(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-05-18
(54)【発明の名称】風力タービン用のターナーギアアセンブリ、及びその使用方法
(51)【国際特許分類】
F03D 13/10 20160101AFI20230511BHJP
F03D 1/06 20060101ALI20230511BHJP
F03D 7/04 20060101ALI20230511BHJP
【FI】
F03D13/10
F03D1/06 A
F03D7/04 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022557814
(86)(22)【出願日】2021-03-22
(85)【翻訳文提出日】2022-11-21
(86)【国際出願番号】 DK2021050084
(87)【国際公開番号】W WO2021190719
(87)【国際公開日】2021-09-30
(32)【優先日】2020-03-23
(33)【優先権主張国・地域又は機関】DK
(81)【指定国・地域】
(71)【出願人】
【識別番号】514130633
【氏名又は名称】ヴェスタス ウィンド システムズ エー/エス
(74)【代理人】
【識別番号】100094112
【氏名又は名称】岡部 讓
(74)【代理人】
【識別番号】100101498
【氏名又は名称】越智 隆夫
(74)【代理人】
【識別番号】100107401
【氏名又は名称】高橋 誠一郎
(74)【代理人】
【識別番号】100120064
【氏名又は名称】松井 孝夫
(74)【代理人】
【識別番号】100182257
【氏名又は名称】川内 英主
(74)【代理人】
【識別番号】100202119
【氏名又は名称】岩附 秀幸
(72)【発明者】
【氏名】コフマン,ヨリス
(72)【発明者】
【氏名】マティアセン,ダン ムルガード
【テーマコード(参考)】
3H178
【Fターム(参考)】
3H178AA03
3H178AA40
3H178AA43
3H178BB01
3H178BB77
3H178CC02
3H178CC14
3H178CC25
3H178DD02X
3H178DD06X
3H178DD17X
3H178DD54X
3H178DD67X
3H178DD70X
3H178EE40
(57)【要約】
駆動系(30)を有する風力タービン(10)の不均衡ローターを回転させるためのターナーギアアセンブリ(52)は、駆動系(30)に連結するように構成され、少なくとも二つのモーター(58a、58b)を有するターナーギア(50)と、ターナーギア(50)に接続されたバルブブロック(78)とを含む。バルブブロック(78)は、ポンプ(80)及びターナーギア(50)の少なくとも二つのモーターに流体連通するように構成された第一流量制御弁(106)を含む。第一流量制御弁(106)は、第一流体制御位置(106a)と第二流体制御位置(106b)との間で選択的に移動可能である。第一流量制御弁(106)が第一流体制御位置(106a)にあるとき、少なくとも二つのモーターが並列に動作し、第一流量制御弁(106)が第二流体制御位置(106b)にあるとき、少なくとも二つのモーターが直列に動作する。
【選択図】
図7
【特許請求の範囲】
【請求項1】
駆動系を有する風力タービンの不均衡ローターを回転させるためのターナーギアアセンブリ(52)であって、
前記駆動系に連結するように構成され、少なくとも二つのモーター(58a、58b)を有するターナーギア(50)と、
前記ターナーギア(50)が動作可能に接続されたバルブブロック(78)であって、前記バルブブロック(78)は、ポンプ(80)及び前記ターナーギア(50)の少なくとも二つのモーター(58a、58b)に流体連通するように構成された第一流量制御弁(106)を含み、前記第一流量制御弁(106)は、第一流体制御位置(106b)と第二流体制御位置(106a)との間で選択的に移動可能であるバルブブロック(78)と、を有し、
前記第一流量制御弁(106)が前記第一流体制御位置(106b)にあるとき、前記少なくとも二つのモーター(58a、58b)が並列に動作し、前記第一流量制御弁(106)が前記第二流体制御位置(106a)にあるとき、前記少なくとも二つのモーター(58a、58b)が直列に動作する、ターナーギアアセンブリ。
【請求項2】
前記ターナーギア(50)は、第一、第二及び第三のモーター(58a、58b、58c)を有し、前記第一流量制御弁(106)は、前記第一及び第二のモーター(58a、58b)と流体連通するように構成され、前記バルブブロック(78)は、更に、
前記ポンプ(80)及び前記ターナーギア(50)の前記第二及び第三のモーター(58b、58c)に流体連通するように構成された第二流量制御弁(108)を含み、前記第二流量制御弁(108)は、第一流体制御位置(108b)と第二流体制御位置(108a)との間で選択的に移動可能である、請求項1に記載のターナーギアアセンブリ(52)。
【請求項3】
それぞれの前記第一流量制御弁(106)及び前記第二流量制御弁(108)の前記第一及び第二流体制御位置(106b、106a、108b、108a)は、前記第一、第二及び第三のモーター(58a、58b、58c)が並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように選択的に構成されている、請求項2に記載のターナーギアアセンブリ(52)。
【請求項4】
前記第一流量制御弁(106)が前記第一流体制御位置(106b)にあり、前記第二流量制御弁(108)が前記第一流体制御位置(108b)にあるとき、前記第一、第二及び第三のモーター(58a、58b、58c)が並列に動作する、請求項2に記載のターナーギアアセンブリ(52)。
【請求項5】
前記第一流量制御弁(106)が前記第二流体制御位置(106a)にあり、前記第二流量制御弁(108)が前記第二流体制御位置(108a)にあるとき、前記第一、第二及び第三のモーター(58a、58b、58c)が直列に動作する、請求項2に記載のターナーギアアセンブリ(52)。
【請求項6】
前記第一流量制御弁(106)が前記第二流体制御位置(106a)にあり、前記第二流量制御弁(108)が前記第一流体制御位置(108b)にあるとき、前記第一及び第二のモーター(58a、58b)は直列に動作し、前記第三のモーター(58c)は前記第一及び第二のモーター(58a、58b)の組み合わせに並列に動作する、請求項2に記載のターナーギアアセンブリ(52)。
【請求項7】
前記ターナーギア(50)が更に第四のモーター(58d)を含み、第三流量制御弁(110)が設けられ、前記第三流量制御弁(110)は、前記ポンプ(80)及び前記ターナーギア(50)の前記第三及び第四のモーター(58c、58d)と流体連通するように構成され、前記第三流量制御弁(110)が第一流体制御位置(110b)と第二流体制御位置(110a)との間で選択的に移動可能である、請求項2に記載のターナーギアアセンブリ(52)。
【請求項8】
前記第一流量制御弁(106)が前記第二流体制御位置(106b)にあり、前記第二流量制御弁(108)が前記第一流体制御位置(108b)にあり、前記第三流量制御弁(110)が前記第二流体制御位置(110a)にあるとき、前記第一及び第二のモーター(58a、58b)は互いに直列に動作し、前記第三及び第四のモーター(58c、58d)は互いに直列に動作する、請求項7に記載のターナーギアアセンブリ(52)。
【請求項9】
前記第一、第二及び第三流量制御弁(106、108、110)のそれぞれの前記第一、第二及び第三流体制御位置(106b、106a、108b、108a、110b、110a)は、第一、第二、第三及び第四のモーター(58a、58b、58c、58d)が並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように選択的に構成されている、請求項7に記載のターナーギアアセンブリ(52)。
【請求項10】
前記第一流量制御弁(106、108、110)をそれぞれの第一位置と第二位置(106b、106a、108b、108a、110b、110a)との間で選択的に移動させるように構成された制御ユニット(116)を更に含む、請求項1から9のいずれか一項に記載のターナーギアアセンブリ(52)。
【請求項11】
前記バルブブロック(78)が、前記ポンプ(80)に動作可能に接続された少なくとも一つの流れ方向弁(88)を含み、前記流れ方向弁(88)は第一位置と第二位置(88c、88a)との間で選択的に移動可能であり、
前記第一位置(88c)は、前記ポンプ(80)からの流体が前記少なくとも二つのモーター(58a、58b)を介して第一流体流方向(90)に移動することができるように構成され、
前記第二位置(88a)は、前記ポンプ(80)からの前記流体が前記少なくとも二つのモーター(58a、58b)を介して第二流体流方向に移動することができるように構成されている、請求項1から10のいずれか一項に記載のターナーギアアセンブリ(52)。
【請求項12】
風力タービン(10)の不均衡ローターを回転させるための、請求項1に記載のターナーギアアセンブリ(52)を操作する方法であって、
前記ターナーギアアセンブリ(52)を風力タービン駆動系(30)に作動的に接続することと、
前記第一流量制御弁(106)の前記第一流量制御位置(106b)と前記第二流量制御位置 (106a)との間の選択であって、前記第一流量制御位置(106b)が選択されたとき、前記少なくとも二つのモーター(58a、58b)が並列に動作し、前記第二流量制御位置(106a)が選択されたとき、前記少なくとも二つのモーター(58a、58b)が直列に動作するように選択することと、
選択された前記流体制御位置(106a、106b)にある前記第一流量制御弁(106)で前記ターナーギアアセンブリ(52)を操作することと、を含む、方法。
【請求項13】
前記二つのモーター(58a、58b)が並列に動作するように、前記第一流量制御弁(106)の前記第一流体制御位置(106b)を選択すること、又は、
前記二つのモーター(58a、58b)が並列に動作するように、前記第一流量制御弁(106)の前記第二流体制御位置(106a)を選択すること、のいずれかを含む、請求項12に記載の方法。
【請求項14】
前記ターナーギア(50)が第一、第二、及び第三のモーター(58a、58b、58c)を有し、前記第一流量制御弁(106)が前記ターナーギア(50)の前記第一及び第二のモーター(58a、58b)と流体連通し、前記バルブブロック(78)が前記ポンプ(80)及び前記ターナーギア(50)の前記第二及び第三のモーター(58b、58c)と流体連通する第二流量制御弁(108)を更に含み、前記第二流量制御弁(108)が第一流体制御位置(108b)と第二流体制御位置(108a)との間で選択的に移動可能であり、前記方法は、
前記第一、第二、第三のモーター(58a、58b、58c)が並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように、前記第二流量制御弁(108)の第一流体制御位置(108b)と第二流体制御位置(108a)との間を選択することと、
前記第一流量制御弁(106)を選択された流体制御位置(106a、106b)及び第二流量制御弁(108)を選択された流体制御位置(108a、108b)にして、前記ターナーギアアセンブリ(52)を動作させることと、を含む、請求項12に記載の方法。
【請求項15】
前記バルブブロック(78)が、前記ポンプ(80)に作動的に接続された流れ方向弁(88)を含み、前記流れ方向弁(88)は第一位置と第二位置(88c、88a)との間で選択的に移動可能であり、前記方法は、
前記流れ方向弁(88)を前記第一位置(88c)と前記第二位置(88a)との間で選択的に動かし、前記第一流量制御弁(106)を前記第一位置と前記第二位置(106b、106a)の間で選択的に動かすように構成された制御ユニット(116)を更に備えることと、
前記第一制御位置(106b)と前記第二制御位置(106a)の選択は、前記制御ユニット(116)によって命令されることと、を含む、請求項12に記載の方法。
【請求項16】
ターナーギアアセンブリ(50)を用いて風力タービンの不均衡ローター(16)を回転させる方法であって、
複数のブレードサイト(44)を備えたローターハブ(22)を有する第一風力タービン(10)と、ローターハブ(22)に動作可能に結合された駆動系(30)を更に有する第一風タービン(10)とを提供することと、
請求項1の前記ターナーギアアセンブリ(52)を提供することと、
前記第一風力タービンの前記駆動系(30)に前記ターナーギア(50)を動作可能に連結すること、前記バルブブロック(78)を前記ターナーギア(50)とポンプ(80)に動作可能に接続することと、
第一動作モードで前記少なくとも二つのモーター(58a、58b)を動作させるように前記バルブブロック(78)を構成することと、
前記少なくとも二つのモーター(58a、58b)を動作させるように、複数のブレードサイト(44)の一つがブレード取り扱い位置になるまで前記中央ハブ(22)を回すように、前記ポンプ(80)を操作することと、
前記ブレード取り扱い位置での前記ブレードサイト(44)へ/からの風力タービンブレード(24)を取り付けること/取り外すことと、
前記第一風力タービンがすべての風力タービンブレードを複数のブレードサイト(44)のそれぞれ一つに取り付ける/から取り外すまで、操作と取り付けのステップを繰り返すことと、を含む方法。
【請求項17】
前記第一風力タービンから前記ターナーギアアセンブリ(52)を取り外すことと、
複数のブレードサイト(44)を有するローターハブ(22)を備えた第二風力タービンに前記ターナーギアアセンブリ(52)を提供することと、
前記第二風力タービンの駆動系(30)に前記ターナーギア(50)を取り付け、前記バルブブロック(78)を前記ターナーギア(50)に動作可能に接続することと、
前記第一動作モードとは異なる第二動作モードで前記少なくとも二つのモーター(58a、58b)を動作させるように前記バルブブロック(78)を構成することと、
前記少なくとも二つのモーター(58a、58b)を作動させ、複数のブレードサイト(44)の一つがブレード取り扱い位置になるまでローターハブ(22)を回すようにポンプ(80)を操作することと、
前記ブレード取り扱い位置での前記ブレードサイト(44)へ/からの風力タービンブレード(24)を取り付けること/取り外すことと、
前記第二風力タービンがすべての前記風力タービンブレード(24)を複数のブレードサイト(44)のそれぞれ一つに取り付ける/取り外すまで、操作と取り付けのステップを繰り返すことと、を更に含む、請求項16に記載の方法。
【請求項18】
前記ポンプ(80)を操作することは、
ポンプ(80)を備えた前記風力タービン(10)の油圧システムに前記ターナーギア(50)を連結することと、
前記ターナーギア(50)を操作するために前記風力タービン油圧システムの前記ポンプ(80)を操作することと、を含む、請求項16に記載の方法。
【請求項19】
前記油圧システムが前記風力タービン(10)のピッチ制御システムである、請求項18に記載の方法。
【請求項20】
前記駆動系(30)の発電機(18)に前記ターナーギア(50)が結合されている、又は、
前記駆動系(30)のギアボックス出力軸に前記ターナーギア(50)が結合されている、又は、
前記駆動系(30)のギアボックス入力軸に前記ターナーギア(50)が結合されている、請求項16又は17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的には風力タービンに関するものであり、より具体的には、風力タービンに風力タービンブレードを取り付ける際に使用するためのターナーギアアセンブリ、及び特に風力タービンブレードを取り付ける際にそのようなターナーギアアセンブリを使用する方法に関する。
【背景技術】
【0002】
風力タービンは、再生可能資源を利用し、化石燃料を燃焼させずに電気エネルギーを生産するために使用される。一般的に、風力タービンは風の運動エネルギーを電力に変換する。水平軸風力タービンは、タワーと、タワーの上に配置されたエネルギー生成ユニットを含む。通常、エネルギー生成ユニットは、発電機などの機械的及び電気的コンポーネントを収容するためのナセルと、ナセルから延びる主軸を介してナセル内のコンポーネントに動作可能に結合されたローターを含む。ローターは、中央ハブと、そこから放射状に延び、風と相互作用してローターの回転を引き起こすように構成された複数のブレードを含む。ローターは主軸上に支持されており、主軸はナセル内に収納された発電機と直接又は間接的に作動結合されている。その結果、風によってブレードが強制的に回転するため、発電機によって電気エネルギーが生成される。
【0003】
通常、風力タービンは、風力タービンが稼働する場所で組み立てられる。例えば、その場所にタワーを建て、タワーの上部にエネルギー生成ユニットを設置する。その後、個々のブレードは、エネルギー生成ユニット上の中央ハブの周りに円周方向に間隔を置いて配置されたブレードベアリングに一つずつ取り付けられる。第一ブレードを取り付ける特定の一つの方法では、中央ハブを回転させて、中央ハブ上の第一ブレードベアリングを、例えばおおむね3時の位置(又は6時の位置)に回転させる。この向きでは、一般的に水平方向のブレードがクレーンなどの吊り上げ装置を介して持ち上げられ、第一ブレード軸受に取り付けられる。第一ブレードを中央ハブに取り付けた後、中央ハブと第一ブレードを回転させて、第二ブレードベアリングがおおむね3時の位置になり、第二ブレードが持ち上げられて第二ブレードベアリングに取り付けられる。ここでも、中央ハブと第一及び第二ブレードは、第三ブレードベアリングがおおむね3時の位置になるまで回転し、第三ブレードが持ち上げられて第三ブレードベアリングに取り付けられる。中央ハブを回転させて中央ハブにブレードのベアリングを向けるのを容易にするために、通常はターナーギアが使用される。特に、風力タービンが廃止されたとき、又はその試運転の前に、回転するローター主軸を駆動するように、ターナーギアが構成されている。通常、ターナーギアは風力タービンの駆動系の不可欠な部分ではないが、例えばローターハブへのブレードの取り付けの際に、ハブ又はローターの回転を補助するためだけに取り付けて操作することができる。このため、ハブにブレードを取り付けた後、風力タービンからターナーギアを取り外すことができる。ターナーギアは電力で駆動される場合もあれば、油圧で駆動される場合もある。油圧式のターナーギアの場合、通常、ターナーギアの油圧駆動要素は油圧ポンプに結合される。このようなポンプは、ターナーギアと一緒に持ち運べるため、使用前又は使用後にそれぞれ風力タービンに取り付けたり取り外したりすることができる。通常、ターナーギアは、ローターハブが接続されている主軸に直接又は間接的に結合されている場合がある。ブレード取り付け作業中、操作者は、連続するブレードを取り付けるためのハブの向きを決めるために、例えば時計回り又は反時計回りに主軸を回転させるようにターナーギアに指示することができる。
【0004】
ハブに1枚又は2枚のブレードしか取り付けられていない場合、ローターは不均衡状態と見なされる。不均衡状態にあるローターを回転させるのに必要なトルクは、ローターが平衡状態にあるとき、すなわちすべてのブレードが取り付けられているときよりも大きくなる。更に、より大きく、より重いブレードで構成されるローターは、より小さく、より軽いブレードよりも高い回転トルクを必要とする。また、風力タービンの設置場所で設置中に強風にさらされると、不均衡ローターを回転させるために必要なトルクが増加する可能性がある。このため、不均衡状態でローターを回転させるのに十分なトルクを発生させることができなければならない。不均衡ローターは、通常、1枚のブレードのみが取り付けられたハブを構成することもあれば、2枚のブレードのみが取り付けられたハブを構成することもある。
【0005】
ターナーギアは、一つ以上のトルクモーターを含むことができる。前述のように、これらは電気又は油圧で駆動される。風力タービンの主軸を直接又は間接的に駆動するために、トルクモーターを取り付けることができる。場合によっては、ターナーギアのトルクモーターを駆動系のギアボックスに、又はその近くに設置することで、ギアボックス軸を回転駆動し、それによってローターハブをブレード取り付けの目的の位置に回すことができる。一般に、風力タービンのパワートレインにギアボックスがある場合、ローターはギアボックスの低速軸(入力軸とも呼ばれる)に結合される。ギアボックスの高速軸を駆動するために、そのギアボックスを利用してトルクを大きくするために、ターナーギアを取り付けることがある。高速ギアボックスの軸は、その出力軸としても知られている。
【0006】
一つ以上の油圧モーターをターナーギアで使用する場合、これらは油圧ポンプを使用して駆動される。例として、複数の油圧モーターを油圧ポンプに並列に接続して、各モーターが同じ流体の流れと圧力を受け取り、油圧ポンプによって供給されるようにすることができる。これにより、油圧モーターの一つが故障した場合、故障した油圧モーターが修理されるまで、他の油圧モーターは少なくともハブを安全な状態に保つために動作し続けるように、油圧モーターは並列に実行される。油圧モーターを並列に操作すると、油圧モーターは最大トルクを発生できるが、固定された流体流量の油圧ポンプで駆動された場合に、それぞれの回転速度が制限されることがある。
【0007】
風力タービンメーカーは、例えばナセル内のように、風力タービン内にあらかじめ設置された油圧ポンプに、ターナーギアを接続することができる。例えば、ブレードピッチ駆動要素などの風力タービン内の他のシステムに電力を供給するために、あらかじめ設置された油圧ポンプを使用することができる。あるいは、ターナーギアは、一つ以上の専用油圧ポンプと関連していてもよく、また、一つ以上の専用油圧ポンプを構成していてもよく、これは、ターナーギアを操作するためだけにナセルに一時的に取り付けることができる。設置された油圧ポンプは、特定の風力タービンのニーズに基づいて固定された流体流量を提供するサイズにすることができる。例えば、大きくて重い風力タービンブレードを持つ風力タービンは、より小さくて軽い風力タービンブレードを持つ風力タービンと比較して、より大きな流体流量を生成するために大きさの油圧ポンプを必要とし、より低い流体流量を生成するためにより小さな油圧ポンプを必要とする。
【0008】
ターナーギアがハブ又はローターを回すことができる速度は、油圧ポンプによって生成される流体流量に直接関係する。したがって、一つの流体流量を持つ油圧ポンプに連結されたターナーギアは40分でローターを120度回転させることができるが、同じターナーギアが半分の流体流量を発生する油圧ポンプに連結された場合、ローターを120度回転させるのに80分かかることがある。この回転速度の低下は、すべてのブレードの取り付けにかかる時間に影響を与える可能性がある。この状況は、同じターナーギアを大小両方のローターに関連して利用する場合に発生する可能性がある。例えば、「設置された」油圧ポンプが大きな流体流量を発生させることができる大型の風力タービンでは、一定の回転速度で大きなトルクを発生させることができるように、ターナーギアを使用することができる。その後、同じターナーギアを取り外し、その後、設置された油圧ポンプがより大きな風力タービンに設置された油圧ポンプよりもかなり低い流体流量を生成する可能性のあるより小さな風力タービンでのローターの組み立て中に使用することができる。そのため、小さい方の風力タービンで小さい方のローターを回転させるために必要なよりも多くのトルクを発生させることができても、同じターナーギアがそれに応じて低い回転速度で回転する可能性がある。その結果、そのブレードの組み立てプロセスは、小さいローターを回すために必要なよりも高いトルクをターナーギアが発生できる場合でも、かなり長くかかる可能性がある。これは、ターナーギアのパワーエンベロープを考慮する場合、厳密に必要な時間よりもターナーギアの回転に時間がかかることを意味する。
【0009】
本開示の基礎となる洞察は、一つの風力タービンで十分なトルクと回転速度を発生させ、その後、異なる風力タービンで異なるトルクと回転速度を発生させるように再構成することができるターナーギアが必要であるかもしれないという認識にある。このように、より少ないトルクを必要とする風力タービンでは、より低いトルク出力で同じターナーギアを使用するが、より高速で回転するため、設置時の時間を節約することができる。
【0010】
まとめ
これら及びその他の目的のために、駆動系を有する風力タービンの不均衡ローターを回転させるためのターナーギアアセンブリが開示されている。ターナーギアアセンブリは、駆動系に連結するように構成され、少なくとも二つのモーターを有するターナーギアと、ターナーギアが動作可能に接続されたバルブブロックであって、バルブブロックは、ポンプ及びターナーギアの少なくとも二つのモーターに流体連通するように構成された第一流量制御弁を含むバルブブロックを含む。第一流量制御弁は、第一流体制御位置と第二流体制御位置との間で選択的に移動可能である。第一流量制御弁が第一流体制御位置にあるとき、少なくとも二つのモーターが並列に動作するように構成される。第一流量制御弁が第二流体制御位置にあるとき、少なくとも二つのモーターが直列に動作するように構成される。少なくとも二つのモーターを並列、直列、又はまったく動作しないように(例えば、3つ以上のモーターの場合)、バルブブロックを構成する機能により、さまざまな風力タービンサイズで必要とされる特定のトルクと回転速度に合わせてターナーギアアセンブリを構成することができる。少なくとも二つのモーターは、二つ以上のモーターを含むことができる。二つ以上のモーターが提供されている場合は、第一及び第二流量制御弁があることが望ましい。3つ以上のモーターが提供されている場合は、第一、第二、第三流量制御弁又はそれ以上がある場合がある。
【0011】
一つの実施形態では、ターナーギアは、第一、第二及び第三のターナーギアモーターを有することができる。この配置では、第一流量制御弁は、ポンプと第一及び第二ターナーギアモーターと流体連通するように構成され、バルブブロックは、更に、ポンプ及び第二及び第三ターナーギアモーターに流体連通するように構成された第二流量制御弁を含むことができる。第二流量制御弁は、第一流体制御位置と第二流体制御位置との間で選択的に移動可能である。それぞれの第一流量制御弁及び第二流量制御弁の第一及び第二流体制御位置は、第一、第二及び第三のモーターが並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように選択的に構成することが可能である。一つの例示的な配置では、第一流量制御弁が第一流体制御位置にあり、第二流量制御弁が第一流体制御位置にあるとき、第一、第二及び第三のモーターは並列に動作してもよい。別の例示的な配置では、第一流量制御弁が第二流体制御位置にあり、第二流量制御弁が第二流体制御位置にあるとき、第一、第二及び第三のモーターは直列に動作してもよい。更に別の配置では、第一流量制御弁が第二流体制御位置にあり、第二流量制御弁が第一流体制御位置にあるとき、第一及び第二のモーターは直列に動作し、第三のモーターは第一及び第二のモーターの組み合わせに並列に動作してもよい。ターナーギアアセンブリは、第一流量制御弁を第一位置と第二位置との間で選択的に移動させるように構成された制御ユニットを含むことができ、ターナーギアアセンブリが第二流量制御弁を含む場合、制御ユニットは、第一流量制御弁と第二流量制御弁の両方をそれぞれの第一位置と第二位置の間で選択的に移動させるように構成されることができる。
【0012】
別の実施形態では、ターナーギアは、第一、第二、第三及び第四のターナーギアモーターを有することができる。この配置では、第一流量制御弁は、第一及び第二モーターと流体連通するように構成され、バルブブロックは、ポンプと第二及び第三モーターと流体連通するように構成された第二流量制御弁を含む。第二流量制御弁は、第一流体制御位置と第二流体制御位置との間で選択的に移動可能である。バルブブロックは更に、ポンプと第三及び第四のモーターと流体連通するように構成された第三流量制御弁を含むことができる。第三流量制御弁は、第一流体制御位置と第二流体制御位置との間で選択的に移動可能である。この実施形態では、第一、第二及び第三流量制御弁のそれぞれの第一及び第二流体制御位置は、第一、第二、第三及び第四のモーターが並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように選択的に構成することができる。一つの例示的な配置では、第一流量制御弁が第二流体制御位置にあり、第二流量制御弁が第一流体制御位置にあり、第三流量制御弁が第二流体制御位置にあるとき、第一及び第二のモーターは互いに直列に動作し、第三及び第四のモーターは互いに直列に動作する。更に、ターナーギアは、4つ以上のターナーギアモーターを有することもある。このような配置では、また、いずれの場合にも、他のモーターと比較して、ターナーギアモーターを直列又は並列に流体流接続で駆動できるように、当該バルブブロック内の一連の流量制御弁を介して、ターナーギアモーターを加圧作動流体供給に接続することが好ましく、直列及び並列動作のターナーギアモーターの混合構成でも駆動できることが望ましい。
【0013】
バルブブロックは、ポンプに動作可能に接続された流れ方向弁を含むことができる。流れ方向弁は、第一位置と第二位置との間で選択的に移動可能であり、第一位置は、ポンプからの流体がターナーギアモーターを介して第一流体流方向に移動することができるように構成され、第二位置は、ポンプからの流体がターナーギアモーターを介して第二流体流方向に移動することができるように構成されている。したがって、ターナーギアモーターは双方向モーターであることが望ましい。
【0014】
風力タービンの駆動系は、ローター主軸、主軸ハウジング、ギアボックスを含む要素を含み、ギアボックスはローター主軸に駆動可能に結合される。ギアボックスは、低速入力軸と高速出力軸から構成される場合がある。入力軸は、ローター主軸に動作可能に結合することができる。発電機をギアボックス高速軸に結合することもできる。特に、発電機は、固定子と発電機ローター軸上の固定子に対して回転可能な発電機ローターとを含むことができる。発電機ローター軸は、ギアボックス出力軸に結合されている場合があり、すなわち、ギアボックス出力軸と発電機ローター軸は、駆動系の高速軸と見なされる場合がある。ターナーギアは、風力タービンの駆動系要素に結合することができる。実施形態では、ターナーギアを駆動系の高速軸に駆動可能に接続することができる。より具体的には、ターナーギアを発電機のローター軸に駆動可能に接続することができる。あるいは、ターナーギアを、好ましくはギアボックス出力軸であるギアボックス軸に駆動可能に接続してもよい。あるいは、実施形態では、ターナーギアを低速、ギアボックスの入力軸、又はブレードローター主軸に駆動可能に結合してもよい。
【0015】
ポンプは、特に油圧ポンプ又は油圧ポンプのグループであってもよい。実施形態では、ポンプは、風力タービンの一部であってもよい。例えば、ポンプは、風力タービンの翼ピッチ制御システムの一部であってもよい。あるいは、ターナーギアアセンブリは、ポンプ、特に、一つ以上の風力タービンで連続的に、ターナーギアと共に一時的に設置したり取り外したりできるポンプを含むことができる。
【0016】
更に別の実施形態では、風力タービンの不均衡ローターを回転させるために、上記のようにターナーギアアセンブリを操作する方法が開示されている。この方法は、関連する駆動系要素にターナーギアを結合することによって、風力タービンの駆動系にターナーギアを設置すること、その後、第一流量制御弁の第一流体制御位置と第二流体制御位置との間の選択であって、第一流量制御位置が選択されたとき、少なくとも二つのモーターが並列に作動し、第二流体制御位置が選択されたとき、少なくとも二つのモーターが直列に作動するように選択すること、選択された流体制御位置にある第一流量制御弁でターナーギアアセンブリを操作することを含む。
【0017】
例えば、この方法の一実施形態では、ターナーギアは、第一、第二及び第三のモーターと、第一及び第二のモーターと流体連通する第一流量制御弁を有することができる。ターナーギアアセンブリのバルブブロックは、更に、ポンプ及び第二及び第三のモーターと流体連通する第二流量制御弁を含み、第二流量制御弁は、第一流体制御位置と第二流体制御位置との間で選択的に移動可能である。この方法は更に、第一、第二及び第三のモーターが並列に動作する、直列に動作する、又は並列と直列の組み合わせで動作するように、第二流量制御弁の第一流体制御位置と第二流体制御位置の間で選択することを含むことができる。
【0018】
更に別の実施形態では、ターナーギアアセンブリを使用して風力タービンの不均衡ローターを回転させる方法が開示されている。この方法は、複数のブレード取り付け位置を備えた中央ハブを有する第一風力タービンと、中央ハブに動作可能に結合された駆動系を更に有する第一の風力タービンを提供すること、上記のようなターナーギアアセンブリを提供すること、第一風力タービンの駆動系にターナーギアを取り付けること、バルブブロックをターナーギアに動作可能に接続すること、第一動作モードで少なくとも二つのターナーギアモーターを動作させるためのバルブブロックを構成すること、少なくとも二つのモーターを動作させるように、複数のブレードサイトの一つがブレード取り扱い位置になるまで中央ハブを回すように、ターナーギアアセンブリのポンプを操作すること、ブレード取り扱い位置でのブレードサイトへ/からの風力タービンブレードを取り付けること/取り外すこと、及び、第一風力タービンがすべての風力タービンブレードを複数のブレードサイトのそれぞれ一つに取り付ける/取り外すまで、操作と取り付けのステップを繰り返すことを含む。
【0019】
この方法は、第一の風力タービンからターナーギアアセンブリを取り外すこと、複数のブレードサイトを有する中央ハブを備えた第二風力タービンにターナーギアアセンブリを提供すること、第二風力タービンの駆動系にターナーギアを取り付け、バルブブロックをターナーギアに動作可能に接続すること、第一動作モードとは異なる第二動作モードで動作させるようにバルブブロックを構成すること、少なくとも二つのモーターを作動させ、複数のブレードサイトの一つがブレード取り扱い位置になるまで中央ハブを回すようにターナーギアアセンブリのポンプを操作すること、ブレード取り扱い位置でのブレードサイトへ/からの風力タービンブレードを取り付けること/取り外すこと、及び、第二風力タービンがすべての風力タービンブレードを複数のブレードサイトのそれぞれ一つに取り付ける/取り外すまで、操作と取り付けのステップを繰り返す。
【0020】
一実施形態では、ポンプを操作することは、更に、ポンプを備えた風力タービンの油圧システムにターナーギアを連結すること及び、ターナーギアモーターを駆動するために風力タービン油圧システムのポンプを操作することを含む。油圧システムは、風力タービンのピッチ制御システムであってもよい。
【0021】
本明細書に組み込まれ、その一部を構成する添付の図面は、本発明の一つ以上の実施形態を例示し、上記の本発明の一般的な説明及び以下の詳細な説明と共に、本発明を説明するのに役立つ。
【図面の簡単な説明】
【0022】
【
図1】タワーとエネルギー生成ユニットを有する風力タービンの斜視図である。
【
図2】ナセル内の風力タービン構成要素を図示した
図1の風力タービンの拡大部分斜視図である。
【
図3】クレーンが風力タービンブレードを部分的に組み立てられた風力タービンに持ち上げる様子を示す斜視図である。
【
図5】
図4のターナーギアの反対側の斜視図である。
【
図6】風力タービンのエネルギー生成ユニットの発電機に取り付けられた
図4のターナーギアの分解斜視図である。
【
図7】3つの油圧モーターが並列に動作していることを示す、ターナーギアアセンブリの油圧回路の概略図である。
【
図8】
図7と同様の模式図であり、3つの油圧モーターが直列に動作していることを示す。
【
図9】
図7と
図8に似た模式図であり、4つの油圧モーターが並列に動作している様子を示す。
【発明を実施するための形態】
【0023】
図1及び
図2を参照すると、風力タービン10は、タワー12、タワー12の頂点に配置されたナセル14、及びナセル14内に収容されたギアボックス20を介して発電機18に動作可能に結合されたローター16を含む。発電機18とギアボックス20に加えて、ナセル14は、風力エネルギーを電気エネルギーに変換し、風力タービン10の動作と性能を最適化するために必要な様々なコンポーネントを収容することができる。タワー12は、ナセル14、ローター16、及びナセル14の内部に収容された他の風力タービン構成要素によって与えられる負荷を支え、ナセル14とローター16を、通常はより低い乱流とより高い速度を持つ気流が見られる、場合によっては地上又は海面からの高さまで上昇させるように動作する。
【0024】
ローター16は、ブレードローター16としても知られ、ここではローターハブ22又はハブ22として知られているか、参照されている中央ハブ22を含むことができる。ブレードローター16は、中央ハブ22の周囲に分散した位置で中央ハブ22に取り付けられた複数のブレード24を含むことができる。代表的な実施形態では、ローター16は三つのブレード24を含むが、数は異なる場合がある。中央ハブ22から放射状に外側に突出するブレード24は、通過する気流と相互作用して回転力を発生させ、ハブ22を含むローター16を回転軸の周りで回転させるように構成されている。ハブ22とローター16の回転軸は、特にローター主軸26の縦軸に対応することができる。ブレード24の設計、構造、及び操作は、風力タービンの設計技術において通常の技能を有する者にとっては馴染みのあるものであり、性能を最適化するための追加の機能的側面を含むことができる。例えば、ブレード24のピッチ角制御は、風速に応じたピッチ制御機構(図には示されていない)によって実装され、低風条件下での発電を最適化し、風速が設計限界を超えた場合にブレードをフェザリングすることができる。
【0025】
ローター16は、ギアボックス20に直接結合することも、図のようにハブ22とギアボックス20の間に延びる主軸26を介して間接的に結合することもできる。主軸26はローター16と共に回転し、ナセル14内で主軸ベアリングサポート28又は主軸ハウジング28によって支持され、これはローター16の重量を支持し、ローター16の荷重をおそらくナセルベッドフレームを介してタワー12に伝達する。ギアボックス20は、ローター16の回転を発電機18に伝達する。ギアボックス20と発電機18との間のこの回転運動の伝達は、ギアボックス出力軸と発電機18の発電機ローター軸との間の結合を介して行われる。最小レベルを超える風がローター16を作動させ、ローター16を風と実質的に垂直な方向に回転させ、ローター主軸26にトルクを与え、それによってギアボックス20の入力軸にもトルクを与え、それが発電機18の発電機ローター軸にもトルクを与える可能性がある。発電機18で発電された電力は、当業者であれば理解できるように、電力網(図に示されていない)又はエネルギー貯蔵システム(図に示されていない)に供給され、後で電力網に放出されることがある。このようにして、風の運動エネルギーを風力タービン10で発電に利用することができる。
【0026】
図3を参照すると、ハブ22に2枚のブレード24が取り付けられた風力タービン10が示されている。クレーンなどの吊り上げ装置40が第三ブレード24を吊り上げているのが示されており、ブレード24の根元端42を中央ハブ22のブレードピッチベアリングなどのブレードサイト44に取り付けることができる。
図3に示すように、中央ハブ22は、第二ブレード24が取り付けられた後に回転し、ブレードピッチベアリング44が(中央ハブ22に面して見て)おおむね9時の位置になるようになっている。9時の位置(又は代わりに3時の位置)のブレードピッチベアリング44は、ブレード24を中央ハブに取り付けたり、中央ハブ22から取り外したりできるブレード取り扱い位置と見なすことができる。ブレードピッチベアリング44がその位置にある状態で、リフト装置40は、ブレードピッチベアリング44への取り付けを容易にするために、ブレード24をほぼ水平方向に持ち上げることができる。あるいは、中央ハブ22を回転させて、ブレードピッチベアリング44がおおむね6時の位置になるようにしてもよい。6時の位置は、ブレード24が中央ハブに取り付けられているか、中央ハブ22から取り外されている別のブレード取り扱い位置と見なされる場合もある。その向きでは、吊り上げ装置40はブレード24をほぼ垂直方向に持ち上げることができる。
【0027】
図3は、ブレードピッチベアリング44に取り付けるように配置された第三ブレード24を示しているが、第一及び第二ブレード24も同様の方法で取り付けることができる。第一ブレード24を取り付けるには、例えば、駆動系に連結されている可能性のあるターナーギア50(
図6)を操作して主軸26を回転させ、それによって中央ハブ22も回転させる。ターナーギア50は、持ち上げたときのブレード24の向きに応じて、ブレードピッチベアリング44が所望の位置(3時、6時、9時の位置)になるまでローターハブ22を回転させる。第一ブレード24が取り付けられた後、次のブレードピッチベアリング44が目的の位置になるまで、ターナーギア50を操作してローターハブ22を回す。このプロセスは、すべてのブレード24が中央ハブ22に取り付けられ、ブレードローター16を構成するまで繰り返される。
図1-3の風力タービン10は3枚のブレード24で示されているが、他の風力タービン10は3枚のブレード24より多くても少なくてもよい。ここで使用される「駆動系」という用語は、
図2の30で概略的に示されているように、一つ以上のローター主軸、ギアボックス、及び発電機を含むことができる。駆動系は、ローター主軸ベアリングとローター主軸ハウジング28を含むこともできる。発電機を備えた駆動系をパワートレインと呼ぶこともある。本明細書では、「駆動系」という用語は、発電機の有無にかかわらず駆動系を示すために使用されているが、図面に示されている駆動系30には発電機18が含まれており、これは現在の文脈では好まれるかもしれない。ローター主軸は、ギアボックスの入力軸を回す「低速軸」と見なされる。ギアボックスには、発電機を駆動する「高速軸」と呼ばれる出力軸がある。このように、一方では、ターナーギア50は、ローター主軸又はギアボックスの低速の入力軸に結合されていてもよく、他方では、ターナーギア50は、ギアボックスの高速の出力軸又は発電機のローター軸に結合されていてもよく、これはギアボックスの高速軸の延長と見なすことができる。
【0028】
一方のブレード24が中央ハブ22に取り付けられている場合、特に中央ハブ22の回転軸に対して考慮される場合、ローター16は「不均衡」であると見なされる。この不均衡状態では、すべてのブレード24が中央ハブ22に取り付けられた、ブレードローター16の「バランスのとれた」状態と見なされる場合と比較して、ターナーギア50は中央ハブ22を回すためにより多くのトルクを発生しなければならない。
【0029】
図4、5、6に典型的なターナーギア50を示す。ターナーギア50は、ナセル駆動系を回転駆動するためのトルクモーター形式のターナーギアモーター58を有する。図示された実施形態では、ターナーギアは、油圧駆動モーターのような3つのトルクモーター58(58a、58b、58cを参照)を有し、それぞれに対応するピニオンギア60(60a、60b、60cを参照)がある。トルクモーター58は、モーターフレーム62に取り付けることができ、モーターフレーム62は、モーター58を互いに間隔を空けた固定関係で保持することができる。モーターフレーム62は、トルクモーター58のバッチ又はクラスターを駆動系要素に取り付ける作業を簡略化できる。モーターフレーム62には、適切な留め具(図には示されていない)を使用して、ターナーギア50を駆動系30に固定するために使用されるトルクサポート64を含めることが望ましい。モーターフレーム62は、適切な留め具(図には示されていない)によって、ターナーギア50のメインフレーム66に取り付けることができる。示されたメインフレーム66は、ターナーギア50の出力ドライブの主要コンポーネントであるリングギア68を含むように示されている。リングギア68は、トルクモータピニオン60によって駆動される。一つ又は複数の間隔ブロック70は、駆動系30に正確にターナーギア50を配置するのに役立つことがある。できれば、間隔ブロック70は、モーターフレーム62を駆動系要素から望ましい距離に配置して、ターナーギア出力ドライブと、ターナーギア50が駆動結合される駆動系要素との間のかみ合いを確実にすることができる。ピニオンギア60a、60b、60cは、リングギア68と回転してかみ合い、モーター58a、58b、58cが作動すると、リングギア68を回転させるピニオンギア60a、60b、60cを回転させる。リングギア68にはリングフランジ72を取り付けることができる。リングフランジ72は、ターナーギア出力ドライブの一部を形成することもできる。リングフランジ72は第一面と第二面を持つことができる。その第一面をリングギア68に取り付けることができる。リングフランジ72の第二面は、駆動系30の要素に駆動可能に接続することができる。例に示すように、リングフランジ72は、一つ以上のトルクピン74を構成することができる。トルクピンは、駆動系30の要素とかみ合って、トルクをターナーギア50から駆動系30に伝達することができる。図の例では、フランジ72の第二面は、リングギア68が回転すると、発電機ローターが回転し、それによってギアボックス出力軸、ギアボックス入力軸及び主軸26が回転し、それによってローターハブ22も回転するように、発電機18に取り付けることができる。
【0030】
ここで、
図7-9に示す例示的な実施形態を参照する。ターナーギア50の複数のトルクモーター58は、ポンプ80を含む加圧作動流体源に作動流体ラインを介して接続可能である。図のトルクモーター58a-dは油圧モーターである。最も基本的なモードでは、作動流体はポンプ80からバルブブロック78を介して油圧モーター58へ流れ、また油圧モーター58から流れ、ポンプ80に戻る。ポンプ80とモーター58の間の作動流体の流れは、バルブブロック78内の流量制御弁106、108、110によって調整することができる。バルブブロック78は、ポンプ80とブロック78の間に作動流体を流すポンプインターフェースポートを含むことができる。バルブブロック78は、ブロック78と各モーター58a-dの間に作動流体を流すトルクモーターのインターフェースポート94a-d、104a-dを含むことができる。ポンプインターフェースポートとモーターインターフェースポート94、104は、バルブブロック78内の作動流体ラインのネットワークによって接続されている。バルブブロック78内の作動流体ラインネットワーク内の流量制御弁106、108、110は、ポンプインターフェースポートとモーターインターフェースポート94、104の間のバルブブロック78を通る流体流路を調整する。これにより、バルブブロック78内の作動流体ラインネットワーク内の流量制御弁106、108、110は、ポンプ80と各モーター58a-d間の流体流路を調整する。各流量制御弁106、108、110は、バルブブロック78内のポンプ80インターフェースポートへの行きとからの戻りの作動流体ラインとリンクさせることができる。更に、各流量制御弁106、108、110は、複数のモーター58への行きとからの戻りのモーターインターフェースポート94、104とリンクさせることができる。各流量制御弁106、108、110は、二つの流体制御位置、第一の並列流位置(106b、108b、110b)又は第二の直列流位置(106a、108a、110a)の間で選択的に調整することができる。このように、流量制御弁106、108、110は、関連する油圧モーター58を直列流接続又は並列流接続に選択的に配置するように制御することができる。
【0031】
油圧ポンプ80は、所定の固定された流体流量を発生させるために一定速度で動作するように構成することができる。すなわち、ガロン/分(gpm)又はリットル/分(lpm)で測定可能である。言い換えれば、油圧ポンプ80を設置して調整した後、油圧ポンプ80は、通常の状態で作動する場合、一定の圧力レベルで一定の流体流量を供給することが望ましい。ポンプ80が単一のモーター58のみに接続されている場合、モーター58は、ポンプの全流体流量出力流量とポンプ流体圧力にそれぞれ対応する速度とトルクのレベルを示すことになる。したがって、例えば二つの類似したモーター58を並列な流体流接続に配置する効果は、ポンプ80から流れる流体の半分を各モーター58に、本質的には完全なポンプ流体圧(フローライン内の流体摩擦などによる軽微な損失を無視する)で加えることになる。これにより、ポンプ80から通過する流体の全圧力量に対応するレベルのトルクが各駆動モーター58で発生する。各モーター58を流れる流体の流量が減少することによる半分の流体流量、すなわち半分の流体流量は、ポンプされたすべての流体が一つのモーター58との間を行き来する場合、単一のモーター58が作動する速度と比較して、モーターの速度を半分に低下させる。逆に、例えば二つの類似したモーター58を直列な流体流接続に配置する効果は、ポンプ80から各モーター58への全流体流量を、本質的にポンプ流体圧の半分で適用することになる。これにより、各駆動モーター58でのトルクのレベルは、ポンプ80から通過する流体の全圧力量の半分に相当することになる。各モーター58を通る完全な流体流量は、ポンプ80にのみ接続されている場合、単一のモーター58が動作する速度でモーター速度を維持する。同様に、
図7及び
図8に示すように、3つのモーター58a-cを使用して、流量制御弁106、108、110を並列(
図7に示す流れの位置106b、108b、110bを参照)又は直列(
図8に示す流れの位置106a、108a、110aを参照)のいずれかに設定することができる。したがって、同様に、
図7の例のようにポンプ80と並列に流体流接続された3つのモーター58a-cが配置され、ポンプ80が一定速度で動作している場合、各モーター58a、b、cは、単一の接続されたモーター58が速度の1/3でしかない場合でも、同じ完全なトルクレベルで動作してもよい。そして、
図8の例のようにポンプ80と直列に流体接続された3つのモーター58a-cが配置され、ポンプ80が一定の速度で動作している場合、各モーター58a、b、cは、トルクの1/3しか供給していなくても、単一の接続されたモーター58と同じ完全な速度で動作する可能性がある。図に示されていない別の配置では、例えば58a、58bが並列に配置され、残りのモーター58cが並列に配置された二つのモーターと直列に配置される場合がある。これにより、単一のモーター58の全速度よりも低いレベルの速度を実現し、並列に配置された3つのモーター58の1/3の速度レベルよりも高速になる。言い換えれば、モーター58の完全な並列配置と完全な直列配置の間で、速度とトルクの両方に関して中間レベルの性能を提供することになる。
【0032】
バルブブロック78に関連する制御ユニット116は、バルブブロック78内の流量制御弁106、108、110の自動制御を可能にすることができる。たとえば、制御ユニット116に関連付けられたユーザーインターフェースは、操作者が流量制御弁106、108、110の設定を選択するように操作できる場合がある。あるいは、制御ユニットをコンピュータ又は無線ネットワークに関連付けて、流量制御弁106、108、110とソフトウェアの相互作用を可能にし、それによってターナーギアアセンブリ52のモーター出力特性を可能にすることもできる。
【0033】
各実施形態では、必要に応じて、流量制御本体76(76a、76b、76cを参照)を各モーター58a-cにそれぞれ結合することができる。更に後述する流量制御本体76により、作動流体ラインをモーター58に接続して、加圧作動流体をそこに供給することができる。流量制御本体76は、モーター58との間の作動流体を管理するために、後述の流体流量管理要素を更に含むことができる。流量制御本体76は、特に、作動流体ポンプ装置への行きとからの戻りの作動流体流接続を可能にするための作動流体流入及び流出接続を含むことができる。ナセルの駆動系にターナーギアアセンブリ52を取り付ける場合、最初に、前述のように、ターナーギア50を駆動系要素に動作可能に接続し、続いて、後述のように、例えばパイプ又はホースを介して、ターナーギアアセンブリ52の作動流体ポンプ装置をターナーギア50に接続することが好ましい場合がある。
【0034】
図7-9は、ポンプ80及び制御ユニット116に関連する、バルブブロック78又はハウジングの形で、集合的にターナーギア50及び作動流体ポンプ装置を含む、ターナーギアアセンブリ52の例示的な実施形態を概略的に示している。ターナーギア50はモーター58(58a、b、c、dを参照)を備えており、各モーターはオプションの流量制御本体76に関連付けることができる。ターナーギア50は、バルブブロック78を含む作動流体ポンプ装置に動作可能に接続され、バルブブロックは作動流体タンク84に関連する油圧ポンプ80に動作可能に接続される。ポンプモーター82が油圧ポンプ80を駆動して、油圧ポンプ80がタンク84からバルブブロック78を介して、流体流回路で再びターナーギア50に作動流体(図には示されていない)を送ることができるようにする。「ポンプ」という用語は、ここではポンプとポンプモーターの総称として使用することができる。各ターナーギアモーター58は、モーターインターフェースポート94、104を介してバルブブロック78に接続可能である。必要に応じて、各ターナーギアモーター58は、それぞれの流量制御本体76(76aからdを参照)に関連付けることができ、これは順に、モーター58への作動流体の流れを制御するバルブブロック78(58aからdを参照)と作動流体の流れを接続して接続可能である。モーター58a-dとバルブブロック78との間の作動流体流接続部は、流入口と流出口94、104を含むことができる。流入と流出は、流体の流れの方向90、92を反転させ、それによってターナーギアモーター58の駆動方向を反転させるという文脈において交換可能である。例えば、それぞれのモーター58a-dに関連する流量制御本体76a-dは、流入及び流出モーターインターフェースポート94、104を介してポンプ80に関連するバルブブロック78に取り外し可能に接続することができる。特に、それぞれのモーター58a-dは、当該モーターインターフェースポート94、104と連通する流体ライン上の一つ以上のクイックディスコネクトカップリング96、102を介してバルブブロック78に取り外し可能に接続することができる。モーター58への行きとからの戻りのモーターインターフェースポート94、104(94a-d、104a-dを参照)のそれぞれのペアについてクイックディスコネクトカップリングのペア102a、96a;102b、96b;102c、96c;102d、96dが用意されている場合がある。バルブブロック78とモーター58との接続と切断を容易にするために、バルブブロック78のモーターインターフェースポート94、104への行きとからの戻りの流体の流入と流出のラインには、ある長さのフレキシブルホースを含めることができる。クイックディスコネクトカップリング96、102と組み合わせたフレキシブルホースの形の流入及び流出ラインは、ナセル駆動系でのターナーギアアセンブリ52の一時的な取り付け又は取り外しを容易にしたり、迅速にしたりすることができる。
【0035】
バルブブロック78は、ポンプ80とモーター58との間の流体の流れを選択的に制御するための、一つ以上の流体流量制御弁106、108、110を含むことが望ましい。特に、ポンプ80に関連するバルブブロック78内の流体流量制御弁106a-d、108a-d、110a-dのいずれか又はすべてを切り替えて、関連するターナーギアモーター58a-dをポンプ80に対して並列又は直列に流体-流量の関係で選択的に配置することができる。必要に応じて、
図7又は9のようにすべてのモーター58a-dを並列接続してもよいし、
図8のようにすべてのモーター58a-dを直列接続してもよいし、一部のモーター58を直列接続してもよい。更に、バルブブロック78は、バルブブロック78のポンプポートと流量制御弁106、108、110の間に介在する流れ方向弁88を含むことができる。必要に応じて、ポンプ80とバルブブロック78の間の流体ライン上に、できればポンプ80に対する流体流出ラインである当該ラインの一部に沿って、流体フィルター86を設けることができる。流れ方向弁88は、流体がバルブブロック78から出て、矢印90で表されるように、外向きの最初の流体の流れ方向にモーター58に循環するように作動させることができる。モーター58を通過した後、流体の流れはバルブブロック78に戻り、矢印92で表される戻り流体の流れ方向と同様に流れ方向弁88を通る。その後、バルブブロック78を出て、タンク84に戻る。流れ方向弁88は、88a、88cの二つの動作位置を持つことができ、それぞれがターナーギアモーター58a-dのそれぞれの順方向又は逆方向に対応する。流れ方向弁88は、図に示すように三位置の流れ方向弁88であってもよい。したがって、流れ方向弁はオプションで、以下に説明する第三位置88bを含むこともできる。
図7では、流体が流れ方向弁88の第一方向流体流位置88cを介して流れる様子が示されている。その後、流体流90は矢印90a、90b、90c、90dで表されるようにモーター58a-dに向かって流れる。モーター58への行きとからの戻りの流体は、フレキシブルホースである流体接続ライン94、104(94a、94b、94c、94dを参照)を介して、それぞれのモーター58a-dのそれぞれの流量制御本体76a-dに流れることができる。
【0036】
流体は、瞬間的な流体の流れの方向に応じて、すなわち、モーター58がどの方向に回転しているかに応じて、流体接続ラインとインターフェースポート94、104を介してモーター58から出てバルブブロック78に戻る。
図7では、流体はモーター58から流体接続ライン104とクイックディスコネクトカップリング102を介してバルブブロック78へ方向92に戻る。ターナーギアアセンブリの追加のオプション要素には、ホース破裂弁100a、100b、100c(流量制御本体76内)を含めることができる。この機能は、関連する逆止弁98a-c、100a-cと共に、モーター58とバルブブロックの間の流体流路が破損した場合、たとえば、バルブブロック78とモーター58の間の作動流体接続ホース又はクイックディスコネクタ96、102が装着されていないか、装着されなくなったか、何らかの方法で破損した場合に、バルブブロック78でのモーターインターフェースポート94、104への流体接続を自動的に無効にすることができる。モーター58a-dからの流体は、それぞれ106a、106b、108a、108b、又は110a、110bの位置を持つ流量制御弁106、108、110を通過することができる。
図7に示すように、流量制御弁106、108は二位置流量制御弁であり、それぞれ106b、108bの位置にある。モーター58cからの流体は、流れ方向弁88に直接逆流する。
【0037】
クイックディスコネクトカップリング96a-d及びクイックディスコネクトカップリング102a-dにより、バルブブロック78はモーター58、したがってターナーギア50と容易に接続及び切断される。バルブブロック78は、ポンプ80及びタンク84と容易に接続及び切断することもできることが理解される。そのため、ブレード取り付けプロセス中に、ある風力タービンにターナーギア50とバルブブロック78の両方を一時的に取り付け、別のブレード取り付けプロセスのために別の風力タービンに取り外して一時的に取り付けることができる。
【0038】
図7に示すように、流量制御弁106、108が並列の接続位置106b、108bに設定されている状態では、3つのモーター58acが並列に動作していると考えられる。すべてのモーター58a-dが並列に動作する場合、これは「ストレート」動作モードと呼ぶことができる。もう一つの「ストレート」動作モードは、3つのモーター58a-dすべてが直列に動作する場合であり、これについては後述する。モーター58の一部(すべてではない)が並列又は直列に動作する場合、それは「混合」動作モードと呼ばれることがある。たとえば、
図7の配置を見ると、直線並列構成では、各モーター58a-cはポンプ80によって生成された流体流量の1/3を受け取るため、各モーター58a-cはほぼ同じ量の出力トルクを生成し、これを使用して中央ハブ22を回すことができる。モーター58a-cの内の一つが故障した場合、又は対応するホースが故障してモーター58a-cの一つに流体を送ることができない場合、他の二つの影響を受けないモーター58は機能し続けるか、少なくとも中央ハブ22を安全な位置に置くことができる。各モーター58aへの流体流量は、ポンプ80からの流体流量の1/3となり、それによってモーター速度は、直列に配置されたモーター58の最高速度の1/3に対応する。
【0039】
図7は、矢印90、92の方向で示されているように、第一流体流方向に循環する流体の流れを示している。流体の流れを第二流体流方向に変える(逆にする)ために、流れ方向弁88を第二流体流方向の位置88aに動かすことができる。流れ方向弁88を第二位置88aにすると、外向きの流体流はモーター58a-cの反対側に進み、反対方向に回転する。あるいは、図に示すように、流れ方向弁88にオープンセンターと呼ばれるオプションの第三位置88bがある場合、流れ方向弁が第三位置にあると、ポンプ80からの流体はタンク84に戻り、モーター58に流れないため、回転しない。これにより、第三位置88bは、ポンプ80が動作し続けることを可能にするが、モーター58のいずれにも流体を送ることはない。
【0040】
制御ユニット116は、
図7-9に示されているポンプ80、流れ方向弁88、流量制御弁106、108、110などの様々な構成要素に動作可能に結合され、操作者がブレード組み立てプロセスによって必要に応じてそれぞれの動作や位置を変更できるようになっている。圧力ゲージ118と温度ゲージ120を使用して、ポンプ80から出る作動流体の圧力と温度を監視することができる。圧力解放弁122を使用して、流体が所定の高圧閾値を超えて下流の圧力を受けた場合に、ポンプ80から出る流体がタンク84に戻ることができるようにすることができる。フィルター86は、バルブブロック78内の作動流体ライン、特にポンプインターフェースポートと流れ方向弁88の間に配置することができる。バイパスチェック弁126を備えた追加の流体フィルター124を使用して、タンク84に戻る流体をろ過することができる。ポンプ80が遮断されたときに様々なラインの流体がタンク84に逆流するのを防ぐために、逆止弁をタンク84の直前に配置することもある。
【0041】
図8は
図7と同じ概略レイアウトを示しているが、流量制御弁106、108はそれぞれ直列接続位置106a、108aに配置されている。この構成では、モーター58a、58b、58cは直列に動作していると見なされる。そのため、各モーター58a、58b、58cは、ポンプ80からの同じ流体流量を受けるが、より低い圧力である。
図7の構成と比較すると、モーター58a、58b、58cの回転速度は3倍になるが、トルク出力はそれぞれ1/3に低下する。二位置流量制御弁106、108が106a、108aの位置にある状態で、流体排出モーター58aは二位置流量制御弁106によって方向転換され、矢印134で表されるようにモーター58bの隣を流れるようになる。同様に、流体排出モーター58bは、矢印136で表されるように、モーター58cの隣を流れるように、二位置弁108によって方向転換される。したがって、矢印138で表されるように、流体がタンク84に戻る前に、流体の単一の流れが3つのモーター58a、58b、58cを流れる。上記と同様に、三位置流れ方向弁88を88cの位置から88aの位置に動かすことで、流体の流れの方向を変える(逆にする)ことができる。
【0042】
ブレードアセンブリプロセスが
図8の構成で発生できる以上の追加トルクを必要とする場合、例えば、モーター58a、58bのみが直列に動作するように、二位置弁108を並列位置108bに切り替えることができる。この構成では、ポンプ80によって生成される流体の流れは、モーター58a、58bとモーター58cの間で均等に分割されるため、モーター58a、58bのトルクはモーター58cよりも小さくなるが、それぞれが同じ速度で動作する。この構成では、全体のトルク出力は
図8の構成(すべてのモーターが直列)より大きくなるが、回転速度は小さくなる。更に別の構成では、モーター58cに流体が流れず、モーター58a、58bのみが直列に動作するようにクイックディスコネクト96cを切断するなどして、モーター58cを完全に切断することができる。したがって、操作者は、特定のブレードアセンブリの要件に応じて、必要な出力トルク又は望ましい回転速度を達成するために、異なる双方向の流量制御弁106、108を設定したり、特定のモーター58a-58cを切断したりすることができる。あるいは、一つ以上の遮断バルブ(図には示されていない)を使用して個々のモーター58a、58b、58cへの流体の流れを特別に制御し、各モーター58a、58b、58cがブレード取り付けプロセス中のトルク要件を満たすように選択的に遮断(又はオン)されるようにすることもできる。
【0043】
図9は、
図7に示されている同様のレイアウトを概略的に示しているが、追加のモーター58dと、流量制御本体76d、クイックディスコネクトカップリング96d、102d、逆止弁98d、112d、ホース破裂弁100d、114dの対応するコンポーネントを有する。モーター58dは、バルブブロック78でモーターインターフェースポート94d、104dに接続されている。モーター58dをポンプ80に動作可能に接続するために、バルブブロック78は、直列接続用のそれぞれの位置110aと並列接続用の位置110bを持つ二位置弁である追加の流量制御弁110を含むことができる。これにより、流量制御弁110を操作することにより、モーター58c、58dは、ブレードの組み立てプロセスによって指示されたように並列又は直列に作動することができる。トルク要件が増加するにつれて、追加のモーターをターナーギア50に追加して、ターナーギアのトルク出力を増加させてもよいことは理解されるだろう。同様に、対応する流量制御弁を追加の各モーターのバルブブロック78に追加して、追加の各モーターをターナーギア50内の他のモーターと並列又は直列に作動させることができるようにすることができる。
図9では、流量制御弁106、108、110を直列接続と並列接続の位置106a、106b、108a、108b、110a、110bの間で切り替えて、モーター58a-58dの一部又は全部を直列にして、さまざまな量の出力トルクがターナーギア50によって生成されるようにすることができる。ここでも、
図7及び
図8の3つのモーター構成と同様に、操作者は、特定のブレードアセンブリのトルク要件に応じて、必要な出力トルク又は望ましい回転速度を達成するために、コントローラ116を介して異なる流量制御弁106、108、110を構成したり、特定のモーター58a-58dを切断したりすることができる。
【0044】
本発明の一つの有利な側面において、「標準化された」ターナーギアアセンブリは、異なるサイズ及び異なるトルク要件を持つ異なる風力タービンに使用することができる。設計上、標準化されたターナーギアは、設置ごとにトルク要件が大きく異なる可能性があるにもかかわらず、それぞれの大型、中型及び小型の風力タービンのブレード取り付けプロセス中に使用される可能性がある。更に、標準化されたターナーギアアセンブリを使用することで、設置者は風力タービンの構造(例、ギアボックスや発電機)又はトルク要件のいずれにも適合しないターナーギアを使用することを気にする必要がない。バルブブロック内のさまざまなバルブを操作することによって、設置者は回転速度を犠牲にすることなく十分なトルク量を達成するようにターナーギア50を構成することができる。
【0045】
ここに開示されているようなターナーギアアセンブリの柔軟性により、設置者は作業現場での風の状態を補償するようにターナーギアを設定することもできる。これに関連して、風力ブレード設置プロセス中の風の状態は、例えばブレードローターの旋回運動に対する風の抵抗を増加させることによって、ターナーギアにかかるトルク要件を増加させる可能性がある。風荷重に対処するために、不均衡ローターを回転させるために必要なトルクだけでなく、作業現場での風荷重を克服するために必要なトルクも発生するように、ターナーギアを設計することができる。したがって、ブレードの取り付けプロセス中に低風条件が存在する場合、ターナーギアアセンブリは、より低いトルク量を発生するように構成することができ、これにより、ターナーギアをより速く回転させることができる。対照的に、作業現場に中程度から高い風の条件が存在する場合、回転速度は遅くなるが、追加のトルクを発生するようにターナーギアアセンブリを構成することができる。したがって、単一のターナーギアアセンブリは、広範囲の風の状況下での幅広い風力タービンでの使用に適応することができる。特定の風力タービンと設置(及び条件)のためのターナーギアアセンブリの設定を調整することで、トルク要件と中央ハブの回転速度のバランスを取ることができる。ターナーギアアセンブリのバルブブロックは、ターナーギアモーターと一体であってもよいし、分離して接続することもできる。
【0046】
本発明は様々な実施形態の説明によって例示されており、これらの実施形態はかなり詳細に説明されているが、添付されたクレームの範囲をそのような詳細に制限したり、何らかの方法で制限することは出願人の意図ではない。本発明は、ここに示され説明されている特定の実施形態、詳細又は例示的な例に限定されない。
【国際調査報告】