(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-05-31
(54)【発明の名称】電気モータ及びその制御方法
(51)【国際特許分類】
H02K 21/16 20060101AFI20230524BHJP
H02K 1/278 20220101ALI20230524BHJP
H02P 29/02 20160101ALI20230524BHJP
【FI】
H02K21/16 M
H02K1/278
H02P29/02
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022545110
(86)(22)【出願日】2021-04-26
(85)【翻訳文提出日】2022-09-09
(86)【国際出願番号】 CA2021050568
(87)【国際公開番号】W WO2021212238
(87)【国際公開日】2021-10-28
(32)【優先日】2020-04-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】522294257
【氏名又は名称】121352 カナダ インコーポレイテッド
(71)【出願人】
【識別番号】522294268
【氏名又は名称】ビュシエール,ノルマンド
(74)【代理人】
【識別番号】100114775
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100208580
【氏名又は名称】三好 玲奈
(74)【代理人】
【識別番号】100191086
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ビュシエール,ノルマンド
(72)【発明者】
【氏名】マーテル,パトリック
(72)【発明者】
【氏名】ペール,マシュー
【テーマコード(参考)】
5H501
5H621
5H622
【Fターム(参考)】
5H501DD04
5H501HB16
5H501LL35
5H621BB07
5H621BB09
5H621GB10
5H622CA02
5H622CA10
5H622CB01
5H622DD02
(57)【要約】
電気モータ及び電気モータを制御する方法が本明細書に記載される。電気モータは、少なくとも1つの永久磁石が結合された可動構成要素と、可動構成要素から離間されたステータとを含む。ステータは、強磁性コアと、強磁性コアの周りに巻かれたコイルとを有する少なくとも1つのステータ極を含む。強磁性コアは、少なくとも1つの永久磁石に自然に引き付けられる。モータはまた、ステータに対する少なくとも1つの永久磁石の位置を監視し、各ステータ極のコイルに電気パルスを制御可能に供給し、強磁性コアに反発磁束を発生させ、強磁性コアと少なくとも1つの永久磁石との間の引力を打ち消して、可動構成要素の移動を制御するように構成された磁気位置制御システムを含む。
【選択図】
図7
【特許請求の範囲】
【請求項1】
電気モータであって、
少なくとも1つの永久磁石が結合された可動構成要素であって、各永久磁石は表面積を有する外面を有する可動構成要素と、
前記可動構成要素から離間したステータであって、前記少なくとも1つの永久磁石と対向するように位置付けられた少なくとも1つのステータ極を有し、各ステータ極は、強磁性コアと、前記強磁性コアに巻かれたコイルとを備え、前記強磁性コアは、前記少なくとも1つの永久磁石に自然に引き付けられるステータと、
磁気位置制御システムであって、
前記ステータに対する前記可動構成要素上の前記少なくとも1つの永久磁石の位置を監視し、
前記少なくとも1つの永久磁石の位置に応答して、各少なくとも1つのステータ極の前記コイルに電気パルスを制御可能に供給し、前記強磁性コア上に反発磁束を発生させて、前記強磁性コアと前記少なくとも1つの永久磁石との間の引力を打ち消し、前記可動構成要素の動きを制御する、
ように構成された磁気位置制御システムとを備え、
前記永久磁石のそれぞれの外面の表面積間の差は10%未満であり、
隣接する2つのステータ極の中心線間の最大距離は、前記永久磁石の1つの幅の2倍であり、
前記可動構成要素の各永久磁石の外面は、同じ極性を有する、
電気モータ。
【請求項2】
電気モータであって、
少なくとも1つの永久磁石が結合されたロータであって、各永久磁石は表面積を有する外面を有するロータと、
前記ロータの回転がシャフトを回転させるように前記ロータに固定的に結合されたシャフトと、
前記ロータを取り囲むステータであって、前記少なくとも1つの永久磁石に対向するように位置付けられた少なくとも1つのステータ極を有し、各ステータ極は強磁性コアと前記強磁性コアに巻き付けられたコイルとを含み、前記強磁性コアは前記少なくとも1つの永久磁石に自然に引き付けられるステータと、
磁気位置制御システムであって、
前記ステータに対する前記ロータ上の前記少なくとも1つの永久磁石の位置を監視し、
前記少なくとも1つの永久磁石の位置に応答して、各少なくとも1つのステータ極の前記コイルに電気パルスを制御可能に供給し、前記強磁性コア上に反発磁束を発生させて、前記強磁性コアと前記少なくとも1つの永久磁石との間の引力を打ち消し、前記ロータの動きを制御する、
ように構成された磁気位置制御システムとを備え、
前記永久磁石のそれぞれの外面の表面積間の差は10%未満であり、
隣接する2つのステータ極の中心線間の最大距離は、前記永久磁石の1つの幅の2倍であり、
各永久磁石の外面は同じ極性を有する、
電気モータ。
【請求項3】
前記永久磁石のそれぞれの外面の表面積間の差が5%未満である、請求項1又は2に記載の電気モータ。
【請求項4】
前記永久磁石のそれぞれの外面の表面積間の差が3%未満である、請求項1~3のいずれか一項に記載の電気モータ。
【請求項5】
前記永久磁石のいずれか1つの外面の表面積と、前記ステータ極のいずれか1つの外面の表面積との間の差が10%未満である、請求項1~4のいずれか一項に記載の電気モータ。
【請求項6】
前記永久磁石のいずれか1つの外面の表面積と、前記ステータ極のいずれか1つの外面の表面積との間の差が5%未満である、請求項5に記載の電気モータ。
【請求項7】
前記永久磁石のいずれか1つの外面の表面積と、前記ステータ極のいずれか1つの外面の表面積との間の差が3%未満である、請求項6に記載の電気モータ。
【請求項8】
前記永久磁石のそれぞれが円筒形の形状を有する、請求項1~7のいずれか一項に記載の電気モータ。
【請求項9】
前記永久磁石のそれぞれがプリズム形状を有する、請求項1~7のいずれか一項に記載の電気モータ。
【請求項10】
前記磁気位置制御システムが、前記モータを制御し、前記モータが様々な動作モードで動作することを提供するために、前記少なくとも1つのステータ極に変調電気パルスを供給することによって、少なくとも1つの永久磁石の磁束に基づいて少なくとも1つの永久磁石の相対位置を監視し、管理する、請求項1~9のいずれか一項に記載の電気モータ。
【請求項11】
前記ステータの各強磁性コアが、前記ロータの各永久磁石から半径方向及び/又は軸方向にギャップによって間隔をあけられる、請求項1~10のいずれか一項に記載の電気モータ。
【請求項12】
前記モータが1つのステータ極と1つの永久磁石とを含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項13】
前記モータが2つ以上の永久磁石を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項14】
前記モータが2つ以上のステータ極を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項15】
前記モータが1~100の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項16】
前記モータが10~75の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項17】
前記モータが15~50の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項18】
前記モータが15~30の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項19】
前記モータが16~20の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項20】
前記モータが、ロータスタック当たり1~100の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項21】
前記モータが、ロータスタック当たり10~75の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項22】
前記モータが、ロータスタック当たり15~50の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項23】
前記モータが、ロータスタック当たり15~30の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項24】
前記モータが、ロータスタック当たり16~20の範囲のステータ極の数を含む、請求項1~11のいずれか一項に記載の電気モータ。
【請求項25】
前記ステータ極が、前記ステータの周縁の周りに概ね等間隔に配置される、請求項1~24のいずれか一項に記載の電気モータ。
【請求項26】
前記ステータ極が、概ね軸方向に等間隔に、前記可動構成要素に対して平行に配置される、請求項1~24のいずれか一項に記載の電気モータ。
【請求項27】
前記モータが、一緒に通電されたときに同じ極性を有する1つ又は複数のグループで前記ロータの周りに配置された、並列、又は直列、又は並列と直列の混合で相互接続された2つ以上のステータ極を、1つ又は複数の回路に含む、請求項1又は2に記載の電気モータ。
【請求項28】
前記ステータ極が、前記ステータの周囲で互いに概ね等間隔に配置される、請求項27に記載の電気モータ。
【請求項29】
前記可動構成要素が、1インチ~200インチの範囲の直径又は長さを有する、請求項1に記載の電気モータ。
【請求項30】
前記可動構成要素が、1インチ~60インチの範囲の直径又は長さを有する、請求項1に記載の電気モータ。
【請求項31】
前記可動構成要素が、6インチ~36インチの範囲の直径又は長さを有する、請求項1に記載の電気モータ。
【請求項32】
前記ロータが、1インチ~200インチの範囲の直径を有する、請求項2に記載の電気モータ。
【請求項33】
前記ロータが、1インチ~60インチの範囲の直径を有する、請求項2に記載の電気モータ。
【請求項34】
前記ロータが、6インチ~36インチの範囲の直径を有する、請求項2に記載の電気モータ。
【請求項35】
前記モータが、約1~100,000回転/分(RPM)の範囲内の最大回転速度を有する、請求項1~34のいずれか一項に記載の電気モータ。
【請求項36】
前記モータが、約1~50,000回転/分(RPM)の範囲内の最大回転速度を有する、請求項1~34のいずれか一項に記載の電気モータ。
【請求項37】
前記モータが、約1~30,000回転/分(RPM)の範囲内の最大回転速度を有する、請求項1~34のいずれか一項に記載の電気モータ。
【請求項38】
前記永久磁石が、ネオジウム又は任意の他の磁石合金から作られる、請求項1~37のいずれか一項に記載の電気モータ。
【請求項39】
前記強磁性コアが、積層ケイ素鉄、軟鉄等などの強磁性金属から作られる、請求項1~37のいずれか一項に記載の電気モータ。
【請求項40】
1つ又は複数の電気パルスが、ロータ全回転の時間の何分の1かの時間だけ印加される、請求項1~39のいずれか一項に記載の電気モータ。
【請求項41】
前記電気パルスが、1回転の時間の何分の1かの時間、FMDエネルギーと同等かそれ未満である範囲の電力入力を有する、請求項1~40のいずれか一項に記載の電気モータ。
【請求項42】
前記磁気位置制御システムが、前記少なくとも1つのステータ極が前記永久磁石と整列しているときに、前記ロータを回転させるために、前記強磁性コアと前記永久磁石との間の引力を打ち消すべく及び/又は退けるべく前記強磁性コア上に反発磁束を発生させるために、前記少なくとも1つのステータ極のコイルに電気パルスを制御可能に供給するように構成される、請求項1~41のいずれか一項に記載の電気モータ。
【請求項43】
前記磁気位置制御システムが、前記少なくとも1つのステータ極がロータ対極整列点から約3~約20度に位置決めされたときに、前記ロータを回転させるために、前記強磁性コアと前記永久磁石との間の引力を打ち消すべく及び/又は退けるべく前記強磁性コア上に反発磁束を発生させるために、前記少なくとも1つのステータ極のコイルに変調電気パルスを制御可能に供給することを止めるよう構成される、請求項1~41のいずれか一項に記載の電気モータ。
【請求項44】
前記磁気位置制御システムが、前記少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給して、前記強磁性コアに反発磁束を発生させて、前記強磁性コアと前記永久磁石の1つとの間に反発力を発生させるようにさらに構成される、請求項1~43のいずれか一項に記載の電気モータ。
【請求項45】
前記磁気位置制御システムが、前記少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給して、前記強磁性コア上に反発磁束を発生させて、前記強磁性コアと前記永久磁石の1つとの間の引力を減少させて、前記可動構成要素の動きを遅くするようにさらに構成される、請求項1に記載の電気モータ。
【請求項46】
電気モータを制御する方法であって、前記モータは、ステータに沿って概ね等間隔に配置された少なくとも1つの独立した極又は極回路を有するステータを有し、前記独立した極又は極回路は前記ステータの周縁の周りに交互に配置されており、前記方法は、
強磁性コアが前記電気モータの可動構成要素に結合された永久磁石に対向し、かつ磁気的に引き付けられているときに、前記ステータの第1のステータ極の強磁性コアを取り囲む電気コイルに第1の変調電気パルスを制御可能に供給することによって前記電気モータの可動構成要素の移動を開始させることと、
前記永久磁石が前記第1のステータ極から離れ、前記電気モータの第2のステータ極に向かって回転するときに、前記永久磁石が前記第2のステータ極の強磁性極によって引き付けられている状態で、前記永久磁石が前記第2のステータ極に到達すると第2の変調電気パルスを前記第2のステータ極の前記強磁性コアに制御可能に供給して、前記第2のステータ極の前記強磁性コアの反発磁束を発生させ、前記永久磁石と前記第2のステータ極の前記強磁性コアとの間の引力を打ち消すことと
を含む方法。
【請求項47】
第1のステータ極の強磁性コアを取り囲む電気コイルに第1の変調電気パルスを制御可能に供給することによって前記可動構成要素の移動を開始した後、前記第1のステータ極の強磁性コアの反発磁束を発生させて前記第1のステータ極から離れる前記永久磁石の移動を促進するために前記第1のステータ極の強磁性コアを取り囲む電気コイルに1つ又は複数の後続の変調電気パルスを制御可能に供給することをさらに含む、請求項46に記載の方法。
【請求項48】
ステータに沿って概ね等間隔に配置された少なくとも1つの独立した極又は極回路を有するステータを有する電気モータを制御する方法であって、前記独立した極又は極回路は前記ステータの周縁の周りに交互に配置されており、前記方法は、
前記ロータ及び/又はシャフトに外部トルク又は力を加えることによって前記電気モータの回転を開始することと、
前記ロータの永久磁石が前記電気モータの第1のステータ極から離れて第2のステータ極に向かって回転するときに、前記永久磁石が前記第2のステータ極の強磁性極によって引き付けられている状態で、第2の変調電気パルスを前記第2のステータ極の強磁性コアに制御可能に供給して、前記第2のステータ極の強磁性コアの反発磁束を発生させて、前記永久磁石と前記第2のステータ極の強磁性コアとの間の引力を打ち消すことと
を含む方法。
【請求項49】
前記永久磁石が前記第2のステータ極から離れて第3のステータ極に向かって回転するときに、前記永久磁石が前記第3のステータ極の強磁性極によって引き付けられている状態で、前記永久磁石が前記第3のステータ極に到達すると前記第3のステータ極の強磁性コアに第3の変調電気パルスを制御可能に供給し、前記第3のステータ極の強磁性コアの反発磁束を発生させ、前記永久磁石と前記第3のステータ極の強磁性コアとの間の引力を打ち消すことをさらに含む、請求項46~48のいずれか一項に記載の方法。
【請求項50】
前記永久磁石が前記第2のステータ極から離れて第3のステータ極に向かって回転するときに、前記第2のステータ極の強磁性コアに変調電気パルスを制御可能に供給して、前記第2のステータ極の強磁性コアの反発磁束を発生させ、前記永久磁石と前記第2のステータ極との間に反発力を発生させて前記永久磁石を前記第3のステータ極に向かって押すことをさらに含む、請求項46~48のいずれか一項に記載の方法。
【請求項51】
ステータに沿って概ね等間隔に配置されたステータ極の少なくとも1つの独立した極又は極回路を有するステータを有する電気モータを制御する方法であって、前記少なくとも1つの独立した極又は極回路は前記ステータの周縁の周りに交互に配置されており、前記方法は、
前記ロータの各永久磁石が前記ステータのそれぞれのステータ極の強磁性コアと整列されているときに、各ステータ極が前記強磁性コアを取り囲む電気コイルを有している状態で、第1の変調電気パルスを各ステータ極の電気コイルに制御可能に供給することによって前記ロータの回転を開始させることと、
前記ロータのそれぞれの永久磁石がそのそれぞれのステータ極とそれぞれの隣接するステータ極との間に位置付けられるとき、各ステータ極の電気コイルのそれぞれを非通電状態にすることと、
前記ロータのそれぞれの永久磁石が隣接するステータ極に到達すると、それぞれの隣接するステータ極の電気コイルに第2の変調電気パルスを制御可能に供給して、前記強磁性コアの反発磁束を発生させ、それぞれの永久磁石とそのそれぞれの隣接するステータ極の強磁性コアとの間の引力を打ち消すことと
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2020年4月25日に提出された「Electric Motors and Methods of Controlling Thereof(電気モータ及びその制御方法)」と題する米国仮特許出願第63/015,566号に付与された優先権を主張し、その内容は参照により完全な形で本明細書に組み込まれる。
【背景技術】
【0002】
本明細書に開示される実施形態は、モータ及びモータを制御する方法に関し、より具体的には、電気モータ及び電気モータを制御する方法に関する。
【0003】
様々なタイプの電気機械は、永久磁石を含む電気モータを備えている。電気モータは、従来、暖房、換気、及び空調(HVAC:heating,ventilation,and air conditioning)システム、ポンプ、及び家庭用電化製品を含むがこれらに限定されない用途で使用されている。このような永久磁石モータは、従来、ステータ及びロータを含む。ロータは、従来、概ねトロイダル状のロータコアと、ロータコアの外周に取り付けられた複数の表面磁石とを含む。
【0004】
永久磁石を特徴とする従来の電気モータの実装は、現在の磁気に関する理解によって制限されている。磁気の理論的理解を広げることは、永久磁石を備えた電気モータの新規かつ改良された実装を提供する可能性がある。人間の環境フットプリントを減らし、自律性と柔軟性を高めるための世界的な取り組みにより、より高性能、高効率で汎用性の高い電気モータへのニーズが拡大している。その一例は、各種交通手段の電化及び各種業務のデジタル化であろう。
【0005】
したがって、新しいタイプの電気モータ及び電気モータの制御方法に対するニーズが存在する。
【発明の概要】
【0006】
幅広い態様に従って、電気モータが本明細書に記載される。電気モータは、少なくとも1つの永久磁石が結合された可動構成要素であって、各永久磁石は表面積を有する外面を有する可動構成要素と、可動構成要素から離間したステータであって、少なくとも1つの永久磁石と対向するように位置付けられた少なくとも1つのステータ極を有するステータと備える。各ステータ極は、強磁性コアと、強磁性コアに巻かれたコイルとを備え、強磁性コアは、少なくとも1つの永久磁石に自然に引き付けられる。電気モータはまた、ステータに対する可動構成要素上の少なくとも1つの永久磁石の位置を監視し、少なくとも1つの永久磁石の位置に応答して、各少なくとも1つのステータ極のコイルに電気パルスを制御可能に供給し、強磁性コア上に反発磁束を発生させて、強磁性コアと少なくとも1つの永久磁石との間の引力を打ち消し、可動構成要素の動きを制御するように構成された磁気位置制御システムを含む。永久磁石のそれぞれの外面の表面積間の差は10%未満である。隣接する2つのステータ極の中心線間の最大距離は、永久磁石の1つの幅の2倍である。可動構成要素の各永久磁石の外面は、同じ極性を有する。
【0007】
幅広い態様に従って、電気モータが本明細書に記載される。電気モータは、少なくとも1つの永久磁石が結合されたロータであって、各永久磁石は表面積を有する外面を有するロータと、ロータの回転がシャフトを回転させるようにロータに固定的に結合されたシャフトと、ロータを取り囲むステータであって、少なくとも1つの永久磁石に対向するように位置付けられた少なくとも1つのステータ極を有し、各ステータ極は強磁性コアと強磁性コアに巻き付けられたコイルとを含み、強磁性コアは少なくとも1つの永久磁石に自然に引き付けられるステータとを含む。電気モータはまた、ステータに対するロータ上の少なくとも1つの永久磁石の位置を監視し、少なくとも1つの永久磁石の位置に応答して、各少なくとも1つのステータ極のコイルに電気パルスを制御可能に供給し、強磁性コア上に反発磁束を発生させて、強磁性コアと少なくとも1つの永久磁石との間の引力を打ち消し、可動構成要素の動きを制御するように構成された磁気位置制御システムを含む。永久磁石のそれぞれの外面の表面積間の差は10%未満である。隣接する2つのステータ極の中心線間の最大距離は、永久磁石の1つの幅の2倍である。可動構成要素の各永久磁石の外面は、同じ極性を有する。
【0008】
少なくとも1つの実施形態において、永久磁石のそれぞれの外面の表面積間の差が、5%未満である。
【0009】
少なくとも1つの実施形態において、永久磁石のそれぞれの外面の表面積間の差が、3%未満である。
【0010】
少なくとも1つの実施形態において、永久磁石のいずれか1つの外面の表面積と、ステータ極のいずれか1つの外面の表面積との間の差が、10%未満である。
【0011】
少なくとも1つの実施形態において、永久磁石のいずれか1つの外面の表面積と、ステータ極のいずれか1つの外面の表面積との間の差が、5%未満である。
【0012】
少なくとも1つの実施形態において、永久磁石のいずれか1つの外面の表面積と、ステータ極のいずれか1つの外面の表面積との間の差が、3%未満である。
【0013】
少なくとも1つの実施形態において、永久磁石のそれぞれが円筒形の形状を有する。
【0014】
少なくとも1つの実施形態において、永久磁石のそれぞれが、プリズム形状を有する。
【0015】
少なくとも1つの実施形態において、磁気位置制御システムが、モータを制御し、モータが様々な動作モードで動作することを提供するために、少なくとも1つのステータ極に変調電気パルスを供給することによって、少なくとも1つの永久磁石の磁束に基づいて少なくとも1つの永久磁石の相対位置を監視し、管理する。
【0016】
少なくとも1つの実施形態において、ステータの各強磁性コアが、ロータの各永久磁石から半径方向及び/又は軸方向にギャップによって間隔をあけられる。
【0017】
少なくとも1つの実施形態において、モータが、1つのステータ極と1つの永久磁石とを含む。
【0018】
少なくとも1つの実施形態において、モータが、2つ以上の永久磁石を含む。
【0019】
少なくとも1つの実施形態において、モータが、2つ以上のステータ極を含む。
【0020】
少なくとも1つの実施形態において、モータが、1~100の範囲のステータ極の数を含む。
【0021】
少なくとも1つの実施形態において、モータが、10~75の範囲のステータ極の数を含む。
【0022】
少なくとも1つの実施形態において、モータが、15~50の範囲のステータ極の数を含む。
【0023】
少なくとも1つの実施形態において、モータが、15~30の範囲のステータ極の数を含む。
【0024】
少なくとも1つの実施形態において、モータが、16~20の範囲のステータ極の数を含む。
【0025】
少なくとも1つの実施形態において、モータが、ロータスタック当たり1~100の範囲のステータ極の数を含む。
【0026】
少なくとも1つの実施形態において、モータが、ロータスタック当たり10~75の範囲のステータ極の数を含む。
【0027】
少なくとも1つの実施形態において、モータが、ロータスタック当たり15~50の範囲のステータ極の数を含む。
【0028】
少なくとも1つの実施形態において、モータが、ロータスタック当たり15~30の範囲のステータ極の数を含む。
【0029】
少なくとも1つの実施形態において、モータが、ロータスタック当たり16~20の範囲のステータ極の数を含む。
【0030】
少なくとも1つの実施形態において、ステータ極が、ステータの周縁の周りに概ね等間隔に配置される。
【0031】
少なくとも1つの実施形態において、ステータ極が、概ね軸方向に等間隔に、可動構成要素に対して平行に配置される。
【0032】
少なくとも1つの実施形態において、モータが、一緒に通電されたときに同じ極性を有する1つ又は複数のグループでロータの周りに配置された、並列、又は直列、又は並列と直列の混合で相互接続された2つ以上のステータ極を、1つ又は複数の回路に含む。
【0033】
少なくとも1つの実施形態において、ステータ極が、ステータの周囲で互いに概ね等間隔に配置される。
【0034】
少なくとも1つの実施形態において、可動構成要素が、1インチ~200インチの範囲の直径又は長さを有する。
【0035】
少なくとも1つの実施形態において、可動構成要素が、1インチ~60インチの範囲の直径又は長さを有する。
【0036】
少なくとも1つの実施形態において、可動構成要素が、6インチ~36インチの範囲の直径又は長さを有する。
【0037】
少なくとも1つの実施形態において、ロータが、1インチ~200インチの範囲の直径を有する。
【0038】
少なくとも1つの実施形態において、ロータが、1インチ~60インチの範囲の直径を有する。
【0039】
少なくとも1つの実施形態において、ロータが、6インチ~36インチの範囲の直径を有する。
【0040】
少なくとも1つの実施形態において、モータが、約1~100,000回転/分(RPM)の範囲内の最大回転速度を有する。
【0041】
少なくとも1つの実施形態において、モータが、約1~50,000回転/分(RPM)の範囲内の最大回転速度を有する。
【0042】
少なくとも1つの実施形態において、モータが、約1~30,000回転/分(RPM)の範囲内の最大回転速度を有する。
【0043】
少なくとも1つの実施形態において、永久磁石が、ネオジウム又は任意の他の磁石合金から作られる。
【0044】
少なくとも1つの実施形態において、強磁性コアが、積層ケイ素鉄、軟鉄などの強磁性金属から作られる。
【0045】
少なくとも1つの実施形態において、1つ又は複数の電気パルスが、ロータ全回転の時間の何分の1かの時間だけ印加される。
【0046】
少なくとも1つの実施形態において、電気パルスが、1回転の時間の何分の1かの時間、FMDエネルギーと同等かそれ未満である範囲の電力入力を有する。
【0047】
少なくとも1つの実施形態において、磁気位置制御システムが、少なくとも1つのステータ極が永久磁石と整列しているときに、ロータを回転させるために、強磁性コアと永久磁石との間の引力を打ち消すべく及び/又は退けるべく強磁性コア上に反発磁束を発生させるために、少なくとも1つのステータ極のコイルに電気パルスを制御可能に供給するように構成される。
【0048】
少なくとも1つの実施形態において、磁気位置制御システムが、少なくとも1つのステータ極がロータ対極整列点から約3~約20度に位置決めされたときに、ロータを回転させるために、強磁性コアと永久磁石との間の引力を打ち消すべく及び/又は退けるべく強磁性コア上に反発磁束を発生させるために、少なくとも1つのステータ極のコイルに変調電気パルスを制御可能に供給することを止めるよう構成される。
【0049】
少なくとも1つの実施形態において、磁気位置制御システムが、少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給して、強磁性コアに反発磁束を発生させて、強磁性コアと永久磁石の1つとの間に反発力を発生させるように構成される。
【0050】
少なくとも1つの実施形態において、磁気位置制御システムが、少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給して、強磁性コア上に反発磁束を発生させて、強磁性コアと永久磁石の1つとの間の引力を減少させて、可動構成要素の動きを遅くするようにさらに構成される。
【0051】
幅広い態様に従って、電気モータを制御する方法が本明細書に記載され、電気モータは、ステータに沿って概ね等間隔に配置された少なくとも1つの独立した極又は極回路を有するステータを有し、独立した極又は極回路はステータの周縁の周りに交互に配置されている。本方法は、強磁性コアが電気モータの可動構成要素に結合された永久磁石に対向し、かつ磁気的に引き付けられているときに、ステータの第1のステータ極の強磁性コアを取り囲む電気コイルに第1の変調電気パルスを制御可能に供給することによって電気モータの可動構成要素の移動を開始させることを含む。この方法はまた、永久磁石が第1のステータ極から離れ、電気モータの第2のステータ極に向かって回転するときに、永久磁石が第2のステータ極の強磁性極によって引き付けられている状態で、永久磁石が第2のステータ極に到達すると第2の変調電気パルスを第2のステータ極の強磁性コアに制御可能に供給して、第2のステータ極の強磁性コアの反発磁束を発生させ、永久磁石と第2のステータ極の強磁性コアとの間の引力を打ち消すことを含んでいる。
【0052】
少なくとも1つの実施形態において、第1のステータ極の強磁性コアを取り囲む電気コイルに第1の変調電気パルスを制御可能に供給することによって可動構成要素の移動を開始した後、方法は、第1のステータ極の強磁性コアの反発磁束を発生させて第1のステータ極から離れる永久磁石の移動を促進するために第1のステータ極の強磁性コアを取り囲む電気コイルに1つ又は複数の後続の変調電気パルスを制御可能に供給することを含んでいる。
【0053】
幅広い態様に従って、ステータに沿って概ね等間隔に配置された少なくとも1つの独立した極又は極回路を有するステータを有する電気モータを制御する方法が本明細書に記載され、独立した極又は極回路はステータの周縁の周りに交互に配置される。この方法は、ロータ及び/又はシャフトに外部トルク又は力を加えることによって電気モータの回転を開始することと、ロータの永久磁石が電気モータの第1のステータ極から第2のステータ極に向かって回転するときに、永久磁石が第2のステータ極の強磁性極によって引き付けられている状態で、第2の変調電気パルスを第2のステータ極の強磁性コアに制御可能に供給して、第2のステータ極の強磁性コアの反発磁束を発生させて、永久磁石と第2のステータ極の強磁性コアとの間の引力を打ち消すこととを含む。
【0054】
少なくとも1つの実施形態において、永久磁石が第2のステータ極から離れて第3のステータ極に向かって回転するとき、この方法は、第2のステータ極の強磁性コアに変調電気パルスを制御可能に供給して、第2のステータ極の強磁性コアの反発磁束を発生させ、永久磁石と第2のステータ極との間に反発力を発生させて永久磁石を第3のステータ極に向かって押すことを含む。
【0055】
少なくとも1つの実施形態において、永久磁石が第2のステータ極から離れて第3のステータ極に向かって回転するときに、永久磁石が第3のステータ極の強磁性極によって引き付けられている状態で、この方法は、永久磁石が第3のステータ極に到達すると第3のステータ極の強磁性コアに第3の変調電気パルスを制御可能に供給し、第3のステータ極の強磁性コアの反発磁束を発生させ、永久磁石と第3のステータ極の強磁性コアとの間の引力を打ち消すことを含む。
【0056】
幅広い態様に従って、ステータに沿って概ね等間隔に配置されたステータ極の少なくとも1つの独立した極又は極回路を有するステータを有する電気モータを制御する方法が本明細書に記載され、少なくとも1つの独立した極又は極回路はステータの周縁の周りに交互に配置される。この方法は、ロータの各永久磁石がステータのそれぞれのステータ極の強磁性コアと整列されているときに、各ステータ極が強磁性コアを取り囲む電気コイルを有している状態で、第1の変調電気パルスを各ステータ極の電気コイルに制御可能に供給することによってロータの回転を開始させることを含む。この方法はまた、ロータのそれぞれの永久磁石がそのそれぞれのステータ極とそれぞれの隣接するステータ極との間に位置付けられるとき、各ステータ極の電気コイルのそれぞれを非通電状態にすることと、ロータのそれぞれの永久磁石が隣接するステータ極に到達すると、それぞれの隣接するステータ極の電気コイルに第2の変調電気パルスを制御可能に供給して、強磁性コアの反発磁束を発生させ、それぞれの永久磁石とそのそれぞれの隣接するステータ極の強磁性コアとの間の引力を打ち消すこととを含む。
【0057】
幅広い態様に従って、電気モータが本明細書に記載される。電気モータは、少なくとも1つの永久磁石が結合された可動構成要素であって、各永久磁石が表面積を有する外面を有する可動構成要素と、可動構成要素から離間したステータであって、少なくとも1つの永久磁石と対向するように位置付けられた少なくとも1つのステータ極を有するステータとを備える。各ステータ極は、強磁性コアと、強磁性コアに巻かれたコイルとを備え、強磁性コアは、少なくとも1つの永久磁石に自然に引き付けられる。電気モータはまた、ステータに対する可動構成要素上の少なくとも1つの永久磁石の位置を監視し、少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給し、強磁性コア上に反発磁束を発生させて、強磁性コアと少なくとも1つの永久磁石との間の引力を打ち消して、可動構成要素の動きを制御するように構成された磁気位置制御システムを含む。
【0058】
幅広い態様に従って、電気モータが本明細書に記載される。電気モータは、少なくとも1つの永久磁石が結合されたロータであって、各永久磁石は表面積を有する外面を有しているロータと、ロータの回転がシャフトを回転させるようにロータに固定的に結合されたシャフトと、ロータを取り囲むステータとを含み、ステータは少なくとも1つの永久磁石に対向するように位置付けられた少なくとも1つのステータ極を有し、各ステータ極は強磁性コアと強磁性コアに巻き付けられたコイルとを備え、強磁性コアは少なくとも1つの永久磁石に自然に引き付けられる。電気モータはまた、ステータに対するロータ上の少なくとも1つの永久磁石の位置を監視し、少なくとも1つの永久磁石の位置に応答して、電気パルスをそれぞれの少なくとも1つのステータ極のコイルに制御可能に供給し、強磁性コア上に反発磁束を発生させ、強磁性コアと少なくとも1つの永久磁石との間の引力を打ち消して、可動構成要素の動きを制御するように構成された磁気位置制御システムも含む。
【0059】
本出願のこれら及び他の特徴及び利点は、添付の図面と併せて読まれる以下の詳細な記載から明らかになるであろう。しかしながら、本出願の趣旨及び範囲内の様々な変更及び修正は、この詳細な記載から当業者に明らかになるので、詳細な記載及び特定の例は、本出願の好ましい実施形態を示す一方、例示のためにのみ与えられていることを理解されたい。
【0060】
本明細書に記載された様々な実施形態のより深い理解のために、また、これらの様々な実施形態がどのように実施され得るかをより明確に示すために、例として、少なくとも1つの例示的実施形態を示し、これから記載する添付の図面を参照する。図面は、本明細書に記載される教示の範囲を限定することを意図していない。
【図面の簡単な説明】
【0061】
【
図1A】一実施形態による、第1の角度位置(整列時(0度)又は静止時)における電気モータのロータ、永久磁石及び電磁石の上面図である。
【
図1B】
図1Aに示された電気モータのロータの変化する角度位置に対するトルクの変化を示すグラフであり、本明細書に記載されるような力-磁気静的(FMS)を示している。
【
図2A】一実施形態による、第2の角度位置での
図1Aの電気モータのロータ、永久磁石及びステータ極の上面図である。示された位置において、磁石は、隣接する強磁性極に引き付けられる。
【
図2B】
図2Aに示された電気モータのロータの変化する角度位置に対するトルクの変化を示すグラフであり、本明細書に記載されるような力-磁気動的(FMD)を示している。示された位置において、磁石は、隣接する強磁性極に引き付けられる。
【
図3A】一実施形態による、第1の角度位置(整列時(0度)又は静止時)における
図1Aのロータ、永久磁石及びステータ極の上面図である。
【
図3B】
図3Aに示される電気モータのロータの変化する角度位置に対するトルクの変化を示すグラフであり、本明細書に記載されるような力-反発動的(FRD)を示している。
【
図4A】一実施形態による、第1の角度位置(整列(0度)又は静止状態)における
図1Aのロータ、永久磁石及びステータ極の上面図である。
【
図4B】
図4Aに示される電気モータのロータの変化する角度位置対するトルクの変化を示すグラフであり、本明細書に記載されるようなブレーキモードを示している。
【
図5A】一実施形態による、第1の角度位置での
図1Aのロータ、永久磁石及びステータ極の上面図である。
【
図5B】
図4Aに示される電気モータのロータの変化する角度位置に対するトルクの変化を示すグラフであり、本明細書に記載されるようなファントムモーメントを示している。
【
図6】一実施形態による、電気モータの上面図である。
【
図7】同期ディスク及びセンサを示す、
図6の電気モータの上面図である。
【
図8】別の実施形態による、
図6の電気モータの回路図である。
【
図9】ロータの回転が開始されるステップ0でのモータを示す、
図6の電気モータの回路図である。
【
図10】
図6の電気モータの回路図であり、ステップ1におけるモータを示している。
【
図11】
図6の電気モータの回路図であり、ステップ2におけるモータを示している。
【
図12】
図6の電気モータの回路図であり、ステップ3におけるモータを示している。
【
図13A】そのステータ極のそれぞれが同じ磁気回路上の他のステータ極のそれぞれと接続され、ステータ極のそれぞれが第1の極性にある電気モータの上面図を示す。
【
図13B】そのステータ極のそれぞれが同じ磁気回路上の他のステータ極のそれぞれと接続され、ステータ極のそれぞれが第2の極性である電気モータの上面図を示す。
【
図14A】一実施形態による、動的ブレーキモード中の
図6のロータ、永久磁石及びステータ極の上面図である。
【
図14B】動的ブレーキモードの
図14Aに示されたロータの角度位置に対するトルクの変化を示すグラフである。
【
図15A】一実施形態による、振動ゾーンの
図6のロータ、永久磁石及びステータ極の上面図である。
【
図15B】始動時における振動ゾーンの
図15Aに示されたロータの角度位置に対するトルクの変化を示すグラフである。
【
図16A】一実施形態による、始動の間の
図6のロータ、永久磁石及びステータ極の上面図である。
【
図16B】所望の方向における始動時の
図16Aに示されたロータの角度位置に対するトルクの変化を示すグラフである。
【
図17A】別の実施形態による、始動の間の
図6のロータ、永久磁石及びステータ極の上面図である。
【
図17B】反対方向における始動時の
図17Aに示されたロータの角度位置に対するトルクの変化を示すグラフである。
【発明を実施するための形態】
【0062】
本明細書に記載の例示的実施形態のさらなる態様及び特徴は、添付の図面と併せて読まれる以下の記載から明らかになる。
【0063】
特許請求された主題の少なくとも1つの実施形態の例を提供するために、様々な装置及び方法が以下に記載される。以下で記載される実施形態は、いかなる特許請求された主題も限定せず、いかなる特許請求された主題も、以下で記載されるものとは異なる装置及び方法を対象とすることができる。特許請求された主題は、以下に記載されるいずれか1つの装置又は方法の特徴の全てを有する装置及び方法、又は以下に記載される装置及び方法の複数又は全てに共通する特徴に限定されない。以下に記載される装置又は方法が、特許請求される主題の実施形態でない可能性もある。本明細書に記載された装置又は方法において開示される主題のうち、本書で特許請求されていないものは、別の保護手段、例えば継続的な特許出願の主題である可能性があり、出願人、発明者及び/又は所有者は、本書におけるその開示によってそのような発明を放棄、棄権、又は公衆に捧げることを意図していない。
【0064】
さらに、図示の単純化及び明確化のために、適切と考えられる場合には、参照数字が、対応する又は類似の要素を示すために図間で繰り返されることがあることが理解されよう。加えて、本明細書に記載された例示的な実施形態の徹底的な理解を提供するために、多数の具体的な詳細が記載されている。しかしながら、本明細書に記載された例示的な実施形態は、これらの具体的な詳細なしに実施され得ることは、当業者には理解されよう。他の例では、周知の方法、手順、及び構成要素は、本明細書に記載される例示的な実施形態を不明瞭にしないように、詳細には記載されていない。また、本記載は、本明細書に記載される例示的な実施形態の範囲を限定するものと見なされてはならない。
【0065】
本明細書で使用される「実質的に」、「約」及び「およそ」などの程度の用語は、最終結果が著しく変化しないような修飾された用語の妥当な量の偏差を意味することに留意されたい。これらの程度の用語は、この偏差がそれが修飾する用語の意味を否定しない場合、例えば少なくとも±5%又は少なくとも±10%の偏差などの、修飾された用語の偏差を含むものとして解釈されるべきである。
【0066】
さらに、本明細書における端点による任意の数値範囲の記載は、その範囲内に包含されるすべての数及び分数を含む(例えば、1~5は、1、1.5、2、2.75、3、3.90、4、及び5を含む)。また、すべての数及び分数は、最終結果が著しく変化しない場合、例えば1%、2%、5%、又は10%など、言及されている数のある量までの変動を意味する用語「約」によって修飾されると推定されることも理解されたい。
【0067】
また、本明細書で使用される際、「及び/又は」という表現は、包括的-又は、を表すことを意図していることに留意されたい。すなわち、「X及び/又はY」は、例えば、X又はY又はその両方を意味することが意図されている。さらなる例として、「X、Y、及び/又はZ」は、X又はY又はZ又はそれらの任意の組合せを意味することが意図されている。
【0068】
以下の記載は、特許請求された又はまだ特許請求されていない主題を限定又は定義することを意図していない。特許請求され得る主題は、その請求項及び図を含む本書のいずれかの部分に開示された要素又はプロセスステップのいずれかの組み合わせ又は下位組み合わせに存在し得る。したがって、本明細書の教示に従って開示される機器、システム、又は方法は、本明細書に含まれる特徴のうちのいずれか1つ又は複数を具現化し得ること、及び、その特徴は、その意図する目的のために物理的に実行可能かつ実現可能であるいずれか特定の組み合わせ又は下位組み合わせで使用できることが当業者には理解されよう。
【0069】
近年、永久磁石を用いた電気モータの開発に対する関心が高まっている。本明細書に記載される電気モータは、1つ又は複数の永久磁石と、顕著なステータ極と相互作用するロータとを含む電気力学的モータであり得る。従来の電気モータでは、ロータ(すなわち回転部分)がステータ(すなわち静止部分)の内部で回転する。リニアモータでは、ステータが巻き戻されて平らになり、ロータがそれを通り過ぎるようにして直線的に移動する。したがって、本明細書において「ロータ」という用語は、直線的に移動する部品に限らず、あらゆる移動又は回転部品を含むか、又はそれを指し得る。本明細書中、従来の電気モータとリニアモータの両方について記載する。
【0070】
いくつかの実施形態では、ロータの移動(例えば回転)は、ロータに結合されている1つ又は複数の永久磁石が、ステータ極上又はその周りに配置された電磁石の固体鉄心に引き付けられることによって主に開始及び維持され得る。いくつかの実施形態では、ステータの電磁石に印加される電流パルスは、ロータの永久磁石がステータの電磁石コアを通過するとすぐにロータの永久磁石のあらゆる後方抗力を打ち消すのに十分であり、それによってロータの連続運動(例えば、回転)を可能にする。
【0071】
いくつかの実施形態では、本明細書に記載された電気モータは、一般に、電気モータへの電力入力に対して高効率(正の利得の可能性)で、選択された構成に応じて機械的駆動トルク、又は直線力を生み出すことができる電気モータの形態に関する。
【0072】
本明細書に記載された電気モータのいくつかの実施形態の他の主要な特性は、自己始動、速度制御、オンデマンドCW又はCCWで動作可能、過負荷保護、最小限の発熱、モジュール構造、一定の高トルク/力、動的制動、を含み得るが、これらに限定されるわけではない。
【0073】
いくつかの実施形態では、本明細書に記載された電気モータは、一般に、磁化された極の間のような相互磁気引力及び/又は反発の美徳及び属性によって作動する機械を意味する、スイッチト磁束パルスモータ及びその制御を含む。
【0074】
以下の記載及び例は、本明細書に記載された電気モータが動作することを提供するいくつかの基本原理と、本明細書に記載された電気モータが動作している間に発見され定量化された種々の原理とを含むことが理解されるべきである。いくつかの実施形態において、本明細書に記載される電気モータは、以下の状態又は機能のうちの1つ又は複数を含み得る:
- 力-磁気静的(FMS)
- 力-磁気動的(FMD)
- 力-反発動的(FRD)
- ブレーキモード
- MPF動作モード
- 動的動作モード
- 磁気的位置制御システム(MPCS)
【0075】
これらの状態又は機能のそれぞれについて、以下により詳細に記載する。
【0076】
以下の記載において、参照数字100は、永久磁石(要素「A」と呼ばれることもある)、電磁石(要素「B」と呼ばれることもある)及びロータ(要素「C」と呼ばれることもある)を含む電気モータを指すことが理解されるべきである。以下の記載では、1つ又は複数の回転モータ変形における電気モータを記載するが、本明細書で記載する同じ原理は、リニアモータや車輪ハブモータ変形に限定されない他の実施形態にも適用できることを理解されたい。
【0077】
本明細書で使用される「力-磁気静的」(FMS)という用語は、電気モータ100のロータ106のいかなる角運動も生じない力を指す。より具体的には、
図1Aに示すように、FMSは、永久磁石102と強磁性極104との間の、強磁性極104に向かい、ロータ106の回転軸に垂直で、ロータ106の回転軸と交差する引力(
図1Aに矢印110で示す)のことを言う。ロータ106の回転軸は、ロータ106の中心107を直接通過していることに留意されたい。FMSはロータ106の回転軸と交差しているため、トルクは発生しない。FMSは、一般的な誘導モータに見られる起電力と比較することができる。しかしながら、この場合、FMSはインダクタに由来するものではなく、むしろ永久磁石102の磁界に由来するものである。FMSは、永久磁石102の強さ、永久磁石102と強磁性極104との間のギャップ112の距離、及び強磁性合金自体の関数として定量化することができる。
【0078】
図1Bは、
図1Aのモータ100のトルク対角度位置のグラフであり、FMSがいかなるトルクも発生しないことを示す。
【0079】
本明細書で使用される「力-磁気動的」(FMD)という用語は、電気モータ100におけるロータ106の角運動を生じさせる力を指す。より具体的には、
図2Aに示すように、FMDは、
図2Aにおいて矢印110で示すように、永久磁石102と強磁性極104との間の回転をもたらす引力のことを言う。FMDは、強磁性極104の方に向けられ、ロータ106の回転軸に対して垂直であるが、そこからオフセットされ(例えば、横方向に間隔をあけて)、かくして、結果として得られるトルクを発生させる。発生したトルクは、磁界の相対運動と永久磁石の自然磁気吸引/反発効果からの有用なフリーエネルギーであり得る。FMDは、永久磁石(永久磁石102など)の使用に伴って利用可能であり、いかなる外部エネルギー入力も必要としない。FMDは、永久磁石102の強度、永久磁石102と強磁性極104との間の横方向距離114、磁石(すなわち、永久磁石102及び強磁性極104の一方又は両方)の形状及び強磁性合金自体の関数として、又はこれらに関連して定量化することが可能である。
【0080】
図2Bは、
図2Aのモータ100のトルク対角度位置のグラフを示し、FMDがトルクを発生させることを示す。
【0081】
本明細書で使用される「力-反発動的」(FRD)という用語は、電気モータ100(
図3A)におけるロータ106の角運動を生じさせる別の力を指す。より具体的には、FRDは、さらに、外部エネルギー入力を必要とする。
図3Aに示すように、FRDは、永久磁石102がブレーキ点116の後にFMDゾーンを通過するときに永久磁石102によって強磁性極104に生じる反発磁界の結果として言及することができる。この磁界は、より多い又は少ない顕著な影響をロータ106に有するように変調され得る。動作中の電気モータ100のエネルギー需要は、選択されたFRD強度に比例すると考えることができる。この力が加えられる時間経過は、回転サイクル中の本明細書に記載された電気モータにおいて比較的短い。例として、いくつかの実施形態では、パルスは、回転の約3~20度以内に印加され、したがって、ロータがより速く回転すると、パルスはより短くなる。MPF動作モードで動作している間、FRDの強度は低から無である。しかしながら、動的動作モードで動作する間、より激しく使用される。FRDは、永久磁石102の強さ、電磁石104が発生する磁界の強さ、FRDが適用される時間経過、永久磁石102と強磁性極104の間のギャップ112の距離、及び強磁性合金自体の関数として定量化することが可能である。
【0082】
図3Bは、FRDがトルクを発生することを示す、
図3Aのモータ100のトルク対角度位置のグラフを示す。
【0083】
本明細書で使用されるブレーキモードという用語は、電気モータ100に印加される外部電気エネルギー入力がない(すなわち、電流も電圧もない)電気モータ100の動作モードを指す。このモードでは、
図4Aに示すように、永久磁石102は、電磁石104の強磁性コアと自己整列する。永久磁石102と電磁石104の間のギャップ112の距離は最小点であるため(例えば永久磁石102と電磁石104は互いに正対している)、FMSは最大であり、ロータ106の回転を阻害する。永久磁石102、電磁石強磁性体コア104及びロータ106の回転軸の間の両側のいかなる角度的誤整列も、永久磁石102、電磁石強磁性体コア104及びロータ106を最大FMSの周りに自然に中心化するための反作用トルクを生成するFMDによって拘束される。
【0084】
MPF動作モードでは、外部電気エネルギー入力が電気モータ100に印加されず(すなわち、電流及び電圧がない)、永久磁石102が電磁石強磁性コア104と整列していないとき、FMDはロータ106に(
図2Aに示すように)トルクを発生して、ロータ106を回転させて最大FMS(「ブレーキ点」とも呼ばれる)に向かって再整列させる。
【0085】
この段階で、ブレーキ点に到着した後、ロータ106は、ロータ106を制動するのと同程度の強さの十分な反作用のFMDトルクに直面しようとしている。この時点で、磁気位置制御システム(MPCS;後述)は、最小限の外部電気エネルギー入力を使用して、ステータ極104の強磁性コアを介して電磁パルスを注入する。電磁パルスは、永久磁石102とステータ極104の強磁性体コアとの間の吸引力に相当する反発効果を永久磁石102に有する。電磁パルスは、永久磁石102が減速し得るFMD影響領域の外に出るのに十分な時間だけ印加される(
図5A及び5B参照)。その結果、対抗するFMDトルクは瞬間的にアニールされ、これによりステータ極104は永久磁石102の磁束に対して見えなくなり、ロータ106は「ブレーキ点」を超えて、隣に接する(又は隣接する)ステータ極104の強磁性極の次の吸引ゾーンに到達するまで自由に回転することが可能になる。ステータ極104が永久磁石102の磁束の影響を受けなくなる瞬間は、「ファントムモーメント」と呼ぶことができる。
【0086】
動的動作モードでは、上述のMPF動作モードと同様に、本明細書に記載の電気モータに対して外部電気エネルギー入力が適用されない(すなわち、電流も電圧もない)場合、永久磁石102がステータ極104の電磁石強磁性コアと整列していないと、
図2A及び2Bに従ってFMDがロータ106にトルクを発生し、「ブレーキ点」とも呼ばれる最大FMSに向かってロータ106を自然に回転させ、再整列させる(
図4A及び
図4B)。
【0087】
この段階で、「ブレーキ点」に到達した後、ロータ106は、ロータ106を制動するのと同程度の強さの十分な反作用のFMDトルクに直面しようとしている。この時点で、MPCSは、最小限の外部電気エネルギー入力を使用して、ステータ極104の強磁性コアを介して、永久磁石102とステータ極104の強磁性コアとの間の引力よりも大きな反発効果を永久磁石102に有する電磁パルスを注入する。電磁パルスは、永久磁石102がFMD影響領域の外に出るのに十分な時間印加されるが、今度は回転に有利な追加の反発トルク(FRDによる)を加える(
図3A及び3Bを参照)。その結果、対抗するFMDは瞬間的にアニールされるだけでなく、ロータ106は、磁石が次の隣接する強磁性極によって自然に引き付けられるのに加えて、その次の強磁性極引力ゾーンに向かって増加したトルクでFRDによって押される。
【0088】
MPCSは、本明細書に記載された電気モータにおける様々な磁束を監視し制御するシステムである。MPCSは、ステータ極104の強磁性コアと連続的に相互作用して、上述した動作モード及び/又は本明細書に記載のモータに対する電力需要などであるがこれらに限定されない様々な動作モードの磁気パルス機能を変調させる。このシステムは、様々な任意選択の制御を提供し、本明細書に記載された電気モータにおいて共に相互作用する各構成要素の各ステップの実行を制御し得る。MPCSは、機械的、電子的、及びソフトウェア的な構成要素を含む。本明細書に記載された電気モータは、動作するために1つ又は複数のMPCSを含み得る。
【0089】
構成要素
以下のセクションでは、本明細書で記載される電気モータに見られる様々な構成要素について記載する。以下に記載されるように、様々な構成要素は、いくつかの異なる構成で使用することができる。各電気モータに選択された構成要素の組み合わせに関係なく、本書に記載された電気モータのそれぞれは、本書に記載された原則に従う。
【0090】
図6を参照すると、そこに示されているのは、少なくとも1つの実施形態による電気モータ600である。電気モータ600は、ロータ606を含む。ロータ606は、電気モータ600のすべての可動構成要素を含む。一般に、ロータ606は、モータ600のシャフト601(
図7参照)を介して、回転動静磁力を機械的トルクに入れ替える。
【0091】
ロータ606は、ロータ606がシャフト601の軸を中心に回転することを提供する1つ又は複数の永久磁石602を含む。モータ600の永久磁石602の数は、奇数又は偶数であることができる。さらに、永久磁石602は、様々な形態、形状、又は合金から作られ得る。例えば、
図6に示す電気モータ600では、1組の4つの永久磁石602がシャフト601の周りに均等に配置され、ロータ606に固定的に結合されている。
【0092】
ステータ605は、電気モータ600のすべての固定構成要素を含む。例えば、いくつかの実施形態では、ステータ605は、電気モータ600が意図されるいかなる用途に対しても定着及び設置され得る完全に自己完結したモータユニットを形成するすべての部品を含む。
【0093】
ステータ605は、ステータ605の構成要素を含むためのフレーム607を有する。ステータ605は、ロータ606の永久磁石602と組み合わせて電気モータ600の回転運動を発生させるステータ極604とそのそれぞれの巻線609のそれぞれの支持体として機能する。ステータ605のステータ極604の数は、約1~約100、又は約10~約75、又は約15~約50、又は約15~約30、又は約16~約20、又は約1~約25、又は約10~約25、又は約15~約20、又は約16~約18の範囲であることが可能である。少なくとも1つの実施形態において、ロータ606は、1つより多いロータスタックを有し得る。例えば、モータ600は、1~20のスタック、1~12のスタック、1~10、1~8、1~6、1~5、1~4、1~3又は1~2のスタックを含むことができる。少なくとも1つの実施形態において、ステータ605のステータ極604の数は、ロータスタックあたり約1~約100、又はロータスタックあたり約10~約75、又はロータスタックあたり約15~約50、又はロータスタックあたり約15~約30、又はロータスタックあたり約16~約20の範囲であることが可能である。
【0094】
1つより多いステータ極604を有する実施形態において、ステータ極は、ロータ606のそれぞれの永久磁石602と均等に対になっている必要はないことに留意されたい。さらに、ステータ極604は、一般に、シャフト601の周囲で互いに等間隔に離間している。ステータ極604は、様々な形態、形状、コイル線、又はコア合金から作られてもよい。例として、いくつかの実施形態では、電気モータ600は、シャフト601の周りに均等に分布し(すなわち、間隔をあけて)、後部鉄607を介してステータ605に固定された8つのステータ極604のセットを含み得る。
【0095】
ステータ極604の互いに対する位置及び永久磁石602の位置に対する位置、及び永久磁石602の互いに対する位置及びステータ極604の位置に対する位置などであるがこれに限定されない、ロータ606及びステータ605の構成要素の様々な特徴の選択は、電気モータ600の特定の性能特性及び機能性を強調し得る。
【0096】
ロータ606は、一般に、磁気力、遠心力、重力、振動力及び熱膨張力を受ける電気モータ600のすべての回転構成要素の構造的完全性を保持するのに十分強い材料から作られる。ロータ606は、強磁性材料から作られてもよいし、非強磁性材料から作られてもよいが、ロータ606が強磁性材料から作られる場合、強磁性材料は永久磁石602の磁界を妨害しないことを条件とする。いくつかの実施形態では、ロータ606は、永久磁石602の磁界を拡大する材料から作られてもよい。例えば、いくつかの実施形態では、ロータ606は、銅と亜鉛の合金(例えば、真鍮)から作られてもよい。いくつかの実施形態では、ロータ606は、従来の円筒型形状を有していてもよい。
【0097】
シャフト601は、従来の電気モータに見られるシャフトを作るために典型的に使用される任意の材料から作ることができる。シャフト601は、ロータ606の中心を通り、ロータ606の回転がシャフト601の回転を提供するように、ロータ606に固定的に結合される。
【0098】
永久磁石602は、異なる合金から作られてもよく、様々な形状及び/又は厚さを有してもよいが、永久磁石602のそれぞれが同じ形状及び厚さを有することを条件とする。上述したように、本明細書に記載の電気モータは、奇数又は偶数で、1つ又は複数の永久磁石602を含んでもよい。
【0099】
いくつかの実施形態では、(
図8に示すような)永久磁石602のそれぞれの外面611の形状は、ステータ極604のそれぞれの外面613に対応する(例えば、それを忠実に反映するか、又はそれとともに等しい間隔を提供する)。ステータ極604又はステータ602の周囲で概ね等しい距離だけ永久磁石602から概ね離間している。
【0100】
いくつかの実施形態では、ステータ極604の2つの隣接する中心線(すなわち、ロータ601の軸に対して横方向、又は垂直であるその中心を通って延びる軸)間の最大角度距離は、永久磁石602のそれぞれの幅、又は直径の約2倍、又は2倍である。
【0101】
いくつかの実施形態では、ステータ極604に面している磁石の部分における永久磁石602のそれぞれの極性は、ロータ606の永久磁石602のそれぞれについて同じである。
【0102】
永久磁石602はそれぞれ、1つ又は複数のステータ極に露出する(すなわち対向する)磁石の表面積に対応する表面積を有する外面611を有する。別の言い方をすれば、外面611の表面積は、永久磁石がステータ極に磁気的影響を及ぼす永久磁石の部分の面積である。いくつかの実施形態では、永久磁石602のそれぞれの外面611の表面積の差は、約10%未満、又は約5%未満、又は約3%未満である。
【0103】
同様に、ステータ極604のそれぞれは、表面積を有する外面613を有する。各ステータ極604の外面613の表面積は、ステータ極が永久磁石602によって磁気的に影響されるステータ極の部分の面積である。少なくとも1つの実施形態において、ステータ極604のそれぞれの外面613の表面積と、永久磁石302のそれぞれの外面611の表面積との間の差は、約10%未満、又は約5%未満、又は約3%未満である。
【0104】
永久磁石602のそれぞれは、幅を有する。磁石602のサイズ及び形状は、特定の属性を得るために、あるモータ構造から別のモータ構造まで変化させることができる。少なくとも1つの実施形態において、永久磁石602は、円筒形の形状を有する。この場合、少なくとも1つの実施形態では、磁石602の幅は、その直径に等しい。永久磁石602のサイズ及び形状(例えばその幅)、及び/又は永久磁石602の間隔、及び/又はステータ極604の間隔は、モータ600のトルク能力に影響を及ぼし得る。少なくとも1つの実施形態では、2つの隣接するステータ極604の中心線間の最大距離は、永久磁石602の1つの幅の2倍である。
【0105】
いくつかの実施形態では、各永久磁石602は、各ステータ極604に面して同じ極性を有する。
【0106】
図7に示されるように、電気モータ600は、同期ディスク又はインデックスディスク620を含んでもよい。ディスク620は、センサ622と並行して動作する部品である。ディスク620及びセンサ622の両方は、電気モータ600の磁気位置制御システム(MPCS)624の一部である。
【0107】
ディスク620は、本明細書に記載される電気モータの任意選択の特徴であることに留意されたい。電気モータ600はディスク620を含むが、それは必須ではない。
【0108】
電気モータ600は、ディスク620の周りに均等に分散された一連の8つの小さなディスク永久磁石626を有するディスク620を含む。ディスク永久磁石626は、以下の極性を有する:N-S-N-S-N-S-N-S。ディスク620の機能は、ステータ605に向かうロータ606の位置をMPCS624に常時割り出すことである。
【0109】
MPCS624は、図面ではディスク620及びセンサ622によって表されているが、MPCS624は、電気モータ600において異なる磁束を位置決めすることを提供する完全なシステムであることに留意されたい。MPCS624は、選択された動作モード(上述)及び電気モータ600の負荷に従って、その動作及びステータ極604に送られる信号を変調する。このように、MPCS624は、選択された選択肢に基づいて、電気モータ600においてその意図された機能を実行するために、すべての能動構成要素の各ステップの実行を制御することによって、電気モータ600の「脳」として機能すると考えることができる。MPCS624は、機械的、電子的、及びソフトウェア的な構成要素を含む。MPCS624は、唯一のもの(例えば単数)であることができ、又はモータ600に複数のMPCS624が存在することができる。さらに、MPCS624は、電気モータ600の内部又は外部に位置付けることができる。
【0110】
各ステータ極604は、強磁性金属コア608の周りに巻かれたコイル609を含む。
【0111】
コイル609は、回路のアンペア数に耐える大きさの銅線又はアルミニウム線(又は他の任意の導電性材料)であってよい。さらに、いくつかの実施形態では、コイル609は、特定の時間及び所与の持続時間において永久磁石602を反発させるのに十分な磁束を達成しながら、受け取った電圧に耐えるのに十分な巻線を含む。
【0112】
コア608は、強磁性体から構成され、一般に、永久磁石602と同じ形状を有する(すなわち、コア608の外面613は、一般に、各永久磁石602の外面611の形状に対応する形状である)。各永久磁石602の外面611は、ロータ606が回転するとき、コア608の外面613に概ね対向する。各永久磁石602は、各永久磁石602の外面611が同じ極性を有するように、ロータ606に配置されている。
【0113】
各ステータ極604は、電気モータ600の属性及び性能に直接影響を及ぼす。例えば、ステータ極604は、並列に、直列に、単一の回路で、及び/又は複数の回路で相互接続されてもよい(非対称及び対称設計構成とも称される)。いくつかの実施形態では、電気モータ600は、単一のステータ極604を中心に構成することができ、又は無限のステータ極604を含むことができる(すなわち、ステータ極の数は物理的制約によってのみ制限される)。上述のように、本明細書に記載される各電気モータの実施形態におけるステータ極604の数は、ロータ606上に見出される永久磁石602の数と同じである必要はない。
【0114】
ステータ極604が通電されていないとき、永久磁石602は、各コア608の強磁性材料に自然に引き付けられる。ステータ極604が通電されているとき、ステータ極604は永久磁石602に対して自然な反発を有し、その反発の程度は選択された動作モード(例えばMPF又は動的)に基づいて制御可能である。
【0115】
図6及び7に示す例では、ステータ極604は、直列に接続されたグループA及びグループBの2つのグループの下にまとめられ、これは非対称設計構成とも呼ばれ得る。一実施形態では、各ステータ極604はMPCSによって制御され、積層ケイ素鉄で作られている。
【0116】
後部鉄、又はフレーム607は、ステータ605の任意選択の構成要素である。後部鉄607は、例えば、ステータ605のステータ極604を取り囲む積層鉄の一部を形成している。機械的に、後部鉄607は、ステータ605が例えばモータフレームに接続されることを提供しながら、ステータ極604を所定の位置に保持する。磁気的に、後部鉄607は、ステータ極604の間に磁気回路を生成するために提供される。これは、通電されていないステータ極604が電気モータ600の動作に正の影響を及ぼすことを提供する。さらに、後部鉄607は、全体(例えば、AとB)のステータ極604をまとめるか、又は一緒に混在(例えば、A1及びB1とA2及びB2)させることができる。これは、回路グループを互いに積み重ねることを提供し、したがって、電気モータ600の総出力を増加し得る。
【0117】
選択された特徴及び構成に依存して、後部鉄607は任意選択の特徴である。ステータ極604及びロータセットを積み重ねる能力は、後部鉄607の存在に関係なく、電気モータ600の主要な特徴であることに留意されたい。少なくとも1つの実施形態において、1、2、4、8、及び18個の極を有するモータは、単一のロータスタックで形成することができる。少なくとも1つの実施形態において、最大約100個の極を有するモータを、単一のロータスタックに形成することができる。少なくとも1つの実施形態において、最大100個の極を有するモータを、単一のロータスタックに形成することができる。少なくとも1つの実施形態では、2つ以上のモータスタック(すなわち、シャフトに軸方向に接続された複数のディスク及び磁石)を有するモータを形成することができる。これらの実施形態では、各ロータスタックは、最大で約100個の極を含み得る。
【0118】
ギャップ610は、(
図6に示すような)浸透する磁石602のそれぞれの外面611と、ステータ極604(例えば、コア608)のそれぞれの外面613との間の間隔である。
【0119】
ステップ・バイ・ステップ動作
本明細書に記載された電気モータは、上述したように、汎用性があり、様々な構造を有することができる。構造に関係なく、本明細書に記載された電気モータは、一般に、以下に記載された原則に従う。
【0120】
本明細書に記載された電気モータは、基本的にDC電源のモータである。つまり、本明細書に記載された電気モータは、例えば、整流器と結合可能であり、これにより、電気モータがAC電源(例えば、単相又は三相)で、又はさらには無極性DC入力で動作することが実現される。これは、その入力電圧の完全可変線形速度モータ関数である。その構造により、本明細書に記載の電気モータは、0RPMから、30,000RPM、又は50,000RPM、又は100,000RPMなどであるがそれらに限定されないその最高速度まで、高く、ほぼ一定のトルクを生成することができる。
【0121】
以下の記載は、本明細書に記載される少なくとも1つの実施形態による、非対称構成を有する電気モータの動作に適用すべき原理を示す。1つの例示的な実施形態が以下に記載されるが、特許請求の範囲は、以下に記載される例示的な実施形態に限定されるものと解釈されるべきではない。
【0122】
図8は、本明細書に記載される少なくとも1つの実施形態による電気モータの動作の一例の基本的な概略図を提示する。具体的には、
図8は、ステータ605上で2つのグループ(A-シリーズ及びB-シリーズ、これらは図示のようにロータ602の周囲で交互に位置する)に接続された8つのステータ極604、ロータ606上の4つの永久磁石602、MPCS624に接続されているセンサ622によって読み取られるロータ軸601上の同期ディスク620、ならびにMPCS624によってそれ自体が管理されている電気回路に電力を供給するスイッチS1及びS2、を有する
図6及び7の電気モータ600を示す。ここで「B+」で表される入力電力は、整流器モジュール(図示せず)から受け取られる。入力電力は、MPCS624によって制御されるスイッチS1及びS2を介して接地復帰が達成される一方で、様々なステータ極604に必要な電力を供給する準備ができている。
【0123】
この実施形態では、4つの永久磁石602のそれぞれは、最初にそれぞれのA-シリーズのステータ極604と整列されるものとして示されている。上の記載を参照すると、これはFMSを示している。このとき、MPCS624は、センサ622及び同期ディスク620を介してロータ606の位置を認識している。
【0124】
MPF動作モードでは、MPCS624はS2(又は同等のスイッチ)を作動させ、電気モータ600(すなわちコイル609)に電流を供給して磁石と同じ極性を強磁性コア608に誘導し、ブレーキ点を克服する際に永久磁石602とステータ極604の間の引き付け効果を打ち消す。一般に、コイル609は、強磁性極604のそれぞれの磁界の形状や強さを制御することができる。この瞬間、永久磁石602は、Aシリーズのステータ極604からのFRDによってわずかに位置がずれて反発し、次の通電されていない隣接する強磁性極に自然に引き付けられる。
図9はこの動作の回路図を示す。引き付け効果の打ち消しは、フル回転の間の約120度に相当する間に、0から約75%のFMDエネルギーの範囲で同等の外部エネルギーを印加することによって行われる。これは、所与の設計に期待されるファントム効果の機能を変化させる。
【0125】
動的動作モードでは、コイル609に誘導される電流がより強力であることを除いて、同じシナリオが繰り返され、したがって、ロータ606のさらなる回転に有利に働く追加の反発力を永久磁石602に発生させる。この段階(ステップ0)において、ロータ606の回転が開始される。
【0126】
ロータ606及び永久磁石602は、永久磁石602がAシリーズのステータ極604とBシリーズのステータ極604との間に回転的に位置付けられ(
図10参照)、FMDゾーン(
図2A及び2Bに図示)を越えるまで回転し続ける。常に、MPCS624は、センサ622及び同期ディスク620を介してその位置を認識する。選択された動作モードにかかわらず、MPCS624は、スイッチS2を無効にするように構成され、したがって、A-シリーズのステータ極604への電力を除去する。これは、一般に、永久磁石602が磁石対極の整列位置(例えば、
図8に示す整列)に対して3~20度の回転の位置へ移動したときに起こるように設定されている。本明細書の一実施例では、15度が使用された。
【0127】
永久磁石602は、その後、遠ざかったばかりのAシリーズのステータ極604によって、又は近づいているBシリーズのステータ極604によって引き付けられ得る。ロータ606の質量の蓄積された運動エネルギーと慣性は、当然ながらBシリーズのステータ極604に向かって前方への回転を続ける。Aシリーズのステータ極604とBシリーズのステータ極604の間の中心線が永久磁石によって横切られると(例えば、永久磁石がAシリーズのステータ極よりもBシリーズのステータ極に近い位置に配置されると)、最も近い極への磁気引力が優先され、ステータ極604とそのエネルギーを運動に付加する。つまり、本実施例では、ロータ601は、約30度の回転の間、外部エネルギーを必要とすることなく運動を継続する。これは、図面では、Bシリーズのステータ極604のFMD(
図2A及び2B)として示されている。このステップの回路図が
図10に示されている。
【0128】
ロータ606が回転し続けると、永久磁石602はBシリーズのステータ極604と整列した状態になる。これは、上述したように、FMSモーメントによって表される。このとき、MPCS624は、ロータ606のセンサ622と同期ディスク620を介して、再びロータ606の位置を認識している。
【0129】
MPF動作モードでは、MPCS624はスイッチS1(又は同等物)を作動させ、強磁性コア608の極性を変調させ、永久磁石602と強磁性コア608の間の自然な引き付け効果を打ち消すのに十分な電流をステータ極604(すなわちコイル609)へ供給する。この効果は本明細書において「ファントムモーメント」と呼ばれ、このとき、ステータ極604は永久磁石602の磁束に対して「不可視」であり、ロータ606が「ブレーキ点」を越えて自由に回転することを提供する。ファントムモーメントを示す回路図が
図11に示されている。
【0130】
動的動作モードでは、コイル609に誘導される電流がMPF動作モードで誘導される電流より強力であることを除いて、同じシナリオが繰り返され、その結果、磁石602に追加の反発力が発生してロータ606のさらなる回転に有利に働く。
【0131】
ロータ606及び永久磁石602は回転運動を続け、
図12に示すように、Aシリーズのステータ極604とBシリーズのステータ極604のFMDゾーンの間の位置まで移動し、したがってFMSゾーン(
図1A及び1Bに示す)を越える。常に、MPCS624は、ロータ606のセンサ622及び同期ディスク620を介してロータ606の位置を認識していることを理解されたい。選択された動作モードにかかわらず、MPCS624は、スイッチS1を無効にし、したがって、Bシリーズのステータ極604への電力を除去する。
【0132】
永久磁石602は、その後、遠ざかったばかりのBシリーズのステータ極604によって、又は近づいているAシリーズのステータ極604によって引き付けられ得る。これは
図12に示されている。ロータ606の質量の蓄積された運動エネルギーと慣性は、デフォルトでは、Aシリーズのステータ極604に向かって前方に回転を継続することになる。永久磁石602がAシリーズのステータ極604とBシリーズのステータ極604の間の中心線を横切ると、各永久磁石602とそれぞれの強磁性コア609との間の磁気引力が優先され、ロータ606の回転にそのエネルギーを加え、次の通電されていない隣接する強磁性極に自然に引き付けられる。これは、Aシリーズのステータ極604のFMD(
図2A及び2Bを参照)と呼ばれる。
【0133】
永久磁石602は、その後、ステップ0(
図8に示す)に戻る。MPCS624がステータ605への電流の供給を制御し続けることによって、上述したサイクルが繰り返され得る。図に示す例では、4回のサイクル(上記のような)が、ロータの1回の完全な回転に相当する。
【0134】
後部鉄効果
いくつかの実施形態では、ステップ0(
図9参照)及びステップ2(
図11参照)において、別の現象に遭遇することがある。例えば、図に示す電気モータ600について、ステータ極604のそれぞれが後部鉄607を介して相互接続されるときに、ステータ極604のセットA又はBの一方に通電すると、ステータ極604のもっと後ろのセットに外部電力が印加されなくても、ステータ極604の隣接するセットに対して同様だが反対の効果が生じる。これは、ステータ極604のそれぞれが、同じ磁気回路上の他のステータ極604のそれぞれに接続されている場合に起こり得る(
図13A及び13Bを参照)。実際には、コア608の内部の磁力線は、単に、後部鉄607を介して、循環する最も抵抗の少ない経路を見つけ、それを採用する。電気モータ600にとって、これは、任意の1つのステータ極604の磁界が、隣接するステータ極604の磁界が永久磁石602を引き付けると同時に、ロータ606の近くの永久磁石602を反発し得るので、有利であることを表している。ステータ極604の磁界の強さが増すと、より強く隣接する極がそれを引き付ける。したがって、極を通電するために使用されるエネルギーは、結果的に鉄心に向かう磁石の自然な引力になる。
【0135】
渦電流効果
定義によれば、「渦電流(フーコー電流とも呼ばれる)は、ファラデーの誘導の法則に従って導体内の磁界が変化することによって導体内に誘導される電流のループである。渦電流は、磁界に垂直な面内を、導体内で閉ループ内を流れる。それらは、例えば、AC電磁石又は変圧器によって、又は磁石と近傍の導体との間の相対運動によって作られる経時的に変化する磁界によって、近傍の静止した導体内に誘導され得る。所与の各ループ内の電流の大きさは、磁界の強さ、ループの面積、及び磁束の変化率に比例し、材料の抵抗率に反比例する。グラフにすると、金属片の中のこれらの円形電流は、ぼんやりと液体の中の渦や渦巻きのように見える。」
【0136】
本明細書に記載された電気モータでは、ステータ極が通電されるとき、及び強磁性コアが極性を切り替えるときに、渦電流効果によって熱が発生する可能性がある。渦電流効果は、本明細書に記載される電気モータにおいて、非通電持続時間と呼ばれ得る2つのパルス間の持続時間と比較したときに、分極パルスがステータ極に印加される持続時間を制限することによって最小化され得る。分極パルスがステータ極に印加される持続時間を制限することは、強磁性コア中の鉄分子が、ひしめき合うことなく自然な分極を自然に回復することを提供し得る。この熱効率により、本明細書に記載の電気モータの性能を向上させることができる。
【0137】
強制的な動きと自然な動き
本明細書に記載の電気モータでは、ロータが回転磁界に従うように強制される他の従来の電気モータとは異なり、記載した各ステップは、ロータの永久磁石の1つのステータ極から別の極への自然の引き付けペースに従うように順序付けできることを理解されたい。ステータ極への外部電力は、正確に(例えば、永久磁石が、例えば、ステータ極の強磁性コアの中間線から数度(フル回転の間の合計120度に対する3~20度)離れたときのみ)印加することができる。従来の電気モータでは、ロータがブロックされるか又は過負荷になると、一般にモータは過熱して燃焼する。本明細書に記載された電気モータでは、ロータがブロックされるか又は過負荷になると、モータはデフォルトで動的ブレーキモードに入ることができ、エネルギー入力を必要としないので、モータの電気部品を自己保護することができる。
【0138】
このため、本明細書に示す例では、ステップ0(
図9参照)において、ロータ606に回転が誘発された場合にのみ、ロータ606は回転することができる。そうでなければ、ロータ606は当然ながらブレーキモードのままである。したがって、本明細書に記載の電気モータを始動するには、例えば、外部の回転力又はロータに小さな回転運動を開始させるための始動シーケンスを実行できる電子回路のどちらかが必要である。
【0139】
動作モード特性
前述のように、本明細書に記載された電気モータにおいて、いくつかの動作モードが可能である。各動作モードは、モータの必要性に応じて、所与の用途により適している可能性がある特性を有する。本明細書に記載された電気モータの柔軟性は、非常に鋭い、用途中心の調整を提供する。例えば、同じモータにおいて、動作中にあるモードから別の事象に切り替えることが可能である場合がある。
【0140】
MPF動作モードにおいて
MPF動作モードは、高トルクを発生させながら高効率を実現するように構成されている。本明細書に示す例は、いくつかの作業条件において正の利得を生成する可能性を有する高効率を実証している。それはまた、非常に低い回転速度から非常に高い回転速度まで許容する。本明細書に示す例は、300RPMから23,000RPMの範囲の速度でテストされた(プロトタイプ部品に使用される材料によってのみ制限される)。MPF動作モードで動作する本明細書に記載の電気モータの回転速度は、一般に入力電圧の線形関数であることを理解されたい。このモードでは、運動エネルギー回生と逆起電力エネルギー回収は、一般に知られている電磁気学の法則と原理を用いて可能である。より正確には、運動エネルギーの回生は、回転中にステータ極を横切る磁石の磁束の動きを利用することで行われる。このように、レンツの法則に従って、起電力の一部を電気エネルギーに再変換する。逆起電力によるエネルギー回収は、所与の極が非活性化したときの磁束の減少を利用して行われる。いずれも、動作中にMPFモータに一時的に蓄えられるエネルギー源である。
【0141】
動的動作モードにおいて
動的動作モードは、「ブースト」モードと呼ばれることもあるが、前述のMPF動作モードと同様の働きをする。本明細書に記載の動的動作モードで動作する電気モータは、上述したMPF動作モードで動作する電気モータと同じ部品を含む可能性があり、使用制限がない可能性がある。動的動作モードは、MPF動作モードと比較した場合、動作するために増加した量の外部電力入力を必要とする可能性がある。本明細書に記載されるいくつかの実施形態では、動的動作モードの機能及び性能を示すために、最大で初期電圧の3倍が必要とされる場合がある。最大印加電圧は、プロトタイプの設計、構成要素、及び材料の選択によって制限される場合がある。起動されると、動的動作モードは本明細書に記載されている電気モータの機械的性能を迅速に向上させることができる。本明細書に記載された電気モータは、必要に応じて非常に長い時間、動的動作モードで動作することができる。このモードでは、MPFモードと同様に、運動エネルギー回生及び逆起電力エネルギー再生も可能である。さらに、この動作モードでは、コイル609を循環するアンペア数が増加するため、ステータ極内を循環する磁束も大きくなるので、これらはさらに重要であろう。
【0142】
動的ブレーキモードにおいて
動的ブレーキモードもまた、本明細書に記載された電気モータの自然な動作モードである。動的ブレーキモードは、FMSゾーンとも呼ばれる(
図14A及び14Bを参照)、ロータの永久磁石がステータ極と整列しているときに適用される。動的ブレーキモードは、電力が遮断されたときにロータを急速に減速させる。動的ブレーキモードはまた、ロータが停止している状態で、外部入力電力を必要とせずに、ステータ内のロータを最大トルクでロックすることができる。動的ブレーキモードは、必要に応じて変調し、制御することができる。例えば、緩やかな漸進的な制動を実現することができ、より積極的でほぼ即時の完全な緊急停止を実現することもできる。ここでもまた、動的ブレーキモードは、静的な制動と動的な制動が必要とされる生じ得る様々な用途に対応することができる。動的ブレーキモードは、いつでも作動させることができ、電気エネルギーを回生し、レンツの法則に従って起電力を電気エネルギーに再変換するために使用することさえできる。
【0143】
始動モードにおいて
始動モードは、MPCSによって完全に管理される、本明細書に記載される電気モータのための任意選択の動作モードである。始動モードは、外部トルクを必要とせずに回転を開始するために、本明細書に記載の電気モータの始動中にのみ使用される代替モードである。
【0144】
始動動作の開始時、本明細書に記載の電気モータは、一般に、動的ブレーキモードである(
図14Aを参照)。この時点から、ステータ極コイルが通電されているとき、力の均衡は一時的に破られ、したがって、ロータが回転することを提供する。これが始動フェーズの開始である(
図15A及び15B参照)。この段階で、回転方向は不定であり、最も抵抗の少ない方向で起こる。
【0145】
MPCSは、回転方向を検出し、意図した方向への動きを検出する限り、所与のステータ極のセットに電力を送り続ける。FMDゾーンを通り越すのに十分な時間、及び永久磁石が2つのステータ極の間の中心線窓に到達するまで、同じコイルに電力を送り続ける(
図16A及び16Bを参照)。
【0146】
MPCSが所望の回転と反対方向の動きを検出した場合、MPCSはコイルの給電を中断する。その際、永久磁石はステータ極コアの引き付け作用を受けて他方の方向へ戻る。この逆方向の動きは、FMSを通り越すのに十分な大きさであり、またMPCSが正しい方向の動きを検出するのに十分な大きさである。次に、電力は、FMDゾーンを通り越すのに十分な長さ、及び永久磁石が2つのステータ極の間の中心線窓に到達するまで、同じコイルに再び印加される(
図16A及び16Bを参照)。
【0147】
これらの始動ステップは、ロータが、本明細書に記載の電気モータが、本明細書に記載の他の動作モードが制御を引き継ぐのに十分な速度で回転するのに十分な速度を得るまで、繰り返すことができる。
【0148】
始動の開始時に、ロータの動きはFMSゾーンの周りでより振動的であることに留意されたい。その後、この動きは、それらの最も強い点での連続的な永久磁石対ステータ極の引き付け及び反発サイクルによって引き起こされる振り子効果の下で急速な振幅とパワーを獲得する。これにより、本明細書に記載されている電気モータは、最大トルクで始動することができる。さらに、回転方向は、MPCSによって制御され、完全に管理される。MPCSは、単一のMPFモータがいずれかの方向に回転することを実現することができ、所望により、動作中に回転方向を変更することさえできる。さらに、モータの上昇又は下降もMPCSを介して完全に制御することができる。
【0149】
他の特徴
本明細書に記載された電気モータのロータの永久磁石は常に引き付けモードであり得る一方、活性極は常に反発モードであり得る。本明細書に記載された電気モータは、回転式又はリニア式であり得る。本明細書に記載された電気モータは、電力を機械的なトルク/力に効率的に変換することができ、その逆もまた可能である。本明細書に記載された例では、外部電力の注入は、例えば、360度の回転のうち約108度を表す。本明細書の例では、プロトタイプは、20,000RPMで問題なく動作した。しかしながら、23,000RPMを超えると、同じプロトタイプが機械的な弱体化の兆候を示し始めた。このように、本明細書に記載されたモータにおいて、モータの回転速度は、理論的には、永久磁石の強度、形状、及び磁石と極の強磁性コアとの間の相対距離に基づいて変化する2つの隣接する永久磁石の引き付け速度(すなわち、2つの磁石が互いに近づく速度)に近づくことが可能である。実際には、磁束の性質、設計、構成要素の選定、使用する材料によって、最高速度は物理的に制限される。
【0150】
以下は、本明細書に記載された実施形態のいくつかの潜在的な利点及び属性の非網羅的なリストである。
- いくつかの実施形態において、回転速度は、MPCSによって、又は外部電源電圧によって直線的に調整することができる。
- いくつかの実施形態において、電気モータは、その構成に応じて、AC又はDC電源、1つ又は複数の相の下で動作することができる。
- いくつかの実施形態において、電気モータは、一定のトルクを有していてもよいし、有していなくてもよい。
- いくつかの実施形態において、電気モータは、必然的に動的ブレーキを有していてもよい。
- いくつかの実施形態において、電気モータは、逆起電力及び/又は動的制動及び/又は起電力からエネルギーを回収することができる。
- いくつかの実施形態において、電気モータは、誘導起電力(ファラデーの法則)を回収することができる。
- いくつかの実施形態において、電気モータは、その負荷又はその電源に関係なく、その回転速度を調節することができる。
- いくつかの実施形態において、電気モータは、変調されているか否かにかかわらず、急速又は低速の加速又は減速曲線を有してよい。
- いくつかの実施形態において、電気モータは、外部エネルギー供給により、その動的ブレーキのパワーを倍増させることができる。
- いくつかの実施形態において、電気モータは、ドロップオフゾーン(スリップ)なしで、一定のトルクを達成することができる。
- いくつかの実施形態において、電気モータは、その速度範囲全体にわたって一定のトルクを達成することができる。
- いくつかの実施形態において、電気モータは、非常に低い速度範囲(例えば、10RPM未満)から非常に高い速度(例えば、30,000RPM超)までをはっきり示すことができる。
- いくつかの実施形態において、電気モータは、回転していない間、ロックされたロータを有していてもよいし、有していなくてもよく、そのパワーが超過した場合、動的ブレーキに変わることができる。
- いくつかの実施形態において、電気モータは、自由回転で、無負荷の、ロータ動作モード(加速なし、制動なし、単なる慣性回転)を有していてもよいし、有していなくてもよい。
- いくつかの実施形態において、電気モータは、回転式、リニア、又はホイールハブモータ変形型などであるがこれらに限定されない異なるフォームファクタを用いて構築されてもよい。
- いくつかの実施形態において、電気モータは、そのすべての制御をモータ内部に埋め込んだ完全に自律的なものとすることができる。
- いくつかの実施形態において、電気モータは、手動制御、遠隔制御、無線制御、又は他のシステムによって制御することができる。
- いくつかの実施形態において、電気モータは、自己始動式であっても、そうでなくてもよい。
- いくつかの実施形態において、電気モータは、時計回り(CW)又は反時計回り(CCW)に回転する要求に応じて、動作し、制御することができる。
- いくつかの実施形態において、MPFモータは、従来のAC又はDCモータと比較してほとんど又はまったく熱を発生しない。
- いくつかの実施形態において、MPCSは、最高の効率及び仕事のために、動作中に動作モードを自動的に選択し、変調する。
【0151】
電気モータを制御する方法もまた、本明細書に記載される。幅広い態様において、ステータに沿って概ね等間隔に配置された少なくとも1つの独立した極又は極回路を有するステータを有するモータであって、独立した極又は極回路はステータの周縁の周りに交互に配置されているモータは、強磁性コアが電気モータの可動構成要素に結合された永久磁石に対向して磁気的に引き付けられるときにステータの第1のステータ極の強磁性コアを取り囲む電気コイルに第1の変調電気パルスを制御的に供給することにより電気モータの可動構成要素の動きを開始することによって制御することができる。回転方向を検出するMPCSは、意図した方向への動きを検出する限り、所与のステータ極のセットに電力を送り続けるため、FMDゾーンを通り越すのに十分な時間、及び永久磁石が2つのステータ極の間の中心線窓に到達するまで、同じコイルに電力を送り続けることになる。MPCSは所望の回転と反対方向の動きを検出すると、コイルの給電を中断する。その際、永久磁石はステータ極の引き付け効果により、反対方向に戻る。この逆方向の動きは、FMSを通り越すのに十分な大きさであり、MPCSが正しい方向への動きを検出するのに十分な大きさである。その後、FMDゾーンを通り越すのに十分な時間、及び永久磁石が2つのステータ極の間の中心線窓に到達するまで、同じコイルに電力が再印加されることになる。
【0152】
これらの始動ステップは、可動構成要素が、本明細書に記載された電気モータが、本明細書に記載された他の動作モードが制御を引き継ぐのに十分な速度で回転するのに十分な速度を得るまで繰り返され得る。永久磁石が電気モータの第1のステータ極から離れ、第2のステータ極に向かって回転するときに、第2のステータ極に到達しつつあるときに、第2の変調電気パルスが第2のステータ極の強磁性コアに制御可能に供給されて、永久磁石と第2のステータ極の強磁性コアとの間の引力を打ち消すために第2のステータ極の強磁性コアの反発磁束を発生させる。
【0153】
幅広い態様において、少なくとも1つの独立した極又は極回路がステータに沿って概ね等間隔に配置されたステータを有する電気モータであって、独立した極又は極回路はステータの周縁の周りに交互に配置されている電気モータを制御する方法が、本明細書に記載される。本方法は、ロータ及び/又はシャフトに外部トルクを加えることによって電気モータの回転を開始させることを含む。回転を検出するMPCSは、所与のステータ極のセットに電力を送り続けるので、FMDゾーンを通り越すのに十分な時間、及び永久磁石が2つのステータ極の間の中心線窓に到達する一方で磁石が次の隣接する強磁性極によって自然に引き付けられるまで、同じコイルに電力供給を続けることになる。
【0154】
少なくとも1つの実施形態において、永久磁石が、電気モータの第1のステータ極から離れて第2のステータ極に向かって回転するときに、第2のステータ極に到達しつつあるときに、この方法は、第2のステータ極の強磁性コアに第2の変調電気パルスを制御可能に供給して、磁石が次の隣接する強磁性極によって自然に引き付けられている間に、永久磁石と第2のステータ極の強磁性コアとの間の引力を打ち消すために第2のステータ極の強磁性コアの反発磁束を発生させることを含む。
【0155】
少なくとも1つの実施形態において、永久磁石は、第2のステータ極から離れて回転し、第3のステータ極に到達しつつあるときに、本方法は、第3のステータ極の強磁性コアに第3の変調電気パルスを制御可能に供給して、磁石が次の隣接する強磁性極によって自然に引き付けられている間に、永久磁石と第3のステータ極の強磁性コアとの間の引力を打ち消し、及び/又は退けるために、第3のステータ極の強磁性コアの反発磁束を発生させることを含む。
【0156】
別の幅広い態様において、少なくとも1つの独立したステータ極又は極回路がステータに沿って概ね等間隔に配置されているステータを有する電気モータであって、独立した極又は極回路はステータの周縁の周りに交互に配置されている電気モータを制御する方法が、本明細書に記載されている。この方法は、ロータの各永久磁石がステータのそれぞれのステータ極の強磁性コアと整列され、各ステータ極が強磁性コアを取り囲む電気コイルを有するとき、各ステータ極の電気コイルに第1の変調電気パルスを制御可能に供給することによってロータの回転を開始させることを含んでいる。ロータのそれぞれの永久磁石がそのそれぞれのステータ極とそれぞれの隣接するステータ極との間に位置付けられると、この方法はまた、コイルのそれぞれを非通電にすることを含む。ロータのそれぞれの永久磁石がそのそれぞれの隣接するステータ極に到達すると、この方法は、各ステータ極の電気コイルに第2の変調電気パルスを制御可能に供給して、強磁性コアの反発磁束を発生させて、それぞれの永久磁石とそのそれぞれの隣接するステータ極の強磁性コアとの間の引力を打ち消し、及び/又は退けることを含む。
【実施例】
【0157】
以下の表1は、上述した実施形態の少なくとも1つに従って製造されたプロトタイプ装置の5つの非限定的な例を提供するものである。製造されたプロトタイプのそれぞれは、表1に示されるように、異なる特性を有していた。
【表1】
【0158】
表2は、表1に記載されたプロトタイプのそれぞれにより実行された実験の間に測定された様々な出力を示す。
【表2】
【0159】
表3は、表1に記載されたプロトタイプのそれぞれにより実証された特性の概要を示す。
【表3】
【0160】
本明細書に記載された出願人の教示は、例示の目的で様々な実施形態と関連しているが、本明細書に記載された実施形態は例示であることが意図されているので、出願人の教示をそのような実施形態に限定することは意図されていない。それどころか、本明細書に記載され示された出願人の教示は、本明細書に記載された実施形態から逸脱することなく、様々な代替案、修正、及び等価物を包含し、その一般範囲は、添付の請求項に定義されている。
【国際調査報告】