される。いくつかの例では、デジタルアナログ変換器104は、プロセッサ102によって出力されたデジタル送信信号をアナログ送信信号に変換するように構成される。いくつかの例では、デジタルアナログ変換器104は、プロセッサ102によって出力されたデジタル較正信号をアナログ較正信号に変換するように構成される。
【0019】
図1に示される例では、電力増幅器106は、RFフロントエンド105の送信信号経路でデジタルアナログ変換器104に結合され、アナログ送信信号の電力レベルを増加させるように構成される。いくつかの例では、電力増幅器106は、高電力増幅器である。他の例では、電力増幅器106は、低電力または中電力増幅器である。
【0020】
図1に示される例では、RFフロントエンド105の送信信号経路は、方向結合器108をさらに含む。いくつかの例では、方向結合器108は、アナログ送信信号の一部分をフィードバック信号としてフィードバック信号経路内に結合解除するように構成される。フィードバック信号は、方向結合器108に通信可能に結合されている、アナログデジタル変換器114-1に提供される。アナログデジタル変換器114-1は、フィードバック信号をデジタル信号に変換するように構成される。
【0021】
図1に示される例では、送信信号経路は、アンテナ116に結合されるデュプレクサ110に結合される。デュプレクサ110は、カバレッジエリアへの放射のために、アンテナ116にアナログ送信信号を提供するように構成される。デュプレクサ110はまた、アンテナ116からアナログ受信信号を受信し、かつ通信デバイス100の受信信号経路にアナログ受信信号を提供するように構成される。
【0022】
図1に示される例では、RFフロントエンド105の受信信号経路は、デュプレクサ110に結合され、かつアナログ受信信号の電力レベルを増加させるように構成された低ノイズ増幅器112を含む。アナログ受信信号は、低ノイズ増幅器112に通信可能に結合されている、アナログデジタル変換器114-2に提供される。アナログデジタル変換器114-1は、受信信号をデジタル信号に変換するように構成される。
【0023】
デジタル干渉キャンセル回路103は、フィードバック信号経路からフィードバック信号を受信し、受信信号経路から受信信号を受信するように構成される。実際には、受信信号は、干渉および意図された受信信号を含むことになる。例えば、干渉は、送信信号経路によって引き起こされ、次いで、結合チャネルを通して受信信号経路内に漏洩され得る。いくつかの例では、デジタル干渉キャンセル回路103は、受信信号からの干渉をキャンセル、低減、減衰、または排除するように構成され、これは、通信デバイス100の信号対雑音比を増加させる、および/またはデュプレクサ110に対する絶縁要件を低減し得る。
【0024】
図2は、図1に示されるプロセッサ102に含められるデジタル干渉キャンセル回路103の例示的な実装のブロック図である。デジタル干渉キャンセル回路103は、フィードバック信号経路202および受信信号経路204を含む。図2に示される例では、フィードバック信号経路202は、窓掛け回路206-1、振幅オフセットブロック208-1、位相シフタ210、事前畳み込み回路212、および適応フィルタ218を含む。図2に示される例では、受信信号経路204は、窓掛け回路206-2、振幅オフセットブロック208-2、任意選択の時間遅延デバイス214、およびデジタル総和216を含む。
【0025】
図2に示される例では、窓掛け回路206-1、206-2は、それぞれ、アナログデジタル変換器114-1、114-2からフィードバック信号および受信信号を受信するように構成される。いくつかの例では、窓掛け回路206-1、206-2は、それぞれ、図1に関して上記に論じられた、フィードバック信号および受信信号(干渉を含む)を窓掛けするように構成される。いくつかの例では、窓掛け回路206-1、206-2は、アナログデジタル変換器214-1、214-2に供給される非周期信号に関連するスペクトル拡大を克服するために含められる。
【0026】
図2に示される例では、振幅オフセットブロック208-1、208-2は、窓掛け回路206-1、206-2の出力を受信するように構成される。いくつかの例では、振幅オフセットブロック208-1、208-2は、それぞれ、フィードバック信号および受信信号の振幅を調節することによって、フィードバック信号および受信信号の信号振幅を較正するように構成される。いくつかの例では、フィードバック信号および/または受信信号の振幅は、アナログデジタル変換器114-1、114-2における損失および差異を補償するように調節される。
【0027】
図2に示される例では、位相シフタ210は、振幅オフセットブロック208-1の出力を受信するように構成される。いくつかの例では、位相シフタ210は、フィードバック信号の位相を調節することによって、フィードバック信号の位相を較正するように構成される。いくつかの例では、フィードバック信号の位相は、アナログデジタル変換器114-1、114-2の間の位相オフセットを補償するように調節される。位相シフタ210の出力は、本明細書では修正されたフィードバック信号と呼ばれる。
【0028】
図2に示される例では、事前畳み込み回路212は、位相シフタ210から修正されたフィードバック信号を受信し、かつ修正されたフィードバック信号を、デュプレクサのインパルス応答および/または受信信号経路内の1つ以上の無線周波数成分(例えば、LNA)と畳み込むように構成される。いくつかの例では、インパルス応答は、デュプレクサおよびLNA(または他の結合チャネル)の散乱パラメータに基づいて判定される。製造者は、生産中に、受信信号経路(または他の結合チャネル)のデュプレクサ、低ノイズ増幅器、および/または他のRF構成要素の散乱パラメータを測定し得る。いくつかの例では、散乱パラメータが、インパルス応答の周波数領域の対応するものを表すため、インパルス応答は、逆フーリエ変換(例えば、逆高速フーリエ変換(IFFT))を、デュプレクサ、LNA、および/または他のRF成分の散乱パラメータに適用することによって近似される。
【0029】
図2に示される例では、任意選択の時間遅延デバイス214は、振幅オフセットブロック208-2から信号を受信し、かつ受信信号経路に任意選択の時間遅延を適用するように構成され得、そのため、フィードバック信号および受信信号の対応するサンプルが同時にデジタル総和216によって受信される。概して、受信経路内の追加の遅延を回避するために、時間遅延デバイス214は、バイパスされるか、またはデジタル干渉キャンセル回路103から除外され得る。
【0030】
図2に示される例では、デジタル総和216は、フィードバック信号経路202からの畳み込まれた修正されたフィードバック信号、および受信信号経路204からの修正された受信信号を受信するように構成される。デジタル総和216は、受信信号からの干渉をキャンセル、低減、減衰、または排除するために、畳み込まれた修正されたフィードバック信号と、依然として干渉を含む修正された受信信号とを合成するように構成される。デジタル総和216の出力は、送信機から受信機への漏洩に起因する干渉がキャンセル、低減、減衰、または排除された受信信号である。
【0031】
実際には、生産関連のばらつきおよび経時変化は、フィードバック信号経路202の成分による較正後でも、フィードバック信号と受信信号との間の無視できない振幅および位相差を引き起こし得る。これらの差異は、経時的にデジタル干渉キャンセル回路103の有効性を低減し得る。これは、振幅および位相差に起因して干渉が強め合うように重ね合わせられた場合、干渉の影響の増加に潜在的につながり得る。これらの問題を軽減するために、いくつかの例では、デジタル干渉キャンセル回路103のフィードバック信号経路202は、事前畳み込み回路212とデジタル総和216との間に結合された適応フィルタ218を含む。適応フィルタ218は、干渉をキャンセル、低減、減衰、または排除するためのフィードバック信号をより良好に較正するために、フィードバック信号の振幅および位相への調節を最適化するように構成される。いくつかの適応フィルタ技術が、フィードバック信号の振幅および位相への調節を判定して、生産関連のばらつきおよび経時変化を補償するために使用され得る。例えば、最小平均二乗(LMS)フィルタ、正規化されたLMS(NLMS)フィルタ、逐次最小二乗(RLS)フィルタなどが使用されてもよい。
【0032】
いくつかの例では、事前畳み込み回路212は、デジタル干渉キャンセル回路103からバイパスまたは省略され得る。例えば、適応フィルタ218は、デジタル干渉キャンセル回路103のフィードバック信号経路202内の位相シフタ210に結合され得る。そのような例では、適応フィルタ218は、干渉をキャンセル、低減、減衰、または排除するためのフィードバック信号をより良好に較正するために、フィードバック信号の振幅および位相への調節を最適化しながら、デュプレクサ、LNA、および/または他のRF構成要素のインパルス応答を補償するために使用される。
【0033】
いくつかの例では、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値は、温度補償され得る。いくつかの例では、通信デバイス100は、無線周波数システムの現在の温度を取得するための温度センサ(図示せず)を含む。そのような例では、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値は、現在の温度に基づいて調節される。
【0034】
デジタル干渉キャンセル回路103を較正するために、特定の通信デバイス100の電力レベルに応じて、数個の異なるアーキテクチャが使用され得る。図3Aおよび図3Bは、図1および図2に示されるデジタル干渉キャンセル回路103用の例示的な較正システム300、350のブロック図である。通信デバイス100の特徴は、図3Aおよび図3Bに含められ、通信デバイス100の構成要素は、図1に含まれるものと同じ参照番号を有する。
【0035】
図3Aに示される例では、較正システム300は、生産テストベンチ301を含む。生産テストベンチ301は、白色ガウス雑音生成器302を含む。いくつかの例では、白色ガウス雑音生成器302は、所望の受信周波数範囲に制限された帯域幅である、帯域制限された白色ガウス雑音信号を生成するように構成される。いくつかの例では、白色ガウス雑音生成器302は、デジタル干渉キャンセル回路103によってデジタルキャンセルが提供されなければならない全帯域幅をカバーする広帯域ノイズ信号を生成するように構成される。例えば、白色ガウス雑音発生器302は、ロングタームエボリューション(LTE)エアインターフェースプロトコルを使用して動作するように構成された通信デバイス100に対して、60MHzの帯域幅を有する白色ガウス雑音信号を生成するように構成され得る。異なる帯域幅を有する信号もまた、異なるエアインターフェースプロトコルとともに使用され得る。
【0036】
高電力用途では、信号生成器のみを使用して較正に有用であるように、高い十分な電力レベルで白色ガウス雑音信号を生成することは困難な場合がある。いくつかの例では、生産テストベンチ301は、信号がRFフロントエンド105に提供される前に、白色ガウス雑音信号の電力レベルを増加させるように構成された電力増幅器304をさらに含む。低電力または中電力用途では、電力増幅器304は、生産テストベンチ301から省略され得る。
【0037】
白色ガウス雑音生成器302によって生成された白色ガウス雑音信号は、方向結合器306を介してRFフロントエンド105のダウンリンク信号経路に注入される。いくつかの例では、生産テストベンチ301の構成要素は、RFフロントエンド105のコネクタ(図示せず)を介して方向結合器306に結合される。いくつかの例では、生産テストベンチ301のRFコネクタは、ケーブルを介してRFフロントエンド105のRFコネクタに結合される。
【0038】
生産テストベンチ301による較正中、デジタル干渉キャンセル回路103に提供されるフィードバック信号は、白色ガウス雑音信号を含むことになり、デジタル干渉キャンセル回路103に提供される受信信号は、同じ白色ガウス雑音信号(本明細書では、Tx漏洩と称される)のミュート部分を含むことになる。デジタル干渉キャンセル回路103の適応フィルタ218の伝達関数を判定する適応フィルタ218の係数は、フィードバック信号経路内の白色ガウス雑音信号および受信信号経路内の受信されたTx漏洩信号に基づいて、反復的に修正される。いくつかの例では、適応フィルタ218の較正は、デジタル干渉キャンセル回路103によって提供される干渉キャンセルが所望の値に収束するまで実施される。いくつかの例では、所望の値は、較正プロセス中に受信された干渉信号の完全なキャンセルに基づいて選択される。他の例では、所望の値は、干渉が、システム要件を満たすのに十分なレベルで低減または減衰されるように選択される。例えば、デジタル総和216の出力に残る干渉の所望の値が、受信機におけるTx漏洩を20dBだけ低下させるように選択され得る。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、較正が停止され、適応フィルタ218の係数が動作のために静的に設定される。
【0039】
通信デバイス100の設置後、いくつかの問題は、通信デバイス100の動作中に、デジタル干渉キャンセル回路103による干渉のキャンセルに影響し得る。例えば、RFフロントエンド105をアンテナ116に接続するアンテナ116および/またはケーブルは、完全な終端を表していない場合があるか、または変動する環境条件もしくは経時変化が発生し得る。これらの問題は、生産較正条件と比較して異なり、デジタル干渉キャンセル回路103によって提供されるキャンセルのレベルを劣化させ得る。この劣化を補償するために、通信デバイス100は、内蔵較正機構をさらに含み得る。
【0040】
図3Aに示される例では、RFフロントエンド105は、デジタルアナログ変換器104と電力増幅器106との間に結合されたスイッチ308と、プロセッサ102によって実装される内部信号生成器310と、をさらに含む。キャンセル値の劣化が検出されたとき(例えば、信号対雑音比が閾値を超えるとき)、送信信号が、プロセッサ102によってオフにされ、スイッチ308が、プロセッサ102の送信出力を方向結合器306に接続するように切り替えられる。いくつかの例では、内部信号生成器310は、方向結合器306を介して送信信号経路内に注入される較正信号を生成するように構成される。いくつかの例では、較正信号は、特定の周波数における連続波音である。いくつかの例では、較正信号の周波数は、キャンセルされた周波数範囲にあるように選択される。
【0041】
内蔵較正中、フィードバック信号経路を介してデジタル干渉キャンセル回路103に提供されるフィードバック信号は、較正信号を含むことになり、デジタル干渉キャンセル回路103に提供される受信信号は、Tx漏洩信号を含むことになる。較正信号は、デジタル干渉キャンセル回路103の1つ以上の構成要素(例えば、振幅オフセットブロック208-1、208-2、および位相シフタ210)を修正するために使用される。
【0042】
いくつかの例では、デジタル干渉キャンセル回路103の適応フィルタ218の係数は、フィードバック信号経路を介して受信された較正信号、および受信信号経路内の受信されたTx漏洩信号に基づいて、反復的に修正される。いくつかの例では、適応フィルタ218の調節は、デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束するまで実施される。いくつかの例では、所望の値は、生産較正に使用されるものと同じである。他の例では、所望の値は、生産較正に使用される値とは異なる。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、較正が停止され、適応フィルタ218の係数が動作のために更新された値に設定される。
【0043】
いくつかの例では、振幅オフセットブロック208-1および/または位相シフタ210は、適応フィルタ218の係数を修正することに加えて(または代わりに)、フィードバック信号経路からの較正信号、および受信信号経路からのTx漏洩信号を使用して修正される。例えば、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値は、干渉信号のより良好なキャンセルを提供するために反復的に修正され得る。いくつかの例では、振幅オフセットブロック208-1、208-2および位相シフタ210は、デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束するまで修正される。いくつかの例では、所望の値は、生産較正に使用されるものと同じである。他の例では、所望の値は、生産較正に使用される値とは異なる。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、内蔵較正が停止され、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値が、動作のために設定される。
【0044】
内蔵較正プロセスの完了後、プロセッサ102は、プロセッサ102の送信出力を電力増幅器106に結合するために、スイッチ308を切り替えるように構成される。プロセッサ102は、通信デバイス100の正常動作を再開するために、送信信号をオンにするように構成される。
【0045】
図3Bは、図1および図2に示されるデジタル干渉キャンセル回路103用の別の例示的な較正システム350のブロック図である。較正システム350は、図3Aの較正システム300と同様の構成要素を含み、共通の特徴は、同様に番号付けされる。
【0046】
低電力または中電力用途では、内部信号生成器は、生産較正に十分な電力レベルで白色ガウス雑音信号を生成し得る。図3Bに示される例では、通信デバイス100は、生産較正および内蔵較正の両方に使用される内部信号生成器352を含む。
【0047】
生産較正では、内部信号生成器352は、方向結合器306を介してRFフロントエンド105の送信信号経路に注入される白色ガウス雑音信号を生成するように構成される。いくつかの例では、内部信号生成器352は、所望の受信周波数範囲に制限された帯域幅である、帯域制限された白色ガウス雑音信号を生成するように構成される。いくつかの例では、内部信号生成器352は、デジタル干渉キャンセル回路103によってデジタルキャンセルが提供されなければならない全帯域幅をカバーする広帯域ノイズ信号を生成するように構成される。例えば、内部信号発生器352は、ロングタームエボリューション(LTE)エアインターフェースプロトコルを使用して動作するように構成された通信デバイス100に対して、60MHzの帯域幅を有する白色ガウス雑音信号を生成するように構成され得る。異なる帯域幅を有する信号もまた、異なるエアインターフェースプロトコルとともに使用され得る。
【0048】
内蔵較正では、内部信号生成器352は、方向結合器306を介して送信信号経路内に注入される較正信号を生成するように構成される。いくつかの例では、較正信号は、特定の周波数における連続波音である。いくつかの例では、較正信号の周波数は、キャンセルされた周波数範囲にあるように選択される。
【0049】
生産較正中、スイッチ308は、図3Bに示される例では、プロセッサ102の送信出力を方向結合器306に接続するように切り替えられる。さらに、デジタル干渉キャンセル回路103に提供されるフィードバック信号は、白色ガウス雑音信号を含むことになり、デジタル干渉キャンセル回路103に提供される受信信号は、同じ白色ガウス雑音信号(本明細書では、Tx漏洩と呼ばれる)のミュート部分を含むことになる。デジタル干渉キャンセル回路103の適応フィルタ218の係数は、フィードバック信号経路内の白色ガウス雑音信号および受信信号経路内のTx漏洩信号に基づいて、反復的に修正される。いくつかの例では、適応フィルタ218の較正は、デジタル干渉キャンセル回路103によって提供される干渉キャンセルが所望の値に収束するまで実施される。いくつかの例では、所望の値は、較正プロセス中に受信された干渉信号の完全なキャンセルに基づいて選択される。他の例では、所望の値は、干渉が、システム要件を満たすのに十分なレベルで低減または減衰されるように選択される。例えば、デジタル総和216の出力における干渉抑制の所望の値が、少なくとも20dBであるように選択され得る。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、較正が停止され、適応フィルタ218の係数が動作のために静的に設定される。
【0050】
動作中にキャンセル値の劣化が検出されたとき(例えば、信号対雑音比が閾値を超えるとき)、送信信号が、プロセッサ102によってオフにされ、スイッチ308が、プロセッサ102の送信出力を方向結合器306に接続するように切り替えられる。図3Bに示されるシステムに対する内蔵較正中、デジタル干渉キャンセル回路103に提供されるフィードバック信号は、内部信号生成器352によって生成される較正信号を含むことになり、デジタル干渉キャンセル回路103に提供される受信信号は、Tx漏洩信号を含むことになる。較正信号は、デジタル干渉キャンセル回路103の1つ以上の構成要素(例えば、振幅オフセットブロック208-1、208-2、および位相シフタ210)を修正するために使用される。
【0051】
いくつかの例では、デジタル干渉キャンセル回路103の適応フィルタ218の係数は、フィードバック信号経路を介して受信された較正信号、および受信信号経路内の受信された干渉信号に基づいて、反復的に修正される。いくつかの例では、適応フィルタ218の調節は、デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束するまで実施される。いくつかの例では、所望の値は、生産較正に使用されるものと同じである。他の例では、所望の値は、生産較正に使用される値とは異なる。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、較正が停止され、適応フィルタ218の係数が動作のために更新された値に設定される。
【0052】
いくつかの例では、振幅オフセットブロック208-1、208-2および/または位相シフタ210は、適応フィルタ218の係数を修正することに加えて(または代わりに)、フィードバック信号経路からの較正信号、および受信信号経路からのTx漏洩信号を使用して修正される。例えば、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値は、干渉信号のより良好なキャンセルを提供するために反復的に修正され得る。いくつかの例では、振幅オフセットブロック208-1、208-2および位相シフタ210は、デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束するまで修正される。いくつかの例では、所望の値は、生産較正に使用されるものと同じである。他の例では、所望の値は、生産較正に使用される値とは異なる。デジタル干渉キャンセル回路103によって提供されるキャンセルが所望の値に収束すると、内蔵較正が停止され、振幅オフセットブロック208-1、208-2によって適用される振幅オフセットの値、および/または位相シフタ210によって適用される位相オフセットの値が、動作のために設定される。
【0053】
内蔵較正プロセスの完了後、プロセッサ102は、プロセッサ102の送信出力を電力増幅器106に結合するために、スイッチ308を切り替えるように構成される。プロセッサ102は、通信デバイス100の正常動作を再開するために、送信信号をオンにするように構成される。
【0054】
デジタル干渉キャンセル回路103および上記に説明された較正技術は、限定されるものではないが、無線ネットワークアクセスポイント、分散アンテナシステム、RF中継器、セルラー通信基地局、およびスモールセル基地局などの、任意の数のRF回路およびシステムアーキテクチャとともに使用され得る。
【0055】
図4は、1つ以上の構成要素内にデジタル干渉キャンセル回路103を含む例示的な分散アンテナシステム(DAS)400のブロック図である。図4の例では、分散アンテナシステム400は、1つ以上の遠隔アンテナユニット404に通信可能に結合されたマスタユニット402を含む。
【0056】
図4の例では、DAS400は、1つ以上のマスタユニット402(「ホストユニット」または「中央エリアノード」または「中央ユニット」とも呼ばれる)と、1つ以上のマスタユニット402に通信可能に結合されている1つ以上の遠隔アンテナユニット404(「遠隔ユニット」または「放射点」とも呼ばれる)と、を含む。この例では、DAS400は、デジタルDASを含み、DASトラフィックは、デジタル形態でマスタユニット402と遠隔アンテナユニット404との間に分散される。DAS400は、1つ以上の無線ネットワークオペレータに無線カバレッジおよび容量を提供するために、現場に配備されてもよい。現場は、例えば、建物もしくはキャンパス、もしくは建物の他のグループ分け(例えば、1つ以上の企業、政府、または他の企業体によって使用される)、または何らかの他の公共の場(ホテル、リゾート、アミューズメントパーク、病院、ショッピングセンター、空港、大学キャンパス、アリーナ、またはスキーエリア、スタジアムもしくは人口密集した繁華街などの屋外エリアなど)であってもよい。
【0057】
各マスタユニット402は、複数の基地局406に通信可能に連結される。基地局406のうちの1つ以上は、それが結合されるそれぞれのマスタユニット402と共存し得る(例えば、基地局406は、基地局容量をDAS400に提供することに専用である)。また、基地局406のうちの1つ以上は、それが結合される、それぞれのマスタユニット402から遠隔に位置し得る(例えば、基地局406は、DAS400に容量を提供することに加えて、マクロセルに基地局容量を提供するマクロ基地局である)。この後者の場合では、マスタユニット402は、遠隔に位置する基地局と無線で通信するために、無線中継器を使用してドナーアンテナに結合され得る。
【0058】
基地局406は、ベースバンドユニット(BBU)が、それが結合される無線ヘッド(RRH)と同じ位置に配備される従来の様式で実装され得、BBUおよびRRHが、光ファイバを使用して互いに結合され、それを介して、フロントホールデータがデジタルIQサンプルのストリームとして通信される(例えば、共通パブリック無線インターフェース(CPRI)、オープン基地局アーキテクチャイニシアチブ(OBSAI)、およびオープンRAN(O-RAN)ファミリーの仕様書のうちの1つに準拠する形式で)。また、基地局406は、他のやり方で(例えば、複数のBBUが中央の場所で一緒に配備され、無線サービスが提供されるエリアに配備される1つ以上のRRHにBBUの各々が結合される、集中型無線アクセスネットワーク(C-RAN)トポロジーを使用して)実装され得る。また、基地局406は、BBUおよびRRH機能が単一のパッケージ内に一緒に配備される、スモールセル基地局として実装されてもよい。
【0059】
マスタユニット402は、基地局406への広帯域インターフェースまたは狭帯域インターフェースを使用するように構成され得る。また、マスタユニット402は、アナログ無線周波数(RF)インターフェースまたはデジタルインターフェースを使用して(例えば、CPRI、OBSAI、またはO-RANデジタルインターフェースを使用して)、基地局406とインターフェースするように構成され得る。いくつかの例では、マスタユニット402は、1つ以上の無線インターフェースノード(図示せず)を介して基地局406とインターフェースする。無線インターフェースノードは、例えば、基地局ホテルに位置し、特定のRF設置部をグループ化して、マスタユニット402に転送し得る。
【0060】
従来、マスタユニット402は、好適なエアインターフェース標準を使用して、各基地局406がユーザのモバイルデバイス408(「モバイルユニット」または「ユーザ機器」とも呼ばれる)との間で通信するアナログ無線周波数信号を使用して、1つ以上の基地局406とインターフェースする。デバイス408は、本明細書では「モバイル」デバイス408と呼ばれるが、デバイス408は、通常の使用では、モバイルである必要はないことを理解されたい(例えば、デバイス408が、固定された場所に配備され、ゲートウェイまたは他のデバイスと周期的に無線通信するセンサユニットに組み込まれているか、または結合されている)。DAS400は、そのような無線周波数信号に対する分散中継器として動作する。各基地局406から送信されたRF信号(本明細書では「ダウンリンクRF信号」とも呼ばれる)は、マスタユニットで受信される。そのような例では、マスタユニット402は、ダウンリンクRF信号を使用して、遠隔アンテナユニット404のうちの1つ以上に分散されるダウンリンクトランスポート信号を生成する。そのような各遠隔アンテナユニット404は、ダウンリンクトランスポート信号を受信し、ダウンリンクトランスポート信号に基づいてダウンリンクRF信号のバージョンを再構成し、再構成されたダウンリンクRF信号が、その遠隔アンテナユニット404に結合されるか、またはそれに含まれるアンテナ414から放射させられる。
【0061】
いくつかの態様では、マスタユニット402は、遠隔アンテナユニット404に直接結合される。そのような態様では、マスタユニット402は、ケーブル421を使用して遠隔アンテナユニット404に結合される。例えば、ケーブル421は、カテゴリ5、カテゴリ5e、カテゴリ6、カテゴリ6A、またはカテゴリ7の仕様に適合する光ファイバまたはイーサネット(登録商標)ケーブルを含み得る。イーサネット(登録商標)信号に使用される将来の通信媒体仕様もまた、本開示の範囲内である。
【0062】
同様のプロセスが、アップリンク方向に実施され得る。モバイルデバイス408から送信されたRF信号(本明細書では、「アップリンクRF信号」とも呼ばれる)は、アンテナ414を介して1つ以上の遠隔アンテナユニット404で受信される。各遠隔アンテナユニット404は、アップリンクRF信号を使用して、遠隔アンテナユニット404からマスタユニット402に送信されるアップリンクトランスポート信号を生成する。マスタユニット402は、それに結合された1つ以上の遠隔アンテナユニット404から送信されたアップリンクトランスポート信号を受信する。マスタユニット402は、複数の遠隔アンテナユニット404からのアップリンクトランスポート信号を介して通信されるデータまたは信号を合成し(例えば、DAS400が、様々な遠隔アンテナユニット404から受信される対応するデジタルサンプルをデジタル加算することによって、デジタルDAS400として実装される)、合成されたデータまたは信号からアップリンクRF信号を生成し得る。そのような例では、マスタユニット402は、生成されたアップリンクRF信号を1つ以上の基地局406に通信する。このように、基地局406のカバレッジは、DAS400を使用して拡張され得る。
【0063】
上記のように、図4に示される例では、DAS400は、デジタルDASとして実装される。「デジタル」DASでは、基地局406およびモバイルデバイス408から受信された、およびそれらに提供された信号は、マスタユニット402と遠隔アンテナユニット404との間で通信されるデジタル同相(I)および直交(Q)サンプルを生成するために使用される。基地局406から、およびモバイルデバイスから受信された元の信号のこのデジタルIQ表現は、基地局406とモバイルユニットとの間の無線通信に使用されるセルラーエアインターフェースプロトコルに従って、テレフォニーまたはデータ情報を伝達するために使用される元の変調(すなわち、キャリアの振幅、位相、または周波数の変化)を依然として維持することに留意することが重要である。そのようなセルラーエアインターフェースプロトコルの例としては、例えば、移動体通信用グローバルシステム(GSM(登録商標))、ユニバーサル移動体通信システム(UMTS)、高速ダウンリンクパケットアクセス(HSDPA)、ロングタームエボリューション(LTE)、市民ブロードバンド無線サービス(CBRS)、および第5世代の新無線(5G NR)エアインターフェースプロトコルが挙げられる。また、デジタルIQサンプルの各ストリームは、無線スペクトルの一部分を表すか、または含む。例えば、デジタルIQサンプルは、音声またはデータ情報が5G NRエアインターフェースを使用して変調されている、単一の無線アクセスネットワークキャリア(例えば、40MHzまたは400MHzの5G NRキャリア)を表し得る。しかしながら、そのような各ストリームはまた、複数のキャリア(例えば、周波数スペクトルの帯域または周波数スペクトルの所与の帯域のサブバンド)を表し得る。
【0064】
図4に示される例では、マスタユニット402は、アナログRFインターフェースを使用して(例えば、RRHのアナログRFインターフェースまたはスモールセル基地局を介して)、1つ以上の基地局406とインターフェースするように構成され得る。いくつかの例では、基地局406は、集合的に、ポイントオブインターフェース(POI)407と呼ばれる、減衰器、結合器、スプリッタ、増幅器、フィルタ、クロスコネクトなどのネットワークを使用して、マスタユニット402に連結され得る。これは、ダウンリンクにおいて、基地局406によって出力される所望のRFキャリアのセットが抽出され、合成され、適切なマスタユニット402にルーティングされ得るように、かつ、アップリンクにおいて、マスタユニット402によって出力される所望のキャリアのセットが抽出され、合成され、各基地局406の適切なインターフェースにルーティングされ得るように行われる。他の例では、POI407は、マスタユニット402の一部であってもよい。
【0065】
図4に示される例では、ダウンリンクにおいて、マスタユニット402は、受信された信号を中間周波数(IF)またはベースバンドにダウンコンバートすることと、ダウンコンバートされた信号をデジタル化して、実際のデジタルサンプルを生成することと、実際のデジタルサンプルをデジタルダウンコンバートして、デジタル同相(I)および直交(Q)サンプルを生成することと、によって、無線周波数(RF)で受信されたアナログ信号からデジタルIQサンプルを生成し得る。これらのデジタルIQサンプルは、より低いサンプルレートまで、フィルタ処理、増幅、減衰、および/または再サンプリングもしくはデシメートされ得る。デジタルサンプルは、他のやり方で生成され得る。デジタルIQサンプルの各ストリームは、1つ以上の基地局406によって出力される無線周波数スペクトルの一部分を表す。無線周波数スペクトルの各部分は、例えば、無線スペクトルの帯域、無線スペクトルの所与の帯域のサブバンド、または個々の無線キャリアを含み得る。
【0066】
同様に、アップリンクでは、マスタユニット402は、複数の遠隔アンテナユニット404から受信された同じキャリアまたは周波数帯もしくはサブバンドを表すデジタルIQサンプルのストリームをデジタル合成することと(例えば、様々な遠隔アンテナユニット404からの対応するデジタルIQサンプルをデジタル加算することによって)、合成されたデジタルIQサンプルをデジタルアップコンバートして、実際のデジタルサンプルを生成することと、IFまたはベースバンドアナログ信号を生成するために、実際のデジタルサンプル上でデジタルアナログプロセスを実施することと、IFまたはベースバンドアナログ信号を所望のRF周波数にアップコンバートすることと、によって、1つ以上の遠隔アンテナユニット404から受信されたデジタルIQサンプルの1つ以上のストリームからアップリンクアナログ無線信号を生成し得る。デジタルIQサンプルはまた、合成される前および/または後に、より高いサンプルレートに、フィルタ処理、増幅、減衰、および/または再サンプリングもしくは補間され得る。アナログ信号は、他のやり方で生成され得る(例えば、デジタルIQサンプルが、アナログIFまたはベースバンド信号を直接生成する直交デジタルアナログ変換器に提供される)。
【0067】
図4に示される例では、マスタユニット402は、アナログRFインターフェースを介して1つ以上の基地局406とインターフェースするデジタルインターフェースを使用して(追加的に、または代わりに)1つ以上の基地局406とインターフェースするように構成され得る。例えば、マスタユニット402は、BBUとRRHとの間の通信に使用されるデジタルIQインターフェースを使用して(例えば、CPRIシリアルデジタルIQインターフェースを使用して)、1つ以上のBBUと直接相互作用するように構成され得る。
【0068】
ダウンリンクでは、マスタユニット402は、1つ以上のBBUからそれに提供されたデジタルIQサンプルの1つ以上のダウンリンクストリームを終了し、必要に応じて、それらをDAS400で使用される遠隔アンテナユニット404と互換性のあるデジタルIQサンプルのダウンリンクストリームに変換する(再サンプリング、同期化、合成、絶縁、ゲイン調節することなどによって)。アップリンクでは、マスタユニット402は、1つ以上の遠隔アンテナユニット404からデジタルIQサンプルのアップリンクストリームを受信し、複数の遠隔アンテナユニット404から受信された同じキャリアまたは周波数帯もしくはサブバンドを表すデジタルIQサンプルのストリームをデジタル合成し(例えば、様々な遠隔アンテナユニット404から受信された対応するデジタルIQサンプルをデジタル加算することによって)、必要に応じて、それらを、そのマスタユニット402に結合される1つ以上のBBUと互換性のあるデジタルIQサンプルのアップリンクストリームに変換する(再サンプリング、同期化、合成、絶縁、ゲイン調節することなどによって)。
【0069】
ダウンリンクでは、各遠隔アンテナユニット404は、マスタユニット402からデジタルIQサンプルのストリームを受信し、デジタルIQサンプルの各ストリームは、1つ以上の基地局406によって出力された無線の無線周波数スペクトルの一部分を表す。各遠隔アンテナユニット404は、ダウンリンクデジタルIQサンプルから、関連付けられたカバレッジエリア内の任意のモバイルデバイス408による受信のために、その遠隔アンテナユニット404に結合された1つ以上のアンテナからの放射のための1つ以上のダウンリンクRF信号を生成する。アップリンクでは、各遠隔アンテナユニット404は、関連付けられたカバレッジエリア内の任意のモバイルデバイス408から送信される1つ以上のアップリンク無線周波数信号を受信し、受信された1つ以上のアップリンク無線周波数信号から導出されたデジタルIQサンプルの1つ以上のアップリンクストリームを生成し、それらをマスタユニット402に送信する。
【0070】
各遠隔アンテナユニット404は、マスタユニット402のうちの1つ以上に直接的に、または1つ以上の他の遠隔アンテナユニット404を介して、および/もしくは1つ以上の中間ユニット416(「拡張ユニット」もしくは「トランスポート拡張ノード」とも呼ばれる)を介して間接的に、通信可能に結合され得る。後者のアプローチは、例えば、単一のマスタユニット402が供給し得る遠隔アンテナユニット404の数を増加させるために、マスタユニットから遠隔ユニットまでの距離を増加させるために、および/またはマスタユニット402をその関連付けられた遠隔アンテナユニット404に結合するために必要な配線の量を低減するために、行われ得る。拡張ユニットは、1つ以上のケーブル421を介してマスタユニット402に結合される。
【0071】
図4に示される例示的なDAS400では、遠隔アンテナユニット404が、それに通信可能に結合された別の共存する遠隔アンテナユニット405(本明細書では、「拡張ユニット」とも呼ばれる)を有することが示されている。共存する拡張遠隔アンテナユニット405を別の遠隔アンテナユニット404から従属させることは、その同じ場所から放射される周波数帯の数を拡張するために、および/またはMIMOサービスをサポートするために、行われ得る(例えば、異なる共存する遠隔アンテナユニットが、単一のMIMO周波数帯に対する異なるMIMOストリームを放射および受信する)。遠隔アンテナユニット404は、光ファイバケーブル、多心ケーブル、同軸ケーブルなどを使用して、「拡張」遠隔アンテナユニット405に通信可能に結合されている。そのような実施態様では、遠隔アンテナユニット405は、遠隔アンテナユニット404を介してDAS400のマスタユニット402に結合される。
【0072】
いくつかの例では、DAS400の1つ以上の構成要素は、デジタル干渉キャンセル回路103を含み、上記に説明されるように較正技術を適用するように構成され得る。例えば、1つ以上の遠隔アンテナユニット404、405は、遠隔アンテナユニット404、405のアップリンク経路で受信された信号からの干渉をキャンセル、低減、減衰、または排除するために、デジタル干渉キャンセル回路103を含み得る。
【0073】
他のタイプの無線周波数分布システムもまた、上記に説明されたデジタル干渉キャンセル回路および較正技術から利益を得ることができる。図5は、図1および図2に関して上記に論じられたように、デジタル干渉キャンセル回路103を含む単一ノード中継器500の例を例示する。
【0074】
図5に示される例示的な実施形態では、単一ノード中継器500は、ドナーアンテナ530を使用して、1つ以上の基地局502に結合される。
【0075】
単一ノード中継器500は、ケーブル532を介してドナーアンテナ530に結合される共通ポート、ダウンリンク回路508に結合されるダウンリンクポート、およびアップリンク回路510に結合されるアップリンクポートを有する、第1のデュプレクサ506を備える。単一ノード中継器500は、カバレッジアンテナ516に結合される共通ポート、ダウンリンク回路508に結合されるダウンリンクポート、およびアップリンク回路510に結合されるアップリンクポートを有する、第2のデュプレクサ512を備える。
【0076】
概して、単一ノード中継器500は、1つ以上の基地局502から1つ以上のダウンリンク信号を受信するように構成される。各基地局ダウンリンク信号は、関連する1つ以上の無線エアインターフェースを介してユーザ機器514とダウンリンク方向に通信するために使用される1つ以上の無線周波数チャネルを含む。ダウンリンク回路508は、中継器500で受信されたダウンリンク信号を増幅し、カバレッジアンテナ516を介して増幅されたダウンリンク信号を再放射するように構成されている。これを行うことの一部として、ダウンリンク回路508は、ダウンリンク信号をフィルタ処理して、個々のチャネルを分離し、各フィルタ処理されたダウンリンクチャネル信号を個々に増幅し、個々に増幅されたダウンリンクチャネル信号を合成し、結果的に得られた合成された信号を再放射するように構成され得る。
【0077】
同様の処理がアップリンクで実施される。単一ノード中継器500は、モバイルデバイス514から1つ以上のアップリンク信号を受信するように構成されている。各モバイルデバイスアップリンク信号は、関連する1つ以上の無線エアインターフェースを介して、1つ以上の基地局502とアップリンク方向に通信するために使用される1つ以上の無線周波数チャネルを含む。アップリンク回路510は、単一ノード中継器500で受信されたダウンリンク信号を増幅し、ドナーアンテナ530を介して、増幅されたアップリンク信号を再放射するように構成されている。これを行うことの一部として、アップリンク回路510は、アップリンク信号をフィルタ処理して、個々のチャネルを分離し、各フィルタ処理されたアップリンクチャネル信号を個々に増幅し、個々に増幅されたアップリンクチャネル信号を合成し、結果的に得られた合成された信号を再放射するように構成され得る。
【0078】
単一ノード中継器500は、ドナーアンテナ530とカバレッジアンテナ516との間に十分な絶縁を提供する1つ以上の特徴を実装するように構成され得る。これらの特徴は、ゲイン制御回路および適応キャンセル回路を含み得る。他の特徴が実装されてもよい。これらの特徴は、ダウンリンク回路508および/またはアップリンク回路510のうちの1つ以上に実装され得る。これらの特徴はまた、別個の回路に実装され得る。
【0079】
いくつかの例では、単一ノード中継器500は、1つ以上のデジタル干渉キャンセル回路103を含み得、上記に説明される較正技術を適用するように構成され得る。例えば、単一ノード中継器500は、カバレッジアンテナ516を介して受信された信号、および/またはドナーアンテナ530を介して受信された信号からの干渉をキャンセル、低減、減衰、または排除するために、デジタル干渉キャンセル回路103を含み得る。
【0080】
単一ノード中継器500の様々な回路および特徴は、アナログ回路、デジタル回路、またはアナログ回路およびデジタル回路の組み合わせで実装され得る。ダウンリンク回路508およびアップリンク回路510は、上記に説明される特徴を実装するために、1つ以上の適切なコネクタ、減衰器、コンバイナ、スプリッタ、増幅器、フィルタ、デュプレクサ、アナログデジタル変換器、デジタルアナログ変換器、電気光変換器、光電気変換器、ミキサー、フィールドプログラマブルゲートアレイ(FPGA)、マイクロプロセッサ、トランシーバ、フレーマなどを備え得る。また、ダウンリンク回路508およびアップリンク回路510は、共通の回路および/または構成要素を共有し得る。
【0081】
様々な態様では、本開示全体を通して説明される、システム要素、方法ステップ、または例(例えば、デジタルインターフェースキャンセル回路、分散アンテナシステム、中継器、またはその構成要素)は、1つ以上のコンピュータシステム、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、またはそれらの要素、プロセス、もしくは例を実現するために、非一時的データ記憶デバイス上に記憶されたコードを実行するハードウェアを備える同様のデバイス上で実装され得る。これらのデバイスは、様々な方法、プロセスタスク、計算、および制御機能を実施するために、ソフトウェアプログラム、ファームウェア、または他のコンピュータ可読命令を含むか、またはそれらとともに機能し得る。
【0082】
これらの命令は、典型的には、コンピュータ可読命令またはデータ構造の記憶に使用される、任意の適切なコンピュータ可読媒体上に記憶される。コンピュータ可読媒体は、汎用もしくは専用のコンピュータもしくはプロセッサ、または任意のプログラム可能な論理デバイスによってアクセスされ得る、任意の利用可能な媒体として実装され得る。好適なプロセッサ可読媒体としては、磁気または光学媒体などの記憶またはメモリ媒体が挙げられ得る。例えば、記憶またはメモリ媒体としては、従来のハードディスク、コンパクトディスク-読み出し専用メモリ(CD-ROM)、ランダムアクセスメモリ(RAM)(限定されるものではないが、シンクロナスダイナミックランダムアクセスメモリ(SDRAM)、ダブルデータレート(DDR)RAM、RAMBUSダイナミックRAM(RDRAM)、スタティックRAM(SRAM)などを含む)、読み出し専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM)、およびフラッシュメモリなどの、揮発性または不揮発性媒体を含み得る。好適なプロセッサ可読媒体はまた、ネットワークおよび/または無線リンクなどの、通信媒体を介して伝えられる、電気、電磁、またはデジタル信号などの伝送媒体を含み得る。
【0083】
本明細書に説明される方法および技術は、デジタル電子回路、またはプログラム可能プロセッサ(例えば、専用プロセッサもしくはコンピュータなどの汎用プロセッサ)のファームウェア、ソフトウェア、またはそれらの組み合わせで実装されてもよい。これらの技法を具現化する装置には、適切な入力および出力デバイス、プログラム可能プロセッサ、およびプログラム可能プロセッサによって実行するためのプログラム命令を明白に具現化する記憶媒体が含まれ得る。これらの技法を具現化するプロセスは、入力データ上で動作し、適切な出力を生成することによって、命令のプログラムを実行して、所望の機能を実施するためのプログラム可能プロセッサによって実施されてもよい。技術は、有利には、データ記憶システム、少なくとも1つの入力デバイス、および少なくとも1つの出力デバイスからデータおよび命令を受信し、データ記憶システム、少なくとも1つの入力デバイス、および少なくとも1つの出力デバイスにデータおよび命令を送信するために連結された少なくとも1つのプログラム可能プロセッサを含む、プログラム可能システム上で実行可能な1つ以上のプログラムに実装され得る。概して、プロセッサは、読み出し専用メモリおよび/またはランダムアクセスメモリから命令およびデータを受信することになる。コンピュータプログラム命令およびデータを明白に具現化するのに好適な記憶デバイスは、例として、EPROM、EEPROM、およびフラッシュメモリデバイスなどの半導体メモリデバイスと、内部ハードディスクおよびリムーバブルディスクなどの磁気ディスクと、磁気光学ディスクと、DVDディスクと、を含む、不揮発性メモリのすべての形態を含む。前述のいずれも、特別に設計された特定用途向け集積回路(ASIC)によって補完されてもよく、またはそれに組み込まれてもよい。
【0084】
例示的な実施形態
実施例1は、通信デバイスであって、送信信号経路と、受信信号経路と、送信信号経路および受信信号経路に通信可能に結合されたデュプレクサであって、デュプレクサが、アナログ送信信号をアンテナに提供するように構成されており、デュプレクサが、受信信号経路にアナログ受信信号を提供するように構成されている、デュプレクサと、送信信号経路に通信可能に結合されたフィードバック信号経路であって、アナログ送信信号の一部分が、フィードバック信号として送信信号経路からフィードバック信号経路内に結合解除される、フィードバック信号経路と、フィードバック信号をデジタルフィードバック信号に変換し、かつアナログ受信信号をデジタル受信信号に変換するように構成されたアナログデジタル変換器と、デジタルフィードバック信号およびデジタル受信信号を受信するように構成されたデジタル干渉キャンセル回路であって、デジタル干渉キャンセル回路が、デジタルフィードバック信号の振幅および位相を修正して、修正されたフィードバック信号を生成することと、修正されたフィードバック信号を、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答に対して補償して、補償された修正されたフィードバック信号を生成することと、補償された修正されたフィードバック信号をデジタル受信信号と合成することであって、受信信号との補償された修正されたフィードバック信号の合成が、デジタル受信信号における干渉をキャンセル、低減、減衰、または排除する、合成することと、を行うように構成されている、デジタル干渉キャンセル回路と、を備える、通信デバイスを含む。
【0085】
実施例2は、送信信号経路が、デジタル送信信号をアナログ送信信号に変換するように構成されたデジタルアナログ変換器と、デジタルアナログ変換器に通信可能に結合された電力増幅器であって、電力増幅器が、アナログ送信信号の振幅を調節するように構成されている、電力増幅器と、電力増幅器に通信可能に結合された第1の方向結合器であって、第1の方向結合器が、アナログ送信信号の一部分を送信信号経路からフィードバック信号経路に結合解除するように構成されている、第1の方向結合器と、を備え、フィードバック信号経路が、第1の方向結合器に通信可能に結合されており、かつフィードバック信号を受信するように構成された第1のアナログデジタル変換器であって、第1のアナログデジタル変換器が、フィードバック信号をデジタルフィードバック信号に変換するように構成されている、第1のアナログデジタル変換器を備え、受信信号経路が、デュプレクサに通信可能に結合されており、かつデュプレクサからアナログ受信信号を受信し、かつアナログ受信信号の振幅を調整するように構成された低ノイズ増幅器と、低ノイズ増幅器に通信可能に結合された第2のアナログデジタル変換器であって、第2のアナログデジタル変換器が、低ノイズ増幅器からアナログ受信信号を受信し、かつアナログ受信信号をデジタル受信信号に変換するように構成されている、第2のアナログデジタル変換器と、を備える、実施例1の通信デバイスを含む。実施例3は、デジタルキャンセル回路が、フィードバック信号経路であって、デジタルフィードバック信号の振幅を修正するように構成された第1の振幅オフセットブロックと、デジタルフィードバック信号の位相を修正するように構成された位相シフタと、修正されたフィードバック信号を、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答と畳み込んで、補償された修正されたフィードバック信号を生成するように構成された事前畳み込み回路と、を含む、フィードバック信号経路と、適応フィルタであって、補償された修正されたフィードバック信号の振幅および/または位相を、適応フィルタの伝達関数に従って修正するように構成されており、適応フィルタの伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正される、適応フィルタと、受信信号経路であって、デジタル受信信号の振幅を修正するように構成された第2の振幅オフセットブロックと、適応フィルタに通信可能に結合されたデジタル総和であって、デジタル総和が、補償された修正されたフィードバック信号をデジタル受信信号と合成するように構成されている、デジタル総和と、を含む、受信信号経路と、を備える、実施例1または2の通信デバイスを含む。
【0086】
実施例4は、デジタルキャンセル回路が、フィードバック信号経路であって、デジタルフィードバック信号の振幅を修正するように構成された第1の振幅オフセットブロックと、デジタルフィードバック信号の位相を修正するように構成された位相シフタと、適応フィルタであって、修正されたフィードバック信号の振幅および/または位相を、適応フィルタの伝達関数に従って修正するように構成されており、適応フィルタの伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正されて、修正されたフィードバック信号を、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答に対して補償する、適応フィルタと、を含む、フィードバック信号経路と、受信信号経路であって、デジタル受信信号の振幅を修正するように構成された第2の振幅オフセットブロックと、適応フィルタに通信可能に結合されたデジタル総和であって、デジタル総和が、補償された修正されたフィードバック信号をデジタル受信信号と合成するように構成されている、デジタル総和と、を含む、受信信号経路と、を備える、実施例1または2の通信デバイスを含む。
【0087】
実施例5は、内部信号生成器をさらに備え、内部信号生成器をさらに備え、通信デバイスが、内部信号生成器を使用して、デジタル干渉キャンセル回路の第1の振幅オフセットブロック、第2の振幅オフセットブロック、および/または位相シフタを動的に較正するように構成されている、実施例1~4のいずれかの通信デバイスを含む。
【0088】
実施例6は、送信信号経路が、白色ガウス雑音信号生成器に結合されるように構成された方向結合器であって、方向結合器が、較正中に白色ガウス雑音信号を送信信号経路に注入するように構成されている、方向結合器と、送信信号経路内のデジタルアナログ変換器に結合されたスイッチであって、スイッチが、第1の構成と第2の構成との間で構成可能であり、第1の構成では、スイッチが、方向結合器に通信可能に結合され、第2の構成では、スイッチが、送信信号経路内の電力増幅器に通信可能に結合されている、スイッチと、を備える、実施例1~5のいずれかの通信デバイスを含む。
【0089】
実施例7は、帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器または通信デバイスの内部信号生成器によって生成される、実施例6の通信デバイスを含む。
【0090】
実施例8は、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答が、デュプレクサのインパルス応答と、受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、実施例1~7のいずれかの通信デバイスを含む。
【0091】
実施例9は、通信デバイスのデジタル干渉キャンセル回路であって、フィードバック信号経路であって、デジタル化されたフィードバック信号の電力レベルを均等化するように構成された第1の振幅オフセットブロックであって、デジタル化されたフィードバック信号が、通信デバイスの送信経路からの送信信号から導出される、第1の振幅オフセットブロック、デジタル化されたフィードバック信号に位相オフセットを適用して、修正されたフィードバック信号を生成するように構成された位相シフタ、修正されたフィードバック信号を、通信デバイスの送信信号経路と受信信号経路との間の結合チャネルのインパルス応答と畳み込むように構成された事前畳み込み回路、を含む、フィードバック信号経路と、受信信号経路であって、デジタル化された受信信号の電力レベルを均等化するように構成された第2の振幅オフセットブロックであって、デジタル化された受信信号が、通信デバイスのデュプレクサからの受信信号から導出される、第2の振幅オフセットブロックと、畳み込まれた修正されたフィードバック信号をデジタル化された受信信号と合成して、デジタル化された受信信号からの干渉をキャンセル、低減、減衰、または排除するように構成されたデジタル総和と、を含む、受信信号経路と、を備える、デジタル干渉キャンセル回路を含む。
【0092】
実施例10は、フィードバック信号経路が、デジタル化されたフィードバック信号を窓掛けして、窓掛けされたデジタル化されたフィードバック信号を生成するように構成された第1の窓掛け回路をさらに備え、窓掛けされたデジタル化されたフィードバック信号が、第1の振幅オフセットブロックに提供され、受信信号経路が、デジタル化された受信信号を窓掛けして、窓掛けされたデジタル化されたフィードバック信号を生成するように構成された第2の窓掛け回路をさらに備え、窓掛けされたデジタル化された受信信号が、第2の振幅オフセットブロックに提供される、実施例9のデジタル干渉キャンセル回路を含む。
【0093】
実施例11は、フィードバック信号経路が、事前畳み込み回路とデジタル総和との間に通信可能に結合された適応フィルタをさらに備え、適応フィルタが、適応フィルタの伝達関数に従って畳み込まれた修正されたフィードバック信号の振幅および/または位相を修正するように構成されており、適応フィルタの伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正される、実施例9または10のデジタル干渉キャンセル回路を含む。
【0094】
実施例12は、帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器によって生成され、通信デバイスの送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して通信デバイスの送信信号経路に注入される、実施例11のデジタル干渉キャンセル回路を含む。
【0095】
実施例13は、帯域幅制限された白色ガウス雑音信号が、通信デバイスの内部信号生成器によって生成され、通信デバイスの送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して通信デバイスの送信信号経路に注入される、実施例11のデジタル干渉キャンセル回路を含む。
【0096】
実施例14は、プロセッサが、通信デバイスの内部信号生成器を使用して、第1の振幅オフセットブロック、第2の振幅オフセットブロック、および/または位相シフタを動的に較正するように構成されている、実施例11~13のいずれかのデジタル干渉キャンセル回路を含む。
【0097】
実施例15は、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答が、デュプレクサのインパルス応答と、受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、実施例11~14のいずれかのデジタル干渉キャンセル回路を含む。
【0098】
実施例16は、通信デバイスのデジタル干渉キャンセル回路であって、フィードバック信号経路であって、デジタル化されたフィードバック信号の電力レベルを均等化するように構成された第1の振幅オフセットブロックであって、デジタル化されたフィードバック信号が、通信デバイスの送信経路からの送信信号から導出される、第1の振幅オフセットブロック、デジタル化されたフィードバック信号に位相オフセットを適用して、修正されたフィードバック信号を生成するように構成された位相シフタ、位相シフタ回路とデジタル総和との間に通信可能に結合された適応フィルタであって、適応フィルタが、修正されたフィードバック信号の振幅および/または位相を、適応フィルタの伝達関数に従って修正するように構成されており、適応フィルタの伝達関数が、帯域幅制限された白色ガウス雑音信号を使用して静的に較正されて、修正されたフィードバック信号を、通信デバイスの送信信号経路と受信信号経路との間の結合チャネルのインパルス応答に対して補償する、適応フィルタ、を含む、フィードバック信号経路と、受信信号経路であって、デジタル化された受信信号の電力レベルを均等化するように構成された第2の振幅オフセットブロックであって、デジタル化された受信信号が、通信デバイスのデュプレクサからの受信信号から導出される、第2の振幅オフセットブロックと、補償された修正されたフィードバック信号をデジタル化された受信信号と合成して、デジタル化された受信信号からの干渉をキャンセル、低減、減衰、または排除するように構成されたデジタル総和と、を含む、受信信号経路と、を備える、デジタル干渉キャンセル回路を含む。
【0099】
実施例17は、帯域幅制限された白色ガウス雑音信号が、生産テストベンチの信号生成器によって生成され、通信デバイスの送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して通信デバイスの送信信号経路に注入される、実施例16のデジタル干渉キャンセル回路を含む。
【0100】
実施例18は、帯域幅制限された白色ガウス雑音信号が、通信デバイスの内部信号生成器によって生成され、通信デバイスの送信経路において、電力増幅器と第1の方向結合器との間に通信可能に結合された第2の方向結合器を介して通信デバイスの送信信号経路に注入される、実施例16のデジタル干渉キャンセル回路を含む。
【0101】
実施例19は、プロセッサが、通信デバイスの内部信号生成器を使用して、第1の振幅オフセットブロック、第2の振幅オフセットブロック、および/または位相シフタを動的に較正するように構成されている、実施例16~18のいずれかのデジタル干渉キャンセル回路を含む。
【0102】
実施例20は、送信信号経路と受信信号経路との間の結合チャネルのインパルス応答が、デュプレクサのインパルス応答と、受信信号経路内の1つ以上の無線周波数成分のインパルス応答と、を含む、実施例16~19のいずれかのデジタル干渉キャンセル回路を含む。
【0103】
以下の特許請求の範囲によって定義される本発明のいくつかの実施形態が説明されてきた。それにもかかわらず、説明される実施形態に対する様々な修正は、特許請求される発明の範囲および趣旨から逸脱することなく行われ得ることが理解されるであろう。したがって、他の実施形態は、以下の特許請求の範囲内にある。
図1
図2
図3A
図3B
図4
図5
【国際調査報告】