IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イムラ アメリカ インコーポレイテッドの特許一覧

特表2023-521427超低位相ノイズミリ波発振器およびそれを特徴付ける方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-05-24
(54)【発明の名称】超低位相ノイズミリ波発振器およびそれを特徴付ける方法
(51)【国際特許分類】
   H04B 10/50 20130101AFI20230517BHJP
   G02F 1/01 20060101ALI20230517BHJP
   G02F 2/00 20060101ALI20230517BHJP
   H04B 10/80 20130101ALI20230517BHJP
【FI】
H04B10/50
G02F1/01 B
G02F2/00
H04B10/80
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022562259
(86)(22)【出願日】2021-04-09
(85)【翻訳文提出日】2022-12-06
(86)【国際出願番号】 US2021026568
(87)【国際公開番号】W WO2021211373
(87)【国際公開日】2021-10-21
(31)【優先権主張番号】63/009,291
(32)【優先日】2020-04-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】593185670
【氏名又は名称】イムラ アメリカ インコーポレイテッド
(74)【代理人】
【識別番号】100094112
【弁理士】
【氏名又は名称】岡部 讓
(74)【代理人】
【識別番号】100106183
【弁理士】
【氏名又は名称】吉澤 弘司
(74)【代理人】
【識別番号】100114915
【弁理士】
【氏名又は名称】三村 治彦
(74)【代理人】
【識別番号】100125139
【弁理士】
【氏名又は名称】岡部 洋
(74)【代理人】
【識別番号】100209808
【弁理士】
【氏名又は名称】三宅 高志
(72)【発明者】
【氏名】ローランド,アントワーヌ,ジーン,ギルバート
(72)【発明者】
【氏名】ヨー,エン,ヒアン,マーク
(72)【発明者】
【氏名】テツモト,トモヒロ
【テーマコード(参考)】
2K102
5K102
【Fターム(参考)】
2K102AA21
2K102AA36
2K102AA40
2K102BA01
2K102BA19
2K102BA40
2K102BB03
2K102BB04
2K102BC04
2K102DB01
2K102DB04
2K102DC07
2K102EB06
2K102EB20
2K102EB22
5K102AA01
5K102AA51
5K102AH02
5K102AH26
5K102AH27
5K102AK06
5K102KA20
5K102KA42
5K102MA01
5K102MB06
5K102MC06
5K102MD01
5K102MD03
5K102MH02
5K102MH11
5K102MH27
5K102PB12
5K102PB13
5K102PC12
5K102PH01
5K102PH13
5K102PH31
5K102PH49
5K102PH50
5K102RB01
(57)【要約】
本発明におけるミリ波光信号を生成する方法は、二光ポンプソースの2つの周波数成分を位相ロックするステップと、前記2つの周波数成分をファイバリングキャビティに入力し、前記ファイバリングキャビティから二光出力を生成するステップと、前記ファイバリングキャビティの前記二光出力をフォトミキシングするステップとを備える。
【選択図】 図2A
【特許請求の範囲】
【請求項1】
ミリ波光信号を生成する方法であって、
二光ポンプソースの2つの周波数成分を位相ロックするステップと、
前記2つの周波数成分をファイバリングキャビティに入力し、前記ファイバリングキャビティから二光出力を生成するステップと、
前記ファイバリングキャビティの前記二光出力をフォトミキシングするステップとを備える方法。
【請求項2】
前記二光ポンプソースは、単一のレーザと、電気光学コムと、少なくとも1つの光学バンドパスフィルタとを備えることを特徴とする請求項1に記載の方法。
【請求項3】
前記ファイバリングキャビティは、マイクロ波基準周波数に位相ロックされるモードスペクトルを有することを特徴とする請求項1又は2に記載の方法。
【請求項4】
前記ファイバリングキャビティは、前記二光ポンプソースの前記2つの周波数成分によってポンピングされ、前記2つの周波数成分は、第1周波数と、前記マイクロ波基準周波数または前記マイクロ波基準周波数の整数倍だけ前記第1周波数から分離される第2周波数とを有することを特徴とする請求項3に記載の方法。
【請求項5】
前記2つの周波数成分間のヘテロダインビートの位相および前記2つの周波数成分間の前記ヘテロダインビートの位相を比較するステップをさらに備えることを特徴とする請求項3に記載の方法。
【請求項6】
前記2つの周波数成分は、機械的ファイバストレッチャを用いて前記ファイバ長さを調節すること、ファイバ温度を調節すること、および/または前記ポンプ光の周波数を調節することによって位相ロックされることを特徴とする請求項5に記載の方法。
【請求項7】
偏光分離を用いて前記2つの周波数成分を分離するステップをさらに備えることを特徴とする請求項3に記載の方法。
【請求項8】
前記2つの周波数成分は、直交する偏光軸を有することを特徴とする請求項7に記載の方法。
【請求項9】
ミリ波放射の位相のノイズを測定する位相ノイズ分析器であって、
光干渉計であって、
ミリ波周波数だけ互いに周波数が分離される2つの第1光信号を伝搬する第1アームと、
前記ミリ波周波数および無線周波数の和または差だけ互いに分離される2つの第2光信号を伝搬する第2アームとを備える光干渉計と、
前記2つの第1光信号および前記2つの第2光信号の周波数差を示す遅延ヘテロダイン信号を伝搬する光路とを備えることを特徴とする位相ノイズ分析器。
【請求項10】
前記遅延ヘテロダイン信号を生成および検出する感光素子およびミリ波振幅検出器をさらに備えることを特徴とする請求項9に記載の位相ノイズ分析器。
【請求項11】
2つの感光素子と、前記遅延ヘテロダイン信号を生成および検出する2つの感光素子およびミリ波振幅基本ミキサをさらに備えることを特徴とする請求項9に記載の位相ノイズ分析器。
【請求項12】
前記遅延ヘテロダイン信号を生成する感光素子およびヘテロダインテラヘルツ検出器をさらに備えることを特徴とする請求項9に記載の位相ノイズ分析器。
【請求項13】
ミリ波放射の位相ノイズを測定する位相ノイズ分析器であって、
前記ミリ波放射によって駆動され、連続波レーザ信号を受信し、前記連続波レーザ信号に光側波帯を生成する光周波数変調器であって、前記光側波帯は、等しく離間している前記ミリ波放射だけ前記連続波レーザ信号から離間される光周波数変調器と、
光遅延線と、
前記光側波帯および前記ミリ波放射の間の周波数差間のヘテロダインビートを導出する感光素子およびミキサとを備える位相ノイズ分析器。
【請求項14】
ミリ波放射位相ノイズを分析するデュアルモードスペクトル分析器であって、
前記ミリ波放射のミリ波周波数で変調される二光放射またはCWレーザ放射のいずれかから光入力を選択する光スイッチと、
請求項9乃至13のいずれか1項に記載の位相ノイズ分析器と、
周波数検出器と、
前記二光放射をフォトミキシングする感光素子と、
ミリ波電力検出器と、
ミリ波電圧検出器とを備えることを特徴とするデュアルモードスペクトル分析器。
【請求項15】
2つの光周波数のフォトミキシングから生成されるミリ波周波数およびテラヘルツ周波数をリアルタイムでカウントする方法であって、
周波数および振幅変調器を使用して、前記2つの光周波数のそれぞれから空間的に重複するインターリービング電気光学コムを生成するステップと、
電子的にカウント可能な無線周波数で前記2つのインターリービングされたコム間の最低差周波数を分離するために、前記2つのインターリーブされたコムを光学的および電子的にフィルタリングするステップとを備える方法。
【請求項16】
位相ノイズが低減されたチップスケールミリ波ソースであって、
前記ミリ波周波数に可変である繰り返し周波数または前記繰り返し周波数の整数倍を有するフォトニック集積周波数コムと、
前記繰り返し周波数および前記周波数コムのキャリアオフセット周波数を調整することによって、前記2つの光周波数の2つのコム歯を位相ロックする手段と、
前記2つの光周波数の位相ノイズに対して、結果として生じる前記ミリ波の位相ノイズを低減する手段とを備えることを特徴とするソース。
【請求項17】
前記2つの光周波数は、前記同じ安定周波数弁別器にロックされることを特徴とする請求項16に記載のチップスケールミリ波ソース。
【請求項18】
前記ポンプの前記位相ノイズをフォトニック集積コムに低減する方法。
【請求項19】
前記ポンプの前記位相および前記コム形成によって誘発される追加のノイズを低減する方法。
【請求項20】
フォトニック集積コムの前記モードを基準共振器に位相ロックする方法。
【請求項21】
ソリトンレジームで動作するマイクロ共振器の前記繰り返し率に誘電体共振発振器の前記スペクトル純度を移す方法。
【請求項22】
ニオブ酸リチウム光共振器における誘導ブリルアン散乱によってチップスケールミリ波ソースに対して連続レーザの前記周波数ノイズを低減する方法。
【発明の詳細な説明】
【技術分野】
【0001】
[優先権主張]
本出願は、2020年4月13日に出願された米国仮出願第63/009,291号に対する優先権を主張し、その全体は参照により本明細書に組み込まれる。
本出願は、概して、約300GHz~約1THzの周波数範囲における可変ミリ波発振器に関し、より具体的には、マイクロ波クロックで使用するための位相ノイズ電力スペクトル密度の長期安定性を特徴付けるチップスケール実装および方法に関する。
【背景技術】
【0002】
ミリ波発振器を実装するための様々な手法が多くの研究によって提案されている。例えば、直接生成の最も一般的な技術は、ガンダイオード(Gunn diode)発振器に依存する。ガンダイオード発振器は、2つの負にドープされた領域と、2つの負にドープされた領域の間にわずかに低い負にドープされた領域とを使用するタイプのダイオードであるガンダイオードの周囲に構築された発振器である。このダイオード構成は、ある閾値電圧を超える負性抵抗を提供し、転送電子デバイスとして振る舞う。負性抵抗では、不安定性および振動が容易に起こり得る。ガンダイオードは、非常に高い電子移動度および周波数応答を有する半導体材料を使用して作製することができ、テラヘルツ発振器は、この技術を使用して構築されている。例えば、ガリウムヒ素及び窒化ガリウム半導体材料は、ギガヘルツからテラヘルツの周波数範囲で動作するガンダイオードを作製するために一般に使用される。ガンダイオード発振器は、高周波で極めて高いエネルギー準位を生成できることが知られており、マイクロ波系、ミリ波系、テラヘルツ系に広く用いられている。
【0003】
マイクロ波増倍は、ミリ波発振器を実装するための他の例示的な手法であって、マイクロ波発振器の周波数は増倍され、約10GHzまでの周波数を有する信号を放出する。概して、ステップリカバリダイオードおよび電気コム発生器に基づいて、マイクロ波信号は、高電力で増幅されることができ、ダイオードを飽和させ、ミリ波範囲までの周波数を伴う電気コムを生成することができる。しかし、マイクロ波発振器の位相雑音も増倍され、したがって、Nを周波数増倍指数としたとき、位相雑音は20×log(N)だけ増加する。
【0004】
ミリ波発振器を実現するための他の例示的な手法は、フォトミキシング(photomixing)(光整流としても知られている)であって、非線形光学媒体は、光が衝突され(例えば、フォトダイオードおよび/または光伝導体を使用して)、光は、所望のミリ波周波数(例えば、5THzなどの数THzまで)まで相互に分離される、少なくとも2つの光学周波数を有する。しかしながら、スペクトル的に純粋で安定した信号(例えばは、上述の2つの例示的アプローチを使用して得られるものに匹敵する)を生成するために、2つの光学線の位相ノイズは、望ましくは強く相関する。レーザ線ノイズは低い必要はないが、光検出器において一次に打ち消すためには、2つの光学線上の共通ノイズが部分的に同じであれば足りる。単一走行フォトダイオードは、1550nmの光を用いて2THzまでのテラヘルツ波を放射できるという意味で使用するのに有用である。このフォトミキシングアプローチの欠点は、低い放出電力であり、(例えば、800nmの光に対して)数mWを直接生成することができる光伝導体とは対照的である。
【発明の概要】
【0005】
本明細書に記載のある実施形態は、ミリ波光信号を生成する方法を提供する。本方法は、二光ポンプソースの2つの周波数成分を位相ロックするステップを含む。本方法は、2つの周波数成分をファイバリングキャビティに入力し、ファイバリングキャビティから二光出力を生成するステップをさらに含む。本方法はさらに、ファイバリングキャビティの二光出力をフォトミキシングするステップを含む。
【0006】
本明細書に記載のある実施形態は、ミリ波放射の位相ノイズを測定するように構成された位相ノイズ分析器を提供する。位相ノイズ分析器は、第1アームおよび第2アームを備える光干渉計を備える。第1アームは、ミリ波周波数によって互いに周波数が分離された2つの第1光信号を伝搬するように構成される。第2アームは、ミリ波周波数と無線周波数との和または差によって周波数が互いに分離された2つの第2光信号を伝搬するように構成される。位相ノイズ分析器は、2つの第1光信号と2つの第2光信号の周波数差を示す遅延ヘテロダイン信号を伝搬するように構成された光路をさらに備える。
【0007】
本明細書に記載のある実施形態は、ミリ波放射の位相ノイズを測定するように構成された位相ノイズ分析器を提供する。位相ノイズ分析器は、ミリ波放射によって駆動され、連続波レーザ信号を受信し、連続波レーザ信号上に光側波帯を生成するように構成された光周波数変調器を備える。光側波帯は、ミリ波放射に等しい間隔だけ連続波レーザ信号から離間される。位相ノイズ分析器は、光遅延線をさらに備える。位相ノイズアナライザは、光伝導素子と、光側波帯とミリ波放射との間の周波数差間のホモダインビートを導出するように構成されたミキサとをさらに備える。
【0008】
本明細書に記載のある実施形態は、ミリ波放射位相ノイズを分析するように構成されたデュアルモードスペクトル分析器を提供する。デュアルモードスペクトル分析器は、ミリ波放射のミリ波周波数で変調される二光放射またはCWレーザ放射のいずれかから光入力を選択するように構成された光スイッチを備える。デュアルモードスペクトル分析器は、第1アームおよび第2アームを備える光干渉計を備える位相ノイズ分析器をさらに備える。第1アームは、ミリ波周波数によって互いに周波数が分離された2つの第1光信号を伝搬するように構成される。第2アームは、ミリ波周波数と無線周波数との和または差によって周波数が互いに分離された2つの第2光信号を伝搬するように構成される。位相ノイズ分析器は、2つの第1光信号と2つの第2光信号の周波数差を示す遅延ヘテロダイン信号を伝搬するように構成された光路をさらに備える。デュアルモードスペクトル分析器は、周波数検出器と、二光放射をフォトミキシングするように構成された感光性素子と、ミリ波電力検出器と、ミリ波電圧検出器とをさらに備える。
【0009】
本明細書に記載のある実施形態は、ミリ波放射位相ノイズを分析するように構成されたデュアルモードスペクトル分析器を提供する。デュアルモードスペクトル分析器は、ミリ波放射によって駆動され、連続波レーザ信号を受信し、連続波レーザ信号上に光側波帯を生成するように構成された光周波数変調器を備える。光側波帯は、ミリ波放射に等しい間隔だけ連続波レーザ信号から離間される。位相ノイズ分析器は、光遅延線をさらに備える。位相ノイズ分析器は、光伝導素子と、光側波帯とミリ波放射との間の周波数差間のホモダインビートを導出するように構成されたミキサとをさらに備える。デュアルモードスペクトルアナライザは、周波数検出器と、二光放射をフォトミキシングするように構成された感光性素子と、ミリ波電力検出器と、ミリ波電圧検出器とをさらに備える。
【0010】
本明細書に記載されるある実施形態は、2つの光周波数のフォトミキシングから生成されるミリ波周波数およびテラヘルツ周波数をリアルタイムで周波数カウントするための方法を提供する。本方法は、周波数および振幅変調器を使用して、2つの光周波数のそれぞれから空間的に重複するインターリービング電気光学コムを生成するステップを含む。本方法はさらに、電子的にカウント可能な無線周波数で2つのインターリーブされたコム間の最低周波数差を隔離するために、2つのインターリーブされたコムの光学的および電子的フィルタリングを含む。
【0011】
本明細書に記載のある実施形態は、位相ノイズが低減されたチップスケールミリ波ソースを提供する。ソースは、ミリ波周波数で可変な繰返し周波数または繰返し周波数の倍数を有するフォトニック集積周波数コムを含む。ソースは、周波数コムの繰り返し周波数およびキャリアオフセット周波数を調整することによって、2つのコム歯を2つの光周波数に位相ロックするための手段をさらに備える。ソースは、2つの光周波数の位相ノイズに対して、結果として生じるミリ波の位相ノイズを低減するための手段をさらに備える。
【0012】
本明細書に記載されるある実施形態は、数百GHzの周波数差を有する2つの位相ロック連続波レーザと、誘導ブリルアン散乱を有するファイバリングキャビティを含むゲイン要素と、ファイバリングキャビティのモードホッピングを排除するように構成される2つの光位相ロックループと、2つの光線路を周波数分離して受光し、ミリ波アンテナを介して導波または放射される2つの光線路の周波数差に等しい周波数を有するミリ波信号を生成するように構成される感光素子とを備えるミリ波信号発生器を提供する。
【0013】
本明細書に記載のある実施形態は、光ファイバ遅延線および光学的に生成されるミリ波周波数シフタに基づく音響光学変調器に基づく干渉計と、ミリ波アンテナを介して導波または放射される2つの光学線の周波数差に等しい周波数を有するミリ波信号を生成する2つの光線路を周波数分離して受信するように構成された2つの感光素子と、非ゼロ周波数差を有する2つのミリ波信号からRF領域における中間周波数を生成するように構成されたミリ波基本周波数ミキサとを備えるミリ波位相ノイズ分析器を提供する。
【0014】
本明細書に記載のある実施形態は、光ファイバ遅延線および光学的に生成されるミリ波周波数シフタに基づく音響光学変調器に基づく干渉計と、ミリ波アンテナを介して導波または放射される2つの光路線間の周波数差に等しい周波数を有するミリ波信号を生成するために、周波数分離を有する2つの光線路を受信するように構成される1つの感光素子と、ミリ波振幅検出器とを備えるミリ波位相ノイズ分析器を提供する。
【0015】
本明細書に記載のある実施形態は、カスケード接続された電気光学位相および/または振幅変調器をダイビングするマイクロ波電圧制御発振器と、光学バンドパスフィルタと、光電子位相ロックループとを備えるミリ波周波数カウンタを提供する。
【0016】
本明細書に記載のある実施形態は、連続波ポンプレーザと、音響光学ベース光干渉計と、ファイバリングキャビティと、ファイバリングキャビティの安定性を搬送するヘテロダイン信号を生成するように構成される感光素子と、位相ロックループとを備えるファイバリングキャビティへのマイクロ波源の安定性伝達のための位相ロックアーキテクチャを提供する;
【0017】
本明細書に記載されるある実施形態は、ミリ波周波数カウンタと、ミリ波振幅検出器と、ミリ波電力計と、ミリ波位相ノイズ分析器と、データ処理ユニットとを備えるミリ波電気スペクトル分析器を提供する。
【0018】
本明細書に記載されるある実施形態は、2つの連続波レーザと、連続波レーザの安定化のための光学基準となるように構成された1つの高品質係数(highQ)微小共振器と、2つのPDH(Pound-Drever-Hall)ロッキングスキームと、1つの組合せ光学変調器と、高繰返し率(例えば、数GHz)を有する1つのマイクロ共振器ベースの光周波数コムと、光パルス列をミリ波信号に変換するように構成された感光素子とを備えるミリ波発振器のチップスケール実装を提供する。
【0019】
本明細書に記載されるある実施形態は、微小共振器ベースのソリトン(Soliton)光周波数コム、カー(Kerr)光周波数コム、または変調不安定光周波数コムの光線幅低減のための機構を提供する。ポンプレーザ周波数ノイズは、セルフヘテロダイン干渉計を用いて補償される。
【0020】
本明細書で説明されるある実施形態は、光周波数マイクロコムを生成するために共振器内の高電力によって誘発される熱ノイズを克服する、非常に低い光電力での低温条件において利用されるマイクロ共振器の共振に対して光周波数マイクロコムのコムモードを安定させるように構成される物理的機構を提供する。
【0021】
本明細書で説明されるある実施形態は、ソリトンレジームで動作して、微小共振器の繰り返し率を光検出することによってミリ波信号を生成する微小共振器を提供する。繰返し率は、ソリトンマイクロコームからの2つの光路線から生成される2つの電気光学周波数コムの交互配置間の光検出に基づく光電子ダウンコンバージョン方式によって誘電体共振発振器に安定化される。
【0022】
本明細書に記載のある実施形態は、high-Qニオブ酸リチウム(LN)光共振器における誘導ブリルアン散乱による連続波レーザの光線幅低減(例えば、周波数ノイズ低減)のメカニズムを提供する。共振器は、シリカまたは空気上部および下部クラッドを有するリブ導波路またはストライプ導波路に基づく。
【0023】
前述の概要ならびに以下の図面および詳細な説明は、非限定的な例を説明することを意図しており、本開示を限定することを意図していない。
【図面の簡単な説明】
【0024】
図1図1は、本明細書で説明されるいくつかの実施形態による、ブリルアンファイバリングキャビティ(Brillouin fiber-ring cavity)のコヒーレントポンピングおよび2つのストークス(Stokes)波のミリ波信号生成を概略的に示す。
図2A図2Aは、本明細書で説明されるいくつかの実施形態による、感光素子に衝突する2つのストークス波の単一モード発振のための、ファイバリングキャビティのコヒーレントポンピングおよびそれと関連付けられるモードホッピング抑制に基づく、例示的ミリ波発振器を概略的に示す。
図2B】以前に開示されたミリ波発振器のPSDと比較した、本明細書で説明されるいくつかの実施形態による、図2Aの例示的ミリ波発振器(IMRA Brillouin(2019)とラベルされる)の位相雑音(dBc/Hz)の測定された電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。
図2C図2Cは、標準温度および圧力で動作する以前に開示された小型ミリ波発振器と比較した、本明細書に説明されるいくつかの実施形態による、図2Aの例示的ミリ波発振器(IMRA Brillouin(300GHz)とラベルされる)の部分周波数不安定性対平均時間(s)のプロットである。
図3A図3Aは、本明細書で説明されるいくつかの実施形態による、感光要素に衝突する2つのストークス波を生成するブリルアンベースのファイバリングキャビティによってスペクトル的に精製されるマイクロ波ソースの電気光学乗算に基づく、例示的ミリ波発振器を概略的に示す。
図3B図3Bは、本明細書で説明されるいくつかの実施形態による、スペクトルフィルタリングおよび増幅の前後の、図3Aの例示的なミリ波発振器によって生成される電気光学周波数コムの光電力(dB)対波長(nm)のプロットである。
図4A図4Aは、本明細書で説明されるいくつかの実施形態による、マイクロ波基準に対するファイバリングキャビティの安定化(例えば、位相ロック)のための例示的構成を概略的に示す。
図4B図4Bは、本明細書で説明されるいくつかの実施形態による、位相ロックを伴わない例示的ミリ波発振器(IMRA2019とラベルされる)および本明細書で説明されるある実施形態による、ブリルアン発振器をルビジウム(Rb)クロックに位相ロックする例示的ミリ波発振器(Rbクロックにロックされるとラベルされる)のフーリエ周波数(Hz)に対する位相ノイズの電力スペクトル密度(PSD)(dBc/Hz)のプロットである。
図5A図5Aは、マイクロ波基準に対するファイバリングキャビティの安定化と、本明細書で説明されるいくつかの実施形態による、単一周波数レーザ発生器を実装するための偏波ハンドリングのための例示的構成を概略的に示す。
図5B図5Bは、本明細書で説明されるいくつかの実施形態によって使用される単一のループ外連続波レーザとして動作する図5Aの例示的な構成のフーリエ周波数(Hz)に対する位相ノイズ(dBc/Hz)の電力スペクトル密度(PSD)のプロットである。
図6A図6Aは、本明細書で説明されるいくつかの実施形態による、セルフヘテロダイン干渉計に基づく例示的なミリ波位相ノイズ分析器と、ミリ波振幅検出器に結合された感光素子に基づくダウンコンバージョン機構とを概略的に示す。
図6B図6Bは、図6Aの例示的なミリ波位相ノイズ分析器を使用して300GHzで測定されるミリ波位相ノイズ(dBc/Hz)の電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。
図7A図7Aは、本明細書で説明されるいくつかの実施形態による、セルフヘテロダイン干渉計に基づく例示的なミリメートル波位相ノイズ分析器と、ミリメートル波基本周波数ミキサに結合された2つの感光素子に基づくダウンコンバージョン機構とを概略的に示す。
図7B図7Bは、図7Aの例示的なミリ波位相ノイズ分析器を使用して300GHzで測定されるミリ波位相ノイズ(dBc/Hz)の電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。
図8図8は、本明細書で説明されるいくつかの実施形態による、ミリ波光変換器、セルフヘテロダイン干渉計、およびミリメートル波基本周波数ミキサに結合された2つの感光要素に基づくダウンコンバージョン機構に基づく例示的なミリ波位相ノイズ分析器を概略的に示す。
図9図9は、本明細書で説明されるいくつかの実施形態による、ミリ波光変換器、セルフホモダイン干渉計、およびミリ波基本周波数ミキサに結合された1つの感光要素に基づくダウンコンバージョン機構に基づく例示的なミリ波位相ノイズ分析器を概略的に示す。
図10図10は、本明細書で説明されるいくつかの実施形態による、セルフホモダイン干渉計に基づく例示的なミリ波位相ノイズ分析器と、ミリ波ヘテロダイン検出器に結合される1つの感光素子に基づくダウンコンバージョン機構とを概略的に示す。
図11A図11Aは、本明細書で説明されるいくつかの実施形態による、2つの光波長の周波数差の電気光学ダウンコンバージョンに基づく例示的なミリ波周波数カウンタを概略的に示す。
図11B図11Bは、本明細書で説明されるいくつかの実施形態による例示的な周波数カウンタミリ波発振器のミリ波周波数(GHz)対時間(ms)のプロットである。
図11C図11Cは、本明細書で説明するいくつかの実施形態による例示的なミリ波発振器の内部カウンタのための位相ロックの相対電力(dB)対相対周波数(kHz)のプロットである。
図11D図11Dは、図11Aの例示的ミリ波周波数カウンタの感度および分解能を示す、部分周波数不安定性対平均時間(s)のプロットである。
図12図12は、本明細書で説明されるいくつかの実施形態による、例示的な超高感度および分解能ミリ波電気スペクトル分析器を概略的に示す。
図13図13は、本明細書で説明されるいくつかの実施形態による、感光素子に衝突するパルス列を有する光周波数マイクロコムによるミリ波信号への2つの連続波レーザの周波数差の光周波数分割に基づく超低ノイズミリ波発振器の例示的なチップスケール実装を概略的に示す。
図14A図14Aは、本明細書で説明されるいくつかの実施形態による、ポンプレーザのノイズ補償に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装を概略的に示す。
図14B図14Bは、本明細書で説明されるいくつかの実施形態による、補償セットアップがオンおよびオフであるときの図14Aの例示的な実装についてのループ内信号の周波数ノイズ(Hz/Hz)対オフセット周波数(Hz)のプロットである。
図14C図14Cは、本明細書で説明されるいくつかの実施形態による、補償セットアップがオンおよびオフであるときの図14Aの例示的な実装についてのループ外信号の周波数ノイズ(Hz/Hz)対オフセット周波数(Hz)のプロットである。
図14D図14Dは、本明細書で説明されるいくつかの実施形態による、光周波数マイクロコムのいくつかのモード番号について補償セットアップがオンであるときの、図14Aの例示的な実装についてのループ外信号の周波数(THz)に対する周波数ノイズ(Hz/Hz)のプロットである。
図15A図15Aは、本明細書で説明されるいくつかの実施形態による、内部セルフヘテロダイン干渉計を通じたポンプレーザのノイズ補償に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装を概略的に示す。
図15B図15Bは、本明細書で説明されるいくつかの実施形態による、外部セルフヘテロダイン干渉計を通したポンプレーザの雑音補償に基づく、光周波数マイクロコムの雑音低減の例示的チップスケール実装を図式的に図示する。
図16図16は、本明細書で説明されるいくつかの実施形態による、コールドマイクロ共振器の共振に対する1つのマイクロコムモードの安定化に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装形態を概略的に示す。
【0025】
図17図17は、本明細書で説明されるいくつかの実施形態による、コールドマイクロ共振器の共振に対する2つのマイクロコムモードの安定化に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装を概略的に示す。
図18A図18Aは、本明細書で説明されるいくつかの実施形態による、ソリトンレジームにおいて誘電体共振発振器のスペクトル純度をマイクロ共振器の繰り返し率に忠実に移すための例示的な安定化スキームを使用する例示的なミリ波発振器(例えば、チップスケール)を概略的に示す。
図18B図18Bは、本明細書で説明されるいくつかの実施形態による、300GHzでマイクロコンを用いて生成された図18Aの例示的なミリ波発振器の位相ノイズ(dBc/Hz)の測定された電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。
図19A図19Aは、本明細書で説明されるいくつかの実施形態による、LN光共振器に基づく例示的オンチップブリルアンレーザを概略的に示す。
図19B図19Bは、本明細書で説明されるいくつかの実施形態による、図19Aのブリルアンレーザ発振のための例示的なLNリブ導波管構造の断面を概略的に示す。
図19C図19Cは、本明細書で説明されるいくつかの実施形態による、図19Bに概略的に示される断面を伴う例示的なLN導波管の例示的シミュレートされた光学モード(図19Cの上部)および音響モード(図19Cの下部)を示す。
図19D図19Dは、本明細書に説明されるいくつかの実施形態による、例示的なXカットLN導波管におけるブリルアンシフト周波数対計算されたブリルアンゲインのプロットである。
【0026】
図面は、例示の目的で本開示の様々な実施形態を示し、限定することを意図しない。実施可能な場合はいつでも、同様のまたは類似の参照番号または参照ラベルが図面で使用されてもよく、同様のまたは類似の機能を示し得る。
【発明を実施するための形態】
【0027】
図1は、本明細書で説明されるいくつかの実施形態による、ファイバリングキャビティ(例えば、ブリルアンファイバリングキャビティ(Brillouin fiber-ring cavity)のコヒーレントポンピングおよび2つのストークス(Stokes)波のミリ波信号生成を概略的に示す。例えば、ポンプソース(例えば二光ポンプソース)は、第1周波数を有する第1非共振ポンプ信号110と、第1周波数とは異なる(例えば、第1周波数から数GHzだけ離れた)第2周波数を有する第2非共振ポンプ信号120とを生成するように構成され得る。フリースペクトル範囲(FSR)によって互いに間隔をあけられた複数のコムラインを備えるダウンコンバータとして機能する電気光学コム130を使用して、第1および第2ポンプ信号110、120を周波数1GHz未満のマイクロ波信号にオフセットロックすることができる。ファイバリングキャビティ(不図示)は、ファイバリングキャビティと共振しないが、対応する位相コヒーレントポンプ信号110、120から(例えば、約11GHzだけ)スペクトル的に分離される対応するブリルアン散乱ゲイン信号112、122を生成するように構成される、2つの位相コヒーレントポンプ信号110、120を受信するように構成されることができる。2つのストークス波112、122は、ファイバリングキャビティ内で共振することができ、2つのストークス波112、122は、互いにスペクトル的に分離される(例えば、2つのポンプ信号110、120が互いに分離されるのと同じ量だけ)。
【0028】
いくつかの実施形態では、ファイバリングキャビティは、品質係数が10を超えるように充分に長い。いくつかの実施形態では、ファイバリングキャビティの長さは、ファイバリングキャビティと共振せず、ファイバリングキャビティ内でブリルアン散乱を生成する、ポンプ波の光電力が、縮退4波混合(例えば、光電力は300mW未満である)を回避するように充分に低くなるように充分に長い。特定の実施形態では、ファイバリングキャビティの長さは、ファイバリングキャビティのフリースペクトル範囲が1MHzを超えるように充分に短い。例えば、ファイバリングキャビティの光ファイバは、50メートルから150メートルの範囲の長さを有することができる。加えて、ストークス波112、122の位相ノイズは、音響減衰とキャビティフィードバックとの組み合わせの影響下で強く低減され得る。ブリルアンレージングプロセスにおける反転分布はなく、自発的な散乱は、自発的な放射ではなく、ストークス放射の単光性の程度を制限する。ストークス波のモノモード振動の場合、いくつかの実施形態は、ファイバリングキャビティの1つのモードのみでファイバリングキャビティを振動させるように構成された追加の位相ロックループ(PLL)を含む。ストークス波とそのそれぞれのポンプ信号との間の周波数差(いわゆるブリルアンシフトに対応する)は、ブリルアンシフトに等しい周波数を有するマイクロ波発振器に位相ロックされる。特定の実施形態では、エラー信号は、比例積分微分(PID)コントローラを通して、ポンプソースの周波数変調(例えば、レーザ電流を変調することによるか、または外部音響光学変調器を使用することによって)に印加される。
【0029】
図2Aは、本明細書で説明される特定の実施形態による、感光素子に衝突する2つのストークス波の単一モード発振のための、ファイバリングキャビティ210のコヒーレントポンピングおよびそれと関連付けられるモードホッピング抑制に基づく、例示的なミリ波発振器200を概略的に示す。特定の実施形態では、例示的なミリ波発振器200は、ファイバ増幅器202(例えば、エルビウムドープファイバ増幅器(EDFA))と、その中に誘導ブリルアン散乱を有するように構成された偏光維持ファイバ212(例えば、75mの長さを有する)を備えるファイバリングキャビティ210(ファイバリングキャビティとラベルされる)とを備える。ポンプレーザはファイバリングキャビティ210に対して共振しないが、後方散乱光(例えば、ストークス波)はファイバリングキャビティ210に対して共振し、ミリ波発振器200の動作状態にかかわらず、光は常に出力に存在する。
【0030】
いくつかの実施形態では、図2Aによって概略的に示されるように、例示的なミリ波発振器200は、デュアルポンプソース220(デュアルポンプとラベルされる)を備える。デュアルポンプソース220が固定方式に基づく特定の実施形態では、デュアルポンプソース220は、図2Aに概略的に示すように、2相コヒーレント連続波(CW)レーザ222a、b(例えば、Redfern Integrated Optics(カリフォルニア州サンタクララ))から入手可能)を備えることができ、2つのレーザ222a、bは、周波数が互いに(例えば、300GHzだけ)隔てられている。他のいくつかの実施形態では、デュアルポンプソース220は、1つの波長固定レーザおよび1つの可変レーザを備えることができる。いくつかの実施形態では、デュアルポンプソース220の2つのレーザ222a、bの出力は、ファイバカプラと一緒に結合される。
【0031】
いくつかの実施形態では、図2Aによって概略的に示されるように、例示的なミリ波発振器200は、デュアルポンプソースから出力の一部を受信するように構成されるファイバ増幅器232(例えば、エルビウムドープファイバ増幅器(EDFA))と、位相シフタ(φ)236の対応するペアおよび誘電体共振発振器(DRO)238(例えば、約10GHz)によって制御される2つのカスケード光位相変調器(PM)234と、ファイバ増幅器232からの出力を受信するように構成された2つの位相変調器234と、位相変調器234からの位相変調出力を受信するように構成された光バンドパスフィルタ(OBPF)242と、フィルタリングされた信号を受信し、デュアルポンプソース220に信号を提供するように構成される比例積分微分コントローラ(PID)244とを備える光電子位相ロックループ230(コヒーレントポンピングのためのOEPELLとラベルされる)をさらに備える。いくつかの実施形態では、ポンプ信号は、図2Aに示されるように、OEPLL230を通して振動するストークス波を生成する。デュアルレーザソース220の2つのレーザ222a、bのノイズを相関させるいくつかの実施形態では、光電子位相ロックループ230は、ダウンコンバージョンを使用して、OEPLL230のフィードバック帯域幅内で2つのポンプレーザ222a、bのノイズを相関させるように構成される(例えば、A.Rolland、G.Loas、M.Brunel、L.Frein、M Vallet、M.Alouiniの「Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,Optics Express, 19, 17944-17950 (2012)参照」)。
【0032】
いくつかの実施形態では、図2Aによって概略的に示されるように、例示的なミリ波発振器200は、ファイバリングキャビティ210の長さに起因するモードホッピングを抑制するように構成されるモードホッピング抑制光学回路250(モードホッピング抑制とラベルされる)をさらに備える。いくつかの実施形態では、モードホッピング抑制光学回路250は、ペアの音響光学(AO)変調器252a、bを備え、それぞれの変調器は、デュアルポンプソース220のそれぞれのレーザから出力信号の一部を受信し、出力信号をファイバリングキャビティ210に提供するように構成される。モードホッピング抑制回路の周波数は、AO変調器252a、bの周波数シフトされた光出力のピックオフを、フォトダイオード254a、b上のファイバリングキャビティ210の光出力からのピックオフと混合する。AO変調器252a、bの光出力とその生成されたブリルアン放射との間の周波数差は、fB±FSRの値に及ぶことができ、ここでfBはブリルアンシフトであり、FSRはファイバリングキャビティ210のフリースペクトル範囲である。周波数差がfB+FSRまたはfB-FSRのいずれかに近づくと、ブリルアン出力はモードホップする傾向があり、逆に、周波数差がfBに近い場合、ブリルアン出力はモードホップしない。したがって、光周波数差は、PID回路256a、bを使用してfBに対応する外部rf周波数ソースにロックされ、PID回路256a、bは、AO変調器252a、bによって誘起される周波数シフトを調整して、所望の周波数差を維持する。
【0033】
いくつかの実施形態では、図2Aによって概略的に示されるように、例示的なミリ波発振器200はさらに、2つのストークス波112、122(例えば、250~400GHzで可変である)をミリ波領域にダウンコンバートするように構成されるフォトダイオード260(例えば、UTCフォトダイオード)(光検出mmW生成とラベルされる)を備える。フォトダイオード260は、ダウンコンバートされた信号を導波路(例えば、自由空間においてダウンコンバートされた信号を放射するアンテナがない)に放射するように構成される。
【0034】
図2Bは、本明細書で説明されるいくつかの実施形態による、図2Aの例示的なミリ波発振器(IMRAブリルアン(2019)とラベルされる)の位相ノイズ(dBc/Hz)の測定された電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。位相ノイズの測定されたPSDは、100Hzフーリエ周波数で-65dBc/Hzであり、1MHzで-140dBc/Hzまで低下する。図2Bは、米国特許出願公開第2019/0235445号A1(MIT CMOSソースとラベルされる)、doi.org/10.1364/OE.27.035257(NPLマイクロコームソースとラベルされる)、N5194A UXG X-Series Agile Vector Adapter(Keysightシンセサイザーとラベルされる)、doi.org/10.1364/OL.44.000359(IMRAブリルアン(2018)とラベルされる)によって以前に開示された様々な他のミリ波発振器について報告された位相ノイズのPSDを示す。図2Bは、図2Aの例示的なミリ波発振器の位相ノイズの測定値PSDが、先に開示されたミリ波発振器のものよりもほぼ4桁低いことを示す。
【0035】
図2Cは、本明細書で説明するいくつかの実施形態による、図2Aの例示的なミリ波発振器(IMRAブリルアン(300GHz)とラベルされる)の平均化時間(s)に対する分数周波数不安定性のプロットである。アクリルチャンバー内の粗真空下であって、300GHzにおける図2Aの例示的なミリ波発振器は、1秒の平均化時間で6×10-14に達し、ドリフトに起因して、より高い平均化時間で約1×10-13に平均化する。図2Cはまた、Brandywine Communications of Tustin CAから入手可能なOSA-8607 Boitier Vieillissement Ameliore(BVA)発振器とラベルされる)、オースチンTXのWenzel Associates,Inc.から入手可能なHF-ULNオーブン制御水晶発振器(OCXOとラベルされる)、doi.org/10.1063/1.2039387によって開示されるウィスパリングギャラリー(WG)発振器(WGサファイアとラベルされる)の様々な他のミリ波発振器(標準温度および標準圧力で動作する)について報告された部分周波数不安定性を示す。図2Cは、図2Aの例示的ミリ波発振器の不安定性のレベルが、標準温度および圧力で動作する他の小型発振器の不安定性と競合することを示す。
【0036】
図3Aは、本明細書で説明されるある実施形態による、感光性素子360に衝突する2つのストークス波を生成する、ファイバリングキャビティ310(例えば、ブリルアンベースのファイバリングキャビティ)によってスペクトル的に精製されるマイクロ波ソースの電気光学乗算に基づく、例示的なミリ波発振器300を概略的に示す。図3Aの例示的なミリ波発振器300は、2つの位相シフタ332(φ)によって駆動される2つのカスケード式電気光学位相変調器330(PM)によって位相変調される単一のCWポンプレーザ320(例えば、Redfern Integrated Optics of カリフォルニア州サンタクララから入手可能である)と、誘電体共振発振器334(DRO)(例えば、約10GHz)とを備える。ある実施形態では、図3Aの例示的なミリ波発振器300は、ポンプ信号の両側に光学側波帯を生成するように構成される。図3Aに概略的に示すように、例示的なミリ波発振器300は、2つの側波帯をスペクトル的にフィルタリングし、スペクトル的にフィルタリングされた側波帯ポンプ信号をファイバリングキャビティ310に提供するように構成された2つの別個の光バンドパスフィルタ340(OBPF)をさらに備える。OBPF340の周波数差は、ユーザによって選択され得る。ファイバリングキャビティ310は、側波帯ポンプ信号に応答してストークス波を生成するように構成される。ある実施形態の例示的なミリ波発振器300は、DRO334を、ファイバリングキャビティ310によってスペクトル的に精製されたミリ波領域に乗算するように構成される。
【0037】
図3Bは、本明細書で説明するいくつかの実施形態による、スペクトルフィルタリングおよび増幅の前および後の、図3Aの例示的なミリ波発振器300によって生成された電気光学周波数コムの光電力(dB)対波長(nm)のプロットである。スペクトルフィルタリングおよび増幅前の光電力は、図3Aにおいて、明線によって示され、ほぼ5nmにわたり、スペクトルフィルタリングおよび増幅後の光電力スペクトルは、図3Bにおいて、暗線によって示され、2つのOBPF340OおよびEDFAを通して選択される2つの光モードを示す。2つの光学モードの信号対ノイズ比は、50dBよりも大きく、これらの2つの光学モードは、本質的に位相コヒーレントであり、図3Aに示されるように、ファイバリングキャビティを励起するために使用することができる。
【0038】
図4Aは、本明細書で説明するいくつかの実施形態による、マイクロ波基準に対するファイバリングキャビティ410の安定化(例えば、位相ロック)のための例示的な構成400を概略的に示す。図4Aの構成400は、標準圧力および温度動作においてロバストなブリルアンソースとして有用であり得る。図4Aによって概略的に図示されるように、レーザポンプ420は、音響光学(AO)変調器434を備える第1アーム432と、第2アーム436とを備える干渉計430を通してポンプ信号を送る。干渉計430の出力は、AO変調器434を駆動する周波数によって分離された2つの光波長を含む光信号を含み、本質的にファイバリングキャビティ410のコヒーレントポンピングである。2つのストークス生成信号間のビートノートは、ファイバリングキャビティ410のノイズを搬送し、2つの振動モードは、数十MHzだけ互いに周波数が分離される。ある実施形態では、ビートノートは、AO変調器434を駆動する同じ信号にキャビティ共振に対応する周波数オフセットを加えたものを用いてDCにダウンコンバートすることができ、エラー信号を生成することができる。PIDコントローラ450を通して、このエラー信号をポンプレーザ420のポンプ電流(例えば、サーモロッキング効果による)に適用することができる。図4の例示的な構成400は、ファイバリングキャビティ410を安定させるために使用することができるが、例示的な構成400から単一のレーザを抽出することは困難であり得る。
【0039】
図4Bは、本明細書で説明するいくつかの実施形態による、位相ロックなし(IMRA2019とラベルされる)およびルビジウム(Rb)クロックへのブリルアン発振器の位相ロックあり(Rbクロックへのロックとラベルされる)の例示的なミリ波発振器の位相ノイズ(dBc/Hz)(例えば、ループ内位相ロックエラー)の電力スペクトル密度(PSD)対フーリエ周波数(Hz)のプロットである。エラー信号をポンプCWレーザにフィードバックすることによって、サーモロック効果によるファイバリングキャビティのループ内位相ロックがRbクロックに安定する。ある実施形態では、約600Hzのフィードバックループ帯域幅が、ブリルアン振動の高いスペクトル純度を妨害しないように使用されることができる。
【0040】
図5Aは、マイクロ波基準に対するファイバリングキャビティ510の安定化のための例示的な構成500と、本明細書に記載される特定の実施形態による単一周波数レーザ発生器を実装するための偏波処理とを概略的に示している。図5Aの左上の楕円520では、(例えば、ソース502からの)単一光のCW光は、60/40ビームスプリッタ522を介して分割され、下部アームの周波数上の成分は、(例えば、AO変調器524によって)rf周波数だけシフトされ、上部アームでは、チェインされないままである。2つの周波数成分は、偏光ビームスプリッタ(PBS)526を介して再結合され、2つの周波数成分は、ファイバ内で直交する偏光軸上で伝送される。図5Aの右上の楕円530において、2つの直交偏光光周波数は、AOM周波数によって分離された直交偏光ストークス放射を生成するために、ファイバリングキャビティ510をポンピングする。ジルコン酸タンタル酸鉛(PZT)トランスデューサ532は、ファイバキャビティ510の長さを調整する。95/5ビームスプリッタ534は、反時計回りに伝搬するブリルアン光を外部結合する。図5Aの下の楕円540において、PBS542は、2つのストークス周波数を分離するために使用される。図5Aの残りの楕円550では、PBS552を使用して2つのストークス成分を単一の偏光成分に折り畳み、周波数差のヘテロダイン検出を可能にする。次いで、この周波数差は、PZTトランスデューサ532の作動を介してファイバリングキャビティ510の長さを変更することによって、またはソースレーザ(RIO)周波数を変更することによって、AOMのrf駆動にロックされる。ある実施形態では、2つのポンプ信号は、直交偏光され、2つのストークス波は、偏光ビームスプリッタ(PBS)によって、相互から分離され、空間的に分割される。ファイバの複屈折は、追加のノイズ脱相関をもたらし得る。ある実施形態では、単一波長は、ファイバリングキャビティ510の品質係数に依存するスペクトル純度および安定化に使用されるマイクロ波基準の安定性に匹敵する長期安定性を有する単一波長発生器として使用することができ、図5Aの例示的構成500から抽出することができる。
【0041】
図5Bは、本明細書に記載のある実施形態に従って使用される単一のループ外連続波レーザとして動作する図5Aの例示的な構成500の位相ノイズの電力スペクトル密度(PSD)(dBc/Hz)対フーリエ周波数(Hz)のプロットである。25メートル長のファイバリングキャビティを有するループ外cwレーザ(25m SPTとラベルされる)の光位相ノイズは、75メートル長のファイバリングキャビティを有するループ外cwレーザ(75m 50mTorr,温度安定化とラベルされる)の光位相ノイズよりも高い。しかし、ホワイト位相ノイズフロアは-120dBc/Hzである。
【0042】
図6Aは、本明細書で説明するいくつかの実施形態による、セルフヘテロダイン干渉計610に基づく例示的なミリ波位相ノイズ分析器600と、ミリ波振幅検出器に結合された感光性素子に基づくダウンコンバージョン機構とを概略的に示している。ある実施形態では、図6Aの例示的な位相ノイズ分析器600は、フォトニック生成ミリ波信号の位相ノイズの電力スペクトル密度(PSD)を検出、測定、および較正するように構成される。例示的な位相ノイズ分析器600は、ミリ波周波数に対応する周波数差によって互いに周波数が分離された2つの光波長を有する入力光信号602を受信するように構成されたセルフヘテロダイン干渉計610を備える。干渉計610の第1アーム612a(例えば、図6Aの上側のアーム)は、光信号を2つのサブアームに分割することによって入力周波数差を周波数シフトするように構成される。第1サブアーム614a(例えば、図6Aの下部のサブアーム)は、1つの波長をスペクトル的にフィルタリングし、第2サブアーム614b(例えば、図6Aの上部のサブアーム)は、fAO1で駆動される音響光学変調器(AO1)616を通して他の波長をスペクトル的にフィルタリングし、周波数シフトする。両方の波長は、次いで、fAO1だけシフトされたそれらの周波数差で再結合される。干渉計610の第2アーム612b(例えば、図6Aの下部のアーム)は、第1アーム612aの波長と干渉しないようにfAO2で駆動される音響光学変調器(AO2)618で入力光信号602を周波数シフトするように構成され、周波数シフトされた2つの波長光信号を遅延τだけ遅延させるように構成されたファイバ遅延線622を備える。
【0043】
例示的な位相ノイズ分析器600は、第1および第2アーム612a、bから4つの光線を受け取るように構成された感光性素子630(例えば、UTC-PD)をさらに備える。
【数1】
ここで、4つのミリ波信号を生成する。
【数2】
【0044】
例示的な位相ノイズ分析器600は、4つのミリ波信号を受信するように構成されたミリ波振幅検出器640(例えば、シングルバリアダイオード(SBD)またはSchottkyダイオード)をさらに備える。ローパスフィルタとして作用すると、検出された関心ビートノートは、以下のようになる:
【数3】
そして、fAO1が搬送する位相ノイズは、次式によって変調される。
【数4】
これは、関心のある位相ノイズである。したがって、ミリ波振幅検出器600の出力で検出される無線周波数は、被測定ミリ波発振器の位相ノイズを含む。
【0045】
図6Bは、図6Aの例示的なミリ波位相ノイズ分析器600を使用して300GHzで測定されたミリ波位相ノイズの電力スペクトル密度(PSD)(dBc/Hz)フーリエ周波数(Hz)のプロットである。図6Bは、図6Aの例示的な位相ノイズ分析器の基本的な限界を示す。ミリ波振幅検出器におけるノイズ等価電力は0/fdBc/Hzの限界がある。
【0046】
図7Aは、本明細書で説明するいくつかの実施形態による、セルフヘテロダイン干渉計710に基づく例示的なミリ波位相ノイズ分析器700と、ミリ波基本周波数ミキサ750に結合された2つの感光素子740a、bに基づくダウンコンバージョン機構とを概略的に示している。セルフヘテロダイン干渉計710は、ミリ波周波数に対応する周波数差によって互いに周波数が分離された2つの光波長を有する入力光信号702を受信し、第1アーム712a(例えば、図7Aの上部)に周波数シフト干渉計720を備え、第2アーム712(例えば、図7Aの下部のアーム)にファイバ遅延線730を備える。図7Aの例示的な位相ノイズ分析器700は、第1アーム712aの周波数シフト干渉計の出力を受信するように構成された第1感光素子740aと、第2アーム712bのファイバ遅延線730の出力を受信するように構成された第2感光素子740bと、第1および第2の感光素子740a、bの出力を受信するように構成された基本ミリ波周波数ミキサ750とをさらに備える。第1および第2感光素子740a、bならびに基本ミリ波周波数ミキサ750は、光信号をベースバンドにダウンコンバートするように構成される。
【0047】
図7Bは、図7Aの例示的なミリ波位相ノイズ分析器700を使用して300GHzで測定された、図2Aの例示的なミリ波発振器200のミリ波位相ノイズ(dBc/Hz)対フーリエ周波数(Hz)の電力スペクトル密度(PSD)のプロットである。位相ノイズ(300GHz位相ノイズとラベルされる)は、高フーリエ周波数において、図2Aの例示的なミリ波発振器200がブリルアンレーザの光位相ノイズ(ブリルアン光位相ノイズとラベルされる)に従うことを示す。
【0048】
図8は、ミリ波-光学変換器に基づく例示的なミリ波位相ノイズ分析器800と、セルフヘテロダイン干渉計710と、本明細書で説明されるいくつかの実施形態による、ミリ波基本周波数ミキサ750に結合された2つの感光素子740a、bに基づくダウンコンバージョン機構とを概略的に示している。図6Aおよび図7Aの例示的なミリ波位相ノイズ分析器600、700は、例示的なミリ波発振器がフォトニックに生成され、2つの光波長を含むときに使用するために構成される。例示的なミリ波発振器802が電気信号のみを提供するある実施形態では、図8に概略的に示すように、電気光変換素子を使用することができる。例えば、シリコンプラズモン電気光学変調器804は、図8の例示的な位相ノイズ分析器800で使用されるのに充分な超高帯域幅を有することができる。ミリ波信号によって駆動される光変調器804によって変調される光信号については、光側波帯810a、bが生成され、光側波帯810a、b間の周波数差は、試験中の発振器802のミリ波周波数に対応する。さらに、この周波数差は、発振器802の位相ノイズも含む。したがって、本明細書で説明するセルフヘテロダイン干渉計を使用して、試験中の発振器802の位相ノイズを測定することができる。
【0049】
図9は、本明細書で説明するいくつかの実施形態による、ミリ波光変換器、セルフホモダイン干渉計、およびミリ波基本周波数ミキサに結合された1つの感光素子に基づくダウンコンバージョン機構に基づく例示的なミリ波位相ノイズ分析器900を概略的に示す。図9に概略的に示されるように、試験中の発振器902の出力は、2つの経路に分割され、第1経路は、ミリ波電気信号をシリコンプラズモニック変調器904を通して光信号に変換し、光ファイバ930を通して遅延を経験する。光領域における遅延を経験した後、ミリ波信号は、感光素子940を使用してミリ波領域において戻される。周波数ミキサ950が直流結合された出力を有するある実施形態では、位相ノイズは、周波数ミキサ950の出力で取り出すことができる。
【0050】
図10は、本明細書で説明するいくつかの実施形態による、セルフホモダイン干渉計1020に基づく例示的なミリ波位相ノイズ分析器1000と、ミリ波ヘテロダイン検出器に結合された1つの感光素子1040に基づくダウンコンバージョン機構とを概略的に示している。近量子限界ヘテロダインテラヘルツ検出は、周波数ダウンコンバータとして極低温冷却超伝導ミキサの使用を通してのみこれまで可能であったが、図10の例示的なミリ波位相ノイズ分析器1000は、近量子限界感度を伴う室温ヘテロダインテラヘルツ検出器の最近の進歩を利用することができる。このタイプのヘテロダイン検出器は2つの入力を有する。第1入力は、ミリ波またはテラヘルツ信号を受信することができ、第2入力は、ミリ波またはテラヘルツ領域内の周波数差を伴う2つの光波長を備える光信号1002を受信することができる。次いで、ヘテロダイン検出器1000は、第1アーム(例えば、図10の上部のアーム1012a)において、光領域において実現される周波数シフト要素を使用することによって、第1入力と第2入力との間の周波数差を出力することができる。ヘテロダイン検出器1000の出力は、被測定ミリ波発振器の位相ノイズを直接伝えるベースバンドの中間周波数である。
【0051】
図11Aは、本明細書で説明するいくつかの実施形態による、2つの光波長の周波数差の電気光学ダウンコンバージョンに基づく例示的なミリ波周波数カウンタ1100を概略的に示す。ほとんどの周波数カウンタは、特定の期間内に発生するイベントの数を累積するカウンタを使用することによって機能する。ゲート時間(例えば、1秒)として知られる予め設定された期間の後、カウンタの値はディスプレイに転送され、カウンタはゼロにリセットされる。測定されるイベントが充分な安定性で繰り返され、周波数が使用されるクロック発振器の周波数よりもかなり低い場合、測定の分解能は、事前設定された持続時間にわたって観察される全サイクルの数をカウントするのではなく、全サイクル数にわたって時間を測定することによって大幅に改善され得る(例えば、逆数技法と称される場合がある)。時間信号を提供する内部発振器は、タイムベースと呼ぶことができ、正確に較正されるべきである。マイクロ波周波数カウンタは、現在、ほぼ56GHzまでの周波数を測定することができるが、ミリ波周波数で直接使用することはできない。ある実施形態では、高周波数は、周波数ミキサおよび試験中の発振器に近い周波数のローカル発振器を用いてダウンコンバートされる。安定なローカル発振器は、一般にミリ波周波数では利用できず、サブハーモニックミキサは、信号対ノイズ比を強く制限する著しい変換損失を有する。
【0052】
ある実施形態では、図11Aの例示的なミリ波周波数カウンタ1100は、ミリ波周波数をカウントするために光電子ダウンコンバージョンを実装するために使用され得る。例えば、2つの光線1102(例えば、数百GHzだけ分離される)は、マイクロ波基準(例えば、10GHz)によって駆動される位相変調器1104によって位相変調されることができ、2つの光周波数コム1110a、bは、次いで、それぞれ、2つの光線から生成されることができる。ある実施形態では、低周波数検出は、2つの光周波数コム1110a、bの間のビートノートのフォトダイオードを用いて実行することができる。このビートノートはミリ波信号の不安定性を伝える。ある実施形態では、位相ロックループが、マイクロ波基準を安定させるために使用され、周波数は、周波数基準に対して以下のように算出される。
【数5】
【0053】
図11Bは、本明細書で説明するいくつかの実施形態による、例示的な周波数カウントミリ波発振器200(例えば、図2Aに示すように)のミリ波周波数(GHz)対時間(ms)のプロットである。瞬間的な周波数は、図11Aの例示的な周波数カウンタ1100を使用して測定された。図11Cは、本明細書で説明するいくつかの実施形態による、図11Aの例示的な周波数カウンタ1100を使用した図2Aの例示的なミリ波発振器200の内部カウントのための位相ロックの相対電力(dB)対相対周波数(kHz)のプロットである。図11Cは、図11Aの例示的な周波数カウンタ1100を使用することによって、図2Aの例示的なミリ波発振器200を、マイクロ波基準、マイクロ波原子時計、または全地球測位システム(GPS)で統制されたマイクロ波発振器(例えば数十kHzのロック帯域幅を有する)に位相ロックすることが実現可能であることを示す。
【0054】
図11Dは、図11Aの例示的なミリ波周波数カウンタの感度および分解能を示す、分数周波数不安定性対平均時間(s)のプロットである。図11Dは、図11Aの例示的なミリ波周波数カウンタ1100の絶対限界を示す。300GHzにおいて、図11Aの例示的な周波数カウンタ1100は、アラン偏差(Locked makev at 300GHzとラベルされる)に関して2×10-15/τの分数周波数不安定性と、修正アラン偏差(Locked adev at 300GHzとラベルされる)に関して1秒の平均化時間で1×10-16の不安定性レベルとを有し、図2Aの例示的なミリ波発振器は、光格子クロックの安定性とともにロックされ得るか、またはカウントされ得ることを示唆する。
【0055】
図12は、本明細書で説明するいくつかの実施形態による超高感度を有する例示的なミリ波スペクトル分析器1200を概略的に示す。ある実施形態では、電磁波v(t)の電気スペクトルをプロットするために、3つの量のデータセットを使用することができる(例えば、リアルタイムで測定される):瞬間的な周波数f(t)、位相変調φ(t)および振幅変調α(t)は下記を用いる。
【数6】
【0056】
ある実施形態では、図12によって概略的に示されるように、スペクトル分析器1200は、2つの代替入力を受信するように構成される。例示的なスペクトルアナライザ1200は、ミリ波領域にある周波数差を有する異なる周波数を有する2つの光信号を含む第1入力1202aおよび/または直接生成されたミリ波信号を含む第2入力1202bを受信することができる。いくつかのそのような実施形態では、例示的なスペクトル分析器1200は、第1入力1202aまたは第2入力1202bのいずれかを選択するように構成された光スイッチ1210を備えることができる。測定された量が光領域にあるので、例示的なスペクトルアナライザ1200は、ミリ波信号を受信して光領域に変換し、変換された信号を光スイッチ1210に提供するように構成されたシリコンプラズモニック変調器1220を備えることができる。
【0057】
図12に概略的に示すように、例示的なスペクトルアナライザ1200は、光スイッチ1210からの光信号を3つのアームに分割するように構成される。第1アーム1232a(例えば、図12の上部のアーム)は、瞬間的な周波数f(t)を測定する、第2アーム1232b(例えば、図12の中央部のアーム)は、振幅変調α(t)を測定する(例えば、Schottkyダイオード等の振幅検出器と、それに続く、電圧v(t)を測定するための高感度を有する電圧計と、絶対電力P(t)を測定するためのミリ波電力計とを使用して)。第3アーム1232c(例えば、図12の下部のアーム)は、位相雑音φ(t)をリアルタイムで測定する(例えば、本明細書で説明するいくつかの実施形態によるセルフヘテロダイン干渉計を使用して)。ある実施形態では、第1、第2、および第3アーム1232a、b、cによって測定される量は、コンピュータ(例えば、デジタル信号プロセッサ、フィールドプログラマブルゲートアレイ集積回路)によって処理される。
【0058】
図13は、本明細書で説明するいくつかの実施形態によるミリ波発振器1300の例示的なチップスケール実装形態を概略的に示す。図13の例示的な発振器1300は、数THzだけ分離された周波数ν1およびν2における第1および第2CWレーザ1302a、bからの2つの光波の差動位相ノイズの光周波数分割を利用するように構成される。第1および第2CWレーザ1302a、bは、高い品質係数を有する共通共振器に対して安定化(例えば、Pound-Drever-Hall安定化を使用する)することができる。ある実施形態では、第1および第2CWレーザ1302a、bは、共通共振器の変動に断片的に追従し、これは、一次への共通ノイズ除去につながり得る。2つの後方散乱ストークス振動は、より良好なスペクトル純度のために抽出することができる。ある実施形態では、Dual-Mach-Zehnder変調器(DMZM)1310は、繰り返し率周波数frepおよびキャリアエンベロープオフセット周波数fceoを制御し、モード共振nで第1CWレーザ1302aによってポンピングされている光周波数マイクロコムを生成するように構成される(例えば、2つのアクチュエータとして作用する)。各光コムモード周波数ノイズは、第1CWレーザ1302aの周波数ノイズから導出することができる。ある実施形態では、第2CWレーザ1302bと隣接するコムモードmとの間のビートノートは、ベースバンド内の安定RF信号と比較される。周波数比較は、DMZM1310変調繰返しレート周波数frepまたはキャリアエンベロープオフセット周波数fceoにフィードバックされるエラー信号を生成するために使用され得る。
【0059】
特定の実施形態では、光周波数マイクロコム位相ノイズは、2つの方程式を使用して決定される。
【数7】
2つの方程式から次式を導く。
【数8】
ある実施形態では、差動位相ノイズは、数GHz(例えば、ミリ波)であり得る反復率でソリトンマイクロコームを通して分割される。ある実施形態では、図13に概略的に示される全ての構成要素は、チップスケールである。位相ノイズ性能の予測は困難である場合があり、チップスケール要因におけるCWレーザは、バルキー(bulky)なブリルアンソースほど低いノイズではない場合がある。しかしながら、300GHzまでの8THz周波数分離を使用すると、本明細書に記載のある実施形態は、ほぼ30dBの位相ノイズ低減につながると予想される。
【0060】
図14Aは、本明細書で説明するいくつかの実施形態による、ポンプレーザのノイズ補償に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装形態1400を概略的に示す。図14Aによって概略的に示されるように、連続波レーザ1402からのポンプ光は、増幅され、別個の経路内で伝搬する2つの部分に分割される。ポンプ光の第1部分(例えば、ポンプ光の1%)は、第1ブランチ上の光学遅延(例えば、遅延長は、数センチメートルと短くすることができる)を伴うセルフヘテロダイン干渉計と、光周波数シフタ(例えば、単一の側波帯変調器または音響光学変調器)とを備える、第1アーム1412aによって受光される)そして、第1および第2ブランチからの合成出力を含む出力信号は、フォトダイオード(PD)1420で検出される。ある実施形態では、エラー信号は、PD1420からの信号と、システム内の全ての光周波数シフタのための駆動信号を提供することができる、信号発生器(SG2)および分周器によって生成される80MHz信号とを混合することによって生成される。図14Aによって概略的に示されるように、エラー信号は、(例えば、ポンプの周波数ノイズを補償するために)PIDロックボックスによって受信されることができ、その出力制御信号は、電圧加算器、電圧制御発振器(VCO)、RF増幅器および90度ハイブリッドスプリッタを通してレーザノイズを補償するように、単一側波帯変調器(SSBM)1430に印加されることができる。
【0061】
図14Aのポンプ光(例えば、ポンプ光の99%)の第2部分は、コム生成および位相ノイズループ外特性評価のために使用されるリング共振器1440を備える第2アーム1412bによって受け取られる。ソリトンコムは、SSBM1430によるポンプ周波数の高速掃引によって開始することができ、掃引は、信号発生器(SG1)からのステップ波形によって開始される。例えば、共振器1440は、窒化シリコンで作ることができ、約300GHzのフリースペクトル範囲を有することができる。ある実施形態では、ループ外測定を実証するために、ソリトンコムの強いポンプ光は、クロストークを回避するためにバンドストップフィルタ(BSF)で抑制され、コムラインの1つは、周波数ノイズを測定するためにバンドパスフィルタ(BPF)で選択される。選択されたコムラインは増幅することができ、そのノイズはセルフヘテロダイン干渉計周波数ノイズ測定によって特徴付けられる。
【0062】
図14Bは、図14Aの例示的なチップスケール実装形態1400のループ内周波数ノイズのプロットである。図14Bに示すように、SSBM1430のPID制御をオンにすることによって、観測されたノイズの大部分が抑制され、100kHzより高いオフセット周波数では、制限されたフィードバック帯域幅のためにノイズ抑制は観測されない。図14Cは、図14Aの例示的なチップスケール実装形態1400のループ外測定を通して得られたコムライン周波数ノイズのプロットである。図14Cに示すように、PID制御により、1kHzと50kHzとの間のフーリエ周波数において、大きな周波数ノイズ低減(例えば、ほぼ2桁の大きさ)が達成される。図14Dは、1542nm~1568nm(191.3~194.5THz)の異なるコムラインについて繰り返されるそのような測定と、10kHzフーリエ周波数で記録された周波数ノイズレベルとのプロットである。図14Dは、フリーランニング(free running)条件に対して周波数が増加するにつれてコムラインノイズが中程度に増加することを示している。局所的な最小値は、100m遅延でのPID制御のためのポンプ周波数で示されていることであって、ポンプ位相ノイズは抑制され、これは、ポンプの低ノイズが、ポンプノイズと比較して反復率ノイズが大きいとき、全てのコムラインに伝達されないことを意味する。
【0063】
図15Aおよび図15Bは、本明細書で説明されるいくつかの実施形態によるレーザノイズ補償(たとえば、図14Aの例示的な実装において使用される)のための2つの例示的な干渉計1500を概略的に示す。図15Aおよび図15Bの各々において、マイクロコムは、リング共振器1540と結合されるSSBM1530によるポンプレーザの周波数の高速掃引によって開始される。ポンプ光は、SSBMの後に2つのアームに分割される。図15Aによって概略的に示される内部干渉計構成では、第1アーム1512aは、マイクロコムを生成するように構成され、第2アーム1512bは、音響光学変調器(AOM)1514によって、受信される光を変調するように構成される。第1アーム1512aにおいて生成されるマイクロコムは、2つのサブアーム、すなわち、ループ外測定のために構成される第1サブアーム1520aと、その光を第2アーム1512bの変調される光と結合するために構成される第2サブアーム1520bとに分割される。結合された光は、共振器ノイズとレーザノイズの両方を測定するためにフォトダイオード(PD)1550で検出される。
【0064】
図15Bによって概略的に示される外部干渉計構成では、第1アーム1512aは、マイクロコムを生成し、ループ外測定のために構成され、第2アーム1512bは、レーザノイズのみがPD1550において検出される、外部干渉計構成におけるセルフヘテロダイン周波数ノイズ測定システムに直接接続される。検出されたノイズは、エラー信号を生成するために使用することができ、ノイズは、SSBM1530へのPID制御を通して補償することができる。
【0065】
図16は、本明細書で説明するいくつかの実施形態による、マイクロ共振器1610の共振に対する1つのマイクロコムモードの安定化に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装1600を概略的に示す。図16によって概略的に示されるように、マイクロコムは、ポンプ光の低ノイズソース1602を使用して生成される。ポンプの周波数から遠く離れた周波数を有するコムラインの1つは、光カプラおよび光バンドパスフィルタ(OBPF)1620でフィルタリングされる。フィルタリングされたコムラインは基準共振器1630と結合され、透過率は光検出器(PD)1640で測定される。コムラインの波長と共振器の共振との間の差は、共振器の透過率によって測定され、名目上、高い透過率対波長勾配の点に設定することができる。透過率は、(例えば、ヒータを用いて)マイクロコム共振器の周波数またはポンプ振幅または周波数のいずれかを制御することによって一定に保つことができる。いくつかのこのような実施形態では、大きな周波数差を有するマイクロコムの2つの周波数が安定化され、マイクロコム繰り返し率の安定化をもたらす。
【0066】
図17は、本明細書で説明するいくつかの実施形態による、マイクロ共振器の共振に対する2つのマイクロコムモードの安定化に基づく光周波数マイクロコムのノイズ低減の例示的なチップスケール実装1700を概略的に示す。図17によって概略的に示されるように、マイクロコムは、CWポンプ光のソース1702を使用して生成され、2つのコムラインは、光カプラおよび光バンドパスフィルタ(OBPF)1720を用いてフィルタ除去される。フィルタリングされたコムラインは、電気光学変調器(EOM)1730によって異なる周波数で変調され、基準共振器1740と結合され、コムラインの波長は、共振の急勾配に設定することができる。透過率は、光検出器(PD)1750で検出され、ダイプレクサ1760は、2つの異なる周波数を有するRF信号を分離する。各RF信号強度は、ポンプ振幅または周波数のいずれかを制御することによって一定に保つことができる。特定のこのような実施形態では、大きな周波数差を有するマイクロコムの2つの周波数が安定化され、マイクロコム繰り返し率の安定化をもたらす。
【0067】
図18Aは、本明細書で説明するいくつかの実施形態による、ソリトンレジーム(regime)におけるマイクロ共振器の繰り返し率に誘電体共振発振器のスペクトル純度を忠実に移すための例示的な安定化方式を使用する例示的なミリ波発振器1800(例えば、チップスケール)を概略的に示す。可変連続波レーザ1802(例えば、ポンプレーザ)は、光単一側波帯変調器1820(例えば、Dual Mach-Zehnder変調器またはDMZM)および光増幅器1822(例えば、エルビウムドープファイバ増幅器またはEDFA)を通して窒化ケイ素(SiN)マイクロ共振器1810をポンピングするように構成される。光増幅器1822からの出力は、第1アーム1824aと第アーム1824bとに分割される。第1アーム1824aは、繰返し率を光検出するように構成された感光素子1830を備える。第2アーム1824bは、ソリトンコム(例えば、ダブルバンドパスフィルタとして作用する)の2つの光学線を選択するように構成された波形整形器1840を備える。2つの選択された光線路は、繰返し率(例えば、ミリ波およびテラヘルツ範囲にある)によって周波数が分離され、両方とも、高電力増幅器(HPA)1854で増幅された誘電体共振発振器(DRO)1852によって駆動される2つのカスケード位相変調器(PM)1850によって変調される。DRO1852は、10MHz導出信号(例えば、原子時計またはGPSによる)に同期させることができる。次いで、2つの電気光学周波数コムが、2つの選択された光線から生成される。2つの電気光学周波数コムが重なるスペクトル領域を検出することによって、RF周波数(例えば、DRO周波数が10GHzである場合、5GHzより大きい)を検出することができる。このRF周波数は、繰返し率ノイズ、ならびにfrep/fDROによって乗算されたDRO1852の位相ノイズを搬送する。低ノイズ増幅器(LNA)による信号のRF増幅後、エラー信号が位相検出器で生成され、ここでRF周波数は、DRO1852を同期している同じ10MHz信号と混合される。エラー信号は、電圧制御発振器(VCO)1862を駆動するPIDフィルタ1860を介してDMZM1820に印加される。繰り返し率の位相ノイズは、frep/fDROを乗算したDROの位相ノイズのコピーである。
【0068】
図18Bは、本明細書で説明するいくつかの実施形態による、300GHzでマイクロコムを用いて生成された図18Aの例示的なミリ波発振器1800の位相ノイズの測定された電力スペクトル密度(PSD)(dBc/Hz)対フーリエ周波数(Hz)のプロットである。ミリ波信号によってマイクロコムで生成された位相ノイズのループ外測定を行うために、300GHzのブリルアンソースを基準として使用した。300GHzのブリルアンソースは、マイクロコムのノイズの確実性であると予備的に大きな注意を払って以前に特徴付けられていた。2つのミリ波源間のビートノートを検出するためにミリ波基本周波数ミキサが使用された。図18Bに示すように、測定された位相ノイズは、微小共振器により発生した300GHzにおけるレコード位相ノイズである10kHzフーリエ周波数で-88dBc/Hzに達した。
【0069】
図19Aは、本明細書で説明するいくつかの実施形態による、ニオブ酸リチウム(LN)光共振器1910に基づく例示的なオンチップブリルアンレーザ1900を概略的に示す。連続波光は、LN共振器1910と結合され、光は、ブリルアン散乱を通して後方散乱される。後方散乱光の線幅は、共振器1910の光学的高Qおよび音響減衰により低減される。共振器1910の内側の強いポンプ光では、音響波は、電歪効果によって、または材料内の放射圧力によって誘起されることができ、ポンプ光は、音響波によって(例えば、反対方向に)散乱されるストークス光信号を生成することができる。この現象は、誘導ブリルアン散乱として知られている。共振器1910のフリースペクトル範囲が、ある線幅を有するLNのブリルアンシフト周波数内にあるとき(例えば、10~100MHzの線幅を有する17.8GHz)、ポンプ光とストークス光の両方が共振器1910と共振し、システムが、あるブリルアンレーザ発振閾値を有する3レベルシステムと見なされ得るようにすることができる。共振器1910の高Qにより、ポンプおよびストークス光は音響波を強力に増強することができ、ブリルアンレーザ発振閾値を劇的に低減することができる(例えば、LN共振器の推定閾値は約20mWであり、Qは4×10である)。加えて、ストークス波の線幅は、光学的に高いQおよび音響減衰効果(例えば、4×10のQを有するLN共振器の約30倍の低減)に起因して低減され得る(例えば、周波数ノイズが低減される)。
【0070】
いくつかの実施形態において、LNは、その適度に高い光弾性係数のために使用される。一方、LNは、三角結晶系の異方性材料であり、伝搬方向によってブリルアンシフト周波数が異なる。いくつかの実施形態では、図19Aに概略的に示されるように、共振器構造は、湾曲導波管部分および直線導波管部分を備えるレーストラックの形態を有する。いくつかの実施形態では、直線部分は、湾曲部分よりも長く、直線部分は、より高い光弾性係数を伴う結晶配向に整列され、ブリルアン利得を最大にする。ある実施形態において、例示的なブリルアンレーザは、チップスケールミリ波源のための連続波レーザの周波数ノイズを抑制するために使用されることができる。
【0071】
いくつかの実施形態において、ブリルアンレーザの特性は、LNの異方性構造に起因して、LNの結晶配向に依存する。特性は、導波路内で励起される光および音響モードをシミュレートすることによって推定することができる。例えば、ブリルアン利得およびシフト周波数は、Wenjun Qiu,Peter T. Rakich, Heedeuk Shin, Hui Dong, Marin Solja Qich, and Zheng Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides:a general framework of selection rule and calculating SBS gain,”Optics Express 21, 31402-419 (2013)に記載されている手順に従って計算することができる。
【0072】
図19Bは、本明細書で説明されるある実施形態による、図19Aのブリルアンレーザ発振のための例示的なLNリブ導波管構造の断面を概略的に示す。xカット(x-cut)LNを使用することができ、構造全体をシリカで被覆することができる。例えば、図19Bに概略的に示されるように、LNリブ導波管構造は、0.3ミクロンのスラブ厚さtslab、1.6ミクロンの導波管幅wwg、0.3ミクロンの導波管厚さtwg、および62度の導波管壁角度θwallを有することができる。
【0073】
図19Cは、本明細書で説明されるいくつかの実施形態による、図19Bに概略的に示される断面を伴う例示的なLN導波管の例示的なシミュレートされた光学モード(図19Cの上部)および音響モード(図19Cの下部)を示す。シミュレーションは、有限要素法によって行った。
【0074】
図19Dは、本明細書に説明されるいくつかの実施形態による、例示的なxカットLN導波管におけるブリルアンシフト周波数対計算されたブリルアン利得のプロットである。図19Dに示すように、波長1.55ミクロンのポンプ光について得られた最大利得およびそのブリルアンシフト周波数は、それぞれ約1.9(m*W)-1および17.7GHzであった。同じ計算が、異なる結晶配向を有するLN導波路に対して行われ、約0.45(m*W)-1の最大利得および17.7GHzのブリルアンシフト周波数が、zカット(z-cut)LN(例えば、y軸は、導波路断面における水平軸に対応する)に対して得られ、約0.48(m*W)-1の最大利得および19.7GHzのブリルアンシフト周波数が、yカット(y-cut)LN(例えば、x軸は導波路断面における水平軸に対応する)についてそれぞれ得られた。
【0075】
したがって、本発明をいくつかの実施形態で説明してきた。実施形態は相互に排他的ではなく、ある実施形態に関連して説明される要素は、所望の設計目的を達成するために、好適な方法で他の実施形態と組み合わせられ、再配列され、または排除されてもよいことを理解されたい。単一の特徴または特徴のグループは、各実施形態に必要または必要とされない。
【0076】
本発明を要約する目的で、本発明のいくつかの態様、利点および新規の特徴を本明細書に記載する。しかしながら、必ずしもすべてのそのような利点が任意の特定の実施形態に従って達成されるわけではないことを理解されたい。したがって、本発明は、本明細書で教示または示唆され得る他の利点を必ずしも達成することなく、1つまたは複数の利点を達成するように具体化または実行され得る。
【0077】
本明細書で使用されるように、「一実施形態」または「いくつかの実施形態」または「ある実施形態」は、実施形態に関連して説明される特定の要素、特徴、構造、または特性が、少なくとも1つの実施形態に含まれることを意味する。明細書の様々な箇所における「一実施形態では」は、必ずしもすべてが同じ実施形態に言及しているわけではない。とりわけ、「can」、「could」、「might」、「may」、「e.g.」などの本明細書で使用される条件付き言語は、別段に具体的に述べられない限り、または使用される文脈内で別様に理解されない限り、概して、ある実施形態が、ある特徴、要素、および/またはステップを含むが、他の実施形態は、含まないことを伝えることが意図される。さらに、本出願および添付の特許請求の範囲で使用される冠詞「a」または「an」または「the」は、別段の指定がない限り、「1つまたは複数」または「少なくとも1つ」を意味すると解釈されるべきである。
【0078】
本明細書で使用される場合、「comprises」、「comprising」、「includes」、「including」、「has」、「having」、またはそれらの任意の他の変形は、非限定的な用語であり、非排他的な包含を包含することが意図される。例えば、要素のリストを含むプロセス、方法、物品、または装置は、必ずしもそれらの要素のみに限定されず、明示的に列挙されていない、またはそのようなプロセス、方法、物品、または装置に固有の他の要素を含んでもよい。さらに、反対のことが明示的に述べられていない限り、「または」は、包括的または排他的ではないことを指す。例えば、条件Aまたは条件Bは、以下のいずれかによって満たされる。Aは真(または存在する)であり、Bは偽(または存在しない)であるか、Aは偽(または存在しない)であり、Bは真(または存在する)であるか、またはAとBの両方が真(または存在する)である。本明細書で使用される場合、項目のリストの「~のうちの少なくとも1つ」は、単一のメンバーを含む、それらの項目の任意の組み合わせを指す。一例として、「A、B、Cの少なくとも1つ」は、A、B、C、AおよびB、BおよびC、AおよびC、AおよびBおよびCを包含することが意図される。「X、YおよびZの少なくとも1つ」などの接続言語は、特に明記しない限り、項目、用語などがXの少なくとも1つであり得ることを伝えるために一般に使用される文脈で別段理解される。したがって、そのような語句は、概して、ある実施形態が、Xのうちの少なくとも1つ、Yのうちの少なくとも1つ、およびZのうちの少なくとも1つがそれぞれ存在することを必要とすることを暗示することを意図しない。
【0079】
したがって、特定の実施形態のみを本明細書に具体的に記載してきたが、本発明の精神および範囲から逸脱することなく、多数の修正がなされ得ることは明らかであろう。さらに、頭字語は、単に明細書および特許請求の範囲の読みやすさを高めるために使用される。これらの頭字語は、使用される用語の一般性を減少させることを意図するものではなく、特許請求の範囲を本明細書に記載される実施形態に限定すると解釈されるべきではないことに留意されたい。
図1
図2A
図2B
図2C
図3A
図3B
図4A
図4B
図5A
図5B
図6A
図6B
図7A
図7B
図8
図9
図10
図11A
図11B
図11C
図11D
図12
図13
図14A
図14B
図14C
図14D
図15A
図15B
図16
図17
図18A
図18B
図19A
図19B
図19C
図19D
【国際調査報告】