(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-08-24
(54)【発明の名称】52.6GHZを超える通信のための予約信号
(51)【国際特許分類】
H04W 74/08 20090101AFI20230817BHJP
H04W 72/54 20230101ALI20230817BHJP
H04W 72/21 20230101ALI20230817BHJP
H04W 16/14 20090101ALI20230817BHJP
【FI】
H04W74/08
H04W72/54 110
H04W72/21
H04W16/14
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022580805
(86)(22)【出願日】2021-07-09
(85)【翻訳文提出日】2022-12-27
(86)【国際出願番号】 US2021041140
(87)【国際公開番号】W WO2022026161
(87)【国際公開日】2022-02-03
(32)【優先日】2020-07-30
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】593096712
【氏名又は名称】インテル コーポレイション
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】タラリコ,サルヴァトーレ
(72)【発明者】
【氏名】リ,インヤン
(72)【発明者】
【氏名】ション,ガン
(72)【発明者】
【氏名】イ,テオン
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA21
5K067DD11
5K067EE02
5K067EE10
5K067JJ03
(57)【要約】
UEにおいて使用される装置は、処理回路構成及びメモリを含む。5G NRシステムにおいて52.6GHzを超えるキャリア周波数で免許不要のスペクトルにおいて動作するようにUEを構成するために、処理回路構成は、免許不要のスペクトルにおける通信チャネルの占有を評価するCCA手順を実行するように構成されている。予約信号は、CCA手順が成功したときに通信チャネルで伝送するために符号化される。予約信号は、CCA手順の完了と上りリンク伝送機会の開始シンボルとの間の時間間隔を占有する。データPUSCHは、予約信号の伝送中及び予約信号の伝送後に基地局への伝送のためにデータPUSCHが符号化される。
【特許請求の範囲】
【請求項1】
5G NRシステムにおいて動作するように構成されたユーザ機器(UE)のための装置であって、
処理回路構成であって、52.6GHzを超えるキャリア周波数で免許不要のスペクトルにおいて動作するように前記UEを構成するために、
前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、
前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と上りリンク(UL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、
UL伝送機会中及び前記予約信号の伝送後に基地局への送信のためにデータ物理上りリンク共有チャネル(PUSCH)を符号化することと、を行うように構成された処理回路構成と、
前記処理回路構成に結合され、前記データPUSCHを記憶するように構成されたメモリと、を含む、装置。
【請求項2】
前記処理回路構成は、
前記CCA手順が失敗したときに、少なくとも5usの持続時間にわたって前記通信チャネルで送信することを控えることを行うように構成された、請求項1に記載の装置。
【請求項3】
前記予約信号は、周期的プレフィックスを含む、請求項1又は2に記載の装置。
【請求項4】
前記周期的プレフィックスは、前記UL伝送機会中に、物理上りリンク制御チャネル(PUCCH)伝送又はPUSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、請求項3に記載の装置。
【請求項5】
前記時間間隔の持続時間は、前記PUCCH伝送又は前記PUSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、請求項4に記載の装置。
【請求項6】
前記予約信号は、ランダムペイロードを有するULデータ伝送を含む、請求項1~5のいずれか一項に記載の装置。
【請求項7】
前記予約信号は、サウンディング参照信号(SRS)伝送を含む、請求項1~6のいずれか一項に記載の装置。
【請求項8】
前記処理回路構成は、
前記UL伝送機会後に前記CCA手順が成功したと決定することと、
前記通信チャネルでの伝送のために前記予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と後続の上りUL伝送機会の開始シンボルとの間の第2の時間間隔を占有する、ことと、を行うように構成された、請求項1~7のいずれか一項に記載の装置。
【請求項9】
前記処理回路構成は、
前記UL伝送機会が前記基地局のチャネル占有時間(COT)内であると決定することと、
前記CCA手順を実行せずに、前記UL伝送機会中に前記基地局への伝送のために前記ULデータを符号化することと、を行うように構成された、請求項1~8のいずれか一項に記載の装置。
【請求項10】
前記処理回路構成に結合されたトランシーバ回路と、前記トランシーバ回路に結合された1つ以上のアンテナと、をさらに含む、請求項1~9のいずれか一項に記載の装置。
【請求項11】
ユーザ機器(UE)の1つ以上のプロセッサによる実行のために命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、52.6GHzを超えるキャリア周波数で5G NRシステムにおいて免許不要のスペクトルにおいて動作するように前記UEを構成し、前記UEに、
前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、
前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と上りリンク(UL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、
前記UL伝送機会中及び前記予約信号の伝送後に基地局への伝送のためにデータ物理上りリンク共有チャネル(PUSCH)を符号化することと、を含む動作を実行させる、コンピュータ可読記憶媒体。
【請求項12】
前記予約信号は、周期的プレフィックスを含む、請求項11に記載のコンピュータ可読記憶媒体。
【請求項13】
前記周期的プレフィックスは、前記UL伝送機会中に、物理上りリンク制御チャネル(PUCCH)伝送又はPUSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、請求項12に記載のコンピュータ可読記憶媒体。
【請求項14】
前記時間間隔の持続時間は、前記PUCCH伝送又は前記PUSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、請求項13に記載のコンピュータ可読記憶媒体。
【請求項15】
前記予約信号は、ランダムペイロードを有するULデータ伝送を含む、請求項11~14のいずれか一項に記載のコンピュータ可読記憶媒体。
【請求項16】
前記命令を実行することにより、前記UEに、
前記UL伝送機会後に前記CCA手順が成功したと決定することと、
前記通信チャネルでの伝送のために前記予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と後続の上りUL伝送機会の開始シンボルとの間の第2の時間間隔を占有する、ことと、を行うように構成された、請求項11~15のいずれか一項に記載のコンピュータ可読記憶媒体。
【請求項17】
5G NRシステムにおいて動作するように構成された基地局の1つ以上のプロセッサによる実行のために命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、52.6GHzを超えるキャリア周波数で免許不要のスペクトルにおいて動作するように前記基地局を構成し、前記基地局に、
前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、
前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と下りリンク(DL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、
DL伝送機会中及び前記予約信号の伝送後にユーザ機器(UE)
への伝送のためにデータ物理下りリンク共有チャネル(PDSCH)を符号化することと、を含む動作を実行させる、コンピュータ可読記憶媒体。
【請求項18】
前記予約信号は、周期的プレフィックスを含む、請求項17に記載のコンピュータ可読記憶媒体。
【請求項19】
前記周期的プレフィックスは、前記DL伝送機会中に、物理下りリンク制御チャネル(PDCCH)伝送又はPDSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、請求項18に記載のコンピュータ可読記憶媒体。
【請求項20】
前記時間間隔の持続時間は、前記PDCCH伝送又は前記PDSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、請求項19に記載のコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2020年7月30日に出願され、「RESERVATION SIGNAL FOR UNLICENSED OPERATION FOR ABOVE 52.6 GHz」と題された米国仮特許出願第63/058,843号に対する優先権の利益を主張するものであり、その仮特許出願は、その全体が参照により本明細書に組み込まれる。
【0002】
無線通信に関する態様
いくつかの態様は、3GPP(登録商標)(Third Generation Partnership Project)ネットワーク、3GPP LTE (Long Term Evolution)ネットワーク、3GPP LTE-A (LTE Advanced)ネットワーク、(MulteFire, LTE-U)、及び5G(fifth-generation)NR(new radio)(又は5G-NR)ネットワークを含む5Gネットワーク、5G NR免許不要のスペクトル(NR-U)ネットワークなどの5G-LTEネットワーク、及びWi-Fi、CBRS (OnGo)などの他の免許不要ネットワークを含む無線ネットワークに関連する。他の態様は、52.6GHzを超える周波数での免許不要の動作のための予約信号を含む、無線ネットワークにおける予約信号の設定及び利用に向けられる。
【背景技術】
【0003】
モバイル通信は、初期の音声システムから、今日の高度に洗練された統合通信プラットフォームへと大きく進化した。様々なネットワークデバイスと通信する異なるタイプのデバイスの増加により、3GPP LTEシステムの利用が増加している。モバイルデバイス(ユーザ機器、又はUE)の現代社会における浸透は、多くの多様な環境における多様なネットワーク接続されたデバイスに対する需要を牽引し続けてきた。5G(fifth-generation)無線システムが間近にせまっており、より高速、接続性、及びユーザビリティを可能にすることが期待されている。次世代5Gネットワーク(又はNRネットワーク)は、スループット、カバレッジ、堅牢性を向上させ、レイテンシと運用及び資本支出を低減することが期待されている。5G-NRネットワークは、高速で豊かなコンテンツ及びサービスを送達するシームレスな無線接続ソリューションで人々の生活を豊かにするために、追加の可能な新たな無線アクセス技術(RAT)と共に3GPP LTE-Advancedに基づいて進化し続けるであろう。現在のセルラネットワーク周波数が飽和すると、ミリ波(mmWave)周波数のようなより高い周波数が、それらの高い帯域幅のために有益である可能性がある。
【0004】
免許不要のスペクトルにおける可能なLTE動作は、DC(dual connectivity)又はDCベースLAAを介した免許不要のスペクトルにおけるLTE動作、及び免許不要のスペクトルにおけるスタンドアロンLTEシステムを含む(が、これらに限定されない)。これによると、LTEベースの技術は、MulteFireと呼ばれる、免許不要のスペクトルにおける「アンカー」を必要とせずに免許不要のスペクトルにおいてのみ動作する。MulteFireは、LTE技術の性能上の利点と、Wi-Fiのような展開の単純さを組み合わせている。
【0005】
今後のリリースや5Gシステムでは、免許不要のスペクトルだけでなく、免許のスペクトルにおけるLTE及びNRシステムのさらなる強化された動作が期待されている。このような強化された動作としては、52.6GHzを超える周波数での免許不要の動作のための予約信号を含む、無線ネットワークにおける予約信号の設定及び使用のための技術を含むことができる。
【図面の簡単な説明】
【0006】
図では、図は必ずしも縮尺通りに描かれていないが、類似の番号は類似の要素を互いに異なる視点で記載してもよい。末尾の文字が異なる類似の番号は、類似のコンポーネントの異なる例を表わしてもよい。図は、限定ではなく例として、本文書で議論した様々な態様を一般的に例示する。
【
図1A】いくつかの態様による、ネットワークのアーキテクチャを例示する。
【
図1B】いくつかの態様による非ローミング5Gシステムアーキテクチャを例示する。
【
図1C】いくつかの態様による非ローミング5Gシステムアーキテクチャを例示する。
【
図2】開示された実施形態の態様を実装してもよい様々なシステム、デバイス、及びコンポーネントを例示する。
【
図3】開示された実施形態の態様を実装してもよい様々なシステム、デバイス、及びコンポーネントを例示する。
【
図4】開示された実施形態の態様を実装してもよい様々なシステム、デバイス、及びコンポーネントを例示する。
【
図5】例示的な実施形態による、クリアチャネル評価(CCA)手順が、伝送機会の前、又は上りリンク(UL)伝送のためにスケジューリングされた最初のシンボル/スロットの前に成功したときの予約チャネルの図である。
【
図6】例示的な実施形態による、CCA手順が、伝送機会の後、又はUL伝送のためにスケジューリングされた最初のシンボル/スロットの後に成功したときの予約チャネルの図である。
【
図7】いくつかの態様による、発展型Node-B、次世代Node-B(gNB) (又は別のRANノード)、アクセスポイント(AP)、無線局(STA)、移動局(MS)、又はユーザ機器(UE)などの通信デバイスのブロック図を例示する。
【発明を実施するための形態】
【0007】
以下の説明及び図面は、当業者がそれらを実施することができるように、態様を十分に例示している。他の態様は、構造的、論理的、電気的、プロセス、及び他の変更を組み込んでもよい。いくつかの態様の一部及び特徴は、他の態様のものに含まれてもよく、又は他の態様のものに置き換えられてもよい。特許請求の範囲に概説される態様は、それらの特許請求の範囲のすべての利用可能な等価物を包含する。
【0008】
図1Aは、いくつかの態様によるネットワークのアーキテクチャを例示する。ネットワーク140Aは、ユーザデバイス(UE)101及びUE102を含むことが示されている。UE101及びUE102は、スマートフォン(例えば、1つ以上のセルラネットワークに接続可能なハンドヘルドタッチスクリーンモバイルコンピューティングデバイス)として例示されているが、パーソナルデータアシスタント(PDA)、ポケットベル、ラップトップコンピュータ、デスクトップコンピュータ、無線ハンドセット、ドローン、又は有線及び/又は無線通信インターフェースを含む任意の他のコンピューティングデバイスなどの、任意のモバイル又は非モバイルコンピューティングデバイスも含んでもよい。UE101及びUE102は、本明細書においてUE101と総称することができ、UE101は、本明細書において開示された技術のうちの1つ以上を実行するために使用することができる。
【0009】
本明細書に記載された(例えば、ネットワーク140A又は任意の他の例示されたネットワークで使用されるような)無線リンクは、任意の例示的な無線通信技術及び/又は標準に従って動作してもよい。
【0010】
LTE及びLTE-Advancedは、携帯電話などのUEための高速データの無線通信のための標準である。LTE-Advanced及び様々な無線システムでは、キャリアアグリゲーションは、異なる周波数で動作する複数のキャリア信号を使用して単一のUEのための通信を搬送してもよく、それにより単一のデバイスが利用できる帯域幅を増加させる技術である。いくつかの態様では、1つ以上のコンポーネントキャリアが免許不要の周波数で動作する場合、キャリアアグリゲーションが使用されてもよい。
【0011】
本明細書に記載された態様は、例えば、専用免許のスペクトル、免許不要のスペクトル、(免許)共有のスペクトル(2.3~2.4GHz、3.4~3.6GHz、3.6~3.8GHz及びそれ以上におけるLSA(Licensed Shared Access)、3.55~3.7GHz及びそれ以上のSAS(Spectrum Access System)など)を含むいかなるスペクトル管理スキームにおいて使用され得る。
【0012】
本明細書に記載された態様は、OFDMキャリアデータビットベクトルを対応するシンボルリソースに割り当てることによって、異なる単一のキャリア又はOFDMフレーバ(CP-OFDM、SC-FDMA、SC-OFDM、フィルタバンクベースのマルチキャリア(FBMC)、OFDMAなど)、特に、3GPP NR(New Radio)に適用することもできる。
【0013】
いくつかの態様では、UE101及び102のいずれかは、モノのインターネット(IoT)UE又はセルラIoT(CIoT)UEを含むことができ、これらは、短寿命UE接続を利用する低電力IoTアプリケーションのために設計されたネットワークアクセス層を含むことができる。いくつかの態様では、UE101及び102のいずれかは、狭帯域(NB)IoT UE(例えば、eNB-IoT(enhanced NB-IoT)UE及びFeNB-IoT(Further Enhanced NB-IoT)UE)を含むことができる。IoT UEは、PLMN(public land mobile network)、ProSe(Proximity-Based Service)、又はD2D(device-to-device)通信、センサネットワーク、又はIoTネットワークを介してMTCサーバ又はデバイスとデータを交換するために、M2M(machine-to-machine)又はMTC(machine-type communication)などの技術を利用することができる。データのM2M又はMTC交換は、機械起動によるデータ交換であってもよい。IoTネットワークは、IoT UEを相互接続することを含み、IoT UEは、短寿命の接続で、(インターネットインフラストラクチャ内に)一意に識別可能な埋め込みコンピューティングデバイスを含んでもよい。IoT UEは、IoTネットワークの接続を容易にするために、バックグラウンドアプリケーション(例えば、キープアライブメッセージ、ステータス更新など)を実行してもよい。
【0014】
いくつかの態様では、UE101及びUE102のいずれかは、eMTC(enhanced MTC)UE又はFeMTC(further enhanced MTC)UEを含むことができる。
【0015】
UE101及びUE102は、例えば無線アクセスネットワーク(RAN)110と接続、例えば通信可能に結合するように構成されてもよい。RAN110は、例えば、UMTS(Universal Mobile Telecommunications System)、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)、NG RAN(NextGen RAN)、又は何らかの他のタイプのRANであってもよい。UE101及び102は、(以下にさらに議論される)それぞれ、各々が物理通信インターフェース又は層を含む接続103及び104を利用する。この例では、接続103及び104は、通信結合を可能にするエアインターフェースとして例示されており、GSM(Global System for Mobile Communications)プロトコル、符号分割多元接続(CDMA)ネットワークプロトコル、PTT(Push-to-Talk)プロトコル、POC(PTT over Cellular)プロトコル、UMTS(Universal Mobile Telecommunications System)プロトコル、3GP LTE(Long Term Evolution)プロトコル、第5世代(5G)プロトコル、NR(New Radio)プロトコルなどのセルラ通信プロトコルと整合することができる。
【0016】
一態様では、UE101及びUE102は、さらに、ProSeインターフェース105を介して通信データを直接交換してもよい。また、ProSeインターフェース105は、代替的には、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel )、PSDCH(Physical Sidelink Discovery Channel)、及びPSBCH(Physical Sidelink Broadcast Channel)を含むが、これらに限定されない、1つ以上の論理チャネルを含むサイドリンクインターフェースと呼ばれてもよい。
【0017】
UE102は、接続107を介してアクセスポイント(AP)106にアクセスするように構成されているように示されている。接続107は、例えば、任意のIEEE802.11プロトコルと整合する接続のようなローカル無線接続を含むことができ、それにより、AP106はWiFi(登録商標)(wireless fidelity)ルータを含むことができる。この例では、AP106は、(さらに以下に記載される)無線システムのコアネットワークに接続することなく、インターネットに接続されることが示されている。
【0018】
RAN110は、接続103及び接続104を可能にする1つ以上のアクセスノードを含むことができる。これらのアクセスノード(AN)は、基地局(BS)、NodeB、eNB(evolved NodeB)、gNB(Next Generation NodeB)、RANネットワークノードなどと呼ぶことができ、地上局(例えば、陸上アクセスポイント)又は地理的領域(例えば、セル)内でカバレッジを提供する衛星局を含むことができる。いくつかの態様では、通信ノード111及び112は、送信/受信ポイント(TRP)とすることができる。通信ノード111及び通信ノード112がNodeB(例えば、eNB又はgNB)であるときのインスタンスでは、1つ以上のTRPは、NodeBの通信セル内で機能することができる。RAN110は、マクロセルを提供するための1つ以上のRANノード、例えば、マクロRANノード111、及びフェムトセル又はピコセル(例えば、マクロセルと比較して、カバレッジエリアが小さく、ユーザ容量が小さく、又は帯域幅が大きいセル)を提供するための1つ以上のRANノード、例えば、低電力(LP)RANノード112又は免許不要のスペクトルベースの二次RANノード112を含んでもよい。
【0019】
RANノード111及びRANノード112のいずれも、エアインターフェースプロトコルを終端することができ、UE101及びUE102の第1の接点とすることができる。いくつかの態様では、RANノード111及びRANノード112のいずれかは、無線ベアラ管理、上りリンク及び下りリンクダイナミック無線リソース管理、データパケットスケジューリング、及びモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含むが、これらに限定されない、RAN110のための様々な論理機能を果たすことができる。一例では、ノード111及び/又はノード112のいずれかは、gNB(new generation Node-B)、eNB(evolved node-B)、又は別のタイプのRANノードとすることができる。
【0020】
RAN110は、S1インターフェース113を介してコアネットワーク(CN)120に通信可能に結合されていることが示されている。態様では、CN120は、EPC(evolved packet core)ネットワーク、NPC(NextGen Packet Core)ネットワーク、又は何らかの他のタイプのCN (例えば、
図1B~
図1Cを参照して例示されているように)であってもよい。この態様では、S1インターフェース113は、2つの部分、すなわち、RANノード111及び112とサービスゲートウェイ(S-GW)122との間のユーザトラフィックデータを搬送するS1-Uインターフェース114と、RANノード111及び112とMME121との間のシグナリングインターフェースであるS1-モビリティ管理エンティティ(MME)インターフェース115とにスプリットされる。
【0021】
この態様では、CN120は、MME121、S-GW122、P-GW(PDN(Packet Data Network)Gateway)123、及びHSS(home subscriber server)124を含む。MME121は、レガシーSGSN(GPRS(Serving General Packet Radio Service) Support Node)の制御プレーンと機能的に同様であってもよい。MME121は、ゲートウェイ選択及びトラッキングエリアリスト管理などのアクセスにおけるモビリティ態様を管理してもよい。HSS124は、ネットワークエンティティの通信セッションの処理をサポートするための加入者関連情報を含む、ネットワークユーザのためのデータベースを含んでもよい。CN120は、モバイル加入者の数、機器の容量、ネットワークの組織などに応じて、1つ又は複数のHSS124を含んでもよい。例えば、HSS124は、ルーティング/ローミング、認証、認可、ネーミング/アドレス解決、位置依存性などのサポートを提供することができる。
【0022】
S-GW122は、RAN110に向かってS1インターフェース113を終端し、RAN110とCN120との間でデータパケットをルーティングしてもよい。追加的に、S-GW122は、RANノード間ハンドオーバのためのローカルモビリティアンカーポイントであってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。S-GW122の他の担当としては、合法的な傍受、課金、及び何らかのポリシー実施を含んでもよい。
【0023】
P-GW123は、PDNに対するSGiインターフェースを終端してもよい。P-GW123は、インターネットプロトコル(IP)インターフェース125を介して、EPCネットワーク120と、アプリケーションサーバ184を含むネットワークなどの外部ネットワーク(代替的には、アプリケーション機能(AF)と呼ばれる)との間のデータパケットをルーティングしてもよい。P-GW123はまた、インターネット、IPS(IP multimedia subsystem)ネットワーク、及び他のネットワークを含むことができる他の外部ネットワーク131Aとデータを通信することができる。一般に、アプリケーションサーバ184は、コアネットワーク(例えば、UMTS PS(Packet Services)ドメイン、LTE PSデータサービスなど)と共にIPベアラリソースを使用するアプリケーションを提供する要素であってもよい。この態様では、P-GW123は、IPインターフェース125を介してアプリケーションサーバ184に通信可能に結合されていることが示されている。アプリケーションサーバ184はまた、CN120を介してUE101及び102のための1つ以上の通信サービス(例えば、VoIP(Voice-over-Internet Protocol)セッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)をサポートするように構成することができる。
【0024】
P-GW123は、さらに、ポリシー実施及び課金データ収集のためのノードであってもよい。PCRF(Policy and Charging Rules Function)126は、CN120のポリシー及び課金制御要素である。非ローミングシナリオでは、いくつかの態様では、UEのIP-CAN(Internet Protocol Connectivity Access Network)セッションに関連付けられたHPLMN(Home Public Land Mobile Network)において単一のPCRFがあってもよい。トラフィックのローカルブレークアウトを用いるローミングのシナリオでは、UEのIP-CANセッションに関連付けられた2つのPCRF、すなわち、HPLMN内のH-PCRF(Home PCRF)と、VPLMN(Visited Public Land Mobile Network)内のV-PCRF(Visited PCRF))があってもよい。PCRF126は、P-GW123を介してアプリケーションサーバ184に通信可能に結合されてもよい。
【0025】
いくつかの態様では、通信ネットワーク140Aは、IoTネットワーク又はされた免許要の(5G NR)スペクトル及び免許不要の(5G NR-U)スペクトルの通信を使用する5G new radioネットワークを含む5Gネットワークとすることができる。IoTの現在のイネーブラの1つはNB‐IoT(narrowband-IoT)である。
【0026】
NGシステムアーキテクチャは、RAN110及び5Gネットワークコア(5GC)120を含むことができる。NG-RAN110は、gNB及びNG-eNBなどの複数のノードを含むことができる。コアネットワーク120(例えば、5Gコアネットワーク又は5GC)は、アクセス及びモビリティ機能(AMF)及び/又はユーザプレーン機能(UPF)を含むことができる。AMF及びUPFは、NGインターフェースを介してgNB及びNG-eNBに通信可能に結合することができる。より具体的には、いくつかの態様では、gNB及びNG-eNBは、NG-CインターフェースによってAMFに、NG-UインターフェースによってUPFに接続することができる。gNBとNG-eNBは、Xnインターフェースを介して互いに結合することができる。
【0027】
いくつかの態様では、NGシステムアーキテクチャは、3GPP TS(Technical Specification)23.501(例えば、V15.4.0、2018-12)によって提供されるように、様々なノード間の参照点を使用することができる。いくつかの態様、gNB及びNG-eNBの各々は、基地局、モバイルエッジサーバ、スモールセル、ホームeNB、RANネットワークノードなどとして実装することができる。いくつかの態様では、5Gアーキテクチャにおいて、gNBは、マスターノード(MN)であり、NG‐eNBは、セカンダリノード(SN)とすることができる。いくつかの態様では、マスター/プライマリノードは、免許要の帯域で動作してもよく、セカンダリノードは、免許不要の帯域で動作してもよい。
【0028】
図1Bは、いくつかの態様による非ローミング5Gシステムアーキテクチャを例示する。
図1Bを参照すると、参照点表現における5Gシステムアーキテクチャ140Bが例示されている。より具体的には、UE102は、1つ以上の他の5Gコア(5GC)ネットワークエンティティと同様に、RAN110と通信することができる。5Gシステムアーキテクチャ140Bは、アクセス及び移動管理機能(AMF)132、セッション管理機能(SMF)136、ポリシー制御機能(PCF)148、アプリケーション機能(AF)150、ユーザプレーン機能(UPF)134、ネットワークスライス選択機能(NSSF)142、認証サーバ機能(AUSF)144、及び統合データ管理(UDM)/ホーム加入者サーバ(HSS)146などの複数のネットワーク機能(NF)を含む。UPF134は、例えば、オペレータサービス、インターネットアクセス、又は第三者サービスを含むことができるデータネットワーク(DN)152への接続を提供することができる。AMF132は、アクセス制御及びモビリティを管理するために使用することができ、また、ネットワークスライス選択機能性を含むこともできる。SMF136は、ネットワークポリシーに従って様々なセッションをセットアップし、管理するように構成することができる。UPF134は、所望のサービスタイプに従って1つ以上の構成で展開され得る。PCF148は、ネットワークスライシング、モビリティ管理、ローミング(4G通信システムにおけるPCRFと同様)を使用して、ポリシーフレームワークを提供するように構成することができる。UDMは、加入者プロファイル及びデータ(4G通信システムのHSSと同様)を記憶するように構成することができる。
【0029】
いくつかの態様では、5Gシステムアーキテクチャ140Bは、IPマルチメディアサブシステム168B、及び呼セッション制御機能(CSCF)などの複数のIPマルチメディアコアネットワークサブシステムエンティティを含む。より具体的には、IMS168Bは、P-CSCF(proxy CSCF)162Bとして作用することができるCSCF、S-CSCF(serving CSCF)164B、E-CSCF(emergency CSCF)(
図1Bには例示せず)、又はI-CSCF(interrogating CSCF)166Bを含む。P-CSCF162Bは、IMサブシステム168B内のUE102のための第1の接点となるように構成することができる。S-CSCF164Bは、ネットワーク内のセッション状態を処理するように構成することができ、E-CSCFは、緊急要求を正しい緊急センター又はPSAPにルーティングするなど、緊急セッションの一定の態様を処理するように構成することができる。I-CSCF166Bは、そのネットワークオペレータの加入者、又はそのネットワークオペレータのサービスエリア内に現在位置するローミング加入者に向けられたすべてのIMS接続について、オペレータのネットワーク内の接点として機能するように構成することができる。いくつかの態様では、I-CSCF166Bは、別のIPマルチメディアネットワーク170E、例えば、別のネットワークオペレータによって動作するIMSに接続することができる。
【0030】
いくつかの態様では、UDM/HSS146は、電話アプリケーションサーバ(TAS)又は別のアプリケーションサーバ(AS)を含むことができるアプリケーションサーバ160Eに結合され得る。AS160Bは、S-CSCF164B又はI-CSCF166Bを介してIMS168Bに結合され得る。
【0031】
参照点表現は、対応するNFサービス間の相互作用が存在し得ることを示す。例えば、
図1Bは、参照点、すなわち、N1(UE102とAMF132との間)、N2(RAN110とAMF132との間)、N3(RAN110とUPF134との間)、N4(SMF136とUPF134との間)、N5(PCF148とAF150との間、図示せず)、N6(UPF134とDN152との間)、N7(SMF136とPCF148との間、図示せず)、N8(UDM146とAMF132との間、図示せず)、N9(2つのUPF134間、図示せず)、N10(UDM146とSMF136との間、図示せず)、N11(AMF132とSMF136との間)、N12(AUSF144とAMF132との間、図示せず)、N13(AUSF144とUDM146との間、図示せず)、N14(2つのAMF間、図示せず)、N15(非ローミングシナリオの場合のPCF148とAMF132の間、ローミングシナリオの場合のPCF148及び訪問ネットワークとAMF132との間、図示せず)、N16(2つのSMF間、図示せず)、N22(AMF132とNSSF142との間、図示せず)を例示する。
図1Bに示されていない他の参照点表現も使用することができる。
【0032】
図1Cは、5Gシステムアーキテクチャ140C及びサービスベースの表現を例示する。
図1Bに例示するネットワークエンティティに加えて、システムアーキテクチャ140Cは、ネットワーク公開機能(NEF)154及びネットワークリポジトリ機能(NRF)156も含むことができる。いくつかの態様では、5Gシステムアーキテクチャは、サービスベースとすることができ、ネットワーク機能間の相互作用は、対応するポイントツーポイント参照点Niによって、又はサービスベースのインターフェースとして表現することができる。
【0033】
いくつかの態様では、
図1Cに例示するように、サービスベースの表現を使用して、他の認可されたネットワーク機能がそれらのサービスにアクセスすることを可能にする制御プレーン内のネットワーク機能を表現することができる。これに関して、5Gシステムアーキテクチャ140Cは、サービスベースのインターフェース、すなわちNamf 158H(AMF132によって提示されるサービスベースのインターフェース)、Nsmf 158I(SMF136によって提示されるサービスベースのインターフェース)、Nnef 158B(NEF154によって提示されるサービスベースのインターフェース)、Npcf 158D(PCF148によって提示されるサービスベースのインターフェース)、Nudm 158E(UDM146によって提示されるサービスベースのインターフェース)、NaF158f (AF150によって提示されるサービスベースのインターフェース)、Nnrf 158C(NRF156によって提示されるサービスベースのインターフェース)、Nnssf 158A(NSSF142によって提示されるサービスベースのインターフェース)、Nausf 158G(AUSF144によって提示されるサービスベースのインターフェース)を含むことができる。
図1Cに示されていない他のサービスベースのインターフェース(例えば、Nudr、N5g-eir、及びNudsf)も使用することができる。
【0034】
図2、
図3、及び
図4は、開示された実施形態の態様を実装してもよい様々なシステム、デバイス、及びコンポーネントを例示する。
【0035】
図2は、様々な実施形態による無線ネットワーク200を例示する。ネットワーク200は、LTE又は5G/NRシステムに対する3GPP技術仕様に整合する方法で動作してもよい。しかしながら、例示的な実施形態は、この点に関して限定されず、記載された実施形態は、本明細書に記載された原理から利益を得る他のネットワーク、例えば、今後の3GPPシステムなどに適用されてもよい。
【0036】
ネットワーク200は、UE202を含んでもよく、このUEは、オーバザエア接続を介してRAN204と通信するように設計された任意のモバイル又は非モバイルコンピューティングデバイスを含んでもよい。UE202は、スマートフォン、タブレットコンピュータ、ウェアラブルコンピューティングデバイス、デスクトップコンピュータ、ラップトップコンピュータ、車載インフォティメント、車内エンターテインメントデバイス、計器クラスタ、ヘッドアップディスプレイデバイス、オンボード診断デバイス、ダッシュトップモバイル機器、モバイルデータ端末、電子エンジン管理システム、電子/エンジン制御ユニット、電子/エンジン制御モジュール、埋め込みシステム、センサ、マイクロコントローラ、制御モジュール、エンジン管理システム、ネットワーク接続されたアプライアンス、機械タイプ通信デバイス、M2M又はD2Dデバイス、IoTデバイスなどであってもよいが、これらに限定されない。
【0037】
いくつかの実施形態では、ネットワーク200は、サイドリンクインターフェースを介して互いに直接結合された複数のUEを含んでもよい。UEは、限定されるわけではないが、PSBCH、PSDCH、PSSCH、PSCCH、PSFCHなどの物理サイドリンクチャネルを使用して通信するM2M/D2Dデバイスであってもよい。
【0038】
いくつかの実施形態では、UE202は、オーバザエア接続を介してAP206と追加的に通信してもよい。AP206は、無線LAN接続を管理してもよく、これは、RAN204からの一部/すべてのネットワークトラフィックをオフロードするのに役立つ。UE202とAP206との間の接続は、任意のIEEE802.11プロトコルと整合してもよく、AP206は、Wi-Fi(wireless fidelity)ルータとすることができる。いくつかの実施形態では、UE202、RAN204、及びAP206は、セルラWLANアグリゲーション(例えば、LWA/LWIP)を利用してもよい。セルラWLANアグリゲーションは、UE202がセルラ無線リソースとWLANリソースの両方を利用するためにRAN204によって設定されることを伴ってもよい。
【0039】
RAN204は、1つ以上のアクセスノード、例えば、アクセスノード(AN)208を含んでもよい。AN208は、RRC、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC、及びL1プロトコルを含むアクセス層プロトコルを提供することによって、UE202のためのエアインターフェースプロトコルを終端してもよい。このようにして、AN208は、コアネットワーク(CN)220とUE202との間のデータ/音声接続を可能にしてもよい。いくつかの実施形態では、AN208は、ディスクリートデバイス、又は、例えば、CRAN又は仮想ベースバンドユニットプールと呼ばれることがある仮想ネットワークの一部としてサーバコンピュータ上で動作する1つ以上のソフトウェアエンティティとして実装されてもよい。AN208は、BS、gNB、RANノード、eNB、ng-eNB、NodeB、RSU、TRxP、TRPなどと呼ばれる。AN208は、マクロセル基地局又はフェムトセル、ピコセル、若しくはマクロセルと比較してカバレッジエリアが小さく、ユーザ容量が小さく、又は帯域幅が大きい他の同様のセルを提供するための低電力基地局であってもよい。
【0040】
RAN204が複数のANを含む実施形態では、それらは、X2インターフェース(RAN204がLTE RANである場合)又はXnインターフェース(RAN204が5G RANである場合)を介して互いに結合されてもよい。X2/Xnインターフェースは、いくつかの実施形態では制御/ユーザプレーンインターフェースに分離されてもよいが、ANがハンドオーバ、データ/コンテキスト転送、モビリティ、負荷管理、干渉調整などに関連する情報を通信することを可能にしてもよい。
【0041】
RAN204のANは各々、1つ以上のセル、セルグループ、コンポーネントキャリアなどを管理して、UE202にネットワークアクセスのためのエアインターフェースを提供してもよい。UE202は、RAN204の同じ又は異なるANによって提供される複数のセルと同時に接続されてもよい。例えば、UE202及びRAN204は、キャリアアグリゲーションを使用して、各々がPセル又はScellに対応する複数のコンポーネントキャリアとUE202が接続することを可能にしてもよい。デュアルコネクティビティシナリオでは、第1のANが、MCGを提供するマスターノードであってもよく、第2のANが、SCGを提供するセカンダリノードであってもよい。第1/第2のANは、eNB、gNB、ng-eNBなどの任意の組み合わせであってもよい。
【0042】
RAN204は、免許要のスペクトル又は免許不要のスペクトルを介してエアインターフェースを提供してもよい。免許不要のスペクトルにおいて動作するために、ノードは、PCells/Scellsを用いたCA技術に基づいてLAA、eLAA、及び/又はfeLAAメカニズムを使用してもよい。免許不要のスペクトルにアクセスする前に、ノードは、例えば、LBT(listen-before-talk)プロトコルに基づいて、媒体/キャリア検知動作を実行してもよい。
【0043】
V2Xシナリオでは、UE202又はAN208は、路側ユニット(RSU)であるか、又はそれとして作用してもよく、これは、V2X通信に使用されるあらゆる輸送インフラエンティティを指す。RSUは、好適なAN又は静止(又は比較的静止した)UEで実装されてもよい。UEにおいて実装されたか、又はそれによって実装されたRSUは、「UEタイプRSU」と呼ばれることがあり、eNBは、「eNBタイプRSU」と呼ばれることがあり、gNBは、「gNBタイプRSU」と呼ばれることがあるなどである。一例では、RSUは、接続サポートを通過する車両UEに提供する、路側に位置する無線周波数回路と結合された計算デバイスである。RSUはまた、交差点マップ形状、トラフィック統計、メディア、並びに進行中の車両及び歩行者トラフィックを感知及び制御するアプリケーション/ソフトウェアを記憶する内部データ記憶回路構成を含んでもよい。RSUは、衝突回避、交通警告などのような高速イベントに必要な非常にレイテンシの小さい通信を提供してもよい。追加的又は代替的に、RSUは、他のセルラ/WLAN通信サービスを提供してもよい。RSUのコンポーネントは屋外設置に適した耐候性エンクロージャ内にパッケージされてもよく、有線接続(例えば、Ethernet)を交通信号コントローラ又はバックホールネットワークに提供するネットワークインターフェースコントローラを含んでもよい。
【0044】
いくつかの実施形態では、RAN204は、eNB、例えばeNB212を有するLTE RAN210であってもよい。LTE RAN210は、15kHzのサブキャリア間隔(SCS)、下りリンク(DL)に対するCP-OFDM波形(DL)及び上りリンク(UL)に対するSC-FDMA波形(UL)、データのためのターボコード及び制御のためのTBCCなどの特性を有するLTEエアインターフェースを提供してもよい。LTEエアインターフェースは、CSI取得及びビーム管理に対するCSI-RS、PDSCH/PDCCH復調に対するPDSCH/PDCCH DMRS、UEにおけるコヒーレント復調/検出に対するセル探索及び初期取得、チャネル品質測定、チャネル推定に対するCRSに依存してもよい。LTEエアインターフェースは、サブ6GHz帯域で動作してもよい。
【0045】
いくつかの実施形態では、RAN204は、gNB、例えばgNB216、又はng-eNB、例えば、ng-eNB218を有するNG-RAN214であってもよい。gNB216は、5G NRインターフェースを使用して、5GイネーブルUEと接続してもよい。gNB216は、N2インターフェース又はN3インターフェースを含むNGインターフェースを介して5Gコアと接続してもよい。ng-eNB218はまた、NGインターフェースを介して5Gコアと接続してもよいが、LTEエアインターフェースを介してUEと接続してもよい。gNB216及びng-eNB218は、Xnインターフェースを介して接続してもよい。
【0046】
いくつかの実施形態において、NGインターフェースは、NG-RAN214のノードとUPF248との間のトラフィックデータを搬送するNGユーザプレーン(NG-U)インターフェース(例えば、N3インターフェース)と、NG-RAN214のノードとAMF244との間のシグナリングインターフェースであるNG制御プレーン(NG-C)インターフェース(例えば、N2インターフェース)であるとの2つの部分にスプリットされてもよい。
【0047】
NG-RAN214は、可変SCS、DLに対するCP-OFDM、ULに対するCP-OFDM及びDFT-s-OFDM、制御に対するポーラ、反復、単純、及びReed-Mullerコード及びデータに対するLDPCの特性を有する5G-NRエアインターフェースを提供してもよい。5G-NRエアインターフェースは、LTEエアインターフェースと同様に、CSI-RS、PDSCH/PDCCH DMRSに依存してもよい。5G-NRエアインターフェースは、CRSを使用しなくてもよく、PBCH復調に対してPBCH DMRS、PDSCHの位相トラッキングに対してPTRS、時間トラッキングに対してトラッキング参照信号を使用してもよい。5G-NRエアインターフェースは、24.25GHz~52.6GHzまでの帯域を含むサブ6GHzの帯域又はFR2の帯域を含むFR1帯域で動作してもよい。5G-NRエアインターフェースは、PSS/SSS/PBCHを含む下りリンクリソースグリッドのエリアであるSSBを含んでもよい。
【0048】
いくつかの実施形態では、5G-NRエアインターフェースは、様々な目的のためにBWP(bandwidth part)を利用してもよい。例えば、BWPは、SCSのダイナミック適応のために使用することができる。例えば、UE202は、各BWP設定が異なるSCSを有する複数のBWPで設定することができる。BWP変更がUE202に示されるときに、伝送のSCSも同様に変更される。BWPの別のユースケース例は、電力節約に関連する。特に、複数のBWPは、異なるトラフィック負荷シナリオの下でデータ伝送をサポートするために、異なる量の周波数リソース(例えば、PRB)でUE202のために設定することができる。より少ない数のPRBを含むBWPは、UE202で、場合によってはgNB216で電力節約を可能にしながら、小さなトラフィック負荷を伴うデータ伝送に使用することができる。より多くの数のPRBを含むBWPは、より高いトラフィック負荷を伴うシナリオに使用することができる。
【0049】
RAN204は、顧客/加入者(例えば、UE202のユーザ)にデータ及び通信サービスをサポートするための様々な機能を提供するためにネットワーク要素を含むCN220に通信可能に結合される。CN220のコンポーネントは、1つの物理ノード又は別個の物理ノードにおいて実装されてもよい。いくつかの実施形態において、NFVは、CN220のネットワーク要素によって提供される機能のいずれか又はすべてを、サーバ、スイッチなどの物理コンピューティング/記憶リソース上に仮想化するために利用されてもよい。CN220の論理インスタンス化はネットワークスライスと呼ばれることがあり、CN220の一部分の論理インスタンス化はネットワークサブスライスと呼ばれることがある。
【0050】
いくつかの実施形態では、CN220は、EPC(又は、強化パケットコア)とも呼ばれることがあるEPS(Enhanced Packet System)222の一部として、LTE無線ネットワークに接続されてもよい。EPC222は、図示のように、インターフェース(又は「参照点」)を介して互いに結合されたMME224、SGW226、SGSN228、HSS230、PGW232、及び、PCRF234を含んでもよい。EPC222の各要素の機能は、以下のように簡潔に紹介されてもよい。
【0051】
MME224は、ページング、ベアラの起動/停止、ハンドオーバ、ゲートウェイ選択、認証などを容易にするために、UE202の現在位置を追跡するモビリティ管理機能を実装してもよい。
【0052】
SGW226は、RANに向かってS1インターフェースを終端し、RANとEPC222との間のデータパケットをルーティングしてもよい。追加的に、S-GW226は、RANノード間ハンドオーバのためのローカルモビリティアンカーポイントであってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。他の担当としては、合法的な傍受、課金、及び何らかのポリシー実施を含んでもよい。
【0053】
SGSN228は、UE202の位置を追跡し、セキュリティ機能及びアクセス制御を実行してもよい。追加的に、SGSN228は、異なるRATネットワーク間のモビリティ、MME224によって指定されるPDN及びS-GW選択、ハンドオーバのためのMME選択などのために、EPCノード間シグナリングを実行してもよい。MME224とSGSN228との間のS3参照点は、アイドル/アクティブ状態における3GPP間アクセスネットワークモビリティのためのユーザとベアラとの情報交換を可能にしてもよい。
【0054】
HSS230は、ネットワークエンティティの通信セッションの処理をサポートするための加入者関連情報を含む、ネットワークユーザのためのデータベースを含んでもよい。HSS230は、ルーティング/ローミング、認証、認可、ネーミング/アドレス解決、位置依存性などのサポートを提供することができる。HSS230とMME224との間のS6a参照点は、LTE CN220へのユーザアクセスを認証/認可するためのサブスクリプション及び認証データの転送を可能にしてもよい。
【0055】
PGW232は、アプリケーション/コンテンツサーバ238を含み得るデータネットワーク(DN)236に向かってSGiインターフェースを終端してもよい。PGW232は、LTE CN222とデータネットワーク236との間でデータパケットをルーティングしてもよい。PGW232は、ユーザプレーントンネリング及びトンネル管理を容易にするために、S5参照点によってSGW226と結合されてもよい。PGW232は、さらに、ポリシー実施及び課金データ収集(例えば、PCEF)のためのノードを含んでもよい。追加的に、PGW232とデータネットワーク236との間のSGi参照点は、例えば、IMSサービスを提供するための、オペレータ外部パブリック、プライベートPDN、又はオペレータ内パケットデータネットワークであってもよい。PGW232は、Gx参照点を介してPCRF234と結合されてもよい。
【0056】
PCRF234は、LTE CN222のポリシー及び課金制御要素である。PCRF234は、アプリケーション/コンテンツサーバ238と通信可能に結合されて、サービスフローのための適切なQoS及び課金パラメータを決定してもよい。PCRF232は、適切なTFT及びQCIと共に、(Gx参照点を介して)PCEFに関連するルールを提供してもよい。
【0057】
いくつかの実施形態では、CN220は、5GC240であってもよい。5GC240は、図示のように、インターフェース(又は「参照点」)を介して互いに結合されたAUSF242、AMF244、SMF246、UPF248、NSSF250、NEF252、NRF254、PCF256、UDM258、及びAF260を含んでもよい。5GC240の各要素の機能は、以下のように簡潔に紹介されてもよい。
【0058】
AUSF242は、UE202の認証のためのデータを記憶し、認証関連機能性を処理してもよい。AUSF242は、様々なアクセスタイプに対する共通認証フレームワークを容易にしてもよい。図示のように、参照点を介して5GC240の他の要素と通信することに加えて、AUSF242は、Nausfサービスベースのインターフェースを提示してもよい。
【0059】
AMF244は、5GC240の他の機能が、UE202及びRAN204と通信し、UE202に関するモビリティイベントに関する通知にサブスクライブすることを可能にしてもよい。AMF244は、(例えば、UE202を登録するための)登録管理、接続管理、到達可能性管理、モビリティ管理、AMF関連イベントの合法的傍受、並びにアクセス認証及び認可を担当してもよい。AMF244は、UE202とSMF246との間のSMメッセージのためのトランスポートを提供し、SMメッセージをルーティングするための透過型プロキシとして作用する。AMF244はまた、UE202とSMSFとの間のSMSメッセージのためのトランスポートを提供してもよいAMF244は、AUSF242及びUE202と相互作用して、様々なセキュリティアンカー及びコンテキスト管理機能を実行してもよい。さらに、AMF244は、RAN204とAMF244との間のN2参照点を含んでもよく、又はN2参照点であってもよいRAN CPインターフェースの終端点であってもよく、AMF244は、NAS(N1)シグナリングの終端点であり、NAS暗号化及び完全性保護を実行してもよい。AMF244はまた、N3 IWFインターフェースを介してUE202とのNASシグナリングをサポートしてもよい。
【0060】
SMF246は、SM(例えば、セッション確立、UPF248とAN208との間のトンネル管理)、UE IPアドレス割り当て及び管理(オプションの認可を含む)、UP機能の選択及び制御、UPF248でトラフィックを適切な宛先にルーティングするようにトラフィックステアリングを設定すること、ポリシー制御機能に向かったインターフェースの終端、ポリシー実施、課金、及びQoSの一部の制御、合法的な傍受(SMイベント及びLIシステムへのインターフェースのため)、NASメッセージのSM部分の終端、下りリンクデータ通知、N2を介してAMF244を介してAN208に送信されるAN特定のSM情報の開始、及びセッションのSSCモードの決定を担当してもよい。SMは、PDUセッションの管理を指してもよく、PDUセッション又は「セッション」は、UE202とデータネットワーク236との間のPDUの交換を提供又は可能にするPDU接続性サービスを参照してもよい。
【0061】
UPF248は、RAT内及びRAT間モビリティのためのアンカーポイント、データネットワーク236に相互接続する外部PDUセッションポイント、及びマルチホームPDUセッションをサポートするための分岐ポイントとして作用してもよい。UPF248はまた、パケットのルーティング及び転送を実行し、パケットの検査を実行し、ポリシールールのユーザプレーン部分を実施し、合法的にパケットを傍受し(UP収集)、トラフィック使用量の報告を実行し、ユーザプレーンのためのQoS処理を実行し(例えば、パケットフィルタリング、ゲーティング、UL/DLレート実施)、上りリンクトラフィックの検証を実行し(例えば、SDF-to-QoSフローマッピング)、上りリンク及び下りリンクにおけるトランスポートレベルパケットのマーキングを行い、下りリンクパケットのバッファリング及び下りリンクデータ通知トリガを実行してもよい。UPF248は、データネットワークへのルーティングトラフィックフローをサポートする上りリンク分類器を含んでもよい。
【0062】
NSSF250は、UE202にサービスするネットワークスライスインスタンスのセットを選択してもよい。NSSF250はまた、必要に応じて、可能にされたNSSAI及びサブスクライブされたS-NSSAIへのマッピングを決定してもよい。NSSF250はまた、UE202にサービスするために使用されるAMFセット、又は、好適な設定に基づいて、可能であればNRF254に問い合わせることによって、候補AMFのリストを決定してもよい。UE202のためのネットワークスライスインスタンスのセットの選択は、NSSF250と相互作用することによってUE202が登録されているAMF244によってトリガされてもよく、AMFの変更につながることがある。NSSF250は、N22参照点を介してAMF244と相互作用してもよく、N31参照点(図示せず)を介して訪問ネットワーク内の別のNSSFと通信してもよい。追加的に、NSSF250は、Nnssfサービスベースのインターフェースを提示してもよい。
【0063】
NEF252は、サードパーティ、内部公開/再公開、AF(例えば、AF260)、エッジコンピューティング又はフォグコンピューティングシステムなどに対して3GPPネットワーク機能によって提供されるサービス及び能力を安全に公開してもよい。そのような実施形態では、NEF252は、AFを認証し、認可し、又は制限してもよい。NEF252はまた、AF260と交換される情報及び内部ネットワーク機能と交換される情報を変換してもよい。例えば、NEF252は、AFサービス識別子と内部5GC情報との間で変換してもよい。NEF252はまた、他のNFの公開された能力に基づいて、他のNFから情報を受信してもよい。この情報は、構造化データとしてNEF252、又は標準化されたインターフェースを使用してデータストレージNFに記憶されてもよい。次いで、記憶された情報は、NEF252によって他のNF及びAFに再公開されるか、又は分析などの他の目的に使用することができる。追加的に、NEF252は、Nnefサービスベースのインターフェースを提示してもよい。
【0064】
NRF254は、サービスディスカバリ機能をサポートし、NFインスタンスからNFディスカバリ要求を受信し、ディスカバリされたNFインスタンスの情報をNFインスタンスに提供してもよい。NRF254はまた、利用可能なNFインスタンス及びそれらのサポートされるサービスに対する情報も維持する。本明細書で使用する場合、「インスタンス化」、「インスタンス化」などという用語は、インスタンスの作成を指し、「インスタンス」は、例えば、プログラムコードの実行中に発生し得る、オブジェクトの具体的な発生を指してもよい。追加的に、NRF254は、Nnrfサービスベースのインターフェースを提示してもよい。
【0065】
PCF256は、それらを実施するために制御プレーン機能にポリシールールを提供してもよく、また、ネットワーク挙動を統括するための統一されたポリシーフレームワークをサポートしてもよい。PCF256はまた、UDM258のUDRにおけるポリシー判定に関連するサブスクリプション情報にアクセスするためのフロントエンドを実装してもよい。図示のように、参照点を介して機能と通信することに加えて、PCF256はNpcfサービスベースのインターフェースを呈する。
【0066】
UDM258は、ネットワークエンティティの通信セッションの処理をサポートするためにサブスクリプション関連情報を処理してもよく、UE202のサブスクリプションデータを記憶してもよい。例えば、サブスクリプションデータは、UDM258とAMF244との間のN8参照点を介して通信されてもよい。UDM258は、アプリケーションフロントエンドとUDRの2つの部分を含んでもよい。UDRは、UDM258及びPCF256のためのサブスクリプションデータ及びポリシーデータ、及び/又はNEF252のための公開及びアプリケーションデータのための構造化データ(アプリケーション検出のためのPFD、複数のUEのためのアプリケーション要求情報を含む)を記憶してもよい。Nuderサービスベースのインターフェースが、UDR221によって提示されて、UDM258、PCF256、及びNEF252が記憶されたデータの特定のセットにアクセスすることを可能にすると共に、UDRにおける関連データ変更の通知の読み出し、更新(例えば、追加、修正)、削除、及び通知にサブスクライブすることを可能にしてもよい。UDMは、クレデンシャルの処理、位置管理、サブスクリプション管理などを担当するUDM-FEを含んでもよい。いくつかの異なるフロントエンドは、異なるトランザクションにおいて同じユーザにサービスしてもよい。UDM-FEは、UDRに記憶されたサブスクリプション情報にアクセスし、認証クレデンシャル処理、ユーザ識別処理、アクセス認可、登録/モビリティ管理、及びサブスクリプション管理を実行する。図示のように、参照点を介して他のNFと通信することに加えて、UDM258は、Nudmサービスベースのインターフェースを提示してもよい。
【0067】
AF260は、トラフィックルーティングに対するアプリケーションの影響を提供し、NEFへのアクセスを提供し、ポリシー制御のためのポリシーフレームワークと相互作用してもよい。
【0068】
いくつかの実施形態では、5GC240は、オペレータ/サードパーティサービスを選択することによって、UE202がネットワークにアタッチされる点に地理的に近くなるようなエッジコンピューティングを可能にしてもよい。これにより、ネットワーク上のレイテンシと負荷が低減されてもよい。エッジコンピューティング実装を提供するために、5GC240は、UE202に近いUPF248を選択し、UPF248からN6インターフェースを介してデータネットワーク236へのトラフィックステアリングを実行してもよい。これは、UEサブスクリプションデータ、UEロケーション、及びAF260によって提供される情報に基づいてもよい。このようにして、AF260は、UPF(再)選択及びトラフィックルーティングに影響を与えてもよい。オペレータの展開に基づいて、AF260がトラステッドエンティティであると考えられるときに、ネットワークオペレータは、AF260が関連するNFと直接相互作用することを許可してもよい。追加的に、AF260は、Nafサービスベースのインターフェースを提示してもよい。
【0069】
データネットワーク236は、様々なネットワークオペレータサービス、インターネットアクセス、又は例えば、アプリケーション/コンテンツサーバ238を含む1つ以上のサーバによって提供されてもよいサードパーティサービスを表してもよい。
【0070】
図3は、様々な実施形態による無線ネットワーク300を概略的に例示する。無線ネットワーク300は、AN304と無線通信するUE302を含んでもよい。UE302及びAN304は、本明細書の他の箇所に記載されている同様の名称のコンポーネントと同様、かつ実質的に交換可能であってもよい。
【0071】
UE302は、接続306を介してAN304と通信可能に結合されてもよい。接続306は、通信結合を可能にするためのエアインターフェースとして例示されており、LTEプロトコル又はmmWave又はサブ6GHzの周波数で動作する5G NRプロトコルなどのセルラ通信プロトコルと整合することができる。
【0072】
UE302は、モデムプラットフォーム310と結合されたホストプラットフォーム308を含んでもよい。ホストプラットフォーム308は、モデムプラットフォーム310のプロトコル処理回路構成314と結合され得るアプリケーション処理回路構成312を含んでもよい。アプリケーション処理回路構成312は、アプリケーションデータをソース/シンクするUE302のための様々なアプリケーションを動作させてもよい。アプリケーション処理回路構成312は、データネットワークとの間でアプリケーションデータを送信/受信する1つ以上の層動作をさらに実装してもよい。これらの層動作は、トランスポート(例えば、UDP)及びインターネット(例えば、IP)動作を含んでもよい。
【0073】
プロトコル処理回路構成314は、接続306を介したデータの送信又は受信を容易にするために、1つ以上の層動作を実装してもよい。プロトコル処理回路構成314によって実装される層動作は、例えば、MAC、RLC、PDCP、RRC、及びNAS動作を含んでもよい。
【0074】
モデムプラットフォーム310は、ネットワークプロトコルスタックにおいてプロトコル処理回路構成314によって実行される「下位」層動作である1つ以上の層動作を実装し得るデジタルベースバンド回路構成316をさらに含んでもよい。これらの動作は、例えば、1つ以上のHARQ-ACK動作、スクランブル/デスクランブル、符号化/復号、レイヤマッピング/デマッピング、変調シンボルマッピング、受信シンボル/ビットメトリック決定、マルチアンテナポートプレコーディング/復号化を含むPHY動作を含み、これらは、空間時間、空間周波数又は空間コーディング、参照信号生成/検出、プリアンブルシーケンス生成及び/又は復号化、同期シーケンス生成/検出、制御チャネル信号ブラインド復号、及び他の関連機能のうちの1つ以上を含んでもよい。
【0075】
モデムプラットフォーム310は、送信回路構成318、受信回路構成320、RF回路構成322、及びRFフロントエンド(RFFE)324をさらに含むことができ、これらは、1つ以上のアンテナパネル326を含むか、又はこれらに接続してもよい。簡潔には、送信回路構成318は、デジタル-アナログ変換器、ミキサ、中間周波数(IF)コンポーネントなどを含んでもよく、受信回路構成320は、アナログ-デジタル変換器、ミキサ、IFコンポーネントなどを含んでもよく、RF回路構成322は、低雑音増幅器、電力増幅器、電力追跡コンポーネントなどを含んでもよく、RFFE324は、フィルタ(例えば、サーフェス/バルク音響波フィルタ)、スイッチ、アンテナチューナ、ビームフォーミングコンポーネント(例えば、位相アレイアンテナコンポーネント)などを含んでもよい。送信回路構成318、受信回路構成320、RF回路構成322、RFFE324、及びアンテナパネル326のコンポーネントの選択及び配置(一般的に「送信/受信コンポーネント」と呼ばれる)は、例えば、通信がTDM又はFDMであるか、mmWaveかサブ6GHz周波数であるかなど、特定の実装の詳細に固有のものであってもよい。いくつかの実施形態では、送信/受信コンポーネントは、複数の並列送信/受信チェーンに配置されてもよく、同じ又は異なるチップ/モジュール配設されるなどであってもよい。
【0076】
いくつかの実施形態では、プロトコル処理回路構成314は、送信/受信コンポーネントのための制御機能を提供する制御回路構成(図示せず)の1つ以上のインスタンスを含んでもよい。
【0077】
UE受信は、アンテナパネル326、RFFE324、RF回路構成322、受信回路構成320、デジタルベースバンド回路構成316、及びプロトコル処理回路構成314によって、及びそれらを介して確立されてもよい。いくつかの実施形態では、アンテナパネル326は、1つ以上のアンテナパネル326の複数のアンテナ/アンテナ要素によって受信される受信ビームフォーミング信号によって、AN304から伝送を受信してもよい。
【0078】
UE伝送は、プロトコル処理回路構成314、デジタルベースバンド回路構成316、送信回路構成318、RF回路構成322、RFFE324、及びアンテナパネル326によって、及びそれらを介して確立されてもよい。いくつかの実施形態において、UE304のコンポーネントは、アンテナパネル326のアンテナ素子によって放出される送信ビームを形成するためにされるデータに空間フィルタを適用してもよい。
【0079】
UE302と同様に、AN304は、モデムプラットフォーム330と結合されたホストプラットフォーム328を含んでもよい。ホストプラットフォーム328は、モデムプラットフォーム330のプロトコル処理回路構成334と結合されたアプリケーション処理回路構成332を含んでもよい。モデムプラットフォームは、さらに、デジタルベースバンド回路構成336、送信回路構成338、受信回路構成340、RF回路構成342、RFFE回路構成344、及びアンテナパネル346を含んでもよい。AN304のコンポーネントは、UE302の同様の名称のコンポーネントと同様、かつ実質的に交換可能であってもよい。上述のようにデータ送信/受信を実行することに加えて、AN308のコンポーネントは、例えば、無線ベアラ管理、上りリンク及び下りリンクのダイナミック無線リソース管理、及びデータパケットスケジューリングなどのRNC機能を含む様々な論理機能を実行してもよい。
【0080】
図4は、いくつかの例示的な実施形態による、機械可読又はコンピュータ可読媒体(例えば、非一時的な機械可読記憶媒体)から命令を読み取り、本明細書で議論された方法論のうちのいずれか1つ以上を実行することが可能なコンポーネントを例示するブロック図である。具体的には、
図4は、1つ以上のプロセッサ(又はプロセッサコア)410、1つ以上のメモリ/記憶デバイス420、及び1つ以上の通信リソース430を含むハードウェアリソース400の概略図を示し、これらの各々は、バス440又は他のインターフェース回路構成を介して通信可能に結合されてもよい。ノード仮想化(例えば、NFV)が利用される実施形態の場合、ハイパーバイザ402を実行して、ハードウェアリソース400を利用するための1つ以上のネットワークスライス/サブスライスのための実行環境を提供してもよい。
【0081】
プロセッサ410は、例えば、プロセッサ412及びプロセッサ414を含んでもよい。プロセッサ410は、例えば、中央処理ユニット(CPU)、縮小命令セットコンピューティング(RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、ベースバンドプロセッサなどのDSP、ASIC、FPGA、無線周波集積回路(RFIC)、別のプロセッサ(本明細書で議論されるものを含む)、又はそれらの任意の好適な組み合わせであってもよい。
【0082】
メモリ/記憶デバイス420は、メインメモリ、ディスクストレージ、又はそれらの任意の好適な組み合わせを含んでもよい。メモリ/記憶デバイス420は、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意のタイプの揮発性メモリ、不揮発性メモリ、又は半揮発性メモリを含んでもよいが、これらに限定されない。
【0083】
通信リソース430は、1つ以上の周辺デバイス404、1つ以上のデータベース406又はネットワーク408を介して他のネットワーク要素と通信するために、相互接続又はネットワークインターフェースコントローラ、コンポーネント、又は他の好適なデバイスを含んでもよい。例えば、通信リソース430は、(例えば、USB、Ethernetなどを介して結合するための)有線通信コンポーネント、セルラ通信コンポーネント、NFCコンポーネント、Bluetooth(登録商標)(又はBluetooth Low Energy)コンポーネント、Wi-Fiコンポーネント、及び他の通信コンポーネントを含んでもよい。
【0084】
命令450は、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は、少なくともいずれかのプロセッサ410に、本明細書で議論される方法論のいずれか1つ以上を実行させるための他の実行可能なコードを含んでもよい。命令450は、プロセッサ410(例えば、プロセッサのキャッシュメモリ内)、メモリ/記憶デバイス420、又はそれらの任意の好適な組み合わせのうちの少なくとも1つ内に、完全に又は部分的に常駐してもよい。さらに、命令450の任意の部分は、周辺デバイス404又はデータベース406の任意の組み合わせからハードウェアリソース400に転送されてもよい。したがって、プロセッサ410のメモリ、メモリ/記憶デバイス420、周辺デバイス404、及びデータベース406は、コンピュータ可読及び機械可読媒体の例である。
【0085】
1つ以上の実施形態に対して、前述の図のうちの1つ以上で概説されたコンポーネントのうちの少なくとも1つは、以下の例示的なセクションで概説されているように、1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成されてもよい。例えば、前述の図のうちの1つ以上に関連して上述されたベースバンド回路構成は、以下に記載される例のうちの1つ以上にしたがって動作するように構成されてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、ネットワーク要素などに関連付けられた回路は、例示セクションで以下に記載される例のうちの1つ以上にしたがって動作するように構成されてもよい。
【0086】
「アプリケーション」という用語は、動作環境において一定の機能を達成するための、完全で展開可能なパッケージ、環境を指してもよい。「AI/MLアプリケーション」という用語などは、いくつかの人工知能(AI)/機械学習(ML)モデル及びアプリケーションレベルの記述を含むアプリケーションであってもよい。いくつかの実施形態では、AI/MLアプリケーションは、開示される態様のうち1つ以上を設定又は実装するために使用されてもよい。
【0087】
「機械学習」又は「ML」という用語は、アルゴリズム及び/又は統計モデルを実装するコンピュータシステムを使用して、明示的な命令を使用することなく、パターン及び推論に依存して、特定のタスクを実行することを指す。MLアルゴリズムは、サンプルデータ(「訓練データ」、「モデル訓練情報」など)に基づいて、数学モデル(「MLモデル」などと呼ばれる)を構築又は推定し、そのようなタスクを実行するように明示的にプログラムされることなく、予測又は判定を行う。一般に、MLアルゴリズムは、何らかのタスク及び何等かの性能測定に関する経験から学習するコンピュータプログラムであり、MLモデルは、MLアルゴリズムが1つ以上の訓練データセットで訓練された後に作成される任意のオブジェクト又はデータ構造であってもよい。訓練後、MLモデルを使用して新しいデータセットに対して予測を行ってもよい。「MLアルゴリズム」という用語は、「MLモデル」という用語とは異なる概念を指すが、本明細書において議論される用語は、本開示のために互換的に使用されてもよい。
【0088】
「機械学習モデル」、「MLモデル」などという用語はまた、ML支援ソリューションによって使用されるML方法及び概念を指してもよい。「ML支援ソリューション」は、動作中のMLアルゴリズムを使用して特定のユースケースに対処するソリューションである。MLモデルとしては、教師付き学習(例えば、線形回帰、k-最近傍(KNN)、ディシジョンツリーアルゴリズム、サポートマシンベクトル、ベイズアルゴリズム、アンサンブルアルゴリズムなど)、教師なし学習(例えば、K-meansクラスタリング、主成分分析(PCA)など)、強化学習(例えば、Q-学習、多重アーム帯域学習、ディープRLなど)、ニューラルネットワークなどを含む。実装に依存して、特定のMLモデルは、コンポーネントとして多くのサブモデルを有することができ、MLモデルは、すべてのサブモデルを一緒に訓練してもよい。別々に訓練されたMLモデルは、推論の間、MLパイプラインにおいて一緒にチェーンにされてもよい。「MLパイプライン」は、ML支援ソリューションに特有の機能性、機能、又は機能エンティティのセットであり、MLパイプラインは、データパイプライン、モデル訓練パイプライン、モデル評価パイプライン、及びアクターにおける1つ又は複数のデータソースを含んでもよい。「アクター」は、MLモデル推論の出力を使用して、ML支援ソリューションをホストするエンティティである。「ML訓練ホスト」という用語は、モデルの訓練をホストするネットワーク機能のようなエンティティを指す。「ML推論ホスト」という用語は、推論モード中にモデルをホストする、ネットワーク機能のようなエンティティを指す(これは、適用可能な場合には、モデルの実行とオンライン学習の両方を含む)。MLホストはアクターにMLアルゴリズムの出力を知らせ、アクターはアクションを決定する(「アクション」はML支援ソリューションの出力の結果としてアクターによって実行される)。「モデル推論情報」という用語は、推論を決定するためのMLモデルへの入力として使用される情報を指し、MLモデルを訓練するために使用されるデータ及び推論を決定するために使用されるデータは重複することがあるが、「訓練データ」及び「推論データ」は、異なる概念を指す。
【0089】
モバイル通信は、初期の音声システムから、今日の高度に洗練された統合通信プラットフォームへと大きく進化した。次世代無線通信システム、5G、又はNR(new radio)は、どこでも、いつでも、様々なユーザ及びアプリケーションによる情報へのアクセス及びデータの共有を提供する。NRは、非常に異なった、時折相反する性能の次元とサービスを満たすことを目標とする統合されたネットワーク/システムであることが期待されている。そのような多様な多次元要求は、異なるサービス及びアプリケーションによって推進される。一般に、より良く、簡潔で、シームレスな無線接続ソリューションで人々の生活を豊かにするために、追加の可能な新たな無線アクセス技術(RAT)と共に3GPP LTE-Advancedに基づいて進化し続ける。NRは、無線通信を可能にし、高速で豊かなコンテンツとサービスを送達してもよい。
【0090】
NRの能力をさらに改善するために、開示された技術は、52.6GHz~71GHzの通信帯域におけるNRを可能にするために使用されてもよく、これは、52.6GHz~71GHzの動作をサポートするために下りリンク(DL)/上りリンク(UL)NR波形を使用してNRへの変更を実装することを含む。開示された技術を使用するときの他の考慮事項は、サブキャリア間隔、チャネル帯域幅(最大BWを含む)、及び実際の無線周波数(RF)障害を考え、もしある場合、物理信号/チャネルに対する潜在的なクリティカル性を識別するシステム機能性をサポートするための周波数範囲2(FR2)物理(PHY)層設計へのそれらの影響を含む、適用可能なヌメロロジの研究を含む。開示された技術を使用するときのさらなる考慮事項は、52.6GHz~71GHzの周波数に対する免許不要のスペクトルに適用可能な規制要件に準拠するビームベースの動作を仮定した、他のノードとの間の潜在的な干渉を考えたチャネルアクセスメカニズムの研究を含む。いくつかの態様では、潜在的な干渉影響が識別される場合、開示された技術は、チャネルアクセスメカニズムの一部として干渉緩和ソリューションをさらに含んでもよい。
【0091】
いくつかの実施形態において、開示された技術は、NRが、52.6GHz~71GHzの帯域で世界中で利用可能な免許不要の帯域でも動作することを可能にするために使用される。例えば、ITU地域1に属する地域の場合、適合試験及び規制要件への準拠のための追加ガイダンスが、欧州委員会からの標準化要求下で作成された統一標準の一部であるETSI BRAN EN302 567(2017)仕様内で利用可能である。本開示の範囲内では、LBT(Listen before talk)は、常に、すべての状況下で使用されてもよい。
【0092】
いくつかの実施形態において、LBT手順は、以下のように実行されてもよい。
【0093】
(A)動作チャネル上の単一の伝送又は伝送のバーストの前に、伝送を開始する機器(例えば、UE)は、動作チャネルにおけるCCA(Clear Channel Assessment)チェックを実行してもよい。
【0094】
(B)UEが動作チャネルが占有されていることを検出する場合、UEは、そのチャネルにおける伝送を控え、他の機器がそのチャネルで送信することを可能にしない。CCA手順がチャネルをもはや占有されないと決定し、伝送がCCAチェック手順によって定義されたある数の空のスロットに対して延期された場合、UEは、伝送を再開するか、又は他の機器がこのチャネル上で送信することを可能にしてもよい。
【0095】
(C)伝送を開始する機器は、「エネルギー検出」技術を使用してCCAチェックを実行するものとする。チャネルにおけるエネルギレベルが、以下のステップ(G)で与えられる電力レベルに対応する閾値を超える場合、動作チャネルは、5μsのスロット時間にわたって占有されていると考えられてもよい。UEは、複数のスロット時間によって測定されたCCA観察時間の持続時間にわたって動作チャネルを観察してもよい。
【0096】
(D)CCAチェック定義:
【0097】
(a)CCAチェックは、動作チャネル占有スロット時間の終了時に開始される。
【0098】
(b)動作チャネルが最低8μsにわたって占有されていないことを観察すると、伝送延期が発生してもよい。
【0099】
(c)伝送延期は、最小ランダム数(0~Max数)の空のスロット期間にわたって続いてもよい。
【0100】
(d)最大数は3未満としてはならない。
【0101】
(E)伝送を開始する機器が動作チャネルを活用する合計時間は、COT(Channel Occupancy Time)として定義される。COTは、5ms未満であってもよいが、その後、上記ステップ(A)~(C)に記載された新たなCCAチェックを実行するものとする。
【0102】
(F)この機器のために意図されたパケットを正しく受信すると、(伝送を開始するかどうかを問わず)機器はCCAチェックをスキップし、受信したフレームに応答して直ちに伝送を進めることができる。新しいCCAチェックなしでは、機器による連続した伝送シーケンスは、上記ステップ(E)で定義された5ms COTを超えてはならない。
【0103】
(G)CCAチェックに対するエネルギー検出閾値は、-47dBm+10×log10(PMAX/Pout)(W EIRPにおけるPmax及びPout)としてもよく、ここで、Poutは、RF出力電力(EIRP)であり、PmaxはRF出力電力限界である。
【0104】
52.6GHzを超えるNRのスロット又はシンボルの粒度がCCAスロットの粒度と一致しない(例えば、8us及び5us)とすると、CCA手順が成功した時間と最も近いスロット又はシンボルの境界との間にギャップが存在することがある。ギャップが、同時にチャネルに競合するデバイスがチャネルがアイドルであるかどうか評価するのに十分長い場合、このデバイスは、チャネルが実際にはアイドルであると評価することがあるが、代わりに、これはすでに別のデバイスによって占有されている。このシナリオを防止するために、CCA手順に成功すると、デバイスは、同じ媒体に競合する任意の他の隣接デバイスによって占有されるチャネルが現れるであろうより近い伝送機会まで予約信号を送信することができる。開示された技術は、どのようにしてこれがシグナリングされ得るかを含め、予約チャネルに関連する詳細を提供する。
【0105】
ULスケジューリングされた伝送及びシグナリングのための予約信号
【0106】
UEが開始デバイスであるときに、UEは、チャネルがアイドルであるかどうかを評価するためにCCA手順を実行してもよく、この場合にのみ送信することができる。この場合、UEは、CAT-4に類似し、かつ競合ウィンドウのランダムバックオフ可変サイズ有りのLBT(listen-before-talk)手順によって構成されるCCA手順を実行してもよい。この場合、前述のように、CCA手順が成功したときのインスタンスは、UL伝送のために充てられたスケジューリングされたリソースと完全に整合しないことがあり、UEは、以下のように、チャネル競合に基づいて、特定の伝送機会より早く又はより遅くにCCAが成功することになることがある。
【0107】
(a)いくつかの実施形態では、CCAがより早く特定の伝送機会よりも早く成功し、UEによって即時の伝送が実行されない場合、潜在的には、別のデバイスは、チャネルが占有されていると評価する可能性があり、これは、潜在的な干渉につながることがある。CCA手順が成功した時間のインスタンスと伝送機会の開始との間の時間間隔は、(例えば、
図5及び
図6において)T
extとして示されている。一実施形態では、UEは、時間間隔T
ext内で予約信号を送信してもよい。
【0108】
1つのオプションでは、予約信号は周期的プレフィックスの形式であってもよく、周期的プレフィックスはPUCCH又はPUSCH伝送のために割り当てられた最初のOFDMシンボルlのものに対応する。最初のOFDMシンボルに先行する間隔
【数1】
に対する予約信号
【数2】
は、
【数3】
と等しい。時間間隔Textは、シンボルl-1の長さ以下であってもよい。代替的には、T
extは、シンボルl-1の長さよりも長くてもよい。別のオプションでは、予約信号は、ランダムペイロードを有するデータ伝送又はSRS伝送であってもよい。
【0109】
図5は、例示的な実施形態による、クリアチャネル評価(CCA)手順が、伝送機会の前、又は上りリンク(UL)伝送のためにスケジューリングされた最初のシンボル/スロットの前に成功したときの予約チャネルの
図500である。
【0110】
(b)いくつかの実施形態では、CCAが特定の機会よりも遅く成功した場合、UEは、チャネルをロックし、任意の他のデバイスがチャネルを使用することを防止し、以下の伝送機会まで予約信号を送信することによってLBTを成功させることができる。予約信号は、周期的プレフィックスの形式か、すべて0又は1のペイロードを有するデータ伝送であってもよい。
【0111】
UEがCCA手順に成功したときと以下の伝送機会までの間隔は、T
extで示される。予約信号が、後続の伝送機会においてPUCCH又はPUSCH伝送のために割り当てられた最初のOFDMシンボルlの周期的プレフィックスの形式である場合、間隔
【数4】
に対する予約信号
【数5】
は、
【数6】
と等しくてもよい。
【0112】
図6は、例示的な実施形態による、CCA手順が、伝送機会の後、又はUL伝送のためにスケジューリングされた最初のシンボル/スロットの後に成功したときの予約チャネルの
図600である。
【0113】
いくつかの実施形態において、UEが応答デバイスとして作用しており、スケジューリングされたリソースがgNBの共有COT内にあるときに、UEは、CCA手順を実行することなく直接送信するか、又は場合によっては(例えば、方向性LBTがgNBで使用される場合、又は同期信号ブロックを送信するためにチャネルを獲得する場合)「シングルショットLBT」(例えば、シングルショットLBTに対するギャップが8us、13us(すなわち、8+5us)又は23us(8+15us))を実行することが必要とされてもよい。この場合、gNBがどのLBTタイプを使用すべきかをUEに示すことが重要であり、チャネルの占有を保持するために、スケジューリングされたリソースは、UEがシングルショットLBTを実行するためのギャップを考慮してもよく、予約信号が、スケジューリングされたULリソースが開始するシンボル境界lの前の任意のギャップを埋めるために使用されてもよい。
【0114】
一実施形態では、予約信号は、PUCCH又はPUSCH伝送のために割り当てられた最初のOFDMシンボルlの周期的プレフィックスの形式であり、間隔
【数7】
に対する予約信号
【数8】
は、
【数9】
と等しい。
【0115】
いくつかの態様では、Textは、シングルショットLBTの終了と、スケジューリングされたULリソースが開始する最初のシンボルlとの間の間隔を示す。一実施形態では、Textは、以下のように計算されてもよい。
【0116】
【数10】
、及び
【数11】
であり、以下の設定が使用されてもよい。
【0117】
一実施形態では、DLからULの切り替えの場合、Δi=13・10-6+TTA、Δi=8・10-6+TTA、又はΔi=23・10-6+TTAであり、TTAは、時間アドバンス調整であり、μは、サブキャリア間隔(SC)を示し、Ciは、固定又はRRC設定済みであってもよい。
【0118】
一実施形態では、Ciは、Δi=13・10-6+TTAの場合、特定のSCSに基づいて、以下のセットから選択することができる。
【0119】
(a)120kHzのサブキャリア間隔(SCS)に対応するμ=3の場合、{2,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0120】
(b)240kHzのサブキャリア間隔(SCS)に対応するμ=4の場合、{3,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0121】
(c)480kHzのサブキャリア間隔(SCS)に対応するμ=5の場合、{6,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0122】
(d)960kHzのサブキャリア間隔(SCS)に対応するμ=6の場合、{12,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0123】
(e)1920kHzのサブキャリア間隔(SCS)に対応するμ=7の場合、{24,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0124】
一実施形態では、Ciは、Δi=13・10-6+TTAの場合、特定のSCSに基づいて、以下のセットから選択することができる。
【0125】
(a)120kHzのサブキャリア間隔(SCS)に対応するμ=3の場合、{2,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0126】
(b)240kHzのサブキャリア間隔(SCS)に対応するμ=4の場合、{5,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0127】
(c)480kHzのサブキャリア間隔(SCS)に対応するμ=5の場合、{10,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0128】
(d)960kHzのサブキャリア間隔(SCS)に対応するμ=6の場合、{20,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0129】
(e)1920kHzのサブキャリア間隔(SCS)に対応するμ=7の場合、{40,....,X}であり、Xは、事前に定義された整数であり、一例として56又は任意の他の値と等しくすることができる。
【0130】
一実施形態では、Ciは、Δi=8・10-6+TTAの場合、特定のSCSに基づいて、以下のセットから選択することができる。
【0131】
(a)120kHzのサブキャリア間隔(SCS)に対応するμ=3の場合、{1,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0132】
(b)240kHzのサブキャリア間隔(SCS)に対応するμ=4の場合、{2,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0133】
(c)480kHzのサブキャリア間隔(SCS)に対応するμ=5の場合、{4,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0134】
(d)960kHzのサブキャリア間隔(SCS)に対応するμ=6の場合、{8,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0135】
(e)1920kHzのサブキャリア間隔(SCS)に対応するμ=7の場合、{15,....,X}であり、Xは、事前に定義された整数であり、一例として28又は任意の他の値と等しくすることができる。
【0136】
別の実施形態では、gNBの共有COT内のULからUEへの切り替え場合、Δi=13・10-6又はΔi=8・10-6であり、μは、サブキャリア間隔(SC)を示し、Ciは、固定値であってもよい。この場合、以下の設定が使用されてもよい。
【0137】
Δi=13・10-6の場合、Ciは、以下のように選択することができる。
【0138】
(a)120kHzのSCSに対応するμ=3の場合、Ci=2
【0139】
(b)240kHzのSCSに対応するμ=4の場合、Ci=3
【0140】
(c)480kHzのSCSに対応するμ=5の場合、Ci=6
【0141】
(d)960kHzのSCSに対応するμ=6の場合、Ci=12
【0142】
(e)1920kHzのSCSに対応するμ=7の場合、Ci=24
【0143】
Δi=23・10-6の場合、Ciは、以下のように選択することができる。
【0144】
(a)120kHzのSCSに対応するμ=3の場合、Ci=2
【0145】
240kHzのSCSに対応するμ=4の場合、Ci=5
【0146】
480kHzのSCSに対応するμ=5の場合、Ci=10
【0147】
960kHzのSCSに対応するμ=6の場合、Ci=20
【0148】
1920kHzのSCSに対応するμ=7の場合、Ci=40
【0149】
Δi=8・10-6の場合、Ciは、以下のように選択することができる。
【0150】
(a)120kHzのSCSに対応するμ=3の場合、Ci=1
【0151】
(b)240kHzのSCSに対応するμ=4の場合、Ci=2
【0152】
(c)480kHzのSCSに対応するμ=5の場合、Ci=4
【0153】
(d)960kHzのSCSに対応するμ=6の場合、Ci=8
【0154】
(e)1920kHzのSCSに対応するμ=7の場合、Ci=15
【0155】
別のオプションでは、バックオフカウンタ有りのLBTが使用される場合に対して、Δi=0であり、Ci=0である。別のオプションでは、Δi=0及びCi=0が、LBTのタイプに関係なく使用される。
【0156】
一実施形態では、DCIフォーマット0_0及び/又は1_0の両方が、チャネルアクセスタイプ及び/又はCP拡張に関連する情報を搬送する。特に、
【0157】
(a)バックオフカウンタ有りのLBTのみがサポートされ、シングルショットLBTがサポートされない場合、DCI0_0と1_0は単一のビットフィールドを搬送し、これは、LBTを使用しないか、バックオフカウンタ有りのLBTを使用するかをUEに示す。このフィールドは、gNBのCOTが共有されているかどうかを併せて示してもよい。
【0158】
(b)バックオフカウンタ有りのLBTとシングルショットLBTの両方がサポートされる場合、DCI0_0及び1_0は、2ビットフィールドを搬送し、これは、使用するLBTタイプ(例えば、LBTなし、バックオフカウンタ有りのLBT、又はシングルショットLBT)及び前述の実施形態に基づく予約信号の長さを併せてUEに示す。これらの2ビットフィールドをどのように解釈するかの例が以下の表1に提供され、これは、チャネルアクセスタイプ及び予約信号長さに関連する情報を搬送するビットフィールド解釈の例である。
【表1】
【0159】
いくつかの態様では、チャネルアクセスタイプ及び/又はCP拡張に対する1ビットフィールドがDCIフォーマット0_0及び/又は1_0に含まれるときに、このフィールドは、既存のフィールド「Channel Access-CPext」の1LSB又はMSBを使用してもよい。未使用のビットは、別のフィールドに対して予約又は使用されてもよい。
【0160】
一実施形態では、gNBのCOT共有は、4ステップRACH手順のためのmsg2とmsg3との間でサポートされる。この場合、RAR ULグラントは、UEがmsg3を送信するために使用し得るチャネルアクセスタイプ及び/又はCP拡張に関連する情報を示す新しいフィールドを含むために、そのビットの一部を目的変更するか、追加のビットを追加することによって修正されてもよい。特に、チャネルアクセスタイプ及び/又はCP拡張は、RAR ULグラントに明示的に含めることができるが、msg3 PUSCH周波数ドメインリソース割り当てフィールドは、14ビットから12ビットに低減することができる。
【0161】
いくつかの実施形態では、2ステップRACHのためのgNBのCOT共有の場合、チャネルアクセスタイプ及び/又はCP拡張は、fallbackRAR ULグラント及びsucessRARに含まれ得る。特に、以下の処理が設定されてもよい。
【0162】
(a)バックオフカウンタ有りのLBTのみがサポートされ、シングルショットLBTがサポートされない場合、RAR ULグラント、fallbackRAR ULグラント、又はsuccessRARは、単一のビットフィールドを使用してもよく、これは、LBTを使用しないか、バックオフカウンタ有りのLBTを使用するかをUEに示す。このフィールドは、gNBのCOTが共有されているかどうかを併せて示してもよい。
【0163】
(b)バックオフカウンタ有りのLBTとシングルショットLBTの両方がサポートされる場合、RAR ULグラントは、2ビットフィールドを搬送し、これは、使用するLBTタイプ(例えば、LBTなし、バックオフカウンタ有りのLBT、又はシングルショットLBT)及び前述の実施形態に基づく予約信号の長さを併せてUEに示す。この場合、一例では、これらのビットは表1のように解釈できる。
【0164】
いくつかの実施形態では、上記のオプションの場合、チャネルアクセスタイプ及び/又はCP拡張に対する1ビットフィールドがRAR又はfallbackRAR UL Grant及びsuccessRARに含まれるときに、このフィールドは、既存のフィールド「Channel Access-CPext」の1LSB又はMSBを使用してもよい。未使用のビットは、別のフィールドに対して予約又は使用されてもよい。一例では、PUSCH周波数ドメインリソース割り当てフィールドは、12ビットから13ビットに拡張されてもよい。
【0165】
一実施形態では、DCIフォーマット0_1及び/又は0_2は、チャネルアクセスタイプ及び/又はCP拡張に関連する情報を搬送してもよい。特に、以下の処理が設定されてもよい。
【0166】
(a)バックオフカウンタ有りのLBTのみがサポートされ、シングルショットLBTがサポートされない場合、ビットフィールドは、LBTを使用しないか、バックオフカウンタ有りのLBTを使用するかをUEに示してもよい。追加的に、バックオフカウンタ有りのLBTがチャネルアクセス優先度クラスによって特徴付けられる場合、この情報も併せて示されてもよい。例えば、4つのCAPCがバックオフカウンタ有りのLBTに対して定義される場合、このビットフィールドは、以下の表2~表5の1つのエントリの1つを示してもよい。
【表2】
【表3】
【表4】
【表5】
【0167】
(b)バックオフカウンタ有りのLBTとシングルショットLBTの両方がサポートされる場合、ビットフィールドを搬送し、使用するLBTタイプ(例えば、LBTなし、バックオフカウンタ有りのLBT、又はシングルショットLBT)及び前述の実施形態に基づく予約信号の長さを併せてUEに示す。追加的に、バックオフカウンタ有りのLBTがチャネルアクセス優先度クラスによって特徴付けられる場合、この情報も併せて示されてもよい。4つのCAPCが定義された場合に、この表示をどのように行うかのいくつかの例が以下の表6~表9に提供される。
【表6】
【表7】
【表8】
【表9】
【0168】
一実施形態では、このフィールドのサイズは固定又はRRC設定済みとされてもよい。この最後の場合、RRCパラメータは値のセットを示してもよく、このフィールドの大きさは、
【数12】
と等しく、ここで、Iは、RRCパラメータが搬送する値の数である。
【0169】
一実施形態では、DCIフォーマット1_1及び/又は1_2は、チャネルアクセスタイプ及び/又はCP拡張に関連する情報を搬送してもよい。特に、
【0170】
(a)バックオフカウンタ有りのLBTのみがサポートされ、シングルショットLBTがサポートされない場合、ビットフィールドは、LBTを使用しないか、バックオフカウンタ有りのLBTを使用するかをUEに示してもよい。例えば、0のエントリインデックス0は、バックオフカウンタ有りのLBTのチャネルアクセスタイプを示し、1のエントリインデックス1は、LBTなしのチャネルアクセスタイプを示す。
【0171】
(b)バックオフカウンタ有りのLBTとシングルショットLBTの両方がサポートされる場合、ビットフィールドは、使用するLBTタイプ(例えば、LBTなし、バックオフカウンタ有りのLBT、又はシングルショットLBT)及び前述の実施形態に基づく予約信号の長さを併せてUEに示す。この表示をどのように行うかのいくつかの例が以下の表10~表11に提供される。
【表10】
【表11】
【0172】
UL設定済みグラント(CG)伝送のための予約信号
【0173】
いくつかの実施形態では、セルグループ(CG)-UE及び他のデバイス間の相互ブロッキングを低減するために、Rel.16に対して定義されたシンボル内開始位置が使用されてもよく、52.6GHzを超える周波数に対するCCAスロットは、もはやサブ6GHzの周波数に対しては9usではなく、5usであり、LBTギャップは、8us、16us又は23usであってもよいことを考慮して、以前に定義された値が修正されてもよい。
【0174】
一実施形態では、シングルショットLBTが、gNBの共有されたCOT内でUE側で必要とされるか、又はサポートされる場合又はときに、設定済みグラントを使用するPUSCH伝送の場合、
【数13】
であり、ここで、Δ
iは、表12~表17によって反映される以下のオプションのうちの1つによって与えられる。
【0175】
【0176】
【0177】
【0178】
【0179】
【0180】
【0181】
いくつかの実施形態では、オプション7は、上記の表12~表17は、境界が設けられてもよく、最初又は最後のN個の要素のみを含んでもよく、ここで、Nは、例えば7又は8であってもよいように設定されてもよい。
【0182】
一実施形態では、シングルショットLBTがサポート又は必要ではなく、UEがgNBの共有COT内で応答デバイスとして動作する場合又はときに、設定済みグラントを使用するPUSCH伝送の場合、UEが最初にCCA手順を実行する必要なく送信してもよいとすると、Text=0であり、シンボル内開始位置は必要ではない。
【0183】
図7は、いくつかの態様による、発展型Node-B、次世代Node-B(gNB)(又は別のRANノード)、アクセスポイント(AP)、無線局(STA)、移動局(MS)、又はユーザ機器(UE)などであって、本明細書において開示される技術のうちの1つ以上を実行する通信デバイスのブロック図を例示する。代替的な態様では、通信デバイス700は、スタンドアロンデバイスとして動作してもよく、又は他の通信デバイスに接続(例えば、ネットワーク接続)されてもよい。
【0184】
回路構成(例えば、処理回路構成)は、ハードウェア(例えば、単純な回路、ゲート、論理など)を含む、デバイス700の有形のエンティティに実装される回路の集合である。回路構成メンバーシップは、時間の経過につれて柔軟であってもよい。回路は、動作するときに指定された動作を単独又は組み合わせて実行してもよい部材を含む。一例では、回路のハードウェアは、特定の動作を実行するように、不変的に設計されてもよい(例えば、ハードワイヤード)。一実施形態では、回路構成のハードウェアは、特定の動作の命令を符号化するために物理的に(例えば、磁気的に、電気的に、不変質量粒子の移動可能な配置など)修正された機械可読媒体を含む、可変的に接続された物理コンポーネント(例えば、実行ユニット、トランジスタ、単純な回路など)を含んでもよい。
【0185】
物理コンポーネントを接続する際に、ハードウェア構成要素の基礎となる電気的特性は、例えば、絶縁体から導体に、又はその逆に変更される。命令は、組み込みハードウェア(例えば、実行ユニット又はローディングメカニズム)が可変接続を介して、ハードウェアにおいて回路構成の部材を作成して、動作の際に特定の動作の一部を実行することを可能にする。したがって、一例では、機械可読媒体要素は、回路構成の一部であるか、又はデバイスが動作しているときに回路構成の他のコンポーネントに通信可能に結合される。一例では、物理コンポーネントのいずれかが、複数の回路の複数の部材において使用されてもよい。例えば、動作中に、実行ユニットは、一時点で第1の回路構成の第1の回路において使用され、異なる時間において、第1の回路構成における第2の回路によって、又は第2の回路構成における第3の回路によって再利用されてもよい。デバイス700に関するこれらのコンポーネントの追加的な例は、以下のようである。
【0186】
いくつかの態様では、デバイス700は、スタンドアロンデバイスとして動作してもよく、又は他のデバイスに接続(例えば、ネットワーク接続)されてもよい。ネットワーク接続された展開では、通信デバイス700は、サーバ-クライアントネットワーク環境において、サーバ通信デバイス、クライアント通信デバイス、又はその両方として動作してもよい。一例では、通信デバイス700は、ピアツーピア(P2P)(又は他の分散)ネットワーク環境におけるピア通信デバイスとして作用してもよい。通信デバイス700は、UE、eNB、PC、タブレットPC、STB、PDA、携帯電話、スマートフォン、ウェブアプライアンス、ネットワークルータ、スイッチ若しくはブリッジ、又はその通信デバイスがとるべきアクションを指定する命令を(順次又は他の方法で)実行することが可能である任意の通信デバイスであってもよい。さらに、単一の通信デバイスのみが例示されているが、「通信デバイス」という用語は、クラウドコンピューティング、SaaS(software as a service)、及び他のコンピュータクラスタ設定など、本明細書で議論される任意の1つ以上の方法を実行するための命令のセット(又は複数のセット)を個別に又は併せて実行する任意の通信デバイスの集合も含むと解釈されるものとする。
【0187】
本明細書に記載されるように、例は、ロジック又は多数のコンポーネント、モジュール、又はメカニズムを含んでもよいし、それらに対して動作してもよい。モジュールは、特定の動作を実行することができる有形のエンティティ(例えば、ハードウェア)であり、一定の方式で設定又は配置されてもよい。一例では、回路は、特定の方法で(例えば、内部的に、又は他の回路などの外部エンティティに対して)、モジュールとして配置されてもよい。一例では、1つ以上のコンピュータシステム(例えば、スタンドアロン、クライアント若しくはサーバコンピュータシステム)又は1つ以上のハードウェアプロセッサの全体または一部は、特定の動作を実行するために動作するモジュールとして、ファームウェアまたはソフトウェア(例えば、命令、アプリケーション部分、またはアプリケーション)によって構成されてもよい。一例では、ソフトウェアは、通信デバイス可読媒体上に常駐してもよい。一例では、ソフトウェアは、モジュールの基礎となるハードウェアによって実行されるときに、ハードウェアに特定の動作を実行させる。
【0188】
したがって、「モジュール」という用語は、有形エンティティ、すなわち、物理的に構築されたか、具体的に構成され(例えば、ハードワイヤード)たか、または一時的に(例えば、一過性的に)構成され(例えば、プログラムされ)て、特定の方法で動作するか、または本明細書で記載される任意の動作の一部もしくは全部を実行するエンティティを包含すると理解される。モジュールが一時的に構成されている例を考えると、モジュールの各々は、いつ何時においてもインスタンス化される必要はない。例えば、モジュールがソフトウェアを用いて構成された汎用ハードウェアプロセッサを含む場合、汎用ハードウェアプロセッサは、異なる時間にそれぞれ異なるモジュールとして構成されてもよい。したがって、ソフトウェアは、ハードウェアプロセッサを、例えば、時間インスタンスにおいて特定のモジュールを構成し、異なる時間インスタンスにおいて異なるモジュールを構成するように構成してもよい。
【0189】
通信デバイス(例えば、UE)700は、ハードウェアプロセッサ702(例えば、中央処理ユニット(CPU)、グラフィック処理ユニット(GPU)、ハードウェアプロセッサコア、又はそれらの任意の組み合わせ)、メインメモリ704、スタティックメモリ706、及び記憶デバイス707(例えば、ハードドライブ、テープドライブ、フラッシュ記憶デバイス、又は他のブロック若しくは記憶デバイス)を含んでもよく、それらの一部又は全部は、インターリンク(例えば、バス)708を介して互いに通信してもよい。
【0190】
コンピュータシステム700は、ディスプレイデバイス710、英数字入力デバイス712(例えば、キーボード)、及びユーザインターフェース(UI)ナビゲーションデバイス714(例えば、マウス)をさらに含んでもよい。一例では、ディスプレイデバイス710、入力デバイス712、及びUIナビゲーションデバイス714は、タッチスクリーンディスプレイであってもよい。通信デバイス700は、追加的に、信号生成デバイス718(例えば、スピーカ)、ネットワークインターフェースデバイス720、及び、全地球測位システム(GPS)センサ、コンパス、加速度計、又は別のセンサなどの1つ以上のセンサ721を含んでもよい。通信デバイス700は、1つ以上の周辺デバイス(例えば、プリンタ、カードリーダなど)を通信又は制御するために、シリアル(例えば、ユニバーサルシリアルバ(USB))、パラレル、又は他の有線若しくは無線(例えば、赤外線(IR)、近接場通信(NFC)など)接続などの出力コントローラ728を含んでもよい。
【0191】
記憶デバイス707は、通信デバイス可読媒体722を含むことができ、その上に、本明細書に記載される技術又は機能のうちの任意の1つ以上によって具体化又は利用されるデータ構造又は命令(例えば、ソフトウェア)の1つ以上セットが記憶される。いくつかの態様では、プロセッサ702のレジスタ、メインメモリ704、スタティックメモリ706、及び/又は記憶デバイス707は、本明細書に記載される技術又は機能のうちのいずれか1つ以上によって具体化又は利用されるデータ構造又は命令724の1つ以上のセットが記憶されるデバイス可読媒体722であってもよく、又はこれを(完全に又は少なくとも部分的に)含んでもよい。一例では、ハードウェアプロセッサ702、メインメモリ704、スタティックメモリ706、又は大容量ストレージ716の1つ又は任意の組み合わせが、デバイス可読媒体722を構成してもよい。
【0192】
本明細書において使用される場合、「デバイス可読媒体」という用語は、「コンピュータ可読媒体」又は「機械可読媒体」と互換性がある。通信デバイス可読媒体722が単一の媒体として例示されているが、「通信デバイス可読媒体」という用語は、1つ以上の命令724を記憶するように構成された単一の媒体又は複数の媒体(例えば、集中型又は分散型データベース、及び/又は関連するキャッシュ及びサーバ)を含んでもよい。「通信デバイス可読媒体」という用語は、「機械可読媒体」又は「コンピュータ可読媒体」という用語を含み、通信デバイス700による実行のための命令(例えば、命令724)を記憶、符号化、又は搬送することが可能であり、かつ通信デバイス700に本開示の技術のうちのいずれか1つ以上を実行させるか、又はそのような命令によって使用されるか、若しくは関連付けられたデータ構造を記憶、符号化、又は搬送することが可能である任意の媒体を含んでもよい。非限定的な通信デバイス可読媒体の例としては、ソリッドステートメモリ、光媒体及び磁気媒体を含んでもよい。通信デバイス可読媒体の特定の例としては、半導体メモリデバイス(例えば、EPROM(Electrically Programmable Read-Only Memor)、EEPROM(Electrically Erasable Programmable Read-Only Memory))及びフラッシュメモリデバイスのような不揮発性メモリ、内部ハードディスク及び取り外し可能ディスクのような磁気ディスク、磁気光学ディスク、RAM(Random Access Memory)、並びにCD-ROM及びDVD-ROMディスクを含んでもよい。いくつかの例では、通信デバイス可読媒体は、非一時的な通信デバイス可読媒体を含んでもよい。いくつかの例では、通信デバイス可読媒体は、一時的な伝搬信号ではない通信デバイス可読媒体を含んでもよい。
【0193】
命令724は、さらに、多数の転送プロトコルのうちのいずれか1つを利用して、ネットワークインターフェースデバイス720を介して伝送媒体を使用して、通信ネットワーク726を介して送信又は受信されてもよい。一例では、ネットワークインターフェースデバイス720は、通信ネットワーク726に接続するための1つ以上の物理的なジャック(例えば、イーサネット、同軸、又は電話ジャック)又は1つ以上のアンテナを含んでもよい。一例では、ネットワークインターフェースデバイス720は、SIMO(single-input-multiple-output)、MIMO、又はMISO(multiple-input-single-output)技術のうちの少なくとも1つを使用して、無線通信するための複数のアンテナを含んでもよい。いくつかの例では、ネットワークインターフェースデバイス720は、マルチプルユーザMIMO技術を使用して、無線通信してもよい。
【0194】
「伝送媒体」という用語は、機械による実行のための命令を記憶、符号化、又は搬送することが可能である任意の無形媒体を含み、デジタルもしくはアナログ通信信号又はそのようなソフトウェアの通信を容易にするための別の無形媒体を含むと解釈されるものとする。この点において、本開示の文脈における伝送媒体は、デバイス可読媒体である。
【0195】
例示的な態様
【0196】
以下、開示された技術及び
図1A~
図7に関連付けられるいくつかの追加的な例示的な態様である。
【0197】
例1は、5G NRシステムにおいて動作するように構成されたユーザ機器(UE)のための装置であって、処理回路構成であって、52.6GHzを超えるキャリア周波数で免許不要のスペクトルにおいて動作するように前記UEを構成するために、前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と上りリンク(UL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、UL伝送機会中及び前記予約信号の伝送後に基地局への伝送のためにデータ物理上りリンク共有チャネル(PUSCH)を符号化することと、を行うように構成された処理回路構成と、前記処理回路構成に結合され、前記ULデータを記憶するように構成されたメモリと、を含む、装置である。
【0198】
例2では、例1の主題は、前記処理回路構成は、前記CCA手順が失敗したときに、少なくとも5usの持続時間にわたって前記通信チャネルで送信することを控えることを行うように構成された主題を含む。
【0199】
例3では、例1~2の主題は、前記予約信号は、周期的プレフィックスを含む、主題を含む。
【0200】
例4では、例3の主題は、前記周期的プレフィックスは、前記UL伝送機会中に、物理上りリンク制御チャネル(PUCCH)伝送又はPUSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、主題を含む。
【0201】
例5では、例4の主題は、前記時間間隔の持続時間は、前記PUCCH伝送又は前記PUSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、主題を含む。
【0202】
例6では、例1~5の主題は、前記予約信号は、ランダムペイロードを有するULデータ伝送を含む、主題を含む。
【0203】
例7では、例1~6の主題は、前記予約信号は、サウンディング参照信号(SRS)伝送を含む、主題を含む。
【0204】
例8では、例1~7の主題は、前記処理回路構成は、前記UL伝送機会後に前記CCA手順が成功したと決定することと、前記通信チャネルでの伝送のために前記予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と後続の上りUL伝送機会の開始シンボルとの間の第2の時間間隔を占有する、ことと、を行うように構成された、主題を含む。
【0205】
例9では、例1~8の主題は、前記処理回路構成は、前記UL伝送機会が前記基地局のチャネル占有時間(COT)内であると決定することと、前記CCA手順を実行せずに、前記UL伝送機会中に前記基地局への伝送のために前記ULデータを符号化することと、を行うように構成された、主題を含む。
【0206】
例10では、例1~9の主題は、前記処理回路構成に結合されたトランシーバ回路と、前記トランシーバ回路に結合された1つ以上のアンテナと、をさらに含む、主題を含む。
【0207】
例11は、ユーザ機器(UE)の1つ以上のプロセッサによる実行のために命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、52.6GHzを超えるキャリア周波数で5G NRシステムにおいて免許不要のスペクトルにおいて動作するように前記UEを構成し、前記UEに、前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と上りリンク(UL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、前記UL伝送機会中及び前記予約信号の伝送後に基地局への伝送のためにデータ物理上りリンク共有チャネル(PUSCH)を符号化することと、を含む動作を実行させる、コンピュータ可読記憶媒体である。
【0208】
例12では、例11の主題は、前記予約信号は、周期的プレフィックスを含む、主題を含む。
【0209】
例13では、例12の主題は、前記周期的プレフィックスは、前記UL伝送機会中に、物理上りリンク制御チャネル(PUCCH)伝送又はPUSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、主題を含む。
【0210】
例14では、例13の主題は、前記時間間隔の持続時間は、前記PUCCH伝送又は前記PUSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、主題を含む。
【0211】
例15では、例11~14の主題は、前記予約信号は、ランダムペイロードを有するULデータ伝送を含む、主題を含む。
【0212】
例16では、例11~15の主題は、前記命令を実行することにより、前記UEに、前記UL伝送機会後に前記CCA手順が成功したと決定することと、前記通信チャネルでの伝送のために前記予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と後続の上りUL伝送機会の開始シンボルとの間の第2の時間間隔を占有する、ことと、を行うように構成された、主題を含む。
【0213】
例17は、5G NRシステムにおいて動作するように構成された基地局の1つ以上のプロセッサによる実行のために命令を記憶するコンピュータ可読記憶媒体であって、前記命令は、52.6GHzを超えるキャリア周波数で免許不要のスペクトルにおいて動作するように前記基地局を構成し、前記基地局に、前記免許不要のスペクトルにおいて通信チャネルの占有率を評価するクリアチャネル評価(CCA)手順を実行することと、前記CCA手順が成功したときに、前記通信チャネルでの伝送のために予約信号を符号化することであって、前記予約信号は、前記CCA手順の完了と下りリンク(DL)伝送機会の開始シンボルとの間の時間間隔を占有する、ことと、DL伝送機会中及び前記予約信号の伝送後にユーザ機器(UE)への伝送のためにデータ物理下りリンク共有チャネル(PDSCH)を符号化することと、を含む動作を実行させる、コンピュータ可読記憶媒体である。
【0214】
例18では、例17の主題は、前記予約信号は、周期的プレフィックスを含む、主題を含む。
【0215】
例19では、例18の主題は、前記周期的プレフィックスは、前記DL伝送機会中に、物理下りリンク制御チャネル(PDCCH)伝送又はPDSCH伝送に割り当てられた最初の直交周波数分割多重(OFDM)シンボルのプレフィックスに対応する、主題を含む。
【0216】
例20は、例19の主題は、前記時間間隔の持続時間は、前記PDCCH伝送又は前記PDSCH伝送に割り当てられた前記最初のOFDMシンボルに先行するシンボルの持続時間と等しい、主題を含む。
【0217】
例21は、命令を含む少なくとも1つの機械可読媒体であって、命令は、処理回路構成によって実行されるときに、処理回路構成に例1~20のいずれかを実装するための動作を実行させる少なくとも1つの機械可読媒体である。
【0218】
実施例22は、実施例1~20のいずれかを実装する手段を含む装置である。
【0219】
例23は、例1~20のいずれかを実装するシステムである。
【0220】
例24は、例1~20のいずれかを実装する方法である。
【0221】
特定の例示的な態様を参照してある態様が記載されたが、本開示のより広い範囲から逸脱することなく、様々な修正及び変更がこれらの態様に行われてもよいことが明らかであろう。したがって、明細書及び図面は、限定的な意味ではなく例示的であるものと見なされるべきである。したがって、この詳細な説明は、限定的な意味で解釈されるべきではなく、様々な態様の範囲は、添付の特許請求の範囲と題されたものの均等物の全範囲と共に、添付の特許請求の範囲によってのみ定義される。
【国際調査報告】