(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-08-18
(54)【発明の名称】希ガス回収システム
(51)【国際特許分類】
B01D 53/30 20060101AFI20230810BHJP
B01D 53/047 20060101ALI20230810BHJP
B01D 53/14 20060101ALI20230810BHJP
B01D 53/04 20060101ALI20230810BHJP
H01L 21/3065 20060101ALI20230810BHJP
C01B 23/00 20060101ALI20230810BHJP
【FI】
B01D53/30
B01D53/047
B01D53/14 200
B01D53/04 110
H01L21/302 101G
C01B23/00 Q
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023505966
(86)(22)【出願日】2021-07-27
(85)【翻訳文提出日】2023-01-27
(86)【国際出願番号】 GB2021051923
(87)【国際公開番号】W WO2022023725
(87)【国際公開日】2022-02-03
(32)【優先日】2020-07-28
(33)【優先権主張国・地域又は機関】GB
(32)【優先日】2020-09-04
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】507261364
【氏名又は名称】エドワーズ リミテッド
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100170634
【氏名又は名称】山本 航介
(72)【発明者】
【氏名】シーリー アンドリュー ジェイムズ
(72)【発明者】
【氏名】コトル スティーヴン ブルース
(72)【発明者】
【氏名】コンドン ニール
(72)【発明者】
【氏名】ベイリー クリストファー マーク
(72)【発明者】
【氏名】ディーン ジュリアン リチャード
(72)【発明者】
【氏名】グリーンウッド ジョアン レイチェル
(72)【発明者】
【氏名】ダンバー ザカリー ウィリアム
【テーマコード(参考)】
4D012
4D020
5F004
【Fターム(参考)】
4D012CA12
4D012CD07
4D012CH04
4D012CH10
4D020AA10
4D020BA23
4D020BB03
4D020CB25
4D020CD03
4D020CD10
5F004AA16
5F004BC02
5F004BC04
5F004DA22
(57)【要約】
システムは、複数の化学エッチングプロセスチャンバ(106、206)の各々からそれぞれの排気ガスをポンプ送給し、排気ガスを結合して結合排気ガスを供給するように構成された圧送システム(108、208)と、結合排気ガスを処理して、その中から1又は2以上の希ガスを除去するように構成された希ガス回収システム(110、210)とを備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
複数の化学エッチングプロセスチャンバの各々からそれぞれの排気ガスをポンプ送給し、前記排気ガスを結合して結合排気ガスを供給するように構成されたポンピングシステムと、
前記結合排気ガスを処理して、そこから1又は2以上の希ガスを除去するように構成された希ガス回収システムと、
を備えるシステム。
【請求項2】
前記ポンピングシステムは、パージガスを受け取り、前記排気ガスを前記パージガスと結合するように構成されており、
前記システムは、前記パージガスを前記結合排気ガスから分離するように構成された真空圧スイング吸着モジュールをさらに備える、請求項1に記載のシステム。
【請求項3】
前記パージガスは、窒素である、請求項2記載のシステム。
【請求項4】
前記真空圧スイング吸着モジュールは、前記分離されたパージガスを前記ポンピングシステムに供給するように構成されている、請求項2又は3に記載のシステム。
【請求項5】
前記希ガス回収システムは、ガスクロマトグラフィープロセスを使用して、前記結合排気ガスの他の成分から1又は2以上の希ガスを分離するように構成されたガスクロマトグラフィー分離モジュールを備える、請求項1から4のいずれかに記載のシステム。
【請求項6】
前記ガスクロマトグラフィー分離モジュールは、前記ガスクロマトグラフィー分離モジュールを通る前記結合排気ガスの移送に用いるキャリアガスを受け取るように構成されており、
前記希ガス回収システムは、前記キャリアガスから1又は2以上の希ガスを分離する分離モジュールをさらに備える、請求項5に記載のシステム。
【請求項7】
前記ガスクロマトグラフィー分離モジュールは、前記ガスクロマトグラフィー分離モジュールを通る前記結合排気ガスの移送に用いるキャリアガスを受け取るように構成されており、
前記希ガス回収システムは、前記キャリアガスから前記結合排気ガスの他の成分を分離するための追加の分離モジュールをさらに備える、請求項5又は6に記載のシステム。
【請求項8】
前記分離されたキャリアガスは、前記ガスクロマトグラフィー分離モジュールによって再使用又は再利用される、請求項6又は7に記載のシステム。
【請求項9】
前記キャリアガスは、ヘリウムである、請求項6から8のいずれかに記載のシステム。
【請求項10】
前記希ガス回収システムは、前記結合排気ガスから酸性ガスを除去するように構成された酸性ガス除去モジュールを備える、請求項1から9のいずれかに記載のシステム。
【請求項11】
前記希ガス回収システムは、前記結合排気ガスに対してスクラビングプロセスを実行するように構成された湿式スクラバーを備える、請求項1から10のいずれかに記載のシステム。
【請求項12】
前記希ガス回収システムは、前記湿式スクラバーから出力されるガス流に対して乾燥プロセスを実行するように構成された乾燥機を備える、請求項11に記載のシステム。
【請求項13】
前記ポンプシステムは、
各々が前記複数のプロセスチャンバのそれぞれから前記排気ガスをポンプ送給するように構成された、複数のポンプと、
前記複数のポンプによって出力されるガス流から過フッ化化合物(PFC)を除去するか又は前記PFCを他の化合物に変換するように構成された複数の過フッ化化合物(PFC)除去又は変換モジュールと、
を備え、
前記複数のPFC除去又は変換モジュールの各々は、前記複数のポンプのそれぞれに接続されている、請求項1から12のいずれかに記載のシステム。
【請求項14】
前記PFC除去又は変換モジュールのうちの1又は2以上は、プラズマ反応器を備える、請求項13に記載のシステム。
【請求項15】
前記希ガス回収システムは、ゲッターを含むゲッターモジュールを備える、請求項1から14のいずれかに記載のシステム。
【請求項16】
前記ゲッターは、チタンである、請求項1から15のいずれかに記載のシステム。
【請求項17】
前記ポンピングシステムは、パージガスを受け取り、前記排気ガスを前記パージガスと結合させるように構成されており、
前記希ガス回収システムは、
前記ポンピングシステムに接続され、前記ポンピングシステムから受け取った前記結合排気ガスから酸性ガスを除去するように構成された酸性ガス除去モジュールと、
前記酸性ガス除去モジュールからガス流を受け取り、受け取ったガス流から前記パージガスを分離するように構成された真空圧スイング吸着モジュールと、
前記真空圧スイング吸着モジュールからガス流を受け取り、ガスクロマトグラフィープロセスを使用して、前記真空圧スイング吸着モジュールから受け取った前記ガス流の他の成分から1又は2以上の希ガスを分離し、分離した1又は2以上の希ガスを出力するように構成されたガスクロマトグラフ分離モジュールと、を備える、請求項1から16のいずれかに記載のシステム。
【請求項18】
前記ポンピングシステムは、
各々が前記複数のプロセスチャンバのそれぞれから前記排気ガスをポンプ送給するように構成された、複数のポンプと、
前記複数のポンプによって出力されるガス流から過フッ化化合物(PFC)を除去するか又は前記PFCを他の化合物に変換するように構成された複数の過フッ化化合物(PFC)除去又は変換モジュールと、
を備え、前記複数のPFC除去又は変換モジュールの各々は、前記複数のポンプのそれぞれに接続され、前記複数のPFC除去又は変換モジュールの各々は、プラズマを含むようになっており、
前記希ガス回収システムは、
前記結合排気ガスに対してスクラビングプロセスを実行するように構成された湿式スクラバーと、
随意的に、前記湿式スクラバーから出力されるガス流に乾燥プロセスを実行するように構成された乾燥機と、
を備える、請求項1から16のいずれかに記載のシステム。
【請求項19】
前記希ガス回収システムは、
前記湿式スクラバー又は随意的な前記乾燥機からガス流を受け取り、ガスクロマトグラフィープロセスを使用して、前記湿式スクラバー又は随意的な前記乾燥機から受け取った前記ガス流の他の成分から1又は2以上の希ガスを分離し、分離した1又は2以上の希ガスを出力するように構成されたガスクロマトグラフィー分離モジュールをさらに備える、請求項18に記載のシステム。
【請求項20】
前記ポンプシステムは、パージガス及び追加のパージガスを受け取り、前記排気ガスを前記パージガス及び前記追加のパージガスと結合させるように構成されており、
前記希ガス回収システムは、
前記ポンピングシステムからガス流を受け取り、受け取ったガス流から前記パージガスを分離するように構成された真空圧スイング吸着モジュールと、
ゲッターを備え、前記真空圧スイング吸着モジュールからガス流を受け取り、前記真空圧スイング吸着モジュールから受け取った前記ガス流からガスを除去するように構成されたゲッターモジュールと、
前記ゲッターモジュールからガス流を受け取り、受け取ったガス流中の1又は2以上の希ガスを受け取ったガス流中の前記追加のパージガスから分離し、分離された1又は2以上の希ガスを出力するように構成された分離モジュールと、
を備える、請求項1から16のいずれかに記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、希ガス回収システムに関する。
【背景技術】
【0002】
エッチングプロセスには、アルゴン及びキセノンが使用されることが知られている。アルゴンは比較的一般的な空気ガスであるが、キセノンは比較的希少である。
乾式エッチングプロセスからキセノンのような希ガスを回収するシステムが知られている。このようなシステムは、単一のエッチングチャンバからガスを回収し、これを閉ループシステムで同じガスチャンバに戻す。
【発明の概要】
【課題を解決するための手段】
【0003】
クリプトンを利用するエッチングプロセスは、現在開発中である。そのようなプロセスの実行可能性は、クリプトンを回収する能力に依存する可能性がある。
本発明者らは、真空及び除害システムが、共通のポンプ及び随意的に除害システムを用いて複数のガスチャンバから同時にガスをポンプ送給するために使用できることを認識している。
【0004】
本発明者らは、共通のポンプを使用して複数のガスチャンバから同時にガスをポンプ送給する真空(及び随意的に除害)システムを使用して、複数のガスチャンバからクリプトンを回収し、それによって効率及び費用対効果を改善できることを認識している。
本発明者らは、クリプトンが収集容器にポンプ送給され、最終精製プロセスを通過するのに十分な量になるまで所定の圧力で貯蔵される開ループシステムが、効率及び費用効果を改善できることを認識している。
本発明者らは、閉ループシステムでは、各段階で冗長性を必要とする場合があることを認識している。開ループシステムは、このような必要性を低減することができる。
【0005】
第1の態様では、複数の化学エッチングプロセスチャンバの各々からそれぞれの排気ガスをポンプ送給し、排気ガスを結合して結合排気ガスを供給するように構成されたポンピングシステムと、結合排気ガスを処理して、そこから1又は2以上の希ガス(アルゴン、キセノン、又はクリプトン、又はそれらの何らかの組み合わせ、混合、混和など)を除去するように構成された希ガス回収システムとを備えるシステムが提供される。
【0006】
さらなる態様では、希ガス供給部、複数のプロセスチャンバ、ポンピングシステム、及び希ガス回収システムを備えるシステムが提供される。各プロセスチャンバは、他のプロセスチャンバと一緒に(例えば、同時に、同時に非同期で、又は並行して)動作し、希ガス供給部から1又は2以上の希ガスのそれぞれの供給物を受け取り、1又は2以上の希ガスのそれぞれの供給物を用いてエッチングプロセスを実行し、それぞれの排気ガスを出力するように構成されている。ポンピングシステムは、複数のプロセスチャンバからそれぞれの排気ガスをポンプ送給し、排気ガスを結合して結合排気ガスを供給し、結合排気ガスを希ガス回収システムへポンプ送給するように構成されている。希ガス回収システムは、受け取った結合排気ガスを処理して、そこから1又は2以上の希ガスを除去するように構成されている。
【0007】
有利には、プロセスチャンバ内のクリプトン又はキセノンの使用は、高アスペクト比エッチングプロセスにおいて、アルゴンのような低質量ボンバードメントガスで可能となるよりも高レベルの精度及び均一性を達成するのを助ける。
クリプトン及びキセノンなどの希ガスは、空気中に自然に存在するが低濃度である。空気から希ガスを分離するためのエネルギーは、分離されるガスの濃度にほぼ反比例する。クリプトン(又はキセノン)は空気中では低濃度なので、空気から分離するのに必要なエネルギーは比較的高い。クリプトン(又はキセノン)は、(空気中と比較して)プロセス排気中の濃度が非常に高い傾向があるため、分離するためのエネルギーは非常に低くなる傾向がある。このため、クリプトン又はキセノンを排気ガスから回収することで、エネルギー消費量を削減できる傾向にある。結合排気ガスからクリプトン又はキセノンを回収することで、クリプトン又はキセノンの供給量を安価に確保できる傾向にある。回収プロセスは、同様の高いエネルギー回収コスト又は供給リスクを有する別のガスに依存しない傾向がある。
【0008】
何らかの態様では、ポンピングシステムは、複数のプロセスチャンバからそれぞれの排気ガスをポンプ送給するように構成された共通ポンプを備えることができる。
何らかの態様では、ポンピングシステムは、複数のポンプ(例えばターボポンプ)を備えることができ、複数のポンプの各ポンプは、複数のプロセスチャンバのそれぞれから排気ガスをポンプ送給するように構成されている。
【0009】
何らかの態様では、希ガス回収システムは、結合排気ガスを浄化するように構成された浄化モジュールを備えることができる。浄化モジュールは、吸収器を用いて結合排気ガスからガスを除去するように構成することができる。
何らかの態様では、希ガス回収システムは、結合排気ガスに対して研磨処理を実行するように構成された研磨モジュールを備えることができる。
【0010】
何らかの態様では、希ガス回収システムは、希ガスを結合排気ガスの他の成分から分離するように構成された分離モジュールを備えることができる。分離モジュールは、少なくともガスクロマトグラフィーを用いて、結合排気ガス中の各種の他のガスから希ガスを分離するように構成することができる。
【0011】
何らかの態様において、希ガス回収システムは、分離モジュールによって出力された分離された1又は2以上の希ガスを圧縮するように構成された圧縮モジュールと、圧縮された、分離された1又は2以上の希ガスを貯蔵するように構成された貯蔵モジュールとをさらに備えることができる。貯蔵モジュールは、その内容物が閾値に達することに応答して、その内容物を出力するように構成することができる。
【0012】
何らかの態様において、希ガス回収システムは、分離モジュールによって出力された分離された1又は2以上の希ガスを、複数のプロセスチャンバに分配するように構成された分配モジュールをさらに備えることができる。希ガス回収システムは、複数の混合器ボックスをさらに備えることができる。各混合器ボックスは、分配モジュールから1又は2以上の希ガスのそれぞれの第1の供給物を受け取り、さらなる供給部から1又は2以上の希ガスのそれぞれの第2の供給物を受け取り、受け取った1又は2以上の希ガスの第1及び第2の供給物を混合し、この混合物をそれぞれのプロセスチャンバに供給するように構成することができる。
【0013】
さらなる態様では、希ガス供給部から、複数のプロセスチャンバのそれぞれのプロセスチャンバに1又は2以上の希ガスのそれぞれの供給物を同時に供給するステップと、各プロセスチャンバによって、1又は2以上の希ガスのそれぞれの供給物を用いてエッチングプロセスを同時に行うステップと、各プロセスチャンバによって、それぞれの排気ガスを同時に出力するステップと、ポンピングシステムによって、複数のプロセスチャンバからそれぞれの排気ガスをポンプ送給するステップと、ポンピングシステムによって、排気ガスを結合して、結合排気ガスを供給するステップと、ポンピングシステムによって、結合排気ガスを希ガス回収システムにポンプ送給するステップと、希ガス回収システムによって、受け取った結合排気ガスを処理して、そこから1又は2以上の希ガスを除去するステップと、を含む方法が提供される。
【0014】
処理することは、分離モジュールによって、結合排気ガスの他の成分から1又は2以上の希ガスを分離することを含むことができる。
【0015】
本方法は、圧縮モジュールによって、分離された1又は2以上の希ガスを圧縮するステップと、貯蔵モジュールによって、圧縮された、分離された1又は2以上の希ガスを貯蔵するステップと、貯蔵モジュールの内容物が閾値レベルに達することに応答して、貯蔵モジュールの内容物を貯蔵モジュールから抜き出すステップと、をさらに含むことができる。
【0016】
本方法は、分配モジュールによって、分離された1又は2以上の希ガスを複数のプロセスチャンバに分配するステップをさらに含むことができる。
【0017】
結合排気ガスは、パージガスと結合、混合、又は混和させることができる。
【0018】
ポンピングシステムは、パージガスを受け取り、排気ガスをパージガスと結合するように構成することができる。システムは、結合排気ガスからパージガスを分離するように構成された真空圧スイング吸着モジュールをさらに備えることができる。パージガスは、窒素とすることができる。真空圧スイング吸着モジュールは、分離されたパージガスをポンピングシステムに供給するように構成することができる。
【0019】
希ガス回収システムは、ガスクロマトグラフィープロセスを使用して、1又は2以上の希ガスを結合排気ガスの他の成分から分離するように構成されたガスクロマトグラフィー分離モジュールを備えることができる。ガスクロマトグラフィー分離モジュールは、ガスクロマトグラフィー分離モジュールを通る結合排気ガスの移送に用いるキャリアガスを受け取るように構成することができる。希ガス回収システムは、キャリアガスから1又は2以上の希ガスを分離する分離モジュールをさらに備えることができる。ガスクロマトグラフ分離モジュールは、ガスクロマトグラフ分離モジュールを通る結合排気ガスの移送に用いるキャリアガスを受け取るように構成することができる。希ガス回収システムは、結合排気ガスの他の成分をキャリアガスから分離するための追加の分離モジュールをさらに備えることができる。キャリアガスは、ガスクロマトグラフィー分離モジュールによって再使用/再利用することができる。
【0020】
使用されるキャリアガスは、好ましくは、分離段階がそれを区別できるように、回収されるガス(すなわち、クリプトン又はキセノン)とは異なる特性を有する。好ましくは、キャリアガスは不活性であるか又は少なくともプロセス中の他の何らかのガスとも反応しない。クレームされるシステムの目的は、クリプトン又はキセノンのような高分子量の希ガスを回収することである。従って、キャリアガスは、好ましくは、軽くて不活性なガスである必要がある。好ましくは、キャリアガスはヘリウムである。
【0021】
エッチングプロセスは、ヘリウムを含む場合があり、さらにクリプトン又はキセノンと共に導入されるヘリウムに適応することができる場合があるが、これは、変動リスク及び制御されていない流れへの依存をもたらす場合がある。これは、エッチングプロセスに許容できない変動をもたらす場合がある。好ましくは、クリプトン又はキセノンが導入される高アスペクト比エッチングプロセスにおいて、正確なプロセス制御が提供される。これは、プロセスの一貫性(ウェハ間及びウェハ全体の均一性)を向上させるのを助ける。
【0022】
ヘリウムは空気ガスではない。ヘリウムの調達は高価になる傾向があり、多大なエネルギーを必要とする。さらに、半導体産業で使用するヘリウムの供給は、不安定である可能性がある。ヘリウムのキャリアガスを再利用/再使用することで、エネルギー消費を抑えることができる。さらに、ヘリウムの供給の信頼性を高めることができ、このことは、エッチングプロセスの一貫性を向上させて、変動を低減するのを助ける。
【0023】
希ガス回収システムは、結合排気ガスから酸性ガスを除去するように構成された酸性ガス除去モジュールを備えることができる。
希ガス回収システムは、結合排気ガスに対してスクラビングプロセスを実行するように構成された湿式スクラバーを備える。希ガス回収システムは、湿式スクラバーから出力されるガス流に対して乾燥プロセスを実行するように構成された乾燥機を備えることができる。
【0024】
ポンプシステムは、各々が複数のプロセスチャンバのそれぞれから排気ガスをポンプ送給するように構成された複数のポンプと、複数のポンプによって出力されるガス流から過フッ化化合物(PFC)を除去するか又はPFCを他の化合物に変換するように構成された複数の過フッ化化合物(PFC)除去又は変換モジュールと、を備えることができ、複数のPFC除去又は変換モジュールの各々は、複数のポンプのそれぞれに接続されている。PFC除去又は変換モジュールのうちの1又は2以上は、燃焼器、プラズマ反応器、複合プラズマ触媒(CPC)モジュール、及び/又は除害装置を備えることができる。
【0025】
好ましくは、PFC除去又は変換モジュールは、プラズマ反応器又はプラズマを使用するモジュールを備える。
【0026】
プラズマは、PFCを適切なドーズ水(処理水)に溶解させることができるガスに変換する。その後、プラズマ副産物は、例えば湿式スクラバーによってシステムから連続的に除去することができ、例えば、通常、半導体製造工場のエッチング区域にある設備の酸排出ム及び排水システムに排出することができる。有利には、湿式スクラバーは大型ではなく、酸排出及び排水に追加負荷を加えない傾向がある。
【0027】
従って、PFC及び発熱性ガスは、真空ポンプモジュールに入る前に破壊される傾向がある。このことは、有利には、例えば可燃性保護目的でポンプに使用される場合がある窒素パージが少なくなることを意味する。使用される追加の窒素パージガスの量を低減することで、システムを複雑にしてその設置面積及び所有コストを増加させることになる窒素パージガスの除去が回避される傾向にある。
【0028】
有利には、湿式スクラバー(ドーズ式湿式スクラバーとすることができる)は、酸排出によって、フォアラインプラズマ副生成物を除去することができる。希ガスは、ガスクロマトグラフィー分離モジュールを通過し、その後、クリプトン又はキセノンは、研磨することができる。これは、ガスをガスクロマトグラフィーカラムに通過させる前に、クリプトン又はキセノンから希ガス及び/又は他の汚染物質を効果的に分離できる圧力スイング吸収(PSA)ユニットの最小化を可能にするのを助ける。PSAは、大気圧(約5psi)より高い圧力で浄化を行うのを助け、これは運転エネルギー又はコスト要求が低いことを意味する。
【0029】
有利には、プラズ反応器及び湿式スクラバーを使用してPFC及び発熱性ガスを除去すると、システム全体の設置面積が小さくなる傾向がある。例えば、プロセスチャンバ内でのエッチングプロセスは、PFCと同時にクリプトンを使用する場合がある。プロセス中にクリプトンしか流れない時間帯があったとしても、システムが複数の非同期チャンバからクリプトンを回収している場合、システムは、クリプトン及びPFCが一緒に流れることを可能にする。プラズマは、システムから除去できるように、PFCを湿式スクラバー内で水に溶解できる生成物に反応させるために使用することができる。別の方法では、真空フォアライン又は大気圧ラインに設置される吸収器を使用することができる。吸収器が真空フォアラインに設置される場合、プロセスチャンバ内でプロセス圧を達成されるのを妨げることになる許容できない制限を引き起こさないことを保証するために、吸収器を非常に大きくする必要があろう。そのため、設置面積が大きくなるであろう。一方で、ポンプの後に設置される吸収器は、PFCによる腐食からポンプを保護するために使用される追加の希釈ガスに対応した大きさにする必要があるであろう。従って、大気圧吸収器は、その流量に対応した大きさにする必要があり、頻繁に交換する必要があり、空間コスト及び部品コストの両方が発生することになる。
【0030】
希ガス回収システムは、ゲッターを含むゲッターモジュールを備えることができる。ゲッターは、チタンとすることができる。
【0031】
ポンピングシステムは、パージガスを受け取り、排気ガスをパージガスと結合させるように構成することができ、希ガス回収システムは、ポンピングシステムに接続され、ポンピングシステムから受け取った結合排気ガスから酸性ガスを除去するように構成された酸性ガス除去モジュールと、酸性ガス除去モジュールからガス流を受け取り、受け取ったガス流からパージガスを分離するように構成された真空圧スイング吸着モジュールと、真空圧スイング吸着モジュールからガス流を受け取り、ガスクロマトグラフィープロセスを使用して、真空圧スイング吸着モジュールから受け取ったガス流の他の成分から1又は2以上の希ガスを分離し、分離した1又は2以上の希ガスを出力するように構成されたガスクロマトグラフ分離モジュールと、を備えることができる。
【0032】
ポンピングシステムは、各々が複数のプロセスチャンバのそれぞれから排気ガスをポンプ送給するように構成された複数のポンプと、複数のポンプによって出力されるガス流から過フッ化化合物(PFC)を除去するか又はPFCを他の化合物に変換するように構成された複数の過フッ化化合物(PFC)除去又は変換モジュールとを備えることができ、複数のPFC除去又は変換モジュールの各々は、複数のポンプのそれぞれに接続され、希ガス回収システムは、結合排気ガスに対してスクラビングプロセスを実行するように構成された湿式スクラバーと、随意的に、湿式スクラバーから出力されるガス流に対して乾燥プロセスを実行するように構成された乾燥機と、をさらに備えることができる。希ガス回収システムは、湿式スクラバー又は乾燥機からガス流を受け取り、ガスクロマトグラフィープロセスを使用して、湿式スクラバー又は乾燥機から受け取ったガス流の他の成分から1又は2以上の希ガスを分離し、分離した1又は2以上の希ガスを出力するように構成されたガスクロマトグラフィー分離モジュールをさらに備えることができる。複数のPFC除去又は変換モジュールの各々は、プラズマ、例えば、プラズマ反応器を備えることができる。
【0033】
ポンプシステムは、パージガス及び追加のパージガスを受け取り、排気ガスをパージガス及び追加のパージガスと結合させるように構成することができ、希ガス回収システムは、ポンピングシステムからガス流を受け取り、受け取ったガス流からパージガスを分離するように構成された真空圧スイング吸着モジュールと、ゲッターを備え、真空圧スイング吸着モジュールからガス流を受け取り、真空圧スイング吸着モジュールから受け取ったガス流からガスを除去するように構成されたゲッターモジュールと、ゲッターモジュールからガス流を受け取り、受け取ったガス流中の1又は2以上の希ガスを受け取ったガス流中の追加のパージガスから分離し、分離された1又は2以上の希ガスを出力するように構成された分離モジュールと、を備えることができる。
【図面の簡単な説明】
【0034】
【
図1】微細加工システム及び開ループ希ガス回収システムの概略図である(正確な縮尺ではない)。
【
図2】微細加工システム及び閉ループ希ガス回収システムの概略図である(正確な縮尺ではない)。
【
図3】微細加工システムの一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
【
図4】さらなる微細加工システムの一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
【
図5】さらに別の微細加工システムの一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
【発明を実施するための形態】
【0035】
図1は、一実施形態による微細加工システム100及び開ループ排気ガス処理システム102の概略図である(正確な縮尺ではない)。
微細加工システム100は、クリプトン供給部104と、複数のプロセスチャンバ106とを備える。
クリプトン供給部104は、複数のプロセスチャンバ106の各々にクリプトンガスを供給するように構成されている。
【0036】
プロセスチャンバ106の各々は、受け取ったクリプトンガスを用いて、そこに位置するウェハの表面から層を化学的に除去するエッチングプロセスを実行するように構成されている。
排気ガス処理システム102は、微細加工システム100に動作可能に結合される。排気ガス処理システム102は、微細加工システム100によってエッチングに使用されたクリプトンを回収するように構成されている。
【0037】
排気ガス処理システム102は、ポンピングシステム108とクリプトン回収システム110とを備える。
ポンピングシステム108は、複数のプロセスチャンバ106からの排気ガスをクリプトン回収システム110にポンプ送給(例えば、ほぼ大気圧で)するように構成されている。
ポンピングシステム108は、複数のターボポンプ112と、ポンピングモジュール114とを備える。
【0038】
各ターボポンプ112は、それぞれのプロセスチャンバ106に接続されている。各ターボポンプ112は、ポンピングモジュール114に接続されているプロセスチャンバ106から排気ガスをポンプ送給するように構成されている。
【0039】
ポンピングモジュール114は、ポンプを備える。ポンピングモジュール114は、ターボポンプ112からクリプトン回収システム110に排気ガスをポンプ送給するように構成されている。作動時、ポンピングモジュール114は、ターボポンプ112からそれぞれの排気ガス流を受け取る。ポンピングモジュール114は、受け取った各排気ガス流を1つの結合ガス流に結合する。ポンピングモジュール114は、結合ガス流をクリプトン回収システム110にポンプ送給する。
【0040】
いくつかの実施形態では、ポンピングモジュール114は、パージガスであるさらなるガスを受け取る(例えば、ポンピングする)ようにさらに構成される。ポンピングモジュール114は、ポンプ送給された排気ガスをポンピングされたパージガスと混合又は混和するように構成することができる。この排気ガスとパージガスとの混合物又混和物は、その後、クリプトン回収システム110にポンプ送給することができる。有利には、このパージガスの追加は、ポンピングモジュール114の動作寿命を延ばすのを助ける。
【0041】
パージガス量及び組成は、用途に依存し、システム要件及び/又は動作に基づいて選択することができる。パージガス量及び組成は、混合ガスの他の成分からの1又は2以上の希ガス(すなわち、本実施形態ではクリプトン)の下流分離を促進するように選択することができる。いくつかの実施形態では、クリプトン回収システム110の分離モジュール120において、1つの又は他の手段によってクリプトンから分離することが容易であるように、パージガスが特異的に選択されると好都合である場合がある。いくつかの実施形態では、パージガスは、クリプトンから分離された後、さもなければ分離モジュール120から排除されることになるガスから全体的に又は部分的になることができる。これは、分離プロセスを単純化する効果を有する傾向がある。加えて、これは、追加のガスが通常、分離モジュール内で消費され、ポンプパージを介して再循環される場合に再使用することができるので、全体として効率を高め、システムの維持コストを低減するのを助ける。
【0042】
クリプトン回収システム110は、制御モジュール116、浄化モジュール118、分離モジュール120、研磨モジュール122、圧縮モジュール124、及び貯蔵モジュール126を備える。
制御モジュール116は、クリプトン回収システム110の他のモジュールの動作を制御するように構成されている。すなわち、制御モジュール116は、浄化モジュール118、分離モジュール120、研磨モジュール122、圧縮モジュール124、及び貯蔵モジュール126の動作を制御する。
【0043】
浄化モジュール118は、ポンピングモジュール114から結合ガス流を受け取るように構成されている。浄化モジュール118は、受け取った結合ガス流を浄化し、それによって浄化されたガス流を供給するように構成されている。浄化モジュール118は、例えば、周囲温度又は高温で、特定のガスと1又は2以上の固体材料との間の化学的又は物理的反応を促進することによって、結合ガス流から有毒ガス及び腐食性ガスを除去するよう構成することができる。いくつかの実施形態では、吸収器を実装することができる。浄化モジュール118は、浄化ガス流を分離モジュール120に供給するように構成されている。
【0044】
分離モジュール120は、浄化モジュール118から浄化ガス流を受け取るように構成されている。分離モジュール120は、クリプトンを浄化ガス流の他の成分から分離し、それによって、分離されたクリプトンを含むガス流を供給するように構成されている。分離モジュール120は、ガスクロマトグラフィーを使用して、大きく、重く、従って遅いクリプトン分子を、より軽い不活性ガスから分離するように構成することができる。分離モジュール120は、分離されたクリプトンを研磨モジュール122に供給するように構成されている。
【0045】
研磨モジュール122は、分離されたクリプトンを分離モジュール120から受け取るように構成されている。研磨モジュール122は、分離されたクリプトンを含むガス流に研磨プロセスを実行し、それによって研磨されたガス流を供給するように構成されている。用語「研磨」は、希ガスを除く微量汚染物質の除去を指すと理解することができる。研磨プロセスは、化学的手段、又は物理的手段、より好ましくは化学的手段と物理的手段との組み合わせを用いて実行することができる。研磨モジュール122は、研磨ガス流を圧縮モジュール124に供給するように構成されている。
【0046】
いくつかの実施形態では、研磨モジュール122は、
図1の開ループシステムから省略される。このような実施形態では、研磨は、例えば、貯蔵モジュール126から取り出された内容物に対して後の段階で実行することができ、例えば、システム100から離れた場所又は他の施設で実行することができる。
【0047】
本実施形態では、研磨モジュール122は、分離モジュール120と圧縮モジュール124との間に接続されている。しかしながら、他の実施形態では、研磨モジュール122は、異なるモジュールセットの間に接続される。例えば、いくつかの実施形態では、研磨モジュール122は、分離モジュール120と圧縮モジュール124との間ではなく、圧縮モジュール124と貯蔵モジュール126との間に接続される。そのような他の実施形態では、研磨モジュール122は、圧縮モジュール124から受け取った圧縮ガス流に対して研磨プロセスを実行し、研磨された圧縮ガスを貯蔵モジュール126に出力するように配置される。
【0048】
圧縮モジュール124は、圧縮機を備える。本実施形態では、圧縮モジュール124は、研磨モジュール122から研磨ガス流を受け取るように構成されている。圧縮モジュール124は、研磨ガス流を圧縮し、それによって、圧縮ガス流を供給するように構成されている。圧縮ガス流は、高い圧力、すなわち大気圧よりも大きい圧力を有する。圧縮ガス流の圧力は、用途に依存することができ、ガスの閾値量が所定の体積で貯蔵できるように選択することができる。圧縮モジュール124は、圧縮ガス流を貯蔵モジュール126に供給するように構成されている。
【0049】
貯蔵モジュール126は、圧縮モジュール124から圧縮ガス流を受け取るように構成されている。貯蔵モジュール126は、受け取った圧縮ガスを貯蔵するように構成されている。
貯蔵モジュール126は、内部に貯蔵されたガス量及び/又はクリプトン量が閾値レベルに達するまで、クリプトン含有ガスを継続して受け取ること及び貯蔵することができる。貯蔵モジュール126に貯蔵されたガス量及び/又はクリプトン量が閾値レベルに達すると、貯蔵されたガスに対してさらなる(例えば最終)浄化プロセスが実行され、内部のクリプトンを回収することができる。貯蔵モジュールに貯蔵されたクリプトンは、クリプトン供給部104に戻すこと又は別の目的に使用することができる(例えば、いくつかの実施形態におけるさらなる浄化プロセスの実行後に)。
従って、微細加工システム100及び開ループ排気ガス処理システム102が提供される。
【0050】
図2は、一実施形態による微細加工システム200及び閉ループ排気ガス処理システム202の概略図である(正確な縮尺ではない)。
微細加工システム200は、クリプトン供給部204と、複数の混合器ボックス205と、複数のプロセスチャンバ206とを備える。
【0051】
クリプトン供給部204は、複数の混合器ボックス205の各々にクリプトンガスを供給するように構成されている。
混合器ボックス205の各々は、クリプトン供給部204からクリプトンのそれぞれの供給物を受け取るように構成されている。混合器ボックス205の各々は、排気ガス処理システム202の分配モジュール228からクリプトンのそれぞれの供給物を受け取るようにさらに構成されており、その機能については以下により詳細に説明する。混合器ボックス205の各々は、クリプトン供給部204及び分配モジュール228から受け取ったクリプトンを混和又は混合させて、それぞれのクリプトンの混合供給物を形成するようにさらに構成されている。
【0052】
混合器ボックス205の各々は、それぞれのプロセスチャンバ206に接続される。混合器ボックス205の各々は、クリプトンのそれぞれの混合供給物を、接続されるそれぞれのプロセスチャンバ206に供給するようにさらに構成されている。各混合器ボックス205によって実行される混合又は混和は、各プロセスチャンバ206に所望の又は要求される量のクリプトンが供給されるようなものとすることができる。各混合器ボックス205によって行われる混合又は混和は、例えば、供給部204及び分配モジュール228からのクリプトンが異なるレベルの微量不純物を有する可能性がある場合に、プロセスチャンバ206に送られるガスの純度を調整するために実行することができる。
【0053】
プロセスチャンバ206の各々は、受け取ったクリプトンガスを使用して、そこに位置するウェハの表面から層を化学的に除去するエッチングプロセスを実行するように構成されている。
排気ガス処理システム202は、微細加工システム200に動作可能に結合される。排気ガス処理システム202は、微細加工システム200によってエッチングに使用されたクリプトンを回収するように構成されている。
【0054】
排気ガス処理システム202は、ポンピングシステム208とクリプトン回収システム210とを備える。
ポンピングシステム208は、複数のプロセスチャンバ206からの排気ガスをクリプトン回収システム210にポンプ送給(例えば、ほぼ大気圧で)するように構成されている。
ポンピングシステム208は、複数のターボポンプ212と、ポンピングモジュール214とを備える。
【0055】
各ターボポンプ212は、それぞれのプロセスチャンバ206に接続されている。各ターボポンプ212は、ポンピングモジュール214に接続されているプロセスチャンバ206から排気ガスをポンプ送給するように構成されている。
【0056】
ポンピングモジュール214は、ポンプを備える。ポンピングモジュール214は、ターボポンプ212からクリプトン回収システム210に排気ガスをポンプ送給するように構成されている。作動時、ポンピングモジュール214は、ターボポンプ212からそれぞれの排気ガス流を受け取る。ポンピングモジュール214は、受け取った排気ガス流を1つの結合ガス流に結合する。ポンピングモジュール214は、結合ガス流をクリプトン回収システム210にポンプ送給する。
【0057】
いくつかの実施形態では、ポンピングモジュール214は、パージガスであるさらなるガスを受け取る(例えば、ポンピングする)ようにさらに構成される。ポンピングモジュール214は、ポンプ送給された排気ガスをポンピングされたパージガスと混合又は混和するように構成することができる。この排気ガスとパージガスとの混合物又は混和物は、その後、クリプトン回収システム210にポンプ送給することができる。有利には、このパージガスの追加は、ポンピングモジュール214の動作寿命を延ばすのを助ける。
【0058】
他の実施形態と同様に、パージガス量及び組成は、用途に依存し、システム要件及び/又は動作に基づいて選択することができる。パージガス量及び組成は、混合ガスの他の成分からクリプトンの下流分離を促進するように選択することができる。いくつかの実施形態では、クリプトン回収システム210の分離モジュール220において、1つの又は他の手段によってクリプトンから分離することが容易であるように、パージガスが特異的に選択されると好都合である場合がある。いくつかの実施形態では、パージガスは、クリプトンから分離された後、さもなければ分離モジュール220から排除されることになるガスから全体的に又は部分的になることができる。これは、分離プロセスを単純化する効果を有する傾向がある。加えて、これは、追加のガスが通常、分離モジュール内で消費され、ポンプパージを介して再循環される場合に再使用することができるので、全体として効率を高め、システムの維持コストを低減するのを助ける。
【0059】
クリプトン回収システム210は、制御モジュール216、浄化モジュール218、分離モジュール220、研磨モジュール222、貯蔵モジュール226、及び分配モジュール228を備える。
制御モジュール216は、クリプトン回収システム210の他のモジュールの動作を制御するように構成されている。すなわち、制御モジュール216は、浄化モジュール218、分離モジュール220、研磨モジュール222、貯蔵モジュール226、及び分配モジュール228の動作を制御する。
【0060】
浄化モジュール218は、ポンピングモジュール214から結合ガス流を受け取るように構成されている。浄化モジュール218は、受け取った結合ガス流を浄化し、それによって浄化されたガス流を供給するように構成されている。浄化モジュール218は、GRCカラムなどの吸収器を用いて、結合ガス流から毒性ガス及び腐食性ガスを除去するように構成することができる。浄化モジュール218は、浄化ガス流を分離モジュール220に供給するように構成されている。この閉ループシステムにおいて、浄化モジュール218は、有利には、不要な汚染物質がプロセスチャンバ206に戻されないようにするのを助ける。
【0061】
分離モジュール220は、浄化モジュール218から浄化ガス流を受け取るように構成されている。分離モジュール220は、クリプトンを浄化ガス流の他の成分から分離し、それによって、分離されたクリプトンを含むガス流を供給するように構成されている。分離モジュール220は、ガスクロマトグラフィーを使用して、大きく、重く、従って遅いクリプトン分子を、より軽い不活性ガスから分離するように構成することができる。分離モジュール220は、分離されたクリプトンからなるガス流を研磨モジュール222に供給するように構成されている。
【0062】
研磨モジュール222は、分離されたクリプトンを分離モジュール220から受け取るように構成されている。研磨モジュール222は、分離されたクリプトンに研磨プロセスを実行し、それによって研磨されたガス流を供給するように構成されている。研磨モジュール222は、研磨ガス流を貯蔵モジュール226に供給するように構成されている。
【0063】
本実施形態では、研磨モジュール222は、分離モジュール220と貯蔵モジュール226との間に接続されている。しかしながら、他の実施形態では、研磨モジュール222は、異なるモジュールセットの間に接続される。例えば、いくつかの実施形態では、閉ループシステムは、圧縮モジュール(
図1を参照して上記でより詳細に説明したようなもの)を備える。研磨モジュール222は、圧縮モジュールの後に配置することができる。研磨モジュール222は、圧縮モジュールから受け取った圧縮ガス流に研磨プロセスを実行し、研磨された圧縮ガスを貯蔵モジュール226に出力するように配置される。いくつかの実施形態では、研磨モジュール222は、研磨モジュール222の下流にある圧縮モジュールに接続されており、研磨モジュール222は、研磨ガス流を圧縮モジュールに出力する。
いくつかの実施形態では、研磨モジュール222は、
図2の閉ループシステムから省略される。
【0064】
貯蔵モジュール226は、研磨モジュール222から研磨ガス流を受け取るように構成されている。貯蔵モジュール226は、受け取った研磨ガスを貯蔵するように構成されている。貯蔵モジュール226は、貯蔵されたクリプトン含有ガスを分配モジュール228に供給するように構成されている。いくつかの実施形態では、この貯蔵モジュール226は、省略することができる。
【0065】
分配モジュール228は、貯蔵モジュール226からクリプトン含有ガスを受け取るように構成されている。分配モジュール228は、受け取ったクリプトン含有ガスを、それに接続された各混合器ボックス205の間に分配するように構成されている。分配モジュール228は、貯蔵モジュール226から受け取ったクリプトン含有ガス流を複数の別々のガス流に分割又は分離し、それらの別個のガス流の各々をそれぞれの混合器ボックス205に供給するように構成されている。従って、クリプトンは、回収されて再利用される。
【0066】
上述のシステムによって提供される利点は、クリプトン回収システムのコスト及び物理的占有面積が複数の処理チャンバにわたって共有され、それによって処理チャンバあたりの効率(例えば、物理的サイズの点での)が向上することである。
上記実施形態において、ポンピングモジュール114、214のポンプは、共通ポンプ、すなわち、処理チャンバ106、208の全てに共通するポンプと考えることができる。
【0067】
図1に関して上記でより詳細に説明した開ループ排気ガス処理システム102及び/又は
図2に関して上記でより詳細に説明した閉ループ排気ガス処理システム202と共に実施することができるクリプトン回収システムのさらなる詳細は、
図3から5を参照して以下に説明する。
【0068】
図3は、微細加工システム300の一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
図3に示す微細加工システム300の一部は、プロセスチャンバ306と、ターボポンプ312と、ポンピングモジュール314と、クリプトン回収システム310とを備える。
【0069】
プロセスチャンバ306は、
図1及び/又は
図2を参照して上記でより詳細に説明したプロセスチャンバ106、206のうちの1又は2以上と同一又は類似とすることができる。
図3には単一のプロセスチャンバ306のみが示されているが、実際には、本実施形態では、複数のプロセスチャンバ306が存在することを理解されたい。
【0070】
ターボポンプ312は、
図1及び/又は
図2を参照して上記でより詳細に説明したターボポンプ112、212のうちの1又は2以上と同一又は類似とすることができる。
図3には単一のターボポンプ312のみが示されているが、実際には、本実施形態では、複数のターボポンプ312が存在することを理解されたい。各ターボポンプ312は、それぞれのプロセスチャンバ306に接続され、それぞれのプロセスチャンバ306から排気ガスをポンプ送給するように構成されている。
【0071】
ポンピングモジュール314は、
図1及び/又は
図2を参照して上記により詳細に説明したポンピングモジュール114、214の一方又は両方と同一又は類似とすることができる。ポンピングモジュール314は、ポンプを備え、このポンプは、ドライポンプとすることができる。ポンピングモジュール314は、ターボポンプ312の各々からの排気ガスを、マニホールド330を介して、クリプトン回収システム310に送るように構成される。ポンピングモジュール314は、受け取った排気ガス流を1つの結合ガス流に結合し、結合ガス流をクリプトン回収システム310にポンプ送給する。
【0072】
本実施形態では、ポンピングモジュール314は、パージガスを受け取る(例えば、ポンピングする)ようにさらに構成されている。ポンピングモジュール314及び/又はマニホールドへのパージガスの流れは、
図3において、矢印及び参照数字340によって示されている。ポンピングモジュール314は、ポンプ送給された排気ガスをポンピングされたパージガスと混合又は混和するように構成されている。この排気ガスとパージガスとの混合物又は混和物は、その後、クリプトン回収システム310にポンプ送給される。有利には、このパージガスの追加は、ポンピングモジュール314の動作寿命を延ばすのを助ける。
本実施形態では、パージガスは窒素である。
【0073】
パージガス量及び組成は、用途に依存し、システム要件及び/又は動作に基づいて選択することができる。パージガス量及び組成は、混合ガスの他の成分からの1又は2以上の希ガス(すなわち、本実施形態ではクリプトン)の下流分離を促進するように選択することができる。
【0074】
本実施形態では、クリプトン回収システム310は、酸性ガス除去モジュール350、第1の圧縮機352、真空圧スイング吸着(VPSA)モジュール354、第2の圧縮機355、複数の第1の貯蔵モジュール356、ガスクロマトグラフィーモジュール358、分離モジュール360、キャリアガス供給部364、熱伝導度検出器(TCD)366、第3の圧縮機368、浄化モジュール370、及びクリプトン貯蔵モジュール326を備える。
【0075】
酸性ガス除去モジュール350は、ポンピングモジュール314に接続されている。酸性ガス除去モジュール350は、ポンピングモジュール314から結合ガス流を受け取るように構成されている。酸性ガス除去モジュール350は、受け取った結合ガス流から、毒性、腐食性及び/又は酸性化合物、例えば、毒性、腐食性及び/又は酸性ガスを除去するように構成されている。酸性ガス除去モジュール350は、ガス反応器カラム(GRC)とすることができる。酸性ガス除去モジュール350は、ガス流(毒性、腐食性及び/又は酸性化合物の除去後)を第1の圧縮機352に供給するように構成されている。
【0076】
第1の圧縮機352は、酸性ガス除去モジュール350によって出力されたガス流を受け取るように構成されている。第1の圧縮機352は、受け取ったガスストリームを圧縮し、それによって圧縮ガス流を供給するように構成されている。第1の圧縮機352は、圧縮ガス流をVPSAモジュール354に供給するように構成されている。
【0077】
VPSAモジュール354は、第1の圧縮機352から圧縮ガス流を受け取るように構成されている。VPSAモジュール354は、圧縮ガス流中のガス混合物からパージガス(及び随意的に他のガス種)を分離するように構成されている。VPSAモジュール354は、化学種の分子特性及びVPSAモジュール354で使用される吸着剤に対する親和性によって、加圧下でガスを分離させる。好ましくは、VPSAモジュール354は、圧縮ガス流から最大量のパージガス、すなわち、本実施形態では窒素を分離する。実際には、VPSAモジュール354は、例えば、圧縮ガス流中に存在する窒素の約95%を除去/分離することができる。
【0078】
VPSAモジュール354は、ポンプモジュール314に接続され、分離されたパージガスがパージプロセスのためにポンプモジュール314に戻されるように、すなわち窒素パージガスが再使用又は再利用されるようになっている。
VPSAモジュール354は、第2の圧縮機355に接続され、VPSAモジュール354によって分離された他のガス種(すなわち、窒素パージガス以外のガス)が第2の圧縮機355に送られるようになっている。
【0079】
第2の圧縮機355は、VPSAモジュール354によって出力されたガス流を受け取るように構成されている。第2の圧縮機355は、受け取ったガス流を圧縮し、それによって圧縮ガス流を供給するように構成されている。第2の圧縮機355は、圧縮ガス流を第1の貯蔵モジュール356に供給するように構成されている。
【0080】
第2の圧縮機355は、第1の弁380を介して第1の貯蔵モジュール356に接続される。第1の弁380は、二方弁である。第1の弁380は、第2の圧縮機355と第1の貯蔵モジュール356との間のガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0081】
第1の貯蔵モジュール356は、VPSAモジュール354からガスを受け取り、貯蔵するように構成されている。第1の貯蔵モジュール356が受け取るガス流は、圧縮流、すなわち圧力下とすることができる。従って、本実施形態では、第1の貯蔵モジュール356は、毒性、腐食性及び/又は酸性化合物の少なくとも一部、並びにパージガスの少なくとも一部が除去されたガス流を受け取り、貯蔵する。
【0082】
各第1の貯蔵モジュール356は、ガスクロマトグラフィーモジュール358に接続され、第1の貯蔵モジュール356に貯蔵されたガスは、ガスクロマトグラフィーモジュール358に供給できるようになっている。
各第1の貯蔵モジュール356は、第2の弁382を介してガスクロマトグラフィーモジュール358に接続される。第2の弁382は、三方弁である。第2の弁382は、第1の貯蔵モジュール356とガスクロマトグラフィーモジュール358との間のガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるよう構成されている。
【0083】
ガスクロマトグラフィーモジュール358は、その入口で、第1の貯蔵モジュール356からガス流を受け取るように構成されている。ガスクロマトグラフィーモジュール358は、ガスクロマトグラフィーカラムで構成することができる。
図3には、1つのガスクロマトグラフィーモジュール358(すなわちガスクロマトグラフィーカラム)のみが示されているが、実際には、複数のガスクロマトグラフィーモジュール/カラム358が存在できることを理解されたい。複数のガスクロマトグラフィーモジュール/カラム358は、並列に又は直列に動作するように配置することができる。
【0084】
ガスクロマトグラフィーモジュール358は、ガスクロマトグラフィーを用いて、受け取ったガス流の他の成分からクリプトンを分離するように構成されている。本実施形態では、作動時、軽いガスが最初にガスクロマトグラフィーモジュール358から出て行き、その後(すなわち、その後の時点で)重いガス(すなわち、この実施形態ではクリプトン)がガスクロマトグラフィーモジュール358から出て行く。
【0085】
本実施形態では、ガスクロマトグラフィーモジュール358の入口は、キャリアガス供給部364に接続され、ガスクロマトグラフィーモジュール358がキャリアガス供給部364からキャリアガスを受け取るようになっている。本実施形態では、キャリアガスはヘリウムである。キャリアガスは、受け取ったガス流中の他のガス種からクリプトンを分離するのを助けるために、ガスクロマトグラフィーモジュール358によって使用される。詳細には、キャリアガスは、ガスクロマトグラフィーモジュール358を通して、受け取ったガス流を移送する又は運ぶために使用される。
【0086】
ガスクロマトグラフィーモジュール358は、第3の弁384及び第4の弁386を介してキャリアガス供給部364に接続される。第3の弁384は、二方弁である。第3の弁384は、キャリアガス供給部364とガスクロマトグラフィーモジュール358との間のキャリアガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。第4の弁386は、逆止弁である。
ガスクロマトグラフィーモジュール358は、その出口において、TCD366に接続されている。
【0087】
TCD366は、ガスクロマトグラフィーモジュール358から流出するガスの熱伝導率の変化を感知して、異なる化学種のガス(例えばクリプトン)が出力されている場合を検出するように構成されている。TCD366は、ガスクロマトグラフィーモジュール358から出てくるガスを純ヘリウムと経時的に比較することができ、クリプトンがガスクロマトグラフィーモジュール358から流出する場合を検出するために較正することができる。
【0088】
クロマトグラフィーモジュール358の出口は、TCD366を介して、キャリアガス供給部364、システム出口367、及び分離モジュール360に接続される。
クロマトグラフィーモジュール358の出口は、第5の弁388を介してキャリアガス供給部364に接続される。第5の弁388は、二方弁である。第5の弁388は、ガスクロマトグラフィーモジュール358によって出力されるガスのキャリアガス供給364への流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0089】
クロマトグラフィーモジュール358の出力は、第6の弁390を介してシステム出口367に接続される。第6の弁390は、二方弁である。第6の弁390は、ガスクロマトグラフィーモジュール358によって出力されるシステム出口367へのガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0090】
クロマトグラフィーモジュール358の出力は、第7及び第8の弁391、392を介して分離モジュール360に接続される。第7の弁391は、三方弁である。第8の弁392は、二方弁である。第7及び第8弁391、392の各々は、ガスクロマトグラフィーモジュール358によって出力されるガスの分離モジュール360への流れを制御するように、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0091】
本実施形態では、ガスクロマトグラフィーモジュール358から出力されるヘリウム(すなわちキャリアガス)を検出するTCD366に応答して、弁388、390、391、392が制御されて、クロマトグラフィーモジュール358から出力されたガス(すなわちヘリウム)がキャリアガス供給部364に送られる。従って、ヘリウムのキャリアガスは、再使用/再利用することができる。
【0092】
また、TCD366がガスクロマトグラフィーモジュール358から出力されている廃棄ガス(例えば、ヘリウムより重くクリプトンより軽い場合がある)を検出したことに応答して、バルブ388、390、391、392は、クロマトグラフィーモジュール358から出力されたガス(すなわちヘリウムと混合した廃棄ガス)がシステム出口367に送られるように制御される。これらの廃棄ガスは、除害して廃棄することができる。廃棄ガスは、限定されるものではないが、ヘリウムキャリアガスと混合される場合があるアルゴン、窒素、及び/又は酸素ガスを含むことができる。
【0093】
また、TCD366がガスクロマトグラフィーモジュール358から出力されているクリプトンを検出することに応答して、弁388、390、391、392は、クロマトグラフィーモジュール358から出力される出力ガス(すなわち、ヘリウムと混合したクリプトン)を第1の分離モジュール360に送るよう切り替わるように制御される。
【0094】
他の実施形態では、ガスクロマトグラフィーモジュール358を出るガスを経路設定するために、
図3に示すものとは異なる弁の配置を実施することができる。また、他の実施形態では、TCD366の代わりに又はそれに加えて、出力ガス中にどの化学種のガスが存在するかを検出するための異なる技術を実装することができる。
【0095】
作動時、分離モジュール360は、ガスクロマトグラフィーモジュール358から、クリプトン及びヘリウムキャリアガスの混合物を含むガス流を受け取る。分離モジュール360は、このガス流を処理して、ヘリウムキャリアガスからクリプトンを分離するように構成されている。分離モジュール360は、何らかの適切なガス分離技術を使用することができる。例えば、分離モジュール360は、ヘリウムキャリアガスからクリプトンを分離するために、膜、フィルタ、金属有機構造体(MOF)、又はガスクロマトグラフィー分離モジュールを備えることができる。
【0096】
分離モジュール360は、分離されたクリプトンを、例えば、
図3に示すようなクリプトン貯蔵モジュール326に又は
図2に示して上記で詳細に説明したような分配モジュール228に出力するようにさらに構成されている。クリプトン貯蔵モジュール326は、
図1を参照して上記で詳細に説明した貯蔵モジュール126と類似する又は同一とすることができる。本実施形態では、分離モジュール360は、クリプトン貯蔵モジュール326に貯蔵される前にクリプトンをそれぞれ圧縮及び浄化する第3の圧縮機368及び浄化モジュール370を介して、クリプトン貯蔵モジュール326に接続される。いくつかの実施形態では、第3の圧縮機368及び/又は浄化モジュール370は省略される。
【0097】
浄化モジュール370は、分離モジュール360によって出力されたクリプトンを受け取るように構成されている。浄化モジュール370は、受け取ったクリプトンを浄化するように構成されている。何らかの適切な浄化プロセス、例えば、圧力スイング吸着浄化又は低温浄化を実行することができる。
【0098】
分離モジュール360は、分離されたヘリウムキャリアガスを出力し、ヘリウムキャリアガスを第2の圧縮機355に送り返し、それによってヘリウムを再使用/再利用するようにさらに構成されている。第9の弁394は、分離モジュール360から第2の圧縮機355に戻るヘリウムの流れを調節することができる。第9の弁394は、二方弁である。第9の弁394は、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0099】
いくつかの実施形態では、分離モジュール360は、分離されたヘリウムキャリアガスを出力し、ヘリウムキャリアガスをキャリアガス供給部364に送り返すようにさらに構成されている。
従って、クリプトン回収システムの一実施形態が提供される。
【0100】
図4は、微細加工システム400の一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
図3及び4に示す実施形態と共通する要素は、同じ参照数字を用いて示されている。
図4に示す微細加工システム400の一部は、複数のプロセスチャンバ306と、複数のターボポンプ312と、マニホールド330と、ポンピングモジュール314と、クリプトン回収システム410とを備える。
プロセスチャンバ306、ターボポンプ312、マニホールド330、及びポンピングモジュール314は、
図3を参照して上記でより詳細に説明した通りであり、簡潔にするために以下では再び説明しない。
【0101】
本実施形態では、微細加工システム400の一部は、複数の過フッ化化合物(PFC)除去又は変換モジュール(以下、「PFC除去モジュール」402と呼ぶ)をさらに備える。各PFC除去モジュール402は、それぞれのターボポンプ312とマニホールド330との間に接続される。
PFC除去モジュール402は、ターボポンプ312によって出力されるガス流からPFCを除去する又はPFCを他の化合物に変換するように構成されている。PFC除去モジュール402は、何らかの適切なPFC除去プロセスを実施することができる。PFC除去モジュール402は、限定されるものではないが、燃焼器、プラズマ反応器、複合プラズマ触媒(CPC)モジュール、除害モジュールなどを含むことができる。
【0102】
いくつかの実施形態では、クリプトン回収システム410は、
図3に示され上記でより詳細に説明したクリプトン回収システム310と同一とすることができる。いくつかの実施形態では、クリプトン回収システム410は、酸性ガス除去モジュールが湿式スクラバー(以下に説明するような)に置き換えられることを除いて、クリプトン回収システム310と同一とすることができる。いくつかの実施形態では、クリプトン回収システム410は、VPSAモジュール354が省略されていることを除いて、クリプトン回収システム310と同一とすることができる。いくつかの実施形態では、クリプトン回収システム410は、酸性ガス除去モジュールが湿式スクラバー(以下に説明するような)に置き換えられ、VPSAモジュール354が省略されていることを除いて、クリプトン回収システム310と同一とすることができる。
【0103】
本実施形態において、クリプトン回収システム410は、スクラバー420、第1の圧縮機352、第1の貯蔵モジュール356、ガスクロマトグラフィーモジュール358、分離モジュール360、追加の分離モジュール460、キャリアガス供給部364、第2の貯蔵モジュール466、第4の圧縮機468、及び(随意的な)浄化モジュール370を備える。クリプトン回収システム410は、第1の弁380、第2の弁382、第10の弁484、第11の弁486、第12の弁488、第13の弁490、第14の弁492、及び第15の弁494をさらに含む。第1の圧縮機352、第1の貯蔵モジュール356、ガスクロマトグラフィーモジュール358、分離モジュール360、キャリアガス供給部364、及び弁380-382は、
図3を参照して上記でより詳細に説明した通りであり、簡潔にするために以下では再び説明しない。
【0104】
スクラバー420は、ポンピングモジュール314に接続される。スクラバー420は、ポンピングモジュール314から結合ガス流を受け取るように構成されている。スクラバー420は、それを流れるガス流から特定の物質(例えば、毒性、腐食性及び/又は酸性化合物又はガス)を除去するように構成されている。本実施形態では、スクラバー420は、スクラバー420を流れるガス流に、例えば水などの洗浄液を導入するように構成された湿式スクラバーである。例えば、スクラバー420は、ガス流に洗浄液を噴霧すること、ガス流を洗浄液のリザーバに通すこと、又は何らかの他の接触方法を実施することができる。本実施形態では、スクラバー420は、
図4に矢印及び参照数字424で示されるように、例えば水などの洗浄液の供給を受け、使用済みの洗浄液を出力する。
【0105】
好ましくは、乾燥機がスクラバー420の出口に接続され、スクラバー420によって出力されるガス流を乾燥させる(すなわち、液体及び/又は蒸気を除去する)。
スクラバー420は、スクラビング処理/洗浄されたガス流を第1の圧縮機352に供給するように構成されている。
【0106】
ガスクロマトグラフィーモジュール358は、第11の弁486、第2の貯蔵モジュール466、第10の弁484、及び第2の弁382を介してキャリアガス供給部364に接続される。第10の弁484は、四方弁である。第11の弁486は、二方弁である。第10及び第11の弁484、486は、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。第11の弁486は、キャリアガス供給部364と第2の貯蔵モジュール466との間のキャリアガスの流れを制御するように制御される。第2の貯蔵モジュール466は、キャリアガス供給部364からキャリアガスを受け取り、貯蔵するように構成されている。第2の貯蔵モジュール466は、ガスクロマトグラフィー分離プロセスで使用するために、キャリアガスをガスクロマトグラフィーモジュール358に供給するように構成されている。第2及び第10の弁382、484は、ガスクロマトグラフィーモジュール358へのキャリアガスの供給を調節するように制御することができる。
【0107】
ガスクロマトグラフィーモジュール358は、分離モジュール360及び追加の分離モジュール460に接続される。
クロマトグラフィーモジュール358の出力は、第12の弁488を介して追加の分離モジュール460に接続される。第12の弁488は、二方弁である。第12の弁488は、ガスクロマトグラフィーモジュール358によって出力される追加の分離モジュール460へのガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0108】
また、クロマトグラフィーモジュール358の出力は、第13の弁490を介して分離モジュール360に接続される。第13の弁490は、二方弁である。第13弁490は、ガスクロマトグラフィーモジュール358によって出力される分離モジュール360へのガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0109】
本実施形態では、弁488及び490は、ガスクロマトグラフィーモジュール358から出る比較的軽いガス(ヘリウムキャリアガスと混合した)が追加の分離モジュール460に送られるが、ガスクロマトグラフィーモジュール358から出る比較的重いガス、すなわちクリプトン(ヘリウムキャリアガスと混合した)は、分離モジュール360に送られるように制御される。クリプトンがガスクロマトグラフィーモジュール358から出るときを検出し、弁488、490を制御して出力ガスを正しく経路設定するために、何らかの適切なプロセスを使用することができる。例えば、TCDは、
図3を参照して上述したものと同様の方法で実装することができる。
【0110】
作動時、追加の分離モジュール460は、ガスクロマトグラフィーモジュール358から、比較的軽いガス(例えば、アルゴン、窒素、及び/又は酸素ガスを含むことができる)及びヘリウムキャリアガスの混合物を含むガス流を受け取る。追加の分離モジュール460は、このガス流を処理して、比較的軽いガスをヘリウムキャリアガスから分離するように構成されている。追加の分離モジュール460は、何らかの適切なガス分離技術を使用することができる。
【0111】
追加の分離モジュール460は、分離された比較的軽いガスをシステム400から出力するようにさらに構成されている。これらのガスは、除害システムへ出力することができる。
追加の分離モジュール460は、分離されたヘリウムキャリアガスを出力し、ヘリウムキャリアガスを第2の貯蔵モジュール466に送り返し、そこで貯蔵してその後に再使用/再利用するようにさらに構成されている。本実施形態では、追加の分離モジュール460は、第2の貯蔵モジュール466に貯蔵される前にヘリウムを圧縮する第4の圧縮機468を介して、第2の貯蔵モジュール466に接続される。
【0112】
動作時、分離モジュール360は、ガスクロマトグラフィーモジュール358から、クリプトン及びヘリウムキャリアガスの混合物を含むガス流を受け取る。分離モジュール360は、このガス流を処理して、ヘリウムキャリアガスからクリプトンを分離するように構成されている。分離モジュール360は、何らかの適切なガス分離技術を使用することができる。例えば、分離モジュール360は、ヘリウムキャリアガスからクリプトンを分離するために、膜、フィルタ、又は金属有機構造体(MOF)を備えることができる。
【0113】
分離モジュール360は、例えば、分離されたクリプトンを、
図4に示すようなクリプトン貯蔵モジュール326に又は
図2に示し上記でより詳細に説明したような分配モジュール228に出力するようにさらに構成されている。クリプトン貯蔵モジュール326は、
図1を参照して上記で詳細に説明した貯蔵モジュール126と類似する又は同一とすることができる。
【0114】
分離モジュール360は、分離されたヘリウムキャリアガスを出力し、ヘリウムキャリアガスを第2の貯蔵モジュール366に送り返し、そこで貯蔵してその後に再使用/再利用するようにさらに構成されている。本実施形態では、分離モジュール360は、第2の貯蔵モジュール366に貯蔵される前にヘリウムを圧縮する第4の圧縮機468を介して、第2の貯蔵モジュール366に接続される。
【0115】
本実施形態では、随意的にガスクロマトグラフィーモジュール358の入力及び出力は、導管及び第14の弁492を介して接続される。第14の弁492は、二方弁である。第14の弁492は、ガスクロマトグラフィーモジュール358によって出力されたガスの流れをガスクロマトグラフィーモジュール358への入力に戻すように制御するために、(例えば、
図1及び
図2を参照して上述した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるよう構成されている。従って、ガスクロマトグラフィーモジュール358によって出力されたガスは、さらなるガスクロマトグラフィー分離プロセスを受けるために、ガスクロマトグラフィーモジュール358を介して再循環させることができる。
【0116】
随意的な浄化モジュール370は、分離モジュール360とクリプトン貯蔵モジュール326との間に接続される。クリプトン貯蔵モジュール326は、
図3を参照して上記で詳細に説明されており、簡潔にするために以下で再び説明しない。
【0117】
浄化モジュール370は、分離モジュール360によって出力されたクリプトンを受け取るように構成されている。浄化モジュール370は、受け取ったクリプトンを浄化するように構成されている。何らかの適切な浄化プロセス、例えば、圧力スイング吸着浄化又は低温浄化を実行することができる。浄化モジュール370は、浄化されたクリプトンを、クリプトン貯蔵モジュール326又は追加のクリプトン貯蔵モジュール426のいずれかに(随意的な研磨モジュール428及び/又はバッファボリューム430を介して)出力するように構成されている。クリプトン貯蔵モジュール326又は追加のクリプトン貯蔵モジュール426のいずれかへの浄化されたクリプトンの経路設定は、第15の弁494によって制御される。第15の弁494は、二方弁である。第15の弁494は、クリプトン貯蔵モジュール326又は追加のクリプトン貯蔵モジュール426のいずれかへの浄化クリプトンの経路設定を制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0118】
随意的な研磨モジュール428は、
図1及び/又は
図2を参照して上記に詳細に説明した研磨モジュール122、222の一方又は両方と同一とすること又は類似することができる。
バッファボリューム430は、追加のクリプトン貯蔵モジュール426に移送される前に浄化クリプトンを(例えば、一時的に)貯蔵するための貯蔵タンク又は容器等とすることができる。従って、クリプトン回収システムのさらなる実施形態が提供される。
【0119】
図5は、微細加工システム500の一部のさらなる詳細を示す概略図である(正確な縮尺ではない)。
図3から5に示す実施形態に共通する要素は、同じ参照数字を用いて示されている。
図5に示す微細加工システム500の一部は、プロセスチャンバ306、ターボポンプ312、マニホールド330、ポンピングモジュール314、及びクリプトン回収システム510を備える。
【0120】
プロセスチャンバ306、ターボポンプ312、マニホールド330、及びポンピングモジュール314は、
図3を参照して上記でより詳細に説明した通りであり、簡潔にするために以下では再び説明しない。
図5には、単一のプロセスチャンバ306及び単一のターボポンプ312のみが示されているが、実際には、本実施形態では、複数のプロセスチャンバ306及びターボポンプ312が存在し、各ターボポンプ312はそれぞれのプロセスチャンバ306に接続されていることを理解されたい。
【0121】
本実施形態では、ポンプモジュール314は、
図5に矢印及び参照数字340で示されるようにパージガス(すなわち窒素)を受け取るように構成されていることに加えて、追加のガス(これは追加のパージガスと考えることができる)を受け取るようにさらに構成されている。本実施形態では、この追加のパージガスは、ヘリウムのような不活性ガスである。追加のパージガスのポンプモジュール314及び/又はマニホールドへの流れは、
図5において矢印及び参照数字550によって示されている。ポンピングモジュール314への追加のパージガスの流れは、第9の弁552によって調節することができる。第9の弁552は、ポンピングモジュール314への追加のパージガスの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されるように構成されている。
【0122】
追加のパージガスは、ターボポンプ312に供給することもできる。
ポンピングモジュール314及び/又はターボポンプ312は、ポンプ送給された排気ガスと追加のパージガス(及びポンピングモジュール314の場合のパージガス)とを混合又は混和するように構成されている。
ポンピングモジュール314は、混合ガスをクリプトン回収システム510の第1の圧縮機352にポンプ送給するように構成されている。
【0123】
本実施形態において、クリプトン回収システム510は、第1の圧縮機352、VPSAモジュール354、ゲッターモジュール502、第1のポンプ504、第3の分離モジュール506、第2のポンプ508、第1のバッファボリューム509、第2のバッファボリューム512、及び複数のクリプトン供給部514を備える。第1の圧縮機352及びVPSAモジュール354は、
図3を参照して上記でより詳細に説明した通りであり、簡潔にするために以下では再び説明しない。
【0124】
ゲッターモジュール502は、VPSAモジュール354から出力されるガス流を受け取るように構成されている。ゲッターモジュール502は、ゲッター、すなわちガス流路に配置された反応性物質の堆積物を備える。ゲッターは、ゲッターモジュール502内の表面に塗布された被覆とすることができる。ゲッターは、チタンゲッター、例えば、高温チタンゲッターとすることができる。作動時、ガス分子は、ゲッター材料に衝突すると化学的に又は吸収によってそれと結合する。従って、ゲッターは、ガス流から所定量のガスを除去する。詳細には、本実施形態では、ゲッターは、PFC、水素、及び窒素からなる群から選択される1又は2以上のガスを除去するように構成されている。ゲッターモジュール502は、ガス流(ゲッターによるガスの除去後の)を第1のポンプ504に供給するようにさらに構成されている。
【0125】
第1のポンプ504は、ゲッターモジュール502によって出力されたガス流を受け取るように構成されている。第1のポンプ504は、受け取ったガス流を第3の分離モジュール506にポンプ送給するように構成されている。
【0126】
作動時、第3の分離モジュール506は、第1のポンプ504から、クリプトン及びヘリウム(及び場合によっては他のガス)の混合物からなるガス流を受け取る。第3の分離モジュール506は、このガス流を処理して、クリプトンをヘリウム(及び場合によっては他のガス)から分離するように構成されている。第3の分離モジュール506は、何らかの適切なガス分離技術を使用することができる。例えば、第3の分離モジュール506は、ヘリウムからクリプトンを分離するために、膜、フィルタ、又は金属有機構造体(MOF)を備えることができる。
【0127】
第3の分離モジュール506は、分離されたヘリウムガスを出力し、ヘリウムガスをターボポンプ312及び/又はポンプモジュール314に送るようにさらに構成されており、ターボポンプ312及び/又はポンプモジュール314には、ヘリウムが追加のパージガスとして供給される。本実施形態では、第3の分離モジュール506は、分離されたヘリウムを、第2のポンプ508(ヘリウムをポンプ送給する)及びヘリウムを一時的に貯蔵することができる第1のバッファボリューム509を介して、ターボポンプ312及び/又はポンピングモジュール314に供給する。従って、追加のパージガス(すなわち、ヘリウム)は、再使用/再利用される。
【0128】
第3の分離モジュール506は、分離されたクリプトンを、
図5に示すように第2のバッファボリューム512を介して、例えばクリプトン貯蔵モジュール326に又は
図2に示し上記で詳細に説明したような分配モジュール228に出力するようにさらに構成されている。クリプトン貯蔵モジュール326は、
図1を参照して上記でより詳細に説明した貯蔵モジュール126と類似すること又は同一とすることができる。
【0129】
第2のバッファボリューム512は、第3の分離モジュール506から分離されたクリプトンを受け取るように構成されている。第2のバッファボリューム512は、クリプトン供給部514から追加の(例えば、補給の(top-up))クリプトンを受け取るようにさらに構成されている。クリプトン供給部514からの追加のクリプトンの流れは、複数の第16の弁520によって調節又は制御される。第16の弁520は、二方弁である。第16の弁520は、クリプトン供給部514及び第2のバッファボリューム512からのクリプトンの流れを制御するために、(例えば、
図1及び2を参照して上記で詳細に説明した制御モジュール116又は制御モジュール216などの制御モジュールによって)制御されように構成されている。第2のバッファボリューム512は、第3の分離モジュール506からの分離されたクリプトン及びクリプトン供給部514からの追加のクリプトンの混合物を貯蔵するように構成されている。第2のバッファボリューム512は、貯蔵されたクリプトンをクリプトン貯蔵モジュール326に出力するように構成されている。
【0130】
随意的に、分析モジュール516は、第2のバッファボリューム512に貯蔵された混合物の組成の分析を実行するために実装される。
従って、クリプトン回収システムのさらなる実施形態が提供される。
【0131】
上記の実施形態では、クリプトンは、プロセスチャンバで使用され、クリプトン回収システムによって回収される。しかしながら、他の実施形態では、システムは、クリプトンの代わりに又はそれに加えて、異なる希ガスを使用する。他の適切な希ガスの例には、限定されるものではないが、アルゴン及びキセノンが含まれる。アルゴン、キセノン、及びクリプトンの何らかの組み合わせなど、複数の異なる希ガスの混合物又は混和物を使用することができる。
上記の実施形態では、複数のプロセスチャンバが存在する。しかしながら、他の実施形態では、単一のプロセスチャンバのみが存在する。
【符号の説明】
【0132】
100 微細加工システム
102 開ループ排気ガス処理システム
104 クリプトン供給部
106 プロセスチャンバ
108 ポンピングシステム
110 クリプトンの回収システム
112 ターボポンプ
114 ポンプモジュール
116 制御モジュール
118 浄化モジュール
120 分離モジュール
122 研磨モジュール
124 圧縮モジュール
126 貯蔵モジュール
200 微細加工システム
202 閉ループ排気ガス処理システム
204 クリプトン供給部
206 プロセスチャンバ
208 ポンプシステム
210 クリプトン回収システム
212 ターボポンプ
214 ポンピングモジュール
216 制御モジュール
218 浄化モジュール
220 分離モジュール
222 研磨モジュール
226 貯蔵モジュール
228 分配モジュール
300 微細加工システム
306 プロセスチャンバ
310 クリプトン回収システム
312 ターボポンプ
314 ポンピングモジュール
330 マニホールド
340 パージガス流
350 酸性ガス除去モジュール
352 第1の圧縮機
354 真空圧スイング吸着(VPSA)モジュール
355 第2の圧縮機
356 第1の貯蔵モジュール
358 ガスクロマトグラフィーモジュール
360 分離モジュール
364 キャリアガス供給部
367 システム出口
368 第3の圧縮機
370 浄化モジュール
326 クリプトン貯蔵モジュール
380 第1の弁
382 第2の弁
384 第3の弁
386 第4の弁
388 第5の弁
390 第6の弁
391 第7の弁
392 第8の弁
394 第9の弁
400 微細加工システム
402 PFC除去モジュール
420 スクラバー
424 洗浄液流
426 追加のクリプトン貯蔵モジュール
428 研磨モジュール
430 バッファボリューム
460 追加の分離モジュール
466 第2の貯蔵モジュール
468 第4の圧縮機
484 第10の弁
486 第11の弁
488 第12の弁
490 第13の弁
492 第14の弁
494 第15の弁
500 微細加工システム
502 ゲッターモジュール
504 第1のポンプ
506 第3の分離モジュール
508 第1のポンプ
509 第1のバッファボリューム
510 クリプトン回収システム
512 第2のバッファボリューム
514 クリプトンの供給部
516 分析モジュール
552 第9の弁
520 第10の弁
550 ヘリウム流
【国際調査報告】