(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-08-17
(54)【発明の名称】バイアス構造
(51)【国際特許分類】
H01Q 15/14 20060101AFI20230809BHJP
H01L 31/10 20060101ALI20230809BHJP
【FI】
H01Q15/14 Z
H01L31/10 A
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023504379
(86)(22)【出願日】2021-06-30
(85)【翻訳文提出日】2023-03-06
(86)【国際出願番号】 GB2021051660
(87)【国際公開番号】W WO2022018397
(87)【国際公開日】2022-01-27
(32)【優先日】2020-07-20
(33)【優先権主張国・地域又は機関】GB
(32)【優先日】2020-07-20
(33)【優先権主張国・地域又は機関】EP
(81)【指定国・地域】
(71)【出願人】
【識別番号】390038014
【氏名又は名称】ビ-エイイ- システムズ パブリック リミテッド カンパニ-
【氏名又は名称原語表記】BAE SYSTEMS plc
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ピント、ジョナサン
【テーマコード(参考)】
5F149
5J020
【Fターム(参考)】
5F149AA01
5F149BA30
5F149EA04
5F149EA11
5F149EA14
5F149JA03
5F149XB35
5J020AA03
5J020BA06
(57)【要約】
いくつかの例では、メタサーフェスのユニットセルのためのバイアス構造が、第1の光起電力素子を照射するための第1の照明源を備え、第1の光起電力素子は、ユニットセルの表面を画定する一対の電気的に分離された導電性パッチをブリッジするアクティブ非対称導電デバイスにバイアスをかけるためのバイアス電流を生成するように構成されている。
【選択図】
図1
【特許請求の範囲】
【請求項1】
メタサーフェスのユニットセルのためのバイアス構造であって、前記バイアス構造は、
第1の光起電力素子を照射するための第1の照明源を備え、前記第1の光起電力素子は、前記ユニットセルの表面を画定する一対の電気的に分離された導電性パッチをブリッジするアクティブ非対称導電デバイスにバイアスをかけるためのバイアス電流を生成するように構成されている、バイアス構造。
【請求項2】
前記第1の光起電力素子を照射するための第2の照明源をさらに備える、請求項1に記載のバイアス構造。
【請求項3】
前記第1および第2の照明源は、個々にアドレス指定可能であり、それによって、前記照明源のいずれか一方または両方による前記第1の光起電力素子の照射を可能にする、請求項2に記載のバイアス構造。
【請求項4】
前記第1の光起電力素子から照明源を分離するためのスペーシング要素をさらに備える、請求項1~3のいずれか一項に記載のバイアス構造。
【請求項5】
前記第1の光起電力素子は、前記ユニットセルの前記表面の内面上に配設されている、請求項1~4のいずれか一項に記載のバイアス構造。
【請求項6】
前記アクティブ非対称導電デバイスは、前記ユニットセルの前記表面の外面上に配設されている、請求項1~5のいずれか一項に記載のバイアス構造。
【請求項7】
前記アクティブ非対称導電デバイスのアノードが、前記一対の電気的に分離されたパッチの一方に電気的に接続されており、前記アクティブ非対称導電デバイスのカソードが、前記一対の電気的に分離されたパッチの他方に電気的に接続されている、請求項1~6のいずれか一項に記載のバイアス構造。
【請求項8】
前記アクティブ非対称導電デバイスは、PINダイオードである、請求項1~7のいずれか一項に記載のバイアス構造。
【請求項9】
前記アクティブ非対称導電デバイスは、バラクタダイオードである、請求項1~7のいずれか一項に記載のバイアス構造。
【請求項10】
前記第1および第2の照明源は、論理的に並列に接続されている、請求項2に従属する場合の請求項9に記載のバイアス構造。
【請求項11】
前記第1および第2の照明源は、等しくない順方向電圧を有し、それによって、その順次照明または選択された照明を可能にする、請求項10に記載のバイアス構造。
【請求項12】
第2の光起電力素子をさらに備える、請求項1~11のいずれか一項に記載のバイアス構造。
【請求項13】
前記第1の光起電力素子および前記第2の光起電力素子は、前記バイアス電流を生成するように構成されている、請求項12に記載のバイアス構造。
【請求項14】
接地平面をさらに備える、請求項1~13のいずれか一項に記載のバイアス構造。
【請求項15】
前記接地平面は、プラットフォームの表面の一部によって画定される、請求項14に記載のバイアス構造。
【請求項16】
前記接地平面は、照明源を受容するための開口を画定し、それによって、光起電力素子の照射を可能にする、請求項14に記載のバイアス構造。
【請求項17】
前記接地平面は、光学的に透明かつ電気的に導電性である、請求項14または15に記載のバイアス構造。
【請求項18】
照明源と光起電力素子との間の光結合を画定するように配置された低損失の光学的に透明な構造をさらに備える、請求項17に記載のバイアス構造。
【請求項19】
前記バイアス構造は、反射アレイ構造の一部を形成する、請求項1~18のいずれか一項に記載のバイアス構造。
【請求項20】
照明源から光起電力素子に光を導くように構成されたスペーシング構造をさらに備える、請求項1~19のいずれか一項に記載のバイアス構造。
【請求項21】
前記スペーシング構造は、低損失の光学的に透明な材料を備える、請求項20に記載のバイアス構造。
【請求項22】
メタサーフェスのユニットセルであって、前記ユニットセルは、請求項1~21のいずれか一項に記載のバイアス構造を備える、ユニットセル。
【請求項23】
請求項22に記載のユニットセルのアレイを備えるメタサーフェス。
【請求項24】
前記ユニットセルのアレイにおける各ユニットセルは、六角形であり、前記ユニットセルのアレイは、三角形のピッチで配置されている、請求項23に記載のメタサーフェス。
【請求項25】
請求項23または請求項24に記載のメタサーフェスを備える反射アレイであって、前記反射アレイは、前記ユニットセルのそれぞれ1つの位相を制御することによって、前記メタサーフェスに入射する信号をビームフォーミングするように構成されている、反射アレイ。
【請求項26】
請求項25に記載の反射アレイと、前記反射アレイの前記信号を放射するように構成されたアンテナと、を備えるシステム。
【発明の詳細な説明】
【技術分野】
【0001】
態様は、一般に、バイアス構造に関し、より詳細には、排他的ではないが、メタサーフェスのユニットセルにおいて使用するためのバイアス構造に関する。
【背景技術】
【0002】
メタサーフェスは、入射電磁(EM)放射と相互作用する個々の素子の周期的(または非周期的)アレイを備える準2次元構造(quasi-two-dimensional structure)である。このような構造に基づく再構成可能または多機能メタサーフェスは、複数の動作モードを備え得る。したがって、例えば、無線周波数(RF)放射等の入射EM波は、これらのメタサーフェスの個々の素子を画定するサブ波長人工構造の局所位相を制御することによって操作され得る。
【0003】
多くのこのような表面では、個々の素子は、個々にアドレス指定可能なユニットセルの形態である。これらのユニットセルは、メタサーフェスの特定の領域の反射/透過係数の振幅または位相を変化させることを可能にし、それによって、入射EM波の操作を可能にする、PINまたはバラクタ(バリキャップ)ダイオード等のアクティブ構成要素を備える。
【0004】
一般に、バイアスワイヤが、直流を印加し、それによって、ダイオードを「オン」または「オフ」にすることによって、あるいは逆バイアスがかかったバラクタダイオードのキャパシタンスを変化させることによって、個々のアクティブ構成要素を駆動するために使用される。したがって、電流が入射RF放射によってメタサーフェス上に誘導され(induced)、これは順に、メタサーフェスの反射特性に影響を及ぼすので、メタサーフェスのRF設計では、バイアス配線を考慮しなければならない。バイアス配線がRF性能を表すモデルに組み込まれない場合、メタサーフェスは、一般に、電気的観点から予想されるようには機能しない。バイアス配線に誘導される電流の影響を軽減するために、インダクタが、高周波数でそれらを分離するのに役立つように使用され得、したがって、チョークとして効果的に機能する。このようにして、メタサーフェスの個々の素子にバイアスをかけるために使用されるDCまたは低周波数電流は、依然として流れることが可能であり、一方、はるかに高い周波数におけるRF電流は、高インピーダンスが示される(presented with)。とはいえ、この手法を使用しても、交流電流が、素子のパッチとインダクタとの間のバイアスワイヤの領域に依然として誘導され得、これは、RF性能のいかなるシミュレーションにおいても考慮されなければならない。
【発明の概要】
【0005】
一例によれば、メタサーフェスのユニットセルのためのバイアス構造が提供され、バイアス構造は、第1の光起電力素子を照射するための第1の照明源を備え、第1の光起電力素子は、ユニットセルの表面を画定する一対の電気的に分離された導電性パッチをブリッジするアクティブ非対称導電デバイスにバイアスをかけるためのバイアス電流を生成するように構成されている。
【0006】
通常使用されるであろうバイアス線の影響が克服される。したがって、例えば、表面における特定のユニットセルを個々にアドレス指定する能力を保持しながら、メタサーフェスの側面または背面から出てくる多数の潜在的に扱いにくい長いバイアスワイヤの使用が回避されるので、このようなバイアス構造に基づくメタサーフェスは、より設計し易い。バイアス配線が存在しないことにより、さもなければ配線に沿って移動してメタサーフェスの動作に干渉するであろう誘導RF電流は存在しない。
【0007】
一実装形態では、第1の光起電力素子を照射するための第2の照明源が設けられ得る。第1および第2の照明源は、個々にアドレス指定可能であり得、それによって、照明源のいずれか一方または両方による第1の光起電力素子の照射を可能にする。バイアス構造は、第1の光起電力素子から照明源を分離するためのスペーシング要素をさらに備え得る。第1の光起電力素子は、ユニットセルの表面の内面上に配設され得る。アクティブ非対称導電デバイスは、ユニットセルの表面の外面上に配設され得る。一例では、アクティブ非対称導電デバイスのアノードが、一対の電気的に分離されたパッチの一方に電気的に接続され得、アクティブ非対称導電デバイスのカソードが、一対の電気的に分離されたパッチの他方に電気的に接続され得る。アクティブ非対称導電デバイスは、PINダイオードまたはバラクタダイオードであり得る。
【0008】
第1および第2の照明源は、論理的に並列に接続され得る。第1および第2の照明源は、等しくない順方向電圧を有し得、それによって、その順次照明または選択された照明を可能にする。
【0009】
一実装形態では、バイアス構造は、第2の光起電力素子をさらに備え得る。第1の光起電力素子および第2の光起電力素子は、バイアス電流を生成するように構成され得る。バイアス構造は、接地平面(ground plane)を備え得るか、または接地平面上に取り付けられ得る。接地平面は、プラットフォームの表面の一部によって画定され得る。接地平面は、照明源を受容するための開口を画定し得、それによって、光起電力素子の照射を可能にする。接地平面は、光学的に透明かつ電気的に導電性であり得る。
【0010】
バイアス構造は、照明源と光起電力素子との間の光結合を画定するように配置された低損失の光学的に透明な構造をさらに備え得る。
【0011】
一例によれば、本明細書で提供されるようなバイアス構造は、反射アレイ構造の一部を形成し得る。
【0012】
バイアス構造は、照明源から光起電力素子に光を導くように構成されたスペーシング構造をさらに備え得る。スペーシング構造は、低損失の光学的に透明な材料を備え得る。
【0013】
一例によれば、メタサーフェスのユニットセルが提供され、ユニットセルは、本明細書で提供されるようなバイアス構造を備える。
【0014】
一例によれば、本明細書で提供されるようなユニットセルのアレイを備えるメタサーフェスが提供される。いくつかのユニットセルアレイ幾何学形状が可能であり、一例として、ユニットセルのアレイにおける各ユニットセルは、六角形であり得、三角形のピッチで配置され得る。三角形のピッチで配置された六角形のユニットセルは、ビームステアリング時に改善された角度性能が得られることが分かっている。
【0015】
一例によれば、本明細書で提供されるようなメタサーフェスを備える反射アレイが提供され、反射アレイは、ユニットセルのそれぞれ1つの位相を制御することによって、メタサーフェスに入射する信号をビームフォーミングするように構成される。
【0016】
一例によれば、本明細書で提供されるような反射アレイと、反射アレイの信号を放射するように構成されたアンテナと、を備えるシステムが提供される。
【0017】
本開示のより完全な理解のために、ここで、単なる例として、添付の図面と併せて以下の説明を参照する。
【図面の簡単な説明】
【0018】
【
図1】
図1は、一例によるバイアス構造の概略図である。
【
図2】
図2は、一例によるユニットセルの概略図である。
【
図3】
図3は、一例による、
図2のユニットセルの複数のものの配置の概略図である。
【
図4】
図4は、一例によるメタサーフェスの概略図である。
【
図5】
図5は、一例によるマルチビット実装形態の概略図である。
【
図6】
図6は、一例によるユニットセルの概略図である。
【
図7】
図7は、一例によるスペーシング構造を使用する配置の概略図である。
【
図8】
図8は、一例によるスペーシング構造を使用する配置の概略図である。
【
図9】
図9は、一例による反射アレイの概略図である。
【発明を実施するための形態】
【0019】
例となる実施形態は、当業者が、本明細書で説明されるシステムおよびプロセスを具現化および実装することを可能にするために、十分に詳細に以下で説明される。実施形態は、多くの代替の形態で提供され得、本明細書に記載される例に限定されるように解釈されるべきではないことを理解することが重要である。したがって、実施形態は、様々な方法で修正され、様々な代替の形態をとり得るが、その特定の実施形態が、例として、図面に示され、以下に詳細に説明される。開示される特定の形態に限定する意図はない。それどころか、添付の特許請求の範囲内に含まれる全ての修正、均等物、および代替物が含まれるべきである。例となる実施形態の要素は、適宜、図面および発明を実施するための形態の全体にわたって、同じ参照番号によって一貫して示される。
【0020】
実施形態を説明するために本明細書で使用される用語は、範囲を限定することを意図するものではない。冠詞「a」、「an」、および「the」は、それらが単一の指示対象を有するという点で単数形であるが、本文書における単数形の使用は、1つより多くの指示対象の存在を排除するべきではない。換言すれば、単数形で参照される要素は、文脈がそうでないことを明確に示していない限り、1つ以上を数に含め得る。本明細書で使用される場合、「備える(comprises)」、「備える(comprising)」、「含む(includes)」および/または「含む(including)」という用語は、述べられる特徴、アイテム、ステップ、動作、要素、および/または構成要素の存在を規定するが、1つ以上の他の特徴、アイテム、ステップ、動作、要素、構成要素、および/またはそのグループの存在または追加を排除しないことがさらに理解されよう。
【0021】
図1は、一例によるバイアス構造の概略図である。側面図として提示される
図1の例では、バイアス構造100は、メタサーフェスに入射するRF信号等の信号によって経験される境界条件(boundary conditions)を変化させることを可能にするように構成され、それによって、例えば、ビームステアリング等を目的として、入射信号と表面との間の相互作用の制御を可能にする。バイアス構造100は、DCバイアス信号を与えるために使用されるバイアス線の必要性を無くす。
【0022】
バイアス構造は、デバイス103にバイアスをかけるために使用され得る。バイアスデバイス103は、ユニットセルのための一対の導電性パッチ101a、101bの間に論理的に配置されている。バイアス信号をデバイス103に印加することは、パッチ101a、101bの間の電気絶縁ギャップ104をブリッジすることによって、入射信号のための有効な導電性エリアの修正を可能にする。
【0023】
一実装形態では、バイアス構造100は、第1の光起電力素子109を照射する(107)ために使用される第1の照明源105を備える。第1の光起電力素子109は、アクティブ非対称導電デバイス103にバイアスをかけるためのバイアス電流111を生成するように構成され、それによって、ユニットセルの表面を画定する一対の電気的に分離された導電性パッチ101a、101bをブリッジする。
【0024】
したがって、デバイスにバイアスをかけるために通常使用されるであろうバイアス線の影響が克服される。これは、例えば、表面における特定のユニットセルを個々にアドレス指定する能力を保持しながら、メタサーフェスの側面または背面から出てくる多数の潜在的に扱いにくい長いバイアスワイヤの使用が回避されるので、このようなバイアス構造に基づくメタサーフェスを、より設計し易くする。したがって、バイアス配線が存在しないことにより、さもなければ配線に沿って移動してメタサーフェスの動作に干渉するであろう誘導RF電流は存在しない。
【0025】
図2は、一例によるユニットセルの概略図である。
図2の例では、ユニットセル200は、メタサーフェスを形成するために、1次元または2次元にわたって繰り返され得る。デバイス103は、一対の導電性パッチ101a、101b上にインサイチュ(in situ)で示されている。より具体的には、デバイス103の端子は、ユニットセル200の対応する端子部分207a、207b上に設けられ、それによって、デバイス103にバイアス信号を与える。
【0026】
例えば、カプセル化された光起電力(PV)セルまたはフォトダイオード(ゼロバイアス、光起電力モードで動作される)であり得る、第1の照明源105は、接地平面201内(またはその上)に設けられている。接地平面は、一例によるメタサーフェスがその上に設けられるプラットフォームの表皮(skin)によって画定され得る。例えば、接地平面201は、車両または静止構造プラットフォームの導電性部分を備え得る。
【0027】
図2の例では、例えば、両面銅被覆PCB等の基板203は、上面205aが、パッチ101a、101bと、パッド207a、207bとで構成されるようにパターニングされている(例えば、フォトエッチングされる)。パッド207a、207bは、互いに電気的に分離され、デバイス103の対応する端子を受容するための正および負の端子を画定する。実装形態では、パッチ101a、101bおよびパッド207a、207bは、互いと一体であり得るか、または単体であり得る。しかしながら、いずれにしても、パッチ101a、101bおよびパッド207a、207bは、バイアス信号がデバイス103へと通過することを可能にするように電気的に接続されている。
【0028】
下面205bは、例えば、PVセル/フォトダイオードであり得る第1の光起電力素子109のためのバイアス線およびパッド209a、209bでパターニングされている。めっきされた貫通ビアA、Bは、上層と、パッド209a、209bに接続されたバイアス線との間に電気的接続が存在することを確実にする。
【0029】
したがって、第1の光起電力素子109の端子は、パッチ101a、101bおよびパッド207a、207bに電気的に接続されており、それによって、例えばDCバイアス電圧の形態での、第1の光起電力素子109によって生成された信号が、デバイス103にバイアスをかけるために、それに渡されることを可能にする。デバイス103にバイアスをかけることは、パッチ101a、101bの間のギャップ104がブリッジされることをもたらし、これは、ユニットセル200の導電性エリアに関連する境界条件を修正する。一例では、PVセル/フォトダイオード109は、接地平面201における開口を通って配置された単一のLED105によって照明され得る。
【0030】
図2を参照して説明された構成は、バイアス線が電気的に短く、著しい電界強度に直接さらされないことを意味する。したがって、それらは、このようなユニットセルから構成されるメタサーフェスのRF設計予測において、1次まで無視され(neglected, to first order)得る。
【0031】
一例では、発泡体/ハニカムスペーサが、例えば、銅、アルミニウム、または同様の金属の接地平面201から(一例によるユニットセルで構成されたメタサーフェスに入射することになるRF放射の)略1/4波長だけ離れて基板203を配置するために、一連の穴(発泡体の場合、例えば、組立て前に上から機械加工される)と共に使用され得る。このような穴は、光が、例えばLED105から、PVセル/フォトダイオード109の表面上に伝播することを可能にする。一例では、スペーサ材料は、隣接するユニットセルへの光散乱を回避するために、光源105によって生成される光放射の波長において不透明である。したがって、LED105をオンにすることによって、PINダイオード103は、隣接するユニットセルの動作に干渉することなく、ユニットセル200の中心においてバイアスがかけられ得る。
【0032】
図3は、
図2の複数のユニットセルの配置の概略図である。
図3の例では、3つのこのようなユニットセルが、側面図で図示されている。発泡体/ハニカムスペーサ301が図示されている。スペーサ301の中間のエリア303は、穴/空きスペースである。エリア303は、スペーサ301に加えて、またはその代わりに、光学スペーサを備え得る。光学スペーサは、接地平面内または接地平面上の光源からの光をユニットセルの光起電力デバイスに導くための導波路として機能するように構成され得る。
【0033】
図4は、一例によるメタサーフェスの概略図である。
図4の例では、12個のユニットセル(4×3)のアレイがメタサーフェス400を形成する。ユニットセルのアレイは、図示されたものより大きくても小さくてもよい。
図4の配置では、上から見ると、各ユニットセル200は、略1/2波長の辺長であるとともに、デバイス103(例えば、PINダイオードまたはバラクタ)が、一対の導電性パッチ素子101a、101bをブリッジしており、これらは、
図4の例では、一対の二等辺三角形パッチの形態である。各導電性パッチは、基板ボード203の裏面205b上のPVセル/フォトダイオード109へのめっきされた貫通ビア403a、403bを備える。これは、単一のダイオードを使用したデュアル極性動作(dual polar operation)を可能にする。基板203の裏面205b上の光起電力素子109(例えば、PVセル)の範囲は、破線401によって図示されている。
【0034】
当業者には明らかなように、他のパッチタイプの形状および配置も機能するであろう。バイアスデバイス103は、メタサーフェス400に入射する放射によって誘導される電流のための利用可能な経路を変更する。結果として、これは、ユニットセル200のバイアス対非バイアス状態についての散乱場の振幅および位相における変化を可能にする。
【0035】
図4の例では、デバイス103は、PINダイオードまたはバラクタであり得る。しかしながら、
図4の構成では、PINダイオードが、一般にバラクタよりも好適であり、これは、PVセル/フォトダイオードによって生じる電圧が、一旦半導体のターンオン電圧に達すると、光源105からの入射光の強度によって著しく変化しないからである。しかしながら、対照的に、電流は、著しく変化する。これは、各ユニットセル200について2つの状態、例えば、オフおよびオンが実現されることを可能にする。ユニットセルの幾何学的形状は、2つの状態間の反射係数に対して有意な位相シフト(significant phase shift)が存在するように設計され得る。この実装形態を使用して、隣接するセルは、例えば、特定の遠視野放射パターンを達成するために、「状態」を変更され得、したがって、入射信号に関連して、必要に応じてビーム形状、ビーム方向、およびヌルステアリングを制御する。
【0036】
一例では、
図4を参照して説明されたようなメタサーフェスは、例えばビームフォーミングに好適な反射アレイ、または反射アレイアンテナの一部として使用され得る。本明細書に説明されるようなユニットセルのアレイを備えるメタサーフェスは、反射アレイの開口を画定し得る。入射RF信号は、反射アレイが「空間給電(space fed)」されるように、反射アレイの前に軸外に位置するマイクロ波給電アンテナ等の、ホーンアンテナまたは同様のアンテナを使用して与えられ得る。これは位相に関して不完全な平面波を提供するが、個々のユニットセルのバイアス状態は、これを補正するように設定され得る。このようなアンテナは、遠視野でサンプリングされたときに、開口にわたって位相の均一性を有する良好に画定されたビーム(well-defined beam)を生成することになる。中心軸に沿って取り付けられた好適な給電アンテナでは、表面は、円偏波放射(circularly polarised radiation)の反射に好適である。したがって、給電アンテナが、メタサーフェスを「照明する」ために使用され得る。したがって、電流がメタサーフェスのユニットセルのパッチ素子内に誘導されることになり、入射信号の反射は、メタサーフェスの個々にアドレス指定可能なユニットセルの状態を調整することによって制御され得る、誘導電流のパターンによって決定される。すなわち、反射係数の位相を変化させることによって、メタサーフェスから散乱/反射される信号の形状が変更され得る。
【0037】
一実装形態では、このような反射アレイの動作の周波数は、各ユニットセル200のピッチによって決定されることになり、その理由は、これは、一般に、動作周波数における半波長のオーダー(the order of half a wavelength)でなければならないからである。さらに、パッチ101a、101bは、基板203の裏面上のPVセル/フォトダイオードよりも小さくならないようにサイズ決定され、これは、それ自体が、例えば、PINダイオード内のp-n接合が開いたままであることを確実にするのに十分な電流を生成することが可能であるべきである。一般に入手可能なPVセルおよびフォトダイオードが使用され得、例えば、5mm平方ほどの小ささであり得る。一例では、PVセルの面積は、十分な電圧および電流がPINダイオードの空乏領域を通じて存在し、したがって、RF放射のための導電性チャネルを維持することを確実にするようなものである。例えば、5mmの辺長のセルを考慮すると、(パッドについて1mmを仮定して)約7mmの素子ピッチを暗示する。例えば、素子間に1mmのギャップを仮定すると、このような実装形態における動作の最高波長は、約18GHzの周波数に対応する、16mmのオーダーになる。
【0038】
図4の例では、例えば、
図2および
図3を参照して説明されたもののようなユニットセルのアレイに基づいて、2つの状態が入射放射に対して提示され得る(例えば、「オフ」および「オン」)。したがって、表面にわたる位相の変動は、表面上の位置関数(function of position)として、これらの状態の異なる配置を使用して実施される。この状況は、位相シフタ自体が1「ビット」を用いるところを除いて(but where the phase shifters themselves employ one ‘bit’)、アレイの各素子の後ろで位相シフタを使用することに類似している。
【0039】
一例によれば、メタサーフェスは、PINダイオードではなく、アクティブ構成要素としてバラクタダイオードを使用するユニットセルから形成され得る。各バラクタは、例えば、接地平面におけるLED等の付随の光源をそれぞれ有する、ゼロバイアスモードにあるいくつかのフォトダイオードによって給電され得る。一実装形態では、バラクタは、それぞれ逆バイアスがかけられ、フォトダイオードは、並列に接続されるが、等しくないターンオン電圧のものである。
【0040】
図5は、一例によるマルチビット実装形態の概略図である。
図5の例では、3つのフォトダイオード501、503および505が、順次(一度に1つずつ)照明され得る。一例では、これらフォトダイオードは、異なる開路電圧を有し、別個のLEDによって個々に駆動される。例えば、フォトダイオード501は、1Vの開路電圧を有し得、フォトダイオード503は、2Vの開路電圧を有し得、フォトダイオード505は、3Vの開路電圧を有し得る。
【0041】
したがって、(逆バイアスがかけられた)バラクタ507の両端の電位差は、フォトダイオードが順次照明されるにつれて増大され得る。これはバラクタ507の空乏領域の幅を増大させ、したがって、そのキャパシタンスを低減させる。したがって、
図5の配置では、無電圧状態を含む、バラクタの4つのバイアス状態が存在する。実際には、より多くのまたはより少ないバイアスフォトダイオード(および/または対応する光源)が、利用可能な空間および必要とされる「ビット深度」に従って使用され得る。
【0042】
特定のフォトダイオード501~505に対応する、異なるLEDを照明することによって、ユニットセルのキャパシタンスが低減され得、したがって、RF照明に応答してパッチ構造の反射係数の位相を変化させ、したがって、散乱場を修正する。したがって、例えば、
図5に示されるような4ビット配置(3つのダイオード+ゼロバイアス)は、0°、90°、180°および270°の間でステップを刻む(stepping)反射係数位相角を有することになる。これは、累積的に動作する従来のマルチビット位相シフタとは異なる(すなわち、4ビットは、180°、90°、45°および22.5°であり得るとともに、これらの倍数(multiples)が達成可能である)。
【0043】
図6は、一例によるユニットセルの概略図である。
図6の例では、ユニットセル600は、メタサーフェスを形成するために、1次元または2次元にわたって繰り返され得る。この特定の例では、並列に配置された2つのフォトダイオード601、603が、光源605、607の順次照明に基づいて、3つの可能な状態を提供する。より多くのLEDが使用され得る。また、3状態の実装形態は、一般性を失わずに、明確にするために図示されており、より多くのフォトダイオードが、光源の数における対応する増大を伴って、所望に応じて使用され得ることが理解されよう。一般に、N個のダイオードは、N+1個の利用可能な状態を与える。
図2の例と同様に、発泡体タイプの材料および/または光学スペーサが、照明源605、607からの光の漏れを制限するために、ユニットセル間に設けられ得る。
【0044】
したがって、ユニットセル600は、それらがマルチ「ビット」実装形態を可能にするように、より多くの自由度を提供する。一例では、フォトダイオード601、603は、それらが基板203の下面205bから離間され、したがって、照明LED605、607に近いように配置され得る。一例では、発泡体タイプの材料の代わりに(またはそれに加えて)、押込嵌めブラックチューブ(push-fit black tube)(例えば、プラスチック)が、LEDと、対応するフォトダイオードとの間の直接的な光結合を確実にするために使用され得る。このようなチューブの位置は、各フォトダイオード/LEDペア603/605(チューブ609)、601/607(チューブ611)について、609、611によって図示されている。必要に応じて、追加のフォトダイオードおよびLEDが使用され得る。このような光結合は、本明細書で説明される例のいずれかとともに使用するのに好適である。
【0045】
一例によれば、上記で説明されたもののようなユニットセルは、例えば、インジウムスズ酸化物(ITO)等の、接地平面201のための光学的に透明な(ただし電気的に導電性の)材料を使用して実装され得る。これは、LEDを配置するために、従来の金属接地平面において穴を機械加工する必要性を除去する。したがって、表面実装LEDが、より従来的なスルーホール型LEDの代替え品として使用され得、ユニットセルに必要とされる物理的なサイズおよび全体的な深度を低減し、次いで、これは、メタサーフェスを形成するアレイの全体的な厚さおよび質量を最小化するのに役立ち得る。
【0046】
さらに、表面実装LEDからフォトダイオードへの光結合(および同じまたは近くのユニットセルにおけるLEDによって引き起こされる隣接する迷光からの分離)は、人工的に生成された光ファイバケーブルまたは構造の使用によって達成され得る。低損失の光学的に透明なプラスチックが、この目的のために使用され、誘電体スペーシング構造を形成し得る。好適な材料は、例えば、パースペックス、ポリカーボネート、ナイロン、またはPLAを含む。したがって、スペーシング構造は、接地平面201から上側基板203の裏面205bまで延在するプラスチック材料の短い「キャスタレーション(castellations)」で構成され得る。
【0047】
図7は、一例によるスペーシング構造を使用する配置の概略図である。
図7の例では、明確にするために、ユニットセル当たり1つのLEDが図示されており、構造は、分解された形態で図示されている。導電パッチ素子を備える上層701が、接地平面201の上方に図示されている。ポリマースペーシング構造703が、下部LED705(例えば、SMT-表面実装LED)からフォトダイオードに光を伝達するために設けられている。接地平面201は、例えば、Cu被覆またはITOコーティングのいずれかで、SMT LEDを有するPCB層を備え得る。PCBは、それが接地平面として機能し続けるように、銅被覆され得るか、またはITOコーティングが、LEDの上に配置され得る。
【0048】
別の例では、透明なプラスチックのブロックに挿入される「スルーホール」LEDが使用され得る。スペーシング構造は、同じ材料から上部ブロックへと機械加工され得(または、ブロックは、3D印刷され得)、一方、ITOの層は、接地平面として機能するそれらの間に挟まれ得る。
【0049】
図8は、一例によるスペーシング構造を使用する配置の概略図である。
図8の例では、明確にするために、ユニットセル当たり1つのLEDが図示されており、構造は、分解された形態で図示されている。導電パッチ素子を備える上層801が、接地平面201の上方に図示されている。一例では、接地平面は、LED用の穴803を有するポリマー層を備え得る。例えば、マイラー(ポリエステル)またはカプトン(ポリイミド)フィルム上のITOから形成された層805が設けられ、その上にポリマーキャスタレーション807が3D印刷/機械加工されて、下部LEDからフォトダイオードに光を伝達し得る。
【0050】
必要に応じて、例えば、上面、底、および縁部での薄い光学的に不透明なポリマーの使用によって、自然光が遮断され得る。代替として、フォトダイオードは、近赤外線(NIR)における約1400nmおよび1900nmの水の吸収帯等の特定の波長にわたる光に対してのみ感知可能にされ得る。これらの波長の自然光は、大気吸収により地球の表面にほとんど到達しない。したがって、フィルタリングの使用またはこれらの波長の光を主に感知可能であるフォトダイオードの選択によって、太陽光からの従来のスクリーニング(screening)を必要とせずに、スクリーンを設計することが可能になる。
【0051】
図9は、一例による反射アレイの概略図である。反射アレイ900は、上記で説明されたユニットセルのいずれか等の複数のユニットセル907を備えるメタサーフェス905によって修正されることになる信号903を供給するように構成された給電アンテナ901を備える。
図9の例では、信号903は、メタサーフェス905に入射する(または、それを「照明する」)。
【0052】
入射信号903の結果として、電流がメタサーフェス905のユニットセル907のパッチ素子内に誘導され、入射信号903の反射は、メタサーフェス905の個々にアドレス指定可能なユニットセル907の状態を調整することによって制御され得る、誘導電流のパターンによって決定される。したがって、反射係数の位相を変化させることによって、メタサーフェス905から散乱/反射される信号909の形状が変更され得る。
図9の例では、反射された信号909は、平面波の形態である。代替として、ユニットセル907の選択された状態に依存して、反射された信号は、上記で説明されたように、ビームフォーミング等が行われ得る。
【0053】
別様に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、当該技術分野において通例であるように解釈されるべきものである。一般的な用法における用語もまた、関連技術分野において通例であるように解釈されるべきであり、本明細書においてそのように明示的に定義されない限り、理想化されたまたは過度に形式的な意味で解釈されるべきではないことがさらに理解されよう。
【国際調査報告】