(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-06-12
(54)【発明の名称】機械学習を使用したロボティック・プロセス・オートメーション・ワークフローの自動完了
(51)【国際特許分類】
G06Q 10/06 20230101AFI20230605BHJP
G06Q 10/10 20230101ALI20230605BHJP
【FI】
G06Q10/06
G06Q10/10
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022520187
(86)(22)【出願日】2020-08-28
(85)【翻訳文提出日】2022-05-30
(86)【国際出願番号】 US2020048512
(87)【国際公開番号】W WO2021076240
(87)【国際公開日】2021-04-22
(32)【優先日】2019-12-04
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】201911041766
(32)【優先日】2019-10-15
(33)【優先権主張国・地域又は機関】IN
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】520262319
【氏名又は名称】ユーアイパス,インコーポレイテッド
【氏名又は名称原語表記】UiPath,Inc.
【住所又は居所原語表記】1 Vanderbilt Avenue, 60th Floor, New York, NY 10017, United States of America
(74)【代理人】
【識別番号】100180781
【氏名又は名称】安達 友和
(74)【代理人】
【識別番号】100182903
【氏名又は名称】福田 武慶
(72)【発明者】
【氏名】アイヤー,カーティク
(72)【発明者】
【氏名】アイヤー,ラダクリシュナン
(72)【発明者】
【氏名】エム,ナヴィーン クマール
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049AA07
5L049AA11
(57)【要約】
機械学習(ML)を使用したロボティック・プロセス・オートメーション(RPA)ワークフローの自動完了が開示される。トレーニングしたMLモデルは、RPAワークフロー(例えば、ワークフローの1つ、少数、多数、残りなど)における次のアクティビティのシリーズをインテリジェントに、かつ自動的に予測し、及び完了し得る。任意の時間期間にわたってワークフローを作成している間にユーザーが取るアクションをキャプチャし、及び記憶し得る。次いで、ワークフローを予測し、及び完了するために、MLモデルは、トレーニングされ、記憶したアクションと、アクションの記憶したワークフローシーケンスとを照合するために使用され得る。多くのワークフローシーケンスが経時的にキャプチャされ、及び記憶されるにつれて、MLモデルは、多くのシーケンスを予測するために、及び/又は正確に予測を行うために、再トレーニングされ得る。いくつかの実施形態では、ユーザーによる時間及び労力を節約するために、自動完了をリアルタイムで行い得る。
【特許請求の範囲】
【請求項37】
前記1つ又は複数のトレーニングしたMLモデルが、アテンディッド・ユーザー・フィードバック、アンアテンディッド・ユーザー・フィードバック、又はその両方を使用してトレーニングされる、請求項29に記載のコンピュータ実装方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2019年12月4日に出願された米国非仮特許出願第16/702,966号、及び2019年10月15日に出願されたインド仮特許出願第201911041766号の利益を主張する。これらの先に出願された出願の主題は、その全体が参照により本明細書に組み込まれる。
【0002】
本発明は、一般に、ロボティック・プロセス・オートメーション(RPA)に関し、より具体的には、機械学習(ML)を使用したRPAワークフローの自動完了に関する。
【背景技術】
【0003】
RPAワークフローは、多くのモジュール及び/又はシーケンスを含み得る。同様のタスクのためのワークフローを作成する場合、ユーザーは特定のステップ又はシーケンスを繰り返す傾向がある。ワークフローでこれらのステップを繰り返すと、開発者は時間を要し、生産性が低下する。既存のソリューションは、ビジネスオートメーションのためのワークフロー設計のテンプレート駆動生成を提供している。しかしながら、これらのテンプレートは予め設定されており、ユーザーの意図又は要件を予測する際のインテリジェンスを含まず、ましてや、その中の変化を考慮しない。したがって、ワークフロー作成中のそのような繰り返しを低減又は回避する改善されたソリューションが有益であり得る。
【発明の概要】
【0004】
本発明の特定の実施形態は、現在のRPA技術によってまだ完全に識別され、認識され、又は解決されていない当技術分野の問題及び必要性に対するソリューションを提供し得る。例えば、本発明のいくつかの実施形態は、MLを使用したRPAワークフローの自動完了に関する。
【0005】
一実施形態では、システムは、それぞれのデザイナアプリケーションを備える複数の開発者コンピューティングシステムと、ワークフローを記憶するデータベースと、を含む。ワークフローは、アクティビティのシーケンスを含む。システムはまた、1つ又は複数のMLモデルをトレーニングするように構成されたサーバを含む。デザイナアプリケーションは、それぞれのユーザーがRPAワークフローを作成する場合にアクティビティを監視し、それぞれのワークフローにおけるアクティビティのシーケンスをキャプチャし、それぞれのワークフローにおけるキャプチャしたアクティビティのシーケンス、それぞれのワークフロー自体、又はその両方をデータベースに記憶させ、1つ又は複数のトレーニングしたMLモデルを呼び出すように構成される。サーバは、開発者がワークフロー内の1つ又は複数のアクティビティを追加し、及び/又は改良した後で、1つ又は複数の次のアクティビティのシーケンスを識別するように、記憶させたワークフローを使用して1つ又は複数のMLモデルをトレーニングするように構成される。1つ又は複数のトレーニングしたMLモデルは、現在のユーザーが現在のワークフロー内のアクティビティを追加又は改良すると、現在のワークフローを分析し、追加した及び/又は改良したアクティビティのうちの1つ又は複数が少なくとも提案信頼度閾値によって次のアクティビティのシーケンスを示すことを検出し、提案信頼度閾値を次のアクティビティのシーケンスが満たした又は超えたことを、1つ又は複数のトレーニングしたMLモデルが検出した場合に、次のアクティビティのシーケンスをユーザーに提案するように構成される。
【0006】
別の実施形態では、コンピュータプログラムは、非一時的コンピュータ可読媒体に格納された。プログラムは、少なくとも1つのプロセッサに、ユーザーがRPAワークフローを作成する場合に、RPAワークフロー内のアクティビティを監視させ、RPAワークフロー、RPAワークフロー自体、又はその両方において、監視させたアクティビティのシーケンスをキャプチャさせるように構成される。プログラムはまた、少なくとも1つのプロセッサに、キャプチャさせたアクティビティのシーケンス、RPAワークフロー、又はその両方を、分析のために第1のMLモデルに送信させるように構成される。プログラムは、少なくとも1つのプロセッサに、第1のMLモデルから1つ又は複数の提案した次のアクティビティのシーケンスを受信させ、1つ又は複数の提案した次のアクティビティのシーケンスをユーザーに提案させるように更に構成される。
【0007】
更に別の実施形態では、コンピュータ実装方法は、1つ又は複数のRPAデザイナアプリケーションから複数の収集されたワークフローを受信することと、開発者がワークフロー内の1つ又は複数のアクティビティを追加し、及び/又は改良した後で、1つ又は複数の次のアクティビティのシーケンスを識別するために、複数の収集されたワークフローを使用して1つ又は複数のMLモデルをトレーニングすることと、を含む。コンピュータ実装方法はまた、トレーニング後で、1つ又は複数のRPAデザイナアプリケーションに対して、1つ又は複数のトレーニングしたMLモデルを利用可能にすることを含む。
【図面の簡単な説明】
【0008】
本発明の特定の実施形態の利点が容易に理解されるように、上記で簡単に記載した本発明の具体的な説明は、添付の図面に示している特定の実施形態を参照することによって提供される。これらの図面は、本発明の典型的な実施形態のみを示しており、したがってその範囲を限定するものと見なされるべきではないことを理解されたい、本発明は、添付の図面を使用することによって追加の具体性及び詳細を伴って記載し、説明する。
【0009】
【
図1】本発明の一実施形態による、RPAシステムを示すアーキテクチャ図である。
【0010】
【
図2】本発明の一実施形態による、デプロイメントされたRPAシステムを示すアーキテクチャ図である。
【0011】
【
図3】本発明の一実施形態による、デザイナと、アクティビティと、ドライバとの間の関係を示すアーキテクチャ図である。
【0012】
【
図4】本発明の一実施形態による、RPAシステムを示すアーキテクチャ図である。
【0013】
【
図5】本発明の一実施形態による、MLを使用してRPAワークフローを自動的に完了するように構成されたコンピューティングシステムを示すアーキテクチャ図である。
【0014】
【
図6A】本発明の一実施形態による、潜在的な次のアクティビティのシーケンスがMLモデルによって検出された後のデザイナアプリケーションを示すスクリーンショットの図である。
【0015】
【
図6B】本発明の一実施形態による、提案した次のアクティビティのシーケンスが正しいこと、及びそのシーケンスがワークフローに追加されたことを、ユーザーが示された後の
図6Aのデザイナアプリケーションを示すスクリーンショットの図である。
【0016】
【
図6C】本発明の一実施形態による、自動完了変数タブを示すスクリーンショットの図である。
【0017】
【
図6D】本発明の一実施形態による、自動完了プロパティタブを示すスクリーンショットの図である。
【0018】
【
図7】本発明の一実施形態による、RPAワークフローについて、提案した次のアクティビティのシーケンスを拒否又は承認し、自動的に完了するためのプロセスを示すフロー図である。
【0019】
【
図8】本発明の一実施形態による、パーソナライズされた、及び一般化されたフローの両方の自動完了アーキテクチャ図である。
【0020】
【
図9】本発明の一実施形態による、MLを使用してRPAワークフローを自動的に完了するためのプロセスを示すフローチャートの図である。
【発明を実施するための形態】
【0021】
いくつかの実施形態は、MLを使用したRPAワークフローの自動完了に関する。本明細書で使用される場合、MLは、本発明の範囲から逸脱することなく、深層学習(DL)(例えば、深層学習ニューラルネットワーク(DLNN))、シャローラーニング(例えば、シャロー・ラーニング・ニューラル・ネットワーク(SLNN))、任意の他の適切なタイプの機械学習、又はそれらの任意の組合せを指す場合がある。そのような実施形態は、ML技術を使用して、ワークフロー(例えば、ワークフローの1つ、少数、多数、残りなど)における次のアクティビティのシリーズをインテリジェントに、かつ自動的に予測し、及び完了してもよい。ユーザーが、ワークフローを作成する間に、作成する、及び/又は改良するアクティビティは、任意の時間期間にわたってキャプチャされ、データベースに記憶され得る。次いで、MLモデルは、RPA開発者によって作成されたアクティビティのシーケンスを含むワークフローを含む適切なデータセット(例えば、拡張可能アプリケーションマークアップ言語(XAML)ファイルデータセット)でトレーニングされ得る。XAMLファイルは、RPAワークフロー(例えば、アクティビティ、パラメータ、アクティビティフローなど)を作成するために使用される情報を含んでもよい。
【0022】
MLモデルがトレーニングされると、開発者が現在構築しているワークフローに関する情報を記憶するファイル(例えば、XAMLファイル)は、入力データとしてRPAデザイナアプリケーションによってMLモデルに渡され得る。次いで、MLモデルは、この入力を消費し、自動完了のための次のアクティビティのシーケンスを予測し得る。いくつかの実施形態では、この予測出力のフォーマットはまた、XAMLファイルであってもよい。ワークフロー内の現在のアクティビティのシーケンスが、少なくとも所定の信頼度閾値(すなわち、提案信頼度閾値)を有する次のアクティビティのシーケンスの予測につながらない場合、デザイナアプリケーションは、開発者がワークフローを作成し続けると、ワークフロー情報をXAMLモデルに定期的に渡し続け、その時点で、予測が提案信頼度閾値を満たす場合、次のアクティビティのシーケンスの提案を提供し得る。
【0023】
グローバルMLモデルのトレーニングは、サーバサイドで行われてもよく、そのため、RPA開発者からのワークフローデータの大きなキャッシュを、記憶及び分析してパターンを見つけ得る。また、サーバは、重い処理及びグラフィカル処理ユニット(GPU)リソースを有する傾向があり、これにより、トレーニングを迅速に行うことが可能になる。しかしながら、1つ又は複数のMLモデルのトレーニングは、本発明の範囲から逸脱することなく、同じコンピューティングシステム上で、異なるコンピューティングシステム上で、クライアントサイド上で、サーバサイド上で、あるいは任意の他のコンピューティングシステム及び/又は任意の場所上で、行われてもよい。
【0024】
いくつかの実施形態では、個々の開発者スタイル及び設定を考慮に入れるために、各RPA開発者について、ローカルモデルをトレーニングしてもよい。例えば、開発者が、アクティビティのシーケンスの後で、特定の電子メールを送信することを好む場合があり、特定の変数タイプなどを好む場合がある。トレーニングされると、グローバル及びローカルMLモデルは、RPA開発者アプリケーションにプッシュされるか、又はリモートで(例えば、RPA開発者アプリケーションの要求でサーバサイド上で遂行される)、RPAアプリケーションに対して利用可能にしてもよい。そのユーザーに対してローカルMLモデルが開発されていない場合、グローバルMLモデルを使用し得る。いくつかの実施形態では、ローカルMLモデルが最初に適用されてもよく、そして、次のシーケンスが予測されない(例えば、ローカルモデルの信頼度閾値が満たされていない)場合、グローバルMLモデルが適用され、提案のためのシーケンスを見つけようと試みてもよい。特定の実施形態では、ローカルMLモデル及びグローバルMLモデルは、異なる信頼度閾値を有してもよい。
【0025】
グローバルMLモデルは、複数又は多数のRPA開発者からのワークフローデータから学習するため、更新頻度が低く、トレーニングに時間がかかる可能性がある。一方、ローカルモデルは、所与の開発者からのワークフローデータを使用する。したがって、いくつかの実施形態では、グローバルモデルは、数週間ごとに更新され得るが、ローカルモデルは数日ごとに更新され得る。当然ながら、各モデルをトレーニングし得る速度及び頻度は、所与の実装及び処理リソースに依存する。
【0026】
トレーニングされると、1つ又は複数のMLモデルは、ワークフローのその部分を完了するために、ワークフローの自動作成されたシーケンスに関するユーザー確認を受信し得る。多くのワークフローシーケンスが経時的にキャプチャされ、記憶されるにつれて、1つ又は複数のMLモデルは、多くのシーケンスを予測するために、及び/又は正確に予測を行うために、再トレーニングされ得る。いくつかの実施形態では、ユーザー又は開発者による時間及び労力を節約するために、自動完了をリアルタイムで行ってもよい。
【0027】
いくつかの実施形態では、開発者は、自分のワークフローを最初から構築し始めてもよい。ステップ(すなわち、アクティビティ)がワークフローに追加されると、MLモデル(ローカル、グローバル、又はその両方)は、そのステップ、及び潜在的にシーケンス内の1つ又は複数の先行するステップを分析し、少なくとも所定の確率的閾値を満たすそのステップの後で、1つ又は複数のシーケンスが潜在的に所望され得るか否かをチェックし得る。ユーザーがワークフローにアクティビティを追加すると、アクティビティの次の論理シーケンスを予測して自動完了し得るか否かをチェックするために、この新規に追加したアクティビティを含む最後のN個のアクティビティは、MLモデルによって考慮され得る。この可能性を、モデル予測の閾値信頼度レベルによって判定することができ、これは、いくつかの実施形態では90%を超える可能性がある。ワークフロー内のアクティビティの現在のシーケンスに基づいて提案されるべき記憶されたシーケンスの信頼度レベルが閾値信頼度レベル未満である場合、提案は提供されなくてもよい。次いで、提案信頼度閾値が満たされるまで、次のアクティビティが追加された場合に、MLモデルを再び実行し得る。したがって、潜在的に提案される可能性のある各シーケンスに対して決定される信頼度閾値と、これらのシーケンスが提案されるために満たされる必要がある提案信頼度閾値との両方がある。
【0028】
2つ以上の可能な次のアクティビティのシーケンスが提案信頼度閾値を超える可能性がある。この場合、ユーザー/開発者は、ワークフローの1つ又は複数の次のステップを潜在的に完了するための選択肢として、これらのシーケンスを提示されてもよい。特定の実施形態では、シーケンスは、それぞれの信頼度閾値の順にランク付けされる。次いで、ユーザー/開発者は、ワークフローに自動的に追加される関連する次のシーケンスを選択し得る。
【0029】
特定の実施形態では、これは、アクティビティをワークフローに追加すること、変数(すなわち、プログラミング変数)の宣言及び使用を設定すること、特定のファイルから読み取りすること/特定のファイルに書き込みすること、及び/又は本発明の範囲から逸脱することなくワークフロー内のシーケンスを論理的に結論付けるための任意の他の所望の適切なステップを含んでもよい。プログラミング言語に幾分類似したRPAワークフローは、通常、ワークフローの遂行中に使用される様々なタイプの変数を有する。これらの変数が適切なデータタイプとして宣言されていない場合、ワークフローはエラーに陥る可能性がある。このため、数字(例えば、整数)、テキスト(例えば、文字列)などを保持する変数の正しいデータタイプを選択する必要がある。したがって、いくつかの実施形態は、ワークフローの自動完了と、正しいタイプの関連する変数をインテリジェントに内部的に宣言することを両方実施する。
【0030】
上記により、いくつかの実施形態では、MLモデルは、提案信頼度スコア(すなわち、所与のステップ若しくはアクティビティ、又はそのシーケンスの後でサブシーケンスが使用されるMLモデルによる推定確率)を満たすか又は超えるシーケンス予測を提供する。MLモデルは、全体として多くのワークフロー及びこれらのワークフロー内のシーケンスを使用するトレーニングに基づいて、信頼度スコアを学習し得る。また上記により、所与のステップ(例えば、2つ以上のシーケンスが閾値を満たすか又は超える信頼度スコアを有するので、少なくとも2つの論理分岐が存在する)について複数のシーケンスが信頼度閾値を超える場合、開発者はこれらのシーケンスで促され得る。次いで、開発者は、どのシーケンスが正しいかを選択し得る(又はいくつかの実施形態において、どの配列も正しくないことを示す)。シーケンスが選択されると、選択されたシーケンスがワークフローに自動的に追加される。そうでない場合、開発者はワークフロー開発プロセスを継続する。いくつかの実施形態では、任意の時間期間にわたって、MLモデルは、開発者の個人的なスタイル、ロジック、及び慣習について更に学習してもよい。次いで、開発者が個人的に望むことを、MLモデルが推定する方法に基づいて、MLモデルは、この情報を使用して、ワークフローを予測及び完了し得る。
【0031】
いくつかの実施形態では、MLモデルは、アテンディッドフィードバック、アンアテンディッドフィードバック、又はその両方を介してトレーニングされてもよい。アテンディッドフィードバックは、開発者がトレーニングデータの生成に積極的に関与する場合を含む。例えば、RPA開発者は、予測した次のアクティビティのシーケンスを使用したくないという理由で促され、これをトレーニングのためにサーバサイドに提供する。アンアテンディッドフィードバックは、ユーザーの積極的な参加なしに収集された情報を含む。例えば、ユーザーがアクティビティのシーケンスを拒否したという単なる事実は、MLモデルがその所与のユーザーのために意図されたように作業していない可能性があるという情報を提供してもよい。提案を拒否した後で開発者がワークフローに含めるアクティビティを使用して、開発者が実際に探しているものに関するモデルをトレーニングしてもよい。これがグローバルに当てはまる傾向がある場合、この情報は、グローバルMLモデルをトレーニングするために使用することもできる。
【0032】
アテンディッドフィードバック、アンアテンディッドフィードバック、又はその両方は、ローカル及びグローバルMLモデルをトレーニングするための入力を提供する。グローバルMLモデルは、すべてのRPA開発者又はRPA開発者のサブセットのために一般化されたモデルであり、ローカルMLモデルは、パーソナライズされた、ユーザー固有である。ローカルMLモデルが存在しないか、又は提案信頼度閾値を満たすか又は超えるシーケンスが見つからない場合、グローバルMLモデルを調べて、予測のために提案信頼度閾値を満たすか又は超える提案を見つけようと試みてもよい。特定の実施形態では、3つ以上のMLモデルを使用してもよい。例えば、いくつかの実施形態は、所与の開発者のためにローカルモデルを採用し、次いでグローバルモデルまで、ますます大きな開発者グループに適用されるN個の次のモデル(例えば、プログラミングチーム、次にグループ、次に会社など)を採用してもよい。
【0033】
図1は、本発明の一実施形態による、RPAシステム100を示すアーキテクチャ図である。RPAシステム100は、開発者がワークフローを設計し、及び実装することを可能にし得るデザイナ110を含む。デザイナ110は、アプリケーション統合のためのソリューション、並びにサードパーティのアプリケーション、管理情報技術(IT)タスク、及びビジネスITプロセスをオートメーション化することを提供し得る。デザイナ110は、ビジネスプロセスのグラフィカル表現であるオートメーションプロジェクトの開発を容易にし得る。簡単に言えば、デザイナ110は、ワークフロー及びロボットの開発及びデプロイメントを容易にする。
【0034】
オートメーションプロジェクトにより、本明細書で「アクティビティ」と定義する、ワークフローで開発されたステップのカスタムセット間の遂行順序及び関係の制御を開発者に与えることによって、ルールベースのプロセスのオートメーション化を可能にする。デザイナ110の実施形態の一商用例は、UiPath Studio(商標)である。各アクティビティは、ボタンのクリック、ファイルの読み取り、ログパネルへの書き込みなど、アクションを含んでもよい。いくつかの実施形態では、ワークフローを、ネストしても、又は埋め込んでもよい。
【0035】
いくつかのタイプのワークフローは、限定しないが、シーケンス、フローチャート、有限状態機械(FSM)、及び/又はグローバル例外ハンドラを含んでもよい。シーケンスは、ワークフローを乱すことなく、1つのアクティビティから別のアクティビティへの流れを可能にする線形プロセスに特に適している場合がある。フローチャートは、複雑なビジネスロジックに特に適しており、複数の分岐論理演算子を介して多様な方法で、判定の統合、及びアクティビティの接続を可能にする。FSMは、大規模なワークフローに特に適している場合がある。FSMは、条件(すなわち、遷移)又はアクティビティによってトリガされるワークフローの遂行において有限数の状態を使用し得る。グローバル例外ハンドラは、遂行エラーに遭遇したときのワークフローの挙動を判定し、プロセスをデバッグするために特に適している場合がある。
【0036】
ワークフローがデザイナ110で開発されると、ビジネスプロセスの遂行は、コンダクタ120によって編成され、コンダクタ120は、デザイナ110で開発されたワークフローを遂行する1つ又は複数のロボット130を編成する。コンダクタ120の実施形態の一市販例は、UiPath Orchestrator(商標)である。コンダクタ120は、環境内のリソースの作成、監視、及びデプロイメントの管理を容易にする。コンダクタ120は、サードパーティのソリューション及びアプリケーションとの統合ポイントとして作用し得る。
【0037】
コンダクタ120は、すべてのロボット130を管理し、集中ポイントからロボット130を接続し、及び遂行し得る。管理され得るロボット130のタイプは、限定しないが、アテンディッドロボット132、アンアテンディッドロボット134、開発ロボット(アンアテンディッドロボット134と同様であるが、開発及びテストの目的で使用される)、及び非生産ロボット(アテンディッドロボット132と同様であるが、開発及びテストの目的で使用される)を含む。アテンディッドロボット132は、ユーザーイベントによってトリガされ、同じコンピューティングシステム上で人間と一緒に動作する。アテンディッドロボット132は、集中プロセスデプロイメント及びログ記録媒体のために、コンダクタ120と共に使用され得る。アテンディッドロボット132は、人間のユーザーが達成する様々なタスクを助け、ユーザーイベントによってトリガされ得る。いくつかの実施形態では、プロセスを、このタイプのロボットのコンダクタ120から開始できず、及び/又はロックされた画面の下で実行できない。特定の実施形態では、アテンディッドロボット132は、ロボットトレイ又はコマンドプロンプトからのみ起動され得る。いくつかの実施形態では、アテンディッドロボット132は人間の監督下で実行するべきである。
【0038】
アンアテンディッドロボット134は、仮想環境で無人で実行し、多くのプロセスをオートメーション化し得る。アンアテンディッドロボット134は、リモート遂行、監視、スケジューリング、及び作業キューのサポートの提供を担当し得る。いくつかの実施形態では、すべてのロボットタイプのデバッグを、デザイナ110で実行してもよい。アテンディッドロボット及びアンアテンディッドロボットの両方は、限定しないが、メインフレーム、ウェブアプリケーション、VM、エンタープライズアプリケーション(例えば、SAP(登録商標)、SalesForce(登録商標)、Oracle(登録商標)などによって製造されたもの)、及びコンピューティング・システム・アプリケーション(例えば、デスクトップ及びラップトップアプリケーション、モバイル・デバイス・アプリケーション、ウェアラブル・コンピュータ・アプリケーションなど)を含む、様々なシステム及びアプリケーションをオートメーション化し得る。
【0039】
コンダクタ120は、限定しないが、プロビジョニング、デプロイメント、構成、キューイング、監視、ログ記録、及び/又は相互接続性の提供を含む、様々な機能を有し得る。プロビジョニングは、ロボット130とコンダクタ120(例えば、ウェブアプリケーション)との間の接続の作成及び保守を含み得る。デプロイメントは、遂行のために、割り当てられたロボット130へのパッケージバージョンの正しい送達を保証することを含み得る。構成は、ロボット環境及びプロセス構成の維持及び送達を含み得る。キューイングは、キュー及びキュー項目の管理を提供することを含み得る。監視は、ロボット識別データを追跡し続け、ユーザー権限を維持することを含み得る。ログ記録は、データベース(例えば、SQLデータベース)及び/又は別のストレージ機構(例えば、大規模なデータセットを記憶し、迅速に照会する能力を提供するElasticSearch(登録商標))に、ログを記憶し、及びインデックス付けすることを含み得る。コンダクタ120は、サードパーティのソリューション及び/又はアプリケーションのための通信の集中ポイントとして作用することによって、相互接続性を提供し得る。
【0040】
ロボット130は、デザイナ110に構築されたワークフローを実行する遂行エージェントである。ロボット130のいくつかの実施形態の一商用例は、UiPath Robots(商標)である。いくつかの実施形態では、ロボット130は、デフォルトで、Microsoft Windows(登録商標)Service Control Manager(SCM)管理サービスをインストールする。結果として、そのようなロボット130は、ローカル・システム・アカウントの下でインタラクティブなWindows(登録商標)セッションを開き、Windows(登録商標)サービスの権利を有し得る。
【0041】
いくつかの実施形態では、ロボット130は、ユーザーモードでインストールされてもよい。このようなロボット130の場合、これは、所与のロボット130がインストールされているユーザーと同じ権利を有することを意味する。この特徴は、その最大の可能性で各機械の完全な利用を保証する高密度(HD)ロボットにも利用可能であり得る。いくつかの実施形態では、任意のタイプのロボット130をHD環境で構成してもよい。
【0042】
いくつかの実施形態におけるロボット130は、いくつかのコンポーネントに分割され、その各々は、特定のオートメーションタスクに専用である。いくつかの実施形態におけるロボットコンポーネントは、限定しないが、SCM管理ロボットサービス、ユーザー・モード・ロボット・サービス、エグゼキュータ、エージェント、及びコマンドラインを含む。SCM管理ロボットサービスは、Windows(登録商標)セッションを管理し、及び監視し、コンダクタ120と遂行ホスト(すなわち、ロボット130が遂行されるコンピューティングシステム)との間のプロキシとして作用する。これらのサービスは、ロボット130の資格情報で信頼され、資格情報を管理する。コンソールアプリケーションは、ローカルシステムの下でSCMによって起動される。
【0043】
いくつかの実施形態におけるユーザー・モード・ロボット・サービスは、Windows(登録商標)セッションを管理し、及び監視し、コンダクタ120と遂行ホストとの間のプロキシとして作用する。ユーザー・モード・ロボット・サービスは、ロボット130のための資格情報で信頼され、資格情報を管理し得る。SCM管理ロボットサービスがインストールされていない場合、Windows(登録商標)アプリケーションが、自動的に起動されてもよい。
【0044】
エグゼキュータは、Windows(登録商標)セッション下で所与のジョブを実行し得る(すなわち、エグゼキュータはワークフローを遂行し得る。エグゼキュータは、パ-モニタ・ドット・パー・インチ(DPI)設定を認識していてもよい。エージェントは、システム・トレイ・ウィンドウに利用可能なジョブを表示するWindows(登録商標)Presentation Foundation(WPF)アプリケーションであってもよい。エージェントは、サービスのクライアントであってもよい。エージェントは、ジョブの開始又は停止、及び設定の変更を要求し得る。コマンドラインは、サービスのクライアントである。コマンドラインは、コンソールアプリケーションであり、コンソールアプリケーションは、ジョブの開始を要求し、その出力を待つことができる。
【0045】
上記で説明したようにロボット130のコンポーネントを分割することは、各コンポーネントが遂行していることについて、開発者、サポートユーザー、及びコンピューティングシステムによる、容易な実行、識別、及び追跡に役立つ。このようにして、エグゼキュータ及びサービスに対して異なるファイアウォールルールを設定するなど、特別な挙動をコンポーネントごとに構成し得る。エグゼキュータは、いくつかの実施形態では、モニタごとにDPI設定を常に認識し得る。結果として、ワークフローは、それらが作成されたコンピューティングシステムの構成にかかわらず、任意のDPIで遂行され得る。いくつかの実施形態では、デザイナ110からのプロジェクトは、ブラウザのズームレベルとは無関係であってもよい。DPIを認識していない、又は意図的に認識していないとマークされたアプリケーションの場合、いくつかの実施形態では、DPIを無効にし得る。
【0046】
図2は、本発明の一実施形態による、デプロイメントされたRPAシステム200を示すアーキテクチャ図である。いくつかの実施形態では、RPAシステム200は、
図1のRPAシステム100であってもよいし、その一部であってもよい。クライアントサイド、サーバサイド、又はその両方は、本発明の範囲から逸脱することなく、任意の所望の数のコンピューティングシステムを含み得ることに留意されたい。クライアントサイドでは、ロボットアプリケーション210は、エグゼキュータ212と、エージェント214と、デザイナ216と、を含む。しかしながら、いくつかの実施形態では、デザイナ216は、コンピューティングシステム210上で実行されていなくてもよい。エグゼキュータ212は、実行中のプロセスである。
図2に示すように、いくつかのビジネスプロジェクトが同時に実行されてもよい。エージェント214(例えば、Windows(登録商標)サービス)は、本実施形態ではすべてのエグゼキュータ212に対する単一の接続ポイントである。本実施形態におけるすべてのメッセージは、コンダクタ230にログ記録され、コンダクタ230は、データベースサーバ240、インデクササーバ250、又はその両方を介してログ記録したものを更に処理する。
図1に関して上述したように、エグゼキュータ212は、ロボットコンポーネントであってもよい。
【0047】
いくつかの実施形態では、ロボットは、機械名とユーザー名との間の関連付けを表す。ロボットは、複数のエグゼキュータを同時に管理し得る。同時に実行される複数のインタラクティブなセッション(例えば、Windows(登録商標)Server 2012)をサポートするコンピューティングシステムでは、複数のロボットが同時に実行され、それぞれが一意のユーザー名を使用して別々のWindows(登録商標)セッションで実行されてもよい。これは、上記ではHDロボットと呼ばれる。
【0048】
エージェント214はまた、ロボットのステータス(例えば、ロボットがまだ機能していることを示す「ハートビート」メッセージを定期的に送信する)を送信し、遂行されるパッケージの必要なバージョンをダウンロードする役割も担う。エージェント214とコンダクタ230との間の通信は、いくつかの実施形態では、常にエージェント214によって開始される。通知シナリオでは、エージェント214は、ロボットにコマンド(例えば、始動、停止など)を送信するために、コンダクタ230によって後で使用されるWebSocketチャネルを開き得る。
【0049】
サーバサイドには、プレゼンテーション層(ウェブアプリケーション232、オープン・データ・プロトコル(OData)代表状態転送(REST)アプリケーション・プログラミング・インターフェース(API)エンドポイント234、並びに通知監視236)、サービス層(API実装/ビジネスロジック238)、及び永続層(データベースサーバ240、インデクササーバ250)が含まれる。コンダクタ230は、ウェブアプリケーション232と、OData REST APIエンドポイント234と、通知監視236と、API実装/ビジネスロジック238と、を含む。いくつかの実施形態では、ユーザーがコンダクタ230のインターフェース(例えば、ブラウザ220を介して)内で実施するほとんどのアクションは、様々なAPIを呼び出すことによって実施される。そのようなアクションは、限定しないが、本発明の範囲から逸脱することなく、ロボットでのジョブの開始、キュー内のデータの追加/削除、無人で実行するためのジョブのスケジューリングなどを含んでもよい。ウェブアプリケーション232は、サーバプラットフォームのビジュアル層である。本実施形態では、ウェブアプリケーション232は、ハイパーテキストマークアップ言語(HTML)及びJavaScript(JS)を使用する。しかしながら、本発明の範囲から逸脱することなく、任意の所望のマークアップ言語、スクリプト言語、又は任意の他のフォーマットを使用してもよい。ユーザーは、コンダクタ230を制御する様々なアクションを実施するために、本実施形態では、ブラウザ220を介してウェブアプリケーション232からのウェブページとインタラクトする。例えば、ユーザーは、ロボットグループを作成し、ロボットにパッケージを割り当て、ロボットごと及び/又はプロセスごとにログを分析し、ロボットを起動し、及び停止するなどしてもよい。
【0050】
ウェブアプリケーション232に加えて、コンダクタ230はまた、OData REST APIエンドポイント234を公開するサービス層を含む。しかしながら、本発明の範囲から逸脱することなく、他のエンドポイントを含んでもよい。REST APIは、ウェブアプリケーション232とエージェント214の両方によって消費される。エージェント214は、本実施形態ではクライアントコンピュータ上の1つ又は複数のロボットの管理者である。
【0051】
本実施形態におけるREST APIは、構成、ログ記録、監視、及びキューイング機能をカバーする。構成エンドポイントは、いくつかの実施形態では、アプリケーションユーザー、権限、ロボット、アセット、リリース及び環境を、定義し、及び構成するために使用されてもよい。例えば、エラー、ロボットによって送信された明示的なメッセージ、及び他の環境固有の情報など、様々な情報をログに記録するために、RESTエンドポイントをログ記録することが使用されてもよい。開始ジョブコマンドがコンダクタ230内で使用される場合に遂行されるべきパッケージバージョンを照会するために、デプロイメントRESTエンドポイントがロボットによって使用され得る。RESTエンドポイントをキューイングすることは、キューにデータを追加すること、キューからトランザクションを取得すること、トランザクションのステータスを設定することなど、キュー及びキュー項目管理を担当し得る。
【0052】
RESTエンドポイントの監視により、ウェブアプリケーション232及びエージェント214を監視し得る。通知監視API236は、エージェント214の登録、エージェント214への構成設定の送達、並びにサーバ及びエージェント214からの通知の送信/受信のために使用されるRESTエンドポイントであってもよい。通知監視API236はまた、いくつかの実施形態では、WebSocket通信を使用してもよい。
【0053】
永続層は、本実施形態におけるサーバのペア、すなわちデータベースサーバ240(例えば、SQLサーバ)及びインデクササーバ250を含む。本実施形態におけるデータベースサーバ240は、ロボット、ロボットグループ、関連するプロセス、ユーザー、役割、スケジュールなどの構成を記憶する。この情報は、いくつかの実施形態では、ウェブアプリケーション232を介して管理される。データベースサーバ240は、キュー及びキュー項目を管理し得る。いくつかの実施形態では、データベースサーバ240は、(インデクササーバ250に加えて、又はその代わりに)ロボットによってログ記録されたメッセージを記憶してもよい。
【0054】
インデクササーバ250は、いくつかの実施形態では任意選択であり、ロボットによってログ記録された情報を記憶し、及びインデックス付けする。特定の実施形態では、インデクササーバ250は、構成設定を介して無効にされてもよい。いくつかの実施形態では、インデクササーバ250は、オープン・ソース・プロジェクトのフルテキスト検索エンジンであるElasticSearch(登録商標)を使用する。(例えば、ログメッセージ又は行書き込みのようなアクティビティを使用する)ロボットによってログ記録されたメッセージは、ログ記録RESTエンドポイントを介してインデクササーバ250に送信されてもよく、そこでそれらは将来の利用のためにインデックス付けされる。
【0055】
図3は、本発明の一実施形態による、デザイナ310と、アクティビティ320,330と、ドライバ340との間の関係300を示すアーキテクチャ図である。上記により、開発者は、デザイナ310を使用して、ロボットによって遂行されるワークフローを開発する。ワークフローは、ユーザー定義のアクティビティ320及びUIオートメーションアクティビティ330を含み得る。いくつかの実施形態は、本明細書では、コンピュータビジョン(CV)と呼ぶ、画像内の非テキスト視覚コンポーネントを識別し得る。そのようなコンポーネントに関係するいくつかのCVアクティビティは、限定しないが、クリック、タイプ、テキストを取得、ホバー、要素存在、リフレッシュ範囲、ハイライトなどを含み得る。いくつかの実施形態では、クリックは、例えば、CV、光学文字認識(OCR)、ファジー文字マッチング、及びマルチアンカーを使用して要素を識別し、それをクリックする。タイプは、上記及び要素内のタイプを使用して要素を識別し得る。テキストを取得は、OCRを使用して特定のテキストの位置を識別し、それをスキャンし得る。ホバーは、要素を識別し、それをホバーし得る。要素存在は、上述した技術を使用して、画面上に要素が存在するか否かをチェックし得る。いくつかの実施形態では、デザイナ310に実装され得るアクティビティは、数百又は数千であってもよい。しかしながら、本発明の範囲から逸脱することなく、アクティビティの任意の数及び/又はタイプが利用可能である。
【0056】
UIオートメーションアクティビティ330は、特別な下位レベルのアクティビティのサブセットであり、それは、下位レベルコード(例えば、CVアクティビティ)に書き込まれ、画面とのインタラクションを容易にする。UIオートメーションアクティビティ330は、ロボットが、所望のソフトウェアとインタラクトし得るドライバ340を介して、これらのインタラクションを容易にする。例えば、ドライバ340は、OSドライバ342、ブラウザドライバ344、VMドライバ346、エンタープライズ・アプリケーション・ドライバ348などを含んでもよい。
【0057】
ドライバ340は、フックを探し、キーを監視するなど、低レベルでOSとインタラクトし得る。それらは、Chrome(登録商標)、IE(登録商標)、シトリックス(登録商標)、SAP(登録商標)などとの統合を容易にし得る。例えば、「クリック」アクティビティは、ドライバ340を介してこれらの異なるアプリケーションで同じ役割を実施する。
【0058】
図4は、本発明の一実施形態による、RPAシステム400を示すアーキテクチャ図である。いくつかの実施形態では、RPAシステム400は、
図1及び/又は
図2のRPAシステム100及び/又は200であり得るか、それらを含み得る。RPAシステム400は、ロボットを実行する複数のクライアント・コンピューティング・システム410を含む。コンピューティングシステム410は、その上で実行されるウェブアプリケーションを介してコンダクタ・コンピューティング・システム420と通信し得る。次に、コンダクタ・コンピューティング・システム420は、データベースサーバ430及び任意選択のインデクササーバ440と通信し得る。
【0059】
図1及び
図3に関して、これらの実施形態ではウェブアプリケーションが使用されているが、本発明の範囲から逸脱することなく、任意の適切なクライアント/サーバソフトウェアを使用し得ることに留意されたい。例えば、コンダクタは、クライアント・コンピューティング・システム上の非ウェブベースのクライアント・ソフトウェア・アプリケーションと通信するサーバサイドアプリケーションを実行してもよい。
【0060】
図5は、本発明の一実施形態による、MLを使用してRPAワークフローを自動的に完了するように構成されたコンピューティングシステム500を示すアーキテクチャ図である。いくつかの実施形態では、コンピューティングシステム500は、本明細書に図示及び/又は記載したコンピューティングシステムのうちの1つ又は複数であってもよい。コンピューティングシステム500は、情報を通信するためのバス505又は他の通信機構と、情報を処理するためにバス505に結合されたプロセッサ510と、を含む。プロセッサ510は、中央処理装置(CPU)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、グラフィックス・プロセッシング・ユニット(GPU)、それらの複数のインスタンス、及び/又はそれらの任意の組合せを含む、任意のタイプの汎用又は専用プロセッサであってもよい。プロセッサ510はまた、複数の処理コアを有してもよく、コアの少なくともいくつかは、特定の機能を実施するように構成されてもよい。いくつかの実施形態では、複数並列処理を使用してもよい。特定の実施形態では、プロセッサ510の少なくとも1つは、生体ニューロンを模倣する処理要素を含むニューロモーフィック回路であってもよい。いくつかの実施形態では、ニューロモーフィック回路は、フォン・ノイマン・コンピューティング・アーキテクチャの典型的なコンポーネントを必要としなくてもよい。
【0061】
コンピューティングシステム500は、情報、及びプロセッサ510によって遂行される命令を記憶するメモリ515を更に含む。メモリ515は、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、フラッシュメモリ、キャッシュ、磁気若しくは光ディスクなどの静的ストレージ、又は任意の他のタイプの非一時的コンピュータ可読媒体、又はそれらの組合せのうちの任意の組合せから構成されてもよい。非一時的コンピュータ可読媒体は、プロセッサ510によってアクセスされ得る任意の利用可能な媒体であってもよく、揮発性媒体、不揮発性媒体、又はその両方を含んでもよい。媒体はまた、取り外し可能、取り外し不能、又はその両方であってもよい。
【0062】
更に、コンピューティングシステム500は、無線及び/又は有線接続を介して通信ネットワークへのアクセスを提供するためのトランシーバなどの通信デバイス520を含む。いくつかの実施形態では、通信デバイス520は、周波数分割多元接続(FDMA)、シングルキャリアFDMA(SC-FDMA)、時分割多元接続(TDMA)、符号分割多元接続(CDMA)、直交周波数分割多重方式(OFDM)、直交周波数分割多元接続(OFDMA)、移動体用グローバルシステム(GSM)通信、汎用パケット無線サービス(GPRS)、ユニバーサル移動体通信システム(UMTS)、cdma 2000、広帯域CDMA(W-CDMA)、高速ダウンリンク・パケット・アクセス(HSDPA)、高速アップリンク・パケット・アクセス(HSUPA)、高速パケットアクセス(HSPA)、ロング・ターム・エボリューション(LTE)、LTEアドバンスト(LTE-A)、802.11x、Wi-Fi、ジグビー、超広帯域無線(UWB)、802.16x、802.15、ホームノードB(HnB)、Bluetooth、無線周波数識別(RFID)、赤外線データ協会(IrDA)、近距離無線通信(NFC)、第5世代(5G)、エヌアール(NR)、それらの任意の組合せ、並びに/あるいは本発明の範囲から逸脱しない任意の他の現在存在する、又は将来実施される通信規格及び/若しくはプロトコルを使用するように構成される。いくつかの実施形態では、通信デバイス520は、1つ又は複数のアンテナを含んでもよく、そのアンテナは、本発明の範囲から逸脱することなく、単数、アレイ、位相、切り替え、ビームフォーミング、ビームステア、それらの組合せ、及び又は任意の他のアンテナ構成である。
【0063】
プロセッサ510は、バス505を介して、ディスプレイ525に更に結合され、そのディスプレイは、プラズマディスプレイ、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、電界放出ディスプレイ(FED)、有機発光ダイオード(OLED)ディスプレイ、フレキシブルOLEDディスプレイ、フレキシブル基板ディスプレイ、プロジェクションディスプレイ、4Kディスプレイ、高精細ディスプレイ、Retina(登録商標)ディスプレイ、インプレーンスイッチング(IPS)ディスプレイ、又はユーザーに情報を表示するための任意の他の適切なディスプレイである。ディスプレイ525は、抵抗性、容量性、表面弾性波(SAW)容量性、赤外線、光学イメージング、分散信号技術、音響パルス認識、フラストレート全内部反射などを使用して、タッチ(触覚)ディスプレイ、3次元(3D)タッチディスプレイ、マルチ入力タッチディスプレイ、マルチタッチディスプレイなどとして構成され得る。本発明の範囲から逸脱することなく、任意の適切なディスプレイデバイス及び触覚I/Oが使用され得る。
【0064】
キーボード530、及びコンピュータマウス、タッチパッドなどのカーソル制御デバイス535は、ユーザーがコンピューティングシステムとインターフェースすることを可能にするために、バス505に更に結合される。しかしながら、特定の実施形態では、物理的なキーボード及びマウスが存在しなくてもよく、ユーザーは、ディスプレイ525及び/又はタッチパッド(図示せず)のみを介してデバイスとインタラクトしてもよい。入力デバイスの任意のタイプ及び組合せを、設計上の選択事項として使用し得る。特定の実施形態では、物理的入力デバイス及び/又はディスプレイは存在しない。例えば、ユーザーは、コンピューティングシステム500と通信する別のコンピューティングシステムを介して、コンピューティングシステム500と遠隔にインタラクトしてもよく、又はコンピューティングシステム500は、自律的に動作してもよい。
【0065】
メモリ515は、プロセッサ510によって遂行された場合、機能を提供するソフトウェアモジュールを記憶する。モジュールは、コンピューティングシステム500のためのオペレーティングシステム540を含む。モジュールは、本明細書に記載のプロセス又はその派生物の全部又は一部を実施するように構成された自動ワークフロー完了モジュール545を更に含む。コンピューティングシステム500は、追加の機能を含む1つ又は複数の追加の機能モジュール550を含み得る。
【0066】
当業者であれば、「システム」が、本発明の範囲から逸脱することなく、サーバ、組込みコンピューティングシステム、パーソナルコンピュータ、コンソール、パーソナル・デジタル・アシスタント(PDA)、携帯電話、タブレット・コンピューティング・デバイス、量子コンピューティングシステム、又は任意の他の適切なコンピューティングデバイス、又はデバイスの組合せとして具現化され得ることを理解するであろう。上記の機能を「システム」によって実施されるものとして提示することは、本発明の範囲を限定することを決して意図するものではなく、本発明の多くの実施形態の一例を提供することを意図している。実際、本明細書に開示した方法、システム、及び装置は、クラウド・コンピューティング・システムを含むコンピューティング技術と一致する局所化された形態及び分散された形態で実装され得る。
【0067】
本明細書に記載されたシステム特徴のいくつかは、それらの実装の独立性をより具体的に強調するために、モジュールとして提示されていることに留意されたい。例えば、モジュールは、カスタムの超大規模集積(VLSI)回路又はゲートアレイ、既製の半導体、例えばロジックチップ、トランジスタ、又は他のディスクリートコンポーネントなどを含むハードウェア回路として実装されてもよい。モジュールはまた、フィールド・プログラマブル・ゲート・アレイ、プログラマブル・アレイ・ロジック、プログラマブル・ロジック・デバイス、グラフィックス・プロセッシング・ユニットなどのプログラマブル・ハードウェア・デバイスに実装されてもよい。
【0068】
モジュールはまた、様々なタイプのプロセッサによって遂行するためのソフトウェアに少なくとも部分的に実装されてもよい。遂行可能コードの識別されたユニットは、例えば、オブジェクト、手順、又は機能として編成され得るコンピュータ命令の1つ又は複数の物理ブロック又は論理ブロックを含んでもよい。それにもかかわらず、識別されたモジュールの遂行可能なものは、物理的に共に配置される必要はないが、論理的に共に結合されたときに、異なる場所に記憶され、モジュールを含み、モジュールの記載された目的を達成する異なる命令を含み得る。更に、モジュールは、例えば、ハード・ディスク・ドライブ、フラッシュデバイス、RAM、テープ、及び/又は本発明の範囲から逸脱することなくデータを記憶するために使用される任意の他のそのような非一時的コンピュータ可読媒体であり得るコンピュータ可読媒体に記憶されてもよい。
【0069】
実際、モジュールの遂行可能コードは、単一の命令、又は多くの命令であってもよく、いくつかの異なるコードセグメントにわたって、異なるプログラム中に、及びいくつかのメモリデバイスの間に、分散されてもよい。同様に、操作データは、本明細書ではモジュール内で識別され、及び図示され、任意の適切な形態で具現化され、任意の適切なタイプのデータ構造内に編成されてもよい。操作データは、単一のデータセットとして収集されてもよく、又は異なるストレージデバイスを含む異なる場所にわたって分散されてもよく、少なくとも部分的に、システム又はネットワーク上の電子信号としてのみ存在してもよい。
【0070】
非限定的な例として、RPAデザイナアプリケーションのユーザーがウェブブラウザを開くためのシーケンス、及びインターネット上の特定の情報を検索するためのシーケンスを含むワークフローを考える、ただし、閲覧したウェブページは、表を含んでいるとする。次いで、ユーザーは、アクティビティを追加してExcel(登録商標)ワークブックを開き、この表をコピーして、Excel(登録商標)スプレッドシートに貼り付けてもよい。ユーザーがワークフローを作成し、各アクティビティ又はアクティビティのシーケンスの後で、1つ又は複数のMLモデルを参照するときに、バックグラウンドで、デザイナアプリケーションは、ユーザーによって行われたアクションを追跡してもよい。ユーザーが特定のアクティビティを追加した後で、このアクティビティのシーケンスを繰り返し含む傾向がある場合、MLモデルは、ユーザーが特定のコンテキスト及び開始アクティビティ(例えば、ユーザーがウェブブラウザを起動するアクティビティを追加する場合、ユーザーは、アクティビティを追加してウェブサイトを訪問し、表をコピーして、Excel(登録商標)スプレッドシートに貼り付ける)に基づいて、このアクションのシーケンスを実施する可能性が高いことを、予測するように学習してもよい。
【0071】
一旦このシーケンスが学習されると(例えば、ユーザー固有、企業内のユーザー間で共通、グローバルで共通など)、ウェブブラウザを開くためにタスクを追加するとき、MLモデルは、1つ又は複数の次のアクティビティのシーケンスが提案信頼度レベルを満たすか又は超えることを示してもよく、デザイナアプリケーションは、ワークフローに追加する次のシーケンスを選択するための選択肢をユーザーに促してもよい。あるいは、いくつかの実施形態では、デザイナアプリケーションは、提案信頼度閾値を満たすか又は超えたときにユーザーの入力なしにシーケンスをワークフローに自動的に追加してもよく、あるいは複数のシーケンスが提案信頼度閾値を満たすか又は超えたときに最も高い信頼度閾値を有する次のシーケンスを選択してもよい。更に他の実施形態では、次のアクティビティのシーケンスの信頼度レベルが相対的に確実に閾値を下回るが、提案信頼度閾値を上回る場合、デザイナアプリケーションは、学習したシーケンスをワークフローに追加する選択肢をユーザーに促し、次のアクティビティのシーケンスの信頼度レベルが相対的に確実に閾値以上である場合、ユーザーの入力なしでシーケンスをワークフローに自動的に追加してもよい。例えば、ワークフローのシーケンスは、Excelアプリケーションスコープ内にワークブックパスを自動的に追加することと、MLモデルに基づいて、「Write
Cell」又は「Write Range」アクティビティをドロップすることと、を含んでもよく、現在の問題に合うように規則に従ってシートの名前を変更し、結果をExcel(登録商標)スプレッドシートに書き込み、更に進行状況に関するログを書き込むために「Log Message」アクティビティをドロップしてもよい。デザイナアプリケーションは、例えば、ユーザーが画面上の「エンターキー」をクリックした場合、ワークフローを自動的に完了してもよい。更に、ユーザーがExcel(登録商標)スプレッドシートに表を書き込みたいのだと、予測した後で、この例のデザイナアプリケーションは、ファイル、開始セル、及びシート名に適切な名前を与え、変数宣言を与え、プロパティ宣言を与え、操作が成功したか否かに関するユーザーに対するメッセージをログ記録する。
【0072】
一般に、Excel(登録商標)を開き、ファイルに名前を付け、開始セルを入力し、シート名を入力し、変数を宣言するなどのワークフローの完了には、経験豊富なユーザーでも完了するまでに約65~75秒かかる。Excel(登録商標)の書き込み操作に一般的である傾向があるこれらのステップを完了する時間を節約するために、いくつかの実施形態のMLモデルは、ワークフローの次のシーケンスを予測し、開発者に提案を提供し、開発者は、計算能力に応じて、2~3秒で提案を承認してもよい。これにより、この例では開発時間を1分以上短縮し得る。RPA開発者がそのようなシーケンスを有するワークフローを頻繁に作成する場合、開発時間の節約はかなり大きくなり得る。
【0073】
ユーザーが予測した次のアクティビティのシーケンスに満足した場合、この次のアクティビティのシーケンスをワークフローに追加してもよい。ユーザーが、MLモデルによって提供されるワークフローの予測された次のシーケンスに満足しない場合(例えば、ユーザーの個人的な設定が違う、ユーザーの構築ワークフローのスタイルが違う、ビジネスユースケースは他のものを必要としている、論理的エラーがあるなど)、MLモデルを再トレーニングするために、フィードバックを与えてもよい。そのフィードバックがユーザー固有である場合、MLモデルは、そのユーザーの設定に合わせて再トレーニングされてもよく、カスタムモデルが作成されてもよい。経時的に、MLモデルは、ユーザーが何の作業をしているかを学習し、それに応じて次のワークフローのシーケンスを提案する。フィードバックがユーザー固有でない場合(例えば、グローバルモデルの場合、又は個々のユーザーのみよりも大きなユーザーグループのモデルの場合)、フィードバックは、任意の期間にわたって他のユーザーからのフィードバックと共に収集され、MLモデルは、すべてのユーザー又はユーザーのグループに対して正確になるように再トレーニングされてもよい。
【0074】
図6Aは、本発明の一実施形態による、潜在的な次のアクティビティのシーケンスがMLモデルによって検出された後のデザイナアプリケーション600を示すスクリーンショット600である。ここで、開発者は、Excel(登録商標)アプリケーション・スコープ・アクティビティ610をワークフローにドロップする。MLモデルは、この実施形態ではデザイナアプリケーションによって実行され、ワークフローのロジックを分析し、後続のアクティビティのシーケンスがユーザーによって所望され得ることを判定する。次いで、MLモデルは、提案されたシーケンスをデザイナアプリケーションに提供し、デザイナアプリケーションは、それを提案と共にユーザーに表示して、ワークフローを自動的に完了する(すなわち、「自動完了のためにエンターを押してください」 というプロンプトを提供する(620))。
【0075】
開発者がエンターを押した後、シーケンスは、
図6Bに示すように、ワークフローに自動的に追加される。いくつかの実施形態では、シーケンスはまた、開発者の個人的なスタイル及び/又は設定を考慮に入れてもよい。ワークフローが完了していない可能性がある、又は更なるタスクが達成される場合、開発者はワークフローに追加のアクションを追加するように選択し得る。変数及びプロパティはまた、変数タブ630(
図6C参照)及びプロパティタブ640(
図6D参照)のそれぞれにおける現在のワークフローロジックに基づいて自動的に完了される。
【0076】
図7は、本発明の一実施形態による、RPAワークフローの提案された次のアクティビティのシーケンスを拒否又は承認する、及び自動的に完了するためのプロセス700を示すフロー図である。プロセスは、開発者がデザイナアプリケーションでワークフローを作成することから始まり、ユーザーがワークフロー内のアクティビティを追加し、及び改良すると、デザイナアプリケーションはXAMLワークフローとして保存する。ユーザーがアクティビティを追加又は改良した場合、現在のXAMLワークフローは、前処理のためにMLモデルに送信される。前処理中に、XAMLファイルから関連データが抽出され、無関係なデータが取り除かれる。特定の実施形態では、前処理は、精度を更に改善するために、MLモデルによって考慮される関連データを追加又は導出する(例えば、関連性の高いメタデータ変数を追加する)ことを含んでもよい。
【0077】
前処理の後、最新のMLモデルを、モデル在庫データベースから引き出し、最新のMLモデルを、ロードして、前処理されたデータに対して遂行する。次いで、MLモデルの遂行の結果生じるデータは、推論のためにデザイナアプリケーション(例えば、提案した次のアクティビティのシーケンスを含むXAMLファイル)に渡され、デザイナアプリケーションは、このデータを使用して提案をユーザーに表示する。ユーザーがその提案を承認する場合、開発者アプリケーションは、次のアクティビティのシーケンスをワークフローに追加し、ユーザーは、ワークフローの開発を継続してもよい。
【0078】
ユーザーが提案を拒否した場合、ユーザーは依然としてワークフローの開発を継続してもよい。しかしながら、拒否されたワークフローのXAMLは、次いで、拒否されたXAML自動完了提案のデータ在庫データベースに送信される。しばらく経過した後、又はそうするように手動で指示された場合、MLモデルをトレーニングするためのトレーニングモジュールは、データ在庫データベースから、拒否された自動完了提案を引き出し、これらを使用してMLモデルを再トレーニングする。再トレーニングされると、MLモデルのこの最新バージョンは、デザイナアプリケーションによって使用されるモデル在庫データベースに保存される。
【0079】
図8は、本発明の一実施形態による、パーソナライズされた、及び一般化されたフローの両方の自動完了アーキテクチャ
図800である。ユーザーがワークフローの開発を開始し、1つ又は複数のアクティビティがワークフローに追加された後で、最初のXAMLワークフローは、(1)デザイナアプリケーションから1つ又は複数の検索されたMLモデルに渡され、(2)ユーザーに提案するための1つ又は複数の潜在的な次のアクティビティのシーケンスを予測する。いくつかの実施形態では、事前トレーニングされたMLモデルは、パーソナライズ(ローカル)され、及び一般化(グローバル)される。ローカルMLモデルが提案信頼区間を超える提案のためのシーケンスを見つけられない場合、グローバルMLモデルが使用されてもよい。提案が提案信頼度閾値を満たさない場合、ユーザーがワークフローを追加し、及び/又は改良するときに、デザイナアプリケーションは、XAMLワークフローを継続して送信してもよい。
【0080】
1つ又は複数の提案が提供された場合(例えば、XAMLワークフローとして)、これらは、(3)デザイナアプリケーションでユーザーに提案される。ユーザーが提案を承認する、又は拒否するか否か、及び(もしあれば)どの提案が選択されたかは、(4)所与のMLモデルがどのように実行しているかに関する指示を提供する予測したアクティビティに関連するメトリクス(例えば、所与のメトリックの確率スコア)を更新するために使用され得る。ユーザーが、提案したアクティビティ又はアクティビティのシーケンスを拒否した場合、ユーザーは、自身のワークフローを構築し続け得る。その後、デザイナアプリケーションは、ユーザーのワークフローを監視し続け、その完了後、将来のトレーニングデータとして使用されるフィードバックとして、(5)完了したワークフローをトレーニングデータベースに送信する。いくつかの実施形態では、このデータは、ローカルMLモデル、グローバルMLモデル、又はその両方を再トレーニングするために使用されてもよい。
【0081】
ユーザーのワークフローをトレーニングデータベースに記憶した後のある時点で、MLモデルは、(6)再トレーニングされる。予測スコアが以前にトレーニングされたMLモデルよりも改善する場合、新規にトレーニングされたMLモデルは、最新の最良のモデルと見なされ、(7)モデルデータベースにアップロードされ、将来の処理のためのMLモデルとして機能する。
【0082】
いくつかの実施形態では、デザイナアプリケーションがロードされると、複数のMLモデルがダウンロードされて使用されてもよい。例えば、ユーザーにカスタマイズされたローカルMLモデルが、及び複数又は多数のユーザーからのワークフローを使用してトレーニングされたグローバルMLモデルが、ロードされてもよい。デザイナアプリケーションは、最初にローカルMLモデルを呼び出し、提案を返すか否か(例えば、1つ又は複数のシーケンスは、90%の提案信頼度閾値を満たしたか、又は超えたか)を確認し得る。そうである場合、提案はユーザーに提供され得る。そうでない場合、1つ又は複数の提案が提案信頼度閾値を満たすか又は超えるかを確認するために、グローバルMLモデルが呼び出され得る。
【0083】
いくつかの実施形態では、対応するMLモデル(例えば、ローカル及びグローバル)のモデル詳細は、モデルデータベース内の別々の表で更新されてもよい。例えば、モデルデータベースは、本発明の範囲から逸脱することなく、モデルID、モデルバージョン、モデルパス、モデルステータス、及び/又は任意の他の適切なフィールドなど、フィールドを含んでもよい。そのようなフィールドは、それぞれのMLモデルを機能させる場合に提供され得る。
【0084】
図9は、本発明の一実施形態による、MLを使用してRPAワークフローを自動的に完了するためのプロセス900を示すフローチャートである。プロセスは、905において、作成されたワークフロー、作成されたワークフローにおけるアクティビティのシーケンス、又はその両方をデザイナアプリケーションによってキャプチャし、それらをデータベースに記憶することで開始する。いくつかの実施形態では、ワークフロー、アクティビティのシーケンス、又はその両方は、XAMLフォーマットであってもよい。910において、記憶したワークフロー、アクティビティのシーケンス、又はその両方は、1つ又は複数のMLモデルをトレーニングするために使用される。次いで、915において、トレーニングしたMLモデルは、ユーザー・コンピューティング・システムにデプロイメントされるか、そうでなければユーザーに対して利用可能にされる。
【0085】
デプロイメントされる、又は利用可能にされると、920において、デザイナアプリケーションは、ワークフロー開発中にユーザーアクティビティを監視し、これらを1つ又は複数のMLモデルの少なくとも1つに提供する。いくつかの実施形態では、以前に遂行されたMLモデルが次のアクティビティのシーケンスを検出しない場合、複数のMLモデルが呼び出され、順番に実行されてもよい。925において、MLモデルが、提案信頼度閾値を満たすか又は超える1つ又は複数の潜在的な次のアクティビティのシーケンスを検出しない場合、プロセスはステップ920に戻る。しかしながら、925において、提案信頼度閾値を満たすか又は超える1つ又は複数の潜在的な次のアクティビティのシーケンスを検出した場合、930において、シーケンスはユーザーに提案される。
【0086】
935において、ユーザーが提案を承認する場合、940において、提案したアクティビティのシーケンスは、ワークフローに自動的に追加される。しかしながら、ユーザーが提案を拒否した場合、945において、デザイナアプリケーションは、ユーザーがワークフローを完了するのを待ってから、完了したワークフローを記憶させる。950において、完了したワークフロー、及び潜在的ないくつか又は多くの他の完了したワークフローは、MLモデルを再トレーニングするために使用され、955において、再トレーニングしたMLモデルは、デプロイメントされる、又は利用可能にされる。
【0087】
図9で実施されるプロセスステップは、本発明の実施形態に従って、プロセッサが
図9に記載したプロセスの少なくとも一部を実施するために、命令を符号化するコンピュータプログラムによって実施されてもよい。コンピュータプログラムは、非一時的コンピュータ可読媒体上で具現化されてもよい。コンピュータ可読媒体は、限定しないが、ハード・ディスク・ドライブ、フラッシュデバイス、RAM、テープ、及び/あるいはデータを記憶するために使用される任意の他のそのような媒体又は媒体の組合せであってもよい。コンピュータプログラムは、コンピュータ可読媒体に記憶され得る、
図9に記載したプロセスステップの全部又は一部を実装するように、コンピューティングシステム(例えば、
図5のコンピューティングシステム500のプロセッサ510)のプロセッサを制御するための符号化された命令を含んでもよい。
【0088】
コンピュータプログラムは、ハードウェア、ソフトウェア、又はハイブリッド実装で実装してもよい。コンピュータプログラムは、互いに動作可能に通信し、情報又は命令を表示のために渡すように設計されたモジュールから構成してもよい。コンピュータプログラムは、汎用コンピュータ、ASIC、又は任意の他の適切なデバイス上で動作するように構成してもよい。
【0089】
本発明の様々な実施形態のコンポーネントは、本明細書の図に一般的に記載及び図示されているように、多種多様な異なる構成で配置及び設計されてもよいことが容易に理解されよう。したがって、添付の図面に表すように、本発明の実施形態の詳細な説明は、特許請求される本発明の範囲を限定することを意図するものではなく、本発明の選択された実施形態を単に代表するものである。
【0090】
本明細書を通して記載した本発明の特徴、構造、又は特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられ得る。例えば、本明細書全体を通して「特定の実施形態」、「いくつかの実施形態」、又は同様の文言への言及は、実施形態に関連して記載した特定の特徴、構造、又は特性が本発明の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書全体を通して、「特定の実施形態では」、「いくつかの実施形態では」、「他の実施形態では」、又は同様の文言の出現は、必ずしもすべてが同じ実施形態のグループを指すわけではなく、記載した特徴、構造、又は特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられ得る。
【0091】
本明細書を通して特徴、利点、又は同様の文言への言及は、本発明で実現され得る特徴及び利点のすべてが本発明の任意の単一の実施形態であるべきであること、又は本発明の任意の単一の実施形態であることを意味するものではないことに留意されたい。むしろ、特徴及び利点に言及する文言は、実施形態に関連して記載した特定の特徴、利点、又は特性が本発明の少なくとも1つの実施形態に含まれることを意味すると理解される。したがって、本明細書を通して、特徴及び利点、並びに同様の文言の説明は、必ずしもそうとは限らないが、同じ実施形態を参照し得る。
【0092】
更に、本発明の記載した特徴、利点、及び特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせられてもよい。当業者は、特定の実施形態の特定の特徴又は利点のうちの1つ又は複数なしに、本発明を実施し得ることを認識するであろう。他の例では、本発明のすべての実施形態には存在しない可能性がある特定の実施形態において、追加の特徴及び利点が認識され得る。
【0093】
当業者であれば、上記のような本発明は、異なる順序のステップで、及び/又は開示されているものとは異なる構成のハードウェア要素で実施され得ることを容易に理解するであろう。したがって、本発明を、これらの好ましい実施形態に基づいて記載しているが、本発明の精神及び範囲内に留まりながら、特定の改良、変形、及び代替構造が明らかであることは、当業者には明らかであろう。したがって、本発明の範囲を決定するために、添付の特許請求の範囲を参照すべきである。
【国際調査報告】