(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-05-26
(54)【発明の名称】電力回収を伴う入力インピーダンスネットワーク
(51)【国際特許分類】
H03H 2/00 20060101AFI20230519BHJP
H04L 25/03 20060101ALI20230519BHJP
H02M 7/48 20070101ALI20230519BHJP
H03H 7/38 20060101ALI20230519BHJP
H05H 1/46 20060101ALN20230519BHJP
【FI】
H03H2/00
H04L25/03 Z
H02M7/48 Z
H03H7/38 Z
H05H1/46 R
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022562311
(86)(22)【出願日】2021-04-13
(85)【翻訳文提出日】2022-12-02
(86)【国際出願番号】 US2021027081
(87)【国際公開番号】W WO2021211582
(87)【国際公開日】2021-10-21
(32)【優先日】2020-04-13
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519027693
【氏名又は名称】エーイーエス グローバル ホールディングス, プライベート リミテッド
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】バン ジル, ギデオン
【テーマコード(参考)】
2G084
5H770
5K029
【Fターム(参考)】
2G084BB36
2G084DD51
2G084DD53
2G084DD55
2G084EE12
2G084EE21
2G084EE25
2G084HH05
2G084HH21
2G084HH22
2G084HH43
5H770DA03
5H770DA10
5H770HA02Z
5H770HA03Z
5H770KA03W
5H770LA08Z
5K029AA13
5K029LL06
(57)【要約】
入力インピーダンスネットワークおよび関連付けられる方法が、開示される。入力インピーダンスネットワークは、電源に結合するように構成される、ソース/端子対と、電力シンクに結合するように構成される、回収電力/端子対と、M個の区分を備える、ソース/端子対に結合される、伝送ラインと、N個のクランプ回路とを備える。N個のクランプ回路はそれぞれ、M個の区分のうちの1つの中の電圧または電流のうちの少なくとも一方をクランプするように構成され、電力回収回路は、N個のクランプ回路に結合され、回収されたエネルギーが回収電力/端子対に印加されることを可能にする。
【特許請求の範囲】
【請求項1】
入力インピーダンスネットワークであって、
電源に結合するように構成されるソース/端子対と、
電力シンクに結合するように構成される回収電力/端子対と、
前記ソース/端子対に結合される伝送ラインであって、前記伝送ラインは、M個の区分を備える、伝送ラインと、
N個のクランプ回路であって、前記N個のクランプ回路はそれぞれ、前記M個の区分のうちの1つの中の電圧または電流のうちの少なくとも一方をクランプするように構成される、N個のクランプ回路と、
前記N個のクランプ回路に結合される電力回収回路であって、前記電力回収回路は、前記クランプ回路から回収されたエネルギーを使用し、電力を前記回収電力/端子対に印加する、電力回収回路と
を備える、入力インピーダンスネットワーク。
【請求項2】
前記N個のクランプ回路は、前記ソース/端子対における電圧または電流のレベルに基づいて、前記電圧または電流のうちの少なくとも一方をクランプするように構成される、請求項1に記載の入力インピーダンスネットワーク。
【請求項3】
前記伝送ラインに結合される負荷/端子対をさらに備える、請求項1に記載の入力インピーダンスネットワーク。
【請求項4】
短絡負荷/端子対を備える、請求項3に記載の入力インピーダンスネットワーク。
【請求項5】
開路負荷/端子対を備える、請求項3に記載の入力インピーダンスネットワーク。
【請求項6】
前記負荷/端子対は、負荷に結合するように構成される、請求項3に記載の入力インピーダンスネットワーク。
【請求項7】
電力システムであって、
電源と、
前記電源に結合される入力インピーダンスネットワークであって、前記入力インピーダンスネットワークは、
M個の区分を備える伝送ラインと、
前記M個の区分のうちのN個の区分内の電圧または電流のうちの少なくとも一方をクランプするように構成される分散型クランプ回路と、
前記分散型クランプ回路から回収されたエネルギーを使用して、電力を電力シンクに印加するための電力回収回路と
を備える、入力インピーダンスネットワークと
を備える、電力システム。
【請求項8】
前記電源は、サーキュレータの絶縁ポートを備える、請求項7に記載の電力システム。
【請求項9】
前記電源は、ジェネレータを備える、請求項7に記載の電力システム。
【請求項10】
前記ジェネレータは、100MHz未満の周波数において動作するように構成される、請求項9に記載の電力システム。
【請求項11】
前記電力シンクは、前記電力システムを備える、請求項7に記載の電力システム。
【請求項12】
前記電力システムの前記電力回収回路とAC入力との間に結合され、回収されたDC電力を前記電力システムのAC入力に印加されるAC電力に転換するインバータを備える、請求項11に記載の電力システム。
【請求項13】
前記電力回収回路は、前記電力システムのDCバスに結合され、回収されたDC電力を前記電力システムのDCバスに印加する、請求項11に記載の電力システム。
【請求項14】
前記電力シンクは、ダンプレジスタを備える、請求項11に記載の電力システム。
【請求項15】
前記入力インピーダンスネットワークは、前記電源によって印加される電力の周波数において、少なくとも1/4波長長である伝送ラインを備える、請求項7に記載の電力システム。
【請求項16】
前記分散型クランプ回路は、前記入力インピーダンスネットワークのN個の区分を前記電源の電圧および電流にクランプするように構成される、請求項7に記載の電力システム。
【請求項17】
前記分散型クランプ回路は、前記入力インピーダンスネットワークのN個の区分を固定電圧および固定電流にクランプするように構成される、請求項7に記載の電力システム。
【請求項18】
電圧振幅測定回路または電流振幅測定回路のうちの少なくとも一方を備え、前記分散型クランプ回路の制御を可能にする、請求項7に記載の電力システム。
【請求項19】
指向性結合器またはVIセンサベースの測定システムのうちの少なくとも一方を備え、前記分散型クランプ回路の制御を可能にする、請求項7に記載の電力システム。
【請求項20】
電力システムであって、
電源と、
前記電源に結合される入力インピーダンスネットワークであって、前記入力インピーダンスネットワークは、
実質的に一定のインピーダンスを前記電源に提供するための手段と、
前記電源に結合され、前記実質的に一定のインピーダンスを提供するための手段から回収されたエネルギーを使用して、電力を電力シンクに印加する電力回収回路と
を備える、入力インピーダンスネットワークと
を備える、電力システム。
【請求項21】
前記電源は、サーキュレータの絶縁ポートを備える、請求項20に記載の電力システム。
【請求項22】
前記電源は、ジェネレータを備える、請求項20に記載の電力システム。
【請求項23】
前記ジェネレータは、100MHz未満の周波数において動作するように構成される、請求項22に記載の電力システム。
【請求項24】
前記電力シンクは、前記電力システムを備える、請求項20に記載の電力システム。
【請求項25】
前記電力回収回路と前記電力システムのAC入力との間に結合され、回収されたDC電力を、前記電力システムのAC入力に印加されるAC電力に転換するインバータを備える、請求項24に記載の電力システム。
【請求項26】
前記電力回収回路は、前記電力システムのDCバスに結合され、回収されたDC電力を前記電力システムのDCバスに印加する、請求項24に記載の電力システム。
【請求項27】
前記電力シンクは、ダンプレジスタを備える、請求項24に記載の電力システム。
【請求項28】
前記入力インピーダンスネットワークは、前記電源によって印加される電力の周波数において、少なくとも1/4波長長である伝送ラインを備える、請求項20に記載の電力システム。
【請求項29】
前記実質的に一定のインピーダンスを提供するための手段は、電圧振幅測定回路または電流振幅測定回路のうちの少なくとも一方を備える、請求項20に記載の電力システム。
【請求項30】
指向性結合器またはVIセンサベースの測定システムのうちの一方を備え、前記実質的に一定のインピーダンスを提供するための手段の制御を可能にする、請求項20に記載の電力システム。
【発明の詳細な説明】
【技術分野】
【0001】
(35 U.S.C.§119のもとでの優先権の主張)
本特許のための出願は、本願の譲受人に譲渡され、参照することによって本明細書に明示的に組み込まれる、2020年4月13日に出願され、「Input Impedance Network with Power Recovery」と題された、仮出願第63/009,049号の優先権を主張する。
【0002】
本開示される実施形態は、概して、電力に関し、より具体的には、入力インピーダンスネットワークに関する。
【背景技術】
【0003】
既知の負荷(例えば、50Ω)内に電力を送達するための電源を設計することは、比較的に容易である。プラズマ負荷の文脈において、プラズマ負荷インピーダンスは、印加される電力、ガス性質等に基づいて変化し得る。したがって、(例えば、プラズマを発火させ、持続させるために)電力をプラズマ負荷に印加するジェネレータ(例えば、RFジェネレータ)は、電力を種々のインピーダンスに送達する必要がある。
【0004】
加えて、ジェネレータ/プラズマシステムの不安定性が、プラズマシステムの中への変化する電力に起因する、変化するプラズマインピーダンスにより、結果として生じ得る。また、他のソースによるプラズマ負荷の変調が、有意な電力を、ジェネレータに戻るように反射させる。これは、ジェネレータが、本問題を取り扱うために有意に過剰に設計される必要があることをもたらす。
【発明の概要】
【課題を解決するための手段】
【0005】
ある側面は、電源に結合するように構成される、ソース/端子対と、電力シンクに結合するように構成される、回収電力/端子対と、M個の区分と、M個の区分のうちの1つの中の電圧または電流のうちの少なくとも一方をクランプするように構成される、N個のクランプ回路とを備える、ソース/端子対に結合される、伝送ラインとを備える、入力インピーダンスネットワークとして特徴付けられ得る。入力インピーダンスネットワークはまた、N個のクランプ回路に結合される、電力回収回路であって、クランプ回路から回収されたエネルギーを使用し、電力を回収電力/端子対に印加する、電力回収回路を備える。
【0006】
別の側面は、電源と、電源に結合される入力インピーダンスネットワークとを備える、電力システムとして特徴付けられ得る。入力インピーダンスネットワークは、M個の区分を備える、伝送ラインと、M個の区分のうちのN個の中の電圧または電流のうちの少なくとも一方をクランプするように構成される、分散型クランプ回路とを備える。電力システムはまた、分散型クランプ回路から回収されたエネルギーを使用して、電力を電力シンクに印加するための、電力回収回路を含む。
【0007】
さらに別の側面は、電源と、電源に結合される入力インピーダンスネットワークとを備える、電力システムとして特徴付けられ得る。入力インピーダンスネットワークは、実質的に一定のインピーダンスを電源に提供するための、手段と、電源に結合され、実質的に一定のインピーダンスを提供するための手段から回収されたエネルギーを使用して、電力を電力シンクに印加する、電力回収回路とを備える。
【図面の簡単な説明】
【0008】
【
図1A】
図1Aは、入力インピーダンスネットワークを含む電力システムを描写する、ブロック図である。
【0009】
【
図1B】
図1Bは、
図1Aに描写される負荷が、整合ネットワークと、プラズマチャンバ内のプラズマとを備える、電力システムを描写する、ブロック図である。
【0010】
【
図2】
図2は、入力インピーダンスネットワークが電力を回収し、電力をインバータを介してジェネレータに印加する、システムを描写する、ブロック図である。
【0011】
【
図3】
図3は、入力インピーダンスネットワークが電力を回収し、電力をジェネレータのDCバスに印加する、システムを描写する、ブロック図である。
【0012】
【
図4-1】
図4は、入力インピーダンスネットワークのある実施例を描写する、略図である。
【
図4-2】
図4は、入力インピーダンスネットワークのある実施例を描写する、略図である。
【0013】
【
図5】
図5は、電流振幅測定回路のある実施例を描写する、概略図である。
【0014】
【
図6】
図6は、電圧振幅測定回路のある実施例を描写する、概略図である。
【0015】
【
図7-1】
図7は、入力インピーダンス回路の側面を描写する、概略図である。
【
図7-2】
図7は、入力インピーダンス回路の側面を描写する、概略図である。
【0016】
【
図8】
図8は、サーキュレータに関連して利用される、結合された入力インピーダンスネットワークを備えるシステムを描写する、略図である。
【0017】
【
図9】
図9は、サーキュレータに関連して利用される、入力インピーダンスネットワークを備える別のシステムを描写する、略図である。
【0018】
【
図10】
図10は、別の入力インピーダンスネットワークを描写する、概略図である。
【0019】
【
図11A-1】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11A-2】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11B】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11C】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11D】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11E】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【
図11F】
図11A-11Fは、入力インピーダンスネットワークの別の実施例を描写する、概略図である。
【0020】
【
図12】
図12は、そのための負荷抵抗が集中要素相当伝送ライン区分の特性インピーダンスの実数部よりも小さい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0021】
【
図13】
図13は、そのための負荷抵抗が、集中要素相当伝送ライン区分の特性インピーダンスの実数部より大きい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0022】
【
図14】
図14は、そのための負荷リアクタンスが正である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0023】
【
図15】
図15は、そのための負荷リアクタンスが負である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0024】
【
図16-1】
図16は、そのための負荷抵抗が、電圧および電流のクランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より小さい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【
図16-2】
図16は、そのための負荷抵抗が、電圧および電流のクランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より小さい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0025】
【
図17-1】
図17は、そのための負荷抵抗が、電圧および電流のクランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より大きい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【
図17-2】
図17は、そのための負荷抵抗が、電圧および電流のクランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より大きい抵抗負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0026】
【
図18-1】
図18は、そのための負荷リアクタンスが、電圧および電流のクランピングのための2つの異なるレベルに関して正である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【
図18-2】
図18は、そのための負荷リアクタンスが、電圧および電流のクランピングのための2つの異なるレベルに関して正である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0027】
【
図19-1】
図19は、そのための負荷リアクタンスが、電圧および電流のクランピングのための2つの異なるレベルに関して負である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【
図19-2】
図19は、そのための負荷リアクタンスが、電圧および電流のクランピングのための2つの異なるレベルに関して負である無効負荷を伴う、
図11A-11Fの回路の動作側面を描写する、スミス図表およびグラフである。
【0028】
【
図20A-1】
図20Aおよび20Bは、電力回収回路のある実施例を描写する、概略図である。
【
図20A-2】
図20Aおよび20Bは、電力回収回路のある実施例を描写する、概略図である。
【
図20B】
図20Aおよび20Bは、電力回収回路のある実施例を描写する、概略図である。
【0029】
【
図21-1】
図21は、クランプされるべき電圧がクランプ電圧未満であるときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図21-2】
図21は、クランプされるべき電圧がクランプ電圧未満であるときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図21-3】
図21は、クランプされるべき電圧がクランプ電圧未満であるときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【0030】
【
図22-1】
図22は、クランプされるべき電圧がクランプ電圧より大きいときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図22-2】
図22は、クランプされるべき電圧がクランプ電圧より大きいときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図22-3】
図22は、クランプされるべき電圧がクランプ電圧より大きいときの
図20Aおよび20Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【0031】
【
図23A-1】
図23Aおよび23Bは、電力回収回路の別の実施例を描写する、概略図である。
【
図23A-2】
図23Aおよび23Bは、電力回収回路の別の実施例を描写する、概略図である。
【
図23B】
図23Aおよび23Bは、電力回収回路の別の実施例を描写する、概略図である。
【0032】
【
図24-1】
図24は、クランプされるべき電流がクランプ電流未満であるときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図24-2】
図24は、クランプされるべき電流がクランプ電流未満であるときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図24-3】
図24は、クランプされるべき電流がクランプ電流未満であるときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【0033】
【
図25-1】
図25は、クランプされるべき電流がクランプ電流より大きいときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図25-2】
図25は、クランプされるべき電流がクランプ電流より大きいときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【
図25-3】
図25は、クランプされるべき電流がクランプ電流より大きいときの
図23Aおよび23Bの電力回収回路の電力、電圧、および電流を描写する、グラフを含む。
【0034】
【
図26】
図26は、本明細書に開示される実施形態に関連して利用され得る、コンピューティング構成要素のある実施例を描写する、ブロック図である。
【発明を実施するための形態】
【0035】
詳細な説明
上記に列挙される問題の全てが、ジェネレータとプラズマとの間にサーキュレータを設置することによって解決されるか、または深刻度が有意に低減されることができる。しかしながら、低周波数(例えば、60MHz未満)におけるサーキュレータは、嵩張り、高価であり、概して構築することが困難である。加えて、サーキュレータが使用されると、反射電力が、典型的には、ダンプ負荷内で熱として消散される。
【0036】
ローレンツ相互作用は、サーキュレータの性質を伴う回路を構築するために、(直流(DC)磁場またはプラズマを受けるフェライト等の)非等方性媒体が必要とされるか、非線形構成要素が必要とされるか、および/または時変構成要素が必要とされるかのいずれかであることを明確にする。
【0037】
サーキュレータ様の性質を伴う等方性の(したがって、非線形構成要素または時変構成要素を含有する)媒体のみから構築される、種々の回路が、提案済みであるが、これらの回路は、有意な入射電力が負荷から戻るように反射される、低周波数高電力用途のためには好適ではない。
【0038】
本明細書に説明される多くの回路変形例の中でも、本開示は、ソースが、負荷インピーダンスに関係なくほぼ一定のインピーダンスを被り、負荷に送達されない、回路に送達される実質的に全ての電力が、回収される、サーキュレータ様の性質を有するクラスの回路を説明する。本開示における用語「例示的(exemplary)」は、本明細書では、「ある実施例、事例、または例証としての役割を果たす」ことを意味するために使用される。本明細書において「例示的」であるものとして説明されるいかなる実施形態も、必ずしも他の実施形態より好ましいまたは有利であると解釈されるべきではない。
【0039】
本明細書に説明される種々の回路をより深く理解するために、伝送ラインを用いてソースからの電力を負荷に結合させることに関わる問題を理解することが、役立つ。伝送ラインが、RF電力源と負荷との間に接続される、無損失伝送ライン(またはその集中要素相当)である場合、および負荷インピーダンスが、伝送ラインの特性インピーダンスに合致される場合、ラインに沿った電圧および電流の振幅は、一定である。但し、負荷インピーダンスが、伝送ラインの特性インピーダンスと異なる場合、定在波が、伝送ラインの長さに沿って形成され、電圧および電流の振幅が、伝送ラインの長さに沿って変化する。
【0040】
本出願人は、(印加される電力の周波数において)1/4波長長である伝送ラインが、区分に分割される場合、各区分の界面において、ピーク電圧規模を伝送ラインのソース側において生産される電圧の振幅にクランプする、電圧クランプと、上記に説明される問題の一部とを含む、分散型電圧クランプ回路が、十分な数の区分が使用されることを前提として、本質的には解決されることを見出している。より具体的には、そのような分散型電圧クランプ回路は、負荷インピーダンスが抵抗性であり、伝送ラインの特性インピーダンスの実数部より大きい場合、ジェネレータにほぼ一定のインピーダンスを提供する。(損失的な伝送ラインの特性インピーダンスは、複雑であり得るが、低損失的な伝送ラインに関して、実数部は、概して、虚数部の規模より有意に大きく、虚数部は、概して、無視されることができる。)電圧クランプから得られる電力は、本場合では、負荷に送達されない、ソースによって供給される電力の一部に実質的に等しく、そのため、その意味において、分散型電圧クランプ回路は、実質的に無損失的である。伝送ラインが、例えば、負荷側において開路されている場合、分散型電圧クランプ回路が、伝送ラインの特性インピーダンスに実質的に等しい、インピーダンスをソースに提供することができる。同様に、負荷が、抵抗性であり、伝送ラインの特性インピーダンスの実数部より小さい場合、半波長長の伝送ラインが、ジェネレータにほぼ一定のインピーダンスを提供する。半波長長のラインが、例えば、負荷側において短絡されている場合、分散型電圧クランプ回路は、伝送ラインの特性インピーダンスに実質的に等しい、インピーダンスをソースに提供することができる。
【0041】
しかしながら、分散型電圧クランプ回路は、例えば、ラインが1/4波長長である、負荷が抵抗性である、および負荷抵抗が伝送ラインの特性インピーダンスの実数部より小さい場合、同一の方法において稼働を停止する。より具体的には、電圧振幅は、ソースにおいて最大であり、伝送ラインに沿った他のどの場所においても、より小さくなるであろう。本場合には、上記に説明される分散型電圧クランプ回路は、実質的に何も行わず、ソースによって被られるインピーダンスは、伝送ラインによって変換される負荷インピーダンスに等しい。同様に、半波長長の電圧クランプされた伝送ラインは、負荷が抵抗性であり、負荷抵抗が伝送ラインの特性インピーダンスの実数部より大きい場合、ソースに実質的に一定のインピーダンスを提供し損なう。本場合には、電圧は、伝送ラインのソース端部および負荷端部において最高であり、電圧クランプ回路は、実質的に何も行わない。
【0042】
負荷が抵抗性であり、負荷抵抗が伝送ラインの特性インピーダンスの実数部より小さい、1/4波長長の伝送ラインの場合に続いて、電流は、伝送ラインのソース端部において最小であり、伝送ラインの長さに沿った他のどの場所においてもより高い。本場合には、ラインの長さに沿った定在波は、ラインの長さに沿った電流をラインのソース側における電流に限定することによって、抑制されることができる。例えば、伝送ラインは、区分に分割されてもよく、各区分の界面において、電流クランプを含む、分散型電流クランプ回路が、使用されてもよい。各電流クランプは、ピーク電流規模を伝送ラインのソース側における電流の振幅にクランプしてもよい。有益なこととして、多くの実装では、伝送ラインのソース端部では、何も行われる必要はない。
【0043】
分散型電圧クランプ技法および分散型電流クランプ技法(概して、分散型クランプ回路と称される)が両方とも、組み合わせられる場合、ソースが被るインピーダンスは、負荷インピーダンスに関係なく、ラインの特性インピーダンスからの非常に小さい逸脱に限定され得る。また、加えて、本明細書に開示されるいくつかのクランプ回路は、負荷に送達されない、ソースによって送達されるいかなる電力も、クランプ回路から回収され、実質的に無損失的回路をもたらすことを可能にする。
【0044】
RF電力源(例えば、RFジェネレータの電力増幅器(PA))にほぼ一定のインピーダンスを提供することに加えて、(ソースが一定の電力を送達するときの)負荷反射係数規模の関数として負荷に送達される電力の割合は、(1-x)に非常に近接する(xは、負荷反射係数規模である)。ほぼ0.5であるxの値に関して、これは、半導体用途において使用される産業用ジェネレータの要求される、標準的電力プロファイルに合致する。xの低い値に関して、負荷への電力は、xがほぼ0.2になるまで、およそ一定のままである代わりに、即座に減少する。これは、電圧および電流を回路のソース側における値をわずかに上回るようにクランプすることによって是正されることができるが、これは、ソースによって被られるインピーダンスのより大きい変化を可能にする。
【0045】
本明細書に説明される回路変形例の全てではないが、多くのもののある側面は、電力源(例えば、RF電力)に対する実質的に一定のインピーダンス、および負荷に送達されない、ソースによって送達される電力の実質的な割合にわたる電力回収の両方を提供するための能力である。回路が無損失的構成要素(例えば、ゼロ電圧降下を伴うダイオード、無損失型スイッチ、および無損失型受動構成要素)から構築され、無数の伝送ライン区分が使用される、理想的な場合では、回路は、実際に無損失的であり、ソースに実質的に一定のインピーダンスを提供する。実世界では、負荷に送達されない、ソースによって送達される電力の全てではないが、実質的部分が、回収され、ソースによって被られるインピーダンスは、負荷インピーダンスが変化された場合、若干変化する。以下において、ここで説明されるタイプの回路は、低損失入力インピーダンスネットワーク(LLIIN)と称される。
【0046】
最初に
図1Aおよび1Bを参照すると、示され得るものは、LLIIN100のいくつかの実装が利用され得る、電力システムを備える、例示的環境である。示されるように、LLIIN100は、ソース104に結合するように構成される、ソース/端子対102と、電力シンク(
図1Aおよび1Bに図示せず)に結合するように構成される、回収電力/端子対106と、随意の負荷110に結合し得る、随意の負荷/端子対108とを含む。LLIIN100が、ソース104、随意の負荷110、および電力シンクと明確に異なる、別個の装置として作製および販売され得ることを認識されたい。LLIIN100が、随意に、ソースおよび電力シンクと統合され、本明細書においてさらに議論されるような単一デバイスを形成し得ることもまた、考えられる。
図1Bに示されるように、随意の負荷110は、プラズマ116を含有するように構成される、プラズマチャンバ114に結合される、整合ネットワーク112を含んでもよい。
【0047】
LLIIN100の多くの変形例は、ソース104にほぼ一定の負荷インピーダンスを提供するように動作しながら、電力を回収電力/端子対106に印加し、エネルギーが、(例えば、ダンプレジスタを介して)熱として消散されることと対照的に、回収される(例えば、作用する)ことを可能にする。LLIIN100のいくつかの変形例は、ソース104によって被られるインピーダンスが変動することを可能にしながら、高電圧および/または高電流条件等の有害な電力条件からソースを保護し、これらの変形例では、電力はまた、回収され、回収電力/端子対106に印加され得る。
【0048】
LLIIN100は、M個の区分に分割される、伝送ラインを含んでもよく、分散型電圧クランプ回路および/または分散型電流クランプ回路が、各区分の界面において電圧および/または電流をクランプしてもよい。多くの実装では、伝送ラインの全長は、伝送ラインに印加される電力の4分の1波長または半波長である。ソース104が、ある範囲の周波数(故に、ある範囲の波長)を提供することが可能である場合、伝送ラインの全長は、少なくとも、ソース104によって印加される電力の最低周波数の4分の1波長であり得る。伝送ラインの分割の区分は、等しい長さであってもよいが、これは、要求されておらず、いくつかの実装では、各区分の長さは、同一ではない。
【0049】
分散型電圧クランプ回路が、利用される場合、多くの実装では、各区分における電圧が、ソースによって印加される電圧にクランプされてもよい。但し、各区分における電圧が、固定電圧にクランプされ得ることもまた、考えられる。分散型電流クランプ回路が、利用される場合、多くの実装では、各区分における電流が、ソースによって提供される電流レベルにクランプされてもよい。但し、各区分における電流が、固定電流にクランプされ得ることもまた、考えられる。
【0050】
ソース104は、概して、例えば、より大きいシステムの一部である、ジェネレータまたはサーキュレータの絶縁ポートによって実現され得る、電源である。ジェネレータによって実現されるとき、ジェネレータは、ある範囲の周波数を印加することが可能であり得る。多くの実装では、ジェネレータは、100kHzを上回る周波数を伴う電力を印加してもよく、さらに他の実装では、LLIINは、特に、サーキュレータが実装することが困難である、100MHz未満の周波数において有用である。但し、(5kHz等の)はるかにより低い周波数または(5GHz等の)はるかにより高い周波数において動作する、ジェネレータが利用され得ることもまた、考えられる。
【0051】
いくつかの用途では、LLIIN100は、負荷に全く結合されない(例えば、負荷/端子対は、LLIINに内蔵される負荷/端子対を短絡させることによって除去される)。
図2、3、および4を参照して説明されるもの等の他の用途では、LLIINは、固定または動的な、非線形の負荷、例えば、(
図1Bに示されるような)プラズマ負荷に結合されてもよい。
【0052】
図2を参照すると、示されるものは、ソースからの電力を負荷210に結合するように位置付けられる、(LLIIN100を実現するために使用され得る)LLIIN200であり、ここでは、ソースは、ジェネレータ204である。有益なこととして、LLIIN200もまた、実質的に無損失的な様式において、ジェネレータ204から負荷210への電力の印加を可能にする。より具体的には、事実上、負荷210に印加されない、ジェネレータ204からの電力が、LLIIN200によって回収される。
図2に描写される実装では、負荷210に印加さない電力が、インバータ220に印加される直流(DC)電力として回収され、これは、ひいては、DC電力を、ジェネレータ204のAC入力に結合する、ACメインに印加される、AC電力に転換する。
図2では、インバータ220が、別個の構成要素として描写されるが、インバータ220は、(例えば、LLIIN200と同一の筐体および/または同一の回路基板内に)LLIIN200の一部として含まれてもよい。
【0053】
図3に示されるように、(LLIIN100を実現するために使用され得る)LLIIN300が、(ジェネレータ304内の)DC供給部328からのDC電力を電力増幅器330(例えば、ジェネレータ304内のRF電力増幅器330)に結合する、DCバス326に、DC電力を印加するように構成されてもよい。動作時、LLIIN300は、回収された電力を、DCバス326を横断して印加される、レベルに転換する。
図3に描写されるLLIIN300は、
図2内のLLIIN200によって出力される、回収されたDC電力が、DCバス326を横断して印加される電圧レベルに合致するDC電圧レベルを印加する必要がないことを除いて、
図2のLLIIN200と同一であり得る。
図2および3に描写される実装では、LLIIN200、300は、(ジェネレータとして実装される)ソースを負荷に結合する、伝送ラインを含む。
【0054】
図4を参照すると、示されるものは、
図2および3に描写されるLLIIN200、300を実現するために実装され得る、例示的LLIINである。示されるように、LLIIN400は、ソースに結合するように構成される、ソース/端子対402と、負荷に結合するように構成される、負荷/端子対408とを含む、伝送ラインを含む。負荷/端子対が、短絡される、またはいくつかの用途では、開路された状態に残され得るともまた、考えられる。
【0055】
描写されるように、伝送ラインは、M個の区分に区分され、Mは、2に等しい、またはそれを上回り、M個の区分はそれぞれ、電圧クランプ回路432によって電圧クランプされ、電流クランプ回路434によって電流クランプされる。伝送ラインは、特性インピーダンス(Z01~Z0M)および電気的遅延(td1~tdM)によって特徴付けられる。電気的長さは、1/4波長の電気的長さがRF電力の周期(1/f)の4分の1に等しい遅延に対応するような、周波数fにおけるRF電力のための電気的遅延に関連する。集合的に、(分散型電圧クランプ回路を形成する)M個の電圧クランプ回路432および(分散型電流クランプ回路を形成する)M個の電流クランプ回路434が、存在する。いくつかの用途では、電流クランプ回路より多くの電圧クランプ回路、または電圧クランプ回路432より多くの電流クランプ回路434が、存在し得る。電流振幅測定回路440が、ジェネレータ側(ソース/端子対側)における伝送ラインの導体のうちの1つに沿って位置付けられ、電圧振幅測定回路442が、ソース/端子対402を横断して位置付けられる。代替として、電流振幅測定回路440および電圧振幅測定回路442を使用するのではなく、電圧および電流の振幅が、連結器(例えば、指向性結合器)またはVIセンサベースの測定システムを通して取得され、分散型クランプ回路の制御を可能にしてもよい。いくつかの用途では、電流クランプ回路434は、各区分内のピーク電流規模を、電流振幅測定回路440によって測定されるような、伝送ラインのジェネレータ側における電流の振幅に等しい、またはそれに比例するある値に等しい電力のレベルにクランプする。いくつかの用途では、電圧クランプ回路432は、各区分内のピーク電圧規模を、電圧振幅測定回路によって測定されるような、伝送ラインのジェネレータ側における電圧の振幅に等しい、またはそれに比例するある値に等しい電圧のレベルにクランプする。伝送ラインは、例えば、同軸伝送ラインまたは等価集中回路の区分であってもよい。
【0056】
M個の区分はそれぞれ、各区分のインピーダンスおよび遅延が同一であり得るように、等しい長さであってもよい。但し、各区分のインピーダンスおよび遅延が同一である必要はないことも、考えられる。多くの実装では、M個の区分の総遅延は、ジェネレータの最低周波数の周期の4分の1を上回る、またはそれに等しい。
【0057】
区分のそれぞれの長さが、ジェネレータによって印加される電力の周波数のために好適であるように適合されることができる。例示的実装では、各区分が、(印加された電力の周期の4分の1の総遅延にわたる)印加された電力の周期の1/32、または(印加された電力の周期の2分の1の総遅延にわたる)印加された電力の周期の1/16のいずれかに等しい、電気的遅延を有する、8つ(M=8)の区分が、LLIIN400の許容可能な性能をもたらしたことが、見出された。所望のインピーダンスは、50オームであり得るが、他のインピーダンス値も、各区分に関して所望され得ることが、考えられる。
【0058】
動作時、電流振幅測定回路440は、伝送ラインのソース側における電流のレベルを示す、出力を提供し、電圧振幅測定回路442は、伝送ラインのソース側におけるソース/端子対を横断する電圧のレベルを示す、出力を提供する。測定された電流および電圧に応答して、電流クランプ回路434はそれぞれ、M個の区分間の界面における電流のレベルを伝送ラインのソース側における電流のレベルにクランプするように制御されてもよく、電圧クランプ回路432はそれぞれ、M個の区分のそれぞれを横断する電圧のレベルを伝送ラインのソース側におけるソース/端子対402を横断する電圧のレベルにクランプするように制御されてもよい。
【0059】
このように動作されると、LLIIN400は、ジェネレータが被るインピーダンスを、負荷インピーダンスに関係なく、伝送ラインの特性インピーダンスからの非常に小さい逸脱に限定し、さらに、負荷に送達されない、ジェネレータによって送達される電力が、電力回収回路444を伴う電圧クランプ回路432および/または電流クランプ回路434から回収されることができる。電力回収回路444は、M個のクランプ回路に結合され、電力回収回路444は、クランプ回路から回収されたエネルギーを使用し、電力を回収電力/端子対406に印加するように構成される。
【0060】
図5を参照すると、示されるものは、
図4に描写される電流振幅測定回路440を実現するために使用され得る、例示的な電流振幅測定回路540である。示されるように、電流振幅測定回路は、フルダイオードブリッジのノード間の抵抗性要素および誘導性要素の直列配列を備える、感知された電流Isenseのための電流経路を備えてもよい。また、
図6は、
図4に描写される電圧振幅測定回路442を実現するために使用され得る、例示的な電圧振幅測定回路542である。示されるように、電位差Vsenseが、抵抗要素と並列に配列されるコンデンサを横断して設定され、コンデンサおよび抵抗要素の並列の組み合わせが、ダイオードブリッジの2つのノード間に位置付けられる。
【0061】
図7は、
図4に描写されるLLIIN400を実装するために使用され得る、LLIIN700の一部を描写する。特に、
図7は、電流クランプ回路734および電圧クランプ回路732に関する特定の実装を描写する。示されるように、各電流クランプ回路734は、電力回収回路444を通して給電する、フルダイオードブリッジのノード間に電流通路IclampMを含み、これは、各電流クランプ回路734を通した電流が制御されることを可能にする。また、各電圧クランプ回路732は、フルダイオードブリッジのノード間に位置付けられる、コンデンサを含み、電圧VclampMが電力回収回路444によって制御されることを可能にする。結果として、M個の区分のそれぞれの電圧が、制御され得る。より具体的には、伝送ラインの区分の電圧振幅は、電圧VclampMおよび2つのダイオード電圧降下である。M個のクランプ回路が、利用され、M個の伝送ライン区分の電圧および/または電流をクランプするが、N個のクランプ回路が、利用され得ること(Nは、M未満である)もまた、考えられる。例えば、M個の区分の全てを下回るものが、クランプされている状態で、実行可能な入力インピーダンスネットワークが、構築され得る。実施例として、Nは、M-1に等しくてもよい、またはNは、M-2に等しくてもよいが、これらは、実施例にすぎない。
【0062】
図8を参照すると、示されるものは、LLIIN800のソース/端子対802がサーキュレータ804に結合され、典型的には、サーキュレータ804のダンプポート(絶縁ポート)に結合されるであろう、ダンプレジスタを置き換える、LLIIN800である。通常、ダンプレジスタ内で熱として消散されるであろう、電力が、代わりに、LLIIN800の回収電力/端子対806においてDC電力として回収され、インバータ220に給電され、これは、ひいては、DC電力を、ACメインに印加されるAC電力に転換する。DC/ACインバータもまた、LLIIN800の一部であり得る。
【0063】
図9に示されるように、(LLIIN100を実現するために使用され得る)LLIIN900が、(ジェネレータ304内の)DC供給部328からのDC電力を、電力増幅器330(例えば、ジェネレータ内のRF電力増幅器330)に結合する、DCバス326にDC電力を印加するように構成されてもよい。動作時、LLIIN900は、サーキュレータ804から回収された電力を、DCバス326を横断して印加される、レベルに転換する。
図9に描写されるLLIIN900は、
図8内のLLIIN800によって出力される、回収されたDC電力が、DCバスを横断して印加される電圧レベルに合致するDC電圧レベルを印加する必要がないことを除いて、
図8のLLIIN800と同一であり得る。
【0064】
次に
図10を参照すると、示されるものは、
図8のLLIIN800および
図9のLLIIN900を実現するために使用され得る、例示的なLLIIN1000である。LLIIN1000は、負荷/端子対1008の端子が短絡され、電流クランプ回路が採用されていないことを除いて、LLIIN400に類似する。負荷/端子対1008の端子を短絡させることは、負荷端子に対する伝送ラインの特性インピーダンスの実数部より小さい抵抗(0Ω)を提示し、したがって、各区分の電圧を伝送ラインのソース側において生産されるピーク電圧にクランプする、分散型電圧クランプ回路が、総電気的遅延が、印加される電力の周期の2分の1に等しい場合、電流クランプ回路の使用を伴うことなく、実質的に一定のインピーダンスをサーキュレータ804に提供する。代替として、負荷/端子対は、開路されてもよく、印加される電力の周期の4分の1に等しい総電気的遅延が、使用されてもよい。結果として、
図10のLLIIN1000は、
図4を参照して説明される、LLIIN400より実装することがより単純である。
【0065】
次に
図11A-11Fを参照すると、示されるものは、シミュレーションを使用してLLIINの性能を検証するために使用される、回路の概略図である。
図11A-11Fは、明確化のために、複数のページを横断して描写される、単一の回路を描写する。
図11A-11Fでは、同一の標識を有するノードは、同一のノードである。例えば、
図11A内で「n1a」および「n1」と標識されるノードは、
図11Cの「n1a」および「n1」と同一のノードである。
図11A-11Fを参照する間、同時に、そのための負荷抵抗が、集中要素相当伝送ライン区分の特性インピーダンスの実数部より小さい抵抗負荷を伴う、
図11A-11Fの回路に関するシミュレーション結果を描写する、
図12も、参照される。下記の表1は、
図11A-11Fに描写される回路の動作設定についての付加的な詳細を提供する。
図12の結果は、負荷(
図11AのR2)を異なるインピーダンスに差し替え、ソース(
図11AのV1)によって被られるインピーダンス、およびソースによって送達される電力、負荷に送達される電力、および電圧および電流クランプによって回収される電力(
図11EのB1~B8および
図11BのBI2~BI9に戻される電力)を計算することによって、取得される。
図12の左のスミス図表は、さらに負荷インピーダンスがスミス図表の負の実軸に沿って変動されるにつれて、ソースによって被られるインピーダンスが、殆ど変化しないことを示す。
図12の右のチャートは、ソースによって送達され、負荷に送達されない電力が、DC電力として回収されることを示す。
図12の結果は、ピーク電圧規模およびピーク電流規模が、それぞれ、ソースにおける、電圧および電流の振幅にクランプされた状態で取得され、すなわち、電流および電圧(下記の表内のパラメータIsclおよびVscl)は両方とも、1.0に等しく設定される。ソースB1~B8およびBI2~BI9は、それぞれ、
図20A-20Bおよび
図23Aおよび23Bに示されるもの等の回路によって、それぞれ、電圧および電流クランプに提供される、定電圧および定電流を表す。
【0066】
【0067】
次に
図13を参照すると、示されるものは、そのための負荷抵抗が集中要素相当伝送ライン区分の特性インピーダンスの実数部より大きい抵抗負荷を伴う、
図11A-11Fの回路のシミュレーション結果である。
図13の結果は、負荷(
図11AのR2)を異なるインピーダンスに差し替え、ソース(
図11AのV1)によって被られるインピーダンス、およびソースによって送達される電力、負荷に送達される電力、および電圧および電流クランプによって回収される電力(B1~B8およびBI2~BI9に戻される電力)を計算することによって、取得される。
図13の左のスミス図表は、さらに負荷インピーダンスがスミス図表の正の実軸に沿って変動されるにつれて、ソースによって被られるインピーダンスが、殆ど変化しないことを示す。
図13の右のチャートは、ソースによって送達され、負荷に送達されない電力が、DC電力として回収されることを示す。
図13の結果は、ピーク電圧規模およびピーク電流規模が、それぞれ、ソースにおける、電圧および電流の振幅にクランプされた状態で取得され、すなわち、パラメータIsclおよびVsclは両方とも、1.0に等しく設定される。
【0068】
次に
図14を参照すると、示されるものは、そのための負荷リアクタンスが正である無効負荷を伴う、
図11の回路に関するシミュレーション結果である。
図14の結果は、負荷(
図11AのR2)を異なるインピーダンスに差し替え、ソース(
図11AのV1)によって被られるインピーダンス、およびソースによって送達される電力、負荷に送達される電力、および電圧および電流クランプによって回収される電力(B1~B8およびBI2~BI9に戻される電力)を計算することによって、取得される。
図14の左のスミス図表は、さらに負荷インピーダンスがスミス図表の正の虚軸に沿って変動されるにつれて、ソースによって被られるインピーダンスが、殆ど変化しないことを示す。
図14の右のチャートは、ソースによって送達され、負荷に送達されない電力が、DC電力として回収されることを示す。
図14の結果は、ピーク電圧規模およびピーク電流規模が、それぞれ、ソースにおける、電圧および電流の振幅にクランプされた状態で取得され、すなわち、パラメータIsclおよびVsclは両方とも、1.0に等しく設定される。
【0069】
次に
図15を参照すると、示されるものは、そのための負荷リアクタンスが負である無効負荷を伴う、
図11の回路に関するシミュレーション結果である。
図15の結果は、負荷(
図11のR2)を異なるインピーダンスに差し替え、ソース(
図11のV1)によって被られるインピーダンス、およびソースによって送達される電力、負荷に送達される電力、および電圧および電流クランプによって回収される電力(
図11のB1~B8およびBI2~BI9に戻される電力)を計算することによって、取得される。
図15の左のスミス図表は、さらに負荷インピーダンスがスミス図表の負の虚軸に沿って変動されるにつれて、ソースによって被られるインピーダンスが、殆ど変化しないことを示す。
図15の右のチャートは、ソースによって送達され、負荷に送達されない電力が、DC電力として回収されることを示す。
図15の結果は、ピーク電圧規模およびピーク電流規模が、それぞれ、ソースにおける、電圧および電流の振幅にクランプされた状態で取得され、すなわち、
図11の概略図上に示されるパラメータIsclおよびVsclは両方とも、1.0に等しく設定される。
【0070】
次に
図16で参照されるものは、そのための負荷抵抗が、電圧および電流クランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より小さい抵抗負荷を伴う、
図11の回路に関するシミュレーション結果である。
図16の最上列内の2つのグラフは、いくつかのより多くのデータ点を伴う、
図12に示される結果の繰り返しである。
図16の最下列内の2つのグラフは、それぞれ、回路のソース側における、電圧および電流の1.2倍の振幅における、ピーク電圧および電流規模をクランプする効果を示す(すなわち、
図11の概略図上に示されるパラメータIsclおよびVsclは両方とも、1.2に等しく設定される)。これは、
図16が図示する2つの右側グラフの比較として、ソース電力のより多くの割合が、負荷反射係数規模の小さい値のための負荷を進行することを可能にするような、ある用途において、望ましい。
図16の左の2つのグラフは、これが、ソースに提示されるインピーダンスのより多くの変形例を犠牲にして行われることを示す。
【0071】
次に
図17を参照すると、示されるものは、そのための負荷抵抗が、電圧および電流クランピングのための2つの異なるレベルに関する集中要素相当伝送ライン区分の特性インピーダンスの実数部より大きい抵抗負荷を伴う、
図11の回路に関するシミュレーション結果である。
図17の最上列内の2つのグラフは、いくつかのより多くのデータ点を伴う、
図13に示される結果の繰り返しである。
図17の最下列内の2つのグラフは、それぞれ、回路のソース側における、電圧および電流の1.2倍の振幅における、ピーク電圧および電流規模をクランプする効果を示す(すなわち、
図11の概略図上に示されるパラメータIsclおよびVsclは両方とも、1.2に等しく設定される)。これは、
図17が図示する2つの右側グラフの比較として、ソース電力のより多くの割合が、負荷反射係数規模の小さい値のための負荷を進行することを可能にするような、ある用途において、望ましい。
図17の左の2つのグラフは、これが、ソースに提示されるインピーダンスのより多くの変形例を犠牲にして行われることを示す。
【0072】
次に
図18を参照すると、示されるものは、そのための負荷リアクタンスが、電圧および電流クランピングのための2つの異なるレベルに関して正である無効負荷を伴う、
図11の回路に関するシミュレーション結果である。
図18の最上列内の2つのグラフは、いくつかのより多くのデータ点を伴う、
図14に示される結果の繰り返しである。
図18の最下列内の2つのグラフは、それぞれ、回路のソース側における、電圧および電流の1.2倍の振幅における、ピーク電圧および電流規模をクランプする効果を示す(すなわち、
図11の概略図上に示されるパラメータIsclおよびVsclは両方とも、1.2に等しく設定される)。これは、
図18が図示する2つの右側グラフの比較として、ソース電力のより多くの割合が、負荷反射係数規模の小さい値のための負荷を進行することを可能にするような、ある用途において、望ましい。
図18の左の2つのグラフは、これが、ソースに提示されるインピーダンスのより多くの変形例を犠牲にして行われることを示す。
【0073】
次に
図19で参照されるものは、そのための負荷リアクタンスが、電圧および電流クランピングのための2つの異なるレベルに関して負である無効負荷を伴う、
図11の回路に関するシミュレーション結果である。
図19の最上列内の2つのグラフは、いくつかのより多くのデータ点を伴う、
図15に示される結果の繰り返しである。
図19の最下列内の2つのグラフは、それぞれ、回路のソース側における、電圧および電流の1.2倍の振幅における、ピーク電圧および電流規模をクランプする効果を示す(すなわち、
図11の概略図上に示されるパラメータIsclおよびVsclは両方とも、1.2に等しく設定される)。これは、
図19が図示する2つの右側グラフの比較として、ソース電力のより多くの割合が、負荷反射係数規模の小さい値のための負荷を進行することを可能にするような、ある用途において、望ましい。
図19の左の2つのグラフは、これが、ソースに提示されるインピーダンスのより多くの変形例を犠牲にして行われることを示す。
【0074】
次に
図20Aおよび20Bを参照すると、示されるものは、100Vに維持されるDC電力シンクへの電力回収(
図20Aおよび20BのVdc1)を伴う、電圧クランプの性能を検証するために使用される、回路の概略図である。同一の標識を有する、
図20Aおよび20Bのノードは、同一のノードである。例えば、
図20A内で「decr_v」および「incr_v」と標識するノードは、
図20Bの「decr_v」および「incr_v」と同一のノードである。動作時、S5、S6、S7、およびS8によって形成される上部ブリッジおよびS9、S10、S11、およびS12によって形成される底部ブリッジが、交代で動作する。上部ブリッジが、動作可能であるとき、これは、最初にS5およびS6がオンになり、次いで、S7およびS8がオンになる、サイクルを完了させる。上部ブリッジの本動作の結果は、結合されたインダクタL3およびL4によって形成された変圧器の巻線を横断して電圧を生成することである。本サイクルの間に、C2にわたる電圧が、定電圧源Vdc1の電圧より大きい場合、電力が、底部ダイオードD17、D18、D19、およびD20の整流作用を通して、C2からVdc1に伝達される。C2にわたる電圧が、定電圧源Vdc1の電圧より小さい場合、いかなる電力も、本サイクルの間、回路の上半分と下半分との間で伝達されない。回路の上半分は、直接、または他の回路要素を通してL3に接続される、半体である。回路の下半分は、直接、または他の回路要素を通してL4に接続される、半体である。底部ブリッジが、動作可能であるとき、これは、最初にS9およびS10が、次いで、S11およびS12がオンになる、サイクルを完了させる。底部ブリッジの本動作の結果は、結合されたインダクタL3およびL4によって形成された変圧器の巻線を横断して電圧を生成することである。C2にわたる電圧が、定電圧源Vdc1の電圧未満である場合、電力が、上部ダイオードD9、D10、D11、およびD12の整流作用を通して、Vdc1からC2に伝達される。C2にわたる電圧が、定電圧源Vdc1の電圧より大きい場合、いかなる電力も、本サイクルの間、回路の上半分と下半分との間で伝達されない。両方のサイクルが、ともに、本関係を維持するために、C2とVdc1との間の双方向電力流動を用いて、定電圧源Vdc1の電圧に実質的に等しい、C2にわたる電圧を維持する。
【0075】
図20Aおよび20Bでは、S1、S2、S3、およびS4によって形成されるブリッジが、C5にわたって、所望のクランプ電圧-2つのダイオード電圧降下の値を維持する。ブリッジは、C5にわたる電圧が、低すぎるとき、S3およびS4をオンにし、電圧が高すぎるとき、S1およびS2をオンにすることによって、これを行う。また、ノードrf1とrf2との間の電圧はC5にわたる電圧+ダイオードD1、D2、D3、およびD4を通した2つの電圧降下の値にクランプされる。下記の表2は、シミュレーションのために利用される設定についての付加的な詳細を提供する。
【表2-1】
【表2-2】
【0076】
次に
図21を参照すると、示されるものは、クランプされるべき電圧(
図20のVrf)がクランプ電圧(本シミュレーションでは50V)未満であるときの
図20の回路をシミュレートした結果である。
図21の最下グラフは、電圧クランプを通したピーク電流が、電圧振幅が10Vであるとき、わずか100μAであることを示す。最下グラフから第2のものは、電圧クランプにわたる電圧を示す。最下グラフから第3のものは、電圧クランプが、非理想的なダイオード内の喪失に起因して、DC電力シンクから4.5Wを得ることを示す。最上グラフは、電圧クランプに接続される電圧源から得られる電力が、ほぼ存在しないことを示す。
【0077】
次に
図22を参照すると、示されるものは、クランプされるべき電圧(
図20のVrf)がクランプ電圧(本シミュレーションでは50V)より大きいときの
図20の回路をシミュレートした結果である。
図22の最下グラフは、電圧クランプを通したピーク電流が、ソース(
図20のVrf)の1Ω内部抵抗にわたって10Vの電圧降下を達成し、電圧クランプにわたるピーク電圧を50Vにクランプするために、10Aであることを示す。最下グラフから第2のものは、意図されるように50Vにおいてクランプされる、電圧クランプにわたる電圧を示す。最下グラフから第3のものは、電圧クランプが、DC電力シンクへの117ワットを回収することを示す。最上グラフは、122ワットが、電圧クランプに接続される電圧源から得られることを示す。
【0078】
次に
図23Aおよび23Bを参照すると、示されるものは、100Vに維持されるDC電力シンクへの電力回収(
図23AのVdc1)を伴う、電圧クランプの性能を検証するために使用される、回路の概略図である。同一の標識を有する、
図23Aおよび23Bのノードは、同一のノードである。例えば、
図20A内で「decr_i」および「incr_i」と標識するノードは、
図23Bの「decr_i」および「incr_i」と同一のノードである。
図23Aでは、S5、S6、S7、およびS8によって形成される上部ブリッジおよびS9、S10、S11、およびS12によって形成される底部ブリッジが、交代で動作する。上部ブリッジが、動作可能であるとき、これは、最初にS5およびS6がオンになり、次いで、S7およびS8がオンになる、サイクルを完了させる。上部ブリッジの本動作の結果は、結合されたインダクタL3およびL4によって形成された変圧器の巻線を横断して電圧を生成することである。本サイクルの間に、C2にわたる電圧が、定電圧源Vdc1の電圧より大きい場合、電力が、底部ダイオードD17、D18、D19、およびD20の整流作用を通して、C2からVdc1に伝達される。C2にわたる電圧が、定電圧源Vdc1の電圧より小さい場合、いかなる電力も、本サイクルの間、回路の上半分と下半分との間で伝達されない。回路の上半分は、直接、または他の回路要素を通してL3に接続される、半体である。回路の下半分は、直接、または他の回路要素を通してL4に接続される、半体である。底部ブリッジが、動作可能であるとき、これは、最初にS9およびS10が、次いで、S11およびS12がオンになる、サイクルを完了させる。底部ブリッジの本動作の結果は、結合されたインダクタL3およびL4によって形成された変圧器の巻線を横断して電圧を生成することである。C2にわたる電圧が、定電圧源Vdc1の電圧未満である場合、電力が、上部ダイオードD9、D10、D11、およびD12の整流作用を通して、Vdc1からC2に伝達される。C2にわたる電圧が、定電圧源Vdc1の電圧より大きい場合、いかなる電力も、本サイクルの間、回路の上半分と下半分との間で伝達されない。両方のサイクルが、ともに、本関係を維持するために、C2とVdc1との間の双方向電力流動を用いて、定電圧源Vdc1の電圧に実質的に等しい、C2にわたる電圧を維持する。
図23Aでは、S1、S2、S3、およびS4によって形成されるブリッジが、インダクタL1およびL2を通して所望のクランプ電流を維持する。ブリッジは、L1を通した電流が、低すぎるとき、S1およびS2をオンにし、電流が高すぎるとき、S3およびS4をオンにすることによって、これを行う。
図23Aでは、ノードrf1とrf2との間のダイオードブリッジを通した電流の振幅は、L1を通した電流にクランプされる。
【表3-1】
【表3-2】
【0079】
次に
図24を参照すると、示されるものは、(
図23AのVrfによって供給される)クランプされるべき電流がクランプ電流(本シミュレーションでは5A)未満であるときの
図23Aおよび23Bの回路をシミュレートした結果である。
図24の最下グラフは、電流クランプを通したピーク電流を示す。
図24の最下グラフから第2のものは、クランプにわたる電圧が、クランプを通した電流が1.8Aであるとき、わずか18mVであることを示す。
図24の最下グラフから第3のものは、電流クランプが、非理想的なダイオード内の喪失に起因して、DC電力シンクから7.1Wを得ることを示す。最上グラフは、電流クランプに接続されるソース(
図23のVrf)から得られる電力が、ほぼ存在しないことを示す。
【0080】
次に
図25を参照すると、示されるものは、(
図23AのVrfによって供給される)クランプされるべき電流がクランプ電流(本シミュレーションでは5A)より大きいときの
図23Aおよび23Bの回路をシミュレートした結果である。
図22の最下グラフは、電流クランプを通したピーク電流が、意図されるように5Aにクランプされることを示す。最下グラフから第2のものは、電流を5Aにおいてクランプするために、9.5Vである、電流クランプにわたるピーク電圧を示す。最下グラフから第3のものは、電圧クランプが、DC電力シンクへの21.2Wを回収することを示す。最上グラフは、29.4Wが、電流クランプに接続される電圧源から得られることを示す。
【0081】
当業者はさらに、本明細書に開示される実施形態に関連して説明される種々の例証的な論理ブロック、モジュール、回路、およびアルゴリズムステップが、電子ハードウェア、コンピュータソフトウェア、または両方の組み合わせとして実装され得ることを理解するであろう。ハードウェアおよびソフトウェアの本互換性を明確に例証するために、種々の例証的構成要素、ブロック、モジュール、回路、およびステップが、概してそれらの機能性の観点から上記に説明されている。そのような機能性がハードウェアまたはソフトウェアとして実装されているかどうかは、システム全体に課される特定の用途および設計制約に依存する。当業者は、特定の用途毎に種々の方法で説明される機能性を実装し得るが、そのような実装決定は、本発明の範囲からの逸脱をもたらすものとして解釈されるべきではない。
【0082】
本明細書に開示される実施形態に関連して説明される種々の例証的な論理ブロック、モジュール、および回路は、本明細書に説明される機能を実施するように設計される、汎用目的プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、離散ゲートまたはトランジスタ論理、離散ハードウェア構成要素、またはそれらの任意の組み合わせを用いて実装または実施されてもよい。汎用目的プロセッサは、マイクロプロセッサであってもよいが、代替として、プロセッサは、任意の従来型プロセッサ、コントローラ、マイクロコントローラ、または状態機械であってもよい。プロセッサはまた、コンピューティングデバイスの組み合わせ、例えば、DSPおよびマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと併せた1つまたはそれを上回るマイクロプロセッサ、または任意の他のそのような構成の組み合わせとして実装されてもよい。
【0083】
図26を参照すると、示されるものは、本明細書に開示されるインピーダンスネットワークの1つまたはそれを上回る側面を実現するために利用され得る、物理的構成要素を描写する、ブロック図である。示されるように、本実施形態では、ディスプレイ1412および不揮発性メモリ1420が、また、ランダムアクセスメモリ(「RAM」)1424、(N個の処理構成要素を含む)処理部分1426、フィールドプログラマブルゲートアレイ(FPGA)1427、およびN個の送受信機を含む、送受信機構成要素1428にも結合される、バス1422に結合される。
図26に描写される構成要素は、物理的構成要素を表すが、
図26は、詳述されたハードウェア図であることを意図しておらず、したがって、
図26に描写される構成要素の多くは、一般的な構築物によって実現される、または付加的な物理的構成要素の中に分散され得る。また、他の既存の、および未開発の物理的構成要素およびアーキテクチャも、
図26を参照して説明される機能構成要素を実装するために利用され得ることが、考えられる。
【0084】
ディスプレイ1412は、概して、ユーザのためのユーザインターフェースを提供するように動作し、いくつかの実装では、ディスプレイ1412は、タッチスクリーンディスプレイによって実現される。例えば、ディスプレイ1412は、本明細書に説明される構成要素を制御し、それと相互作用するために使用されることができる。一般に、不揮発性メモリ1420は、データおよび機械可読(例えば、プロセッサ実行可能)コード(本明細書に説明される方法を果たすことと関連付けられる、実行可能コードを含む)を記憶する(例えば、持続的に記憶する)ように機能する、非一過性メモリである。いくつかの実施形態では、例えば、不揮発性メモリ1420は、本明細書に説明される方法の実行を促進するための、ブートローダコード、オペレーティングシステムコード、ファイルシステムコード、および非一過性プロセッサ実行可能コードを含む。
【0085】
多くの実装では、不揮発性メモリ1420は、フラッシュメモリ(例えば、NANDまたはONENANDメモリ)によって実現されるが、他のメモリタイプも、同様に利用され得ることが考えられる。不揮発性メモリ1420からのコードを実行することが、可能性として考えられ得るが、不揮発性メモリ内の実行可能コードは、典型的には、RAM1424の中にロードされ、処理部分1426内のN個の処理構成要素のうちの1つまたはそれを上回るものによって実行される。
【0086】
動作時、RAM1424に関連するN個の処理構成要素が、概して、不揮発性メモリ1420内に記憶される命令を実行し、本明細書に説明される電力回収回路の機能性を実現するように動作してもよい。例えば、本明細書に説明される方法を果たすための非一過性プロセッサ実行可能命令が、不揮発性メモリ1420内に持続的に記憶され、RAM1424に関連するN個の処理構成要素によって実行されてもよい。当業者が理解するであろうように、処理部分1426は、ビデオプロセッサ、デジタル信号プロセッサ(DSP)、グラフィック処理ユニット(GPU)、および他の処理構成要素を含んでもよい。
【0087】
加えて、または代替として、フィールドプログラマブルゲートアレイ(FPGA)1427は、本明細書に説明される方法論の1つまたはそれを上回る側面を果たすように構成されてもよい。例えば、非一過性FPGA構成命令が、不揮発性メモリ1420内に持続的に記憶され、(例えば、ブートアップの間に)FPGA1427によってアクセスされ、FPGA1427を構成してもよい。
【0088】
入力構成要素が、(例えば、電圧振幅測定回路442および/または電流振幅測定回路440から)電圧および/または電流を示す信号を受信するように動作してもよい。出力構成要素が、概して、電力回収回路の動作側面を果たすように、(例えば、電力回収回路444の降圧コンバータ内のスイッチへの駆動信号をプロンプトするために)1つまたはそれを上回るアナログまたはデジタル信号を提供するように動作する。
【0089】
描写される送受信機構成要素1428は、無線または有線ネットワークを介して外部デバイス(例えば、外部コントローラ)と通信するために使用され得る、N個の送受信機チェーンを含む。N個の送受信機チェーンはそれぞれ、特定の通信スキーム(例えば、WiFi、イーサネット(登録商標)、Profibus等)と関連付けられる、送受信機を表し得る。
【0090】
本明細書で使用されるように、「A、B、およびCのうちの少なくとも1つ」の列挙は、「A、B、Cのいずれか、またはA、B、およびCの任意の組み合わせ」を意味することを意図する。開示される実施形態の上記の説明は、いかなる当業者も、本開示を作製または使用することを可能にするために提供される。これらの実施形態に対する種々の修正は、当業者に容易に明白になり、本明細書に定義される一般的な原理は、本開示の精神または範囲から逸脱することなく、他の実施形態に適用され得る。したがって、本開示は、本明細書に示される実施形態に限定されることを意図しておらず、本明細書に開示される原理および新規の特徴に一貫した、最も幅広い範囲と調和されるべきである。
【国際調査報告】