IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベクトン・ディキンソン・アンド・カンパニーの特許一覧

特表2023-523722光検出器の定量的特性評価のための装置及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-06-07
(54)【発明の名称】光検出器の定量的特性評価のための装置及び方法
(51)【国際特許分類】
   G01N 15/14 20060101AFI20230531BHJP
【FI】
G01N15/14 B
G01N15/14 C
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022564017
(86)(22)【出願日】2021-03-15
(85)【翻訳文提出日】2022-12-13
(86)【国際出願番号】 US2021022348
(87)【国際公開番号】W WO2021216222
(87)【国際公開日】2021-10-28
(31)【優先権主張番号】63/012,765
(32)【優先日】2020-04-20
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.ZIGBEE
(71)【出願人】
【識別番号】595117091
【氏名又は名称】ベクトン・ディキンソン・アンド・カンパニー
【氏名又は名称原語表記】BECTON, DICKINSON AND COMPANY
【住所又は居所原語表記】1 BECTON DRIVE, FRANKLIN LAKES, NEW JERSEY 07417-1880, UNITED STATES OF AMERICA
(74)【代理人】
【識別番号】100114557
【弁理士】
【氏名又は名称】河野 英仁
(74)【代理人】
【識別番号】100078868
【弁理士】
【氏名又は名称】河野 登夫
(72)【発明者】
【氏名】ババン,シュレイヤ
(72)【発明者】
【氏名】イルコフ,ヒョードル
(57)【要約】
本開示の態様は、光検出器(例えば、粒子分析器内の光検出器)のパラメータを判定するための方法を含む。特定の実施形態による方法は、粒子分析器内に位置決めされた光検出器を光源(例えば、連続波光源)を用いて第1の強度で第1の所定の時間間隔の間照射することと、光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、光検出器からのデータ信号を第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって積分することと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。主題の方法を実施するための光源及び光検出器を有するシステム(例えば、粒子分析器)もまた、説明される。主題の方法に従って光検出器のパラメータを判定するための命令が記憶された非一時的コンピュータ可読記憶媒体も提供される。
【特許請求の範囲】
【請求項1】
粒子分析器における光検出器のパラメータを判定するための方法であって、
粒子分析器内に位置決めされた光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射することと、
前記光検出器を前記光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、
前記第1の所定の時間間隔及び前記第2の所定の時間間隔を含む期間にわたって前記光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて前記光検出器の1つ以上のパラメータを判定することと
を含む、方法。
【請求項2】
前記光源は、連続波光源である、請求項1に記載の方法。
【請求項3】
前記光源は、発光ダイオードである、請求項1又は2に記載の方法。
【請求項4】
前記方法は、前記第1の強度よりも大きい第2の強度で前記光検出器を照射することを含む、請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記方法は、第3の所定の時間間隔にわたって前記光源からの光の強度を前記第1の強度から前記第2の強度に増加させることを含む、請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記方法は、前記第1の所定の時間間隔及び前記第2の所定の時間間隔を含む前記期間にわたって前記光源からの光の強度を増加させることを含む、請求項1~4のいずれか一項に記載の方法。
【請求項7】
前記光検出器からのデータ信号を積分することは、前記期間にわたる信号振幅を計算することと、計算された信号振幅を前記光源の光強度と比較することとを含む、請求項1~6のいずれか一項に記載の方法。
【請求項8】
前記方法は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される前記光検出器の1つ以上のパラメータを判定することを含む、請求項1~7のいずれか一項に記載の方法。
【請求項9】
前記方法は、
前記光検出器のパラメータを前記光検出器の動作電圧の範囲にわたって判定することと、
前記判定されたパラメータに基づいて、前記光検出器の最適な検出器利得を計算することと
を含む、請求項1~8のいずれか一項に記載の方法。
【請求項10】
粒子分析器であって、
光源と、
前記粒子分析器のハウジング内に位置決めされた光検出システムであって、第1の所定の時間間隔にわたって第1の強度での前記光源からの光を検出することと、第2の所定の時間間隔にわたって第2の強度での前記光源からの光を検出することとを行うように構成された光検出器を有する、光検出システムと、
動作可能に結合されたメモリを有するプロセッサと
を備えており、
前記メモリは、その上に記憶された命令を含み、前記命令は、前記プロセッサによって実行されると、前記プロセッサに、
前記第1の所定の時間間隔及び前記第2の所定の時間間隔を含む期間にわたって前記光検出器からのデータ信号を積分することと、
前記積分されたデータ信号に基づいて前記光検出器の1つ以上のパラメータを判定することとを行わせる、
粒子分析器。
【請求項11】
前記光源は、連続波光源である、請求項10に記載の粒子分析器。
【請求項12】
前記プロセッサは、動作可能に結合されたメモリを有し、前記メモリは、その上に記憶された命令を含み、前記命令は、前記プロセッサによって実行されると、前記プロセッサに、前記光源からの光の強度を第3の所定の時間間隔にわたって前記第1の強度から前記第2の強度に増加させる、請求項10又は11に記載の粒子分析器。
【請求項13】
前記プロセッサは、動作可能に結合されたメモリを有し、前記メモリは、その上に記憶された命令を含み、前記命令は、前記プロセッサによって実行されると、前記プロセッサに、前記第1の所定の時間間隔及び前記第2の所定の時間間隔を含む前記期間にわたって前記光源からの光の強度を増加させる、請求項10~12のいずれか一項に記載の粒子分析器。
【請求項14】
前記プロセッサは、動作可能に結合されたメモリを有し、前記メモリは、その上に記憶された命令を含み、前記命令は、前記プロセッサによって実行されると、前記プロセッサに、
a)前記期間にわたる信号振幅を計算し、
最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される前記光検出器の1つ以上のパラメータを判定すること、又は
b)前記期間にわたる信号振幅を計算し、
前記光検出器のパラメータを前記光検出器の動作電圧の範囲にわたって判定し、
前記判定されたパラメータに基づいて、前記光検出器の最適な検出器利得を計算すること
を行わせる、請求項10~13のいずれか一項に記載の粒子分析器。
【請求項15】
非一時的コンピュータ可読記憶媒体であって、それに記憶された命令を含み、前記命令は、
光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射するためのアルゴリズムと、
前記光検出器を前記光源を用いて第2の強度で第2の所定の時間間隔の間照射するためのアルゴリズムと、
前記第1の所定の時間間隔及び前記第2の所定の時間間隔を含む期間にわたって前記光検出器からのデータ信号を積分するためのアルゴリズムと、
積分されたデータ信号に基づいて前記光検出器の1つ以上のパラメータを判定するためのアルゴリズムと
を含む、非一時的コンピュータ可読記憶媒体。
【発明の詳細な説明】
【背景技術】
【0001】
生物学的流体中の分析物の特性評価は、患者の全体的な健康と生活状態との医学的診断及び評価の重要な要素となっている。生物学的流体(例えば、ヒト血液又は血液由来産物)中の分析物を検出することで、様々な疾患状態を有する患者の処置プロトコルを決定する役割を果たす可能性がある結果を得ることができる。
【0002】
フローサイトメトリは、血液試料の細胞又は別の種類の生物学的若しくは化学的な試料中の対象粒子などの生物学的物質を特性評価し、しばしば選別するために使用される技術である。フローサイトメータは、代表的には、流体試料(例えば、血液試料)を受容するための試料リザーバ、及びシース流体を含むシースリザーバを含む。
【0003】
フローサイトメータは、流体試料中の粒子(細胞を含む)を細胞ストリームとしてフローセルに移送し、同時にシース流体をフローセルに導く。フローストリームの成分を特性評価するために、フローストリームは光で照射される。フローストリーム中の物質の変動(例えば、形態又は蛍光標識の存在)は、観察される光に変動をもたらし、これらの変動により特性評価及び分離が可能となる。
【0004】
フローストリーム中の成分を特性評価するために、フローストリームに光を当てて収集する必要がある。フローサイトメータにおける光源は、広域スペクトルランプ、発光ダイオード、及び単一波長レーザなど、様々なものがある。光源は、フローストリームと整合され、照明された粒子からの光学応答が収集され、定量化される。
【発明の概要】
【0005】
本開示の態様は、光検出器(例えば、粒子分析器内の光検出器)のパラメータを判定するための方法を含む。特定の実施形態による方法は、光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射することと、光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、光検出器からのデータ信号を第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって積分することと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。一部の例では、光源は連続波光源である。一部の例では、光源はパルス光源である。一部の実施形態では、光源は発光ダイオードである。特定の例では、光源は、20nm以下に及ぶ波長を有する光を放出する光源などの狭帯域光源である。
【0006】
特定の実施形態による主題の方法を実施する際に、光源の強度は、各所定の時間間隔後に強度が増加する(すなわち、第2の照射強度は、第1の照射強度よりも大きい)。各光強度で光検出器を照射するための時間間隔は、変動し得る。一部の例では、各時間間隔は同じである。他の例では、各時間間隔は異なる。特定の実施形態では、方法は、複数の強度で複数の所定の時間間隔の間連続波光源を用いて光検出器を照射することを含む。これらの実施形態では、時間間隔の一部は同じであってもよく、時間間隔の一部は異なっていてもよい。一部の例では、方法は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって、光源からの光の強度を増加させることを含む。一部の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する。他の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する。
【0007】
実施形態では、方法は、各異なる光強度での照射の時間間隔を少なくとも含む期間にわたって光検出器からのデータ信号を積分することを含む。一部の実施形態では、光検出器からのデータ信号は、光源が第1の強度で光検出器を照射する第1の時間間隔と、光源が第2の強度で光検出器を照射する第2の時間間隔とを含む期間にわたって積分される。他の実施形態では、光検出器からのデータ信号は、光源が複数の時間間隔の各々の間に増加する光強度で光検出器を照射する、複数の時間間隔を含む期間にわたって積分される。
【0008】
特定の実施形態は、光検出器からのデータ信号を積分することは、ある期間にわたる信号振幅を計算することを含む。一部の例では、信号振幅を計算することは、中央信号振幅、平均信号振幅、信号振幅の標準偏差、並びに信号振幅の変動の分散及び係数のうちの1つ以上を計算することを含む。特定の例では、方法はまた、計算された信号振幅を光源の光強度と比較することを含む。計算された信号振幅、及び計算された信号振幅と光源の光強度との比較のうちの1つ以上に基づいて、光検出器のパラメータが計算される。例えば、方法は、光検出器に対して、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、又は単位出力当たりの光電子の数などのパラメータを判定することを含んでもよい。検出器パラメータは、光検出器のパラメータが光検出器の全動作電圧範囲にわたって判定される場合など、光検出器の動作電圧の範囲にわたって判定されてもよい。特定の実施形態では、光検出器は、粒子分析器内に位置決めされ、例えば、光検出器は、粒子分析器の光検出モジュールの一部である。一部の例では、粒子分析器は、フローサイトメータに組み込まれ、光検出器は、フローストリーム中の粒子からの光を検出するように位置決めされる。
【0009】
一部の実施形態では、方法は、フローストリーム内の粒子を照射することによって、光検出器(例えば、粒子分析器内の光検出器)の1つ以上のパラメータを判定することを含み、粒子は、1つ以上のフルオロフォアを含む。一部の例では、粒子はビーズ(例えば、ポリスチレンビーズ)である。一部の例では、光検出器のパラメータを判定するための方法は、1つ以上のフルオロフォアを含む粒子を有するフローストリームを、第1の強度で第1の所定の時間間隔の間、及び第2の強度で第2の所定の時間間隔の間照射することと、フローストリームからの光を光源を有する光検出器で検出することと、第1の照射強度で光検出器からデータ信号を生成し、第2の照射強度で光検出器からデータ信号を生成することと、第1の強度及び第2の強度で生成されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。一部の例では、方法は、第1の照射強度及び第2の照射強度における粒子からの平均蛍光強度を判定することを含む。一部の例では、方法は、第1の照射強度及び第2の照射強度における平均蛍光強度の分散を判定することを含む。一部の例では、方法は、第1の照射強度及び第2の照射強度における統計的光電子(SPE)を判定することを含む。特定の例では、方法は、統計的光電子及びフルオロフォアの判定された平均蛍光強度に基づいて、粒子上の各フルオロフォアに対する光検出器の検出器効率(Qdet)を計算することを更に含む。特定の実施形態では、方法は、光検出器の各検出器チャネルに対する検出器効率を判定することを含む。一部の実施形態では、方法は、各光検出器のバックグラウンド信号を判定することを更に含む。一部の実施形態では、方法は、各光検出器からの電子雑音を判定することを更に含む。特定の実施形態では、方法は、光検出器の検出限界を判定することを更に含む。
【0010】
本開示の態様はまた、光源と、第1の所定の時間間隔にわたって第1の強度での光源からの光を検出し、第2の所定の時間間隔にわたって第2の強度での光源からの光を検出するように構成された光検出器とを有するシステムと、プロセッサであって、プロセッサによって実行されると、プロセッサに、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分させ、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定させる命令をメモリが記憶するように、プロセッサに動作可能に結合されたメモリを有するプロセッサとを含む。一部の実施形態では、システムは粒子分析器である。一部の例では、光検出器は、粒子分析器の光検出モジュールの一部である。特定の例では、粒子分析器は、フローサイトメータに組み込まれる。
【0011】
主題のシステムの光源は、一部の実施形態では、連続波光源である。他の実施形態では、光源はパルス光源である。特定の実施形態では、光源は発光ダイオードである。一部の例では、光源は、20nm以下に及ぶ波長を有する光を放出する発光ダイオードなどの狭帯域幅光源である。光源は、所定の時間間隔にわたって2つ以上の異なる強度で光検出器を照射するように構成される。一部の実施形態では、光源は、第1の所定の時間間隔にわたって第1の強度で光検出器を照射し、第2の所定の時間間隔にわたって第2の強度で光検出器を照射するように構成される。他の実施形態では、光源は、複数の強度で複数の所定の時間間隔の間光検出器を照射するように構成される。実施形態では、各時間間隔は、同じ持続時間又は異なる持続時間であり得る。一部の実施形態では、光源は、各所定の時間間隔後に照射の強度を増加させるように構成される(すなわち、光の強度は、照射の各連続間隔に対して増加する)。一部の実施形態では、光源は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって強度を増加させるように構成される。一部の例では、光源の強度は、線形に増加するように構成される。他の例では、光源の強度は、指数関数的に増加するように構成される。
【0012】
対象のシステムは、プロセッサに動作可能に結合されたメモリを有するプロセッサを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに光検出器からのデータ信号を積分させる。一部の実施形態では、メモリは、各時間間隔にわたって光検出器からの信号振幅を計算するための命令を含む。他の実施形態では、メモリは、中央信号振幅を計算するための命令を含む。特定の実施形態では、メモリは、各所定の時間間隔中に、計算された信号振幅を照射の強度と比較するための命令を含む。
【0013】
実施形態では、システムは、プロセッサに動作可能に結合されるメモリを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、計算された信号振幅、及び計算された信号振幅と光源の光強度との間の比較のうちの1つ以上に基づいて、光検出器のパラメータを判定させる。例えば、メモリは、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、又は単位出力当たりの光電子の数を判定するための命令を含んでもよい。主題のシステムは、光検出器の動作電圧範囲全体にわたってなど、光検出器の動作電圧の範囲にわたって検出器パラメータを判定するように構成され得る。
【0014】
本開示の態様はまた、光検出器の1つ以上のパラメータを判定するための非一時的コンピュータ可読記憶媒体を含む。実施形態では、非一時的コンピュータ可読記憶媒体は、光検出器を光源を用いて第1の所定の時間間隔にわたって第1の強度で照射するためのアルゴリズムと、光検出器を光源を用いて第2の所定の時間間隔にわたって第2の強度で照射するためのアルゴリズムと、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定するためのアルゴリズムとを含む。特定の例では、非一時的コンピュータ可読記憶媒体は、複数の時間間隔にわたって複数の光強度で光検出器を照射するためのアルゴリズムを含む。これらの例では、非一時的コンピュータ可読記憶媒体は、複数の照射時間間隔を含む時間期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムを含む。
【0015】
一部の実施形態では、非一時的コンピュータ可読記憶媒体は、信号振幅を計算するためのアルゴリズムを含む。一部の例では、非一時的コンピュータ可読記憶媒体は、中央信号振幅、平均信号振幅、信号振幅の標準偏差、並びに信号振幅の分散及び変動係数のうちの1つ以上を計算するためのアルゴリズムを含む。特定の例では、非一時的コンピュータ可読記憶媒体は、計算された信号振幅を光源の光強度と比較するためのアルゴリズムを含む。特定の例では、非一時的コンピュータ可読記憶媒体は、計算された信号振幅、及び計算された信号振幅と光源の光強度との間の比較のうちの1つ以上に基づいて、光検出器のパラメータを判定するためのアルゴリズムを含む。例えば、非一時的コンピュータ可読記憶媒体は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、又は単位出力当たりの光電子の数を判定するためのアルゴリズムを含んでもよい。非一時的コンピュータ可読記憶媒体は、光検出器のパラメータが光検出器の動作電圧範囲全体にわたって判定される場合など、光検出器の動作電圧の範囲にわたって検出器パラメータを判定するためのアルゴリズムを含み得る。
【0016】
特定の実施形態では、本開示の態様はまた、主題の方法の1つ以上を実施するための1つ以上のフルオロフォアを有するマルチスペクトル粒子(例えば、ビーズ)を含む。一部の実施形態によるマルチスペクトル粒子は、1つ以上、例えば2つ以上、例えば3つ以上、例えば5つ以上のフルオロフォアを含み、10個以上のフルオロフォアを含む。一部の例では、対象粒子は、単一ピークマルチフルオロフォアビーズを含み、該単一ピークマルチフルオロフォアビーズは、全光源波長にわたって(例えば、システムの全LED又はレーザにわたって)、かつ光検出器の検出波長にわたって、明るい光検出器信号を提供する。
【図面の簡単な説明】
【0017】
本発明は、添付の図面と併せて読む場合、以下の詳細な説明から最も理解することができる。図面には、以下の図が含まれる。
【0018】
図1A】特定の実施形態による光検出器による、複数の離散時間間隔にわたる光源からの変化する光強度の測定値を示し、2601msにわたる50ステップの光強度ランプを示す。
図1B】特定の実施形態による光検出器による、複数の離散時間間隔にわたる光源からの変化する光強度の測定値を示し、図1Aの50ステップの光強度ランプの最初の5ステップ(250msにわたる)を示す。
図2】特定の実施形態による連続的に変化する光強度の測定値を示す。
図3A】特定の実施形態による光検出器の1つ以上のパラメータを判定するためのフローチャートを示す。
図3B】特定の実施形態による光検出器の初期検出器利得を設定するために使用されるプロットを示す。
図4A】特定の実施形態による、計算ベースの試料分析及び粒子特性評価のための粒子分析システムの機能ブロック図を示す。
図4B】特定の実施形態によるフローサイトメータを示す。
図5】特定の実施形態による粒子分析器システムの一例の機能ブロック図を示す。
図6A】特定の実施形態による粒子選別機システムの概略図を示す。
図6B】特定の実施形態による粒子選別機システムの概略図を示す。
図7】特定の実施形態によるコンピューティングシステムのブロック図を示す。
【発明を実施するための形態】
【0019】
本開示の態様は、光検出器(例えば、粒子分析器内の光検出器)のパラメータを判定するための方法を含む。特定の実施形態による方法は、粒子分析器内に位置決めされた光検出器を光源(例えば、連続波光源)を用いて第1の強度で第1の所定の時間間隔の間照射することと、光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、光検出器からのデータ信号を第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって積分することと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。主題の方法を実施するための光源及び光検出器を有するシステム(例えば、粒子分析器)もまた、説明される。主題の方法に従って光検出器のパラメータを判定するための命令が記憶された非一時的コンピュータ可読記憶媒体も提供される。
【0020】
本発明がより詳細に説明される前に、本発明は、説明される特定の実施形態に限定されるものではなく、したがって、もちろん、変化し得ることが理解されるべきである。また、本発明の範囲は、添付の特許請求の範囲によってのみ限定されることになるため、本明細書で使用される用語は、特定の実施形態のみを説明する対象となるためのものであり、限定することが意図されるものではないことも理解されるべきである。
【0021】
値の範囲が提供される場合、文脈が明確に別段の指示をしない限り、その範囲の上限と下限との間の、下限の単位の10分の1までの各中間値、及びこの記載の範囲内の任意の他の記載される値又は中間値が本発明に包含されることが理解される。これらのより小さい範囲の上限及び下限は、独立してより小さい範囲に含まれてもよく、記載の範囲において任意の具体的に除外された限界に従って、同様に本発明に包含される。記載された範囲が限界の一方又は両方を含む場合、それらの含まれる限界のいずれか又は両方を除外する範囲も、同様に本発明に含まれる。
【0022】
ある特定の範囲は、「約」という用語によって先行される数値を伴って本明細書において提示される。「約」という用語は、本明細書において、それが先行する正確な数、並びにその用語が先行する数に近いか、又は近似しているその数についての文字通りの裏付けを提供するために使用される。数が具体的に記載された数に近いか、又は近似しているか否かを判定する際、記載されていない数に近いか、又はそれに近似している数は、それが提示される文脈において、具体的に記載された数の実質的等価物を提供する数であり得る。
【0023】
別途定義されない限り、本明細書で使用される全ての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解される意味と同じ意味を有する。本明細書に記載されるものと類似又は同等の任意の方法及び材料も、本発明の実施又は試験に使用され得るが、代表的な例示的な方法及び材料が、以下に記載される。
【0024】
本明細書で引用される全ての刊行物及び特許は、あたかも各個々の刊行物又は特許が、参照することによって組み込まれるように具体的かつ個々に示されているかのように、参照することによって本明細書に組み込まれ、方法及び/又は材料を開示及び記載するために、参照によって本明細書に組み込まれ、それらの方法及び/又は材料に関連して刊行物が引用される。いかなる刊行物の引用も、出願日以前のその開示に関するものであり、本発明が、先行発明を理由に、そのような刊行物に先行する権利がないことを認めるものと解釈されるべきではない。更に、提供された公開日は、実際の公開日とは異なる場合があり、独立して確認される必要がある場合がある。
【0025】
本明細書及び添付の特許請求の範囲で使用される場合、冠詞「a」、「an」、及び「the」は、別途文脈が明確に指示しない限り、複数の指示対象を含むことに留意されたい。特許請求の範囲は、あらゆる任意選択の要素を除外するように起草され得ることに更に留意されたい。したがって、この記述は、特許請求要素の列挙に関連した「もっぱら(solely)」「のみ(only)」などの排他的用語の使用のための、又は「消極的な」限定の使用のための先行詞として機能することが意図される。
【0026】
本開示を読むと当業者には明らかであるように、本明細書に記載及び例証される別個の実施形態の各々は、本発明の範囲又は趣旨から逸脱することなく、他の様々な実施形態のいずれかの特徴から容易に分離され得るか、又はこれらと組み合わされ得る別個の構成要素及び特徴を有する。任意の列挙された方法は、列挙された事象の順序、又は論理的に可能な任意の他の順序で実行され得る。
【0027】
装置及び方法は、文法的な流動性のために機能的説明とともに記述されてきた、又は記述されるが、米国特許法第112条に基づいて明確に記載されていない限り、特許請求の範囲は、必ずしも「手段」又は「ステップ」の限定の解釈によって限定されると解釈すべきではなく、法的均等論の下で特許請求の範囲によって提供される定義の意味及び等価物の完全な範囲を付与されるべきであり、特許請求の範囲が米国特許法第112条に基づいて明確に記載されている場合には、米国特許法第112条に基づく完全な法的等価物を付与されるべきであることを明確に理解されたい。
【0028】
上記で要約されるように、本開示は、光検出器(例えば、粒子分析器の光検出器)の1つ以上のパラメータを判定するための方法及びシステムを提供する。本開示の実施形態を更に説明する際に、第1の所定の時間間隔にわたって第1の強度で、及び第2の所定の時間間隔にわたって第2の強度で光検出器を照射することと、第1及び第2の所定の時間間隔を含む時間期間にわたって光検出器からのデータ信号を積分することとを含む方法が、最初により詳細に説明される。次に、主題の方法を実施するための光源及び光検出器を有するシステム(例えば、粒子分析器)が説明される。主題の方法に従って光検出器のパラメータを判定するための命令が記憶された非一時的コンピュータ可読記憶媒体も提供される。
【0029】
光検出器のパラメータを判定するための方法
本開示の態様は、光検出器(例えば、粒子分析器内の光検出器)のパラメータを判定するための方法を含む。主題の方法を実施する際に、光検出器は、第1の所定の時間間隔にわたって第1の強度で光源を用いて照射され、続いて、第2の所定の時間間隔にわたって第2の強度で光源を用いて光検出器が照射される。特定の実施形態では、光源は連続光源である。「連続光源」という用語は、本明細書ではその従来の意味で使用され、中断されない光束を提供し、光強度の望ましくない変化がほとんど又はまったくない状態で光検出器の照射を維持する光源を指す。一部の実施形態では、連続光源は、非パルス又は非ストロボ照射を放出する。特定の実施形態では、連続光源は、実質的に一定の発光強度を提供する。例えば、連続光源は、10%以下、例えば9%以下、例えば8%以下、例えば7%以下、例えば6%以下、例えば5%以下、例えば4%以下、例えば3%以下、例えば2%以下、例えば1%以下、例えば0.5%以下、例えば0.1%以下、例えば0.01%以下、例えば0.001%以下、例えば0.0001%以下、例えば0.00001%以下変化する照射の時間間隔中に放出される光強度を提供することができ、これには、照射の時間間隔中に放出される光強度が0.000001%以下変化する場合が含まれる。光出力の強度は、他のタイプの光検出器の中でも、走査スリットプロファイラ、電荷結合素子(CCD、例えば、強化電荷結合素子、ICCD)、位置決めセンサ、パワーセンサ(例えば、サーモパイルパワーセンサ)、光パワーセンサ、エネルギーメータ、デジタルレーザ光度計、レーザダイオード検出器を含むがこれらに限定されない、任意の好都合なプロトコルを用いて測定することができる。
【0030】
特定の例では、光源はパルス光源である。「パルス光源」という用語は、本明細書ではその従来の意味で使用され、ストロボ照射などによって所定の時間間隔で光束を提供する光源を指す。パルス持続時間は、光源のタイプに応じて変化してもよく、0.001ns以上、例えば0.005ns以上、例えば0.01ns以上、例えば0.05ns以上、例えば0.1ns以上、例えば0.5ns以上、例えば1ns以上、例えば2ns以上、例えば3ns以上、例えば5ns以上、例えば10ns以上、例えば25ns以上、例えば50ns以上、例えば100ns以上、例えば500ns以上、例えば1000ns以上であってもよく、及び5μs以上のパルス持続時間を含む。例えば、パルス光源のパルス持続時間は、0.00001μs~1000μs、例えば0.00005μs~900μs、例えば0.0001μs~800μs、例えば0.0005μs~700μs、例えば0.001μs~600μs、例えば0.005μs~500μs、例えば0.01μs~400μs、例えば0.05μs~300μs、例えば0.1μs~200μsの範囲であってもよく、及び1μs~100μsの範囲のパルス持続時間を含む。
【0031】
光源は、任意の好都合な光源であってもよく、レーザ光源及び非レーザ光源を含んでもよい。特定の実施形態では、光源は、特定の波長又は狭い範囲の波長を放出する狭帯域光源などの非レーザ光源である。一部の例では、狭帯域光源は、例えば50nm以下、例えば40nm以下、例えば30nm以下、例えば25nm以下、例えば20nm以下、例えば15nm以下、例えば10nm以下、例えば5nm以下、例えば2nm以下などの狭い範囲の波長を有する光を放出し、特定の波長の光(すなわち、単色光)を放出する光源を含む。狭波長LEDなどの任意の好都合な狭帯域光源プロトコルを使用することができる。
【0032】
他の実施形態では、光源は、1つ以上の光学バンドパスフィルタ、回折格子、モノクロメータ、又はそれらの任意の組み合わせに結合される広帯域光源などの広帯域光源である。一部の例では、広帯域光源は、例えば100nm以上、例えば150nm以上、例えば200nm以上、例えば250nm以上、例えば300nm以上、例えば350nm以上、例えば400nm以上、及び500nm以上に及ぶなど、例えば50nm以上に及ぶ広範囲の波長を有する光を放出する。例えば、ある好適な広帯域光源は、200nm~1500nmの波長を有する光を放出する。好適な広帯域光源の別の実施例は、400nm~1000nmの波長を有する光を放出する光源を含む。他の広帯域光源の中でも、ハロゲンランプ、重水素アークランプ、キセノンアークランプ、安定化ファイバ結合広帯域光源、連続スペクトルを有する広帯域LED、超高輝度発光ダイオード、半導体発光ダイオード、広域スペクトルLED白色光源、マルチLED統合白色光源、又はそれらの任意の組み合わせなど、任意の好都合な広帯域光源プロトコルが採用され得る。特定の実施形態では、画像キャプチャ中に粒子選別モジュール内の開口部を通してフローストリームを照明するための光源は、赤外線LEDのアレイを含む。
【0033】
特定の実施形態は、光源は、連続波レーザなどのレーザである。例えば、レーザは、紫外線ダイオードレーザ、可視ダイオードレーザ及び近赤外線ダイオードレーザなどのダイオードレーザであってもよい。他の実施形態では、レーザは、ヘリウム-ネオン(HeNe)レーザであり得る。一部の例では、レーザは、ヘリウム-ネオンレーザ、アルゴンレーザ、クリプトンレーザ、キセノンレーザ、窒素レーザ、COレーザ、COレーザ、アルゴン-フッ素(ArF)エキシマレーザ、クリプトン-フッ素(KrF)エキシマレーザ、キセノン塩素(XeCl)エキシマレーザ、又はキセノンフッ素(XeF)エキシマレーザ、若しくはそれらの組み合わせなどのガスレーザである。他の例では、主題のシステムは、スチルベン、クマリン又はローダミンレーザなどの色素レーザを含む。更に他の例では、対象のレーザは、ヘリウム-カドミウム(HeCd)レーザ、ヘリウム-水銀(HeHg)レーザ、ヘリウム-セレン(HeSe)レーザ、ヘリウム-銀(HeAg)レーザ、ストロンチウムレーザ、ネオン-銅(NeCu)レーザ、銅レーザ、又は金レーザ、及びそれらの組み合わせなどの金属蒸気レーザを含む。更に他の例では、ルビーレーザ、Nd:YAGレーザ、NdCrYAGレーザ、Er:YAGレーザ、Nd:YLFレーザ、Nd:YVOレーザ、Nd:YCaO(BOレーザ、Nd:YCOBレーザ、チタンサファイアレーザ、タリムYAGレーザ、イットリビウムYAGレーザ、Yレーザ又はセリウムドープレーザ及びこれらの組み合わせなどの固体レーザである。
【0034】
一部の実施形態では、光源は狭帯域光源である。一部の例では、光源は、200nm~1500nm、例えば250nm~1250nm、例えば300nm~1000nm、例えば350nm~900nm、及び400nm~800nmを含む、特定の波長を出力する光源である。特定の実施形態では、連続波光源は、365nm、385nm、405nm、460nm、490nm、525nm、550nm、580nm、635nm、660nm、740nm、770nm又は850nmの波長を有する光を放出する。
【0035】
光検出器は、フローストリームから任意の好適な距離、例えば0.001mm以上、例えば0.005mm以上、例えば0.01mm以上、例えば0.05mm以上、例えば0.1mm以上、例えば0.5mm以上、例えば1mm以上、例えば5mm以上、例えば10mm以上、例えば25mm以上、及び100mm以上の距離から光源によって照射され得る。加えて、光検出器の照射は、10°~90°、例えば15°~85°、例えば20°~80°、例えば25°~75°、例えば30°~60°の範囲の角度、例えば90°の角度などの任意の好適な角度であってもよい。
【0036】
実施形態では、方法は、2つ以上の離散時間間隔の間、光源を用いて光検出器を照射することを含む。「離散時間間隔」という用語は、本明細書では、その従来の意味で使用され、所定の持続時間にわたって光検出器を光源を用いて照射し、その後、光源の強度が変更される(例えば、増加する)期間が続き、その後、後続の離散時間間隔又は照射が続くことを指す。一部の実施形態では、方法は、0.1ms以上、例えば0.5ms以上、例えば1.0ms以上、例えば5ms以上、例えば10ms以上、例えば20ms以上、例えば30ms以上、例えば40ms以上、例えば50ms以上、例えば60ms以上、例えば70ms以上、例えば80ms以上、例えば90ms以上、及び100ms以上を含む、離散時間間隔で光検出器を照射することを含む。特定の実施形態では、光検出器を照射するための各所定の時間間隔は、同じ持続時間である。例えば、主題の方法による各所定の時間間隔は、50msであってもよい。他の実施形態では、各所定の時間間隔は異なる。特定の実施形態では、方法は、連続波光源を用いて、複数の離散時間間隔、例えば3つ以上の離散時間間隔、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば15個以上、例えば20個以上、例えば25個以上、例えば50個以上、例えば75個以上、及び100個以上の離散時間間隔を含む、にわたってそれぞれ複数の強度で光検出器を照射することを含む。
【0037】
一部の実施形態では、複数の時間間隔の各々は、同じ持続時間である。他の実施形態では、複数の時間間隔の各々は、異なる持続時間である。更に他の実施形態では、時間間隔のうちの一部は、同じ持続時間であってよく、時間間隔のうちの一部は異なる持続時間であってよい。
【0038】
一部の実施形態では、光源による照射の強度は、各所定の時間間隔の持続時間にわたって実質的に一定であり、例えば、照射の強度は、10%以下、例えば9%以下、例えば8%以下、例えば7%以下、例えば6%以下、例えば5%以下、例えば4%以下、例えば3%以下、例えば2%以下、例えば1%以下、例えば0.5%以下、例えば0.1%以下、例えば0.01%以下、例えば0.001%以下、例えば0.0001%以下、例えば0.00001%以下変化し、これには、光源による照射の強度が所定の時間間隔の持続時間にわたって0.000001%以下変化する場合が含まれる。
【0039】
一部の実施形態では、光源の強度は、各離散照射間隔後に変更される。一部の実施形態では、光源による照射の強度が増加する。他の実施形態では、光源の強度は減少する。光検出器を照射するために使用される光の強度は、各後続の時間間隔に対して5%以上、例えば10%以上、例えば25%以上、例えば50%以上、例えば75%以上、例えば90%以上、及び100%以上を含む、変化させることができる。特定の例では、光の強度は、1.5倍以上、例えば2倍以上、例えば3倍以上、例えば4倍以上、及び5倍以上を含む、変化する。一部の実施形態では、方法は、各後続の時間間隔に対して光強度を5%以上、例えば10%以上、例えば25%以上、例えば50%以上、例えば75%以上、例えば90%以上、及び100%以上を含む、増加させることによって、各後続の時間間隔に対して光強度を増加させることを含む。他の実施形態では、方法は、各後続の時間間隔の光強度を1.5倍以上、例えば2倍以上、例えば3倍以上、例えば4倍以上及び5倍以上を含む、増加させることを含む。
【0040】
一部の例では、方法は、強度が変化している間(例えば、光強度が増加している間)、光源による光検出器の照射を維持することを含む。一部の例では、方法は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって、光源からの光の強度を増加させることを含む。一部の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する。他の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する。
【0041】
他の例では、方法は、光源の強度が変更されている間、(例えば、光源をオフにすることによって、又はチョッパ、ビームストッパなどで光源を遮断することによって)光源による光検出器の照射を停止することを含む。以下でより詳細に説明されるように、コンピュータ制御され、データ信号(例えば、受信又は入力されたデータ信号)に基づいてトリガされるスイッチなどの、光源をオン及びオフにするための電子スイッチなどの任意の好都合なプロトコルを使用して、間欠照射を提供することができる。一部の実施形態では、光源の強度を変化させるための時間間隔は、0.001ms以上、例えば0.005ms以上、例えば0.01ms以上、例えば0.05ms以上、例えば0.1ms以上、例えば0.5ms以上、例えば1ms以上、例えば2ms以上、例えば3ms以上、例えば4ms以上、例えば5ms以上、例えば6ms以上、例えば7ms以上、例えば8ms以上、例えば9ms以上、及び10ms以上を含む、であってもよい。例えば、光検出器を光源を用いて照射するための各所定の時間間隔の間の期間は、0.001ms~25ms、例えば0.005ms~20ms、例えば0.01ms~15ms、例えば0.05ms~10ms、及び0.1ms~5msを含む、であってもよい。
【0042】
本開示の方法は、特定の実施形態によれば、光検出器で光を検出することも含む。主題の方法を実施するための光検出器は、他の光検出器の中でも、アクティブピクセルセンサ(APS)、クォードラントフォトダイオード、画像センサ、電荷結合素子(CCD)、強化電荷結合素子(ICCD)、発光ダイオード、光子カウンタ、ボロメータ、焦電検出器、フォトレジスタ、光電池、フォトダイオード、光電子増倍管、フォトトランジスタ、量子ドット光伝導体又はアバランシェフォトダイオード(APD)、シリコン光電子増倍管、及びそれらの組み合わせなどの光センサ又は光検出器を含むが、それらに限定されない、任意の好都合な光検出プロトコルであってもよい。特定の実施形態では、光検出器は、0.01cm~10cm、例えば0.05cm~9cm、例えば0.1cm~8cm、例えば0.5cm~7cm、及び1cm~5cmを含む範囲の各領域の活性検出表面積を有する光電子増倍管などの光電子増倍管である。他の実施形態では、光検出器は、0.01cm~10cm、例えば0.05cm~9cm、例えば0.1cm~8cm、例えば0.5cm~7cm、及び1cm~5cmを含む範囲の各領域の活性検出表面積を有するアバランシェフォトダイオードなどのアバランシェフォトダイオードである。一部の例では、光は、2つ以上の光検出器、例えば3つ以上の光検出器、例えば5つ以上の光検出器、例えば10個以上の光検出器、例えば25個以上の光検出器、例えば50個以上の光検出器、例えば75個以上の光検出器、例えば100個以上の光検出器、例えば500個以上の光検出器を有し、1000個以上の光検出器を有する光検出器アレイを含む光検出器アレイなどの光検出器のアレイによって検出される。特定の例では、光は、2う以上のアバランシェフォトダイオード、例えば3つ以上のアバランシェフォトダイオード、例えば5つ以上のアバランシェフォトダイオード、例えば10個以上のアバランシェフォトダイオード、例えば25個以上のアバランシェフォトダイオード、例えば50個以上のアバランシェフォトダイオード、例えば75個以上のアバランシェフォトダイオード、例えば100個以上のアバランシェフォトダイオード、例えば500個以上のアバランシェフォトダイオードを有し、1000個以上のアバランシェフォトダイオードを有する光検出器アレイを含む光検出器アレイなどのアバランシェフォトダイオードのアレイによって検出される。
【0043】
本開示の実施形態では、光は、1つ以上の波長で、例えば2つ以上の波長で、例えば5つ以上の異なる波長で、例えば10個以上の異なる波長で、例えば25個以上の異なる波長で、例えば50個以上の異なる波長で、例えば100個以上の異なる波長で、例えば200個以上の異なる波長で、例えば300個以上の異なる波長で、光検出器によって測定されてもよく、400個以上の異なる波長でフローストリーム中の粒子からの光を測定することを含む。
【0044】
実施形態では、光は、連続的に、又は離散間隔で測定することができる。一部の例では、対象の検出器は、光の測定を連続的に行うように構成される。他の例では、対象の検出器は、0.001ミリ秒ごと、0.01ミリ秒ごと、0.1ミリ秒ごと、1ミリ秒ごと、10ミリ秒ごと、100ミリ秒ごと、及び1000ミリ秒ごとを含む、又は他の何らかの間隔で光を測定するなど、離散間隔で測定を行うように構成される。
【0045】
光源からの光の測定は、各離散時間間隔中に1回以上、例えば2回以上、例えば3回以上、例えば5回以上、及び10回以上を含む、行われてもよい。特定の実施形態では、光源からの光は、光検出器によって2回以上測定され、特定の例におけるデータは平均化される。
【0046】
図1A及び1Bは、特定の実施形態による光検出器による、複数の離散時間間隔にわたる光源からの変化する光強度の測定値を示している。光検出器は、50msの時間間隔ごとに光源によって一定の光強度で照射され、その後、1msのランプアップ時間間隔にわたって光強度が2dB増加する。図1Aは、2601msにわたる50ステップの光強度ランプを示している。図1Bは、図1Aの50ステップの光強度ランプの最初の5ステップ(250msにわたる)を示している。図2は、特定の実施形態による、連続的に変化する光強度の測定値を示している。光検出器は、時間とともに連続的に増加する光強度で照射され、データ信号は、光検出器のパラメータを判定するために2つ以上の所定の時間間隔にわたって積分される。
【0047】
図3は、特定の実施形態による光検出器の1つ以上のパラメータを判定するためのフローチャートを示している。ステップ301において、光検出器は、第1の所定の離散時間間隔にわたって第1の光強度で連続波光源によって照射される。ステップ302において、光検出器は、第2の所定の離散時間間隔にわたって第2の強度で光源によって照射される。ステップ303において、光検出器からのデータ信号は、少なくとも第1の時間間隔及び第2の時間間隔を含む時間期間にわたって積分される。積分されたデータ信号に基づいて、光検出器からの信号振幅がステップ304で計算される。ステップ305において、計算された信号振幅を使用して1つ以上のパラメータが判定され、例えば、計算された信号振幅は、各照射間隔中の光の強度と比較される。例えば、計算された信号振幅と各照射間隔中の光強度との比較を使用して、最小検出閾値305a、最大検出閾値305b、検出器感度305c、検出器ダイナミックレンジ305d、検出器信号対雑音比305e、又は単位出力当たりの光電子の数305fを判定することができる。
【0048】
実施形態では、方法は、光検出器からのデータ信号を積分することを含む。一部の実施形態では、光検出器からのデータ信号を積分することは、照射の各離散間隔の持続時間の10%以上、例えば15%以上、例えば20%以上、例えば25%以上、例えば50%以上、例えば75%以上、例えば90%以上にわたってデータ信号を積分することを含み、照射の各離散間隔の持続時間の99%にわたってデータ信号を積分することを含む。一部の実施形態では、光検出器からのデータ信号は、主題の方法による照射の各離散時間間隔の持続時間全体にわたって積分される。
【0049】
一部の実施形態では、方法は、各異なる光強度での照射の離散時間間隔の少なくとも各々を含む期間にわたって、光検出器からのデータ信号を積分することを含む。例えば、光検出器が50個以上の離散間隔にわたって連続波光源によって照射される場合、方法は、少なくとも50個の離散時間間隔の持続時間を含む期間にわたって光検出器からのデータ信号を積分することを含む。一部の実施形態では、方法は、光検出器信号に対する雑音成分を測定するためなどに、主題の方法による光検出器の照射前の持続時間を含む、ある期間にわたって、光検出器からのデータ信号を積分することを含む。これらの実施形態では、方法は、光検出器の照射前に、光検出器からのデータ信号を0.001ms以上、例えば0.005ms以上、例えば0.01ms以上、例えば0.05ms以上、例えば0.1ms以上、例えば0.5ms以上、例えば1ms以上、例えば2ms以上、例えば3ms以上、例えば4ms以上、例えば5ms以上、例えば10ms以上、例えば25ms以上、例えば50ms以上、例えば100ms以上積分することを含み、光検出器の照射前に250ms以上積分することを含む。他の実施形態では、方法は、0.005ms以上、例えば0.01ms以上、例えば0.05ms以上、例えば0.1ms以上、例えば0.5ms以上、例えば1ms以上、例えば2ms以上、例えば3ms以上、例えば4ms以上、例えば5ms以上、例えば10ms以上、例えば25ms以上、例えば50ms以上、例えば100ms以上、及び250ms以上を含む、照射の最後の離散時間間隔後に光検出器からのデータ信号を積分することを含む。
【0050】
特定の実施形態は、光検出器からのデータ信号を積分することは、ある期間にわたる信号振幅を計算することを含む。一部の例では、信号振幅を計算することは、中央信号振幅を計算することを含む。特定の例では、方法はまた、計算された信号振幅を光源の光強度と比較することを含む。他の例では、方法は、平均信号振幅を計算することを含む。一部の例では、方法は、信号振幅の標準偏差を計算することも含む。他の例では、方法は、信号振幅の分散及び変動係数(例えば、CV=標準偏差/平均)を計算することを含む。計算された信号振幅、及び計算された信号振幅と光源の光強度との比較のうちの1つ以上に基づいて、光検出器のパラメータが計算される。例えば、方法は、最小検出閾値、最大検出閾値、検出器感度(すなわち、検出器入力に対する検出器出力の比)、検出器ダイナミックレンジ(最小検出閾値から最大検出閾値までの検出器信号の範囲)、検出器信号対雑音比、又は単位出力当たりの光電子の数などのパラメータを光検出器に対して判定することを含んでもよい。
【0051】
検出器パラメータの各々は、光検出器の動作電圧の範囲にわたって判定することができる。一部の実施形態では、パラメータは、光検出器の動作電圧の10%以上、例えば15%以上、例えば20%以上、例えば25%以上、例えば50%以上、例えば75%以上、例えば90%以上にわたって計算された信号振幅に基づいて判定され、光検出器の動作電圧の99%以上にわたってパラメータが判定される。特定の例では、パラメータの各々は、光検出器の動作電圧範囲全体にわたって判定されてもよい。
【0052】
特定の例では、光検出器のパラメータは、計算された信号振幅、又は計算された信号振幅と各離散時間間隔中の照射の強度との間の比較のうちの1つ以上に基づいて調整されてもよい。「調整する」という用語は、光検出器の1つ以上の機能パラメータを変更することを指すために、その従来の意味で本明細書で使用される。例えば、光検出器を調整することは、光検出器の電圧利得を増加又は減少させることを含んでもよい。特定の実施形態では、計算された信号振幅、又は計算された信号振幅と対象の各離散時間間隔中の照射の強度との比較に基づいて光検出器の1つ以上のパラメータを調整することは、完全に自動化することができ、その結果、行われる調整は、人間の介入又はユーザによる手動入力をほとんど又は全く必要としない。
【0053】
一部の実施形態では、方法は、フローストリーム内の粒子を照射することによって、光検出器(例えば、粒子分析器内の光検出器)の1つ以上のパラメータを判定することを含み、粒子は、1つ以上のフルオロフォアを含む。一部の例では、粒子は、以下により詳細に記載されるように、ビーズ(例えば、ポリスチレンビーズ)である。一部の例では、以下に説明されるような主題の方法は、光検出器のパラメータを判定することを提供し、該パラメータには、光検出器毎の割り当てられた相対蛍光単位(例えば、ABD単位)、光検出器のうちの1つ以上に関するロバストな変動係数(rCV)、光検出器毎の最大及び最小線形性、ベースラインからのrCVの相対変化、ベースラインからの検出器利得の相対変化、並びにRF電力又は軸方向光損失などの光検出器の撮像仕様が含まれる。
【0054】
一部の例では、光検出器のパラメータを判定するための方法は、1つ以上のフルオロフォアを含む粒子を有するフローストリームを、第1の強度で第1の所定の時間間隔の間、及び第2の強度で第2の所定の時間間隔の間照射することと、フローストリームからの光を光源を有する光検出器で検出することと、第1の照射強度で光検出器からデータ信号を生成し、第2の照射強度で光検出器からデータ信号を生成することと、第1の強度及び第2の強度で生成されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。
【0055】
一部の実施形態では、方法は、第1の照射強度及び第2の照射強度における粒子からの平均蛍光強度(M)を判定することを含む。一部の例では、方法は、第1の照射強度及び第2の照射強度における平均蛍光強度(V(M))の分散を判定することを含む。特定の例では、方法は、光検出器の%rCV(ロバストな変動係数)を判定することを含む。特定の実施形態では、分散の線形適合は、以下に従って計算される。
【0056】
【数1】
【0057】
ここで、Qledは、1/cによって与えられ、単位平均蛍光強度(M)(すなわち、SPE/MFI)である。特定の実施形態では、分散をプロットして、y=cx+cに従って分散の線形適合が判定される。
【0058】
実施形態では、平均蛍光強度及び分散は、複数の異なる照射強度、例えば2つ以上の照射強度、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、及び15個以上を含む、異なる照射強度について判定されてもよい。
【0059】
一部の実施形態では、方法は、少なくとも第1の照射強度及び第2の照射強度などの照射強度のうちの1つ以上における統計的光電子(SPE)を判定することを含む。特定の例では、方法は、粒子の統計的光電子及び判定された平均蛍光強度に基づいて、各粒子の光検出器の検出器効率(Qdet)を計算することを更に含む。特定の実施形態では、方法は、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルの検出器効率を判定することを含み、統計的光電子及び粒子の判定された平均蛍光強度に基づいて光検出器の96個以上の検出器チャネルの検出器効率を判定することを含む。特定の例では、方法は、各粒子の統計的光電子及び判定された平均蛍光強度に基づいて、各粒子の光検出器の全ての検出器チャネルの検出器効率を判定することを含む。特定の実施形態では、光検出器の検出器効率は、以下に従って判定される。
【0060】
【数2】
【0061】
ここで、SPEは、統計的光電子であり、MFIは、平均蛍光強度であり、ABDは、粒子ロット当たりのチャネル当たりの割り当て単位である。
【0062】
特定の実施形態では、方法は、光検出器のうちの1つ以上のためのバックグラウンド信号を判定することを更に含む。一部の例では、バックグラウンド信号は、1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10以上の照射強度で判定され、10個以上の異なる照射強度を含む。一部の例では、バックグラウンド信号は、適用された照射強度の全てにおいて判定される。バックグラウンド信号は、同様に、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルで判定することができ、光検出器の96個以上の検出器チャネルでバックグラウンド信号を判定することを含み、特定の例では、バックグラウンド信号は、光検出器の検出器チャネルの全てで判定される。一部の例では、バックグラウンド信号は、統計的光電子及び光検出器の検出器効率に基づいて判定される。特定の例では、バックグラウンド信号は、以下に従って判定される。
【0063】
【数3】
【0064】
一部の実施形態では、方法は、光検出器のうちの1つ以上に関する電子雑音を判定することを更に含む。一部の例では、光検出器の電子雑音は、1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上の照射強度で判定され、10個以上の異なる照射強度を含む。一部の例では、光検出器の電子雑音は、適用された照射強度の全てで判定される。電子雑音は、同様に、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルで判定することができ、光検出器の96個以上の検出器チャネルで電子雑音を判定することを含み、特定の例では、電子雑音は、光検出器の検出器チャネルの全てで判定される。一部の例では、電子雑音は、統計的光電子及び光検出器の検出器効率に基づいて判定される。特定の例では、電子雑音は、以下に従って判定される。
【0065】
【数4】
【0066】
一部の実施形態では、方法は、光検出器のうちの1つ以上の検出限界を判定することを更に含む。一部の例では、光検出器の検出限界は、光検出器の1つ以上、例えば2つ以上で、例えば3つ以上で、例えば4つ以上で、例えば5つ以上で、例えば6つ以上で、例えば7つ以上で、例えば8つ以上で、例えば9つ以上で、例えば10個以上で、例えば12個以上で、例えば16個以上で、例えば20個以上で、例えば24個以上で、例えば36個以上で、例えば48個以上で、例えば72個以上の検出器チャネルで判定され、光検出器の96個以上の検出器チャネルで光検出器の検出限界を判定することを含み、特定の例では、検出限界は、光検出器の検出器チャネルの全てで判定される。一部の例では、各光検出器の検出限界は、2+2SD=4(1+BSD)に従って判定される。
【0067】
一部の実施形態では、方法は、1つ以上の光検出器の検出器感光性を判定することを更に含む。特定の実施形態では、光検出器の検出器感光性を判定することは、光検出器の初期検出器利得を設定することを含む。一部の例では、方法は、複数の異なる光強度で(上記で詳細に説明したように)光源を用いて光検出器を照射することと、光検出器の1つ以上の検出器利得で複数の光強度について光検出器からデータ信号を生成することと、各検出器利得でバックグラウンドデータ信号から分解可能なデータ信号を生成する最低光照射強度を判定することとを含む。一部の例では、方法は、各検出器利得でバックグラウンドデータ信号から2つの標準偏差に該当するデータ信号を生成する最低光照射強度を判定することを含む。特定の例では、方法は、バックグラウンドデータ信号から分解可能なデータ信号を生成する最低光照射強度が、光強度の関数としてプロットされたときにプラトーに達する利得に検出器利得を設定することを含む。図3Bは、特定の実施形態による光検出器の初期検出器利得を設定するために使用されるプロットを示している。図3Bに示されるように、光検出器の検出器利得は、2つの異なるフルオロフォア(例えば、以下でより詳細に説明されるように、粒子と安定して会合するフルオロフォア)に対する光(例えば、LED)照射強度の関数としてプロットされる。光検出器の初期検出器利得を設定する際、検出器利得は、バックグラウンドデータ信号から分解可能なデータ信号を生成する最低光照射強度がプラトーに達する場合に判定され、これは、図3Bでは、約575ボルトである。
【0068】
光検出器のパラメータを判定するためのシステム
本開示の態様はまた、光源と、所定の時間間隔にわたって異なる照射強度で光源からの光を検出するように構成された光検出器とを有するシステムを含む。一部の実施形態では、光源は連続波光源である。「連続波光源」という用語は、本明細書ではその従来の意味で使用され、中断されない光束を提供し、光強度の望ましくない変化がほとんど又はまったくない状態で光検出器の照射を維持する光源を指す。一部の実施形態では、連続光源は、非パルス又は非ストロボ照射を放出する。特定の実施形態では、連続光源は、実質的に一定の発光強度を提供する。例えば、連続光源は、10%以下、例えば9%以下、例えば8%以下、例えば7%以下、例えば6%以下、例えば5%以下、例えば4%以下、例えば3%以下、例えば2%以下、例えば1%以下、例えば0.5%以下、例えば0.1%以下、例えば0.01%以下、例えば0.001%以下、例えば0.0001%以下、例えば0.00001%以下変化する照射の時間間隔中に放出される光強度を提供することができ、これには、照射の時間間隔中に放出される光強度が0.000001%以下変化する場合が含まれる。
【0069】
特定の例では、光源はパルス光源である。「パルス光源」という用語は、本明細書ではその従来の意味で使用され、ストロボ照射などによって所定の時間間隔で光束を提供する光源を指す。パルス持続時間は、光源のタイプに応じて変化してもよく、0.001ns以上、例えば0.005ns以上、例えば0.01ns以上、例えば0.05ns以上、例えば0.1ns以上、例えば0.5ns以上、例えば1ns以上、例えば2ns以上、例えば3ns以上、例えば5ns以上、例えば10ns以上、例えば25ns以上、例えば50ns以上、例えば100ns以上、例えば500ns以上、例えば1000ns以上であってもよく、及び5μs以上のパルス持続時間を含む。例えば、パルス光源のパルス持続時間は、0.00001μs~1000μs、例えば0.00005μs~900μs、例えば0.0001μs~800μs、例えば0.0005μs~700μs、例えば0.001μs~600μs、例えば0.005μs~500μs、例えば0.01μs~400μs、例えば0.05μs~300μs、例えば0.1μs~200μsの範囲であってもよく、及び1μs~100μsの範囲のパルス持続時間を含む。
【0070】
連続波光源は、任意の好都合な光源であってもよく、レーザ光源及び非レーザ光源を含んでもよい。特定の実施形態では、光源は、特定の波長又は狭い範囲の波長を放出する狭帯域光源などの非レーザ光源である。一部の例では、狭帯域光源は、例えば50nm以下、例えば40nm以下、例えば30nm以下、例えば25nm以下、例えば20nm以下、例えば15nm以下、例えば10nm以下、例えば5nm以下、例えば2nm以下などの狭い範囲の波長を有する光を放出し、特定の波長の光(すなわち、単色光)を放出する光源を含む。狭波長LEDなどの任意の好都合な狭帯域光源プロトコルを使用することができる。
【0071】
他の実施形態では、光源は、1つ以上の光学バンドパスフィルタ、回折格子、モノクロメータ、又はそれらの任意の組み合わせに結合される広帯域光源などの広帯域光源である。一部の例では、広帯域光源は、例えば100nm以上、例えば150nm以上、例えば200nm以上、例えば250nm以上、例えば300nm以上、例えば350nm以上、例えば400nm以上、及び500nm以上に及ぶなど、例えば50nm以上に及ぶ広範囲の波長を有する光を放出する。例えば、ある好適な広帯域光源は、200nm~1500nmの波長を有する光を放出する。好適な広帯域光源の別の実施例は、400nm~1000nmの波長を有する光を放出する光源を含む。他の広帯域光源の中でも、ハロゲンランプ、重水素アークランプ、キセノンアークランプ、安定化ファイバ結合広帯域光源、連続スペクトルを有する広帯域LED、超高輝度発光ダイオード、半導体発光ダイオード、広域スペクトルLED白色光源、マルチLED統合白色光源、又はそれらの任意の組み合わせなど、任意の好都合な広帯域光源プロトコルが採用され得る。特定の実施形態では、画像キャプチャ中に粒子選別モジュール内の開口部を通してフローストリームを照明するための光源は、赤外線LEDのアレイを含む。
【0072】
特定の実施形態では、光源は、連続波レーザなどのレーザである。例えば、レーザは、紫外線ダイオードレーザ、可視ダイオードレーザ及び近赤外線ダイオードレーザなどのダイオードレーザであってもよい。他の実施形態では、レーザは、ヘリウム-ネオン(HeNe)レーザであり得る。一部の例では、レーザは、ヘリウム-ネオンレーザ、アルゴンレーザ、クリプトンレーザ、キセノンレーザ、窒素レーザ、COレーザ、COレーザ、アルゴン-フッ素(ArF)エキシマレーザ、クリプトン-フッ素(KrF)エキシマレーザ、キセノン塩素(XeCl)エキシマレーザ、又はキセノンフッ素(XeF)エキシマレーザ、若しくはそれらの組み合わせなどのガスレーザである。他の例では、主題のシステムは、スチルベン、クマリン又はローダミンレーザなどの色素レーザを含む。更に他の例では、対象のレーザは、ヘリウム-カドミウム(HeCd)レーザ、ヘリウム-水銀(HeHg)レーザ、ヘリウム-セレン(HeSe)レーザ、ヘリウム-銀(HeAg)レーザ、ストロンチウムレーザ、ネオン-銅(NeCu)レーザ、銅レーザ、又は金レーザ、及びそれらの組み合わせなどの金属蒸気レーザを含む。更に他の例では、主題のシステムは、ルビーレーザ、Nd:YAGレーザ、NdCrYAGレーザ、Er:YAGレーザ、Nd:YLFレーザ、Nd:YVOレーザ、Nd:YCaO(BOレーザ、Nd:YCOBレーザ、チタンサファイアレーザ、タリムYAGレーザ、イッテルビウムYAGレーザ、Yレーザ、又はセリウムドープレーザ、及びそれらの組み合わせなどの固体レーザを含む。
【0073】
一部の実施形態では、光源は狭帯域光源である。一部の例では、光源は、200nm~1500nm、例えば250nm~1250nm、例えば300nm~1000nm、例えば350nm~900nm、及び400nm~800nmを含む、特定の波長を出力する光源である。特定の実施形態では、光源は、365nm、385nm、405nm、460nm、490nm、525nm、550nm、580nm、635nm、660nm、740nm、770nm又は850nmの波長を有する光を放出する。特定の実施形態では、光源によって出力される光の波長は、バンドパスフィルタ又はダイクロイックミラーなどの光検出器を照射するときに使用される光学調整構成要素と整合される。一部の例では、光源によって出力された光の波長は、光検出器と光学的に通信するバンドパスフィルタのスペクトル帯域幅と一致する。
【0074】
光源は、光検出器から任意の好適な距離に位置決めされてもよく、例えば、光源及び光検出器は、0.005mm以上、例えば0.01mm以上、例えば0.05mm以上、例えば0.1mm以上、例えば0.5mm以上、例えば1mm以上、例えば5mm以上、例えば10mm以上、例えば25mm以上、及び100mm以上の距離で分離される。更に、光源は、光検出器に対して任意の好適な角度、例えば10°~90°、例えば15°~85°、例えば20°~80°、例えば25°~75°の範囲の角度、及び30°~60°を含む、例えば90°の角度で位置決めされてもよい。
【0075】
特定の実施形態による光源はまた、1つ以上の光学調整構成要素を含み得る。「光学調整」という用語は、本明細書では、その従来の意味で使用され、照射の空間幅、又は例えば、照射方向、波長、ビーム幅、ビーム強度、及び焦点などの光源からの照射の一部の他の特性を変化させることが可能な任意のデバイスを指す。光学調整プロトコルは、レンズ、ミラー、フィルタ、光ファイバ、波長分離器、ピンホール、スリット、コリメートプロトコル、及びそれらの組み合わせを含むが、それらに限定されない、光源の1つ以上の特性を調整する、任意の好都合なデバイスであり得る。特定の実施形態では、対象のシステムは、1つ以上の集束レンズを含む。集束レンズは、一例では、縮小レンズであってもよい。別の例では、集束レンズは拡大レンズである。他の実施形態では、対象のシステムは1つ以上のミラーを含む。更に他の実施形態では、対象のシステムは光ファイバを含む。
【0076】
光学調整構成要素が移動するように構成される場合、光学調整構成要素は、連続的に又は離散間隔で移動されるように構成されてもよい。一部の実施形態では、光学調整構成要素の移動は、連続的である。他の実施形態では、光学調整構成要素は、例えば0.01ミクロン以上の増分、例えば0.05ミクロン以上、例えば0.1ミクロン以上、例えば0.5ミクロン以上、例えば1ミクロン以上、例えば10ミクロン以上、例えば100ミクロン以上、例えば500ミクロン以上、例えば1mm以上、例えば5mm以上、例えば10mm以上、及び25mm以上の増分を含む、離散間隔で移動可能である。
【0077】
光学調整構成要素構造を移動させるために、他のタイプのモータの中でもとりわけ、ステッパモータ、サーボモータ、ブラシレス電気モータ、ブラシ付きDCモータ、マイクロステップ駆動モータ、高分解能ステッパモータを採用するものなどの、可動支持ステージに結合される、又はモータ作動平行移動ステージ、親ねじ平行移動アセンブリ、歯車式平行移動デバイスと直接結合されるなどの任意の変位プロトコルが採用されてもよい。
【0078】
実施形態では、連続波光源は、2つ以上の離散時間間隔にわたって照射するために構成され、各時間間隔は、異なる照射強度である。一部の実施形態では、連続波光源は、0.1ms以上、例えば0.5ms以上、例えば1.0ms以上、例えば5ms以上、例えば10ms以上、例えば20ms以上、例えば30ms以上、例えば40ms以上、例えば50ms以上、例えば60ms以上、例えば70ms以上、例えば80ms以上、例えば90ms以上、及び100ms以上を含む、時間間隔にわたって特定の強度で照射するように構成される。例えば、連続波光源は、50msの特定の光強度で照射するように構成されてもよい。
【0079】
一部の実施形態では、光源は、照射の強度が10%以下、例えば9%以下、例えば8%以下、例えば7%以下、例えば6%以下、例えば5%以下、例えば4%以下、例えば3%以下、例えば2%以下、例えば1%以下、例えば0.5%以下、例えば0.1%以下、例えば0.01%以下、例えば0.001%以下、例えば0.0001%以下、例えば0.00001%以下変化する場合など、各所定の時間間隔の持続時間にわたって実質的に一定の光強度を維持するように構成され、これには、光源による照射の強度が所定の時間間隔の持続時間にわたって0.000001%以下変化する場合が含まれる。
【0080】
一部の例では、光源は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって強度を増加させるように構成される。一部の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する。他の例では、光源からの光の強度は、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する。
【0081】
主題のシステムの光検出器は、他の光検出器の中でも、アクティブピクセルセンサ(APS)、クォードラントフォトダイオード、画像センサ、電荷結合素子(CCD)、強化電荷結合素子(ICCD)、発光ダイオード、光子カウンタ、ボロメータ、焦電検出器、フォトレジスタ、光電池、フォトダイオード、光電子増倍管、フォトトランジスタ、量子ドット光伝導体又はアバランシェフォトダイオード、シリコン光電子増倍管、及びそれらの組み合わせなどの光センサ又は光検出器を含むが、それらに限定されない、任意の好都合な光検出プロトコルであってもよい。特定の実施形態では、光検出器は、0.01cm~10cm、例えば0.05cm~9cm、例えば0.1cm~8cm、例えば0.5cm~7cm、及び1cm~5cmを含む範囲の各領域の活性検出表面積を有する光電子増倍管などの光電子増倍管である。他の実施形態では、光検出器は、0.01cm~10cm、例えば0.05cm~9cm、例えば0.1cm~8cm、例えば0.5cm~7cm、及び1cm~5cmを含む範囲の各領域の活性検出表面積を有するアバランシェフォトダイオードなどのアバランシェフォトダイオードである。一部の例では、光は、2つ以上の光検出器、例えば3つ以上の光検出器、例えば5つ以上の光検出器、例えば10個以上の光検出器、例えば25個以上の光検出器、例えば50個以上の光検出器、例えば75個以上の光検出器、例えば100個以上の光検出器、例えば500個以上の光検出器を有し、1000個以上の光検出器を有する光検出器アレイを含む光検出器アレイなどの光検出器のアレイによって検出される。特定の例では、光は、2個以上のアバランシェフォトダイオード、例えば3個以上のアバランシェフォトダイオード、例えば5個以上のアバランシェフォトダイオード、例えば10個以上のアバランシェフォトダイオード、例えば25個以上のアバランシェフォトダイオード、例えば50個以上のアバランシェフォトダイオード、例えば75個以上のアバランシェフォトダイオード、例えば100個以上のアバランシェフォトダイオード、例えば500個以上のアバランシェフォトダイオードを有し、1000個以上のアバランシェフォトダイオードを有する光検出器アレイを含む光検出器アレイなどのアバランシェフォトダイオードのアレイによって検出される。
【0082】
本開示の実施形態では、光検出器は、1つ以上の波長で、例えば2つ以上の波長で、例えば5つ以上の異なる波長で、例えば10個以上の異なる波長で、例えば25個以上の異なる波長で、例えば50個以上の異なる波長で、例えば100個以上の異なる波長で、例えば200個以上の異なる波長で、例えば300個以上の異なる波長で光を検出するように構成され得、400個以上の異なる波長でフローストリーム中の粒子からの光を測定することを含む。
【0083】
実施形態では、光検出器は、連続的に又は離散間隔で光を測定するように構成され得る。一部の例では、対象の検出器は、光の測定を連続的に行うように構成される。他の例では、対象の検出器は、0.001ミリ秒ごと、0.01ミリ秒ごと、0.1ミリ秒ごと、1ミリ秒ごと、10ミリ秒ごと、100ミリ秒ごと、及び1000ミリ秒ごとを含む、又は他の何らかの間隔で光を測定するなど、離散間隔で測定を行うように構成される。
【0084】
光源からの光の測定は、各離散時間間隔中に1回以上、例えば2回以上、例えば3回以上、例えば5回以上、及び10回以上行われてもよい。特定の実施形態では、光源からの光は、光検出器によって2回以上測定され、特定の例におけるデータは平均化される。
【0085】
実施形態では、システムは、また、プロセッサに動作可能に結合されるメモリを有するプロセッサを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、離散照射間隔の各々を含む期間にわたって光検出器からのデータ信号を積分させ、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定させる。特定の実施形態では、メモリは、プロセッサによって実行されると、プロセッサに中央信号振幅を計算させる命令を含む。他の例では、メモリは、プロセッサによって実行されると、プロセッサに平均信号振幅を計算させる命令を含む。一部の例では、メモリは、プロセッサによって実行されると、プロセッサに信号振幅の標準偏差も計算させる命令を含む。他の例では、メモリは、プロセッサによって実行されると、プロセッサに、また、信号振幅の分散及び変動係数(例えば、CV=標準偏差/平均)を計算させる命令を含む。特定の実施形態では、システムは、プロセッサに動作可能に結合されたメモリを有するプロセッサを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、計算された信号振幅を光源の光強度と比較させる。
【0086】
一部の実施形態では、システムは、プロセッサに動作可能に結合されたメモリを有するプロセッサを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、計算された信号振幅を光源の光強度と比較させる。計算された信号振幅、及び計算された信号振幅と光源の光強度との間の比較のうちの1つ以上に基づいて、対象のシステムは、光検出器のパラメータを計算するための命令を有するメモリを含む。例えば、メモリは、最小検出閾値、最大検出閾値、検出器感度(すなわち、検出器入力に対する検出器出力の比)、検出器ダイナミックレンジ(最小検出閾値から最大検出閾値までの検出器信号の範囲)、検出器信号対雑音比、又は単位出力当たりの光電子の数などのパラメータを光検出器に対して判定するための命令を含んでもよい。一部の実施形態では、メモリは、光検出器の動作電圧の範囲にわたって光検出器パラメータを判定するための命令を含む。特定の実施形態では、メモリは、光検出器の動作電圧の10%以上、例えば15%以上、例えば20%以上、例えば25%以上、例えば50%以上、例えば75%以上、例えば90%以上にわたって光検出器の信号振幅を計算し、光検出器の動作電圧の99%以上にわたってパラメータを判定するための命令を含む。特定の例では、メモリは、光検出器の動作電圧範囲全体にわたって光検出器の信号振幅を計算するための命令を含む。
【0087】
一部の実施形態では、システムは、プロセッサに動作可能に結合されたメモリを有するプロセッサを含み、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに光検出器の1つ以上のパラメータを判定させ、メモリは、フローストリーム内の粒子(例えば、以下に説明されるようなマルチスペクトルビーズ)を照射するための命令を含み、粒子は、1つ以上のフルオロフォアを含む。一部の例では、メモリは、命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光検出器のパラメータを判定させ、該パラメータには、光検出器毎の割り当てられた相対蛍光単位(例えば、ABD単位)、光検出器のうちの1つ以上に関するロバストな変動係数(rCV)、光検出器毎の最大及び最小線形性、ベースラインからのrCVの相対変化、ベースラインからの検出器利得の相対変化、並びにRF電力又は軸方向光損失などの光検出器の撮像仕様が含まれる。
【0088】
一部の例では、メモリは、光検出器のパラメータを判定するための命令を含み、命令は、1つ以上のフルオロフォアを含む粒子を有するフローストリームを、第1の強度で第1の所定の時間間隔の間、及び第2の強度で第2の所定の時間間隔の間照射することと、フローストリームからの光を光源を有する光検出器で検出することと、第1の照射強度で光検出器からデータ信号を生成し、第2の照射強度で光検出器からデータ信号を生成することと、第1の強度及び第2の強度で生成されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを含む。
【0089】
一部の実施形態では、メモリは、第1の照射強度及び第2の照射強度における粒子からの平均蛍光強度(M)を判定するための命令を含む。一部の例では、メモリは、第1の照射強度及び第2の照射強度における平均蛍光強度(V(M))の分散を判定するための命令を含む。特定の例では、メモリは、光検出器の%rCV(ロバストな変動係数)を判定するための命令を含む。特定の実施形態は、メモリは、命令を含み、命令は、プロセッサによって実行されると、プロセスに、以下に従って分散の線形適合を計算させる。
【0090】
【数5】
【0091】
ここで、Qledは、1/cによって与えられ、単位平均蛍光強度(M)(すなわち、SPE/MFI)である。特定の実施形態では、メモリは、y=cx+cに従って分散の線形適合を判定するために分散をプロットするための命令を含む。
【0092】
実施形態では、平均蛍光強度及び分散は、複数の異なる照射強度、例えば2つ以上の照射強度、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、及び15個以上の異なる照射強度について判定されてもよい。
【0093】
一部の実施形態では、メモリは、少なくとも第1の照射強度及び第2の照射強度などの照射強度のうちの1つ以上における統計的光電子(SPE)を判定するための命令を含む。特定の例では、メモリは、粒子の統計的光電子及び判定された平均蛍光強度に基づいて、各粒子の光検出器の検出器効率(Qdet)を計算するための命令を含む。特定の実施形態では、メモリは、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルの検出器効率を判定し、統計的光電子及び粒子の判定された平均蛍光強度に基づいて光検出器の96個以上の検出器チャネルの検出器効率を判定するための命令を含む。特定の例では、メモリは、各粒子の統計的光電子及び判定された平均蛍光強度に基づいて、各粒子の光検出器の全ての検出器チャネルの検出器効率を判定するための命令を含む。特定の実施形態では、メモリは、命令を含み、命令は、プロセッサによって実行されると、プロセッサに、以下に従って決定される検出器効率を判定させる。
【0094】
【数6】
【0095】
ここで、SPEは、統計的光電子であり、MFIは、平均蛍光強度であり、ABDは、粒子ロット当たりのチャネル当たりの割り当て単位である。
【0096】
特定の実施形態では、メモリは、光検出器のうちの1つ以上のためのバックグラウンド信号を判定するための命令を含む。一部の例では、バックグラウンド信号は、1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上の照射強度で判定され、10個以上の異なる照射強度を含む。一部の例では、メモリは、適用された照射強度の全てにおいてバックグラウンド信号を判定するための命令を含む。一部の実施形態では、メモリは、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルでバックグラウンド信号を判定するための命令を含み、メモリは、光検出器の96個以上の検出器チャネルでバックグラウンド信号を判定するための命令を含む。特定の例では、メモリは、光検出器の検出器チャネルの全てにおいてバックグラウンド信号を判定するための命令を含む。一部の例では、メモリは、命令を含み、命令は、プロセッサによって実行されると、プロセッサに、統計的光電子及び光検出器の検出器効率に基づいて、バックグラウンド信号を判定させる。特定の例では、メモリは、以下に従ってバックグラウンド信号を判定するための命令を含む。
【0097】
【数7】
【0098】
一部の実施形態では、メモリは、光検出器のうちの1つ以上のための電子雑音を判定するための命令を含む。一部の例では、光検出器の電子雑音は、1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上の照射強度で判定され、10個以上の異なる照射強度を含む。一部の例では、光検出器の電子雑音は、適用された照射強度の全てで判定される。電子雑音は、同様に、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルで判定することができ、光検出器の96個以上の検出器チャネルで電子雑音を判定することを含む。特定の例では、メモリは、光検出器の検出器チャネルの全てにおいて電子雑音を判定するための命令を含む。一部の例では、メモリは、統計的光電子及び光検出器の検出器効率に基づいて電子雑音を判定するための命令を含む。特定の例では、メモリは、以下に従って電子雑音を判定するための命令を含む。
【0099】
【数8】
【0100】
一部の実施形態では、メモリは、光検出器のうちの1つ以上の検出限界を判定するための命令を含む。一部の例では、メモリは、光検出器の1つ以上、例えば2つ以上、例えば3つ以上、例えば4つ以上、例えば5つ以上、例えば6つ以上、例えば7つ以上、例えば8つ以上、例えば9つ以上、例えば10個以上、例えば12個以上、例えば16個以上、例えば20個以上、例えば24個以上、例えば36個以上、例えば48個以上、例えば72個以上の検出器チャネルにおける光検出器の検出限界を判定するための命令を含み、メモリは、光検出器の96個以上の検出器チャネルにおける光検出器の検出限界を判定するための命令を含む。特定の例では、メモリは、光検出器の検出器チャネルの全てにおける検出限界を判定するための命令を含む。一部の例では、メモリは、2+2SD=4(1+BSD)に従って各光検出器の検出限界を判定するための命令を含む。
【0101】
一部の実施形態では、メモリは、1つ以上の光検出器の検出器感光性を判定するための命令を含む。特定の実施形態では、メモリは、光検出器のための初期検出器利得を設定するための命令を含む。一部の例では、メモリは、複数の異なる光強度で(上記で詳細に説明したように)光源を用いて光検出器を照射するための命令と、光検出器の1つ以上の検出器利得で複数の光強度について光検出器からデータ信号を生成するための命令と、各検出器利得でバックグラウンドデータ信号から分解可能なデータ信号を生成する最低光照射強度を判定するための命令とを含む。一部の例では、メモリは、各検出器利得でバックグラウンドデータ信号から2つの標準偏差に該当するデータ信号を生成する最低光照射強度を判定するための命令を含む。特定の例では、メモリは、バックグラウンドデータ信号から分解可能なデータ信号を生成する最低光照射強度が、光強度の関数としてプロットされたときにプラトーに達する利得に検出器利得を設定するための命令を含む。
【0102】
特定の実施形態では、光検出器は、粒子選別機などの粒子分析器の中に位置決めされた光検出器である。特定の実施形態では、主題のシステムは、フローストリーム中の試料によって放出された光を検出するための光検出システムの一部として光検出器を含むフローサイトメトリシステムである。好適なフローサイトメトリシステムとしては、Ormerod(ed.),Flow Cytometry:A Practical Approach,Oxford Univ.Press(1997);Jaroszeski et al.(eds.),Flow Cytometry Protocols,Methods in Molecular Biology No.91,Humana Press(1997);Practical Flow Cytometry,3rd ed.,Wiley-Liss(1995);Virgo,et al.(2012)Ann Clin Biochem.Jan;49(pt 1):17-28;Linden,et.al.,Semin Throm Hemost.2004 Oct;30(5):502-11;Alison,et al.J Pathol,2010 Dec;222(4):335-344;及びHerbig,et al.(2007)Crit Rev Ther Drug Carrier Syst.24(3):203-255が挙げられ、これらの開示は参照により本明細書に組み込まれる。特定の例では、対象のフローサイトメトリシステムとしては、BD Biosciences FACSCanto(商標)IIフローサイトメータ、BD Accuri(商標)フローサイトメータ、BD Biosciences FACSCelesta(商標)フローサイトメータ、BD Biosciences FACSLyric(商標)フローサイトメータ、BD Biosciences FACSVerse(商標)フローサイトメータ、BD Biosciences FACSymphony(商標)フローサイトメータ、BD Biosciences LSRFortessa(商標)フローサイトメータ、BD Biosciences LSRFortess(商標)X-20フローサイトメータ、及びBD Biosciences FACSCalibur(商標)フローサイトメータ、BD Biosciences FACSCount(商標)細胞選別機、BD Biosciences FACSLyric(商標)細胞選別機、及びBD Biosciences Via(商標)細胞選別機、BD Biosciences Influx(商標)細胞選別機、BD Biosciences Jazz(商標)細胞選別機、BD Biosciences Aria(商標)細胞選別機、及びBD Biosciences FACSMelody(商標)細胞選別機などが挙げられる。
【0103】
一部の実施形態では、主題の粒子選別システムは、米国特許第10,006,852号、第9,952,076号、第9,933,341号、第9,784,661号、第9,726,527号、第9,453,789号、第9,200,334号、第9,097,640号、第9,095,494号、第9,092,034号、第8,975,595号、第8,753,573号、第8,233,146号、第8,140,300号、第7,544,326号、第7,201,875号、第7,129,505号、第6,821,740号、第6,813,017号、第6,809,804号、第6,372,506号、第5,700,692号、第5,643,796号、第5,627,040号、第5,620,842号、第5,602,039号に記載されているものなどのフローサイトメトリシステムであり、これらの開示は、参照によりその全体が本明細書に組み込まれる。
【0104】
特定の実施形態では、主題のシステムは、無線周波数多重励起を使用して、複数の周波数シフトされた光のビームを生成する励起モジュールを有するフローサイトメトリシステムである。特定の例では、主題のシステムは、米国特許第9,423,353号及び同第9,784,661号、並びに米国特許出願公開第2017/0133857号及び同第2017/0350803号に記載されているようなフローサイトメトリシステムであり、これらの開示は参照により本明細書に組み込まれる。
【0105】
一部の実施形態では、主題のシステムは、その開示が参照することによって本明細書に組み込まれる、2017年3月28日出願の米国特許出願公開第2017/0299493号に説明されるものなどの密閉型粒子選別モジュールを用いて粒子を選別するように構成された粒子選別システムである。特定の実施形態では、試料の粒子(例えば、細胞)は、その開示が参照することによって本明細書に組み込まれる、2019年2月8日出願の米国仮特許出願第62/803,264号に説明されるものなどの複数の選別決定ユニットを有する選別決定モジュールを使用して選別される。一部の実施形態では、試料の成分を選別するための方法は、その開示が参照することによって本明細書に組み込まれる、2017年3月28日出願の米国特許出願公開第2017/0299493号に説明されるものなどの偏向板を有する粒子選別モジュールを用いて、粒子(例えば、生体試料中の細胞)を選別することを含む。
【0106】
一部の実施形態では、対象のシステムは、粒子を収集ベッセルに物理的に選別することを伴って、又は伴わずに、粒子を分析及び特性評価するために使用され得る、粒子分析システムを含む。図4Aは、粒子分析システムの一例の機能ブロック図を示している。一部の実施形態では、粒子分析システム401は、フローシステムである。図4Aに示す粒子分析システム401は、本明細書に記載の方法を全体的に又は部分的に実行するように構成することができる。粒子分析システム401は、流体工学システム402を含む。流体工学システム402は、試料管405と、試料の粒子403(例えば、細胞)が共通試料経路409に沿ってその中を移動する試料管内の移動流体カラムとを含むか、又はそれらと結合され得る。
【0107】
粒子分析システム401は、各粒子が共通試料経路に沿って1つ以上の検出ステーションを通過するときに、各粒子から信号を収集するように構成された検出システム404を含む。検出ステーション408は、概して、共通試料経路の監視エリア407を指す。検出は、一部の実装形態では、光又は粒子403が監視エリア407を通過するときに、光又は粒子403のうちの1つ以上の他の特性を検出することを含み得る。図4Aでは、1つの監視エリア407を有する1つの検出ステーション408が示されている。粒子分析システム401の一部の実装形態は、複数の検出ステーションを含み得る。更に、一部の検出ステーションは、2つ以上のエリアを監視することができる。
【0108】
各信号には、各粒子に対してデータポイントを形成するための信号値が割り当てられる。上記で説明したように、このデータは、イベントデータと称され得る。データポイントは、粒子に対して測定されたそれぞれの特性の値を含む多次元データポイントであり得る。検出システム404は、一連のそのようなデータポイントを第1の時間間隔で収集するように構成されている。
【0109】
粒子分析システム401はまた、制御システム306を含み得る。制御システム406は、1つ以上のプロセッサ、振幅制御回路、及び/又は周波数制御回路を含み得る。図示の制御システムは、流体工学システム402と動作可能に関連付けることができる。制御システムは、ポアソン分布と、第1の時間間隔中に検出システム404によって収集されたデータ点の数とに基づいて、第1の時間間隔の少なくとも一部に対して計算された信号周波数を生成するように構成され得る。制御システム406は、第1の時間間隔の部分におけるデータ点の数に基づいて実験信号周波数を生成するように更に構成され得る。制御システム406は更に、実験信号周波数を、計算された信号周波数又は所定の信号周波数と比較することができる。
【0110】
図4Bは、本発明の例示的な実施形態によるフローサイトメトリのためのシステム400を示している。システム400は、フローサイトメータ410と、コントローラ/プロセッサ490と、メモリ495とを含む。フローサイトメータ410は、1つ以上の励起レーザ415a~415c、集束レンズ420、フローチャンバ425、前方散乱検出器430、側方散乱検出器435、蛍光収集レンズ440、1つ以上のビームスプリッタ445a~445g、1つ以上のバンドパスフィルタ450a~450e、1つ以上のロングパス(「LP」)フィルタ455a~455b、及び1つ以上の蛍光検出器460a~460fを含む。
【0111】
励起レーザ415a~415cは、レーザビームの形態で光を放出する。励起レーザ415a~415cから放出されるレーザビームの波長は、図4Bの例示的システムでは、それぞれ、488nm、633nm、及び325nmである。レーザビームは、最初に、ビームスプリッタ445a及び445bのうちの1つ以上を通して導かれる。ビームスプリッタ445aは、488nmの光を透過し、633nmの光を反射する。ビームスプリッタ445bは、UV光(10~400nmの範囲の波長を有する光)を透過し、488nm及び633nmの光を反射する。
【0112】
レーザビームは、次いで、集束レンズ420に指向され、集束レンズは、フローチャンバ425内の試料の粒子が位置する流体ストリームの部分上にビームを集束させる。フローチャンバは、流体工学システムの一部であり、この流体工学システムは、粒子を、代表的には一度に1つずつ、ストリーム中で、検査のために集束されたレーザビームに導く。フローチャンバは、ベンチトップサイトメータ内のフローセル又はストリームインエアサイトメータ内のノズル先端を備え得る。
【0113】
レーザビームからの光は、回折、屈折、反射、散乱、及び吸収によって試料中の粒子と相互作用し、そのサイズ、内部構造、及び粒子に付着した、又は粒子上若しくは粒子中に天然に存在する1つ以上の蛍光分子の存在などの粒子の特性に応じて、様々な異なる波長で再放出される。蛍光発光、並びに回折光、屈折光、反射光、及び散乱光は、ビームスプリッタ445a~445g、バンドパスフィルタ450a~450e、ロングパスフィルタ455a~455b、及び蛍光収集レンズ440のうちの1つ以上を通して、前方散乱検出器430、側方散乱検出器435、及び1つ以上の蛍光検出器460a~460fのうちの1つ以上にルーティングされてもよい。
【0114】
蛍光収集レンズ440は、粒子-レーザビーム相互作用から放出された光を収集し、その光を1つ以上のビームスプリッタ及びフィルタに向かってルーティングする。バンドパスフィルタ450a~450eなどのバンドパスフィルタは、狭い範囲の波長がフィルタを通過することを可能にする。例えば、バンドパスフィルタ450aは510/20フィルタである。第1の数は、スペクトル帯域の中心を表す。第2の数は、スペクトル帯域の範囲を提供する。したがって、510/20フィルタは、スペクトル帯域の中心の両側に10nm、すなわち500nm~520nmまで延在する。ショートパスフィルタは、特定の波長以下の光の波長を透過させる。ロングパスフィルタ455a~455bなどのロングパスフィルタは、指定された光の波長以上の光の波長を透過する。例えば、ロングパスフィルタ455aは、670nmロングパスフィルタであり、670nm以上の光を透過させる。フィルタは、特定の蛍光色素に対する検出器の特異性を最適化するように選択されることが多い。フィルタは、検出器に伝達される光のスペクトル帯域が蛍光色素の発光ピークに近くなるように構成することができる。
【0115】
ビームスプリッタは、異なる波長の光を異なる方向へと導く。ビームスプリッタは、ショートパス及びロングパスなどのフィルタ特性によって特性評価することができる。例えば、ビームスプリッタ445gは620SPビームスプリッタであり、これは、ビームスプリッタ445gが620nm以下の光の波長を透過し、620nmより長い光の波長を異なる方向に反射することを意味する。一実施形態では、ビームスプリッタ445a~445gは、ダイクロイックミラーなどの光学ミラーを含み得る。
【0116】
前方散乱検出器430は、フローセルを通る直接ビームからわずかに軸外に位置決めされ、回折光、すなわち、粒子を通して、又はその周囲を大部分は前方方向に進行する励起光を検出するように構成される。前方散乱検出器430によって検出される光の強度は、粒子の全体のサイズに依存する。前方散乱検出器430は、フォトダイオードを含み得る。側方散乱検出器435は、粒子の表面及び内部構造からの屈折光及び反射光を検出するように構成され、粒子の構造の複雑さが増すにつれて増加する傾向がある。粒子に関連する蛍光分子からの蛍光発光は、1つ以上の蛍光検出器460a~460fによって検出することができる。側方散乱検出器435及び蛍光検出器は、光電子増倍管を含み得る。前方散乱検出器430、側方散乱検出器435及び蛍光検出器で検出された信号は、検出器によって電子信号(電圧)に変換することができる。このデータは、試料に関する情報を提供することができる。
【0117】
当業者は、本発明の実施形態に従うフローサイトメータが、図4Bに示されるフローサイトメータに限定されず、当該分野で公知の任意のフローサイトメータを含み得ることを認識する。例えば、フローサイトメータは、様々な波長及び様々な異なる構成で、任意の数のレーザ、ビームスプリッタ、フィルタ、及び検出器を有することができる。
【0118】
動作中、サイトメータの動作は、コントローラ/プロセッサ490によって制御され、検出器からの測定データは、メモリ495内に記憶され、コントローラ/プロセッサ490によって処理することができる。明示的に示されていないが、コントローラ/プロセッサ190は、検出器に結合され、そこから出力信号を受信し、また、フローサイトメータ400の電気的かつ電気機械的な構成要素に結合され、レーザ、流体流動パラメータなどを制御してもよい。入力/出力(I/O)機能497もまた、システム内に提供され得る。メモリ495、コントローラ/プロセッサ490、及びI/O497は、フローサイトメータ410の一体部分として完全に提供されてもよい。かかる実施形態では、ディスプレイはまた、実験データをサイトメータ400のユーザに提示するためのI/O機能497の一部を形成してもよい。代替として、メモリ495及びコントローラ/プロセッサ490及びI/O機能の一部又は全部は、汎用コンピュータなどの1つ以上の外部デバイスの一部であってもよい。一部の実施形態では、メモリ495及びコントローラ/プロセッサ490の一部又は全部は、サイトメータ410と無線通信又は有線通信することができる。コントローラ/プロセッサ490は、メモリ495及びI/O497と併せて、フローサイトメータの実験の準備及び分析に関連する様々な機能を果たすように構成され得る。
【0119】
図4Bに図示されるシステムは、6つの異なる検出器を含み、これらの検出器は、フローセル425から各検出器までのビーム経路内のフィルタ及び/又はスプリッタの構成によって画定されるような6つの異なる波長帯域(本明細書では、所与の検出器のための「フィルタウィンドウ」と称され得る)内の蛍光を検出する。フローサイトメータの実験のために使用される異なる蛍光分子は、それら自体の特徴的な波長帯域で光を放出する。実験に使用される特定の蛍光標識及びそれらの関連する蛍光発光バンドは、検出器のフィルタウィンドウと概して一致するように選択され得る。しかし、より多くの検出器が提供され、そしてより多くの標識が利用される場合、フィルタウィンドウと蛍光発光スペクトルとの間の完全な対応は不可能となる。概して、特定の蛍光分子の発光スペクトルのピークは、1つの特定の検出器のフィルタウィンドウ内に存在し得るが、その標識の発光スペクトルの一部はまた、1つ以上の他の検出器のフィルタウィンドウと重複する。これはスピルオーバーと称されることがある。I/O497は、蛍光標識のパネル及び複数のマーカを有する複数の細胞集団を有するフローサイトメータの実験に関するデータを受信するように構成され得、各細胞集団は、複数のマーカのサブセットを有する。I/O497はまた、1つ以上のマーカを1つ以上の細胞集団に割り当てる生物学的データ、マーカ密度データ、発光スペクトルデータ、標識を1つ以上のマーカに割り当てるデータ、及びサイトメータ構成データを受信するように構成され得る。標識スペクトル特性及びフローサイトメータ構成データなどのフローサイトメータの実験データも、メモリ495に記憶することができる。コントローラ/プロセッサ490は、マーカへのラベルのうちの1つ以上の割り当てを評価するように構成することができる。
【0120】
図5は、生物学的イベントを分析及び表示するための分析コントローラ500などの粒子分析器制御システムの一例の機能ブロック図を示している。分析コントローラ500は、生物学的イベントのグラフィック表示を制御するための様々なプロセスを実装するように構成され得る。
【0121】
粒子分析器又は選別システム502は、生物学的イベントデータを取得するように構成され得る。例えば、フローサイトメータは、フローサイトメトリイベントデータを生成することができる。粒子分析器502は、生物学的イベントデータを分析コントローラ500に提供するように構成され得る。データ通信チャネルが、粒子分析器又は選別システム502と分析コントローラ500との間に含まれ得る。生物学的イベントデータは、データ通信チャネルを介して分析コントローラ500に提供され得る。
【0122】
分析コントローラ500は、粒子分析器又は選別システム502から生物学的イベントデータを受信するように構成することができる。粒子分析器又は選別システム502から受信された生物学的イベントデータは、フローサイトメトリイベントデータを含み得る。分析コントローラ500は、生物学的イベントデータの最初のプロットを含むグラフィカル表示を表示デバイス506に提供するように構成され得る。分析コントローラ500は、例えば、関心対象の領域を、表示デバイス506によって示される生物学的イベントデータの母集団の周りのゲートとして、最初のプロット上に重ねて、レンダリングするように更に構成され得る。一部の実施形態では、ゲートは、単一のパラメータヒストグラム又は二変量プロット上に描かれた1つ以上のグラフィカル対象領域の論理的組み合わせとすることができる。一部の実施形態では、ディスプレイは、粒子パラメータ又は飽和検出器データを表示するために使用され得る。
【0123】
分析コントローラ500は更に、ゲート内の表示デバイス506上に、ゲート外の生物学的イベントデータ内の他のイベントとは異なって、生物学的イベントデータを表示するように構成され得る。例えば、分析コントローラ500は、ゲート内に含まれる生物学的イベントデータの色を、ゲート外の生物学的イベントデータの色とは異なるようにレンダリングするように構成することができる。表示デバイス506は、モニタ、タブレットコンピュータ、スマートフォン、又はグラフィカルインターフェースを提示するように構成された他の電子デバイスとして実装され得る。
【0124】
分析コントローラ500は、第1の入力デバイスからゲートを識別するゲート選択信号を受信するように構成することができる。例えば、第1の入力デバイスは、マウス510として実装することができる。マウス510は、(例えば、カーソルがそこに位置決めされると、所望のゲート上又は内をクリックすることによって)表示デバイス506上に表示されるか、又はそれを介して操作されるゲートを識別する、分析コントローラ500へのゲート選択信号を開始することができる。一部の実装形態では、第1のデバイスは、キーボード508、又はタッチスクリーン、スタイラス、光学検出器、若しくは音声認識システムなどの分析コントローラ500に入力信号を提供するための他の手段として実装され得る。一部の入力デバイスは、複数の入力機能を含み得る。かかる実装形態では、入力機能は各々、入力デバイスとみなされ得る。例えば、図5に示されるように、マウス510は、右マウスボタン及び左マウスボタンを含むことができ、その各々は、トリガイベントを生成することができる。
【0125】
トリガイベントは、分析コントローラ500に、データが表示される方法を変更させ、データのどの部分が表示デバイス506上に実際に表示されるか、かつ/又は粒子選別のための対象集団の選択などの更なる処理への入力を提供させることができる。
【0126】
一部の実施形態では、分析コントローラ500は、ゲート選択がマウス510によって開始されたときを検出するように構成することができる。分析コントローラ500は、ゲーティングプロセスを容易にするために、プロット可視化を自動的に修正するように更に構成され得る。修正は、分析コントローラ500によって受信された生物学的イベントデータの特定の分布に基づき得る。
【0127】
分析コントローラ500は、記憶デバイス504に接続することができる。記憶デバイス504は、分析コントローラ500から生物学的イベントデータを受信して記憶するように構成され得る。記憶デバイス504はまた、分析コントローラ500からフローサイトメトリイベントデータを受信し、記憶するように構成され得る。記憶デバイス504は、分析コントローラ500によるフローサイトメトリイベントデータなどの生物学的イベントデータの取り出しを可能にするように更に構成することができる。
【0128】
表示デバイス506は、分析コントローラ500から表示データを受信するように構成することができる。表示データは、生物学的イベントデータのプロットと、プロットの区域の輪郭を描くゲートとを含み得る。表示デバイス506は更に、粒子分析器502、記憶デバイス504、キーボード508、及び/又はマウス510からの入力と併せて、分析コントローラ500から受信される入力に従って、提示される情報を変更するように構成され得る。
【0129】
一部の実装形態では、分析コントローラ500は、選別のための例示的イベントを受信するためのユーザインターフェースを生成することができる。例えば、ユーザインターフェースは、例示的なイベント又は例示的な画像を受信するための制御部を含み得る。例示的なイベント若しくは画像又は例示的なゲートは、試料についてのイベントデータの収集の前に、又は試料の一部分についてのイベントの初期セットに基づいて提供され得る。
【0130】
一部の実施形態では、対象のシステムは、粒子選別機システムを含む。図6Aは、本明細書に提示される一実施形態による、粒子選別機システム600(例えば、粒子分析器又は選別システム502)の概略図である。一部の実施形態では、粒子選別機システム600は、細胞選別機システムである。図6Aに示すように、液滴形成トランスデューサ602(例えば、圧電発振器)は、流体導管601に結合され、流体導管601は、ノズル603に結合することができ、ノズル603を含むことができ、又はノズル603とすることができる。流体導管601内で、シース流体604は、粒子609を含む試料流体606を移動流体カラム608(例えば、ストリーム)内に流体力学的に集束させる。移動流体カラム608内で、粒子609(例えば、細胞)は、照射源612(例えば、レーザ)によって照射される監視エリア611(例えば、レーザストリームが交差する場所)を横断するように、一列に並べられる。液滴形成トランスデューサ602の振動により、移動する流体カラム608が複数の液滴610に分割され、その一部は粒子609を含む。
【0131】
動作中、検出ステーション614(例えば、イベント検出器)は、対象粒子(又は対象細胞)が監視エリア611を横断するときを識別する。検出ステーション614はタイミング回路628に給電し、タイミング回路は次にフラッシュ充電回路630に給電する。時限液滴遅延(Δt)によって通知される液滴分裂ポイントにおいて、フラッシュ電荷が、対象液滴が電荷を担持するように、移動流体カラム608に印加され得る。対象液滴は、選別される1つ以上の粒子又は細胞を含み得る。次いで、偏向板(図示せず)を作動させて、液滴を収集管又はマルチウェル若しくはマイクロウェル試料板などのベッセル内に偏向させることによって、帯電した液滴を選別することができ、ウェル又はマイクロウェルは、特定の対象液滴と関連付けることができる。図6Aに示されるように、液滴は、ドレイン容器638内に収集され得る。
【0132】
検出システム616(例えば、液滴境界検出器)は、対象粒子が監視エリア611を通過するときに液滴駆動信号の位相を自動的に判定するように機能する。例示的な液滴境界検出器が、米国特許第7,679,039号に記載されており、参照によりその全体が本明細書に組み込まれる。検出システム616は、機器が液滴中の各検出された粒子の場所を正確に計算することを可能にする。検出システム616は、振幅信号620及び/又は位相信号618を供給することができ、これらの信号は、(増幅器622を介して)振幅制御回路626及び/又は周波数制御回路624に供給される。振幅制御回路626及び/又は周波数制御回路624は、次に、液滴形成トランスデューサ602を制御する。振幅制御回路626及び/又は周波数制御回路624は、制御システムに含めることができる。
【0133】
一部の実装形態では、選別電子機器(例えば、検出システム616、検出ステーション614、及びプロセッサ640)は、検出されたイベント及びそれに基づく選別決定を記憶するように構成されたメモリと結合され得る。選別決定は、粒子のイベントデータに含まれ得る。一部の実装形態では、検出システム616及び検出ステーション614は、単一の検出ユニットとして実装され得るか、又はイベント測定値が検出システム616若しくは検出ステーション614のうちの1つによって収集され、非収集要素に提供され得るように通信可能に結合され得る。
【0134】
図6Bは、本明細書に提示される一実施形態による、粒子選別機システムの概略図である。図6Bに示す粒子選別機システム600は、偏向板652及び654を含む。電荷は、バーブ内のストリーム帯電ワイヤを介して印加することができる。これにより、分析のための粒子609を含む液滴610のストリームが生成される。粒子は、1つ以上の光源(例えば、レーザ)で照明され、光散乱及び蛍光情報を生成することができる。粒子に関する情報は、選別電子機器又は他の検出システム(図6Bには図示せず)などによって分析される。偏向板652及び654は、液滴を目的の収集容器(例えば、672、674、676、又は678のうちの1つ)に向かって誘導するように、荷電液滴を誘引又は反発するように独立して制御され得る。図6Bに示されるように、偏向板652及び654は、粒子を第1の経路662に沿って容器674に向かって、又は第2の経路668に沿って容器678に向かって導くように制御され得る。粒子が関心対象でない(例えば、指定された選別範囲内の散乱又は照明情報を呈さない)場合、偏向板は、粒子がフロー経路664に沿って進み続けることを可能にし得る。そのような非荷電の小滴は、吸引器670を介してなど、廃棄物容器内に移行し得る。
【0135】
選別電子機器は、測定値の収集を開始し、粒子の蛍光信号を受信し、粒子の選別を引き起こすように偏向板を調整する方法を判定するために含まれ得る。図6Bに示される実施形態の例示的実装形態としては、Becton,Dickinson and Company(Franklin Lakes,NJ)によって市販されているBD FACSAria(商標)系のフローサイトメータが挙げられる。
【0136】
コンピュータ制御システム
本開示の態様は、コンピュータ制御システムを更に含み、システムは、完全自動化又は部分自動化のための1つ以上のコンピュータを更に含む。一部の実施形態では、システムは、コンピュータプログラムが記憶されたコンピュータ可読記憶媒体を有するコンピュータを含み、コンピュータプログラムは、コンピュータにロードされると、光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射することと、光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、光検出器からのデータ信号を第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって積分することと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することとを行うための命令を含む。一部の実施形態では、システムは、コンピュータプログラムが記憶されたコンピュータ可読記憶媒体を有するコンピュータを含み、コンピュータプログラムは、コンピュータにロードされると、少なくとも第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させるための命令を含む。一部の例では、コンピュータプログラムは、光源からの光の強度を線形に増加させるための命令を含む。一部の例では、コンピュータプログラムは、光源からの光の強度を指数関数的に増加させるための命令を含む。
【0137】
一部の実施形態では、コンピュータプログラムは、積分されたデータ信号から信号振幅を計算し、計算された信号振幅を光源による照射の強度と比較するための命令を含む。特定の実施形態では、コンピュータプログラムは、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び照射された光検出器の単位出力当たりの光電子の数のうちの1つ以上を判定するための命令を含む。特定の例では、コンピュータプログラムは、光検出器の動作電圧範囲にわたって、例えば光検出器の動作電圧範囲全体にわたって、光検出器のパラメータを判定するための命令を含む。
【0138】
実施形態では、システムは、入力モジュールと、処理モジュールと、出力モジュールとを含む。主題のシステムは、ハードウェア構成要素とソフトウェア構成要素との両方を含むことができ、ハードウェア構成要素は、1つ以上のプラットフォームの形態、例えばサーバの形態をとることができ、その結果、システムの機能要素、すなわち特定のタスク(情報の入力及び出力の管理、情報の処理など)を実行するシステムの要素は、システムで表される1つ以上のコンピュータプラットフォーム上で、かつそれにわたってソフトウェアアプリケーションを実行することによって実施することができる。
【0139】
システムは、ディスプレイと、オペレータ入力デバイスとを含み得る。オペレータ入力デバイスは、例えば、キーボード、マウスなどであってもよい。処理モジュールは、主題の方法のステップを実行するために記憶された命令を有するメモリにアクセスするプロセッサを含む。処理モジュールは、オペレーティングシステム、グラフィカルユーザインターフェース(GUI)コントローラ、システムメモリ、メモリ記憶デバイス、及び入出力コントローラ、キャッシュメモリ、データバックアップユニット、並びに多くの他のデバイスを含み得る。プロセッサは、市販のプロセッサであり得るか、又は利用可能であるか、若しくは利用可能になる他のプロセッサのうちの1つであり得る。プロセッサは、オペレーティングシステムを実行し、オペレーティングシステムは、周知の様式でファームウェア及びハードウェアとインターフェースし、当技術分野で既知のように、Java、Perl、C++、他の高レベル言語又は低レベル言語、並びにそれらの組み合わせなどの様々なプログラミング言語で記述され得る様々なコンピュータプログラムの機能をプロセッサが調整し、かつ実行することを容易にする。オペレーティングシステムは、通常、プロセッサと協調して、コンピュータの他の構成要素の機能を調整し、実行する。オペレーティングシステムはまた、全て既知の技術に従って、スケジューリング、入出力制御、ファイル及びデータ管理、メモリ管理、並びに通信制御及び関連サービスを提供する。プロセッサは、任意の好適なアナログシステム又はデジタルシステムであり得る。一部の実施形態では、プロセッサは、アナログ電子機器を含み、このアナログ電子機器は、ユーザが、第1及び第2の光信号に基づいて、光源をフローストリームと手動で整合させることを可能にする。一部の実施形態では、プロセッサは、例えば、負帰還制御などのフィードバック制御を提供するアナログ電子機器を含む。
【0140】
システムメモリは、様々な既知又は将来のメモリ記憶デバイスのいずれかであり得る。例としては、任意の一般的に入手可能なランダムアクセスメモリ(RAM)、常駐ハードディスク若しくはテープなどの磁気媒体、リードライトコンパクトディスクなどの光学媒体、フラッシュメモリデバイス、又は他のメモリ記憶デバイスが挙げられる。メモリ記憶デバイスは、コンパクトディスクドライブ、テープドライブ、リムーバブルハードディスクドライブ、又はディスクドライブを含む、様々な既知又は将来のデバイスのいずれかであり得る。そのようなタイプのメモリ記憶デバイスは、通常、それぞれ、コンパクトディスク、磁気テープ、リムーバブルハードディスク、又は磁気ディスクなどのプログラム記憶媒体(図示せず)から読み出し、及び/又はプログラム記憶媒体に書き込む。これらのプログラム記憶媒体のいずれか、又は現在使用されている、若しくは後に開発され得る他のものは、コンピュータプログラム製品とみなされ得る。理解されるように、これらのプログラム記憶媒体は、通常、コンピュータソフトウェアプログラム及び/又はデータを記憶する。コンピュータ制御ロジックとも呼ばれるコンピュータソフトウェアプログラムは、通常、システムメモリ、及び/又はメモリ記憶デバイスと併せて使用されるプログラム記憶デバイスに記憶される。
【0141】
一部の実施形態では、コンピュータプログラム製品は、その中に記憶された制御ロジック(プログラムコードを含むコンピュータソフトウェアプログラム)を有するコンピュータ使用可能媒体を備えて記載される。制御ロジックは、プロセッサによって実行されるとコンピュータ、プロセッサに、本明細書に記載された機能を実行させる。他の実施形態では、一部の機能は、例えば、ハードウェアステートマシンを使用して、主にハードウェア内に実装される。本明細書に記載される機能を実行するためのハードウェアステートマシンの実装形態は、関連技術分野の当業者には明らかである。
【0142】
メモリは、磁気、光学、又はソリッドステート記憶デバイス(磁気若しくは光学ディスク、又はテープ、又はRAM、又は固定型若しくは携帯型のいずれかの任意の他の好適なデバイスを含む)などの、プロセッサがデータを記憶し、取り出すことができる任意の好適なデバイスであり得る。プロセッサは、必要なプログラムコードを担持するコンピュータ可読媒体から好適にプログラムされた汎用デジタルマイクロプロセッサを含み得る。プログラミングは、通信チャネルを介してプロセッサにリモートで提供され得るか、又はメモリ又は何らかの他の携帯型若しくは固定型のコンピュータ可読記憶媒体などのコンピュータプログラム製品に、メモリと一緒にそれらのデバイスのいずれかを使用して、あらかじめ保存され得る。例えば、磁気ディスク又は光学ディスクは、プログラミングを担持し得、ディスクライタ/リーダによって読み取ることができる。本発明のシステムは、例えば、コンピュータプログラム製品の形態のプログラミング、上記の方法を実施する際に使用するためのアルゴリズムも含む。本発明によるプログラミングは、コンピュータ可読媒体、例えば、コンピュータによって直接読み取り及びアクセスすることができる任意の媒体に記録され得る。そのような媒体としては、以下に限定されないが、磁気ディスク、ハードディスク記憶媒体、及び磁気テープなどの磁気記憶媒体、CD-ROMなどの光学記憶媒体、RAM及びROMなどの電気記憶媒体、ポータブルフラッシュドライブ、並びに磁気/光学記憶媒体などのこれらのカテゴリのハイブリッドが挙げられる。
【0143】
プロセッサはまた、リモート位置でユーザと通信するための通信チャネルへのアクセスを有し得る。リモート位置とは、ユーザがシステムと直接接触せず、広域ネットワーク(「WAN」)、電話ネットワーク、衛星ネットワーク、又は携帯電話(すなわち、スマートフォン)を含む任意の他の好適な通信チャネルに接続されたコンピュータなど、外部デバイスから入力マネージャに入力情報を中継することを意味する。
【0144】
一部の実施形態では、本開示によるシステムは、通信インターフェースを含むように構成され得る。一部の実施形態では、通信インターフェースは、ネットワーク及び/又は別のデバイスと通信するための受信機及び/又は送信機を含む。通信インターフェースは、以下に限定されないが、無線周波数(RF)通信(例えば、無線周波数識別(RFID)、Zigbee通信プロトコル、WiFi、赤外線、無線ユニバーサルシリアルバス(USB)、超広帯域(UWB)、Bluetooth(登録商標)通信プロトコル、及び符号分割多元接続(CDMA)又はモバイル通信のためのグローバルシステム(GSM)などのセルラー通信を含む、有線通信又は無線通信のために構成され得る。
【0145】
一実施形態では、通信インターフェースは、主題のシステムと、同様の補完的データ通信のために構成される(例えば、診療所又は病院環境における)コンピュータ端末などの他の外部デバイスとの間のデータ通信を可能にするために、例えば、USBポート、RS-232ポート、又は任意の他の好適な電気接続ポートなどの物理ポート又はインターフェースなど、1つ以上の通信ポートを含むように構成される。
【0146】
一実施形態では、通信インターフェースは、赤外線通信、Bluetooth(登録商標)通信、又は任意の他の好適な無線通信プロトコルのために構成され、主題のシステムが、コンピュータ端末及び/又はネットワーク、通信可能な携帯電話、パーソナルデジタルアシスタント、又はユーザが併せて使用し得る任意の他の通信デバイスなど、他のデバイスと通信することを可能にする。
【0147】
一実施形態では、通信インターフェースは、携帯電話ネットワーク、ショートメッセージサービス(SMS)、インターネットに接続されたローカルエリアネットワーク(LAN)上のパーソナルコンピュータ(PC)への無線接続、又はWiFiホットスポットでのインターネットへのWiFi接続を介して、インターネットプロトコル(IP)を利用するデータ転送のための接続を提供するように構成される。
【0148】
一実施形態では、主題のシステムは、例えば、802.11若しくはBluetooth(登録商標)RFプロトコル、又はIrDA赤外線プロトコルなどの共通標準を使用して、通信インターフェースを介してサーバデバイスと無線で通信するように構成される。サーバデバイスは、スマートフォン、パーソナルデジタルアシスタント(PDA)若しくはノートブックコンピュータなどの別のポータブルデバイス、又はデスクトップコンピュータ、アプライアンスなどのより大きなデバイスであってもよい。一部の実施形態では、サーバデバイスは、液晶ディスプレイ(LCD)などのディスプレイ、並びにボタン、キーボード、マウス、又はタッチスクリーンなどの入力デバイスを有する。
【0149】
一部の実施形態では、通信インターフェースは、上述の通信プロトコル及び/又は機構のうちの1つ以上を使用して、ネットワーク又はサーバデバイスと、主題のシステム内、例えば、任意選択のデータ記憶ユニット内に記憶されたデータを自動的に又は半自動で通信するように構成される。
【0150】
出力コントローラは、人間であろうと機械であろうと、ローカルであろうとリモートであろうと、ユーザに情報を提示するための様々な既知の表示デバイスのいずれかのためのコントローラを含み得る。表示デバイスのうちの1つが視覚情報を提供する場合、この情報は、通常、ピクチャ要素のアレイとして論理的及び/又は物理的に編成され得る。グラフィカルユーザインターフェース(GUI)コントローラは、システムとユーザとの間にグラフィカル入力及び出力インターフェースを提供するための、及びユーザ入力を処理するための、様々な既知又は将来のソフトウェアプログラムのいずれかを含み得る。コンピュータの機能要素は、システムバスを介して互いに通信し得る。これらの通信のいくつかは、ネットワーク又は他のタイプのリモート通信を使用する代替の実施形態で達成され得る。出力マネージャはまた、既知の技術に従って、例えば、インターネット、電話、又は衛星ネットワークを介して、リモート位置でユーザに、処理モジュールによって生成された情報を提供し得る。出力マネージャによるデータの提示は、様々な既知の技術に従って実装され得る。一部の例として、データは、SQL、HTML、若しくはXMLドキュメント、電子メール若しくは他のファイル、又は他の形態のデータを含み得る。データは、ユーザが追加のSQL、HTML、XML、又は他のドキュメント若しくはデータをリモートソースから取り出すことができるように、インターネットURLアドレスを含み得る。主題のシステム内に存在する1つ以上のプラットフォームは、通常、一般的にサーバと呼ばれるコンピュータのクラスのものであるが、任意のタイプの既知のコンピュータプラットフォーム又は将来開発されるタイプであってもよい。しかしながら、それらは、メインフレームコンピュータ、ワークステーション、又は他のコンピュータタイプであってもよい。それらは、任意の既知又は将来のタイプのケーブル配線、又はネットワーク化されているか、又はされていないかのいずれかの無線システムを含む、他の通信システムを介して接続され得る。それらは、同一場所に配置され得るか、又は物理的に分離され得る。場合により、選択されたコンピュータプラットフォームのタイプ及び/又は構成に応じて、様々なオペレーティングシステムが、コンピュータプラットフォームのいずれかで採用され得る。適切なオペレーティングシステムとしては、Windows NT(登録商標)、Windows XP、Windows 7、Windows 8、iOS、Sun Solaris、Linux(登録商標)、OS/400、Compaq Tru64 Unix、SGI IRIX、Siemens Reliant Unixなどが挙げられる。
【0151】
図7は、特定の実施形態による例示的なコンピューティングデバイス700の一般的なアーキテクチャを示している。図7に示すコンピューティングデバイス700の一般的なアーキテクチャは、コンピュータハードウェア及びソフトウェアコンポーネントの構成を含む。コンピューティングデバイス700は、図7に示されるものよりも多くの(又は少ない)要素を含み得る。しかしながら、可能な開示を提供するために、これらの一般的な従来の要素の全てが示される必要はない。図示のように、コンピューティングデバイス700は、処理ユニット710と、ネットワークインターフェース720と、コンピュータ可読媒体ドライブ730と、入力/出力デバイスインターフェース740と、ディスプレイ750と、入力デバイス760とを含み、これらの全ては、通信バスを介して互いに通信することができる。ネットワークインターフェース720は、1つ以上のネットワーク又はコンピューティングシステムへの接続性を提供し得る。したがって、処理ユニット710は、ネットワークを介して他のコンピューティングシステム又はサービスから情報及び命令を受信することができる。処理ユニット710はまた、メモリ770と通信し、更に、入力/出力デバイスインターフェース740を介して、任意選択のディスプレイ750のための出力情報を提供してもよい。入力/出力デバイスインターフェース740はまた、キーボード、マウス、デジタルペン、マイクロフォン、タッチスクリーン、ジェスチャ認識システム、音声認識システム、ゲームパッド、加速度計、ジャイロスコープ、又は他の入力デバイスなどの任意選択の入力デバイス760からの入力を受け入れることができる。
【0152】
メモリ770は、1つ以上の実施形態を実装するために処理ユニット710が実行するコンピュータプログラム命令(一部の実施形態ではモジュール又はコンポーネントとしてグループ化される)を含み得る。メモリ770は、概して、RAM、ROM、及び/又は他の永続的な、補助的な、若しくは非一時的なコンピュータ可読媒体を含む。メモリ770は、コンピューティングデバイス700の一般的な管理及び動作において処理ユニット710によって使用されるコンピュータプログラム命令を提供するオペレーティングシステム772を記憶することができる。メモリ770は、本開示の態様を実装するためのコンピュータプログラム命令及び他の情報を更に含み得る。
【0153】
コンピュータ可読記憶媒体
本開示の態様は、主題の方法を実施するための命令を有する非一時的コンピュータ可読記憶媒体を更に含む。コンピュータ可読記憶媒体は、本明細書に記載される方法を実施するためのシステムの完全自動化又は部分自動化のために、1つ以上のコンピュータ上で採用されてもよい。特定の実施形態では、本明細書に記載の方法による命令は、「プログラミング」の形態でコンピュータ可読媒体上にコード化することができ、本明細書で使用される「コンピュータ可読媒体」という用語は、実行及び処理のためにコンピュータに命令及びデータを提供することに関与する任意の非一時的記憶媒体を指す。好適な非一時的記憶媒体の例には、磁気ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性メモリカード、ROM、DVD-ROM、ブルーレイディスク、ソリッドステートディスク、及びネットワーク接続ストレージ(NAS)が含まれ、かかるデバイスがコンピュータの内部にあるか外部にあるかは問わない。情報を含有するファイルは、コンピュータ可読媒体上に「記憶」することができ、ここで、「記憶」とは、コンピュータによって後日アクセス可能かつ取り出し可能であるように情報を記録することを意味する。本明細書で説明するコンピュータ実装方法は、任意の数のコンピュータプログラミング言語のうちの1つ以上で記述することができるプログラミングを使用して実行することができる。かかる言語は、例えば、Java(Sun Microsystems,Inc.,Santa Clara,CA)、Visual Basic(Microsoft Corp.,Redmond,WA)、及びC++(AT&T Corp.,Bedminster,NJ)、並びに任意の多くの他のものを含む。
【0154】
一部の実施形態では、対象のコンピュータ可読記憶媒体は、その上に記憶されたコンピュータプログラムを含み、コンピュータプログラムは、コンピュータにロードされたとき、光検出器を連続波光源を用いて第1の強度で第1の所定の時間間隔の間照射するためのアルゴリズムと、光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射するためのアルゴリズムと、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムと、積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定するためのアルゴリズムとを有する命令を含む。
【0155】
特定の例では、非一時的コンピュータ可読記憶媒体は、複数の時間間隔にわたって複数の光強度で光検出器を照射するためのアルゴリズムを含む。これらの例では、非一時的コンピュータ可読記憶媒体は、複数の照射時間間隔を含む時間期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムを含む。
【0156】
一部の実施形態では、非一時的コンピュータ可読記憶媒体は、信号振幅を計算するためのアルゴリズムを含む。一部の例では、非一時的コンピュータ可読記憶媒体は、中央信号振幅を計算するためのアルゴリズムを含む。特定の例では、非一時的コンピュータ可読記憶媒体は、計算された信号振幅を光源の光強度と比較するためのアルゴリズムを含む。特定の例では、非一時的コンピュータ可読記憶媒体は、計算された信号振幅、及び計算された信号振幅と光源の光強度との間の比較のうちの1つ以上に基づいて、光検出器のパラメータを判定するためのアルゴリズムを含む。例えば、非一時的コンピュータ可読記憶媒体は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、又は単位出力当たりの光電子の数を判定するためのアルゴリズムを含んでもよい。非一時的コンピュータ可読記憶媒体は、光検出器のパラメータが光検出器の動作電圧範囲全体にわたって判定される場合など、光検出器の動作電圧の範囲にわたって検出器パラメータを判定するためのアルゴリズムを含み得る。
【0157】
コンピュータ可読記憶媒体は、ディスプレイ及びオペレータ入力デバイスを有する1つ以上のコンピュータシステム上で採用されてもよい。オペレータ入力デバイスは、例えば、キーボード、マウスなどであってもよい。処理モジュールは、主題の方法のステップを実行するために記憶された命令を有するメモリにアクセスするプロセッサを含む。処理モジュールは、オペレーティングシステム、グラフィカルユーザインターフェース(GUI)コントローラ、システムメモリ、メモリ記憶デバイス、及び入出力コントローラ、キャッシュメモリ、データバックアップユニット、並びに多くの他のデバイスを含み得る。プロセッサは、市販のプロセッサであり得るか、又は利用可能であるか、若しくは利用可能になる他のプロセッサのうちの1つであり得る。プロセッサは、オペレーティングシステムを実行し、オペレーティングシステムは、周知の様式でファームウェア及びハードウェアとインターフェースし、当技術分野で既知のように、Java、Perl、C++、他の高レベル又は低レベル言語、並びにそれらの組み合わせなどの様々なプログラミング言語で記述され得る様々なコンピュータプログラムの機能をプロセッサが調整し、かつ実行することを容易にする。オペレーティングシステムは、通常、プロセッサと協調して、コンピュータの他の構成要素の機能を調整し、実行する。オペレーティングシステムはまた、全て既知の技術に従って、スケジューリング、入出力制御、ファイル及びデータ管理、メモリ管理、並びに通信制御及び関連サービスを提供する。
【0158】
マルチスペクトル蛍光粒子
上記で要約したように、本開示の態様はまた、本明細書に記載の特定の方法を実施するための1つ以上のフルオロフォアを有する粒子(例えば、ビーズ)を含む。特定の実施形態による対象粒子は、全光源波長にわたって(例えば、システムの全LED又はレーザにわたって)及び光検出器の検出波長にわたって明るい光検出器信号を提供する単一ピークマルチフルオロフォアビーズを含み得る。
【0159】
実施形態では、主題の粒子は、上記のように光源によって照射されるフローストリーム中を流れるために(例えば、流体組成物中に)配合される。各粒子は、1つ以上の異なる種類のフルオロフォア、例えば、2つ以上、又は3つ以上、又は4つ以上、又は5つ以上、又は6つ以上、又は7つ以上、又は8つ以上、又は9つ以上、又は10個以上、又は11個以上、又は12個以上、又は13個以上、又は14個以上、又は15個以上、16個以上、又は17個以上、又は18個以上、又は19個以上、又は20個以上、又は25個以上、又は30個以上、又は35個以上、又は40個以上、又は45個以上、50個以上の異なる種類のフルオロフォアを有してもよい。例えば、各粒子は、2つ、又は3つ、又は4つ、又は5つ、又は6つ、又は7つ、又は8つ、又は9つ、又は10個、又は11個、又は12個、又は13個、又は14個、又は15個、又は16個、又は17個、又は18個、又は19個、又は20個の異なる種類のフルオロフォアを含んでもよい。
【0160】
実施形態では、各フルオロフォアは、粒子と安定して会合している。安定に会合するとは、フルオロフォアが粒子から容易に解離して液体媒体、例えば、水性媒体と接触しないことを意味する。一部の実施形態では、フルオロフォアのうちの1つ以上は、粒子に共有結合される。他の実施形態では、フルオロフォアのうちの1つ以上は、粒子に物理的に関連付けられる(すなわち、非共有結合される)。他の実施形態では、1つ以上のフルオロフォアが粒子に共有結合しており、1つ以上のフルオロフォアが粒子と物理的に会合している。
【0161】
一部の実施形態では、各粒子は、2つ以上の異なる種類のフルオロフォアを含む。分子式、励起極大及び発光極大のうちの1つ以上が互いに異なる場合、任意の2つのフルオロフォアは異なるとみなされる。したがって、異なる又は別個のフルオロフォアは、化学組成に関して、又はフルオロフォアの1つ以上の特性に関して、互いに異なり得る。例えば、異なるフルオロフォアは、励起極大及び発光極大のうちの少なくとも1つが互いに異なり得る。一部の場合では、異なるフルオロフォアは、それらの励起最大値が互いに異なる。一部の場合において、異なるフルオロフォアは、それらの発光極大が互いに異なる。一部の場合において、異なるフルオロフォアは、それらの励起極大及び発光極大の両方が互いに異なる。したがって、第1及び第2のフルオロフォアを含む実施形態では、第1及び第2のフルオロフォアは、励起極大及び発光極大のうちの少なくとも1つが互いに異なり得る。例えば、第1及び第2のフルオロフォアは、励起極大、発光極大、又は励起及び発光極大の両方が互いに異なってもよい。フルオロフォアの所与のセットは、それらが励起又は発光極大に関して互いに異なる場合、別個であるとみなすことができ、かかる差の大きさは、一部の例では、15nm以上を含む、5nm以上、10nm以上であり、一部の例では、差の大きさは、25~50nmなどの15~100nmを含む、10~200nmなどの5~400nmの範囲である。
【0162】
特定の実施形態による対象のフルオロフォアは、100nm~800nm、例えば150nm~750nm、例えば200nm~700nm、例えば250nm~650nm、例えば300nm~600nm、及び400nm~500nmを含む範囲の励起極大を有する。特定の実施形態による対象のフルオロフォアは、400nm~1000nm、例えば450nm~950nm、例えば500nm~900nm、例えば550nm~850nm、及び600nm~800nmを含む範囲の発光極大を有する。特定の例では、フルオロフォアは、200nm以上、例えば250nm以上、例えば300nm以上、例えば350nm以上、例えば400nm以上、例えば450nm以上、例えば500nm以上、例えば550nm以上、例えば600nm以上、例えば650nm以上、例えば700nm以上、例えば750nm以上、例えば800nm以上、例えば850nm以上、例えば900nm以上、例えば950nm以上、例えば1000nm以上、及び1050nm以上を含むピーク発光波長を有する蛍光色素などの発光色素である。例えば、フルオロフォアは、200nm~1200nm、例えば300nm~1100nm、例えば400nm~1000nm、例えば500nm~900nmの範囲のピーク発光波長を有する蛍光色素であってよく、600nm~800nmのピーク発光波長を有する蛍光色素を含む。特定の実施形態では、主題のマルチスペクトル粒子は、349nm(UVレーザ)、488nm(青色レーザ)、532nm(Nd:YAG固体レーザ)、640nm(赤色レーザ)及び405nm(紫色レーザ)又はその付近の波長で照射するレーザによる安定した励起を提供する。特定の例では、主題のマルチスペクトル粒子は、350nm~850nmなどの全スペクトル検出帯域にわたって光源による安定した励起を提供する。
【0163】
対象のフルオロフォアとしては、限定されないが、ボディピー色素、クマリン色素、ロダミン色素、アクリジン色素、アントラキノン色素、アリールメタン色素、ジアリールメタン色素、クロロフィル含有色素、トリアリールメタン色素、アゾ色素、ジアゾニウム色素、ニトロ色素、ニトロソ色素、フタロシアニン色素、シアニン色素、非対称シアニン色素、キノン-イミン色素、アジン色素、ユーロジン色素、サフラニン色素、インダミン、インドフェノール色素、フルオリン色素、オキサジン色素、オキサゾン色素、チアジン色素、チアゾル色素、キサンテン色素、フルオレン色素、ピロニン色素、フルオリン色素、ロダミン色素、フェナントリジン色素、スクアライン、ボディピー、スクアリンロクシタン、ナフタレン、クマリン、オキサジアゾール、アントラセン、ピレン、アクリジン、アリールメチン、又はテトラピロール、及びそれらの組み合わせが挙げられるが、これらに限定されない。特定の実施形態では、コンジュゲートは、2つ以上の色素、例えば、ボディピー色素、クマリン色素、ロダミン色素、アクリジン色素、アントラキノン色素、アリールメタン色素、ジアリールメタン色素、クロロフィル含有色素、トリアリールメタン色素、アゾ色素、ジアゾニウム色素、ニトロ色素、ニトロソ色素、フタロシアニン色素、シアニン色素、非対称シアニン色素、キノン-イミン色素、アジン色素、ユーロジン色素、サフラニン色素、インダミン、インドフェノール色素、フルオリン色素、オキサジン色素、オキサゾン色素、チアジン色素、チアゾル色素、キサンテン色素、フルオレン色素、ピロニン色素、フルオリン色素、ロダミン色素、フェナントリジン色素、スクアライン、ボディピー、スクアリンロクシタン、ナフタレン、クマリン、オキサジアゾール、アントラセン、ピレン、アクリジン、アリールメチン、又はテトラピロール、及びそれらの組み合わせから選択される2つ以上の色素を含み得る。
【0164】
特定の実施形態では、対象のフルオロフォアとしては、フルオレセインイソチオシアネート(FITC)、フィコエリトリン(PE)色素、ペリジニンクロロフィルタンパク質-シアニン色素(例えば、PerCP-Cy5.5)、フィコエリトリン-シアニン(PE-Cy)色素(PE-Cy7)、アロフィコシアニン(APC)色素(例えば、APC-R700)、アロフィコシアニン-シアニン色素(例えば、APC-Cy7)、クマリン色素(例えば、V450又はV500)が挙げられ得るが、これらに限定されない。特定の例では、フルオロフォアは、1,4-ビス-(o-メチルスチリル)-ベンゼン(ビス-MSB1,4-ビス[2-(2-メチルフェニル)エテニル]-ベンゼン)、C510色素、C6色素、ナイルレッド色素、T614色素(例えば、N-[7-(メタンスルホンアミド)-4-オキソ-6-フェノキシクロメン-3-イル]ホルムアルデヒド)、LDS821色素((2-(6-(p-ジメチルアミノフェニル)-2,4-ネオペンチレン-1,3,5-ヘキサトリエニル)-3-エチルベンゾチアゾリウムパークロレート)、mFluor色素(例えば、mFluor 780NSなどのmFluorレッド色素)のうちの1つ以上を含み得る。
【0165】
粒子は、上記のような光源によって照射するための任意の好都合な形状であり得る。一部の例では、粒子は、ディスク、球、卵形、立方体、ブロック、円錐など、並びに不規則な形状に成形又は構成された固体支持体である。粒子の質量は様々であってよく、一部の例では0.01mg~20mg、例えば0.05mg~19.5mg、例えば0.1mg~19mg、例えば0.5mg~18.5mg、例えば1mg~18mg、例えば1.5mg~17.5mg、例えば2mg~15mg(3mg~10mgを含む)の範囲である。粒子は、0.01mm以上、例えば0.05mm以上、例えば0.1mm以上、例えば0.5mm以上、例えば1mm以上、例えば1.5mm以上、例えば2mm以上、例えば2.5mm以上、例えば3mm以上、例えば3.5mm以上、例えば4mm以上、例えば4.5mm以上、及び5mm以上を含む、例えばVertexシステム又は等価物を使用して決定される表面積を有し得る。
【0166】
粒子の寸法は、所望に応じて変化してもよく、一部の例では、粒子は、0.01mm~10mm、例えば0.05mm~9.5mm、例えば0.1mm~9mm、例えば0.5mm~8.5mm、例えば1mm~8mm、例えば1.5mm~7.5mm、例えば2mm~7mm、例えば2.5mm~6.5mm、例えば3mm~6mmの範囲の最長寸法を有する。特定の例では、粒子は、0.01mm~5mm、例えば0.05mm~4.5mm、例えば0.1mm~4mm、例えば0.5mm~3.5mm、及び1mm~3mmを含む範囲の最短寸法を有する。
【0167】
特定の例では、対象粒子は多孔性であり、例えば、粒子は、例えばキャピラリーフローポロメーター(Capillary Flow Porometer)又は等価物を使用して決定されるように、5μ~100μ、例えば10μ~90μ、例えば15μ~85μ、例えば20μ~80μ、例えば25μ~75μ、及び30μ~70μを含む範囲、例えば50μの多孔性を有する。
【0168】
粒子は、任意の好都合な材料から形成することができる。一部の実施形態において対象となるものは、低い自己蛍光を有するか又は自己蛍光を有さない粒子(例えば、ビーズ)である。好適な材料としては、ガラス材料(例えば、ケイ酸塩)、セラミック材料(例えば、リン酸カルシウム)、金属材料、及びポリマー材料など(例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)が挙げられるが、これらに限定されない。一部の例では、粒子は、米国特許出願公開第9,797,899号(その開示は参照により本明細書に組み込まれる)に記載されているような多孔性マトリックスなどの固体支持体から形成される。したがって、粒子の表面積は、任意の好適なマクロ多孔性基材又はミクロ多孔性基材であってもよく、好適なマクロ多孔性基材及びミクロ多孔性基材としては、セラミックマトリックス、フリットガラスなどのフリット、ポリマーマトリックス、並びに金属有機ポリマーマトリックスが挙げられるが、これらに限定されない。一部の実施形態では、多孔性マトリックスはフリットである。「フリット」という用語は、ガラスなどの焼結された粒状固体から形成される多孔性組成物を指すために、その従来の意味で本明細書で使用される。フリットは、フリットを調製するために使用される焼結顆粒の型に依存して変化する化学成分を有し得、ここで、使用され得るフリットとしては、アルミノシリケート、三酸化ホウ素、ボロホスホシリケートガラス、ボロシリケートガラス、釉薬、コバルトガラス、クランベリーガラス、フルオロホスフェートガラス、フルオロシリケートガラス、溶融水晶、二酸化ゲルマニウム、メタル及びスルフィド包埋ボロシリケート、鉛ガラス、ホスフェートガラス、五酸化リンガラス、ホスホシリケートガラス、ケイ酸カリウム、ソーダライムガラス、ヘキサメタリン酸ナトリウムガラス、ケイ酸ナトリウム、テルライトガラス、ウラニウムガラス、ビトリット及びこれらの組み合わせから構成されるフリットが挙げられるが、これらに限定されない。一部の実施形態では、多孔性マトリックスは、ホウケイ酸、アルミノケイ酸塩、フルオロケイ酸塩、ケイ酸カリウム又はホウリンケイ酸塩ガラスフリットなどのガラスフリットである。
【0169】
一部の実施形態では、粒子は多孔性有機ポリマーから形成される。対象となる多孔性有機ポリマーは、試料体積、試料中の成分、並びに存在するアッセイ試薬に応じて変化し、多孔性ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチルビニルアセテート(EVA)、ポリカーボネート、ポリカーボネート合金、ポリウレタン、ポリエーテルスルホン、コポリマー、及びこれらの組み合わせを含み得るが、これらに限定されない。例えば、対象の多孔性ポリマーとしては、スチレン、モノアルキレンアリーレンモノマー(例えば、エチルスチレン、α-メチルスチレン、ビニルトルエン、及びビニルエチルベンゼン)のようなモノマー単位から構成されるホモポリマー、ヘテロポリマー、及びコポリマーと、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジルなどの(メタ)アクリル酸エステル類と、塩化ビニル、塩化ビニリデン、クロロメチルスチレンなどの塩素含有モノマーと、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル化合物と、及び酢酸ビニル、プロピオン酸ビニル、n-オクタデシルアクリルアミド、エチレン、プロピレン、及びブタン、並びにこれらの組み合わせとが挙げられる。
【0170】
一部の実施形態では、粒子は、金属有機ポリマーマトリックス、例えば、アルミニウム、バリウム、アンチモン、カルシウム、クロム、銅、エルビウム、ゲルマニウム、鉄、鉛、リチウム、リン、カリウム、ケイ素、タンタル、スズ、チタン、バナジウム、亜鉛又はジルコニウムなどの金属を含有する骨格構造を有する有機ポリマーマトリックスから形成される。一部の実施形態では、多孔性有機マトリックスは、メチルトリメトキシシラン、ジメチルジメトキシシラン、テトラエトキシシラン、メタクリルオキシプロピルトリメトキシシラン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)ブタン、ビス(トリエトキシシリル)ペンタン、ビス(トリエトキシシリル)ヘキサン、ビス(トリエトキシシリル)ヘプタン、ビス(トリエトキシシリル)オクタン、及びこれらの組み合わせのポリマーを含むがこれらに限定されないオルガノシロキサンポリマーである。
【0171】
キット
主題のシステムのうちの1つ以上の構成要素を含むキットも提供される。特定の実施形態によるキットは、狭帯域発光ダイオードなどの1つ以上の連続波光源と、光検出器(例えば、光電子増倍管)とを含み、光検出器の1つ以上のパラメータの分析が所望される。キットはまた、レンズ、ミラー、フィルタ、光ファイバ、波長分離器、ピンホール、スリット、コリメートプロトコル、及びそれらの組み合わせなどの光学調整構成要素を含んでもよい。
【0172】
上記の構成要素に加えて、主題のキットは、(特定の実施形態では)主題の方法を実施するための説明書を更に含み得る。これらの説明書は、様々な形態で主題のキット内に存在し得、そのうちの1つ以上が、キット内に存在し得る。これらの説明書が存在し得る1つの形態は、例えば、情報が印刷される1枚又は複数枚の紙などの好適な媒体又は基材上、キットのパッケージ中、添付文書などの中の印刷情報としてである。これらの説明書の更に別の形態は、情報が記録されたコンピュータ可読媒体、例えば、ディスケット、コンパクトディスク(CD)、ポータブルフラッシュドライブなどである。存在し得る、これらの説明書の更に別の形態は、隔たったサイトで情報にアクセスするために、インターネットを介して使用され得るウェブサイトアドレスである。
【0173】
ユーティリティ
主題の方法、システム、及びコンピュータシステムは、粒子分析器など、光検出器を較正又は最適化することが望ましい様々な用途で使用される。主題の方法及びシステムはまた、生体試料のような流体媒体中の試料中の粒子成分を分析及び選別するために使用される光検出器についての用途を見出すものである。本開示はまた、改良された細胞選別精度、向上した粒子収集、低減されたエネルギー消費、粒子荷電効率、より正確な粒子荷電、及び細胞選別中の向上した粒子偏向を伴うフローサイトメータを提供することが望ましい、フローサイトメトリにおける使用を見出すものである。実施形態では、本開示は、フローサイトメータを用いた試料分析中のユーザ入力又は手動調整の必要性を低減させる。特定の実施形態では、主題の方法及びシステムは、使用中のフローサイトメータの調整が、例えあったとしても、ほとんど人間の入力を必要としないように、完全に自動化されたプロトコルを提供する。
【0174】
本明細書に記載される主題の態様(実施形態を含む)は、単独で、又は1つ以上の他の態様若しくは実施形態と組み合わせて有益であり得る。説明を限定することなく、番号1~115の本開示の特定の非限定的な態様が以下に付記として提供される。本開示を読むと当業者には明らかであるように、個々に番号付けされた態様の各々は、前述の態様のいずれか又は個々に番号付けされた態様に続く態様のいずれかと使用又は組み合わせられ得る。これは、態様の全てのかかる組み合わせのサポートを提供することを意図しており、以下に明示的に提供される態様の組み合わせに限定されない。
【0175】
1.粒子分析器における光検出器のパラメータを判定するための方法であって、
粒子分析器内に位置決めされた光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射することと、
光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、
第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を含む、方法。
2.粒子分析器は、フローサイトメータである、付記1に記載の方法。
3.光検出器は、フローストリーム中の粒子からの光を検出するために粒子分析器内に位置決めされる、付記1又は2に記載の方法。
4.光源は、連続波光源である、付記1~3のいずれか1つに記載の方法。
5.光源は、パルス光源である、付記1~3のいずれか1つに記載の方法。
【0176】
6.光源は、発光ダイオードである、付記1~5のいずれか1つに記載の方法。
7.光源は、狭帯域光源である、付記1~6のいずれか1つに記載の方法。
8.光源は、20nm以下にわたる波長を含む光を放出する、付記7に記載の方法。
9.方法は、第1の強度よりも大きい第2の強度で光検出器を照射することを含む、付記1~8のいずれか1つに記載の方法。
10.第1の所定の時間間隔及び第2の所定の時間間隔は、同じ持続時間を有する、付記1~9のいずれか1つに記載の方法。
【0177】
11.方法は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器を連続的に照射することを含む、付記1~10のいずれか1つに記載の方法。
12.方法は、第3の所定の時間間隔の間、光源からの光の強度を第1の強度から第2の強度に増加させることを含む、付記1~11のいずれか1つに記載の方法。
13.方法は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させることを含む、付記1~11のいずれか1つに記載の方法。
14.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する、付記13に記載の方法。
15.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する、付記13に記載の方法。
【0178】
16.光検出器からのデータ信号を積分することは、期間にわたる信号振幅を計算することを含む、付記1~15のいずれか1つに記載の方法。
17.方法は、期間にわたる中央信号振幅を計算することを含む、付記16に記載の方法。
18.方法は、計算された信号振幅を光源の光強度と比較することを含む、付記16又は17に記載の方法。
19.方法は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される光検出器の1つ以上のパラメータを判定することを含む、付記1~18のいずれか1つに記載の方法。
20.方法は、
光検出器を光源を用いて複数の強度で複数の所定の時間間隔の間照射することと、
複数の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を含む、付記1~19のいずれか1つに記載の方法。
【0179】
21.光検出器のパラメータは、光検出器の動作電圧の範囲にわたって判定される、付記1~20のいずれか1つに記載の方法。
22.光検出器のパラメータは、光検出器の動作電圧範囲全体にわたって判定される、付記21に記載の方法。
23.判定されたパラメータに基づいて光検出器の最適な検出器利得を計算することを更に含む、付記1~22のいずれか1つに記載の方法。
【0180】
24.光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射することと、
光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射することと、
第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を含む、方法。
25.光源は、連続波光源である、付記24に記載の方法。
26.光源は、パルス光源である、付記24に記載の方法。
27.光源は、発光ダイオードである、付記24~26のいずれか1つに記載の方法。
28.光源は、狭帯域光源である、付記24~27のいずれか1つに記載の方法。
【0181】
29.光源は、20nm以下にわたる波長を含む光を放出する、付記28に記載の方法。
30.方法は、第1の強度よりも大きい第2の強度で光検出器を照射することを含む、付記24~29のいずれか1つに記載の方法。
31.第1の所定の時間間隔及び第2の所定の時間間隔は、同じ持続時間を有する付記24~30のいずれか1つに記載の方法。
32.方法は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器を連続的に照射することを含む、付記24~31のいずれか1つに記載の方法。
33.方法は、第3の所定の時間間隔の間、光源からの光の強度を第1の強度から第2の強度に増加させることを含む、付記24~32のいずれか1つに記載の方法。
【0182】
34.方法は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させることを含む、付記24~32のいずれか1つに記載の方法。
35.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する、付記34に記載の方法。
36.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する、付記34に記載の方法。
37.光検出器からのデータ信号を積分することは、期間にわたる信号振幅を計算することを含む、付記24~36のいずれか1つに記載の方法。
38.方法は、期間にわたる中央信号振幅を計算することを含む、付記37に記載の方法。
【0183】
39.方法は、計算された信号振幅を光源の光強度と比較することを含む、37又は38に記載の方法。
40.方法は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される光検出器の1つ以上のパラメータを判定することを含む、付記24~39のいずれか1つに記載の方法。
41.方法は、
光検出器を光源を用いて複数の強度で複数の所定の時間間隔の間照射することと、
複数の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を含む、付記24~40のいずれか1つに記載の方法。
42.光検出器のパラメータは、光検出器の動作電圧の範囲にわたって判定される、付記24~41のいずれか1つに記載の方法。
43.光検出器のパラメータは、光検出器の動作電圧範囲全体にわたって判定される、付記42に記載の方法。
【0184】
44.判定されたパラメータに基づいて光検出器の最適な検出器利得を計算することを更に含む、付記24~43のいずれか1つに記載の方法。
45.光検出器は、フローサイトメータ内に位置決めされる、付記24~44のいずれか1つに記載の方法。
46.フローサイトメータは、フローストリーム中で粒子を伝播させるためのフローセルを含む、付記45に記載の方法。
【0185】
47.粒子分析器であって、
光源と、
粒子分析器のハウジング内に位置決めされた光検出システムであって、光検出システムは、
第1の所定の時間間隔の間第1の強度での光源からの光を検出することと、
第2の所定の時間間隔にわたって第2の強度での光源からの光を検出することと
を行うように構成された光検出器を有する、光検出システムと、
プロセッサであって、プロセッサに動作可能に結合されたメモリを有するプロセッサと
を備えており、
メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、
第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を行わせる、粒子分析器。
48.粒子分析器は、フローサイトメータに組み込まれている、付記47に記載の粒子分析器。
49.光源は、連続波光源である、付記47又は48に記載の粒子分析器。
50.光源は、パルス光源である、付記47又は48に記載の粒子分析器。
51.光源は、発光ダイオードである、47~50のいずれか1つに記載の粒子分析器。
【0186】
52.光源は、狭帯域幅光源である、付記47~51のいずれか1つに記載の粒子分析器。
53.光源は、20nm以下にわたる波長を含む光を放出する、52に記載の粒子分析器。
54.第2の強度は、第1の強度よりも大きい、付記47~53のいずれか1つに記載の粒子分析器。
55.第1の所定の時間間隔及び第2の所定の時間間隔は、同じ持続時間を有する、付記47~54のいずれか1つに記載の粒子分析器。
56.光源は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器を連続的に照射するように構成されている、付記47~55のいずれか1つに記載の粒子分析器。
【0187】
57.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光源からの光の強度を第3の所定の時間間隔にわたって第1の強度から第2の強度に増加させる、付記56に記載の粒子分析器。
58.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させる、付記47~56のいずれか1つに記載の粒子分析器。
59.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する、付記58に記載の粒子分析器。
60.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する、付記58に記載の粒子分析器。
61.プロセッサは、プロセッサに動作可能に結合されるメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、期間にわたる信号振幅を計算させる、付記47~60のいずれか1つに記載の粒子分析器。
【0188】
62.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、期間にわたって中央信号振幅を計算させる、付記61に記載の粒子分析器。
63.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、計算された信号振幅を光源の光強度と比較させる、付記61又は62に記載の粒子分析器。
64.光検出器の1つ以上のパラメータは、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される、付記47~63のいずれか1つに記載の粒子分析器。
65.光源は、複数の強度で複数の所定の時間間隔の間光検出器を照射するように構成されている、付記47~64のいずれか1つに記載の粒子分析器。
66.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、
複数の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を行わせる、付記65に記載の粒子分析器。
【0189】
67.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光検出器の動作電圧の範囲にわたって光検出器のパラメータを判定させる、付記47~66のいずれか1つに記載の粒子分析器。
68.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光検出器の動作電圧範囲全体にわたって光検出器のパラメータを判定させる、付記67に記載の粒子分析器。
69.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、判定されたパラメータに基づいて光検出器の最適検出器利得を計算させる、付記47~68のいずれか1つに記載の粒子分析器。
【0190】
70.システムであって、
光源と、
光検出システムであって、
第1の所定の時間間隔にわたって第1の強度での光源からの光を検出することと、
第2の所定の時間間隔にわたって第2の強度での光源からの光を検出することと
を行うように構成された光検出器を有する光検出システムと、
プロセッサであって、プロセッサに動作可能に結合されたメモリを有するプロセッサと
を備えており、
メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、
第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を行わせる、システム。
71.光源は、連続波光源である、付記70に記載のシステム。
72.光源は、パルス光源である、付記70に記載のシステム。
73.光源は、発光ダイオードである、付記70~72のいずれか1つに記載のシステム。
74.光源は、狭帯域光源である、付記70~73のいずれか1つに記載のシステム。
【0191】
75.光源は、20nm以下にわたる波長を含む光を放出する、付記70に記載のシステム。
76.第2の強度は、第1の強度よりも大きい、付記70~75のいずれか1つに記載のシステム。
77.第1の所定の時間間隔及び第2の所定の時間間隔は、同じ持続時間を有する、付記70~76のいずれか1つに記載のシステム。
78.光源は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器を連続的に照射するように構成されている、付記70~77のいずれか1つに記載のシステム。
79.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光源からの光の強度を第3の所定の時間間隔にわたって第1の強度から第2の強度に増加させる、付記78に記載のシステム。
【0192】
80.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させる、付記70~78のいずれか1つに記載のシステム。
81.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する、付記80に記載のシステム。
82.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する、付記80に記載のシステム。
83.プロセッサは、プロセッサに動作可能に結合されるメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、期間にわたる信号振幅を計算させる、付記70~82のいずれか1つに記載のシステム。
84.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、期間にわたって中央信号振幅を計算させる、付記83に記載のシステム。
【0193】
85.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、計算された信号振幅を光源の光強度と比較させる、付記83又は84に記載のシステム。
86.光検出器の1つ以上のパラメータは、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される、付記83~85のいずれか1つに記載のシステム。
87.光源は、複数の強度で複数の所定の時間間隔の間光検出器を照射するように構成されている、付記85又は86に記載のシステム。
88.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、
複数の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分することと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定することと
を行わせる、付記87に記載のシステム。
89.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光検出器の動作電圧の範囲にわたって光検出器のパラメータを判定させる、付記70~88のいずれか1つに記載のシステム。
【0194】
90.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、光検出器の動作電圧範囲全体にわたって光検出器のパラメータを判定させる、付記89に記載のシステム。
91.プロセッサは、プロセッサに動作可能に結合されたメモリを有し、メモリは、その上に記憶された命令を含み、命令は、プロセッサによって実行されると、プロセッサに、判定されたパラメータに基づいて光検出器の最適検出器利得を計算させる、付記70~90のいずれか1つに記載のシステム。
92.システムは、フローサイトメータである、付記70~91のいずれか1つに記載のシステム。
93.フローサイトメータは、フローストリーム中で粒子を伝播させるためのフローセルを含む、付記92に記載のシステム。
94.光検出器は、フローストリーム中の粒子からの光を検出するように位置決めされる、付記93に記載のシステム。
【0195】
95.非一時的コンピュータ可読記憶媒体であって、
その上に記憶された命令を含み、命令は、
光検出器を光源を用いて第1の強度で第1の所定の時間間隔の間照射するためのアルゴリズムと、
光検出器を光源を用いて第2の強度で第2の所定の時間間隔の間照射するためのアルゴリズムと、
第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定するためのアルゴリズムと
を含む、非一時的コンピュータ可読記憶媒体。
96.光源は、連続波光源である、付記95に記載の非一時的コンピュータ可読記憶媒体。
97.光源は、パルス光源である、付記95に記載の非一時的コンピュータ可読記憶媒体。
98.光源は、発光ダイオードである、付記95~97のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
99.光源は、狭帯域光源である、付記95~98のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
【0196】
100.光源は、20nm以下にわたる波長を含む光を放出する、付記99に記載の非一時的コンピュータ可読記憶媒体。
101.非一時的コンピュータ可読記憶媒体は、第1の強度よりも大きい第2の強度で光検出器を照射するためのアルゴリズムを含む、付記95~100のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
102.第1の所定の時間間隔及び第2の所定の時間間隔は、同じ持続時間を有する、付記95~101のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
103.非一時的コンピュータ可読記憶媒体は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光検出器を連続的に照射するためのアルゴリズムを含む、付記95~102のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
104.非一時的コンピュータ可読記憶媒体は、第3の所定の時間間隔にわたって光源からの光の強度を第1の強度から第2の強度に増加させるためのアルゴリズムを含む、付記103に記載の非一時的コンピュータ可読記憶媒体。
【0197】
105.非一時的コンピュータ可読記憶媒体は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって光源からの光の強度を増加させるためのアルゴリズムを含む、付記103に記載の非一時的コンピュータ可読記憶媒体。
106.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって線形に増加する、付記105に記載の非一時的コンピュータ可読記憶媒体。
107.光源からの光の強度は、第1の所定の時間間隔及び第2の所定の時間間隔を含む期間にわたって指数関数的に増加する、付記105に記載の非一時的コンピュータ可読記憶媒体。
108.非一時的コンピュータ可読記憶媒体は、期間にわたる信号振幅を計算するためのアルゴリズムを含む、付記95~107のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
109.非一時的コンピュータ可読記憶媒体は、期間にわたる中央信号振幅を計算するためのアルゴリズムを含む、付記108に記載の非一時的コンピュータ可読記憶媒体。
【0198】
110.非一時的コンピュータ可読記憶媒体は、計算された信号振幅を光源の光強度と比較するためのアルゴリズムを含む、付記108又は109に記載の非一時的コンピュータ可読記憶媒体。
111.非一時的コンピュータ可読記憶媒体は、最小検出閾値、最大検出閾値、検出器感度、検出器ダイナミックレンジ、検出器信号対雑音比、及び単位出力当たりの光電子の数からなる群から選択される光検出器の1つ以上のパラメータを判定するためのアルゴリズムを含む、付記95~110のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
112.非一時的コンピュータ可読記憶媒体は、
光検出器を光源を用いて複数の強度で複数の所定の時間間隔の間照射するためのアルゴリズムと、
複数の所定の時間間隔を含む期間にわたって光検出器からのデータ信号を積分するためのアルゴリズムと、
積分されたデータ信号に基づいて光検出器の1つ以上のパラメータを判定するためのアルゴリズムと
を含む、付記95~111のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
113.非一時的コンピュータ可読記憶媒体は、光検出器の動作電圧の範囲にわたって光検出器のパラメータを判定するためのアルゴリズムを含む、付記95~112のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
114.非一時的コンピュータ可読記憶媒体は、光検出器の動作電圧範囲全体にわたって光検出器のパラメータを判定するためのアルゴリズムを含む、付記113に記載の非一時的コンピュータ可読記憶媒体。
115.非一時的コンピュータ可読記憶媒体は、判定されたパラメータに基づいて光検出器の最適な検出器利得を計算するためのアルゴリズムを含む、付記95~114のいずれか1つに記載の非一時的コンピュータ可読記憶媒体。
【0199】
上記の発明は、明確な理解のために例示及び例により多少詳しく説明されてきたが、当業者であれば、本発明の教示に照らして、添付の特許請求の範囲の趣旨又は範囲から逸脱することなく、特定の変更及び修正が行われ得ることが、容易に明らかである。
【0200】
したがって、上記は単に本発明の原理を例示するにすぎない。当業者は、本明細書に明示的に記載又は示されていないが、本発明の原理を具現化し、その精神及び範囲内に含まれる様々な配置を考案することができることが理解される。更に、本明細書に記載される全ての例及び条件付き言語は、主に、読者が、本発明の原理及び発明者が当該技術分野を促進するために寄与する概念を理解することを助ける点を意図し、かかる具体的に記載される例及び条件に限定されないと解釈されるべきである。更に、本発明の原理、態様、及び実施形態、並びにその特定の例を記載する本明細書における全ての記述は、その構造的及び機能的等価物の両方を包含することを意図する。加えて、かかる等価物は、構造にかかわらず、現在既知である等価物及び将来開発される等価物、すなわち、構造に関係なく同じ機能を実行するように開発された任意の要素の両方を含むことが意図される。更に、本明細書に開示されるものは、かかる開示が特許請求の範囲に明示的に記載されるか否かにかかわらず、公衆に捧げられることを意図するものではない。
【0201】
したがって、本発明の範囲は、本明細書に示され、説明される例示的な実施形態に限定されることを意図しない。むしろ、本発明の範囲及び精神は、添付の特許請求の範囲によって具現化される。特許請求の範囲において、米国特許法第112条(f)又は米国特許法第112条(6)は、特許請求の範囲におけるかかる制限の冒頭に「のための手段」という正確な語句又は「のためのステップ」という正確な語句が記載される場合にのみ、特許請求の範囲における制限のために呼び出されるものとして明示的に定義され、かかる正確な語句が特許請求の範囲における制限で使用されない場合、米国特許法第112(f)又は米国特許法第112条(6)は呼び出されない。
【0202】
関連出願の相互参照
本出願は、2020年4月20日に出願された米国仮特許出願第63/012,765号に関連し、その出願の開示は、参照により本明細書に組み込まれる。
図1A
図1B
図2
図3A
図3B
図4A
図4B
図5
図6A
図6B
図7
【国際調査報告】