(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-07-26
(54)【発明の名称】温度影響についてコリオリ流量計測定値を補正する方法、システム及び電子機器
(51)【国際特許分類】
G01F 1/84 20060101AFI20230719BHJP
G01F 1/00 20220101ALI20230719BHJP
【FI】
G01F1/84
G01F1/00 W
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2022580232
(86)(22)【出願日】2020-06-24
(85)【翻訳文提出日】2023-02-15
(86)【国際出願番号】 US2020039301
(87)【国際公開番号】W WO2021262158
(87)【国際公開日】2021-12-30
(81)【指定国・地域】
(71)【出願人】
【識別番号】500205770
【氏名又は名称】マイクロ モーション インコーポレイテッド
(74)【代理人】
【識別番号】110000556
【氏名又は名称】弁理士法人有古特許事務所
(72)【発明者】
【氏名】プルイセン, アールト アール.
(72)【発明者】
【氏名】ガーネット, ロバート バークレイ
(72)【発明者】
【氏名】パッテン, アンドリュー ティモシー
【テーマコード(参考)】
2F030
2F035
【Fターム(参考)】
2F030CD15
2F030CD17
2F030CE09
2F035JA02
(57)【要約】
コリオリ流量計(100)を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempでの温度影響に対して補正するための手法(300)、システム(400)及び電子機器(20)が提供される。この方法は、既知の流体密度ρrefを受け取ることと、前記既知の流体温度tempを受け取ることと、時間周期Tpを受け取ることと、前記既知の流体密度ρref、前記既知の流体温度temp及び前記時間周期Tpに基づいて密度のヤング率温度補正TFy
Dを決定することと、温度補正定数k及び前記密度のヤング率温度補正TFy
Dに基づいて質量流量のヤング率温度補正TFy
Mを決定することと、前記質量流量のヤング率温度補正TFy
Mを用いて前記質量流量値m'を補正することとを含む。
【選択図】
図3
【特許請求の範囲】
【請求項1】
コリオリ流量計(100)を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempでの温度影響について補正する方法であって、
既知の流体密度ρrefを受け取ること、
前記既知の流体温度tempを受け取ること、
時間周期Tpを受け取ること、
前記既知の流体密度ρref、前記既知の流体温度temp及び前記時間周期Tpに基づいて密度のヤング率温度補正TFy
Dを決定すること、
温度補正定数k及び前記密度のヤング率温度補正TFy
Dに基づいて質量流量のヤング率温度補正TFy
Mを決定すること、
並びに
前記質量流量のヤング率温度補正TFy
Mを用いて前記質量流量値m'を補正すること
を含む方法。
【請求項2】
前記時間周期Tpが、測定流体密度ρ
indicに基づいて決定される、請求項1に記載の方法。
【請求項3】
位相差ΔTを受け取ることをさらに含み、
前記密度のヤング率温度補正TFy
Dを決定することは、さらに前記位相差ΔTに基づく、請求項1に記載の方法。
【請求項4】
流体圧力Pを受け取ることをさらに含み、
前記密度のヤング率温度補正TFy
Dを決定することは、さらに前記流体圧力Pに基づく、請求項1に記載の方法。
【請求項5】
密度の膨張温度補正TFeを決定することをさらに含み、
前記密度のヤング率温度補正TFy
Dが、既知の温度temp
refに基づく前記密度の膨張温度補正TFeに基づいてさらに決定される、請求項1から4のいずれかに記載の方法。
【請求項6】
前記温度補正定数kが0.8から1.2の間である、請求項1から5のいずれかに記載の方法。
【請求項7】
前記温度補正定数kが1である、請求項1から4のいずれかに記載の方法。
【請求項8】
前記質量流量のヤング率温度補正TFy
Mを用いて質量流量値m'を補正することが、
前記質量のヤング率温度補正TFy
Mを用いて質量誤差値Error
mを決定することをさらに含む、請求項1から7のいずれかに記載の方法。
【請求項9】
コリオリ流量計(100)を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempにおける温度影響について補正するシステム(400)であって、
既知の流体密度ρrefを受け取るように構成された流体密度受信モジュール(402)、
前記既知の流体温度tempを受け取るように構成された流体温度受信モジュール(404)、
時間周期Tpを受け取るように構成された周期決定モジュール(410)、
前記既知の流体密度ρref、前記既知の流体温度temp、及び前記時間周期Tpに基づいて密度のヤング率温度補正TFy
Dを決定するように構成された、密度のヤング率温度補正決定モジュール(414)、
温度補正定数k及び前記密度のヤング率温度補正TFy
Dに基づいて質量流量のヤング率温度補正TFy
Mを決定するように構成された、質量流量のヤング率温度補正決定モジュール(416)
及び
前記質量流量のヤング率温度補正TFy
Mを使用して、前記質量流量値m'を補正するように構成された質量流量補正モジュール(418)
を備える、システム。
【請求項10】
前記流体密度受信モジュール(402)が、測定流体密度ρ
indicを決定するようにさらに構成され、前記周期決定モジュール(410)が、前記測定流体密度ρ
indicに基づいて前記時間周期Tpを決定するようにさらに構成される、請求項9に記載のシステム(400)。
【請求項11】
相差ΔTを決定するように構成された位相差決定モジュール(408)をさらに備え、
前記密度のヤング率温度補正決定モジュール(414)が、前記位相差ΔTに基づいて、前記密度のヤング率温度補正TFy
Dを決定するようにさらに構成される、請求項9に記載のシステム(400)。
【請求項12】
測定流体圧力P
indicを決定するように構成された流体圧力決定モジュール(406)をさらに備え、
前記密度のヤング率温度補正決定モジュール(414)が、前記流体圧力Pに基づいて前記密度のヤング率温度補正TFy
Dを決定するようにさらに構成される、請求項9に記載のシステム(400)。
【請求項13】
既知の温度temp
refに基づいて密度の膨張温度補正TFeを決定するように構成された膨張温度補正モジュール(412)をさらに備え、
前記密度のヤング率温度補正モジュール(414)が、前記密度の膨張温度補正TFeに基づいて、前記密度のヤング率温度補正TFy
Dを決定するようにさらに構成される、請求項9から12のいずれかに記載のシステム(400)。
【請求項14】
前記温度補正定数kが0.8から1.2の間である、請求項9から13のいずれかに記載のシステム(400)。
【請求項15】
前記温度補正定数kが1である、請求項9から14のいずれかに記載のシステム(400)。
【請求項16】
前記質量流量補正モジュール(418)が、前記質量のヤング率温度補正TFy
Mを使用して質量誤差値Error
mを決定するようにさらに構成される、請求項9から15のいずれかに記載のシステム(400)。
【請求項17】
コリオリ流量計(100)のメーターアセンブリ(10)を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempでの温度影響について補正するメーター電子機器(20)であって、システムプロセッサ(20b)を有し、前記システムプロセッサ(20b)が、
既知の流体密度ρrefを受け取り、
前記既知の流体温度tempを受け取り、
時間周期Tpを受け取り、
前記既知の流体密度ρref、前記既知の流体温度temp及び前記時間周期Tpに基づいて密度のヤング率温度補正TFy
Dを決定し、
温度補正定数k及び前記密度のヤング率温度補正TFy
Dに基づいて質量流量のヤング率温度補正TFy
Mを決定し、
そして
前記質量流量のヤング率温度補正TFy
Mを用いて前記質量流量値m'を補正する
ように構成されている、メーター電子機器(20)。
【請求項18】
前記時間周期Tpが、測定流体密度ρ
indicに基づいて決定される、請求項17に記載のメーター電子機器(20)。
【請求項19】
前記システムプロセッサ(20b)が、位相差ΔTを受け取るようにさらに構成されており、
前記密度のヤング率温度補正TFy
Dを決定することが、さらに前記位相差ΔTに基づく、請求項17に記載のメーター電子機器(20)。
【請求項20】
前記システムプロセッサ(20b)が、流体圧力Pを受け取るようにさらに構成されており、
前記密度のヤング率温度補正TFy
Dが、さらに前記流体圧力Pに基づく、請求項17に記載のメーター電子機器(20)。
【請求項21】
前記システムプロセッサ(20b)が、密度の膨張温度補正TFeを決定するようにさらに構成されており、
前記密度のヤング率温度補正TFy
Dが、既知の温度temp
refに基づく前記密度の膨張温度補正TFeにさらに基づいて決定される、請求項17から20のいずれかに記載のメーター電子機器(20)。
【請求項22】
前記温度補正定数kが0.8から1.2の間である、請求項17から21のいずれかに記載のメーター電子機器(20)。
【請求項23】
前記温度補正定数kが1である、請求項17から22のいずれかに記載のメーター電子機器(20)。
【請求項24】
前記質量流量のヤング率温度補正TFy
Mを用いて質量流量値m'を補正することが、
前記質量のヤング率温度補正TFy
Mを用いて質量誤差値Error
mを決定することをさらに含む、請求項17から23のいずれかに記載のメーター電子機器(20)。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、コリオリ流量計に関し、より詳細には、温度影響についてのコリオリ流量計測定値の補正に関する。
【背景技術】
【0002】
コリオリ質量流量計は、質量流量を測定するために、一つ以上の振動管を通って流れる流体によって誘起されるコリオリ力を利用する。
図1は、メーターアセンブリ10及びメーター電子機器20を含むコリオリ流量計100の例を示す。メーターアセンブリ10は、プロセス流体流の変化に応答する。メーター電子機器20は、リード線102を介してメーターアセンブリ10に接続されており、密度、体積流量、及び質量流量情報を、他の情報に加えて、メーター電子機器インターフェース26を介してオペレータに提供する。
【0003】
メーターアセンブリ10は、マニホルド150及び150’、フランジ103及び103’、2つの平行流管130及び130’、ドライバ180、並びに速度ピックオフセンサ170L及び170Rを含む。流管130及び130’は、その長さに沿った二つの対称位置で屈曲し、その長さ全体にわたって本質的に平行である。ブレースバー140及び140’は、各流管がその周りで振動する軸を規定するように働く。
【0004】
フランジ103及び103’が入口端104及び出口端104’を介してプロセスライン(図示せず)に接続されると、プロセス流体はフランジ103を通って流量計の入口端104に入り、マニホルド150を通って流れる。マニホルド150は、プロセス流体を分割し、流管130及び130’に通す。プロセス流体は、流管130及び130’を出ると、マニホルド150’によって単一の流れに再結合され、フランジ103’によってプロセスライン(図示せず)に接続された出口端104’に送られる。
【0005】
両方の流管130及び130’は、ドライバ180によって、流量計の第一位相外れ曲げモードで反対方向に駆動される。ドライバ180は、流管130’に取り付けられた磁石及び流管130に取り付けられ両流管を振動させるために交流を流す対向コイルなどの多くの周知の構成のいずれか一つを備えることができる。適切なドライバ電圧が、メーター電子機器20によってドライバ180に印加される。さらなる実施形態では、コリオリ流量計100は、他の曲げモードを生成可能な多入力構成を実現する複数のドライバ180を備えていてもよい。
【0006】
コリオリ流量計100は、二重湾曲流管での設計を示しているが、これは限定を意図するものではない。コリオリ流量計100の他の例は、一つまたは任意の数の流管を含みうることを当業者であれば理解する。当業者であればさらに、他のコリオリ流量計が、直線流管、または任意の他の構成を含みうることを理解するであろう。
【0007】
メーター電子機器20は、ドライバ180に駆動信号を供給し、流管130及び130’をリード線102を介して振動させる。メーター電子機器20は、リード線102を介して速度ピックオフセンサ170L及び170Rから左右の速度信号を受信し、これを使用して、メーターアセンブリ10を通過する流れの質量流量、体積流量、及び/又は密度情報を計算することができる。
【0008】
ピックオフセンサ170L及び170Rからの左右の速度信号は、流管にかかるコリオリ力を表すピックオフセンサ170Lと170Rとの間の位相差ΔTを決定するために使用される。位相差ΔTは、式1を使用して質量流量値m'を決定するために使用される。
【数1】
【0009】
ここで、流量校正係数FCF と、ゼロオフセットΔT0は、工場での校正時に決定される。FCFは、一つ以上の流管130、130’の剛性を捉えたものであり、これは、管を通って流れる流体の質量流量に正比例する。FCFは、環境条件で水をコリオリ質量流量計に流し、表示された質量を基準流量計によって測定された質量と比較することによって決定される。
【0010】
補正は、典型的には、顧客サイトと工場環境条件との間の差異を考慮して、顧客サイトに設置された後のコリオリ流量計100の質量流量測定値に対して行われる。例えば、温度及び流体圧力の変化は、流管130、130’の剛性を変化させる可能性があり、これは、流量計の質量流量及び密度の測定に誤差を生じさせる可能性がある。
【0011】
温度0℃より高い質量流量及び密度の測定に必要な温度補正は、温度0℃未満で必要な温度補正とは異なる。温度0℃以上のヤング率による剛性変化について、測定された質量流量値m'に対して行われる補正は、ほぼ線形である。温度0℃未満の場合、質量流量測定値m'に対する補正は、通常多項式でより適切に表される。
【0012】
密度測定の温度補正は、0から50℃の間の温度での質量流量測定に基づく温度補正と同じではないことが経験的に観察されている。しかし、極低温較正施設で利用可能な流量の制限のため、0℃未満でのヤング率に基づいて流管剛性の変化を特徴付けることは困難であった。これまでのところ、小型の流量計、又は4インチ以下の流管を有する流量計について、温度に基づいて流管の剛性の変化を特徴付けるための経験的データを得ることしかできなかった。
【0013】
氷点下及び極低温でのより精密な質量流量測定が求められている。考えられる一つの用途は、-160℃の温度での大量の液化天然ガスの流れである。
【0014】
氷点下及び極低温でコリオリ流量計により、より正確な流体測定を提供することが非常に望まれている。
【発明の概要】
【0015】
コリオリ流量計を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempでの温度影響に対して補正するための手法が提供される。この方法は、既知の流体密度ρrefを受け取ることと、前記既知の流体温度tempを受け取ることと、時間周期Tpを受け取ることと、前記既知の流体密度ρref、前記既知の流体温度temp及び前記時間周期Tpに基づいて密度のヤング率温度補正TFyDを決定することと、温度補正定数k及び前記密度のヤング率温度補正TFyDに基づいて質量流量のヤング率温度補正TFyMを決定することと、前記質量流量のヤング率温度補正TFyMを用いて前記質量流量値m'を補正することとを含む。
【0016】
コリオリ流量計を用いて測定された質量流量値m'を、0℃未満の既知の流体温度tempにおける温度影響について補正するためのシステムが提供される。前記システムは、既知の流体密度ρrefを受け取るように構成された流体密度受信モジュールと、既知の流体温度tempを受け取るように構成された流体温度受信モジュールと、時間周期Tpを受け取るように構成された周期決定モジュールと、前記既知の流体密度ρref、前記既知の流体温度temp、及び前記時間周期Tpに基づいて密度のヤング率温度補正TFyDを決定するように構成された、密度のヤング率温度補正決定モジュールと、温度補正定数k及び前記密度のヤング率温度補正TFyDに基づいて質量流量のヤング率温度補正TFyMを決定するように構成された質量流量のヤング率温度補正決定モジュールと、前記質量流量のヤング率温度補正TFyMを使用して前記質量流量値m'を補正するように構成された質量流量補正モジュールとを含む。
【0017】
コリオリ流量計(100)のメーターアセンブリ(10)を用いて測定された質量流量値m'を、0℃未満の既知の流体温度における温度影響のために補正するためのメーター電子機器が提供される。システムプロセッサを備えるメーター電子機器は、既知の流体密度ρrefを受け取り、前記既知の流体温度tempを受け取り、時間周期Tpを受け取り、前記既知の流体密度ρref、前記既知の流体温度temp及び前記時間周期Tpに基づいて密度のヤング率温度補正TFyDを決定し、温度補正定数k及び前記密度のヤング率温度補正TFyDに基づいて質量流量のヤング率温度補正TFyMを決定し、そして前記質量流量のヤング率温度補正TFyMを用いて前記質量流量値m'を補正するように構成されている。
【0018】
[態様]
さらなる態様によれば、前記時間周期Tpは、測定流体密度ρindicに基づいて決定されうる。
さらなる態様によれば、本方法は、位相差ΔTを受け取ることをさらに含むことができ、前記密度のヤング率温度補正TFyDを決定することは、さらに前記位相差ΔTに基づいていてもよい。
【0019】
さらなる態様によれば、本方法は、流体圧力Pを受け取ることをさらに含むことができ、前記密度のヤング率温度補正TFyDは、さらに前記流体圧力Pに基づいていてもよい。
【0020】
さらなる態様によれば、本方法は、密度の膨張温度補正TFeを決定することをさらに含むことができ、前記密度のヤング率温度補正TFyDは、既知の温度temprefに基づく前記密度の膨張温度補正TFeに基づいてさらに決定されてもよい。
【0021】
さらなる態様によれば、前記温度補正定数kは0. 8から1. 2の間でありうる。
【0022】
さらなる態様によれば、前記温度補正定数kは1であってもよい。
【0023】
さらなる態様によれば、前記質量流量のヤング率温度補正TFyMを用いて質量流量値m'を補正することは、前記質量のヤング率温度補正TFyMを用いて質量誤差値Errormを決定することをさらに含んでいてもよい。
【0024】
さらなる態様によれば、前記流体密度受信モジュールは測定流体密度ρindicを決定するようにさらに構成することができ、前記周期決定モジュールは、前記測定流体密度ρindicに基づいて前記時間周期Tpを決定するようにさらに構成されていてもよい。
【0025】
さらなる態様によれば、本システムは、位相差ΔTを決定するように構成された位相差決定モジュールをさらに備えることができ、前記密度のヤング率温度補正決定モジュールは、前記位相差ΔTに基づいて前記密度のヤング率温度補正TFyDを決定するようにさらに構成されていてもよい。
【0026】
さらなる態様によれば、本システムは、測定流体圧力Pindicを決定するように構成された流体圧力決定モジュールをさらに備えることができ、前記密度のヤング率温度補正決定モジュールは、前記流体圧力Pに基づいて、前記密度のヤング率温度補正TFyDを決定するようにさらに構成されていてもよい。
【0027】
さらなる態様によれば、本システムは、既知の温度temprefに基づいて密度の膨張温度補正TFeを決定するように構成された膨張温度補正モジュールをさらに含むことができ、前記密度のヤング率温度補正モジュールは、前記密度の膨張温度補正TFeに基づいて前記密度のヤング率温度補正TFyDを決定するようにさらに構成されていてもよい。
【0028】
さらなる態様によれば、温度補正定数kは0. 8から1. 2の間でありうる。
【0029】
さらなる態様によれば、温度補正定数kは1であってもよい。
【0030】
さらなる態様によれば、前記質量流量補正モジュールは、前記質量のヤング率温度補正TFyMを用いて質量誤差値Errormを決定するようにさらに構成されていてもよい。
【0031】
さらなる態様によれば、前記時間周期Tpは、測定流体密度ρindicに基づいて決定されていてもよい。
【0032】
さらなる態様によれば、前記システムプロセッサは位相差ΔTを受け取るようにさらに構成されていてもよく、前記密度のヤング率温度補正TFyDを決定することは、前記位相差ΔTに基づいていてもよい。
【0033】
さらなる態様によれば、前記システムプロセッサは流体圧力Pを受け取るようにさらに構成されていてもよく、前記密度のヤング率温度補正TFyDは、さらに前記流体圧力Pに基づいていてもよい。
【0034】
さらなる態様によれば、前記システムプロセッサは密度の膨張温度補正TFeを決定するようにさらに構成されていてもよく、前記密度のヤング率温度補正TFyDは、既知の温度temprefに基づく前記密度の膨張温度補正TFeに基づいてさらに決定されていてもよい。
【0035】
さらなる態様によれば、温度補正定数kは0. 8から1. 2の間でありうる。
【0036】
さらなる態様によれば、温度補正定数kは1であってもよい。
【0037】
さらなる態様によれば、前記質量流量のヤング率温度補正TFyMを用いて質量流量値m'を補正することは、前記質量のヤング率温度補正TFyMを用いて質量誤差値Errormを決定することをさらに含んでいてもよい。
【図面の簡単な説明】
【0038】
すべての図面において、同じ参照番号は同じ構成要素を表す。図面は、必ずしも縮尺通りではない。
【
図2】
図2は、一実施形態に係るシステム200を示す。
【
図3】
図3は、一実施形態に係る方法300を示す。
【
図4】
図4は、一実施形態に係るシステム400を示す。
【発明を実施するための形態】
【0039】
図2-4及び以下の説明は、本出願の最良の形態をどのように作成し、使用するかを当業者に教示するための特定の例を示す。本発明の原理を教示する目的で、一部の従来の態様が単純化又は省略されている。当業者であれは、本出願の範囲内に入るこれらの実施例からの変形を理解するであろう。当業者であれば、以下に説明する特徴を様々な方法で組み合わせて、本出願の複数の変形となる態様を形成することができることを理解するであろう。その結果、本出願は、以下に記載される特定の実施例に限定されず、特許請求の範囲及びそれらの均等物によってのみ限定される。
【0040】
図2は、一実施形態に係るシステム200を示す。システム200は、コリオリ流量計を使用して測定される質量流量値m'を、0℃未満の流体温度における温度影響について温度補正するために使用できる。例えば、システム200は、コリオリ流量計での質量流量値m'の測定温度に基づいて、ヤング率、弾性係数、熱膨張、又は圧力効果によるものなどの温度補正を提供するために使用できる。
【0041】
システム200は、コリオリ流量計100、メーター電子機器20、及びプロセス導管206を含む。プロセス導管206は、コリオリ流量計100によって測定される流体の流れを運ぶ。
【0042】
メーター電子機器20は、コリオリ流量計100のメーターアセンブリ10で測定された流体の質量流量値m'を生成するために、又はメーターアセンブリ10を使用して得られた質量流量値m'を補正するために使用されうる。メーター電子機器20は、メモリ20aと、システムプロセッサ20bと、インターフェース20cとを含む。
【0043】
メモリ20aは、コンピュータプログラム命令を格納するように構成された、電子的に読み取り可能な媒体又はコンピュータで読み取り可能な媒体を含む。いくつかの例では、メモリ20aは、非一時的媒体を含みうる。メモリ20aに記憶されたコンピュータプログラム命令は、方法300に関連して記述されたステップの一部又は全部を実行するか、又はシステム400のモジュールの一部又は全部を実行することができる。
【0044】
システムプロセッサ20bは、方法300に関連して記述されたステップの一部又は全部を実行するか、又はシステム400に関連して記述されたモジュールの一部又は全部を実行するコンピュータ命令を実行するように構成されうる。いくつかの実施形態では、システムプロセッサ20bは、当業者によって理解されるように、単一の、又は任意の複数のプロセッサを含みうる。
【0045】
インターフェース20cは、コリオリ流量計100のメーターアセンブリ10と通信するように構成される。インターフェース20cは、例えば、圧力センサ、温度センサ、又は当業者に知られている任意の他のセンサなどの、電子機器20の外部のデバイスと通信するように構成されうる。
【0046】
いくつかの実施形態では、システム200は、追加の測定デバイス208を備えることができる。いくつかの実施形態では、追加の測定デバイス208は、密度計、ガスクロマトグラフ、追加のコリオリメータ、又は当業者に知られている任意の他のタイプの測定デバイスなどの、密度測定を提供できるデバイスを備えうる。いくつか実施形態では、追加の測定デバイス208は、
図2に示すように、対応するメーター電子機器204を含むことができる。メーター電子機器204は、メーター電子機器20と同様に、メモリ204a、システムプロセッサ204b、及びインターフェース204cを含むことができる。しかし、さらなる実施形態では、追加の測定デバイス208は、メーター電子機器20のインターフェース20cに信号及び情報を直接提供することができる。
【0047】
さらなる実施形態では、システム200は、サーバ202を含むことができる。いくつかの実施形態では、サーバ202は、メーター電子機器20のインターフェース20c及び/又はメーター電子機器204のインターフェース204cと通信することができる。方法300に関連して記述されたステップ又はシステム400に関連して記述されたモジュールの任意の部分は、サーバ202上に格納され、又は実行されうる。
【0048】
図3は、一実施形態に係る方法300を示す。方法300は、コリオリ流量計を使用して測定された質量流量値m'を、0℃未満の既知の流体温度temp
refでの温度影響について補正するために使用されうる。例えば、方法300は、コリオリ流量計100での質量流量値m'の測定温度に基づいて、ヤング率、弾性率、熱膨張率、又は圧力効果の変化に関係する変化を補正するような測定値補正を提供するために使用できる。
【0049】
方法300は、ステップ302から始まる。ステップ302において、既知の流体密度ρrefが受け取られる。方法300はステップ304に続く。ステップ304において、既知の流体温度tempが受け取られる。既知の流体密度ρref及び既知の流体温度tempは、測定される流体の性質によって、十分な理解がされている。
【0050】
方法300はステップ310に続く。ステップ310において、時間周期Tpが受け取られる。時間周期Tpは、振動流管130、130’の時間周期である。いくつかの実施形態では、時間周期Tpは、例えば、コリオリ流量計100の左右の速度ピックオフセンサ170L及び170Rの一方又は両方を含む、流管130、130’に接続された振動センサを使用して直接測定することができる。
【0051】
しかしながらステップ310のさらなる実施形態では、時間周期Tpは、測定流体密度ρindic、位相差ΔT、及び流体圧力Pに基づいて、以下のように間接的に決定することができる。
【0052】
時間周期Tpが間接的に決定される方法では、ステップ310は、ステップ306及び308をさらに含みうる。ステップ306において、流体圧力Pが受け取られる。いくつかの実施形態において、流体圧力Pは、プロセス導管206においてコリオリ流量計100のすぐ上流又は下流に配置された圧力変換器で決定された流体圧力を含みうる。しかしながらさらなる実施形態では、流体圧力Pは、コリオリ流量計100の内部での圧力測定値、又は当業者に知られている任意の他の流体圧力測定値を含んでいてもよい。いくつかの実施形態では、流体圧力Pは、既知の又は推定された流体圧力を含んでいてもよい。
【0053】
ステップ308において、位相差ΔTが受け取られる。いくつかの実施形態において、位相差ΔTは、コリオリ流量計100の速度ピックオフセンサ170L及び170Rを用いて決定することができる。しかしながら、さらなる実施形態では、位相差ΔTは、当業者であれば理解できるように、測定された質量流量値m'、FCF、複合温度係数TF、及び流体温度tempを使用して間接的に決定されうる。
【0054】
いくつかの実施形態において、測定流体密度ρindicは、密度計を用いて測定することができる。例えば、測定流体密度ρindicは、密度計を含むことができるシステム200の、追加の測定デバイス208から受信されうる。さらなる実施形態では、システム200の追加の測定デバイス208は、測定流体密度ρindicを提供することができるガスクロマトグラフを含むことができる。
【0055】
コリオリ流量計100は、通常、工場の条件において20~30℃の温度で較正される。多くの場合、コリオリ流量計は、周囲の大気と水などの二つの流体を使用して、各流体の質量流量値m'と測定流体密度ρindic値を決定することによって較正される。質量流量値m'及び測定流体密度ρindicのこれらの測定値を用いて、それぞれの流体に対して一つの定数である較正定数K1及びK2を求めることができる。
【0056】
続いて、0℃の温度及び0bargの圧力に対して有効である較正値C
1及びC
2は、較正定数K
1及びK
2を使用して、式2及び3により計算することができる。較正値C
1は慣性モーメントに比例し、流管130、130’の流量面積に反比例する。
【数2】
較正値C
2は、流体体積で割った流管130、130’の材料の質量に比例する。
【数3】
式2及び3において、D
1は流管130、130’の外径であり、D
2は流管130、130’の内径である。
【0057】
測定流体密度ρ
indicは、式4を使用して決定できる。
【数4】
式4において、TF
dは、密度の複合温度補正係数である。FDは、当業者であれば理解できるように、流動条件下で測定された流体密度ρ
indicを補正するための定数である。式4において、pcdは密度に対する圧力補正である。
【0058】
式4は、式5に書き換えることができる。
【数5】
いくつかの実施形態では、時間周期二乗Tp
2は、測定流体密度ρ
indic、流体圧力P、及び位相差ΔTに基づいて、式5を使用して決定することができる。しかしながら、さらなる実施形態では、式5のFD*(ΔT)
2*10
-9の項によって表される測定流体密度ρ
indicに対する流れの影響は非常に小さく、したがって無視することができる。密度pcdに対する圧力補正もまた小さくなり得、したがって式5は、pcdをゼロに等しくすることによってさらに単純化することができる。これは、式6で示された簡略化された実施形態を提供しうる。
【数6】
式6によれば、時間周期二乗Tp
2は、測定された流体密度ρ
indicに基づいて決定することができる。
【0059】
方法300はステップ314に続く。ステップ314では、密度のヤング率温度補正TFyDが決定される。ヤング率は、温度による材料の膨張及び流管の形状の変化の影響、並びに程度は小さいものの圧力による影響を受ける。
【0060】
いくつかの実施形態では、密度のヤング率温度補正TFyDは、当業者によく知られた任意の方法を使用して決定することができる。しかしながら、さらなる実施形態では、密度のヤング率温度補正TFyDは、既知の流体密度ρref、流体温度temp、及び時間周期Tpに基づいて決定され得る。
【0061】
例えば、既知の流体密度ρrefは、式7による厳密な理論により、ヤング率E(temp,P)に関連付けられる。
【数7】
式7において、FDは密度に対する流れの影響、Lは流管130、130’の長さ、Doは流管130、130’の外径、Diは流管130、130’の内径である。温度tempが0℃で流体圧力Pが0bargの場合、式7は式8のように書き直すことができる。
【数8】
ここで、PF
c1は、流体圧力PF
c1=1+pc
c1*Pに起因するヤング率及び形状変化の組合せを表す圧力係数であり、pc
c1は、定数C
1の圧力係数である。式8において、PF
c2は、圧力PF
c2=1+pc
c2*Pによる流体体積の変化に関連する圧力係数であり、ここで、pc
c2は、定数C
2の圧力係数である。例えば、マイクロモーション流量計モデルCMF400の場合、pc
c1は3.45*10
-5、pc
c2は0.99*10
-5、圧力効果は-0.145kg/m
3/barである。
【0062】
式8において、TFyはヤング率による温度係数である。極低温では、ヤング率による温度係数TFyは非線形となりうる。例えば、Mr.H.M.Ledweighによって1981年3月に書かれた、Journal of Applied Physics「低温でのステンレス鋼弾性定数」において、極低温でのステンレス鋼について式9の多項式が提案されている。
【数9】
式9において、tempは温度を表し、これは、既知の温度又は測定された温度でありうる。ステップ314のいくつかの実施形態では、ヤング率による温度係数TFyを決定するために、既知の温度temp
refを使用することができる。
【0063】
式8において、既知の流体密度ρrefは、密度の膨張温度補正であるTFeにさらに依存する。密度の膨張温度補正TFeは、当業者に知られている任意の方法を用いて決定することができる。いくつかの実施形態では、ステップ314は、ステップ312をさらに含むことができる。ステップ312では、密度の膨張温度補正TFeが、流管材料の膨張に関連する実験的データに基づいて決定されうる。
【0064】
いくつかの実施形態において、密度の膨張温度補正TFeは、非線形でありうる。例えば、ウクライナ科学アカデミーによって1978年2月に発表された記事「異なる安定性の鉄クロム-ニッケル合金の低温熱膨張」は、極低温での熱膨張に対する温度補正を記述する次の多項式10を提示している。
【数10】
ステップ312のいくつかの実施形態では、既知の温度temp
refが、密度の膨張温度補正TFeを決定するために使用されうる。
【0065】
既知の流体密度ρref、位相差ΔT、流体圧力P、既知の流体温度temp
ref、及び時間周期Tpを用いて、式11を使って密度のヤング率温度補正TFydを決定することができる。
【数11】
【0066】
流管のヤング率は、流管130、130’の振動に影響を及ぼすため、質量流量測定値m'及び流体密度測定値ρの両方が、ヤング率の変化によって影響を受ける。管の振動は流管130、130’の材料特性の関数であり、流管130、130’は典型的にはスチールで作られている。
【0067】
しかしながら、更なる実施形態では、式11のFD*(ΔT)
2*10
-9の項によって表される流体密度に対する流れの影響は非常に小さく、したがって無視することができる。さらに、C1、PFC1、及びPFC2の圧力係数はまた、密度のヤング率温度補正TFydのわずかな変化を表している可能性がある。流体密度の流動効果FDをゼロに設定し、圧力係数PFC1及びPFC2を1に設定することにより、密度のヤング率温度補正TFydについて式12で表される簡略化された表現を提供することができる。
【数12】
式12によると、密度のヤング率温度補正TFydは、既知の流体密度ρref、既知の流体温度temp
ref、及び時間周期Tpのみに基づいて決定され得る。
【0068】
密度のヤング率温度補正TFydが決定されると、方法300はステップ316に進む。ステップ316では、式13で表されるように、質量流量のヤング率温度補正TFy
Mが、密度のヤング率温度補正TFy
Dを乗じた温度補正定数kに基づいて決定される。
【数13】
【0069】
質量流量のヤング率温度補正TFyMは、一般に流管内のトルクに関連し、密度のヤング率温度補正TFyDは、一般に流管内の曲げに関連する。「U」字型に成形されたステンレス鋼管を備えた流量計を使用する較正実験室での初期試験では、これらの温度補正は実質的に類似した値であることが示されている。したがって、いくつかの実施形態において、温度補正定数kは1に設定されうる。しかしながら、より高感度な測定、異なる管材料及び/又は異なる管の形状を使用したその後の試験が、質量流量のヤング率温度補正TFyM及び密度のヤング率温度補正TFyDが異なる値であることを明らかにする可能性がある。したがって、他の実施形態では、温度補正定数kは、1以外の任意の数に決定されうる。一つの非限定的な例では、kは0.8から1.2の間の値に設定され得る。
【0070】
質量流量のヤング率温度補正TFyMが決定されると、方法300はステップ320に進む。ステップ320において、コリオリ流量計100を用いて式1で決定された質量流量値m'が、質量流量のヤング率温度補正TFyMを用いて補正される。いくつかの実施形態では、質量流量値m'は、当業者に知られている任意の方法によって、質量流量のヤング率温度補正TFyMを使用して補正されてもよい。
【0071】
いくつかの実施形態では、ステップ320は、ステップ318をさらに備えることができ、ステップ318では、質量のヤング率温度補正TFy
Mと、ステップ312及び316で決定された密度の膨張温度補正TFeとを使用して、質量誤差値Error
mを決定することができる。
【数14】
式14において、
Qm-zero-calは校正流体による係数校正時に測定されるゼロ流量質量流量、
Qm-calは校正流体による工場校正時に測定される質量流量、
PFm-calは校正時に決定される適用圧力係数、
PFm-operは運転中に決定される適用圧力係数、
PFm-real-operは運転中に決定される実圧力係数、
Errorcal%は校正中に決定される計器誤差、
MFm-calは校正中に決定される質量の計器固有係数、
MFm-operは運転中に決定される質量の計器固有係数、
TFe-calは校正時に決定される密度の膨張温度補正、
Fym-calは校正時に決定される密度の質量温度補正
である。
【0072】
式14の第一の部分は校正から来ており、0℃及び0bargでの質量誤差値Error
mを反映しており、また、式14の第二の部分は適用時における運転動作から来ており、0℃及び0bargから運転状態までの誤差値を反映している。しかしながら、実際には、式14の第一の部分は、第二の部分に対して小さい。そのため、実施形態において、式14は、式15に簡略化することができる。
【数15】
【0073】
いくつかの実施形態では、コリオリ流量計100で測定された質量流量値m'を補正するために、式16を用いて計器係数MFを決定することができる。
【数16】
【0074】
次に、測定された質量流量値m'に計器係数MFを乗じることによって、補正された質量流量値m'を決定することができる。
【0075】
図4は、システム400を示す。いくつかの実施形態において、システム400は、コリオリ流量計100を使用して測定された質量流量値m'を、0℃未満の流体温度tempでの温度影響について補正するために使用できる。システム400は、流体密度受信モジュール402と、流体温度受信モジュール404と、周期決定モジュール410と、密度のヤング率温度補正決定モジュール414と、質量流量のヤング率温度補正決定モジュール416と、質量流量補正モジュール418とを備える。いくつかの実施形態において、システム400は、流体圧力決定モジュール406、位相差決定モジュール408、及び膨張温度補正モジュール412を更に含んでもよい。
【0076】
流体密度受信モジュール402は、例えば、既知の流体密度ρrefなどの流体密度ρを決定するように構成される。例えば、流体密度受信モジュール402は、上述のステップ302を実行することができる。
【0077】
流体温度受信モジュール404は、例えば、既知の流体温度tempなどの流体温度tempを決定するように構成される。例えば、流体温度受信モジュール404は、上述のステップ304を実行することができる。
【0078】
流体圧力決定モジュール406は、流体圧力Pを決定するように構成される。例えば、流体圧力決定モジュール406は、上述のステップ306を実行することができる。
【0079】
位相差決定モジュール408は、位相差ΔTを決定するように構成される。例えば、位相差決定モジュール408は、上述のステップ308を実行することができる。
【0080】
周期決定モジュール410は、時間周期Tpを受け取るように構成される。例えば、周期決定モジュール410は、上述のステップ310を実行することができる。
【0081】
膨張温度補正モジュール412は、密度の膨張温度補正TFeを決定するように構成される。例えば、膨張温度補正モジュール412は、上述したステップ312を実行することができる。
【0082】
密度のヤング率温度補正決定モジュール414は、流体密度ρ、流体温度temp、及び時間周期Tpに基づいて、密度のヤング率温度補正TFyDを決定するように構成される。例えば、密度のヤング率温度補正決定モジュール414は、上述のステップ314を実行することができる。
【0083】
質量流量のヤング率温度補正決定モジュール416は、温度補正定数kと密度のヤング率温度補正TFyDとに基づいて、質量流量のヤング率温度補正TFyMを決定するように構成される。例えば、質量流量のヤング率温度補正決定モジュール416は、上述のステップ316を実行することができる。
【0084】
質量流量補正モジュール418は、質量流量のヤング率温度補正TFyMを用いて、質量流量値m'を補正するように構成される。例えば、質量流量補正モジュール418は、上述のステップ318を実行することができる。
【0085】
重量計を使用した極低温校正設備での液化窒素の試験により、本出願の方法及びシステムが、0.10%未満の誤差の補正質量流量値m'を提供すると判定された。本出願人によって実施された試験のいくつかは、直径が4インチ以下の流管を有する流量計について、0.07%及び0.01%という低い質量流量誤差を提供した。本出願に記載された方法及びシステムは、より大きな流量計サイズ、又は4インチを超える流管径を有する流量計に外挿することができ、より高い流体流量に対して非常に正確な質量流量値m'を提供することができる。
【0086】
本出願によって説明される方法及びシステムは、氷点下及び極低温においてコリオリ流量計で生成される質量流量測定の精度を向上する温度補正を提供する。温度補正は経時的に安定しており、極低温校正設備でのコリオリ流量計の校正は必要ない。
【0087】
上記の例の詳細な説明は、本出願の範囲内にあると本発明者らによって企図されるすべての例の網羅的な説明ではない。実際に、当業者であれば、上記の例の特定の要素が、さらなる例を作成するために様々に組み合わされること又は削除することができ、そのようなさらなる例は、本出願の範囲及び教示の範囲内に入ることを認識するであろう。上記の例は、本出願の範囲及び教示内の追加の例を作成するために、全体的又は部分的に組み合わせられ得ることもまた、当業者には明らかであろう。したがって、本願の範囲は、次の特許請求の範囲から決定されるべきである。
【国際調査報告】