IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イーエスエス テック インコーポレーテッドの特許一覧

特表2023-526343レドックスフロー電池及び電池システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-06-21
(54)【発明の名称】レドックスフロー電池及び電池システム
(51)【国際特許分類】
   H01M 8/18 20060101AFI20230614BHJP
   H01M 8/0273 20160101ALI20230614BHJP
   H01M 8/0258 20160101ALI20230614BHJP
   H01M 8/0263 20160101ALI20230614BHJP
   H01M 8/0265 20160101ALI20230614BHJP
   H01M 8/2483 20160101ALI20230614BHJP
   H01M 8/2465 20160101ALI20230614BHJP
【FI】
H01M8/18
H01M8/0273
H01M8/0258
H01M8/0263
H01M8/0265
H01M8/2483
H01M8/2465
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022569621
(86)(22)【出願日】2021-05-06
(85)【翻訳文提出日】2023-01-12
(86)【国際出願番号】 US2021031186
(87)【国際公開番号】W WO2021231187
(87)【国際公開日】2021-11-18
(31)【優先権主張番号】63/025,316
(32)【優先日】2020-05-15
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519297300
【氏名又は名称】イーエスエス テック インコーポレーテッド
【氏名又は名称原語表記】ESS Tech,Inc.
【住所又は居所原語表記】26440 SW Parkway Avenue,Wilsonville,Oregon 97070 United States of America
(74)【代理人】
【識別番号】100103894
【弁理士】
【氏名又は名称】家入 健
(72)【発明者】
【氏名】エヴァンス クレイグ イー.
(72)【発明者】
【氏名】ケイシー ショーン
(72)【発明者】
【氏名】グローバーグ ティアゴ
(72)【発明者】
【氏名】ソン ヤン
【テーマコード(参考)】
5H126
【Fターム(参考)】
5H126AA08
5H126AA15
5H126AA22
5H126AA23
5H126BB10
5H126EE03
5H126EE11
5H126EE25
5H126EE27
5H126EE29
5H126RR01
(57)【要約】
レドックスフロー電池及び電池システムが提供される。一例では、レドックスフロー電池は、2つのエンドプレートによって挟まれたセルスタックアセンブリを含み、セルスタックアセンブリは、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを含む。嵌合された膜フレームプレート及びバイポーラフレームプレートの各対について、負のシャントチャネル及び正のシャントチャネルが形成され、負及び正のシャントチャネルは、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャネルと流体連通する。
【選択図】図1
【特許請求の範囲】
【請求項1】
2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池であって、
前記セルスタックアセンブリが、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、
前記嵌合された膜フレームプレートとバイポーラフレームプレートの各対について、負のシャントチャネル及び正のシャントチャネルが界面に形成され、
前記負及び正のシャントチャンネルが、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャンネルと流体連通する、レドックスフロー電池。
【請求項2】
前記負及び正のシャントチャネルが、蛇行形状を有する、請求項1に記載のレドックスフロー電池。
【請求項3】
前記負及び正のシャントチャネルの各々が、少なくとも2つの平行な流路部を含む、請求項2に記載のレドックスフロー電池。
【請求項4】
前記負及び正のシャントチャネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対において、対応する溝によって形成される、請求項1~3のいずれかに記載のレドックスフロー電池。
【請求項5】
前記複数の入口分配チャンネルが、前記複数の出口分配チャンネルからオフセットしている、請求項1~4のいずれかに記載のレドックスフロー電池。
【請求項6】
前記複数の入口分配チャンネルが、活性プレートエリアに向かって延びる方向に分岐する、請求項1~5のいずれかに記載のレドックスフロー電池。
【請求項7】
前記複数の出口分配チャンネルが、活性プレートエリアから離れて延びる方向に収束する、請求項1~6のいずれかに記載のレドックスフロー電池。
【請求項8】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対が、前記負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質注入ポートを含む、請求項1~7のいずれかに記載のレドックスフロー電池。
【請求項9】
前記負及び正のシャントチャンネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの対に成形される、請求項1~8のいずれかに記載のレドックスフロー電池。
【請求項10】
2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池であって、
前記セルスタックアセンブリが、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対が、負のシャントチャネル及び正のシャントチャネルを形成し、
前記負及び正のシャントチャンネルが、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャンネルと流体連通チャネルにあり、
前記負及び正のシャントチャネルが、隣接する膜フレームプレート及びバイポーラフレームプレートを反対方向に横切る部分を含む、レドックスフロー電池。
【請求項11】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における前記負及び正のシャントチャネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの対の間に形成された接着界面によって画定される、請求項10に記載のレドックスフロー電池。
【請求項12】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における前記負及び正のシャントチャネルが、接着界面の使用によって画定されない成形通路である、請求項10または11に記載のレドックスフロー電池。
【請求項13】
前記複数の入口分配チャネルが前記複数の出口分配チャネルからオフセットされ、前記複数の入口分配チャネルが活性プレートエリアに向かって延びる方向に分岐する、請求項10~12のいずれかに記載のレドックスフロー電池。
【請求項14】
前記複数の出口分配チャンネルが、活性プレートエリアから離れる方向に収束する、請求項10~13のいずれかに記載のレドックスフロー電池。
【請求項15】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対が、前記負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質ポートを含む、請求項10~14のいずれかに記載のレドックスフロー電池。
【請求項16】
2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池であって、
前記セルスタックアセンブリが、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートであって、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対について、負の蛇行形状のシャントチャネル及び正の蛇行形状のシャントチャネルが界面に形成される、前記複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、
前記負及び正のシャントチャンネルが、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャンネルと、流体連通チャネルにあり、
前記複数の入口分配チャネルが前記複数の出口分配チャネルからオフセットされ、前記複数の入口分配チャネルが活性プレートエリアに向かって延びる方向に分岐する、レドックスフロー電池。
【請求項17】
前記複数の入口分配チャンネルが、前記活性プレートエリアに向かって延びる方向に分岐する、請求項16に記載のレドックスフロー電池。
【請求項18】
前記複数の出口分配チャンネルが、前記活性プレートエリアから離れて延びる方向に収束する、請求項16または17に記載のレドックスフロー電池。
【請求項19】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対が、前記負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質注入ポートを含む、請求項16~18のいずれかに記載のレドックスフロー電池。
【請求項20】
前記負の蛇行形状のシャントチャンネル及び前記正の蛇行形状のシャントチャンネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの対に成形される、請求項16~19のいずれかに記載のレドックスフロー電池。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2020年5月15日に出願された「REDOX FLOW BATTERY AND BATTERY SYSTEM」という名称の米国仮特許出願第63/025,316号に対する優先権を主張する。前述の出願の全内容が、あらゆる目的で、参照により本明細書に組み込まれる。
【0002】
本明細書は、概して、レドックスフロー電池及び電池システムに関する。
【背景技術】
【0003】
レドックスフロー電池は、従来の電池技術と比較して、電力及び容量を独立してスケーリングする能力、ならびに性能損失を低減しながら数千サイクルにわたって充電及び放電を行う能力のために、グリッドスケールの蓄電用途に適している。鉄ハイブリッドレドックスフロー電池は、セルスタックに低コストの材料が組み込まれているため、特に魅力的である。鉄レドックスフロー電池(IFB)は、電解質として鉄、塩、及び水に依存している。一部の実施形態では、IFBで使用されるこれらの地球に豊富で安価な材料は、ひどい化学物質の省略と共に、電池の環境フットプリントを低減する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
以前のフロー電池は、導電性電解質が電池のフローチャネルを移動するため、不要なシャント電流を生成する。電解質のフローのシャント電流は、エネルギー伝達効率及び電池性能の低下を引き起こす可能性がある。シャント電流によって発生する熱は、セルスタック構成要素の熱劣化を引き起こす可能性もある。さらに、以前のフロー電池における流体経路は、コンパクトさに関して非効率的である可能性がある。電解質の流出も、従来のフロー電池設計で問題を引き起こしてきた。
【課題を解決するための手段】
【0005】
本発明者らは、従来のレドックスフロー電池の上述の欠点を認識し、欠点を少なくとも部分的に克服するレドックスフロー電池を開発した。一例では、レドックスフロー電池は、2つのエンドプレートによって挟まれたセルスタックを含む。セルスタックは、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを含む。嵌合された膜フレームプレート及びバイポーラフレームプレートの各対について、負のシャントチャネル及び正のシャントチャネルが界面に形成される。負及び正のシャントチャンネルが、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口の分配チャンネルと流体連通する。シャントチャネルはフローチャネル内の電気抵抗を増加させて、シャント電流の生成を低減する。具体的には、一例では、シャントチャネルは蛇行形状を有する。蛇行形状のシャントチャネルを使用すると、セルスタックの電解質流路内のチャネルが長くなるため、シャント電流を低減することができる。
【0006】
別の例では、レドックスフロー電池は、セルスタック内にオフセットされた入口及び出口分配チャネルをさらに含んでもよい。分配チャネルをオフセットすると、セルスタックの電解質流路のデッドゾーンの数が減少する。セルスタックのコンパクトさは、必要に応じて、分配チャネルをオフセットすることによっても向上させることができる。
【0007】
上記概要は、発明を実施するための形態にさらに記載される概念の選択を簡単な形で紹介するために提供されていることを理解されたい。それは、特許を請求する主題の重要なまたは必須の特徴を特定することを意図したものではなく、主題の範囲は、発明を実施するための形態に続く特許請求の範囲によって一意的に定義される。さらに、特許を請求する主題は、上記または本開示のいずれかの部分に記載した欠点を解決する実施態様に限定されない。
【図面の簡単な説明】
【0008】
図1】例示的レドックスフロー電池システムの概略図を示す。
図2】圧縮アセンブリを有するレドックスフロー電池の一例の分解図を示す。
図3図2に示したレドックスフロー電池の組立図を示す。
図4】バイポーラプレートアセンブリを用いたセルスタックの一例の断面図を示す。
図5図4に示したバイポーラプレートアセンブリの分解図を示す。
図6図4に示したバイポーラプレートアセンブリ内の分配チャネルの詳細図を示す。
図7図4に示したバイポーラプレートアセンブリに含まれるバイポーラフレームアセンブリの詳細図を示す。
図8図4に示したバイポーラプレートアセンブリに含まれるバイポーラフレームアセンブリの分解図を示す。
図9図4に示したバイポーラプレートアセンブリに含まれる膜フレームアセンブリの分解図を示す。
図10図4に示したバイポーラプレートアセンブリに含まれる膜フレームアセンブリの詳細図を示す。
図11図4に示したバイポーラプレートアセンブリにおける嵌合された位置合わせボスの詳細図を示す。
図12】さねはぎ界面を有する、図4に示したバイポーラプレートアセンブリの断面図を示す。
図13図12に示したバイポーラプレートアセンブリにおけるバイポーラフレームアセンブリの第1の側を示す。
図14図13に示したバイポーラプレートアセンブリの一部分の詳細な図を示す。
図15図12に示したバイポーラプレートアセンブリにおけるバイポーラフレームアセンブリの第2の側を示す。
図16図15に示したバイポーラフレームアセンブリの一部分の詳細な図を示す。
図17図4に示したセルスタックの別の部分の断面を示し、膜フレームプレートとバイポーラフレームプレートが嵌合されて、負の電解質流路を形成する。
図18図4に示したセルスタックの別の部分の断面を示し、膜フレームプレートとバイポーラフレームプレートが嵌合されて、負の電解質流路を形成する。
図19図4に示したセルスタックの別の部分の断面を示し、膜フレームプレートとバイポーラフレームプレートが嵌合されて、正の電解質流路を形成する。
図20図4に示したセルスタックの別の部分の断面を示し、膜フレームプレートとバイポーラフレームプレートが嵌合されて、正の電解質流路を形成する。
図21】セルスタックにおける強化膜の一例を示す。
図22】セルスタックにおける強化膜の一例を示す。
図23】バイポーラフレームプレートのスタックを示す。
【発明を実施するための形態】
【0009】
図2図23は、ほぼ縮尺通りに描かれている。しかし、他の実施形態では、他の相対的な寸法が使用される場合がある。
【0010】
以下の説明は、フロー電池システム、及びシステムの小型化を向上させ、電池セルスタック内のシャント電流を低減するのに役立つ製造技術に関する。一例では、フロー電池システムは、それらの間に形成されたさねはぎ界面を有する連続的に配置されたバイポーラ及び膜フレームアセンブリを有するセルスタックを含み得る。さねはぎ界面空間は、スタック内の異なる電解質フローチャネルを効率的に区切る。さらに一例では、電解質フローチャネルは、内部を通って電解質が流れるように構成された蛇行形状のシャントチャネルを含むことができる。蛇行形状により、シャントチャネルの長さを増加させることができ、それによって電池動作中のシャント電流の生成が減少する。セルスタック内のフレームアセンブリは、入れ子になった位置合わせボスも含むことができる。位置合わせボスにより、迅速かつ効率的なセルスタックの構築(例えば、単純化された製造自動化)が可能になり、スタック内のセルの位置合わせ不良の可能性が減少する。
【0011】
図1に示すように、レドックスフロー電池システム10において、負電極26はめっき電極と呼ばれてもよく、正電極28はレドックス電極と呼ばれてもよい。第1の電池セル18のめっき側(例えば、負電極区画20)内の負の電解質は、めっき電解質と呼ばれてもよく、第1の電池セル18のレドックス側(例えば、正電極区画22)の正の電解質は、レドックス電解質と呼ばれてもよい。
【0012】
ハイブリッドレドックスフロー電池は、電極上に固体層として1つ以上の電気活性材料を堆積することを特徴とするレドックスフロー電池である。ハイブリッドレドックスフロー電池は、例えば、電池充電プロセスを通して基板上に固体として電気化学反応によってめっきする化学物質を含むことができる。電池の放電中、めっきされた種は電気化学反応によってイオン化し、電解質に溶解することができる。ハイブリッド電池システムでは、レドックス電池の充電容量(例えば、貯蔵されるエネルギーの最大量)は、電池充電中にめっきされた金属の量によって制限される場合があり、めっきシステムの効率、ならびにめっきに利用可能な体積及び表面積に依存し得る。
【0013】
アノードは電気活性材料が電子を失う電極を指し、カソードは電気活性材料が電子を得る電極を指す。電池の充電中、正の電解質は負電極26で電子を得る、したがって負電極26は電気化学反応のカソードである。放電中、正の電解質は電子を失う、したがって、負電極26は反応のアノードである。代替的には、放電中、負の電解質及び負電極は、それぞれ、電気化学反応のアノード液及びアノードと呼ばれてもよく、正の電解質及び正電極は、それぞれ、電気化学反応のカソード液及びカソードと呼ばれてもよい。充電中、負の電解質及び負電極は、それぞれ、電気化学反応のカソード液及びカソードと呼ばれてもよく、正の電解質及び正電極は、それぞれ、電気化学反応のアノード液及びアノードと呼ばれてもよい。簡単にするために、正及び負という用語は、本明細書では、レドックス電池フローシステムの電極、電解質、及び電極区画を指して使用される。
【0014】
ハイブリッドレドックスフロー電池の一例は、全鉄レドックスフロー電池(IFB)であり、IFBでは、電解質は鉄塩(例えば、FeCl、FeCl)の形態の鉄イオンを含み、負電極は金属鉄を含む。例えば、負電極26では、電池充電中に、第一鉄イオン、Fe2+、が2つの電子を受け取り、鉄金属として負電極26にめっきし、電池放電中に、鉄金属Feが2つの電子を失い、Fe2+として再溶解する。正電極では、充電中にFe2+が電子を失って第二鉄イオンFe3+を形成し、放電中にFe3+が電子を獲得してFe2+を形成する。電気化学反応は式(1)と(2)にまとめられる。ここで、正反応(左から右)は電池充電中の電気化学反応を示し、逆反応(右から左)は電池放電中の電気化学反応を示す。
Fe2++2e-⇔Fe -0.44V (負電極)(1)
Fe2+⇔2Fe3++2e- +0.77V (正電極)(2)
【0015】
上記のように、IFBで使用される負の電解質は、充電中にFe2+が負電極から2つの電子を受け取ってFeを形成し、基板上にめっきできるように、十分な量のFe2+を提供することができる。放電中、めっきされたFeは2つの電子を失い、Fe2+にイオン化し、溶解されて電解質内に戻ることができる。上記の反応の平衡電位は-0.44Vであり、したがって、この反応は所望のシステムに負の端子を提供する。IFBの正側では、充電中に電解質がFe2+を提供する場合があり、電子を失い、Fe3+に酸化される。放電中、電解質によって提供されたFe3+は、電極によって提供された電子を吸収することによってFe2+になる。この反応の平衡電位は+0.77Vであり、所望のシステムに正の端子を生成する。
【0016】
IFBは、非再生電解質を利用する他のタイプの電池とは異なり、電解質を充電及び再充電する能力を備える。充電は、端子40及び42を介して電極間に電流を印加することによって達成される。負電極26は端子40を介して電圧源の負側に電気的に結合されてもよく、それによって、電子が正電極を介して負の電解質に供給されてもよい(例えば、Fe2+が、正電極区画22内の正の電解質中でFe3+に酸化される)。負電極26(例えば、めっき電極)に供給される電子は、負の電解質中のFe2+を還元して、めっき基板でFeを形成し、それを負電極26上にめっきすることができる。
【0017】
放電は、Feが酸化のために負の電解質に利用可能なままであり、Fe3+は還元のために正の電解質で利用可能なままである。例として、Fe3+の利用可能性は、第1の電池セル18の正電極区画22側への正の電解質の濃度または体積を増加させて、外部の正の電解質タンク52などの外部供給源を介して追加のFe3+イオンを提供することによって維持することができる。より一般的には、放電中のFeの利用可能性は、IFBシステムで問題になる可能性があり、放電に利用できるFeは、負電極基板の表面積と体積、及びめっき効率に比例する可能性がある。充電容量は、負電極区画20内のFe2+の利用可能性に依存し得る。例として、Fe2+の利用可能性は、外部の負の電解質チャンバ50などの外部ソースを介して追加のFe2+イオンを提供して、第1の電池セル18の負電極区画20側への負の電解質の濃度または体積を増加させることによって維持することができる。
【0018】
IFBにおいて、正の電解質は、第一鉄イオン、第二鉄イオン、第二鉄錯体、またはそれらの任意の組み合わせを含み、負の電解質は、IFBシステムの充電状態に応じて、第一鉄イオンまたは第一鉄錯体を含む。前述のように、負の電解質と正の電解質の両方で鉄イオンを利用すると、電池セルの両側で同じ電解種を利用することが可能になり、これにより、電解質の相互汚染を減らし、IFBシステムの効率を高めることができて、結果として、他のレドックスフロー電池システムと比較して、電解質の交換が少なくなる。
【0019】
IFBにおける効率損失は、セパレータ24(例えば、イオン交換膜バリア、微多孔膜など)を通過する電解質クロスオーバーに起因する場合がある。例えば、正の電解質中の第二鉄イオンは、第二鉄イオン濃度勾配及びセパレータを横切る電気泳動力によって負の電解質に向かって駆動され得る。次に、膜バリアを浸透し、負電極区画20に移動する第二鉄イオンは、クーロン効率の損失をもたらす場合がある。低pHレドックス側(例えば、より酸性度の高い正電極区画22)から高pHメッキ側(例えば、より酸性度の低い負電極区画20)にクロスオーバーする鉄イオンは、Fe(OH)の析出をもたらす可能性がある。Fe(OH)の析出は、セパレータ24を劣化させ、恒久的な電池性能及び効率の損失を引き起こす可能性がある。例えば、Fe(OH)の析出物は、イオン交換膜の有機官能基を化学的に汚すか、またはイオン交換膜の小さな微細孔を物理的に詰まらせる可能性がある。いずれの場合も、Fe(OH)の析出物により、時間の経過と共に膜のオーム抵抗が上昇し、電池の性能が低下する可能性がある。析出物は電池を酸で洗浄することによって除去し得るが、定期的なメンテナンスとダウンタイムは、商用電池用途には不利な場合がある。さらに、洗浄は電解質の定期的な調製に依存する可能性があり、追加の処理コストと複雑さの原因となる。代替的には、電解質のpH変化に応じて正の電解質と負の電解質に特定の有機酸を添加すると、全体的なコストを押し上げることなく、電池の充電及び放電サイクル中の析出物形成を軽減することができる。さらに、鉄イオンのクロスオーバーを阻害する膜バリアを実装すると、汚染も抑制することができる。
【0020】
追加のクーロン効率損失は、H(例えば、プロトン)の還元とそれに続くH(例えば、水素ガス)の形成、及び負極区画20内のプロトンとめっき鉄金属電極で供給される電子との反応による水素ガス形成によって引き起こされる可能性がある。
【0021】
IFB電解質(例えば、FeCl、FeCl、FeSO、Fe(SOなど)は容易に入手可能であり、低コストで製造することができる。IFB電解質は、負の電解質と正の電解質に同じ電解質を使用できるため、より高い再生価値を提供し、その結果、他のシステムと比較して相互汚染の問題が減少する。さらに、鉄は、その電子配置のために、負電極基板上へのめっき中にほぼ均一な固体構造に固化し得る。ハイブリッドレドックス電池で一般的に使用される亜鉛や他の金属の場合、めっき中に固体の樹枝状構造が形成される場合がある。IFBシステムの安定した電極形態は、他のレドックスフロー電池と比較して電池の効率を高めることができる。さらに、鉄レドックスフロー電池は有毒な原材料の使用を減らし、他のレドックスフロー電池電解質と比較して比較的中性のpHで動作することができる。したがって、IFBシステムは、現在生産されている他のすべての高度なレドックスフロー電池システムと比較して、環境への影響を軽減する。
【0022】
引き続き図1を参照すると、レドックスフロー電池システム10の概略図が示されている。レドックスフロー電池システム10は、マルチチャンバ電解質貯蔵タンク110に流体接続された第1のレドックスフロー電池セル18を含んでもよい。第1のレドックスフロー電池は一般に、負電極区画20、セパレータ24、及び正電極区画22を含み得る。セパレータ24は、正の電解質と負の電解質のバルク混合を防ぎ、特定のイオンの伝導を可能にする電気絶縁性イオン伝導バリアを含んでもよい。例えば、セパレータ24は、イオン交換膜及び/または微多孔膜を含んでもよい。
【0023】
負電極区画20は、負電極26を含んでもよく、負の電解質は、電気活性材料を含んでもよい。正電極区画22は、正電極28を含んでもよく、正の電解質は、電気活性材料を含んでもよい。いくつかの例では、複数のレドックスフロー電池セル18を直列または並列に組み合わせて、レドックスフロー電池システムでより高い電圧または電流を生成することができる。例えば、いくつかの例では、レドックスフロー電池システム10は、図10図13に示すように、2つのセルスタックを含んでもよく、各セルスタックは複数の電池セルから形成される。例として、第1の電池セル18、及び第1の電池セル18と同様に構成された第2の電池セル19を有するレドックスフロー電池システム10を図1に示す。したがって、第1の電池セル18について本明細書に記載されるすべての構成要素及びプロセスは、第2の電池セル19において同様に見出すことができる。
【0024】
第1の電池セル18は第1のセルスタックに含まれてもよく、第2の電池セル19は第2のセルスタックに含まれてもよい。第1及び第2のセルは、互いに流体結合されてもよく、流体結合されていなくてもよいが、各々電解質貯蔵タンク110及びリバランス反応器80、82に流体結合されている。例えば、図1に示すように、第1及び第2の電池セル18、19のそれぞれは、第1及び第2の電池セル18及び19のそれぞれに分岐する共通の通路を介して、負及び正の電解質ポンプ30、32に接続されてもよい。同様に、電池セルは各々、電池セルをリバランスリアクタ80、82に結合する共通の通路に合流する通路を有してもよい。
【0025】
さらに図1には、負及び正の電解質ポンプ30及び32が示されており、両方ともフロー電池システム10を通して電解質溶液をポンピングするために使用される。電解質は、セル外部の1つ以上のタンクに貯蔵され、負及び正の電解質ポンプ30及び32を介して、それぞれ電池の負電極区画20側及び正電極区画22側を通してポンピングされる。
【0026】
レドックスフロー電池システム10は、第1のバイポーラプレート36及び第2のバイポーラプレート38をさらに含んでもよく、各々負電極26及び正電極28の後面側、例えば、セパレータ24に面する側の反対側に沿って配置される。第1のバイポーラプレート36は負電極26と接触してもよく、第2のバイポーラプレート38は正電極28と接触してもよい。しかしながら、他の例では、バイポーラプレートは、近接して配置されてもよいが、それぞれの電極区画内で電極から離れて配置されてもよい。いずれの場合でも、バイポーラプレート36及び38は、端子40及び42に、直接接触するか、または、それぞれ、負電極26及び正電極28を介して、電気的に結合されてもよい。IFB電解質は、バイポーラプレート36、38の材料の導電特性に起因して、第1のバイポーラプレート36及び第2のバイポーラプレート38によって負電極26及び正電極28の反応サイトに輸送されてもよい。電解質の流れは、負及び正の電解質ポンプ30、32によって補助され、第1のレドックスフロー電池セル18を通る強制対流を促進することができる。反応した電気化学種は、強制対流と、第1のバイポーラプレート36及び第2のバイポーラプレート38の存在の組み合わせによって、反応サイトから離れるようにも向けられてもよい。
【0027】
図1に示すように、第1のレドックスフロー電池セル18は、負の電池端子40及び正の電池端子42をさらに含んでもよい。充電電流が電池端子40及び42に印加されると、正の電解質は正電極28で酸化され(1つ以上の電子を失う)、負の電解質は負電極26で還元される(1つ以上の電子を得る)。電池の放電中、電極で逆レドックス反応が生じる。言い換えると、正の電解質は正電極28で還元され(1つ以上の電子を得る)、負の電解質は負電極26で酸化される(1つ以上の電子を失う)。電池全体の電位差は、正電極区画22及び負電極区画20における電気化学的レドックス反応によって維持され、反応が持続している間、集電体を通して電流を誘導することができる。レドックス電池に蓄えられるエネルギー量は、電解質の全体積と電気活性材料の溶解度に応じて、放電のための電解質内の利用できる電気活性材料の量によって制限される。
【0028】
フロー電池システム10は、一体型マルチチャンバ電解質貯蔵タンク110をさらに含んでもよい。マルチチャンバ貯蔵タンク110は、隔壁98によって分割されてもよい。隔壁98は、正及び負の電解質の両方を単一のタンク内に含めることができるように、貯蔵タンク内に複数のチャンバを形成してもよい。負の電解質チャンバ50は、電気活性材料を含む負の電解質を保持し、正の電解質チャンバ52は、電気活性材料を含む正の電解質を保持する。隔壁98は、負の電解質チャンバ50と正の電解質チャンバ52との間に所望の容積比をもたらすために、マルチチャンバ貯蔵タンク110内に配置されてもよい。一例では、隔壁98は、負のレドックス反応と正のレドックス反応との間の化学量論比に従って、負と正の電解質チャンバの容積比を設定するように配置されてもよい。図1は、貯蔵タンク110の充填高さ112をさらに示し、これは各タンク区画内の液体レベルを示し得る。図1は、負の電解質チャンバ50の充填高さ112の上に位置するガスヘッドスペース90、及び正の電解質チャンバ52の充填高さ112の上に位置するガスヘッドスペース92も示す。ガスヘッドスペース92は、レドックスフロー電池の動作によって(例えば、プロトン還元及び腐食副反応により)生成され、第1のレドックスフロー電池セル18から電解質を戻してマルチチャンバ貯蔵タンク110に運ばれた水素ガスを貯蔵するために利用されてもよい。水素ガスは、マルチチャンバ貯蔵タンク110内の気液界面(例えば、充填高さ112)で自然に分離され、それによって、レドックスフロー電池システムの一部として追加の気液分離器を有することを排除することができる。電解質から分離されると、水素ガスはガスヘッドスペース90及び92を満たすことができる。したがって、貯蔵された水素ガスは、マルチチャンバ貯蔵タンク110から他のガスをパージするのを支援することができ、それによって、電解質種の酸化を減らすための不活性ガスブランケットとして機能し、レドックスフロー電池容量の損失を減らすのを助けることができる。このように、一体化されたマルチチャンバ貯蔵タンク110を利用することにより、従来のレドックスフロー電池システムに共通の別個の負及び正の電解質貯蔵タンク、水素貯蔵タンク、及び気液分離器を持たずに済ませ、それによってシステム設計を簡素化し、システムの物理的フットプリントを軽減し、システムコストを削減することができる。
【0029】
図1は、ガスヘッドスペース90と92との間の隔壁98に開口部を形成し、2つのチャンバ間のガス圧を等しくする手段を提供するスピルオーバーホール96も示す。スピルオーバーホール96は、充填高さ112よりも上の閾値高さに位置決めされてもよい。スピルオーバーホールは、電池クロスオーバーの場合に、正及び負の電解質チャンバのそれぞれの電解質を自己バランスさせる能力をさらに可能にする。全鉄レドックスフロー電池システムの場合、同じ電解質(Fe2+)が負及び正の電極区画20、22の両方で使用されるため、負の電解質チャンバ50と正の電解質チャンバ52との間で電解質があふれ出ると、システム全体の効率が低下する可能性があるが、全体的な電解質組成、電池モジュールの性能、及び電池モジュールの容量は維持される。マルチチャンバ貯蔵タンク110の入口及び出口のすべての配管接続にフランジ継手を利用して、漏れのない連続加圧状態を維持することができる。マルチチャンバ貯蔵タンク110は、負及び正の電解質チャンバのそれぞれからの少なくとも1つの出口、ならびに負及び正の電解質チャンバのそれぞれへの少なくとも1つの入口を含むことができる。さらに、水素ガスをリバランス反応器80及び82に導くために、ガスヘッドスペース90及び92から1つ以上の出口接続を設けることができる。
【0030】
図1には示されていないが、一体型マルチチャンバ電解質貯蔵タンク110は、負の電解質チャンバ50及び正の電解質チャンバ52の各々に熱的に結合された1つ以上のヒータをさらに含んでもよい。代替例では、負及び正の電解質チャンバの一方のみが、1つ以上のヒータを含んでもよい。正の電解質チャンバ52のみが1つ以上のヒータを含む場合、負の電解質は、パワーモジュールの電池セルで生成された熱を負の電解質に伝達することによって加熱されてもよい。このようにして、パワーモジュールの電池セルは加熱され、負の電解質の温度調整を容易にすることができる。1つ以上のヒータは、コントローラ88によって作動されて、負の電解質チャンバ50及び正の電解質チャンバ52の温度を別々にまたは一緒に調節してもよい。例えば、電解質温度が閾値温度を下回ったことに応答して、コントローラ88は、電解質への熱流束が増加するように、1つ以上のヒータに供給される電力を増加させることができる。電解質温度は、センサ60及び62を含む、マルチチャンバ電解質貯蔵タンク110に取り付けられた1つ以上の温度センサによって示されてもよい。1つ以上のヒータは、電解質流体に浸漬されたコイルタイプヒータもしくは他の浸漬ヒータ、または負及び正の電解質チャンバの壁を通して伝導的に熱を伝達してその中の流体を加熱する表面マントルタイプヒータを含んでもよい。本開示の範囲から逸脱することなく、他の既知のタイプのタンクヒータを採用してもよい。さらに、コントローラ88は、液体レベルが固体充填閾値レベルを下回ったことに応答して、負及び正の電解質チャンバ50、52内の1つ以上のヒータを停止してもよい。言い方を変えると、コントローラ88は、液体レベルが固体充填閾値レベルを上回ったことのみに応答して、負及び正の電解質チャンバ50、52内の1つ以上のヒータを作動してもよい。このようにして、正及び/または負の電解質チャンバ内に十分な液体がない状態で1つ以上のヒータを作動することを回避し、それによってヒータの過熱または焼損のリスクを低減することができる。
【0031】
さらに、1つ以上の入口接続部が、フィールド水和システム(図示せず)から負及び正の電解質チャンバ50、52の各々に設けられてもよい。このようにして、フィールド水和システムは、最終使用場所でのシステムの設置、充填、及び水和を含む、レドックスフロー電池システムの試運転を容易にすることができる。さらに、最終使用場所で試運転する前に、レドックスフロー電池システムは、システムを充填及び水和させずに、最終使用場所とは異なる電池製造施設で乾式で組み立てられて、最終使用場所にシステムを配送することができる。一例では、最終使用場所は、レドックスフロー電池システム10が設置され、オンサイトエネルギー貯蔵のために利用される場所に対応することができる。言い換えれば、最終使用場所に設置され水和されると、レドックスフロー電池システム10の位置は固定され、レドックスフロー電池システム10はもはや携帯型の乾式システムとは見なされなくなると考えられる。したがって、レドックスフロー電池システムのエンドユーザの観点から、乾式携帯型レドックスフロー電池システム10は現場に配送され、その後、レドックスフロー電池システム10が設置され、水和され、試運転される。水和前のレドックスフロー電池システム10は、乾式携帯型システムと呼ばれてもよく、レドックスフロー電池システム10は、水及び湿った電解質を含まない、または水及び湿った電解質がない。水和されると、レドックスフロー電池システム10は、湿式非携帯型システムと呼ばれてもよく、レドックスフロー電池システム10は、湿った電解質を含む。
【0032】
さらに図1に示されるように、マルチチャンバ貯蔵タンク110に典型的に貯蔵される電解質溶液は、フロー電池システム10全体に負の及び正の電解質ポンプ30、32を介してポンピングされる。負の電解質チャンバ50に貯蔵された電解質は、負の電解質ポンプ30を介して負電極区画20側を通してポンピングされ、正の電解質チャンバ52に貯蔵された電解質は、電池の正電極区画22側を通して正の電解質ポンプ32によってポンピングされる。
【0033】
2つの電解質リバランス反応器80及び82は、レドックスフロー電池システム10において、それぞれ第1の電池セル18の負側及び正側で電解質の再循環流路とインラインまたは並列に接続してもよい。1つ以上のリバランス反応器を電池の負電極側及び正電極側で電解質の再循環流路と一直線に接続されてよく、他のリバランス反応器が、冗長性のため(例えば、リバランス反応器は電池とリバランス操作を中断することなく修理されてもよい)と、リバランス容量を増やすために並列に接続されてもよい。一例では、電解質リバランス反応器80及び82は、それぞれ正及び負の電極区画20及び22から正及び負の電解質チャンバ50及び52への戻り流路に配置することができる。電解質リバランス反応器80及び82は、本明細書に記載されるように、副反応、イオンクロスオーバーなどによって生じるレドックスフロー電池システムにおける電解質電荷の不均衡をリバランスするのに役立ち得る。一例では、電解質リバランス反応器80及び82はトリクルベッド反応器を含んでよく、水素ガスと電解質が、電解質リバランス反応を行うために充填床の触媒表面で接触する。他の例では、リバランス反応器80及び82は、水素ガス及び電解質と接触し、充填触媒床の非存在下でリバランス反応を行うことができるフロースルータイプの反応器を含んでもよい。
【0034】
レドックスフロー電池システム10の動作中、センサ及びプローブは、電解質のpH、濃度、充電状態などの電解質の化学的特性を監視及び制御することができる。例えば、図1に示されるように、センサ62及び60は、それぞれ、正の電解質チャンバ52及び負の電解質チャンバ50における正の電解質及び負の電解質の状態を監視するように配置することができる。別の例では、センサ62及び60は各々、正の電解質チャンバ52及び負の電解質チャンバ50内の電解質のレベルをそれぞれ示す1つ以上の電解質レベルセンサを含んでもよい。別の例として、図1にも示されるように、センサ72及び70は、それぞれ、正電極区画22及び負電極区画20における正の電解質及び負の電解質の状態を監視してもよい。センサ72、70は、pHプローブ、光プローブ、圧力センサ、電圧センサなどであってもよい。センサは、電解質の化学的特性及び他の特性を監視するために、レドックスフロー電池システム10全体の他の位置に配置されてもよい。
【0035】
例えば、センサを外部の酸タンク(図示せず)に配置して、外部の酸タンクの酸量またはpHを監視してもよく、外部の酸タンクからの酸は、電解質中の析出物形成を減少させるために、外部ポンプ(図示せず)を介してレドックスフロー電池システム10に供給される。レドックスフロー電池システム10に他の添加剤を供給するために、追加の外部タンク及びセンサが設置されてもよい。例えば、フィールド水和システムの温度センサ、導電率センサ、及びレベルセンサを含む様々なセンサが、コントローラ88に信号を送信してもよい。さらに、コントローラ88は、レドックスフロー電池システム10の水和中に、フィールド水和システムのバルブ及びポンプなどのアクチュエータに信号を送信してもよい。センサ情報はコントローラ88に送信されてもよく、コントローラ88は次にポンプ30及び32を作動させて、一例として、第1の電池セル18を通る電解質の流れを制御するか、または他の制御機能を実行してもよい。このようにして、コントローラ88は、センサとプローブの1つまたは組み合わせに応答してもよい。
【0036】
レドックスフロー電池システム10は、水素ガス源をさらに含んでもよい。一例では、水素ガス源は、別個の専用水素ガス貯蔵タンクを含んでもよい。図1の例では、水素ガスは、一体型マルチチャンバ電解質貯蔵タンク110に貯蔵され、そこから供給されてもよい。一体型マルチチャンバ電解質貯蔵タンク110は、追加の水素ガスを正の電解質チャンバ52及び負の電解質チャンバ50に供給してもよい。一体型マルチチャンバ電解質貯蔵タンク110は、追加の水素ガスを電解質リバランス反応器80及び82の入口に交互に供給してもよい。例として、質量流量計または他の流量制御装置(コントローラ88によって制御されてもよい)は、一体型マルチチャンバ電解質貯蔵タンク110からの水素ガスの流れを調節してもよい。一体型マルチチャンバ電解質貯蔵タンク110は、レドックスフロー電池システム10で生成された水素ガスを補給してもよい。例えば、レドックスフロー電池システム10でガス漏れが検出されたとき、または還元反応速度が低い水素分圧で低すぎるとき、正の電解質と負の電解質における電気活性種の電荷の状態をリバランスするために一体型マルチチャンバ電解質貯蔵タンク110から水素ガスを供給してもよい。例として、コントローラ88は、pHの測定された変化に応答して、または電解質もしくは電気活性種の電荷の状態の測定された変化に応答して、一体型マルチチャンバ電解質貯蔵タンク110から水素ガスを供給してもよい。
【0037】
例えば、負の電解質チャンバ50または負電極区画20のpHの上昇は、水素がレドックスフロー電池システム10から漏れていること、及び/または利用可能な水素分圧に対して反応速度が遅すぎることを示す場合があり、コントローラ88は、pHの上昇に応答して、一体型マルチチャンバ電解質貯蔵タンク110からレドックスフロー電池システム10への水素ガスの供給を増加させてもよい。さらなる例として、コントローラ88は、第1の閾値pHを超えて上昇するか、または第2の閾値pHを超えて低下するpHの変化に応答して一体型マルチチャンバ電解質貯蔵タンク110から水素ガスを供給してもよい。IFBの場合、コントローラ88は追加の水素を供給して、第二鉄イオンの還元速度及びプロトンの生成速度を増加させ、それによって正の電解質のpHを低下させてもよい。さらに、負の電解質のpHは、正の電解質から負の電解質にクロスオーバーする第二鉄イオンの水素還元によって、または正電極側で生成されたプロトンがプロトン濃度勾配及び電気泳動力により負の電解質にクロスオーバーすることによって、低下してもよい。このようにして、Fe(OH)としての第二鉄イオンの析出(正電極区画からのクロスオーバー)のリスクを低減しながら、負の電解質のpHを安定領域内に維持してもよい。
【0038】
酸素還元電位(ORP)メータまたは光学センサなどの他のセンサによって検出される、電解質のpHの変化または電解質の電荷状態の変化に応答して、一体型マルチチャンバ電解質貯蔵タンク110からの水素ガスの供給速度を制御するための他の制御スキームが実装されてもよい。さらに、コントローラ88の動作をトリガするpHまたは電荷状態の変化は、一定期間にわたって測定された変化率または変化に基づいてもよい。変化率の期間は、予め決定されてもよく、またはレドックスフロー電池システム10の時定数に基づいて調整されてもよい。例えば、再循環率が高い場合、期間は短縮されてもよく、時定数が小さい可能性があるため、濃度の局所的な変化(例えば、副反応またはガス漏れによる)が迅速に測定される場合がある。
【0039】
図2は、第1の加圧プレート202と第2の加圧プレート204との間にセルスタック206が配置されたレドックスフロー電池200(例えば、鉄レドックスフロー電池(IFB))の例を示す。具体的には、加圧プレートの内側205は、セルスタック206の反対側と接するように設計されてもよい。図2に示されるレドックスフロー電池200、ならびに、本明細書に記載の他のレドックスフロー電池及びシステムは、図1に示されるレドックスフロー電池システム10の例であることが理解されよう。したがって、図1に示されるレドックスフロー電池システム10の構造的及び/または機能的特徴は、本明細書に記載されている他のレドックスフロー電池及び電池システムにおいて示される場合があり、またはその逆であってもよい。
【0040】
軸系201が、参照のため、図2図23に提供されている。z軸は重力軸に平行であってもよい。y軸は縦軸であってもよく、及び/またはx軸は横軸であってもよい。しかし、他の実施形態では、軸の他の向きが使用される場合がある。
【0041】
セルスタック206は、第1の加圧プレート202の内側に配置され、第1の加圧プレート202の内面と面を共有して接触する第1のエンドプレート208を含む。電流を流すように構成された第1の集電体210は、第1のエンドプレート208と第1の加圧プレート202の間に配置されてもよい。第1の加圧プレート202及び第2の加圧プレート204は、レドックスフロー電池200の反対側の末端212に配置される。
【0042】
セルスタック206では、第1のバイポーラプレートアセンブリ214が、第1のセルスタック206の第1のエンドプレート208と第2のエンドプレート216との間に配置される。さらに、y軸に沿って積層されたバイポーラプレートアセンブリ219が示されている。バイポーラプレートアセンブリは、y軸に沿って積層された複数のフレームプレート215も含む。複数のフレームプレート215は、セルスタック206に構造的支持を提供する。フレームプレート215は、内部を通り抜ける複数の電解質フローチャネルも含み、これについては、図4図20に関して本明細書でより詳細に説明する。複数のフレームプレート215の各フレームプレートは、セルスタックのセルをフレームで囲むように同様に構成されてもよい。各セルは、各フレームプレートの少なくとも1つの開口部に挿入された1つ以上のバイポーラプレート217を含む。さらに、バイポーラプレートは、各セルの負電極と正電極との間に配置され、電極は、バイポーラプレートの反対側の面に沿って配置される。さらに、負電極はバイポーラプレートと膜セパレータ(例えば、図1のセパレータ24)との間に配置される。このように、各フレームプレートアセンブリは、膜セパレータ、負電極、バイポーラプレート、及び正電極を含む構成要素のスタックを有し、構成要素のスタックは、セルスタック206内の連続するフレームプレートアセンブリごとに繰り返される。しかし、他の例では、他の適切なセルスタック配置が配備されてもよいことが理解されよう。
【0043】
第2のエンドプレート216は、第2の加圧プレート204と面を共有して接触してもよい。第2の集電体218は、第2のエンドプレート216と第2の加圧プレート204との間に配置されてもよい。
【0044】
図2は、複数のフローポート220も示す。フローポート220は、セルスタック206に出入りする電解質(例えば、正または負の電解質)を流すように設計されている。したがって、フローポート220は、第2の加圧プレート204の開口部を通って延びるように示されている。
【0045】
第1の加圧プレート202及び第2の加圧プレート204は、共に、組み立て時に、レドックスフロー電池200を構造的に補強し、セルスタックに予荷重を加えるように設計されている。このようにして、プレッシャープレートは二重の用途を果たし、必要に応じて電池システムのコンパクトさを高めることができる。しかしながら、多数の電池プレート及びハウジングの配置が考えられてきた。
【0046】
加圧プレート202、204は、電池の構築、設置、サービスなどの間にフォークリフトが加圧プレートに係合することを可能にする複数のフォークリフト開口部234を含んでもよい。結果として、電池ユニットは、必要に応じて、フォークリフトによって効率的に操作され得る。
【0047】
レドックスフロー電池200は、電池動作中のセルスタック(例えば、セルスタックの活性領域)のたわみを低減するために、セルスタック206に予荷重力を及ぼすように設計された圧縮アセンブリ236も含む。圧縮アセンブリ236は、加圧プレート202、204の外側224に沿って延びる238(例えば、板ばね)を含む。
【0048】
レドックスフロー電池200は、複数のタイロッド240をさらに含む。タイロッド240は、板ばね238、加圧プレート202、204、及びセルスタック206を通って延びるように設計されている。他のタイロッドは、加圧プレート202、204及びセルスタック206を通って延びてもよく、板ばね238を通らない場合がある。レドックスフロー電池200には、セルスタック206に圧縮を加えることができるようにタイロッド240と螺合するように設計されたナット242が含まれる。
【0049】
図3は、組み立てられた構成のレドックスフロー電池200を示す。タイロッド240の一部分は、ばね238を通って延びるように示されている。詳細には、タイロッド240は、ばね238の上部及び下部部分を通って延びて、ばねの屈曲を容易にする。加圧プレート202、204及びセルスタック206を通って延びる追加のタイロッド240が示されている。サイドボルト300も、加圧プレート202、204を通って延びるように示されている。タイロッド240のヘッド302、及びタイロッドに結合されたナット242(図2参照)は、電池組み立て中にセルスタックの圧縮を設定できるように締め付けることができる。
【0050】
図3は、電解質の流れがセルスタック206に出入りするのを可能にするように設計されたフローポート220を再び示す。具体的には、一例では、ポート304は流入ポートであってもよく、ポート306は流出ポートであってもよい。しかしながら、電池の他の流入及び流出方式が企図されてきた。詳細には、レドックスフロー電池200に正の電解質流入ポート及び負の電解質流入ポートを設けてもよい。同様に、レドックスフロー電池200に正の電解質流出ポート及び負の電解質流出ポートを設けてもよい。
【0051】
図4は、バイポーラプレートアセンブリ214を含むセルスタック206の一部分を示す。バイポーラプレートアセンブリ214は、電解質流路を形成するために互いに嵌合されたバイポーラフレームアセンブリ404及び膜フレームアセンブリ406を含む。
【0052】
バイポーラフレームアセンブリ404は、バイポーラフレームプレート408と、バイポーラフレームプレートによって支持されるバイポーラプレート217とを含む。膜フレームアセンブリ406は、膜フレームプレート412及び膜フレームプレートによって支持された膜414を含む。バイポーラプレートアセンブリ214の嵌合設計により、プレート及びキャップスタイルの設計と比較してアセンブリのコンパクト性を高めることができ、アセンブリを構築するための材料の量を減らして製造コストを下げることができる。さらに、必要に応じて、構造的に支持されていない膜を使用しなくてもよく、その結果、セルスタックの変形が減少する。
【0053】
図5は、バイポーラフレームアセンブリ404及び膜フレームアセンブリ406を再び含むバイポーラプレートアセンブリ214の部分分解図を示す。強化メッシュ500は、バイポーラプレート217及び膜414に対する構造的支持のために、バイポーラフレームアセンブリ404と膜フレームアセンブリ406との間に配置される。このようにして、屈曲及び他の不要なスタックの変形を減らすことができる。
【0054】
図21を参照すると、バイポーラプレート2103を有するバイポーラプレートアセンブリ2102内の補強メッシュ2100の例の詳細図を示している。したがって、補強メッシュ2100は、図5に示されるメッシュ500の一例である。メッシュ2100は、リブ2104とリブとの間に延び、リブを構造的に補強するクロスブレーシング2106を含む。リブ2104及びクロスブレーシング2106は、断面が多角形(例えば、矩形)である。しかしながら、代替的なリブ及び/またはクロスブレーシングの輪郭が想定されている。
【0055】
図22は、補強メッシュ2100に隣接する膜2200及びバイポーラプレート2103に隣接するフェルト層2202を有するバイポーラプレートアセンブリ2102の断面図を示す。補強リブ2104は、バイポーラプレート2103の戻り止め2204と嵌合している。バイポーラプレート2103は、戻り止め2204を形成するために打ち抜かれたカーボンシート及び/またはグラファイト箔を含んでもよいことが理解されよう。補強リブ2104は、電池の使用中に、より均一で効果的な圧縮力の分布を可能にし、スタックの変形を減少させる。矢印2206は、セルスタックに加えられる圧縮力の概略の方向を示している。前述のように、セルスタックの圧縮は、図2に示す圧縮アセンブリ236によって生成される。一例では、補強メッシュ2100は、適切なポリマー(例えば、ポリプロピレン)から構成することができ、電磁気的に電解質に干渉することなく、セルスタックの構造補強を可能にする。
【0056】
再び図5を参照すると、バイポーラプレートアセンブリ214は、膜フレームプレート412内に少なくとも部分的に負の電解質入口502及び正の電解質入口506を含む。電解質入口及び出口は、図17図20に関して本明細書でより詳細に議論されるが、バイポーラフレームアセンブリ404と膜フレームアセンブリ406との間の嵌合によって形成されることが理解されよう。バイポーラプレートアセンブリ214はまた、少なくとも部分的にバイポーラフレームプレート408内に負の電解質出口508及び正の電解質出口509も含む。
【0057】
電解質フローチャネルも、バイポーラフレームアセンブリ404と膜フレームアセンブリ406の界面に形成される。詳細には、バイポーラプレートアセンブリ214では、組み立てられると、負のシャントチャネル520は、それぞれの電解質の入口及び出口(膜フレームアセンブリ406内の、図9に示される負の電解質入口502及び出口900)から延びる。正のシャントチャネル522も、それぞれの入口及び出口(バイポーラフレームプレート408内の正の電解質入口506及び正の電解質出口509)から延びる。しかしながら、シャントチャネル内の他の適切な電解質流路が想定されてきた。
【0058】
シャントチャネルは、部分523が実質的に反対の電解質の流れ方向性を示し、チャネルの長さを増加させることを可能にする、蛇行形状で設計されてもよい。シャントチャネルを長くすると、シャント電流が減少する。その結果、電池システムは、エネルギー電力出力に関して、及び場合によっては貯蔵容量に関して、より効率的に動作することができる。特定の例では、シャントチャネルの断面積も、シャント電流を低減するために減少させ得ることを理解されたい。
【0059】
バイポーラプレートアセンブリ214は、組み立てられると、負の入口及び出口分配チャネル526を含む。分配チャネルは、電解質を分配し、活性プレートエリア530から捕捉することを可能にする。したがって、分配チャネルは、関連するシャントチャネルと流体連通している。
【0060】
バイポーラプレートアセンブリ214内の電解質(例えば、正または負の電解質)の概略的流路は次のように進行することが理解されよう。(i)電解質は、最初に電解質入口から対応するシャントチャネルに流れ、(ii)電解質は次いでシャントチャネルから入口分配チャネルに流れ、(iii)電解質は次いで入口分配チャネルから膜/バイポーラプレート界面に流れ、(iv)電解質は次いで膜/バイポーラプレート界面から出口分配チャネルに流れ、(v)電解質は次いで出口分配チャネルから関連シャントチャネルに流れ、(vi)続いて電解質はシャントチャネルから各々の電解質出口に流れ込む。
【0061】
膜フレームプレート412及び/またはバイポーラフレームプレート408は、塩素化ポリ塩化ビニル(CPVC)などの適切なポリマーから構築することができる。膜は、1つの使用例では、コーティングされたNafion(商標)から構成されている場合がある。しかし、他の適切な膜材料が想定される。組み立てられると、膜フレームアセンブリ406とバイポーラフレームアセンブリ404は接着剤で互いに接合されてもよい。膜414を膜フレームプレート412に、及び/またはバイポーラプレート217をバイポーラフレームプレート408に接着するために、接着剤接合を使用してもよい。しかしながら、これらの構成要素を取り付けるために、熱溶接などの他の適切な取り付け技術も企図されてきた。
【0062】
図5は、ボルトを構造的に補強し、セルスタック内でより大きな力の分散を可能にするボルト開口部532を有するタブ531も示している。タブ531は、膜フレームプレート412及びバイポーラフレームプレート408の両方にある。しかし、他の例では、他のプレート輪郭を使用することができる。バイポーラフレームプレート408の第1の側550及び膜フレームプレート412の第1の側552が図5に示されている。バイポーラフレームプレート及び膜フレームプレートのそれぞれの第2の側554及び556も、図5に示されている。図8、9は、バイポーラ及び膜フレームプレートの第2の側の詳細図を示し、本明細書でより詳細に議論される。
【0063】
図6は、バイポーラプレート217及び分配チャネル524を有するバイポーラフレームプレート408を含むバイポーラフレームアセンブリ404の詳細図を示す。具体的には、入口分配チャネルは600で示され、出口分配チャネルは602で示される。電解質の流れの概略的な方向は、矢印603で示されている。しかし、実際には、電解質の流れのパターンはより複雑になる。入口及び出口分配チャネル600及び602は、それぞれ、図示の例では、互いにオフセットされている(例えば、x軸に沿ってオフセットされている)。その結果、電解質の流れのデッドゾーンを減らすことができ、電池の動作効率が向上する。分配チャネルをオフセットすることは、よりコンパクトなプレートアセンブリ配置を提供することもでき、より効率的な電池ーの拡張性を可能にする。
【0064】
一例では、入口分配チャネル600は、活性プレートエリア530に向かって延びる方向(例えば、z軸に沿った方向)に分岐してもよい。逆に、出口分配チャネル602は、活性プレートエリア530から離れる方向(例えば、z軸に沿った方向)に収束してもよい。このようにして、活性エリアにわたる電解質の分散が増加する。
【0065】
図7は、バイポーラフレームアセンブリ404の詳細図を示す。詳しく説明すると、負の電解質入口700は、図5に示すように、負の電解質シャントチャネル520及び正の電解質シャントチャネル522の垂直下方に配置される。参照用に重力軸が提供されている。電解質注入ポートをシャントの下に位置付けると、追加の電解質をセルスタックから排出できるようになり、例えば、修理または輸送中の分解が容易になる。例えば、セルスタックが電解質の大部分を排出できるようにすることは、例えば、セルスタック内に析出物が蓄積する機会も減少させる(例えば、防止する)。
【0066】
図8は、バイポーラフレームプレート408及びバイポーラプレート217を含むバイポーラフレームアセンブリ404の第2の側554の分解図を示す。正の電解質入口506及び正の電解質出口509は、正のシャントチャネル522及び分配チャネル524に正の電解質を流すように示されている。バイポーラプレート217も図8に示されている。バイポーラプレート217は、1.3超のアスペクト比を有して(例えば、図示の実施形態では1:1)、製造コストを減少させる。しかしながら、他の適切なバイポーラプレートアスペクト比が想定されてきた。アスペクト比は、プレートの高さ802と幅804との間の比例関係を表す。バイポーラプレートは、所望のアスペクト比を維持するために分割され得ることが理解されよう。例えば、1つの使用例実施形態では、1:1のアスペクト比を維持するために3つのバイポーラプレートが提供され得る。しかし、他の実施形態では、バイポーラプレートの代替数及び/または異なるプレートアスペクト比が使用されてもよい。
【0067】
図9は、膜フレームアセンブリ406の第2の側556の分解斜視図を示している。アセンブリは、膜フレームプレート412及び膜414を含む。負の電解質入口502及び負の電解質出口508は、負のシャントチャネル520及び分配チャネル526に負の電解質を流すように示されている。
【0068】
膜414も図9に示されている。膜414は、図9において、膜フレームプレート412を横切って横方向に延びる連続シートとして示されている。したがって、一実施形態では、膜414は、組み立てられたときに、隣接するバイポーラフレームアセンブリ内の複数のバイポーラプレートにまたがってもよい。しかし、別の膜プロファイルが想定されてきた。例えば、他の実施形態では、膜は別個の部分に分割されてもよい。
【0069】
図10は、膜414に隣接する補強メッシュ500を有する組み立てられた状態の膜フレームアセンブリ406の詳細図を示す。膜フレームプレート412は、対応する位置合わせボスを含む隣接するバイポーラフレームプレートとの自動位置合わせを可能にする複数の位置合わせボス1000を含む。図示の実施形態では、フレームプレートは4つのボスを含む。しかし、他の実施形態では、代替的な数のフレームプレートボスを使用してもよい。一例では、製造中の迅速な位置合わせを容易にするために、フレームプレートの対向する垂直側面に位置合わせボスを配置してもよい。このようにして、セルスタックの製造効率及び精度を向上させることができる。具体的には、位置合わせボス1000は、迅速な部品登録及び検査を容易にする穴パターンデータを作成し、それによって自動製造プロセスを単純化する。使用事例の一例では、製造金型を変更して、プレート全体にわたる位置合わせ機能など、他のタイプの位置合わせ機能よりも費用対効果の高い方法でボスを位置合わせすることができる。
【0070】
図11は、膜フレームプレート412と嵌合したバイポーラフレームプレート408の詳細な断面図を示す。具体的には、バイポーラフレームプレート408の位置合わせボス1100は、膜フレームプレート412の位置合わせボス1000と嵌合する。嵌合されたボスは、方向1102にテーパを有して、効率的なプレートの位置合わせを可能にする。したがって、ボスは各々、テーパの付いた外面1104及びフランジ1106を含む。ボスの開口部1108の中心に向かって延びるフランジ1106が示されている。しかしながら、他のフランジ輪郭が想定されてきた。
【0071】
図12は、アセンブリ内の電解質の流路を画定する嵌合した、さねはぎを含むバイポーラプレートアセンブリ214を示す。さねはぎの配置は、必要に応じて、フレームプレートのより大きなプラスチック公差に対応することができる。オーバーボードさねはぎ界面1200、シャントさねはぎ界面1202、及び分配さねはぎ界面1204が図12に示されている。さねはぎのプロファイルにより、バイポーラフレームプレート408と膜フレームプレート412との間のスペース効率の良い接続が可能になる。さらに、さねはぎの輪郭により、接着剤経路1206を嵌合された特徴部に隣接して形成することが可能になり、膜フレームプレート412とバイポーラフレームプレート408との間の結合強度が増加する。したがって、接着剤を充填する前に、接着剤経路1206は、さね(さねはぎの「さね(舌部)」)の対向側の空隙であってもよい。したがって、適切な接着剤(例えば、異なるタイプのエポキシなど)のビーズは、バイポーラプレート組立体の構築後に接着剤経路1206内に配置することができる。しかし、他の例では、分配チャネル、シャントチャネル、及び/またはクロスオーバーチャネルは、バイポーラフレームプレートと膜フレームプレートの両方を備えたフレーム構造で、ガスアシスト成形によって構築されてもよい。したがって、そのような例では、必要に応じてバイポーラプレートアセンブリから接着剤または他の封止界面の使用を省略できる成形プロセス中にチャネルを作成することができる。さらに、フレームアセンブリに成形された電解質チャネルを設けることで、必要に応じてセルスタックの部品数を減らすこともでき、それによって膜フレームプレートとバイポーラフレームプレートを1つの連続した構成要素(たとえば、モノリシック構造)に一体化することができる。
【0072】
図12は、バイポーラプレート217及び膜414も示す。前述のように、バイポーラプレート217はバイポーラフレームプレート408に結合され(例えば、熱溶接、接着、それらの組み合わせなど)、膜414は膜フレームプレート412に結合される。したがって、一例では、膜414は、膜フレームプレート412に熱溶接されてもよい。同様に、バイポーラプレート217は、バイポーラフレームプレート408に熱溶接されてもよい。熱溶接は、2つの構成要素の間に熱的に結合された材料の層(例えば接合部)を生成することが理解されよう。
【0073】
図13図16は、バイポーラフレームアセンブリ404のバイポーラフレームプレート408の、さねはぎの特徴の詳細図を示す。図13を参照すると、バイポーラフレームプレート408及びバイポーラプレート217がそれに結合されたバイポーラフレームアセンブリ404の第1の側(例えば上面)1300が示されている。バイポーラフレームプレート408は、図12に示される、さねはぎ界面の溝(さねはぎの「はぎ」)部分を含む。具体的には、オーバーボード溝1302、シャント溝1304、分配溝1306、及びクロスオーバー溝1308(例えば、ポート溝)が示されている。
【0074】
図14は、オーバーボード溝1302、シャント溝1304、分配溝1306、及びクロスオーバー溝1308(例えば、ポートさね)を有するバイポーラフレームプレート408の詳細図を示す。溝は、膜フレームプレートの、さねがそれと嵌合してコンパクトな界面を形成することを可能にする凹部であることが理解されよう。したがって、膜フレームアセンブリ、具体的にはバイポーラプレートアセンブリ内の膜フレームプレートは、バイポーラフレームプレート408内の、さねはぎ特徴と嵌合するように形成された対応するさねはぎ特徴を有して、その中に電解質流路を画定することが理解されよう。
【0075】
図15は、バイポーラフレームプレート408及びバイポーラプレート217がそれに結合されたバイポーラフレームアセンブリ404の第2の側(例えば、底面)1500を示す。バイポーラフレームプレート408は、バイポーラプレートアセンブリにおける、さねはぎ界面のさね部分を含む。具体的には、オーバーボードさね1502、シャントさね1504、分配さね1506、及びクロスオーバーさね1508(たとえば、ポート溝)が示されている。さねは、隣接する膜フレームプレートの溝と嵌合するようにプロファイルされた延長部である。さねはぎを結合するとき、接着剤のビーズを各境界面に適用して、バイポーラプレートアセンブリ内の異なる電解質流路を密封することができる。しかしながら、他の例では、さねはぎの界面での接着接合は省略されてもよい。オーバーボードさねはぎ接合部は、バイポーラプレートアセンブリの周囲に延びてセルスタックを密封することが理解されよう。
【0076】
図16は、オーバーボードさね1502、シャントさね1504、分配さね1506、及びクロスオーバーさね1508(例えば、ポートさね)が再び示されているバイポーラフレームプレート408の詳細図を示す。さねは、前述のように、隣接する膜フレームプレートの溝と嵌合するように成形された延長部である。
【0077】
図17は、バイポーラフレームプレート1700及び膜フレームプレート1702を含むセルスタック206の一部分の断面図を示す。図示のように、バイポーラ及び膜フレームプレートは、セルスタック内で順次交互に配置される。図17に示されるフレームプレートは、本明細書に記載された他のフレームプレートと同様の特徴を共有し得ることが理解されよう。したがって、簡潔にするために冗長な説明は省略される。対応するバイポーラフレームプレート1700に取り付けられたバイポーラプレート217も図17に示されている。
【0078】
図18は、バイポーラフレームプレート1700及び膜フレームプレート1702を有するセルスタック206の断面の詳細図を示す。連続したフレームプレート間の界面は、セルスタック206内に複数の負の電解質入口1800及び複数の負のシャントチャネル1802を形成する。図示のように、負のシャントチャネル1802は、バイポーラフレームプレートと膜フレームプレートの両方の溝を介して形成されて、シャントチャネルの断面積を増加させる。その結果、必要に応じて、シャントチャネルを通る電解質の流量を増加させることができる。
【0079】
図19は、バイポーラフレームプレート1700及び膜フレームプレート1702を含むセルスタック206の一部分の断面図を示す。図19は、バイポーラフレームプレート1700に結合(例えば、接着、熱溶接など)されたバイポーラプレート217も示している。図19は、プレートフレームの1つにある英数字パーツインジケータ1900も示している。しかしながら、スタック内の追加の部品は、製造を簡素化するためにパーツインジケータを含んでもよいことが理解されよう。
【0080】
図20は、複数のバイポーラフレームプレート1700及び膜フレームプレート1702の詳細図を示す。連続フレームプレート間の界面2000は、セルスタック206内の複数の正の電解質入口2002及び複数の正のシャントチャネル2004を形成する。このようにして、電解質は、セルスタックを通して空間効率的に送られ、セルスタックがよりコンパクトな配置を達成することを可能にする。その結果、必要に応じて、電池のスケーリングをよりコスト効率よく実施できる。
【0081】
図23は、バイポーラフレームプレート2302のスタック2300を示しており、連続するプレートは、さねはぎ界面2304を介して嵌合される。バイポーラフレームプレート2302は、図2図22に関して上述したバイポーラフレームプレートと同様である。したがって、簡潔にするために冗長な説明は省略される。本明細書に記載の膜フレームプレートは、同様の方法でスタックされ得ることが理解されよう。フレームプレートのスタック可能性により、必要に応じて、セルスタック製造に関して、在庫効率が向上し、パッケージ密度が高くなる。
【0082】
複数のバイポーラフレームアセンブリと膜フレームアセンブリを嵌合して正及び負のシャントチャネルを形成するレドックスフロー電池を提供することの技術的効果は、スペースを節約する方法でシャント電流の生成を減少させることである。
【0083】
図2図23は、様々な構成要素の相対的な配置を伴う例示的構成を示している。互いに直接接触している、または直接結合していることが示されている場合、そのような要素は、少なくとも一例では、それぞれ直接接触している、または直接結合していると呼ばれてもよい。同様に、互いに連続または隣接して示される要素は、少なくとも一例では、それぞれ、互いに連続または隣接し得る。例として、互いに面を共有して接触している構成要素は、面を共有して接触していると呼ばれてもよい。別の例として、少なくとも1つの例では、その間に空間だけがあり、他の構成要素がない状態で互いに離れて配置された要素をそのように呼んでもよい。さらに別の例として、互いの上/下、互いに反対側、または互いの左/右に示される要素は、互いに対してそのように呼んでもよい。さらに、図示のように、少なくとも1つの例において、最上部の要素または要素の点は、構成要素の「上部」と呼ばれることがあり、最下部の要素または要素の点は、構成要素の「底部」と呼ばれることがある。本明細書で使用されるように、上/下(top/bottom)、上/下(upper/lower)、上/下(above/below)は、図の垂直軸に対して相対的であり、互いに対する図の要素の配置を説明するために使用される。したがって、1つの例では、他の要素の上に示される要素は、他の要素の上に垂直に配置される。さらに別の例として、図面内に示される要素の形状は、それらの形状(例えば、円形、直線、平面、湾曲、丸み、面取り、角度付きなど)を有すると言及されてもよい。さらに、少なくとも1つの例において、互いに交差するように示される要素は、交差する要素または互いに交差するものと呼ばれてもよい。さらに、一例では、別の要素内に示される、または別の要素の外側に示される要素は、そのように参照されてもよい。
【0084】
本発明は、以下の段落でさらに説明される。一態様では、2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池が提供され、セルスタックアセンブリは、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対について、負のシャントチャネル及び正のシャントチャネルが界面に形成され、負及び正のシャントチャネルが少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口流通チャネルと流体連通する。
【0085】
別の態様では、2つのエンドプレートによって介在されるセルスタックアセンブリを備えるレドックスフロー電池が提供され、セルスタックアセンブリは、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対は、負のシャントチャネル及び正のシャントチャネルを形成し、負及び正のシャントチャネルは、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口流通チャネルと流体連通チャンネルにあり、負及び正のシャントチャネルは、隣接する膜フレームプレート及びバイポーラフレームプレートを反対方向に横切る部分を含む。
【0086】
さらに別の態様では、2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池が提供され、セルスタックアセンブリは、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートであって、嵌合された膜及びバイポーラフレームの各対について、負の蛇行形状のシャントチャネルと正の蛇行形状のシャントチャネルが界面に形成される、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、負及び正のシャントチャネルは、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャネルを有する流体連通チャネルにあり、複数の入口分配チャネルは、複数の出口分配チャネルからオフセットされ、複数の入口分配チャネルは、活性プレートエリアに向かって延びる方向に分岐する。
【0087】
態様または態様の組み合わせのいずれかにおいて、負及び正のシャントチャネルは蛇行形状を有してもよい。
【0088】
態様または態様の組み合わせのいずれかにおいて、負及び正のシャントチャネルの各々は、少なくとも2つの平行な流路部を含んでもよい。
【0089】
態様または態様の組み合わせのいずれかにおいて、負及び正のシャントチャネルは、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対において、対応する溝によって形成されてもよい。
【0090】
態様または態様の組み合わせのいずれかにおいて、複数の入口分配チャネルは、複数の出口分配チャネルからオフセットしていてもよい。
【0091】
態様または態様の組み合わせのいずれかにおいて、複数の入口分配チャネルは、活性プレートエリアに向かって延びる方向に分岐してもよい。
【0092】
態様または態様の組み合わせのいずれかにおいて、複数の出口分配チャネルは、活性プレートエリアから離れて延びる方向に収束してもよい。
【0093】
態様または態様の組み合わせのいずれかにおいて、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対は、負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質注入ポートを含んでもよい。
【0094】
態様または態様の組み合わせのいずれかにおいて、負のシャントチャネル及び正のシャントチャネルは、嵌合された膜フレームプレート及びバイポーラフレームプレートの対に成形されてもよい。
【0095】
態様または態様の組み合わせのいずれかにおいて、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における負及び正のシャントチャネルは、嵌合された膜フレームプレート及びバイポーラフレームプレートの対の間に形成された接着界面を介して画定され得る。
【0096】
態様または態様の組み合わせのいずれかにおいて、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における負及び正のシャントチャネルは、接着界面の使用によって画定されない成形通路であってもよい。
【0097】
態様または態様の組み合わせのいずれかにおいて、複数の入口分配チャネルは、複数の出口分配チャネルからオフセットされ、複数の入口分配チャネルは、活性プレートエリアに向かって延びる方向に分岐してもよい。
【0098】
態様または態様の組み合わせのいずれかにおいて、複数の出口分配チャネルは、活性プレートエリアから離れて延びる方向に収束してもよい。
【0099】
態様または態様の組み合わせのいずれかにおいて、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対は、負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質ポートを含んでもよい。
【0100】
態様または態様の組み合わせのいずれかにおいて、複数の入口分配チャネルは、活性プレートエリアに向かって延びる方向に分岐してもよい。
【0101】
態様または態様の組み合わせのいずれかにおいて、複数の出口分配チャネルは、活性プレートエリアから離れて延びる方向に収束してもよい。
【0102】
態様または態様の組み合わせのいずれかにおいて、嵌合された膜フレームプレート及びバイポーラフレームプレートの各対は、負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質注入ポートを含んでもよい。
【0103】
態様または態様の組み合わせのいずれかにおいて、負のシャントチャネル及び正のシャントチャネルは、嵌合された膜フレームプレート及びバイポーラフレームプレートの対に成形されてもよい。
【0104】
以下の特許請求の範囲は、新規かつ非自明であると見なされる特定の組み合わせ及び下位の組み合わせを特に指摘している。これらの特許請求の範囲は、「ある(an)」要素または「第1の(a first)」要素またはそれらの均等物を指す場合がある。そのような特許請求の範囲は、2つ以上のそのような要素を要求も排除もせず、1つ以上のそのような要素の組み込みを含むと理解されたい。開示された特徴、機能、要素、及び/または特性の他の組み合わせ及び下位組み合わせは、現在の特請求の範囲の補正を通じて、または本出願もしくは関連出願における新しい特許請求の範囲の提示を通じて特許請求されてもよい。そのような特許請求の範囲は、元の特許請求の範囲より広いか、狭いか、等しいか、または異なるかに関係なく、本開示の主題内に含まれるものと見なされる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
【手続補正書】
【提出日】2023-01-24
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
2つのエンドプレートによって挟まれたセルスタックアセンブリを備えるレドックスフロー電池であって、
前記セルスタックアセンブリが、複数の嵌合された膜フレームプレート及びバイポーラフレームプレートを備え、
前記嵌合された膜フレームプレートとバイポーラフレームプレートの各対について、負のシャントチャネル及び正のシャントチャネルが界面に形成され、
前記負及び正のシャントチャンネルが、少なくとも1つのバイポーラプレートと流体連通する複数の入口及び出口分配チャンネルと流体連通する、レドックスフロー電池。
【請求項2】
前記負及び正のシャントチャネルが、蛇行形状を有する、請求項1に記載のレドックスフロー電池。
【請求項3】
前記負及び正のシャントチャネルの各々が、少なくとも2つの平行な流路部を含む、請求項2に記載のレドックスフロー電池。
【請求項4】
前記負及び正のシャントチャネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対において、対応する溝によって形成される、請求項1~3のいずれかに記載のレドックスフロー電池。
【請求項5】
前記複数の入口分配チャンネルが、前記複数の出口分配チャンネルからオフセットしている、請求項1~4のいずれかに記載のレドックスフロー電池。
【請求項6】
前記複数の入口分配チャンネルが、活性プレートエリアに向かって延びる方向に分岐する、請求項1~5のいずれかに記載のレドックスフロー電池。
【請求項7】
前記複数の出口分配チャンネルが、活性プレートエリアから離れて延びる方向に収束する、請求項1~6のいずれかに記載のレドックスフロー電池。
【請求項8】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対が、前記負及び正のシャントチャネルの下に垂直に配置された正及び負の電解質注入ポートを含む、請求項1~7のいずれかに記載のレドックスフロー電池。
【請求項9】
前記負及び正のシャントチャンネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの対に成形される、請求項1~8のいずれかに記載のレドックスフロー電池。
【請求項10】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における前記負及び正のシャントチャネルが、前記嵌合された膜フレームプレート及びバイポーラフレームプレートの対の間に形成された接着界面によって画定される、請求項1~9のいずれかに記載のレドックスフロー電池。
【請求項11】
前記嵌合された膜フレームプレート及びバイポーラフレームプレートの各対における前記負及び正のシャントチャネルが、接着界面の使用によって画定されない成形通路である、請求項1~10のいずれかに記載のレドックスフロー電池。
【請求項12】
前記複数の入口分配チャネルが前記複数の出口分配チャネルからオフセットされ、前記複数の入口分配チャネルが活性プレートエリアに向かって延びる方向に分岐する、請求項1~11のいずれかに記載のレドックスフロー電池。
【請求項13】
前記複数の入口分配チャンネルが、活性プレートエリアに向かって延びる方向に分岐する、請求項1~12のいずれかに記載のレドックスフロー電池。
【請求項14】
前記負のシャントチャネルと前記正のシャントチャネルと蛇行シャントチャネルとが存在する、請求項1~13のいずれかに記載のレドックスフロー電池。
【国際調査報告】