(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-04-19
(54)【発明の名称】仮想保護筐体を有するアイセーフな走査型LIDAR
(51)【国際特許分類】
G01S 7/484 20060101AFI20230412BHJP
G01S 17/89 20200101ALI20230412BHJP
G01S 7/481 20060101ALI20230412BHJP
G01C 3/06 20060101ALI20230412BHJP
【FI】
G01S7/484
G01S17/89
G01S7/481 A
G01C3/06 120Q
G01C3/06 140
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022551624
(86)(22)【出願日】2021-02-22
(85)【翻訳文提出日】2022-09-20
(86)【国際出願番号】 US2021018986
(87)【国際公開番号】W WO2021178152
(87)【国際公開日】2021-09-10
(32)【優先日】2020-03-02
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】505472816
【氏名又は名称】マイクロビジョン,インク.
(74)【代理人】
【識別番号】110000659
【氏名又は名称】弁理士法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】ノーザン スリー,アルガ ロイド
(72)【発明者】
【氏名】モラリティ,ジョナサン
【テーマコード(参考)】
2F112
5J084
【Fターム(参考)】
2F112AD01
2F112BA18
2F112CA12
2F112DA09
2F112DA15
2F112DA25
2F112DA28
2F112EA05
2F112FA03
2F112FA07
2F112FA21
2F112FA45
2F112GA01
5J084AD01
5J084BA04
5J084BA11
5J084BA12
5J084BA20
5J084BA35
5J084BA36
5J084BA50
5J084BB02
5J084BB04
5J084BB12
5J084BB27
5J084BB28
5J084CA03
5J084CA11
5J084CA22
5J084CA31
5J084CA49
5J084CA72
5J084DA01
5J084EA40
(57)【要約】
アイセーフな光検出及び測距システム(100)が、仮想保護筐体(180)を含む。近距離パルス(210)が、遠距離パルス(230)の条件付き放出の前に、視野内の全ての測定点に向けて放出される。近距離パルスは、近距離でアイセーフな被曝放出をもたらし、遠距離パルスは、遠距離でアイセーフな被曝放出をもたらす。
【選択図】
図1
【特許請求の範囲】
【請求項1】
装置であって、
視野内の奥行き測定点に対応する時点で、複数のエネルギーレベルで赤外(IR)レーザ光パルスを生成するレーザ光源と、
前記視野内の前記IRレーザ光パルスを走査する走査ミラーアセンブリと、
前記視野内からの前記IRレーザ光パルスの反射を検出する第1のIR光検出器と、
前記第1のIR光検出器に応答して、前記視野内の前記奥行き測定点に存在する物体までの距離を測定する飛行時間(TOF)回路と、
複数の奥行き測定点について、近距離内の物体を検出するために、前記レーザ光源に第1のパルスエネルギーで第1のIRレーザ光パルスを出射させ、前記近距離内に物体がないと判定し、遠距離内の物体を検出するために、第2の総エネルギーレベルを有する少なくとも1つの第2のIRレーザ光パルスを出射させる仮想保護筐体回路であって、第1のエネルギーレベルは前記第2の総エネルギーレベルよりも低い、仮想保護筐体回路と、
を備える、装置。
【請求項2】
第2のIR光検出器と、
前記第2のIR光検出器に応答する第2のTOF回路と、
を更に備える、請求項1に記載の装置。
【請求項3】
前記走査ミラーアセンブリと前記視野との間の第1の光路と、
前記視野と前記第1のIR光検出器との間の第2の光路であって、前記第2のIR光検出器は、前記視野から前記第1の光路を介して光を受光するように配置されている、第2の光路と、
を更に備える、請求項2に記載の装置。
【請求項4】
前記装置が移動プラットフォームに搭載されている、請求項1に記載の装置。
【請求項5】
前記第1のパルスエネルギーは、前記移動プラットフォームが閾値を超える速度を有する時に増加する、請求項4に記載の装置。
【請求項6】
前記第1のパルスエネルギーは、プラットフォーム速度の増加に伴って増加する、請求項4に記載の装置。
【請求項7】
可視レーザ光を放出する少なくとも1つの可視レーザ光源を更に備え、前記仮想保護筐体回路は、前記TOF回路に応答して前記可視レーザ光の出力レベルを低減させる回路を含む、請求項1に記載の装置。
【請求項8】
装置であって、
二次元視野内の測定点に対応する時点でIRレーザ光パルスを放出する第1のレーザ光源と、
前記視野内の前記測定点に向けて前記IRレーザ光パルスを反射する走査ミラーアセンブリと、
受信したIRレーザ光パルス反射に応答して、前記視野内の前記測定点に存在する物体までの距離を表す奥行きデータを生成する、第1の飛行時間(TOF)測定回路と、
各測定点について、最初に近距離IRレーザ光パルスを生成し、次いで少なくとも1つの遠距離IRレーザ光パルスを生成するパルス生成回路であって、前記近距離IRレーザ光パルスは、前記少なくとも1つの遠距離IRレーザ光パルスよりも低いエネルギーである、パルス生成回路と、
三次元奥行きマップ情報を記憶する三次元点群記憶装置と、
を備える、装置。
【請求項9】
前記近距離IRレーザ光パルスのパルスエネルギーは、第1の距離でアイセーフ閾値未満であり、前記少なくとも1つの遠距離IRレーザ光パルスの総エネルギーは、第2の距離でアイセーフ閾値未満である、請求項1に記載の装置。
【請求項10】
前記装置は移動プラットフォームに搭載されている、請求項9に記載の装置。
【請求項11】
前記第1の距離は、前記移動プラットフォームが閾値を超える速度を有する時に増加する、請求項10に記載の装置。
【請求項12】
前記第1の距離は、前記移動プラットフォームの前記速度に基づいて増加する、請求項10に記載の装置。
【請求項13】
第2のTOF測定回路を更に備え、前記第1のTOF測定回路及び前記第2のTOF測定回路は、異なる光路で受信された反射のTOFを測定する、請求項8に記載の装置。
【請求項14】
前記パルス生成回路は、前記近距離パルスによって物体が検出されなかった場合は前記少なくとも1つの遠距離パルスを生成し、前記近距離パルスによって物体が検出された場合は前記少なくとも1つの遠距離パルスを生成しないように構成されている、請求項8に記載の装置。
【請求項15】
可視レーザ光を放出する少なくとも1つの可視レーザ光源と、
前記第1のTOF測定回路に応答して前記可視レーザ光の出力レベルを低減させる回路と、
を更に備える、請求項8に記載の装置。
【発明の詳細な説明】
【背景技術】
【0001】
レーザ装置を含む製品は一般に、人間の目又は皮膚に損傷を引き起こす可能性に基づいて、異なるレーザ安全クラスに分類される。国際規格IEC 60825.1には、レーザ安全クラスの例が記載されている。多くの異なるレーザ安全クラスが存在するが、クラス間の主な違いの1つは、製品が「アイセーフ(目に対して安全)」であると考えられるか「非アイセーフ」であると考えられるかである。
【発明の概要】
【発明が解決しようとする課題】
【0002】
アイセーフなレーザシステムは、一般に、動作中に損傷を与える被曝放出レベルを生成不可能であると考えられており、また一般に、装置のマーキング要件、制御手段、又は他の追加の安全手段も除外される。IEC 60825.1は、アイセーフ製品をクラス1に分類している。そうでなければ非アイセーフであると分類される高出力レーザ装置を含む製品は、被曝放出限界を安全なレベルまで低減させる保護筐体などの追加の安全手段を製品が含む場合には、アイセーフであると分類され得る。
【図面の簡単な説明】
【0003】
【
図1】本発明の様々な実施形態による仮想保護筐体を備える走査型光検出及び測距(light detection and ranging:LIDAR)システムを示す図である。
【
図2】本発明の様々な実施形態による近距離パルス及び遠距離パルスを示す図である。
【
図3】本発明の様々な実施形態による視野内の測定点を示す図である。
【
図4】本発明の様々な実施形態による方法のフロー図である。
【
図5】本発明の様々な実施形態による、距離の関数として物体を検出しない確率を示す図である。
【
図6】本発明の様々な実施形態によるアイセーフなLIDARシステムを備える移動プラットフォームを示す図である。
【
図7】本発明の様々な実施形態による方法のフロー図である。
【
図8】本発明の様々な実施形態による仮想保護筐体及び冗長検出器を有する走査型光検出及び測距(LIDAR)システムを示す図である。
【
図9】本発明の様々な実施形態による仮想保護筐体及び冗長検出器を有する走査型光検出及び測距(LIDAR)システムを示す図である。
【
図10】本発明の様々な実施形態による送信モジュールの側面図である。
【
図11】本発明の様々な実施形態による送信モジュールの上面図である。
【
図12】本発明の様々な実施形態による受信モジュールの側面図である。
【
図13】本発明の様々な実施形態による受信モジュールの上面図である。
【
図14】本発明の様々な実施形態による統合フォトニクスモジュールの断面上面図である。
【
図15】
図14の統合フォトニクスモジュールの斜視図である。
【
図16】本発明の様々な実施形態によるアイセーフなLIDARシステムを備える走査型プロジェクタを示す図である。
【
図17】本発明の様々な実施形態による対話型ディスプレイ装置を示す。
【
図18】本発明の様々な実施形態による短焦点プロジェクタを示す。
【発明を実施するための形態】
【0004】
以下の詳細な説明では、本発明を実施することができる特定の実施形態を例示として示す添付の図面を参照する。これらの実施形態は、当業者が本発明を実施することを可能にするのに十分詳細に記載されている。本発明の様々な実施形態は、互いに異なるが、必ずしも相互に排他的ではないことを理解されたい。例えば、一実施形態に関連して本明細書で説明される特定の特徴、構造、又は特性は、本発明の範囲から逸脱することなく、他の実施形態内で実施することができる。更に、各開示された実施形態内の個々の要素の位置又は配置は、本発明の範囲から逸脱することなく変更され得ることを理解されたい。したがって、以下の詳細な説明は限定的な意味で解釈されるべきではなく、本発明の範囲は、特許請求の範囲が権利を与えられる均等物の全範囲と共に、適切に解釈される添付の特許請求の範囲によってのみ定義される。図面において、同様の符号は、いくつかの図を通して同じ又は同様の機能を指す。
【0005】
図1は、本発明の様々な実施形態による仮想保護筐体を備える走査型光検出及び測距(LIDAR)システムを示す。システム100は、パルス生成回路190と、赤外線(IR)レーザ光源130と、走査ミラー116を有する走査ミラーアセンブリ114と、ミラー駆動制御回路154とを含む。システム100はまた、赤外線(IR)検出器142と、飛行時間(time-of-flight:TOF)測定回路144と、三次元点群記憶回路146と、比較器148と、仮想保護筐体回路180とを含む。
【0006】
レーザ光源130は、レーザビーム162を放出可能なレーザダイオードなどのレーザ光源であってもよい。ビーム162は、いくつかの実施形態では微小電気機械システム(microelectromechanical:MEMS)ベースのスキャナなどの一部である走査ミラーアセンブリ114に衝突し、走査ミラー116から反射して制御された出力ビーム134を生成する。いくつかの実施形態では、光源130とミラー116との間の光路に光学素子が含まれる。例えば、システム100は、コリメートレンズ、ダイクロイックミラー、又は任意の他の適切な光学素子を含むことができる。
【0007】
走査ミラー駆動制御回路154は、走査ミラー116の角運動を制御して出力ビーム134が視野128内のラスタ走査軌道140を横断するようにするための1つ以上の駆動信号155を供給する。動作中、光源130は、非可視スペクトルの変調光パルスを生成し、走査ミラー116は、ビーム134がラスタ走査軌道140を横断する際に光パルスを反射する。
【0008】
いくつかの実施形態では、ラスタ走査軌道140は、水平軸上の正弦波成分と垂直軸上の鋸歯状成分とを組み合わせることによって形成される。これらの実施形態では、制御された出力ビーム134は、正弦波パターンで左から右に往復掃引し、鋸歯状パターンで垂直(上から下)に掃引し、(下から上への)フライバック中はディスプレイは空白である。
図1は、ビームが上から下に垂直に掃引するときの正弦波パターンを示しているが、下から上へのフライバックは示していない。他の実施形態では、垂直掃引は、フライバックがないように三角波で制御される。更なる実施形態では、垂直掃引は正弦波である。本発明の様々な実施形態は、垂直掃引及び水平掃引、又は結果として生じるラスタパターンを制御するために使用される波形によって限定されない。縦軸は低速走査軸とも呼ばれ、横軸は高速走査軸とも呼ばれる。装置を90度回転させると水平軸と垂直軸が切り替わるので、「垂直」及び「水平」という分類は幾分恣意的である。したがって、「垂直」及び「水平」という用語は限定を意味するものではない。
【0009】
走査ミラー116は、二次元で走査する単一のミラーとして示されているが、これは本発明の限定ではない。例えば、いくつかの実施形態では、ミラー116は、第1の次元で走査を行う第1のミラー及び第2の次元で走査を行う第2のミラーの2つのミラーに置き換えられる。更に、システム100は、レーザ光パルスの走査を実行するための1つ以上のMEMS装置を有するものとして説明されているが、これは本発明の限定ではない。走査経路に沿って光パルスを走査するための任意の装置又は方法を、本発明の範囲から逸脱することなく使用することができる。
【0010】
いくつかの実施形態では、走査ミラー116は、(一方の次元又は両方の次元での)ミラー偏向の角度位置又は角度範囲を検出するための1つ以上のセンサを含む。例えば、いくつかの実施形態では、走査ミラーアセンブリ114は、高速走査軸上のミラーの偏向に比例する電圧を供給するピエゾ抵抗センサを含む。更に、いくつかの実施形態では、走査ミラーアセンブリ114は、低速走査軸上のミラーの偏向に比例する電圧を供給する追加のピエゾ抵抗センサを含む。ミラー位置情報は、1つ以上のSYNC信号115としてミラー駆動制御回路154に戻される。これらの実施形態では、ミラー駆動制御回路154は、ミラーの測定された角度偏向に応答して駆動信号を修正するための1つ以上のフィードバックループを含む。加えて、いくつかの実施形態では、ミラー駆動制御回路154は、SYNC信号に基づいて走査ミラーの瞬時角度位置を推定する1つ以上の位相ロックループ回路を含む。
【0011】
ミラー駆動制御回路154は、位相ロックループ(phase lock loop:PLL)、フィルタ、加算器、乗算器、レジスタ、プロセッサ、メモリ等の機能回路を用いて実装されてもよい。したがって、ミラー駆動制御回路154は、ハードウェア、ソフトウェア、又は任意の組み合わせで実装されてもよい。例えば、いくつかの実施形態では、制御回路154は、特定用途向け集積回路(ASIC)に実装される。更に、いくつかの実施形態では、より高速なデータ経路制御の一部がASICで実行され、全体的な制御はソフトウェアでプログラム可能である。
【0012】
IR検出器142は、IRレーザ光パルスの反射を検出可能な1つ以上の感光装置を含む。例えば、IR検出器142は、1つ以上のPINフォトダイオード、シリコンフォトマルチプライヤ(Silicon photomultiplier:SiPM)、アバランシェフォトダイオード(avalanche photodiode:APD)などを含むことができる。IRレーザ光パルスで照射される視野内の各点(本明細書では「測定点」と呼ばれる)は、入射光の一部の量を反射してIR検出器142に戻してもよいし、戻さなくてもよい。IR検出器142が反射を検出した場合、IR検出器142は信号143をTOF測定回路144に供給する。
【0013】
TOF測定回路144は、IRレーザ光パルスの飛行時間(TOF)を測定して、視野内の物体までの距離を求める。いくつかの実施形態では、仮想保護筐体回路180は、特定のIRレーザ光パルスの放出時点に対応するタイミング信号(図示せず)をTOF測定回路144に供給し、TOF測定回路144は、パルスの放出と同じパルスの反射の受信との間の経過時間を求めることによってIRレーザ光パルスのTOFを測定する。
【0014】
TOF測定回路144は、任意の適切な回路を使用して実装することができる。例えば、いくつかの実施形態では、TOF測定回路144は、IRパルスが発射されるとリセットされ、反射パルスが受信されると停止されるアナログ積分器を含む。TOF測定回路144はまた、アナログ積分器出力を、IRレーザパルスの飛行時間(TOF)に対応するデジタル値であって、システム100と光パルスが反射された視野内の物体との間の距離に対応するデジタル値に変換するためのアナログ-デジタル変換器を含むことができる。
【0015】
三次元点群記憶装置146は、ミラー駆動制御回路154からX、Yデータを受信し、TOF測定回路144からノード145上の距離(Z)データを受信する。検出された各反射について3タプル(X、Y、Z)が三次元点群記憶装置に書き込まれ、その結果、本明細書では「点群」と呼ばれる一連の三次元点が得られる。視野内の全てのX、Y測定点が対応するZ測定値を有するとは限らない。したがって、結果として得られる点群は、粗であってもよいし、密であってもよい。三次元点群に含まれるデータの量は、本発明の限定ではない。
【0016】
三次元点群記憶装置146は、任意の適切な回路構造を使用して実装することができる。例えば、いくつかの実施形態では、三次元点群記憶装置146は、第1のポート上で書き込み、第2のポート上で読み取ることができるデュアルポートメモリ装置に実装される。他の実施形態では、三次元点群記憶装置146は、汎用メモリ装置内のデータ構造として実装される。更なる実施形態では、三次元点群記憶装置146は、特定用途向け集積回路(ASIC)に実装される。
【0017】
比較器148は、ノード145上の距離データ(Z)をノード147上の閾値と比較し、距離が閾値未満である場合、比較器148は、ノード184上の近距離物体検出信号をアサートする。近距離物体検出信号は、「近距離」内の物体の検出についてVPH回路180に警告し、「近距離」はノード147上の閾値の値によって決定される。例えば、閾値が5メートルの距離に対応する値に設定され、検出された距離がその閾値よりも小さい場合、5メートルよりも近い物体が検出され、VPH回路180は、ノード184上の近距離物体検出信号によって通知を受ける。
【0018】
ノード147上の閾値及び対応する近距離は、任意の基準に基づいてVPH回路184によって修正することができる。例えば、閾値は、IRレーザパルス出力、パルス持続時間、パルス密度、波長、スキャナ速度、所望のレーザ安全分類などの関数であってもよい。閾値を決定する方法は、本発明の限定ではない。
【0019】
VPH回路180は、全体的な動作をアイセーフに保つことを可能にする方法で被曝放出レベルを管理するように動作する。例えば、いくつかの実施形態では、VPH回路180は、ノード185上のパルスエネルギー値を設定することによって、「近距離パルス」を生成するのか、又は「遠距離パルス」を生成するのかを制御する。放出されるパルスエネルギーは、パルス出力、パルス持続時間、又はパルスカウントのうちの1つ以上によって制御することができる。
【0020】
VPH回路180はまた、放出されるパルスのタイミングをノード157上のタイミング信号によって制御することもできる。いくつかの実施形態では、視野内の全ての測定点について、VPH回路180は、パルス生成回路190に信号を送信し、仮想保護筐体を提供するのに十分な距離まで非常に高い信頼度で物体を検出することができる近距離パルスを生成させる。本明細書で使用される場合、「近距離パルス」という用語は、非常に短い距離でアイセーフであると考えられるパルスを指す。例えば、いくつかの実施形態では、近距離IRレーザ光パルスを人間の目に損傷を与える危険性なく全ての測定点に向けて放出することができるように、近距離IRレーザ光パルスのエネルギーレベルがIEC 60825.1のクラス1被曝放出限界未満に維持されてもよい。
【0021】
物体が近距離内で検出された場合、対応する3タプル(X、Y、Z)を三次元点群記憶装置146に書き込むことができ、システム100は、その測定点に向けていかなるより高いエネルギーパルスも放出しないことによって仮想保護筐体を提供する。しかしながら、近距離物体が検出されなかった場合、システム100は、近距離を超える物体を検出するために、より高い総エネルギーの1つ以上の「遠距離パルス」を放出することができる。例えば、いくつかの実施形態では、システム100は、100ミリメートル(mm)の距離でアイセーフであると考えられる、明るい太陽光中で36メートル(m)離れた反射ターゲットの5%を検出する確率が50%の近距離IRレーザ光パルスを放出することができる。この近距離パルスは、12m離れた反射ターゲットの10%を検出しない確率が100億分の1であってもよい。また、例えば、システム100は、200mまでの距離の物体を検出可能である一方で、4メートルを超える距離ではアイセーフに保たれる遠距離パルスを放出することができる。この例では、システム100は、4メートル以内の物体を検出する確率が極めて高い近距離パルスを放出し、次いで、200m離れた物体を検出可能な遠距離パルスを放出することができる。
【0022】
本明細書で使用される場合、「遠距離パルス」という用語は、近距離パルスよりも高い総エネルギーを有する1つ以上のパルスを指す。例えば、いくつかの実施形態では、単一の遠距離パルスが放出されてもよく、単一の遠距離パルスは単一の近距離パルスよりも高いエネルギーを有してもよく、他の実施形態では、複数の遠距離パルスが放出されてもよく、複数の遠距離パルスの総エネルギーは単一の近距離パルスよりも高くてもよい。
【0023】
仮想保護筐体回路180は、任意の適切な回路構造を使用して実装することができる。例えば、いくつかの実施形態では、VPH回路180は、近距離物体検出に応答するためにデジタル論理を使用して実装された1つ以上の有限状態機械と、遠距離パルスを放出するために条件付きで信号パルス生成回路190とを含むことができる。更に、いくつかの実施形態では、VPH回路180は、近距離パルスエネルギー、遠距離パルスエネルギー、閾値などのソフトウェアプログラマビリティを提供するためのプロセッサ及びメモリを含むことができる。VPH回路180を実装する方法は、本発明の限定ではない。
【0024】
図2は、本発明の様々な実施形態による近距離パルス及び遠距離パルスを示す。近距離パルス210及び遠距離パルス230は、各測定点に向けてLIDARシステムによって放出され得るIRレーザ光パルスの例である。例えば、LIDARシステム100は、近距離パルス210を放出し、次いで、近距離物体が検出されたかどうかに基づいて、条件付きで遠距離パルス230のうちの1つ以上を放出することができる。
図2のプロットの縦軸にはパルス振幅が示され、横軸には時間が示されている。近距離パルス210が第1の時点で放出されることが示され、閾値が第2の時点を表すことが示されている。第1の時点と第2の時点との差は、近距離を表す。例えば、いくつかの実施形態では、閾値は、実質的に5メートルの近距離に対応する約33ナノ秒(ns)に設定される。いくつかの実施形態では、近距離パルス210は、非常に短い距離でアイセーフであると考えられるエネルギーレベルを有する。例えば、近距離パルス210は、放出元のLIDARシステムから100mmでアイセーフであり得る。
【0025】
いくつかの実施形態では、近距離物体が検出された場合、LIDARシステムはその測定点に向けて遠距離パルスを放出せず、検出された距離は三次元点群に書き込まれる。一方、近距離物体が検出されなかった場合、1つ以上の遠距離パルス230が、被曝放出をアイセーフなレベルに維持する方法で放出される。例えば、近距離パルス210は、近距離内の物体を検出する非常に高い確率を提供するエネルギーレベルを有してもよく、遠距離パルス220は、近距離以上でアイセーフな総エネルギーレベルを有してもよい。近距離物体が検出されなかった場合、遠距離パルスが閾値時点の直後に続いてもよい。例えば、遠距離パルス220が、閾値時点から100ns、又は133ns以内に放出されてもよい。様々な実施形態において、閾値及び遠距離パルスの放出に対応する時点は、所望の近距離及び処理時間に応じて異なってもよく、本発明の限定ではない。
【0026】
各測定点について、いくつかの実施形態では単一の遠距離パルス220が放出され、他の実施形態では一連の遠距離パルス230が放出される。単一の測定点に向けて放出される遠距離パルスの数は、本発明の限定ではない。例えば、いくつかの実施形態では、単一の遠距離パルスであって、近距離パルスよりも高いエネルギーを有する単一の遠距離パルスが放出されてもよい。また、例えば、いくつかの実施形態では、複数の遠距離パルスが放出されてもよく、各遠距離パルスは、近距離パルスと同じエネルギーレベルを有してもよいが、複数の遠距離パルスの総エネルギーは、近距離パルスのエネルギーよりも大きい。
【0027】
任意のエネルギーレベルの任意の数のパルスを使用して複数の距離を定義することができる。例えば、単一の近距離パルスのエネルギーによって近距離が定義されてもよい。また、例えば、各々が近距離パルスと同じエネルギーを有する複数のパルスによって中距離が定義されてもよく、近距離パルスと同じか又はより大きいエネルギーを有する1つ以上の遠距離パルスによって遠距離が定義されてもよい。
【0028】
いくつかの実施形態では、近距離パルスは各測定点に向けて放出され、他の実施形態では、近距離パルスは各測定点に向けて放出されない。例えば、近距離パルスが第1の測定点に向けて放出されてもよく、近距離物体が検出されなかった場合、最初に近距離パルスを放出することなく、遠距離パルスが1つ以上の後続の測定点に向けて放出されてもよい。これは、ある測定点に近距離物体が存在しない場合には、後続の何個かの測定点にも近距離物体が存在しないという妥当な仮定を可能にするために、測定点が互いに十分に近接して画定されてもよいことを一つの理由として、いくつかの実施形態で可能である。
【0029】
図3は、本発明の様々な実施形態による視野内の測定点を示す。測定点310は、LIDARシステムが距離を測定するラスタ走査軌道140上の点である。例えば、いくつかの実施形態では、LIDARシステム100(
図1)などのLIDARシステムは、各測定点310に向けて近距離パルスを放出して、物体が近距離内にあるかどうかを検出し、次いで上述のように条件付きで1つ以上の遠距離パルスを放出する。
【0030】
本明細書で使用される「測定点」という用語は、空間内の無限に小さい点を示すことを意味するのではなく、ラスタ走査軌道140の小さい有限の連続部分を示すことを意味する。例えば、制御された出力ビーム134(
図1)は、各測定点に向けた近距離パルス及び遠距離パルスのラウンドトリップ通過時間中にラスタ走査軌道140の有限部分を横断する。測定点領域はまた、レーザスポットが物体に遭遇する距離でのレーザスポットサイズ(初期サイズ及び発散)の関数である。したがって、「測定点」は、非常に小さいがある領域を包含し、この領域のサイズ及び位置は、多くの要因の関数であり得る。
【0031】
図4は、本発明の様々な実施形態による方法のフロー図である。いくつかの実施形態では、方法400又はその一部は、LIDARシステムによって実行され、その実施形態は前の図に示されている。他の実施形態では、方法400は、一連の回路又は電子システムによって実行される。方法400は、方法を実行する特定の種類の装置によって限定されない。方法400における様々な動作は、提示された順序で実行されてもよく、又は異なる順序で実行されてもよい。更に、いくつかの実施形態では、
図4に列挙されたいくつかの動作は、方法400から省略される。
【0032】
方法400は、図示のように、近距離パルスエネルギーレベルが設定され、近距離パルスが放出されるブロック410から開始する。いくつかの実施形態では、これは、パルスエネルギーレベルを、LIDARシステムから特定の距離でアイセーフな動作をもたらす値に設定することに対応する。例えば、いくつかの実施形態では、100mmでアイセーフな動作を被曝放出がもたらすように、仮想保護筐体回路180(
図1)によって近距離パルスエネルギーレベルを設定することができ、他の実施形態では、100mmを超える最小距離でアイセーフな動作を被曝放出がもたらすように、パルスエネルギーレベルを設定することができる。
【0033】
420において、近距離物体が検出された場合、三次元点(X、Y、Z)を三次元記憶装置146(
図1)などの三次元点群記憶装置に書き込むことができる。近距離物体が検出されなかった場合、440において、1つ以上の遠距離パルスが送信されてもよい。上述したように、近距離物体検出は、近距離パルスの反射を検出し、検出された反射の飛行時間を測定し、その飛行時間を閾値と比較することによって達成され得る。近距離に対応する閾値の値は、任意の適切な値に設定することができる。
【0034】
430において、1つ以上の遠距離パルスが放出される。440において、物体が検出された場合、三次元点(X、Y、Z)を三次元記憶装置146(
図1)などの三次元点群記憶装置に書き込むことができ、処理は460において次の測定点に対して継続する。物体が検出されなかった場合、処理は、点群記憶装置に三次元点を書き込むことなく、460において次の測定点に対して継続する。
【0035】
図5は、本発明の様々な実施形態による、距離の関数として物体を検出しない確率を示す図である。確率曲線510は、パルスエネルギーレベル、物体の反射率、周囲光などを含む多くのパラメータに基づいて左又は右にシフトすることができる典型的な曲線である。例えば、非常に明るい太陽光中では、100mmでアイセーフな近距離パルスは、20mで20%の反射率を有する物体を検出しない確率が10
-10であり得る。これにより、より近い距離では物体を検出しない確率が更に低くなるため、この同じシナリオでは、5mでアイセーフな遠距離パルスは、非常に堅牢な仮想保護筐体を提供する。
【0036】
いくつかの実施形態では、近距離に対応する閾値及び遠距離パルスのエネルギーレベルは、近距離と遠距離パルスの最小アイセーフ距離とが等しくなる値に設定される。他の実施形態では、近距離に対応する閾値及び遠距離パルスのエネルギーレベルは、近距離が遠距離パルスの最小アイセーフ距離よりも大きくなる値に設定される。
【0037】
図6は、本発明の様々な実施形態によるアイセーフなLIDARシステムを備える移動プラットフォームを示す図である。自動車610は、アイセーフなLIDARシステム620が搭載されているプラットフォームである。いくつかの実施形態では、アイセーフなLIDARシステム620は、LIDARシステム100(
図1)又は以下で更に説明するLIDARシステムのいずれかを使用して実装される。
【0038】
いくつかの実施形態では、近距離パルスのエネルギーは、LIDARシステムが搭載されているプラットフォームが動いている時に増加する。例えば、自動車610が閾値を超える速度を有する場合、近距離パルスのエネルギーは、100mmを超える最小距離で被曝放出をアイセーフなレベルとするレベルを有し得る。いくつかの実施形態では、被曝放出をアイセーフなレベルとする最小距離は、1メートル以上であり得る。また、例えば、近距離パルスのエネルギーは、プラットフォーム速度の増加に伴って増加してもよい。いくつかの実施形態では、近距離パルスのエネルギーは、プラットフォームが2.5メートル/秒(m/s)~25m/sの間で加速するにつれて徐々に増加してもよい。
【0039】
近距離パルスのエネルギーレベルを増加させると、近距離内の物体を検出する確率を上げることができ、及び/又は物体をその中で検出することの可能な近距離を延長することができる。
図6は、近距離パルスエネルギーの増加の結果として延長された近距離を示す。
【0040】
図7は、本発明の様々な実施形態による方法のフロー図である。いくつかの実施形態では、方法410又はその一部は、LIDARシステムによって実行され、その実施形態は前の図に示されている。他の実施形態では、方法410は、一連の回路又は電子システムによって実行される。例えば、方法410は、仮想保護筐体回路によって実行されてもよい。方法410は、方法を実行する特定の種類の装置によって限定されない。方法410における様々な動作は、提示された順序で実行されてもよく、又は異なる順序で実行されてもよい。更に、いくつかの実施形態では、
図7に列挙されたいくつかの動作は、方法410から省略される。
【0041】
方法410は、
図4のブロック410に対応する。方法410は、デフォルトの近距離パルスエネルギーレベル及びデフォルトの時間閾値が設定されるブロック710から開始することが示されている。いくつかの実施形態では、近距離パルスエネルギーレベルは、被曝放出が近距離(例えば、100mm以下)でアイセーフとなるように設定され、時間閾値は、物体を検出しない確率が非常に低くなる値に設定される(
図5を参照)。
【0042】
720において、速度が閾値よりも速い場合、処理は740で継続し、速度が閾値よりも速くない場合、処理は730で継続する。いくつかの実施形態では、速度は、LIDARシステムが搭載されている移動プラットフォームの速度に対応する。例えば、LIDARシステムが自動車に搭載されている場合、速度は自動車の速度に対応する。いくつかの実施形態では、LIDARシステムは自動車から速度情報を受信し、他の実施形態では、LIDARシステムは速度センサを含み、外部の速度情報源に依存しない。
【0043】
740において、近距離パルスエネルギーレベルと近距離に対応する時間閾値とが増加する。いくつかの実施形態では、近距離パルスエネルギーは、1メートルの最小距離でアイセーフなレベルである被曝放出をもたらすレベルまで増加する。他の実施形態では、近距離パルスエネルギーは、1メートルを超えるか又は1メートル未満の最小距離でアイセーフなレベルである被曝放出をもたらすレベルまで増加する。730において、近距離パルスが放出される。
【0044】
図8及び
図9は、本発明の様々な実施形態による仮想保護筐体及び冗長検出器を有する走査型光検出及び測距(LIDAR)システムを示す図である。
【0045】
図8を参照すると、LIDARシステム800は、LIDARシステム100(
図1)の全ての構成要素を含み、第2のIR検出器842、第2のTOF回路844、第2の比較器848、及びORゲート880も含む。動作中、これら追加の回路は、冗長な近距離物体検出能力を提供し、ORゲート880は、いずれかの回路が近距離物体を検出した場合に近距離物体の検出を通知する。
【0046】
冗長な近距離物体検出は、更なる安全手段を提供する。例えば、1つ又はIR検出器、TOF回路、又は比較器が故障した場合、冗長性は、安全な動作が継続できるようにする。
【0047】
いくつかの実施形態では、IR検出器142及び第2のIR検出器842は、異なる光路を介して反射光を受光する。例えば、IR検出器142は、135に示される経路に沿った反射光を受信することができ、IR検出器835は、放出された光パルスと光路を共有することができる。
図8によって表される実施形態では、162における放出されたレーザ光は、ミラー116によって反射されて、経路834に沿った光パルスを生成し、経路834に沿った任意の反射光もまた、ミラー116によって反射され、経路835に沿ってIR検出器842に到達する。
【0048】
いくつかの実施形態では、検出回路及びTOF回路は双方ともに、近距離物体を検出するように動作し、検出回路及びTOF回路の一方のみが、遠距離を測定し、かつ/又は三次元群記憶装置に書き込むように動作する。例えば、
図8によって表される実施形態では、TOF回路844又はTOF回路144のいずれによって測定された飛行時間も、近距離物体を検出するために使用することができるが、三次元点群を埋めるために使用されるのは、TOF回路144によって測定された飛行時間のみである。
【0049】
ここで
図9を参照すると、LIDARシステム900は、VPH回路184、パルス生成回路190、三次元点群記憶装置146、ORゲート880、及び制御回路154を含む。LIDARシステム900はまた、送信モジュール910と、受信モジュール930と、TOF及び近距離検出回路940と、TOF及び近距離回路950とを含む。
【0050】
TOF及び近距離検出回路940及び950は、それぞれ、TOF回路及び比較器を備える。例えば、TOF及び近距離検出回路940は、TOF回路844及び比較器848(
図8)を含んでもよく、TOF及び近距離検出回路950は、TOF回路144及び比較器148(
図8)を含んでもよい。
【0051】
送信モジュール910は、パルスレーザビームを生成するためのIRレーザ光源と、コリメート光学系及びフォーカシング光学系と、視野内でパルスレーザビームを二次元で走査するための1つ以上の走査ミラーアセンブリとを含む。送信モジュール910はまた、放出されたIRレーザ光パルスと光路を共有するIRレーザ光検出器を含む。送信モジュールの例示的な実施形態は、後の図を参照して以下でより完全に説明される。
【0052】
受信モジュール930は、光学装置と、視野からの反射光を二次元で走査して内蔵されているIR光検出器に向けるための1つ以上の走査ミラーアセンブリとを含む。受信モジュールの例示的な実施形態は、後の図を参照して以下でより完全に説明される。
【0053】
制御回路154は、
図1を参照して上述したように、送信モジュール910内の走査ミラーの動きを制御する。制御回路154はまた、受信モジュール930内の走査ミラーの動きを制御する。動作中、制御回路140は、送信モジュール910からミラー位置フィードバック情報(図示せず)を受信し、受信モジュール930からもミラー位置フィードバック情報(図示せず)を受信する。ミラー位置フィードバック情報は、ミラーの動作を位相ロックするために使用される。制御回路540は、駆動信号945を用いて、送信モジュール910内の走査ミラーを有する微小電気機械(MEMS)アセンブリを駆動し、また、視野128のサイズ及び位置を定義するミラー偏向の角度範囲を通してミラーを動かす駆動信号947を用いて、受信モジュール930内の走査ミラーを有するMEMSアセンブリを駆動する。送信走査と受信走査との同期は、送信エネルギーが送信された視野部分からの光子のみを受信開口が受け入れることを可能にする。これにより、周囲光ノイズに対する耐性が顕著になる。
【0054】
図9に示すように、二次元走査は、第1の次元(垂直な高速走査方向)及び第2の次元(水平な低速走査方向)で実行される。装置を90度回転させると水平軸と垂直軸が切り替わるので、「垂直」及び「水平」という分類は幾分恣意的である。一例として、高速走査方向及び低速走査方向は、
図9では
図1及び
図8に示すものと比較して90度回転していることが示されている。
【0055】
図10は、本発明の様々な実施形態による送信モジュールの側面図であり、
図11は、本発明の様々な実施形態による送信モジュールの上面図である。送信モジュール910は、レーザ光源1010と、ビーム整形光学装置1020と、受信エネルギーピックオフ装置1060と、ミラー1062と、ビーム整形装置1064と、IR検出器1066と、スキャナ1028と、出射光学装置450とを含む。
【0056】
いくつかの実施形態では、レーザ光源1010は、赤外(IR)光などの非可視光を供給する。これらの実施形態では、IR検出器1066は、受信モジュール930(
図9)内のIR検出器と同じ波長の非可視光を検出する。例えば、いくつかの実施形態では、光源1010は、実質的に905ナノメートル(nm)の波長を有する赤外光を生成するレーザダイオードを含むことができ、IR検出器1066は、実質的に905nmの波長を有する反射光パルスを検出する。また、例えば、いくつかの実施形態では、光源1010は、実質的に940ナノメートル(nm)の波長を有する赤外光を生成するレーザダイオードを含むことができ、IR検出器1066は、実質的に940nmの波長を有する反射光パルスを検出する。光の波長は本発明を限定するものではない。可視又は不可視の任意の波長を本発明の範囲から逸脱することなく使用することができる。
【0057】
レーザ光源1010は、パルスレーザビームを生成するのに適した任意の数又はタイプのエミッタを含むことができる。例えば、いくつかの実施形態では、レーザ光源1010は、
図11において1112、1114、1116、及び1118で示す複数のレーザダイオードを含む。レーザ光源1010によって生成されたパルスレーザ光は、ビーム整形光学装置1020によって結合され、コリメートされ、合焦されて、パルスレーザビームを生成する。例えば、光学装置1022は、レーザビームを高速軸上でコリメートすることができ、偏光回転子1023及びビームコンバイナ1020は、レーザビームを結合することができ、光学装置1022は、パルスレーザビームを低速軸上でファンに形成することができる。ビームサイズ及び発散値は、本発明の様々な実施形態にわたって均一である必要はなく、いくつかの実施形態はより高い値を有し、いくつかの実施形態はより低い値を有する。
【0058】
スキャナ1028は、光学装置1020からパルスレーザビームを受信し、パルスビームを二次元で走査する。
図10及び
図11によって表される実施形態では、スキャナ1028は、各々が走査ミラー1032、1042を含む2つの別個の走査ミラーアセンブリ1030、1040を含み、各走査ミラーは一次元でビームを走査する。例えば、走査ミラー1032は、パルスビームを高速走査方向に走査し、走査ミラー1042は、パルスビームを低速走査方向に走査する。
【0059】
スキャナ1028は、各々が別個の次元で走査する2つの走査ミラーアセンブリを含むように示されているが、これは本発明の限定ではない。例えば、いくつかの実施形態では、スキャナ1028は、二次元で走査する単一の二軸走査ミラーアセンブリを使用して実装される。いくつかの実施形態では、走査装置は、MEMSダイと永久磁石の小さなサブアセンブリと電気的インターフェースとを含む小型アセンブリを使用して達成される電磁作動を使用するが、様々な実施形態はこの点に関して限定されない。
【0060】
出射光学装置1050は、走査パルスレーザビームが送信モジュールを出る時に走査パルスレーザビームに対して動作する。いくつかの実施形態では、出射光学装置1050は、視野拡大を実行する。例えば、走査ミラーアセンブリ1028は、高速走査軸上で20度の最大角度範囲にわたって走査することができ、低速走査軸上で40度の最大角度範囲にわたって走査することができ、出射光学装置1050は、視野を高速走査軸上で30度及び低速走査軸上で120度に拡大することができる。走査ミラーの走査角と出射光学装置1050によって提供される視野拡大の量との間の関係は、本発明の限定ではない。
【0061】
受信エネルギーピックオフ装置1060は、送信光路を放出された光パルス(実線で示す)と共有する受信光(点線で示す)を偏向させる。偏向された受信光は次いで、ミラー1062で反射され、光学装置1064で合焦され、IR検出器1066で検出される。いくつかの実施形態では、ピックオフ装置1060は、IRレーザ光源によって生成されたパルスビームを透過させる「窓」と、窓の外側で受信エネルギーを偏向させる反射外側部分とを含む。他の実施形態では、ピックオフ装置1060は、入射光の一部を透過させ、残りを反射する部分反射器である。例えば、入射光の90%を透過させ、入射光の10%を反射する反射器は、視野内の物体から反射された光の10%をIR検出器に供給する。更なる実施形態では、ピックオフ装置1060は、パルスレーザビームを(第1の偏光で)透過させ、異なる偏光の受信光をピックオフする偏光ビームスプリッタを搭載してもよい。これは、反射がランバート反射のためにランダムに偏光されることを一因として有効である。更なる実施形態では、出射されるレーザビームと受信されるエネルギーは、走査ミラーの異なる部分に向けられてもよく、ピックオフ装置1060は、一方を反射するが他方を反射しないように配置されたオフセットミラーであってもよい。
【0062】
IR検出器1066は、IR検出器842(
図8)の例示的な実施形態であってもよい。例えば、いくつかの実施形態では、送信モジュール930は、LIDARシステム800の(冗長IR検出器を有する)送信側を実装する。
【0063】
図12は、本発明の様々な実施形態による受信モジュールの側面図であり、
図13は、本発明の様々な実施形態による受信モジュールの上面図である。受信モジュール930は、IR検出器1210と、折り返しミラー1212と、撮像光学装置1220と、バンドパスフィルタ1222と、スキャナ1228と、出射光学装置1250とを含む。
【0064】
走査ミラーアセンブリ1230及び1240は、走査ミラーアセンブリ1030及び1040と同様又は同一であり、出射光学装置1250は、出射光学装置1050と同様又は同一である。バンドパスフィルタ1222は、レーザ光源1010によって生成された光の波長を通過させ、他の波長の環境光を遮断する。例えば、いくつかの実施形態では、レーザ光源は905nmの光を生成し、バンドパスフィルタ1222は905nmの光を通過させる。
【0065】
撮像光学装置1220は、折り返しミラー1212による反射後に、視野の一部をIR検出器1210上に撮像する。スキャナ1228はスキャナ1028と同期して走査されるので、アレイ状受信器1210は、走査されたパルスビームによって照射された測定点から光を常に収集する。
【0066】
図14は、本発明の様々な実施形態による統合フォトニクスモジュールの断面上面図である。統合フォトニクスモジュール1410は、送信モジュール910と受信モジュール930との両方を含む。いくつかの実施形態では、フォトニクスモジュールは、送信モジュール910と、別個の走査アセンブリを含まない受信モジュールとを含む。例えば、フォトニクスモジュールは、IR検出器と光路を共有する送信側にスキャナを含み、別個のスキャナなしの受信側を含むLIDARシステム800(
図8)の光学部分を実装することができる。
【0067】
図15は、
図14の統合フォトニクスモジュールの斜視図である。送信モジュール910と受信モジュール930とが並んで配置された長方形の筐体を有する統合フォトニクスモジュール1410が示されている。いくつかの実施形態では、送信モジュール910及び受信モジュール930は、一方が他方の上に配置されている。送信モジュール910及び受信モジュール930の相対的な向きは、本発明の限定ではない。
【0068】
図16は、本発明の様々な実施形態によるアイセーフなLIDARシステムを備える走査型プロジェクタを示す図である。走査型プロジェクタ1600は、
図1に示す構成要素の全てを含み、画像処理構成要素1602、出力制御回路1604、及び可視レーザ光源1630も含む。いくつかの実施形態では、可視レーザ光源は、視野128内に視認可能な画像をもたらす可視画素を生成するためにパルス化される赤色、緑色、及び青色レーザ光源を含む。
【0069】
出力制御回路1604は、VPH回路184に応答して、視野内で物体が検出された時に可視レーザ光パルスの出力を低減させる。例えば、近距離物体が検出された場合、出力制御回路1604は、可視レーザ光をブランクにするか、又は検出された物体の距離で被曝放出がアイセーフとなるように出力レベルを低減させることができる。
【0070】
図17は、本発明の様々な実施形態による対話型ディスプレイ装置を示す。対話型ディスプレイ装置1700は、走査型プロジェクタ1600を含み、走査型プロジェクタは、レーザ光源1630、130及びIR検出器142を含む。いくつかの実施形態では、対話型ディスプレイ装置は可視コンテンツを表示し、ユーザはジェスチャ認識を介して対話することができる。
【0071】
図18は、本発明の様々な実施形態による短焦点プロジェクタを示す。短焦点プロジェクタ1800は、棚1810上に配置され、壁1720上の視野1880内に投影する。プロジェクタ1800は、前述の任意の仮想保護筐体回路を含む。
【0072】
本発明を特定の実施形態に関連して説明してきたが、当業者が容易に理解するように、本発明の範囲から逸脱することなく修正及び変形を用いることができることを理解されたい。そのような修正及び変形は、本発明及び添付の特許請求の範囲内にあると考えられる。
【国際調査報告】