(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-08-22
(54)【発明の名称】磁場管理による効率化
(51)【国際特許分類】
H01F 38/14 20060101AFI20230815BHJP
H02J 50/10 20160101ALI20230815BHJP
H01F 27/10 20060101ALI20230815BHJP
H01F 27/00 20060101ALI20230815BHJP
H01F 41/00 20060101ALI20230815BHJP
【FI】
H01F38/14
H02J50/10
H01F27/10
H01F27/00 A
H01F41/00 D
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023505668
(86)(22)【出願日】2021-07-14
(85)【翻訳文提出日】2023-02-28
(86)【国際出願番号】 US2021070876
(87)【国際公開番号】W WO2022026977
(87)【国際公開日】2022-02-03
(32)【優先日】2020-07-28
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】514287443
【氏名又は名称】インダクトイーブイ インク.
(74)【代理人】
【識別番号】100104411
【氏名又は名称】矢口 太郎
(72)【発明者】
【氏名】シュラフェル、ピーター シー.
(72)【発明者】
【氏名】マクマホン、フランシス ジェイ.
(72)【発明者】
【氏名】ウォード、マシュー エル.
【テーマコード(参考)】
5E050
5E059
【Fターム(参考)】
5E050CA06
5E059BB23
(57)【要約】
【要約】
低損失を目的とした共鳴誘導ワイヤレス電力伝送コイルアセンブリは、ワイヤレス電力伝送コイルと、前記ワイヤレス電力伝送コイルに隣接する非飽和バッキングコア層と、渦電流シールドと、前記バッキングコア層と前記渦電流シールド間のギャップ層と、前記ワイヤレス電力伝送コイル、バッキングコア層、ギャップ層、渦電流シールドを同梱する筐体と、を含む。前記ギャップ層は、前記バッキングコア層の厚さに対して、前記渦電流シールドの渦電流損失が実質的に平坦な厚さ範囲内の厚さを有する。前記バッキングコア層の厚さと前記ギャップ層の厚さは、前記バッキングコア層での電力損失と前記ギャップ層での渦電流損失からなる総電力損失が実質的に最小になるように選択される。
【選択図】
図8
【特許請求の範囲】
【請求項1】
ワイヤレス電力伝送システムのためのアセンブリであって、
ワイヤレス電力伝送コイルと、
前記ワイヤレス電力伝送コイルに隣接する非飽和バッキングコア層と、
渦電流シールドと、
前記バッキングコア層と前記渦電流シールドとの間のギャップ層であって、当該ギャップ層は、前記バッキングコア層の所定の厚さに対してギャップ層の厚さ範囲内のギャップ層の厚さを有し、前記渦電流シールドにおける渦電流損失は、前記ギャップ層の厚さ範囲にわたって実質的に平坦である、前記ギャップ層と、
前記ワイヤレス電力伝送コイル、バッキングコア層、ギャップ層および渦電流シールドを同梱する筐体と
を有する、アセンブリ。
【請求項2】
請求項1記載のアセンブリにおいて、前記バッキングコア層の厚さと前記ギャップ層の厚さは、前記バッキングコア層での電力損失と前記渦電流シールドでの渦電流損失とを有する総電力損失が実質的に最小となるように選択される、アセンブリ。
【請求項3】
請求項1記載のアセンブリにおいて、前記ギャップ層は、空隙、非磁性充填剤、非磁性構造支持要素、少なくとも1つの非磁性導管、または非磁性冷却剤のうちの少なくとも1つを有する、アセンブリ。
【請求項4】
請求項3記載のアセンブリにおいて、前記少なくとも1つの導管は、冷却/加熱流体を循環させる、アセンブリ。
【請求項5】
請求項4記載のアセンブリにおいて、前記流体は、液体である、アセンブリ。
【請求項6】
請求項3記載のアセンブリにおいて、前記少なくとも1つの導管は、前記バッキングコア層に対してすぐそばに配置された非導電性、非磁性材料を有する、アセンブリ。
【請求項7】
請求項3記載のアセンブリにおいて、前記少なくとも1つの非磁性導管は、前記渦電流シールドに対してすぐそばに配置された非導電性、非磁性材料を有する、アセンブリ。
【請求項8】
請求項4記載のアセンブリにおいて、さらに、
ヒステリシス加熱による電力損失を実質的に最小化するために、少なくとも1つの導管内で前記冷却/加熱流体を循環させて前記バッキングコア層を熱的に管理する熱管理装置を有するものである、アセンブリ。
【請求項9】
請求項4記載のアセンブリにおいて、さらに、
少なくとも1つの導管内で前記冷却/加熱流体を循環させて前記ワイヤレス電力伝送コイルアセンブリを熱的に管理する熱管理装置を有するものである、アセンブリ。
【請求項10】
請求項8記載のアセンブリにおいて、前記渦電流シールドは、温度測定値を前記熱管理装置に供給する1若しくはそれ以上の温度センサを有し、前記熱管理装置は、前記冷却/加熱流体の循環を制御して前記バッキングコア層を所定の温度に維持し、電力損失を最小限に抑える、アセンブリ。
【請求項11】
請求項10記載のアセンブリにおいて、前記熱管理装置は、吸気温度と前記バッキングコアからの温度測定値を予測モデルに提供して加熱/冷却要件を予測し、前記冷却または加熱要件がパッシブ冷却またはパッシブ加熱の能力を超えると予測される場合、前記冷却/加熱流体の循環を前記熱管理装置で制御して前記バッキングコア層の温度を調節する、アセンブリ。
【請求項12】
請求項11記載のアセンブリにおいて、さらに、
前記熱管理装置で制御して前記少なくとも1つの導管を介して前記ギャップ層に冷却/加熱流体を提供する少なくとも1つのバルブを備えた冷却/加熱流体容器を有するものである、アセンブリ。
【請求項13】
請求項1記載のアセンブリにおいて、前記バッキングコア層は、フェライト、積層金属シート、粉末酸化物、粉末酸化物焼結体、またはアモルファス金属のうち少なくとも1つを有する、アセンブリ。
【請求項14】
ワイヤレス電力伝送システムのワイヤレス電力伝送アセンブリの組み立て方法であって、
ワイヤレス電力伝送コイルに隣接する非飽和バッキングコア層を提供する工程と、
前記バッキングコア層からギャップ層によって分離された渦電流シールドを提供する工程であって、当該ギャップ層は、前記バッキングコア層の所定の厚さに対するギャップ層の厚さ範囲にギャップ層の厚さを有し、前記渦電流シールドにおける渦電流損失が、前記ギャップ層の厚さ範囲にわたって実質的に平坦である、前記提供する工程と、
筐体内に前記ワイヤレス電力伝送コイル、バッキングコア層、ギャップ層および渦電流シールドを同梱する工程と
を有する、方法。
【請求項15】
請求項14記載の方法において、さらに、
前記バッキングコア層における電力損失と前記ギャップ層上の渦電流損失とを有する総電力損失が実質的に最小となるように、前記バッキングコア層の厚さに対する前記ギャップ層の厚さを選択する工程を有するものである、方法。
【請求項16】
請求項15記載の方法において、さらに、
ここでdfは前記バッキングコア層の厚さ、dgは前記ギャップ層の厚さである、総厚C=dg+dfを拘束する工程を有するものである、方法。
【請求項17】
請求項14記載の方法において、さらに、
前記バッキングコア層に対して隣接して配置された前記ギャップ層内の少なくとも1つの導管を通して冷却/加熱流体を循環させる工程を有するものである、方法。
【請求項18】
請求項14記載の方法において、さらに、
前記少なくとも1つの導管を通る前記冷却/加熱流体の循環を管理することによって、電力損失を最小化するように前記バッキングコア層を熱的に管理する熱管理装置を有するものである、方法。
【請求項19】
請求項18記載の方法において、さらに、
吸気温度および前記バッキングコアからの温度測定値を予測モデルに提供して加熱/冷却要件を予測し、前記冷却または加熱要件がパッシブ冷却またはパッシブ加熱の能力を超えると予測される場合、前記冷却/加熱流体の循環を制御して前記バッキングコア層の温度を調節する、前記熱管理装置を有するものである、方法。
【請求項20】
請求項19記載の方法において、さらに、
少なくとも1つのバルブを備えた少なくとも1つの冷却/加熱流体容器と、前記少なくとも1つのバルブを制御して前記少なくとも1つの導管を介して前記ギャップ層に冷却/加熱流体を供給して前記バッキングコア層に加熱または冷却を提供して電力損失を実質的に最小化する前記熱管理システムと、を提供する工程を有するものである、方法。
【発明の詳細な説明】
【背景技術】
【0001】
本出願は、2020年7月28日に出願され、「EFFICIENCY GAINS THROUGH MAGNETIC FIELD MANAGEMENT」と題する米国特許出願第16/940、659号の便益を主張し、その全体は参照により本書に組み込まれるものとする。
【0002】
本特許出願は、2019年11月20日に出願された米国特許出願第16/615、290号、名称「Wireless Power Transfer Thin Profile Coil Assembly」に関連しており、これは、米国への優先権を主張する22018年5月30日出願のPCT/US2018/035060の国内段階移行出願である。2017年5月30日に出願された米国仮特許出願第62/512、544号である。これらの特許出願の内容は、参照により本明細書に組み込まれる。
【0003】
本特許出願は、磁気共鳴誘導を利用したワイヤレス充電に関連するワイヤレス電力伝送コイルアセンブリを記載するものである。本明細書に記載されたワイヤレス電力転送コイルアセンブリは、送信ワイヤレス電力伝送装置の一部および/または受信ワイヤレス電力伝送装置の一部として使用することができる。
【0004】
共鳴誘導ワイヤレス充電は、2つの同心円状のコイルを共通のコイル軸に沿ってずらして配置した空芯変圧器を利用する。前記2つのコイル間の磁束のつながりによって、前記送信装置から前記受信装置へ電力を送る。ファラデーの誘導の法則で説明されているように、第1のコイル(一次または送信機)は時間的に変化する磁場を作り出す。第2のコイル、または受信コイルは、受け取った前記磁束を電気信号に変換し、電気自動車や蓄電池(例えば、バッテリー)の充電システムなどの電気系統に電力を供給するために使用する。このような空芯変圧器は、非空芯変圧器にとっては普通のように前記コイル間に完全な磁気回路を作るために配置されたコアではなく、前記第1のコイルと前記第2のコイルの後ろに位置する個々のコア(名目上フェライト製)を使用する。
【発明の概要】
【0005】
発明を実施するための形態おいて以下でさらに説明される概念の選択を簡略化した形で導入するために、様々な実施例を説明する。本概要は、請求された主題の重要なまたは必須の特徴を特定することを意図しておらず、請求された主題の範囲を限定するために使用されることを意図していない。
【0006】
サンプルの実施例では、低電力損失のために設計された共鳴誘導ワイヤレス電力伝送コイルアセンブリが提供される。前記アセンブリは、ワイヤレス電力伝送コイルと、前記ワイヤレス電力転送コイルに隣接する非飽和バッキングコア層と、渦電流シールドと、前記バッキングコア層と前記渦電流シールド間のギャップ層と、前記ワイヤレス電力伝送コイル、バッキングコア層、ギャップ層および渦電流シールドを同梱する筐体と、を含む。前記ギャップ層は、前記バッキングコア層の所定の厚さに対して、前記渦電流シールドにおける渦電流損失が前記ギャップ層の厚さ範囲において実質的に平坦であるギャップ層の厚さを有する。前記バッキングコア層の厚さおよび前記ギャップ層の厚さは、前記バッキングコア層での電力損失と前記渦電流シールドでの渦電流損失とを合わせた総電力損失が実質的に最小となるように選択される。前記バッキングコア層は、バッキングコア、積層金属シート、粉末酸化物、粉末酸化物焼結体、および/またはアモルファス金属を有してもよい。
【0007】
サンプルの実施例では、前記ギャップ層は、空隙、非磁性充填剤、非磁性構造支持要素、少なくとも1つの非磁性導管、および/または非磁性冷却剤から構成されてもよい。前記少なくとも1つの導管は、気体または液体であってよい冷却/加熱流体を循環させてもよい。前記少なくとも1つの導管は、前記バッキングコア層に対してすぐそばおよび/または前記渦電流シールドに対してすぐそばに配置された非導電性、非磁性材料を有していてもよい。ヒステリシス加熱による電力損失を実質的に最小化するために前記バッキングコア層を熱的に管理し、および/またはワイヤレス電力伝送(WPT)コイルアセンブリを熱的に管理するために、前記少なくとも1つの導管内の前記冷却/加熱流体を循環させる熱管理装置も提供されてもよい。
【0008】
他のサンプルの実施例では、前記渦電流シールドは、前記熱管理装置に温度測定値を提供する1若しくはそれ以上の温度センサを有していてもよい。その結果、前記熱管理装置は、前記バッキングコア層を所定の温度に維持し、電力損失を最小化するために前記冷却/加熱流体の循環を制御してもよい。前記熱管理装置は、吸気口温度と前記バッキングコア層からの温度測定値を予測モデルに提供し、前記加熱/冷却要件を予測することができる。前記冷却または加熱要件がパッシブ冷却またはパッシブ加熱の能力を超えると予測される場合、前記冷却/加熱流体の循環が制御されて、前記バッキングコア層の温度を調整する。冷却/加熱流体容器は、熱管理システムによって制御され、少なくとも1つの導管を介して前記ギャップ層に冷却/加熱流体を供給する少なくとも1つのバルブを備えてもよい。
【0009】
他の態様によれば、ワイヤレス電力転送システムのワイヤレス電力伝送アセンブリを組み立てる方法が提供される。この方法は、ワイヤレス電力伝送コイルに隣接する非飽和バッキングコア層を提供する工程と、前記バッキングコア層からギャップ層によって分離された渦電流シールドを提供する工程であって、前記ギャップ層は、前記渦電流シールドにおける渦電流損失が前記ギャップ層の厚さ範囲にわたって実質的に平坦である前記バッキングコア層の所定の厚さに対するギャップ層の厚さ範囲にギャップ層の厚さを有する、前記提供する工程と、筐体内に前記ワイヤレス電力伝送コイル、バッキングコア層、ギャップ層および渦電流シールドを同梱する工程と、を含む。前記方法は、さらに、前記バッキングコア層における電力損失と前記ギャップ層上の渦電流損失とを有する総電力損失が実質的に最小となるように、バッキングコア層の厚さに対する前記ギャップ層の厚さを選択する工程を含む。サンプルの実施例では、前記方法は、総拘束厚Cを含む、ここでC=dg+df、dfは前記バッキングコア層の厚さ、dgは前記ギャップ層の厚さである。
【0010】
サンプルの実施例では、前記方法は、前記ギャップ層内の少なくとも1つの導管を通して冷却/加熱流体を循環させる工程を含む。前記少なくとも1つの導管は、前記バッキングコア層に対して隣接して配置されてもよい。熱管理装置は、前記少なくとも1つの導管を通る前記冷却/加熱流体の循環を管理することによって、電力損失を最小化するように前記バッキングコア層を熱的に管理してもよい。前記熱管理装置は、さらに、注入口流体温度と前記バッキングコア層からの温度測定値を予測モデルに提供し、加熱/冷却要件を予測してもよい。前記冷却または加熱要件がパッシブ冷却またはパッシブ加熱の能力を超えると予測される場合、前記冷却/加熱流体の循環を制御して、前記バッキングコア層の温度を調整する。前記方法は、さらに、少なくとも1つのバルブを備えた少なくとも1つの冷却/加熱流体容器を提供する工程を含んでもよい。前記熱管理システムは、前記少なくとも1つのバルブを制御して、前記少なくとも1つの導管を介して前記ギャップ層に冷却/加熱流体を供給し、前記バッキングコア層に加熱または冷却を提供して、電力損失を実質的に最小化することができる。
【0011】
前述の実施例のうちのいずれか1つを他の前述の実施例のうちのいずれか1若しくはそれ以上と組み合わせて、本開示の範囲内の新しい実施例を作成することができることは理解されるであろう。
【図面の簡単な説明】
【0012】
必ずしも縮尺通りに描かれていない図面において、同様の数字は、異なる図における同様の構成要素を説明することがある。前記図面は、限定ではなく例として、本書で議論される様々な実施例を一般的に示している。
【
図1】
図1は、ワイヤレス電力伝送システムにおける車両用アセンブリの主要な構成要素を示している。
【
図2】
図2は、ワイヤレス電力伝送システムにおける地上側アセンブリの主要な構成要素を示している。
【
図3】
図3は、渦電流シールドとして機能する導電性ハウジングに印加された磁場による誘導渦電流を示している。
【
図4】
図4は、磁気電力伝送システムにおける電力損失に対するバッキングコアとバックプレートとの間のギャップ層の厚さの増加の影響を示している。
【
図5】
図5は、バッキングコアの厚さが異なり、ギャップ層の厚さを拡大した場合に予想される電力損失を示す図である。
【
図6】
図6は、磁気電力伝送システムにおけるバッキングコア層の厚さに対するギャップ層の厚さと電力損失との間の相対的関係を示す図である。
【
図7A】
図7Aは、異なるバッキングコアの厚さが前記ギャップ層の厚さを増加させるために徐々に薄くされる固定層に対して予想される電力損失を示す図である。
【
図7B】
図7Bは、合計の厚さ(バッキングコアとギャップ層の合計)の例示的な範囲に対するバッキングコアの厚さとギャップ層の厚さの実質的に最適な比率の範囲を示している。
【
図8】
図8は、地上側アセンブリにおけるバッキングコア層の間隔の有利な使用を示す図である。
【
図9】
図9は、車両用アセンブリにおけるバッキングコア層の間隔の有利な使用を示す図である。
【
図10】
図10は、車両用ワイヤレス電力伝送システムを概略的に詳述している。
【
図11A】
図11Aは、例示的なパッシブまたはアクティブ空冷式車両用アセンブリを高位で示している。
【
図12】
図12は、電力損失密度に対するバッキングコア温度として表されるバッキングコアの効率の温度感度を示す図である。
【発明を実施するための形態】
【0013】
本明細書に記載されたワイヤレス電力伝送コイルアセンブリ、筐体、取り付け具、および関連する方法は、本開示の一部を構成する添付の図および例に関連して取られる以下の詳細な説明を参照することによって、より容易に理解され得る。本明細書は、本明細書に記載および/または示される特定の製品、方法、条件またはパラメータに限定されないこと、および本明細書に使用される用語は、例示として特定の実施形態を説明するためのものであり、いかなる請求対象の限定も意図しないことが理解されよう。同様に、可能性のある機構もしくは作用様式または改善の理由に関するいかなる記述も、例示のみを意図しており、本明細書に記載される主題は、そのような示唆された機構もしくは作用様式または改善の理由の正否によって拘束されるものではない。この文章を通して、記述は、方法と、そのような方法を実施するためのシステム/ソフトウェアの両方に言及していることが認識される。
【0014】
次に、例示的な実施形態の詳細な説明を、
図1~
図12を参照して説明する。この説明は、可能な実施態様の詳細な例を提供するが、これらの詳細は例示的であることを意図しており、決して発明的主題の範囲を限定するものではないことに留意されたい。
【0015】
PCT出願PCT/US2018/035060「Wireless Power Transger Thin Profile Coil Assembly」において以前に教示されたように、フェライトコア層の薄型化は、トランスファコイルの重量とコストを低減する手段として望ましい。本明細書に記載されているように、バッキングコア層(例えば、フェライト)の厚さおよび位置決めも、加熱および誘導渦電流による電力損失を制御および最適化(名目上最小化)するために使用することが可能である。
【0016】
図中の実施例および用語は、自動車、トラック、バスなどの従来の電気自動車(EV)の定置充電に向けられたものである。他の用途(例えば、鉄道エンジン、ボート、動的充電道路または鉄道の充電)は、これらの説明によって除外されない。EVの充電に加えて、本明細書に記載されるワイヤレス電力伝送(WPT)システムは、対称的であり、地上側電子機器の電力供給(例えば、家庭用電源バックアップまたは電気グリッド管理システムとして)に使用するためにEVの電力貯蔵(例えば、バッテリー、容量性バンク、逆燃料電池)の放電を可能にすることができる。
【0017】
それぞれ1つのコイルで構成される、1つの地上側アセンブリ(GA)と車両アセンブリ(VA)システムを例示したが、複数のGAコイルを幾何学的にクラスター化し、対応するVAコイルクラスターをEVに搭載するモジュール方式による高出力システムも想定される。
【0018】
磁束を誘導するために使用される材料を説明するために使用される「バッキングコア」および「フェライト」という用語は、そのような材料の選択を制限することを意味するものではない。両方の用語は、高透磁率磁性材料の任意の構造の総称として本明細書で使用され、高透磁率とは、1より実質的に大きい(公称100以上)相対透磁率を意味する。フェライトという用語は、バッキングコアの構築に使用され得る他の類似または適合する材料のこの使用を排除することを意味せず、積層金属シート、粉末酸化物、粉末酸化物焼結体、および/または非結晶質金属を含むことができる。
【0019】
図1
図1は、ワイヤレス電力伝送に必要な磁場を管理するための車両アセンブリ(VA)101の主要な構成要素を示す図である。この分解図では、様々な層の相対的な厚さは示されておらず、層間の間隔も説明のために誇張されている。図から省略されているのは、構造的支持要素、ガルバニック絶縁、防水、および関連回路であり、これらはすべて磁束の分布に実質的に影響を与えないものである。
【0020】
前記VA101は、通常、電気自動車(EV)の下面に貼り付けられるが、一部のEVの用途では、横方向または背面への設置が可能である。ここでは、車両シャーシ102の下面が、導電性金属バックプレート103のための取り付けを提供することを示している。前記バックプレート103は、前記渦電流シールドとして機能し、前記EVのシャーシおよび導電性コンポーネントを漂遊磁束から保護する。ギャップ層104は、前記バックプレート103を前記バッキングコア105から分離する。二次コイル106は、間隔、ガルバニ絶縁、および熱伝送を維持するために、非磁性基板に保持または埋め込まれた円形または長方形の巻線コイルであってもよい。前記二次コイル106は、前記VA101の磁性部品の最下層である。
【0021】
図2
図2において、ワイヤレス電力伝送に必要な前記磁場を管理するための地上側アセンブリ(GA)201の主要な構成要素が示されている。この分解図では、前記様々な層の相対的な厚さは示されておらず、層間の間隔も説明のために誇張されている。前記図から省略されているのは、構造的支持要素、ガルバニック絶縁、防水、カバーリング、および関連回路であり、これらはすべて磁束の分布に実質的に影響を与えないものである。
【0022】
前記GA201は、名目上、舗装道路202上に(またはその中に)平らに置かれ、接地203されていてもよい。磁場生成一次コイル204は、間隔、ガルバニ絶縁、および熱伝送を維持するために非磁性基板に埋め込まれた円形または長方形の巻線コイルであってもよい。前記一次コイル204は、前記GA201磁性部品の最上層である。バッキングコア205は、前記一次コイル204の下方に配置され、前記一次コイル204が発生する前記磁束だけでなく、前記VA二次コイル106(
図1参照)が発生する磁束も導く役割を果たす。ギャップ層206は、前記バッキングコア205の直下にある。前記ギャップ層206と前記舗装道路203との間の導電性金属製バックプレート207は、前記GA201を機械的に支持する役割を果たすだけでなく、ユニットに電気的接地を提供することもある。いくつかの設置例において、この接地は、局所的に提供されるか、着信電力接続(図示せず)により遠隔的に提供されるか、の選択肢がある。
【0023】
図3
図3は、前記渦電流シールドにおけるジュール加熱による渦電流、ひいては電力損失を引き起こす前記磁束の挙動を示す図である。この実施例では、前記渦電流シールドは、前記アセンブリの前記導電性金属バックプレート303、304によって形成されている。
【0024】
空芯変圧器は、前記一次コイルに供給される発振電流によって時間的に変化する磁界を発生させる。そのため、非拘束磁束の一部が周囲の金属ハウジングや外部の導電性物体に影響することがある。
【0025】
図3は、この非拘束磁束301が前記渦電流シールド(例えば金属製ハウジング)303および304に渦電流302を発生させる様子を示している。これらの渦電流302は、前記振動磁束301が前記ハウジング303、304の導電性金属を深く透過できないため、開放型変圧器(図示せず)の並列一次コイルと二次コイルに近接した前記金属ハウジング303と304の内側でほぼ完全に生じる。これらの渦電流302は、ジュール加熱による損失の大きな原因となっている。
【0026】
図4~7
図4~7は、バッキングコア(例えば、フェライトシート)の特定の厚さと前記車両用アセンブリ(VA)または前記地上側アセンブリ(GA)の前記金属バックプレートとの間のギャップ層の効果を説明するために使用されるグラフである。
図4~7では、簡略化のために、均一な厚さのフェライトバッキングコアシートの使用が考えられている。連続シート(または、リボン状のバッキングコア材を連結または重ね合わせたシート)の使用は、漏洩磁束の防止と材料コストの低減という経済的便益の両方から有利である。
【0027】
前記薄いバッキングコアの磁束分布は、
図4~7に示した想定の上限を作り出す。バッキングコア層が、(所定の外部印加磁界(H)における)磁束密度が厚さの側面全体で均一になるようなサイズであるとき、それは薄型コアである。薄型コアの飽和は、
図5の想定では前記バッキングコアの厚さに下限を設けている。薄型バッキングコアの場合、前記バッキングコアが薄くなりすぎて、前記外部印加磁界(H)強度で前記磁束を完全に方向転換できなくなると、飽和状態になる。
図4~7に示す前記バッキングコアの厚さは、飽和するほど小さいバッキングコアの厚さを避けるように選択されている。
【0028】
バッキングコアの成形または輪郭加工(例えば、前記バッキングコアの飽和を避けながら、高磁束領域では厚さを増し、低磁束領域では薄くする)は、
図4~7で構想される想定のいずれかと組み合わせることができ、バッキングコアの全体重量を減らすことができ、これは、車両の重量が車両の走行距離、したがって充電時間に直接影響するので、移動用適用(例えば、車両用アセンブリ)において非常に重要なことである。航続距離を伸ばし、充電時間を短縮することは、内燃機関を使用する車両に対して電気自動車が広く受け入れられるようにするための重要な要素である。
【0029】
図1、
図2に示すような空芯変圧器では、前記導電性バックプレートに衝突する前記磁束によって渦電流が誘起される。前記磁界強度の接線成分は、前記誘導された渦電流の大きさに等しい不連続性を導電性表面界面で有する。磁界強度は、前記バッキングコアで高く、前記導電性バックプレートでは表皮効果の減衰とともにゼロまで低下する。
【0030】
前記バッキングコア(例えばフェライト層)と前記導電性バックプレートとの間にギャップ層を導入することで、前記導電性バックプレートの端部における磁界強度の変化を低減することができる。これにより、前記渦電流の大きさとそれに伴う電力損失が低減される。前記導電性バックプレートの界面を横切る前記磁界強度の変化が既に大幅に減少しているため、ギャップ層のサイズを継続的に大きくしても、電力損失への影響は最小限である。
【0031】
また、前記バッキングコアの厚さ(質量)も、前記コイルからの熱伝送や前記バッキングコアの保温性に影響を与えるため、設計に影響を与える。
【0032】
数学的には、(フェライトなどの)前記バッキングコアと前記誘導される渦電流によって発生する損失は、次のように表すことができる。
【0033】
【0034】
ここで、「Ptotal」は総電力損失、「Pcore」は磁気損失(前記バッキングコアなど)、「Peddy」は導電性バックプレートでの渦電流損失である。
【0035】
前記バッキングコア損失は、スタインメッツ式(面積あたりの電力損失W/m2)を修正した式を用いて算出することができる。
【0036】
【0037】
ここで、変数は、k、a、b=材料に依存する「スタインメッツ係数」(1<a<2、1<b<3)、f=周波数、Φ=全磁束、w=有効バッキングコア幅(コイルの平面に垂直な寸法)、df=バッキングコアの厚さである。前記バッキングコアの損失は、主に前記振動磁束による前記バッキングコアのヒステリシス発熱によるものである。
【0038】
前記修正スタインメッツ方程式では、b>2なので、この方程式は、損失の多い材料であるバッキングコアを増やしているにもかかわらず、前記バッキングコアの厚さが増すにつれてPcoreが下がることを示している(磁束の方向をより良く変えるための試み)。前記バッキングコアと前記バックプレートとの間にギャップ層を設けることによる磁束密度の減少は、バッキングコア材を増やした分を補って余りあるものである。
【0039】
また、前記渦電流損失(面積あたりの電力損失W/m2)は、数皮厚以上の大きな導体に印加される交流磁界について、次のように計算することができる。
【0040】
【0041】
ここで、dg=ギャップ層の厚さ、B(dg)=導電性バックプレート表面の磁束密度をギャップ層の厚さの関数として表したものである。前記ギャップ層の厚さが0のとき、B(dg)=Bcoreである。前記ギャップ層の厚さが増すと、B(dg)は下がる。μ0=磁気定数(4πx10-7H/m)、f=周波数(Hz)、σ=導電性バックプレートの導電率(ジーメンス/メートル)。
【0042】
一部の配置では、非導電性バックプレートが使用されることがある(σ=0の場合に近い)。前記バックプレートが前記渦電流シールドとして機能するため、そのような配置には、舗装道路に埋め込まれた地上側アセンブリ(GA)が含まれ、なぜなら、前記バッキングコア(例えば、フェライト)層を越えて伸びる磁束は、表面の人や機器に作用するまたは影響を与えることがないためである。駐車場の床に埋め込まれるGAは、渦電流シールドを使用して、磁束が下の床に影響しないように管理する。表面実装(前記舗装道路面に恒久的または一時的に設置)されたGAは、適切なギャップ層を持つ渦電流シールドを使用して、全体の設置高さを減らすことができる。
【0043】
図4
図4では、前記固定厚のバッキングコア層(例えば、フェライト層)の位置は、ギャップ層の漸増によって前記金属バックプレートからずらされている。前記ギャップ層は、空隙、非磁性充填剤、非磁性構造支持要素および導管、非磁性冷却剤、またはそれらの任意の混合物から構成されてもよい。
図4の実施例では、WPTシステムが60キロワットを送電している。
【0044】
図4において、x軸401は、前記ギャップ層の厚さの増加(単位:mm)、したがって、前記バックプレートから離れた前記バッキングコアの変位を示すために使用されている。Y軸402は、電力損失(単位:ワット)を示すために使用される。前記渦電流損失は、曲線404に示されている。示されるように、曲線404に示される前記渦電流損失は、前記バッキングコアが前記金属バックプレートとほぼ接触している場合、すなわち、前記ギャップ層が最も薄いときに最も高くなる。前記バッキングコア電力損失成分曲線405は、前記バッキングコア損失が有用領域409、410、およびそれ以降でほぼ一定であることを示している。第2領域410では、ギャップ層の厚さを増加させると、第1領域409での場合と比較して、リターンが減少していることがわかる。渦電流損失が最も小さいギャップ層の厚さ403を導入した後、曲線404に示す渦電流損失とバッキングコア電力損失成分曲線405に示すバッキングコア電力損失の両方が停滞したままである。このように、ギャップ層の厚さを403以上に増加させると、効率に実質的な改善をもたらさない一方で、望ましくない厚さが追加で導入される。
【0045】
前記総電力損失曲線406は、最適電力損失点407を決定できることを示している。この最適電力損失点407は、使用する前記バッキングコアの厚さによって異なるが、バッキングコアの損失と前記バックプレート内の渦電流損失との関係は、薄型バッキングコアでは同じパターンに従うことになる。前記ギャップ層を厚くすると、前記バッキングコアの損失は、バッキングコア電力損失成分曲線405のバッキングコア損失が支配的な交差点408のy軸値を増加させる。前記渦電流損失曲線404は、第2の領域410で実質的に平坦化する前に、初期領域409にわたって減少し続ける急峻な減少を示す。第2の領域410にわたるギャップ層の厚さは、渦電流電力損失の小さな減少を示すが、ギャップ層の厚さの追加は、冷却装置および媒体の導入に有益である。403以上のギャップ層の厚さの継続的な増加は、渦電流損失にはほとんど影響を与えないが、より低い圧力で冷却流量を増加させるために利用可能である。
【0046】
いくつかの用途では、最適(すなわち、最小)電力損失点407の前の前記バックプレートにおける渦電流による電力損失の増加が(例えば、前記バックコア+ギャップ層の厚さを制限することによってアセンブリ全体の厚さを減少させるために)許容される。403を超える追加のギャップ層の厚さの導入は、効率の増加を示さないが、WPTアセンブリ(GAまたはVA)における追加の厚さの代償ではあるが、追加の冷却容積を作り出すために使用することができる。前記アセンブリが特定の厚さまたはそれ以下であることが要求される用途(例えば、前記GAが舗装道路上に表面実装される場合、または前記VAが限られた車両下部の制約を遵守しなければならない場合)においては、前記渦電流損失が最小となるギャップ層厚403を超えて第3ギャップ層厚領域において効率にほとんど影響を与えずに前記ギャップ層を低減することが可能である。さらに、損失と加熱の付加を許容できる場合、前記第2のギャップ層の厚さ領域410では、より少ない効率化が可能である。前記第1のギャップ層の厚さ領域409は、前記ギャップ層の厚さが減少するにつれて渦電流損失に向かって急な漸近挙動を示し、この範囲ではアセンブリの構築が可能であるが、前記バッキングコアの厚さの減少は前記ギャップ層の厚さの減少の継続に有利である可能性がある。
【0047】
図5
図5は、ワイヤレス電力アセンブリ(一次または二次)の電力損失のモデル化を示している。
図5は、前記バッキングコアと前記バックプレートの間に挿入される追加ギャップ層の厚さを段階的に変化させながら、複数のバッキングコアの厚さについて電力損失をプロットしたものである.
【0048】
X軸501は、ゼロから5mmまでのギャップ層の付加を示す。Y軸502は、電力損失をワットで示す。
【0049】
厚さ5mmのバッキングコアの場合、総電力損失線503は、図示のようにバッキングコア損失線506とバックプレート誘導渦電流損失線509の和になる。
【0050】
バッキングコア厚が6.35mmの場合、前記総電力損失線504は、図示のようにバッキングコア損失線07とバッキングプレート誘導渦電流損失線510の和になる。
【0051】
9.5mm厚のバッキングコアの場合、総電力損失線505は、図示されるようにバッキングコア損失線508とバックプレート誘導渦電流損失線511の合計である。
【0052】
各前記バッキングコアの厚さについて、503、504、および505での総電力損失は同じ挙動を示し、最小のギャップ層の厚さで最も高い電力損失が発生することがわかる。ギャップ層の厚さが増すと(x軸501の右側に移動)、509、510、511での前記渦電流損失が減少し、506、507、508での前記バッキングコアの損失は変化がないままである。各バッキングコアの厚さについて、ギャップ層を追加すると、電力損失の削減効果が逓減し、かなり変化がない状態になることがわかる。
【0053】
図6~7A
図6は、バッキングコアとバックプレートのギャップ層を導入し、バッキングコアの厚さを変えたときに発生する電力損失を示したものである。
図5に示すように、前記バッキングコアの厚さ、つまり潜在的なギャップ層の厚さが増すにつれて、アセンブリ全体の厚さは増加する。
【0054】
図6および
図7Aでは、式1~3に関して上述したように合計で許容される厚さが制約されているので、前記ギャップ層の厚さおよびバッキングコアの厚さは、dg+df=Cとなり、ここでC=制約厚さ、df=バッキングコアの厚さ、dg=ギャップ層の厚さ、となるように制約される。
図6と
図7Aでは、x軸に沿って右に行くほど、Cが一定であるため、dgが大きくなっている。
【0055】
図6
図6では、前記バッキングコア(例えばフェライトシート)の交換(薄型化)とギャップ層の追加(厚くする)を示している。特に受信機側(車載アセンブリなど)では、設置スペースによりアセンブリの厚さが制限されるため(例えば、車の地上高を確保するため)、アセンブリの厚さを最小限に抑えることが重要である。このように、磁束制御層(すなわち、
図6に記載されるような前記バッキングコア層およびギャップ層)の厚さは、全体の厚さ設計目標によって制約されることがある。前記ギャップ層は、空隙、非磁性充填剤、非磁性構造支持要素および導管、非磁性冷却剤、またはそれらの任意の混合物から構成されてもよい。
【0056】
図6に示すように、x軸601は、前記ギャップ層と前記バッキングコアシートの合計の厚さを一定にした場合の前記ギャップ層の厚さを示すために用いられる。y軸602は、電力レベルの損失(単位:ワット)を示すために使用される。3つの曲線603、604、605がプロットされている。前記渦電流損失は、曲線605に示されている。前記渦電流損失曲線605は、前記バッキングコアが最も厚く、かつ金属製バックプレートとほぼ接触しているときの損失が最も大きいことを示している。前記バッキングコア電力損失成分曲線604は、前記バッキングコアが薄くなり、その結果ギャップ層の厚さが増加すると、前記電力損失が増加することを示している。前記バッキングコア層が薄くなるにつれて、前記バッキングコアの損失が増加する。交差点606では、バッキングコア電力損失604が支配的であるが、渦電流電力損失605は低下し続ける。
【0057】
総電力損失曲線603は、最適な(実質的に最小の)電力損失点607を決定することができることを示している。
図6において、前記電力損失は、約0.25mm~1.0mmのギャップ層の導入厚さ(および結果として生じる前記バッキングコア層の薄型化)において実質的に最小化される。
【0058】
前記渦電流損失曲線605は、急峻な減少を示し、初期領域608にわたって減少し続け、第2領域609で実質的に平坦化する。前記バッキングコアシートの厚さを減少させ続け、その結果、ギャップ層を追加しても、領域609にわたる渦電流損失にはほとんど影響を与えない。
【0059】
用途によっては、前記最適損失点607を過ぎたバッキングコア電力損失の増加が許容される場合がある(例えば、アセンブリ全体の厚さを減らすため、前記バッキングコアの薄型化によるコストまたは重量削減を達成するため、または追加の冷却/冷却剤容積を提供するため)。
【0060】
図7A
図5は、ギャップ層が導入され、バッキングコアの厚さが除去されるにつれて、アセンブリ全体の厚さが増加し得ないことを
図7Aが示す一方で、バッキングコア対バックプレートのギャップ層の導入により、バッキングコアの異なる厚さで発生する電力損失を示している。x軸701はバッキングコアのギャップ層への置き換えを示し、y軸702は電力損失(ワット)を示す。
【0061】
3種類のバッキングコア厚さについて,前記バッキングコア損失と渦電流損失を合計した総電力損失を示している。これらのバッキングコアの厚さは、それぞれギャップ層が追加されるにつれて減少する。バッキングコア703が5mmの場合の総電力損失線は、バッキングコア損失706と渦電流損失709の総和である。図示の6.35mmバッキングコア電力損失線704は、6.35mmバッキングコア損失707と渦電流損失710の合計である。9.5mmバッキングコア想定合計損失線705は、バッキングコア損失708と渦電流損失711の合計である。
【0062】
すべての開始時のバッキングコアの厚さについて、前記バッキングコア損失706、707、および708は、前記バッキングコアの厚さが減少するにつれて比例的に増加する。前記渦電流損失709、710、および711は、追加のギャップ層がバッキングコアに置き換わるにつれて電力損失の予想される改善を示している。
図7Aにおいて、前記電力損失は、5mmのバッキングコア703について約0.25mm~約0.75mm、9.5mmのバッキングコアについて約0.25mm~約2.0mmの置換ギャップ層厚さにわたって各バッキングコアで大幅に最小化される。
【0063】
図7B
図7Bは、総厚(バッキングコアとギャップ層の合計)の例示的範囲におけるバッキングコアの厚さとギャップ層の厚さの実質的に最適な比率の範囲を示している。これらの比率を用いると、薄型バッキングコアという制約のもと、所定の厚さのバッキングコア層に対して、総電力損失が実質的に最小となるギャップ層の厚さを選択することができる。
【0064】
x軸712は、前記総厚をミリメートルで示す。y軸713は、ギャップ層の厚さに対するバッキングコア層の厚さの比率を示す。上部限界線714および下部限界線715は、所定のバッキングコアの厚さに対する比率の上限および下限をそれぞれ示している。前記限界線7147と715の間では、バッキングコアの損失と渦電流の損失による総電力損失は実質的に最小化され、すなわち絶対最小値の5%以内である。異なるバッキングコアの特性のため、バッキングコア飽和の正確な点716は異なる場合がある。同じ理由で、前記バッキングコアの磁束密度が不均一になる正確な点717は、異なる場合がある。
【0065】
図8
図8において、前記GA801の分解図が示されている。この図を用いて、様々な層の相対的な厚さは示されず、層間の間隔は、説明の目的のために誇張されている。前記図から省略されているのは、構造的支持要素、ガルバニック絶縁、防水および関連回路であり、これらは全て、磁束の分布に実質的に影響を与えないものである。この例示的な実施例では、前記GAは、舗装表面802に貼付された表面取り付けである。
【0066】
図8に示すように、前記GA801は、渦電流シールドとして機能する金属製バックプレート803と、ギャップ層804と、バッキングコア層807と、一次コイル808とから構成される。サンプル実施例において、前記バッキングコアの間隔は、
図4および
図7に関して説明したように、最も低い電力損失に対して最適化するように設定されてもよい。
図8に示されるように、得られたギャップ層804は、冷却剤パイプ806を使用して前記コイルアセンブリの冷却(および加熱)のために使用することができる。理想的には、前記GA801は、廃熱の発生がほぼ一定で、充電/使用セッション間のクールダウン期間が制限された高使用率を有するであろう。冷却剤資源供給への外部、入力および出力、接続部809は、舗装道路の上または下に敷設されてもよい。必要に応じて、接地するために、ローカルまたはリモートの接地接続が提供されてもよい。
【0067】
サンプル実施形態では、前記ギャップ層804は、例えば、空隙、アクティブまたはパッシブ冷却/加熱システム(液体または気体ベース)、導管、構造支持部材、または前記の混合物などの非磁性材料で満たされている。一実施例では、非導電性、非磁性材料からなる冷却剤パイプ806は、ワイヤレス電力充電セッション中に前記一次コイル808から熱を発生させ、かつ熱を伝導する前記バッキングコア層807または渦電流シールド803に対して直ちに配置される。前記バッキングコアは特定の温度範囲で最もよく機能するので、前記冷却剤は必要に応じて冷却と加熱の両方を提供することができる。配管または熱伝導性表面に使用されない前記ギャップ層804は、機械的支持構造を有する非磁性熱伝導性材料805で満たされてもよい。一実施例では、アイドル状態のGA(またはGAクラスタ)は、前記パワーエレクトロニクスおよび/または併設された充電ステーションから廃熱を供給され、効率的なバッキングコア温度を維持することができる。
【0068】
図9
図9は、前記車両用アセンブリ(VA)901の分解図を提供する。
図9では、様々な層の相対的な厚さは示されておらず、層間の間隔は図示の目的のために誇張されている。前記図から省略されているのは、構造的支持要素、ガルバニック絶縁、防水および関連回路であり、これらはすべて、磁束の分布に実質的に影響を与えないものである。
【0069】
前記VA901は、前記GA801とは異なる環境的・機械的制約のもとで動作するが、ギャップ層を利用することができる。大きな制約の1つは、車両のシャーシ下に配置するために、前記VA901をできるだけ薄くする必要があることである。また、軽量化は、充電時間の制限と同様に制約となる。前記VA901は、名目上、渦電流シールドとして機能する前記金属製バックプレート903との接続によって、車両下部ボディ902に機械的に取り付けられる。前記ギャップ層904は、例えば前記GA801のギャップ層804に関して示されるように、非磁性材料、例えばアクティブまたはパッシブ冷却/加熱システム(液体または気体ベース)、導管、構造支持部材、気体空間、または前記の混合物で充填される。前記バッキングコア層905は、前記ギャップ層904を貫通して延びる構造によって支持されている。前記バッキングコア層905に取り付けられた二次コイル906は、対応するGAの一次コイル808によって生成された前記磁束を受け取る役割を果たす。前記2コイル906内で発生した熱は、前記付属のバッキングコア層905に伝導され、対になった入口および出口配管907を介して、前記VAのカバーおよびケース(図示せず)を通して環境に伝導される。分散型センサ909(例えば熱電対)の報告および制御シグナリングは、必要に応じて双方向または単方向のデータリンク908を介して成される。1若しくはそれ以上の温度センサ909は、有利にはVAスタックに配置されてもよい。サンプル実施形態では、前記バッキングコアの間隔は、
図6および
図7に関して説明したように、最小の電力損失に対して最適化するように設定される。
【0070】
図10
図10は、バッテリ貯蔵を有する電気自動車のための高出力ワイヤレス電力伝送システムを示している。このシステムにおいて、接地側電子機器1001は、調整された電力信号を一次アセンブリ1002に供給する。高電力システムにおいて好ましいように、前記一次1002は、整合コンデンサ1004および1005を有する前記一次コイル巻線1003との平衡直列構成を有していてもよい。エアギャップ1010を挟んで、二次アセンブリのコイル1006は、前記一次1002によって生成された磁気信号を受信するために使用される。二次コイル1006はまた、整合コンデンサ1008および1009を有する二次コイル巻線1007との平衡直列構成を有していてもよい。二次コイル1006によって生成されたACパワーレベル、周波数、位相(すなわちAC信号データ)は、デジタルデータリンク1012を介して前記アクティブ整流器コントローラ(ARC)1013にこれらの測定値を報告するセンサ1011によって測定される。前記ARC1013は、前記AC信号データを使用して信号を予測的にモデル化し、前記アクティブ整流を最適化するための交差点を決定する。整流制御信号は、制御リンク1017を介して、前記AC信号入力1015を取り、DC電力出力1019に変換するパッシブ整流器1016に渡される。前記整流器モジュールの温度センサは、デジタルデータリンク1018を使用して前記ARC1013に報告する。パワーコンディショナ1020は、整流器1016のDC出力1019を取り込み、フィルタ1021でリップルやノイズを除去し、電池パック1024を充電する。コンディショニングされたDC信号特性は、センサ1022によって監視され、デジタル・データリンク1023を介して前記ARC1013に報告される。前記ARC1013は、ACおよびDC電力特性の両方をネットワーク化された制御装置1014に報告し、保存および報告する。
【0071】
図11Aおよび11B
図11Aおよび11Bは、オープンコアの磁気共鳴式ワイヤレス電力伝送(WPT)システムの前記二次巻線を含む前記アセンブリ(名目上、前記車両用アセンブリ(VA))を冷却するための実施形態の例を示す図である。前記VAは断続的に使用され、非周期的な充電セッションと充電セッション後の長いクールダウン期間を伴うと予想される。
【0072】
図11A
図11Aは、ワイヤレス電力伝送(WPT)システムにおいてモバイル二次を空冷するためのシステムを示す図である。磁気共鳴ベースのWPTにおける前記二次コイル巻線(図示せず)を使用して、VA1101は、ここでは舗装道路1103に埋め込まれて示されているGA1102から電力を受け取るが、地上での設置も企図されている。前記磁束(図示せず)は、一次コイルと二次コイルとの間のギャップ1104を横切る。
【0073】
車両搭載アセンブリ(VA)1101は、熱伝導性バックプレート1105によって車両(図示せず)に構造的に接続されている。前記バックプレート1105は、前記VA1101のためのパッシブヒートシンクとしても機能する。前記バックプレート1105は、前記VA内、および前記バックプレート1105の前部面および/または後部面に、双方向または単方向のデータリンク1107(例えばCANバスインターフェース)を介して熱管理システム(TMS)1106に測定値を提供する1若しくはそれ以上の温度センサー(図示せず)を備えてもよい。温度センサは、温度の上昇が予想される場所または過去に温度上昇してきた場所であればどこでも、前記VA1101アセンブリに配置することができる。
【0074】
前記TMS1106は、前記吸気口1108の空気温度と前記VA1101からの様々な温度測定値を予測モデルで使用し、冷却要件を予測する。前記冷却要件がパッシブ冷却の能力を超えると予測された場合、前記双方向データリンク1107を介した制御リンクによって、必要に応じて前記吸気口1108および排気口1109のアクティブ空冷コンポーネントが作動される。その結果、流入1110と排気1111は、前記VA1101を冷却するのに役立つ。前記VA1101内の内部構造1112は、気流を導き、熱を流すために使用される。前記内部構造の例としては、予想される熱負荷に比例した冷却のために平滑化された気流を提供する大きさのヒートパイプ、冷却フィン、指向性ベーン、および導管が挙げられる。非磁性材料からなる前記冷却構造は、前記バッキングコア層および/または前記バックプレートにぶら下がるか、さもなければ取り付けられ、前記バッキングコアとバックプレートとの間の前記ギャップ層にわたってある程度の構造的支持を提供することが可能である。
【0075】
図11B
図11Bは、ワイヤレス電力伝送(WPT)システムにおいて、モバイル二次を液冷するシステムを示す図である。磁界共鳴ベースのWPTにおける二次コイル巻線(図示せず)を使用して、前記VA1101は、地上設置が企図されているが、前記舗装道路1103に埋め込まれた前記一次コイル(図示せず)を介して前記GA1102から電力を受信する。前記磁束(図示せず)は、前記一次コイルと二次コイルとの間の前記ギャップ1104を横切る。
【0076】
前記車両搭載アセンブリ(前記VA)1101は、熱伝導性バックプレート1105によって前記車両(図示せず)に構造的に接続されている。前記バックプレート1105は、前記VA1101のためのパッシブヒートシンクとしても機能する。前記バックプレート1105は、単方向または双方向のデータリンク1107(例えばCANバスインターフェース)を介して前記熱管理システム(TMS)1106に測定値を提供する、前記VA1101およびバックプレート1105内の1若しくはそれ以上の温度センサを備える。温度センサ(図示せず)は、上昇した温度が予想される場所または過去に温度上昇した場所であればどこでも、前記VA1101アセンブリ内に配置することができる。
【0077】
前記TMS1106は、前記VA1101からの気体温度および様々な温度測定値を予測モデルで使用し、冷却要件を予測する。前記冷却要件が前記パッシブ冷却の能力を超えると予測された場合、前記双方向または単方向のデータリンク1107のネットワーク上の制御リンクを介して、アクティブ液体冷却が行われる。車両用冷却水容器1118は、前記VA1101に液体冷却水を供給する。前記液体流入1113は、流入口バルブ1114を介して制御され、流出口バルブ1116を介して流出1115は、前記VA1101を冷却するのに役立つ。前記VA1101の内部構造1117は、空気の流れを整え、熱を流すために用いられる。前記内部構造の例としては、予想される熱負荷に比例して冷却するための熱交換器、冷却ループ、ヒートパイプ、および通過導管がある。この態様では、前記TMS1106は、前記WPTコイルアセンブリを熱的に管理するために、1若しくはそれ以上の導管を介して冷却/加熱流体を循環させてもよい。
【0078】
図12
図12は、代表的な高透磁率磁性材料、例えばマンガン亜鉛鉄(MnZnFe)からなるバッキングコアの電力損失密度対温度特性の一例を示す図である。前記磁性材料に関するより詳細な情報は、ペンシルバニア州ベツレヘムのNational Magnetics Group、Inc.が提供するデータシート「Material M25、Rev1」に記載されており、その内容は参照することにより組み込まれるものとする。
図12の例では、電力損失は、約60度C~約80度Cの間で実質的に最小化され、これは、サンプルの実施形態における所望の最適範囲となり得る。
【0079】
様々な実施態様を上述してきたが、それらは例示としてのみ提示されたものであり、限定するものではないことを理解されたい。例えば、上述したシステムおよび方法に関連する要素のいずれもが、本明細書において規定された所望の機能性のいずれかを採用することができる。したがって、好ましい実施形態の幅および範囲は、上述したサンプル実施形態のいずれかによって限定されるべきではない。
【国際調査報告】