(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-08-24
(54)【発明の名称】電気化学装置の充電および放電のためのシステムおよび方法
(51)【国際特許分類】
H02J 7/00 20060101AFI20230817BHJP
H02J 7/04 20060101ALI20230817BHJP
H01M 10/44 20060101ALI20230817BHJP
【FI】
H02J7/00 L
H02J7/04 F
H01M10/44 P
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023506269
(86)(22)【出願日】2021-07-30
(85)【翻訳文提出日】2023-03-27
(86)【国際出願番号】 US2021044083
(87)【国際公開番号】W WO2022026934
(87)【国際公開日】2022-02-03
(32)【優先日】2020-07-30
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】519014213
【氏名又は名称】イオントラ リミテッド ライアビリティ カンパニー
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100109335
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100141553
【氏名又は名称】鈴木 信彦
(72)【発明者】
【氏名】コノプカ ダニエル エイ
(72)【発明者】
【氏名】ハウレット ザ サード ジョン リチャード
(72)【発明者】
【氏名】ホルト ジェフリー ジェイ
【テーマコード(参考)】
5G503
5H030
【Fターム(参考)】
5G503AA01
5G503BA01
5G503BB01
5G503CA01
5G503CB09
5G503GB04
5H030AA01
5H030AS20
5H030BB06
5H030BB21
(57)【要約】
バッテリのインピーダンスに基づく少なくとも1つの高調波調節済み形状を有する、ある周波数または高調波成分の信号を用いてバッテリを充電するシステムおよび方法である。このシステムは、充電と協調して負荷に給電するように作用し得る電力変換器をさらに含んでいてもよい。場合によっては、充電信号がインターリーブされた出力信号が生成される。さらに、出力信号は、放電信号に対する出力インピーダンスに基づいて調節されるようになっていてもよい。
【特許請求の範囲】
【請求項1】
充電信号成形回路と、
前記充電信号成形回路と動作可能に連通して、電気化学装置への電流の流れを表す値と関連付けられた高調波に基づいて前記電気化学装置の充電信号を規定するように前記充電信号成形回路を制御するコントローラと、
前記電気化学装置と動作可能に結合され、電力を負荷に供給する電力変換器と、
を備えた充電システム。
【請求項2】
前記電力変換器が、前記コントローラと動作可能に連通しており、前記コントローラが、前記電気化学装置からの電流の流れを表す値と関連付けられた高調波に基づいて前記電気化学装置からの放電波形を生成するように前記電力変換器を制御する、請求項1に記載の充電システム。
【請求項3】
前記充電信号が、一連の調節済み充電パルスを含み、前記放電信号が、一連の調節済み放電パルスを含み、前記コントローラが、前記一連の調節済み充電パルスに前記一連の調節済み放電パルスをインターリーブするように前記充電信号成形回路および前記電力変換器を制御する、請求項2に記載の充電システム。
【請求項4】
調節済み放電パルスが調節済み充電パルスの直後に続く、請求項3に記載の充電システム。
【請求項5】
調節済み放電パルスが調節済み充電パルスの本体部において活性化され、前記本体部が、前記調節済み充電パルスの成形済み前縁に続く、請求項3に記載の充電システム。
【請求項6】
前記電力変換器が、第1の降圧変換器または第1の昇圧変換器の少なくとも一方を含む、請求項1に記載の充電システム。
【請求項7】
前記電力変換器が、前記第1の降圧変換器と並列の第2の降圧変換器または前記第1の昇圧変換器と並列の第2の昇圧変換器の少なくとも一方をさらに含む、請求項5に記載の充電システム。
【請求項8】
前記電力変換器が、当該電力変換器を制御するスイッチを備え、前記スイッチが、略オフパルス幅から略オンパルス幅に変化して前記負荷からの出力パルスの縁部を成形するパルス幅の制御信号を受信する、請求項1に記載の充電システム。
【請求項9】
前記充電信号成形回路が、
電源レールと電気的に連通した第1のインダクタンス値の第1の成形インダクタと、
前記第1の成形インダクタとの間で電気的に連通し、前記第1の成形インダクタを通じて前記電気化学装置を前記電源レールに接続するように構成された第1のスイッチングデバイスと、
を備えた、請求項1に記載の充電システム。
【請求項10】
前記充電信号成形回路が、
前記電源レールと電気的に連通した第2のインダクタンス値の第2の成形インダクタと、
前記第2の成形インダクタとの間で電気的に連通し、前記第1の成形インダクタを通じて前記電気化学装置を前記電源レールに接続するように構成された第2のスイッチングデバイスと、
を備えた、請求項9に記載の充電システム。
【請求項11】
前記コントローラが、第1の制御信号を前記第1のスイッチングデバイスに、第2の制御信号を前記第1のスイッチングデバイスに送信することにより、前記電気化学装置への前記電流の流れを表す前記値と関連付けられた前記高調波に基づいて前記電気化学装置の前記充電信号を規定する、請求項10に記載の充電システム。
【請求項12】
前記第1のインダクタンス値が、前記第2のインダクタンス値よりも大きく、前記第1の制御信号が、前記第2の制御信号が前記第2のスイッチングデバイスをオンする前に、前記第1のスイッチングデバイスをオンすることにより、前記電気化学装置への前記電流の流れを表す前記値と関連付けられた前記高調波に基づいて前記充電信号の前縁を成形する、請求項11に記載の充電システム。
【請求項13】
前記第1のインダクタンス値が、前記第2のインダクタンス値と同じであり、前記第1の制御信号が、前記第2の制御信号が前記第2のスイッチングデバイスをオンする前に、前記第1のスイッチングデバイスをオンすることにより、前記電気化学装置への前記電流の流れを表す前記値と関連付けられた前記高調波に基づいて前記充電信号の前縁を成形する、請求項12に記載の充電システム。
【請求項14】
前記コントローラが、前記充電信号がオフの場合に前記電力変換器を駆動する、請求項1に記載の充電システム。
【請求項15】
前記値が、充電信号が前記電気化学装置に印加された場合の最小インピーダンスと関連付けられており、前記最小インピーダンスと関連付けられた高調波成分が前記充電信号に適用される、請求項1に記載の充電システム。
【請求項16】
前記コントローラが、制御信号を前記第1のスイッチングデバイスに供給することにより、前記充電信号のパルスの高調波成形済み前縁を生成し、前記高調波成形済み前縁が前記最小インピーダンス値と関連付けられた、請求項9に記載の充電システム。
【請求項17】
前記制御信号が、変化するデューティサイクルまたは変化する期間を有することにより、前記高調波成形済み前縁を生成する、請求項16に記載の充電システム。
【請求項18】
前記値が、インピーダンス、アドミッタンス、および電力のうちの少なくとも1つである、請求項1に記載の充電システム。
【請求項19】
電気化学装置への電流の流れを表す値であり、前記電流の流れの高調波成分と関連付けられた、値を取得するコントローラと、
前記高調波成分に基づいて前記電気化学装置の充電信号を規定する充電信号成形回路と、
前記電気化学装置と動作可能に結合され、電力を負荷に供給する電力変換器と、
を備え、
前記コントローラが、制御信号を前記電力変換器に送達することにより、放電中の前記電気化学装置の最適インピーダンス値に基づく前記電力変換器の高調波調節済み出力を生成する、電力変換装置。
【請求項20】
電気化学装置の出力インピーダンスと関連付けられた高調波に基づいて規定された高調波成形済み縁部を含む放電パルスを前記電気化学装置から生成することを含む、電力送達方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本PCT(特許協力条約)出願は、2020年7月30日に出願された米国特許出願第63/059,044号「Systems and Methods for Electrochemical Device Charging and Discharging」と関連し、その優先権を主張するものであって、そのすべての内容を本明細書に援用する。また、本出願は、2021年4月16日に出願された同時係属の米国特許出願第17/232,975号「Systems and Methods for Battery Charging」と関連するものであって、そのすべてを本明細書に援用する。
【0002】
本発明の実施形態は、一般的にはバッテリの充電のためのシステムおよび方法に関し、より詳細には、バッテリを充電する高効率および/または高速充電信号の生成のためのシステムおよび方法に関する。
【背景技術】
【0003】
電動工具、掃除機、任意数の異なる携帯用電子機器、および電気自動車等の多くの電動機器は、動作電力源として充電式バッテリを使用する。充電式バッテリは、有限なバッテリ容量の制約を受けるため、消耗時に再充電する必要がある。バッテリの再充電は、それに必要な時間にわたる電動機器の停止を要することが多いため、不便な場合がある。車両の場合は、再充電に数時間を要し得る。このため、バッテリの再充電に要する時間を短縮する急速充電技術の開発に多大な努力が払われている。ただし、急速再充電システムは通常、効率が低く、一方、低速再充電システムは再充電動作が長くなってしまうため、早く使えるようにするという基本的な目的が損なわれる。
【0004】
図1Aに示すように、おそらく最も単純なレベルにおいて、バッテリの充電には、バッテリにDC充電電流を流すことを含む。ただし、様々な種類のバッテリにおいて、バッテリが損傷を受ける前に受け入れ可能な電流は限られる。
図1Aは、単セルバッテリを再充電する単純な回路100の模式図である。電流計、電圧計、コントローラ等、回路の他の構成要素については、図示していない。バッテリ104は、制御可能な電力源102からの再充電電力信号の印加により再充電されるようになっていてもよい。本明細書に論じるような充放電を伴う様々な実施態様は、バッテリ等の電気化学装置に適用可能である。当技術における用語「バッテリ(battery)」は、様々に使用可能であり、電解質によって分離されたアノードおよびカソードを有する個々のセルのほか、このようなセルが様々な構成で接続された集合体を表し得る。バッテリは一般的に、電解質で飽和した液体またはポリマー膜であることが多いイオン伝導性バリアにより分離された対充電源および第1の電極層の繰り返し単位を含む。これらの層は薄く構成されているため、複数の単位がバッテリの体積を占め、各積み重ね単位で利用可能なバッテリの電力が増加し得る。本明細書においては、バッテリ、セル、またはバッテリセルに適用可能なものとして多くの例を論じているが、当然のことながら、記載のシステムおよび方法は、多くの異なる種類のセルのほか、並列、直列、および直並列に結合されたセル等のセルの考えられる異なる相互接続を含むバッテリにも当てはまり得る。たとえば、本明細書に論じるシステムおよび方法は、規定のパック電圧、出力電流、および/または容量を与えるように構成された多数のセルを含むバッテリパックにも当てはまり得る。さらに、本明細書に論じる実施態様は、例として様々な異なる種類のリチウムバッテリ(リチウム金属バッテリおよびリチウムイオンバッテリが挙げられるが、これらに限定されない)、鉛酸バッテリ、様々な種類のニッケルバッテリ、および固体バッテリ等、異なる種類の電気化学装置にも当てはまり得る。また、本明細書に論じる様々な実施態様は、ボタンまたは「コイン」型バッテリ、円筒セル、パウチセル、およびプリズムセル等の異なる構造のバッテリ構成にも当てはまり得る。バッテリ104の電極に対する電力信号の印加によって、電子がバッテリを逆流するため、アノードにおける電荷キャリア(リチウムイオン等)の蓄積濃度が補充される。特定の一例において、電源102は、DC充電電流をバッテリセル104に供給する直流(DC)電圧源であってもよい。また、制御電流源等の異なる種類の電源が用いられるようになっていてもよい。
【0005】
いくつかの高速充電シナリオにおいては、パルス充電が検討されている。
図1Bは、電源102により生成され、バッテリセル104への印加によってバッテリを再充電する従来技術の直流電圧信号122のグラフ110を示している。このグラフは、充電信号122の入力電圧112対時間114を示している。一般的に、電源102は、繰り返しパルス122をバッテリセル104の電極に供給してバッテリセルを再充電するように制御され得る。特に、電源102は、繰り返し方形波(パルス116にパルス118が後続するものとして図示)信号をバッテリセル104に供給するように制御され得る。方形波パルス116、118のピークは、電圧源102の動作制約に対応する電圧閾値120以下であってもよい。バッテリセル104の再充電に用いられる通常の充電信号によって、充電期間中に充電信号が印加されるようになっていてもよく、充電信号の印加の間には、ある継続時間の休止期間が存在する。このような回路100の動作によって、
図1Bに示すように、繰り返し方形波パターンの再充電信号122が生成される。
【0006】
ただし、場合によっては、方形波充電信号122の印加によるバッテリセル104の再充電によって、再充電中のバッテリセルの寿命が短くなることもあるし、バッテリの再充電の効率が低下することもある。たとえば、バッテリセル104の電極(通常、アノード)に対する充電電流の急激な印加(すなわち、方形波パルス116の鋭い前縁124)によって、バッテリ端子間に大きな初期インピーダンスが生じる可能性もある。特に、
図1Cは、一実施形態に係る、バッテリセル104に印加された再充電信号の対応する周波数に対するバッテリセル104の推定実数インピーダンス値のグラフを示している。特に、グラフ150は、実数インピーダンス値(軸154)対バッテリセル104に対する入力信号の周波数の対数周波数軸(軸152)のプロットを示している。プロット150は、バッテリの再充電に用いられる再充電電力信号の異なる周波数におけるバッテリセル104の電極間の実数インピーダンス値を示している。プロット150の形状および測定値は、バッテリの種類、バッテリの充電状態、バッテリの動作制約、バッテリの熱等に基づいて変化し得る。ただし、充電中のバッテリの特性については、プロット158により大略理解可能である。特に、バッテリセル104の電極における実数インピーダンス値は、バッテリに供給される充電信号の周波数に基づいて変化し、一般的には、高い周波数で実数インピーダンス値328が鋭く増大し得る。たとえば、周波数f
Sq162でのバッテリセル104への入力電力信号によって、バッテリセル104の電極には、高い実数インピーダンス160が導かれ得る。
【0007】
図1Bの方形波充電信号122を再び参照して、方形波パルス116の角部には、大きな周波数の信号が存在し得る。特に、バッテリセル104への充電信号の急速な変化(パルス116の前縁124等)により、方形波パルスの前縁、方形波パルスの後縁、および従来の逆パルス方式の使用時等において、高周波の高調波から成るノイズが導かれる場合もある。
図1Cのグラフ150に示すように、このような高調波によって、バッテリの電極に大きなインピーダンスが生じる。このような高いインピーダンスは、容量損失、発熱、およびバッテリセル全体での動電作用の不均衡、充電境界における望ましくない電気化学応答、ならびにバッテリに損傷を与えてバッテリセルの寿命を短くしかねないバッテリセル104内の材料の劣化等、多くの非効率性をもたらし得る。さらに、高速パルスでのバッテリのコールドスタートによって、容量性充電および拡散プロセスが始まるため、ファラデー作用は制限される。この間、近位のリチウムは反応して直ちに消費されるため、不要な副反応および拡散制限状態の期間が残って、セルおよびその構成要素の状態に悪影響を及ぼすことになる。上記および他の非効率性は、比較的大きな電流を伴うことが多いバッテリセル104の高速再充電において特に弊害をもたらす。
【0008】
とりわけ、これらの観察結果を念頭に置いて、本開示の種々態様を考案・開発した。
【発明の概要】
【0009】
本開示の態様は、充電信号成形回路を備えた充電システムを含む。このシステムは、充電信号成形回路と動作可能に連通して、電気化学装置への電流の流れを表す値と関連付けられた高調波に基づいて電気化学装置の充電信号を規定するように充電信号成形回路を制御するコントローラをさらに備える。このシステムは、電気化学装置と動作可能に結合され、電力を負荷に供給する電力変換器をさらに備える。
【0010】
別の態様において、電力変換器は、コントローラと動作可能に連通している。コントローラは、電気化学装置からの電流の流れを表す値と関連付けられた高調波に基づいて電気化学装置からの放電波形を生成するように電力変換器を制御するように構成されている。別の態様において、充電信号は、一連の調節済み充電パルスを含み、放電信号は、一連の調節済み放電パルスを含み、コントローラは、一連の調節済み充電パルスに一連の調節済み放電パルスをインターリーブするように充電信号成形回路および電力変換器を制御する。
【0011】
本開示の上記および他の態様については、以下により詳しく説明する。
【図面の簡単な説明】
【0012】
【
図1A】バッテリを充電するための従来の回路の模式図である。
【
図1B】バッテリを再充電するための従来技術の直流電圧または電流信号の信号図である。
【
図1C】一実施形態に係る、バッテリに印加された充電信号の対応する周波数に対するバッテリの推定実数インピーダンス値のグラフである。
【
図2】一実施形態に係る、充電信号成形回路を利用してバッテリを充電するための回路を示した模式図である。
【
図3A】一実施形態に係る、バッテリセルの決定された最小実数インピーダンス値に対応する周波数を有する正弦波セル充電信号のグラフである。
【
図3B】一実施形態に係る、バッテリセルに印加された充電信号の対応する周波数に対するバッテリの測定実数インピーダンス値のグラフである。
【
図4】一実施形態に係る、最小インピーダンス値に対応する周波数に基づいてバッテリの充電信号を成形するための回路を示した模式図である。
【
図5】一実施形態に係る、最小インピーダンス値に対応する周波数に基づいてバッテリの充電信号を生成するための方法を示したフローチャートである。
【
図6】一実施形態に係る、バッテリ充電信号の方形波パルスおよび正弦波パルスを重ね合わせたグラフである。
【
図7A】一実施形態に係る、指定の最高・最低周波数でバッテリに印加された充電信号の対応する周波数に対するバッテリの測定実数インピーダンス値のグラフである。
【
図7B】一実施形態に係る、バッテリセルの表示インピーダンスに基づく許容値の範囲内の最高・最低周波数の実数インピーダンス値に対応する複数の周波数を有する成形済みバッテリ充電パルスの信号図である。
【
図8】一実施形態に係る、バッテリセルの最大・最小実数インピーダンス値に対応する周波数の範囲に基づいてバッテリの充電信号を生成するための方法を示したフローチャートである。
【
図9A】一実施形態に係る、バッテリ充電回路から生成された第1の成形済み充電パルス列の信号図である。
【
図9B】一実施形態に係る、バッテリ充電回路から生成された第2の成形済み充電パルス列の信号図である。
【
図10A】一実施形態に係る、経時的なバッテリへの印加によってバッテリの実数インピーダンス値および虚数インピーダンス値を示す充電信号の信号図である。
【
図10B】一実施形態に係る、バッテリセルに印加された充電信号の対応する周波数に対するバッテリセルの測定実数インピーダンス値、虚数インピーダンス値、および規準インピーダンス値のグラフである。
【
図11】一実施形態に係る、バッテリ充電回路から生成された前縁部および本体部を含む成形済みバッテリセル充電信号の信号図である。
【
図12A】一実施形態に係る、バッテリに印加された充電信号に応答するバッテリ充電時のバッテリ全体の測定電圧降下および測定電流のプロットである。
【
図12B】一実施形態に係る、バッテリに印加された充電信号に応答するバッテリ充電時のバッテリ全体の測定電圧降下および測定電流のプロットである。
【
図13】一実施形態に係る、バッテリに印加された充電信号に応答するバッテリでの電流検知抵抗全体の測定電流および電圧対時間のプロットである。
【
図14】本開示の実施形態の実現に使用可能なコンピュータシステムの一例を示した図である。
【
図15】一例における、充電信号を規定するとともに、負荷のバッテリを充電しつつ負荷に給電する電力変換機能を提供するための回路の図である。
【
図16】一例における、充電信号を規定するとともに、負荷のバッテリを充電しつつ負荷に給電する降圧機能を提供するための回路の図である。
【
図17】一例における、充電信号を規定するとともに、負荷のバッテリを充電しつつ負荷に給電する昇圧機能を提供するための回路の図である。
【
図18A】
図15の回路に印加された制御信号により生成された高調波調節済み充電パルスの一例を示した図である。
【
図18B】
図15の回路への印加によって
図18Aの高調波調節済み充電信号を生成する制御信号の制御パルスの一例を示した図である。
【
図19A】一例における、
図15に示す回路等を通じて充電成形電力変換器を駆動するための制御パルスの一例を示した図である。
【
図19B】降圧または昇圧電力変換器を駆動するためのPWM信号の一例を示した図である。
【
図19C】一例における、
図19Dに示すようなデューティサイクルから生成される高調波成形済み出力電流波形の一例を示した図である。
【
図19D】一例における、最初の短いオンサイクルから長いオンサイクルへの遷移によって高調波に応じた放電パルスを成形するように降圧または昇圧電力変換器のデューティサイクルを変更する一例を示した図である。
【
図20A】並列昇圧回路を備えた充電信号成形回路の一例を示した図である。
【
図20B】一例における、並列降圧回路を備えた充電信号成形回路の一例を示した図である。
【
図20C】並列昇圧回路を備えた充電信号成形回路の一例を示した図である。
【
図20D】一例における、並列降圧回路を備えた充電信号成形回路の一例を示した図である。
【発明を実施するための形態】
【0013】
本明細書においては、バッテリの充電(再充電)およびバッテリの放電のためのシステム、回路、および方法を開示する。本明細書においては、充電(charging)および再充電(recharging)という用語を同意語として使用する。ここに論じるシステム、回路、および方法によれば、従来の充電回路および方法よりも効率的に、バッテリに対するエネルギーの充電または放電が可能となる。本明細書に論じる通り、エネルギー効率のほか、複数の他の利点が単独または効率との組み合わせにて実現される。たとえば、本明細書に記載の充電および/または放電技術は、アノードが損傷を受ける速度を低減可能であり、充電または放電中に発生する熱を低減可能(または、加熱を制御する方法を提供可能)であり、アノードおよびセルの損傷の低減、火災または短絡のリスクの低減等の複数の効果をもたらし得る。他の例において、本明細書に記載の充電技術は、セルへの高充電率の適用によって、より高速な充電を可能にし得る。標準的な充電率または放電率と考えられる期間において、本明細書に記載の技術は、サイクル深度および/またはサイクル寿命を相対的に改善可能である。一例において、バッテリの「低速充電」と考えられる期間には、開示のシステムおよび方法によって、より長いバッテリ寿命および充電エネルギー効率がもたらされる。別の例において、「高速充電」と考えられる期間には、開示のシステムおよび方法によって、発熱を抑えつつ、充電率およびバッテリ寿命の均衡が改善される。従来の充電回路では、充電回路の電子デバイスに着目して充電回路の効率化に対処しようとしてきたが、開示のシステム、回路、および方法では、バッテリの充電への適用の場合に、効率的なバッテリ充電信号を提供する。
【0014】
一例において、本明細書に論じる種々実施形態では、バッテリセルに対するエネルギー伝達および/またはバッテリセルからのエネルギー伝達の実数値および/または虚数値に基づく最適なエネルギー伝達と関連付けられた1つまたは複数の周波数(1つまたは複数の高調波であってもよい)に対応する充電または放電信号のパルスを生成することによって、バッテリの充電および/または放電を行う。一例において、周波数は、バッテリの最小実数インピーダンス値と関連付けられていてもよい。別の例において、充電信号のパルスは、バッテリの実数インピーダンス値および虚数インピーダンス値の両方と関連付けられた高調波に対応する。さらに別の例において、充電信号のパルスは、バッテリセルのアドミッタンスのコンダクタンスまたはサセプタンスの一方または両方と関連付けられた高調波に対応していてもよい。より詳細には、最小インピーダンス値に対応する周波数を決定するシステムおよび回路を記載する。いくつかの例においては、最小インピーダンスとなる周波数が充電状態、温度、および他の因子によって変化し得るため、本明細書に論じる技術では、最小インピーダンス周波数を再評価可能にする。これらの回路では、最小インピーダンスと関連付けられた高調波または周波数に対応する充電信号(たとえば、充電電流)のパルスを成形あるいは生成可能である。上記導入の通り、再充電および放電時には充電状態および温度が変動するため、バッテリ内の材料特性、化学的プロセス、および電気化学的プロセスの変化によって、最小インピーダンス値に対応する周波数が変化し得る。したがって、回路は場合により、バッテリの最小インピーダンス値に対応する周波数の監視もしくは決定ならびにバッテリへの充電パルスおよび/もしくはバッテリからの放電パルスの調整の反復プロセスを実行するようにしてもよい。この反復プロセスによって、充電信号または放電信号の効率が向上し得るため、数ある利点の中でもとりわけ、バッテリの再充電時間の短縮、バッテリ寿命の延長(たとえば、実行可能な充放電サイクルの回数の増加)、バッテリへの電流量もしくはバッテリからの電流量の最適化、ならびに様々な非効率によるエネルギー損失の回避が図られる。
【0015】
適当な高調波成分を含む充電パルスを生成するため、バッテリ再充電回路は、1つまたは複数の充電パルス成形回路、インピーダンス測定回路(ハードウェアコンポーネントおよび/もしくはソフトウェアコンポーネントの両方を含む)、ならびに/または特定用途向け集積回路を含んでいてもよい。特定の一実施態様において、充電パルス成形回路は、パルス制御信号により制御可能なフィルタ回路を含んでいてもよい。フィルタ回路は、バッテリセルに送られる充電パルスの高速変化を防止し得る。特に、フィルタ回路は、高周波の場合に電流の流れが制限され、低周波の場合に電流が回路を流れ得るように、Z=jωLに基づいて入力電流方形波を成形するようにしてもよい。フィルタ回路の構成要素の選択によって、従来の方形波電力信号に存在する非効率的な高調波を制限しつつ、バッテリセルに供給される電力を最大化するような充電パルスの前縁を成形可能である。また、フィルタ回路へのパルス制御信号は、バッテリセルに供給される各周波数調節済み充電パルスの継続時間を設定可能である。また、充電信号成形回路は、電流成形制御信号により制御可能な電流成形回路を含んでいてもよい。一実施態様において、電流成形回路は、充電パルスのバッテリセルへの印加に先立って、パルスから電流を除去または抜出することにより、充電パルスの大きさを変更するようにしてもよい。また、成形部は、パルスの後縁、パルス継続時間、パルス間の電圧レベルの規定、および他の機能に関与可能である。
【0016】
本明細書に開示のシステム、回路、および方法は、バッテリセルならびにバッテリが使用されるいかなる用途に対しても所望の容量、電圧、および出力電流範囲を実現するように何らかの方法で接続された複数個のセルを備え得る任意の形態のバッテリの充電に適用可能である。また、本明細書に論じる種々実施形態は、高速充電を可能にするものと考えられる。一方または両方の状況において、この回路は、従来の方形波と関連付けられる鋭い縁部ではなく、成形された立ち上がり前縁を含む再充電パルスを供給するように制御されるものであってもよい。一例において、充電パルスの立ち上がり前縁は、バッテリセルの最小または略最小実数インピーダンス値と関連付けられた高調波に対応する決定周波数(高調波)に基づいていてもよい。また、充電パルスは、充電対象のセルの最小実数インピーダンスおよび虚数インピーダンスの組み合わせに基づいていてもよい。別の例において、充電パルスは、充電対象のバッテリセルのコンダクタンスおよび/もしくはサセプタンス、またはその他任意のアドミッタンス要素単独あるいはこれらの組み合わせに基づいていてもよい。バッテリセルのさらに他の態様も考えられ、これらは充電パルスの成形に使用可能である。一般的に言えば、実数インピーダンス値および虚数インピーダンス値が考慮される場合、この技術では、これらの値が単独または組み合わせにて比較的低いインピーダンスとなる高調波の値を評価する。これらの技術では、アドミッタンスによって、当該アドミッタンスのコンダクタンスおよびサセプタンスが単独または組み合わせにて比較的高い高調波を評価する。
【0017】
ここで、実数インピーダンス最小値に基づくパルスについて論じるなら、略最小実数インピーダンス値に対応する立ち上がり前縁の適用によって、充電信号中の非効率的または有害な高次高調波成分が除去され得る。さらに、充電パルスの大きさの1つまたは複数の上側閾値を超えることでとりわけ、バッテリが損傷を受けて容量または寿命に影響が及ぶことなく、パルス内でバッテリに適用される電力の量を最大化または増加させるように、充電パルスの継続時間が回路により制御されるようになっていてもよい。これらのように、パルスが成形された充電信号を回路の制御により適用することで、各パルスにおいて、最適化された電力量をバッテリに送達すると同時に、劣化の原因となる高周波の高調波を信号から除去するようにしてもよい。このように成形された充電信号によって、バッテリセルの充電時に、電極を含むバッテリ内の様々な境界面全体でのインピーダンスが低下するため、バッテリセルの再充電の効率および速度が向上し得る。
【0018】
図2は、一実施形態に係る、充電パルス成形回路206およびインピーダンス測定回路208を利用してバッテリセル204を再充電するための回路200を示した模式図である。一般的に、回路200は、電源202を具備していてもよく、これは電圧源であってもよいし、電流源であってもよい。特定の一実施形態においては、電源202が直流(DC)電圧源である一方、交流(AC)源の使用も考えられる。より詳細に、電源202は、一方向電流を供給するDC電源、双方向電流を供給するAC電源、またはリップル電流を供給する電源(電流を一方向にするためのDCバイアスを有するAC信号等)を含んでいてもよい。一般的に、電源202は、バッテリセル204を充電するように成形されて使用可能な充電電流を供給する。特定の一実施態様において、
図2の回路200は、充電信号の1つまたは複数のパルスを成形してバッテリセル204の充電に使用する充電信号成形回路206を具備していてもよい。一例においては、回路コントローラ210が1つまたは複数の入力を充電信号成形回路206に与えて、充電信号の成形を制御するようにしてもよい。成形回路206がこれらの入力を使用することにより、電源202からの信号をバッテリセル204に対してより効率的な充電信号へと変更するようにしてもよい。充電信号成形回路206の動作および構成については、以下により詳しく説明する。
【0019】
場合により、充電信号成形回路206は、電源202からのエネルギーを変更して、バッテリセル204の最小実数インピーダンス値と関連付けられた高調波に少なくとも部分的に対応する充電パルスを生成するようにしてもよい。また、数ある因子の中でもとりわけ、任意所与の充電電流、電圧レベル、充電レベル、充電/放電サイクル数、および/または温度でインピーダンスが把握され得るようセルを特性化して、インピーダンスを直接測定する代わりに、メモリからの探索等を行うことも可能である。一例において、回路200は、バッテリセル204に接続されて、セル電圧および充電電流のほか、温度等の他のセル特性を測定するとともに、セル204の電極間のインピーダンスを測定または計算するインピーダンス測定回路208を含んでいてもよい。一例においては、印加パルスに基づいてインピーダンスが測定されるようになっていてもよい。また、異なる周波数特性の信号を適用することにより、セルの異なる周波数特性と関連付けられたインピーダンス値の範囲を生成してセルを特性化するルーチンの一部として、インピーダンスが測定されるようになっていてもよく、これは、充電前、充電中、充電中の定期的に行われ、探索技術および他の技術との組み合わせにて用いられるようになっていてもよい。セルインピーダンスには、実数値および虚数すなわちリアクタンス値を含み得る。バッテリセル204のインピーダンスは、セルの充電状態および/または温度等、セルの多くの物理的または化学的特性に基づいて変化し得る。このため、インピーダンス測定回路208の回路コントローラ210による制御によって、数あるタイミングの中でもとりわけ、セルの再充電時のバッテリセル204の様々なインピーダンス値を決定して、この測定したインピーダンス値を回路コントローラ210に提供するようにしてもよい。場合によっては、電源202からのエネルギーがバッテリセル204の最小実数インピーダンス値と関連付けられた高調波に対応する1つまたは複数の充電パルスに変形され得るように、回路コントローラによって、バッテリセル204の測定インピーダンスの実数成分が充電信号成形回路206に提供されるようになっていてもよい。別の例において、回路コントローラ210は、受信した実数インピーダンス値に基づいて1つまたは複数の制御信号を生成し、これらの制御信号を充電信号成形回路206に供給するようにしてもよい。制御信号は、数ある機能の中でもとりわけ、実数インピーダンス値に対応する高調波成分を含むように充電パルスを成形し得る。さらに他の例において、充電信号成形回路206は、電源202からのエネルギーを変更して、バッテリセル204のアドミッタンスのコンダクタンス成分もしくはサセプタンス成分またはバッテリセルのインピーダンスと関連するその他任意の要素と関連付けられた高調波に少なくとも部分的に対応する充電パルスを生成するようにしてもよい。したがって、本明細書においてはインピーダンスの実数または虚数成分に関するものとして説明するが、これらのシステムおよび方法では、バッテリセルのアドミタンスのコンダクタンス成分またはサセプタンス成分等、バッテリセルの他の特性を同様に測定または考慮することができる。
【0020】
図3Aは、
図2の回路200により生成され得るバッテリセル204の決定された最小実数インピーダンス値に対応する周波数を有する正弦波充電信号の一例のグラフ302である。本例において、正弦波信号自体の周波数は、充電対象のバッテリセルの最小実数インピーダンスに対応する周波数である。より詳細に、グラフ302は、バッテリセル204に送達される充電信号の入力電圧軸304対時間軸306のプロット314を示している。上述の方形波充電信号とは対照的に、回路200により生成される充電信号には、バッテリセル204に送達される繰り返し正弦波充電信号を含み得る。
図3Aには2つのパルス(パルス308、310)しか示していないが、このようなパルス列は、バッテリセルをあるレベルまで充電するのに十分な期間にわたってバッテリセルに送達され得ることが認識されるものとする。正弦波の周波数は、バッテリセルのインピーダンスおよび実装される制御方式に応じて時間とともに変化する可能性があり、実際にそうなると考えられる。本明細書に論じる通り、成形済みパルスおよび正弦波の周波数は、実施態様に応じて、最小インピーダンスまたは略最小インピーダンス(最小インピーダンス超、最小インピーダンス未満、または両方)に設定されるようになっていてもよい。このため、周波数は、最小インピーダンスに厳密に設定される必要はない。充電信号314の正弦波パルス308、310は、回路200の再充電動作中に生成され続け、バッテリセル204に送られ続けるようになっていてもよい。充電信号314の正弦波特性によって、方形波プロファイルの充電信号に通常存在する高周波ノイズ成分が除去されるため、バッテリセル204におけるインピーダンスが低くなり、再充電動作の効率が向上し得る。また、充電信号314には、パルス308、310間のある継続時間の沈降または脱分極期間316を含み得る。沈降期間316の継続時間は、回路コントローラ210により調整または制御可能であってもよく、また、バッテリセル204の再充電動作の種々態様に基づいていてもよく、充電信号314の過去のパルス308により供給された全電力、バッテリセル204の充電状態、バッテリセル204の測定もしくは推定温度、バッテリセル204の測定インピーダンス、ならびに/または充電回路に使用されているハードウェアコンポーネントが挙げられるが、これらに限定されない。たとえば、沈降期間316の継続時間は、制御回路210が充電回路200の制御のための1つまたは複数の目標値を決定するのに適切な時間を与えるため、回路コントローラ210の処理速度に基づいていてもよい。また、パルス308、310の大きさは、電圧閾値312を下回っていてもよい。電圧閾値312は、電源の上側電圧もしくは電流閾値ならびに/またはバッテリセル204の電圧、温度、および電流と関連付けられた熱力学的境界等、バッテリセル204および/または電源202の複数の要素に基づいていてもよい。場合によっては、以下により詳しく説明する通り、回路コントローラ210によって電圧閾値312が制御されるようになっていてもよい。
【0021】
特定の一例においては、回路200により生成されてバッテリセル204を再充電する充電信号314の正弦波パルス308の周波数または高調波が回路コントローラ210により選択され、充電パルスへの適用によって、バッテリセル204におけるインピーダンスが最小化されるようになっていてもよい。たとえば、
図3Bは、一実施形態に係る、バッテリセルに印加された充電信号の対応する周波数に対するバッテリセル204の測定実数インピーダンス値のグラフ322である。特に、グラフ322は、実数インピーダンス値(軸324)対充電信号の対数周波数軸(軸326)のプロットを示している。プロット328は、正弦波充電信号の異なる周波数におけるバッテリセル204の電極間の実数インピーダンス値を示している。図示のように、実数インピーダンス値328は、充電信号の周波数に基づいて変化し得、一般的には、最も高い周波数で実数インピーダンス値328が急速に上昇する。ただし、バッテリセル204の実数インピーダンス値のプロット334は、f
Minと表示された特定の充電信号周波数に対応する最小実数インピーダンス値330も示している。バッテリセル204の実数インピーダンス値334のプロットは、バッテリの化学的性質、充電状態、温度、充電信号の構成等、セルの多くの因子によって決まり得る。このため、バッテリセル204の最小実数インピーダンス値330に対応する周波数f
Min332についても同様に、充電中の特定のバッテリセル204の特性によって決まり得る。周波数f
Min332は、パック中のセルの構成およびパック中のセル間の接続等、バッテリセル204の他の要素に対応していてもよい。
【0022】
バッテリセル204のインピーダンスが受信電力を熱に変換する等の非効率性が考えられるため、バッテリセル204の最小実数インピーダンス値330に対応する周波数332またはその近傍で正弦波充電パルス308、310を生成することにより、バッテリセル204への充電用エネルギーの適用の効率が向上する可能性がある。言い換えると、周波数f
Min332またはその近傍で高調波を含むように充電信号314のパルス308、310を成形することにより、バッテリセル204のインピーダンスによって熱に変換される無駄なエネルギーが減って、バッテリセル204に対する充電信号314の効率が向上し得る。このため、
図2の再充電回路200の一実施態様には、バッテリセル204に接続され、充電信号のある周波数範囲にわたってバッテリセルの様々な実数インピーダンス値を決定するインピーダンス測定回路208を含んでいてもよい。インピーダンス測定回路208は、電圧センサおよび電流センサ等、バッテリセル204の電極間のインピーダンスを測定するように構成された任意既知の回路または今後開発される回路を含んでいてもよい。充電電力信号の異なる周波数でバッテリセル204の複数のインピーダンス値が測定され、回路コントローラ210に提供されることにより、バッテリセル204の曲線334の最小実数インピーダンス値が決定または推定されるようになっていてもよい。また、回路コントローラ210は、バッテリセル204の最小実数インピーダンス値330に対応する周波数f
Min332の高調波で一連の正弦波充電パルス308、310を生成するように、充電信号成形回路206の1つまたは複数の構成要素を制御するようにしてもよい。また、以下により詳しく説明する通り、回路コントローラ210は、再充電セッション中の様々なタイミングでバッテリセル204の現在の状態に対して推定される実数インピーダンス値を測定あるいは決定する反復プロセスを実施し、これに応じて、新たに推定された周波数f
Min332に一致するように充電電力信号314のパルス308、310を調整するようにしてもよい。決定または推定された最小実数インピーダンス値に基づいてパルス308、310の高調波周波数を有する充電信号314を生成するように回路200を制御することによって、充電信号の高周波部による電極での高インピーダンスによる無駄なエネルギーを最小限に抑えつつ、充電信号314のエネルギーがバッテリセル204の再充電に対してより効率的に適用され得る。
【0023】
充電パルス成形を利用してバッテリセルを充電するための回路の特定の一実施態様を
図4に示す。回路400は、コントローラ210による制御により、最小インピーダンス値に対応する周波数f
Minに基づいてバッテリセルの再充電信号を成形するようにしてもよい。一例において、コントローラ210は、電圧増幅器または電流増幅器を使用するフィードバック制御システムであってもよい。一般的に、コントローラ210は、アナログコントローラ、デジタルコントローラ、マイクロコントローラ、もしくはマイクロプロセッサ、または特定用途向け集積回路(ASIC)等のカスタマイズ集積回路であってもよい。コントローラ210は、本明細書に論じる成形回路400の実行を制御するための動作のうちの1つまたは複数を実行するように構成またはプログラムされていてもよい。さらに、後述の通り、回路400は、インピーダンスの虚数成分、アドミッタンスのコンダクタンス成分、アドミッタンスのサセプタンス成分、またはこれらの任意の組み合わせを考慮するようにしてもよい。回路400に含まれる構成要素は、これより多くても少なくてもよく、同等機能の他の構成要素により置き換えられるようになっていてもよい。いくつかの実施態様においては、複数のセルを並行して充電するため、または、所与のセルもしくはセルの構成に対してより大きな充電容量を提供するため、いくつかの構成要素が並列に複製されていてもよい。
図4の回路400は、本明細書に論じる高調波正弦波充電信号を供給するように制御され得る電力信号成形回路の一例に過ぎない。
【0024】
回路400は、レール442に結合されて充電信号をバッテリセル404に供給する電源402を具備していてもよい。電源402は、DC電圧源、AC電圧源、電流源等、いかなる種類のエネルギー源であってもよい。いくつかの実施態様において、電源402は、入力(VCONT434)を介した制御によって、回路400に供給されるエネルギーの波形またはパルスの大きさを変更するようにしてもよい。たとえば、回路コントローラ210が制御信号VCONT434を電源402に供給して、電源のオン、電力信号の大きさの選択、DC電力信号とAC電力信号との間の選択等を行うようにしてもよい。特定の一例において、電源402は、受信したVCONT434信号の電圧値に基づいて、供給する充電信号の大きさを調整するように構成されていてもよい。
【0025】
電源レール442にフィルタ回路406が接続され、電源402により生成された電力を受電するようにしてもよい。フィルタ回路406は、一般的に周波数f
Min322に対応する部分を有する充電信号をバッテリセル404に出力する構成要素を具備していてもよい。たとえば、フィルタ回路406からの出力信号には、上記決定の最小実数インピーダンス値に対応する周波数f
Min322またはその近傍の高調波の前縁を含んでいてもよい。場合によっては、回路コントローラ210によりフィルタ回路406に送信された1つまたは複数のパルス制御信号416によって、フィルタ回路406の構成要素を制御可能である。
図4に示す特定の例において、フィルタ回路406は、電源レール442と第1のトランジスタ412との間に直列に接続された第1のインダクタ410を具備していてもよい。第1のインダクタ410のインダクタ値がパルスの前縁の形状に影響を及ぼすことから、インダクタ値の選択はとりわけ、バッテリセル404の充電特性によって決まり得る。また、第1のトランジスタ412は、バッテリセル404の第1の電極に接続されていてもよい。第1のトランジスタ412は、パルス制御信号416等の入力信号を受信し、スイッチングデバイスまたはコンポーネントとして動作するようになっていてもよい。一般的に、第1のトランジスタ412は、第1のインダクタ410をバッテリセル404の第1の電極440に接続するためのいかなる種類のFETトランジスタであってもよいし、いかなる種類の制御可能なスイッチであってもよい。たとえば、第1のトランジスタ412は、ドレイン412が第1のインダクタ410に接続され、ソースがバッテリセル404に接続され、ゲートがパルス制御信号416を受信するFETトランジスタであってもよい。一実施態様において、パルス制御信号416は、回路コントローラ210により供給され、閉塞時にノード436をバッテリセル404の第1の電極に接続し、開放時にインダクタ410とバッテリセル404との間の接続を断つスイッチとして、第1のトランジスタ412の動作を制御するものであってもよい。充電パルスを生成する第1のトランジスタ412の制御については、
図5の方法500を参照して以下により詳しく説明する。
【0026】
第1のインダクタ410は一般的に、第1のトランジスタ412を介したバッテリセル404への接続に際して、バッテリセル404に送られる電流の急速な増大を防止するように動作し得る。より詳細に、第1のインダクタ410は、(第1のトランジスタ412が導通している場合の)インダクタを通じたバッテリセル404への電流の急速な伝導に対する抵抗となり得る。この電流の急速な増大に対する抵抗によって、電源レール442により供給される充電信号のパルスの前縁が急峻にならず、方形波入力の適用時にバッテリセル404で発生し得る高周波の高調波が抑えられる。トランジスタ412へのパルス制御信号入力416上の信号に応答して導通状態になると、電源レール442からの電流または他の形態のエネルギー束が第1のインダクタ410および第1のトランジスタ412を介してバッテリセル404に供給され、高周波ノイズの影響を最小限に抑えつつ、バッテリセル404を充電し得る。また、フィルタ回路406は、場合により、第1のインダクタ410と並列に接続されたフライバックダイオード414を具備していてもよい。フライバックダイオード414は、第1のトランジスタスイッチ412が開放または非導通の場合に、電源レール442により供給されたエネルギー束の戻り経路を提供する。たとえば、第1のトランジスタ412は、パルス制御信号416による制御によって、電源レール442からバッテリ電極440への電流の伝導を停止するようにしてもよい。その後は、電流がフライバックダイオード414を介して上側レール442に戻され得る。また、上側レール442とグランドまたはコモンとの間に蓄電キャパシタ432が接続されることにより、電源レール442により供給され、フライバックダイオード414を介して戻される電流が第1のトランジスタ412の開放期間中に上側レール442を介して蓄電キャパシタ432に供給されるようになっていてもよい。以下により詳しく説明する通り、第1のトランジスタ412の閉塞(充電信号の次のパルス等)に際して、蓄電キャパシタ432に蓄積されたエネルギーが上側レール442およびフィルタ回路406の入力に戻されることにより、第1のトランジスタ412の開放期間中に回路400でエネルギーが失われないようにして、回路400の効率をさらに向上させるようにしてもよい。
【0027】
図4においては、単一のフィルタ回路406の構成要素を示しているものの、構成が同一または同様の付加的なフィルタ回路がフィルタ回路406と並列に接続されていてもよい。たとえば、フィルタ回路406および任意数の付加的なフィルタ回路(フィルタ回路N 418まで)が充電回路400において並列に接続されていてもよい。各フィルタ回路406、418は、個々のパルス制御信号406によって、バッテリセル404の充電用に供給される電流から1つまたは複数の高調波を取り除くように、回路コントローラ210により独立して制御されるようになっていてもよい。別の例においては、同じパルス制御信号416によって、2つ以上のフィルタ回路406が制御されるようになっていてもよい。付加的なフィルタ回路418のうちの1つまたは複数は、値が同一または異なる類似する構成要素を具備していてもよい。たとえば、フィルタ回路N 418の第1のインダクタは、フィルタ回路406の第1のインダクタ410よりも大きなインダクタンス値を有していてもよい。一般的に、第1のインダクタ410のインダクタンス値が大きいと、充電パルスの急速な変化に対する抵抗が大きくなるため、値が小さなインダクタに対して充電パルスの前縁が傾斜する。このように、回路コントローラ210は、様々なフィルタ回路406、418の制御により、選択された第1のインダクタ410の様々なインダクタンス値によって、バッテリセル404に供給されるエネルギーパルスの前縁を成形するようにしてもよい。
【0028】
バッテリセル404に供給される充電信号のパルスをさらに変更するため、バッテリセル404の第1の電極440(たとえば、アノードまたは正端子)に1つまたは複数の入力成形回路420が接続されていてもよい。特に、入力成形回路420は、バッテリセル404の第1の電極440と第2のトランジスタ422との間に接続された第2のインダクタ424を具備していてもよい。一例において、第2のトランジスタ422は、ドレイン444が第2のインダクタ424に接続され、ソース446がグランドまたはコモンに接続され、ゲートが制御信号426を受信するFETトランジスタであってもよい。第1のトランジスタ412と同様に、第2のトランジスタ422は、負のレール、グランド、またはコモンに接続されたドレイン446にソース444を接続するスイッチとして動作するようになっていてもよい。第2のトランジスタ422は、入力制御信号426により制御されるようになっていてもよい。一実施態様において、成形入力信号426は、高周波でオン状態およびオフ状態が入れ替わる高周波パルス幅変調(PWM)信号であってもよい。一例においては、PWM信号426が100kHzを上回る周波数で動作するものの、PWM信号426は、いかなる周波数で動作するようになっていてもよい。高周波でスイッチングするPWM信号426に応答して、第2のトランジスタ422は、導通状態(または、「オン」状態)および非導通状態(または、「オフ」状態)が高速で入れ替わるようになっていてもよい。このような第2のトランジスタ422の動作によって、成形回路420は、バッテリセル404に送られる充電パルスからエネルギーをグランド側に抜出するようにしてもよい。抜出電流は第2のインダクタ424に蓄積されるが、インダクタの電流は電圧に遅れることから、第2のインダクタ424に蓄積されている間は電流がグランドに流れない。ただし、PWM信号426のオフ部は、電流が第2のインダクタ424から流れ出た場合にトランジスタ422がオフとなって、充電パルスから抜出されたエネルギー信号が接続部446を介してグランドにほとんどまたは一切伝達されないように、トランジスタ422を急速に閉じるようにしてもよい。むしろ、抜出エネルギーは、フライバックダイオード430を介して上側レール442に送られ、充電回路400による再利用のため蓄電キャパシタ432に蓄積されるようになっていてもよい。
【0029】
充電信号からエネルギーを抜出することにより、入力成形回路420は、充電パルスの大きさの部分を変更して、バッテリ404へのパルスを成形または変形するようにしてもよい。特に、PWM信号426の周波数の制御によって、多かれ少なかれ、充電信号からエネルギーを抜出するようにしてもよい。さらには、充電パルスの変更または成形の継続時間に対応するように、PWM信号426のデューティサイクルが選択または制御されるようになっていてもよい。このように、場合により回路コントローラ210によって供給されるPWM信号426は、フィルタ回路406からバッテリセル404への充電信号を変更するようにしてもよい。また、フィルタ回路406と同様に、1つまたは複数の付加的な入力成形回路428が入力成形回路420と並列に接続されていてもよい。各入力成形回路420、428は、個々のPWM制御信号426によって、回路コントローラ210により独立して制御されるようになっていてもよい。別の例においては、同じPWM制御信号426によって、2つ以上の成形回路420が制御されるようになっていてもよい。また、付加的な入力成形回路428のうちの1つまたは複数は、値が同一または異なる類似する構成要素を具備していてもよい。たとえば、成形回路N 428の第2の入力インダクタは、フィルタ回路420の第2の入力インダクタ424よりも大きなインダクタンス値を有していてもよいし、小さなインダクタンス値を有していてもよい。フィルタ回路406および/または入力成形回路420に印加されるパルス制御信号416およびPWM信号426の制御によって、高調波充電信号を実現するため、バッテリセル404に印加される充電信号の1つまたは複数のパルスが成形されるようになっていてもよい。また、以下により詳しく説明する通り、入力充電信号の付加的な成形が回路コントローラ210により制御されて、信号パルスのプロファイルがさらに変形されるようになっていてもよい。また、バッテリセル404に供給される充電信号の態様の制御に回路コントローラ210の様々な制御信号が用いられるようになっていてもよい。たとえば、制御信号は、バッテリセル404における電圧、バッテリセルに供給される電流、またはバッテリセルに供給される全体的なエネルギーもしくは電力を制御するようにしてもよい。したがって、本明細書においては、バッテリセルへの充電信号を制御または成形するものとして論じるものの、当然のことながら、回路コントローラ210によって、充電信号のいかなる要素が制御されるようになっていてもよい。
【0030】
また、
図4の回路400は、バッテリセル404に接続されたインピーダンス測定回路408を具備していてもよい。一般的に、インピーダンス測定回路408は、バッテリセル404の電極に見られるインピーダンス特性を測定する。一例において、インピーダンス測定回路408は、バッテリセル404の電極間の電圧を測定する電圧センサと、バッテリセルに流れる電流を測定する電流センサと、を具備していてもよい。ただし、インピーダンス測定回路408は、バッテリセル404のインピーダンスを測定するための任意既知の回路または今後開発される回路を含んでいてもよい。さらに、インピーダンス測定回路408は、回路コントローラ210による制御によって、様々なタイミングまたは区間のセルインピーダンスを測定するようにしてもよい。たとえば、インピーダンス測定回路408は、ある周波数範囲にわたって充電信号がバッテリセル404に印加されるテスト期間中のバッテリセル404のインピーダンスを測定するように構成されていてもよい。これらの測定結果が取得され、回路コントローラ210への提供によって、
図3Bのグラフ322に関して上述したようなバッテリセル404の最小実数インピーダンスが決定されるようになっていてもよい。
【0031】
回路コントローラ210は、
図4の回路400を利用することにより、最小インピーダンス値に対応する周波数に基づいてバッテリセルの充電信号のパルスを成形するようにしてもよい。特に、
図5は、一実施形態に係る、最小インピーダンス値に対応する周波数に基づいてバッテリセルの充電信号を生成するための方法500を示している。方法500の動作は、回路コントローラ210により実行されるようになっていてもよく、特に、電源402、フィルタ回路406、および/または成形回路420への制御信号の供給によって、回路400の様々な構成要素を制御する。また、他の回路設計および構成要素が回路コントローラ210による制御によって、方法500の動作のうちの1つまたは複数を実行するようにしてもよい。したがって、本明細書においては
図4の回路400に関して記載しているものの、方法500の動作は、任意数のハードウェアコンポーネント、ソフトウェアプログラム、またはハードウェアおよびソフトウェアコンポーネントの組み合わせにより実行されるようになっていてもよい。
【0032】
動作502を起点として、回路コントローラ210は、バッテリセル404の再充電に用いられる充電パルスの初期周波数を選択するようにしてもよい。たとえば、方形波充電パルスの非効率性を回避するため、バッテリセル404の再充電には正弦波充電パルスが選択されるようになっていてもよい。回路コントローラ210によって、充電パルスの初期周波数が選択されるようになっていてもよい。場合によっては、バッテリの最初の充電中のバッテリセル404における実数インピーダンスを最小化または低減するように選択周波数が決定されるようになっていてもよい。最初は、充電信号がバッテリに印加されておらず、1つまたは複数の特性(バッテリセルの充電状態またはバッテリの他の電気化学的要素等)が把握されていない可能性があるため、回路コントローラ210がバッテリセル404の実数インピーダンスを把握していないものと考えられる。このため、回路コントローラ210は、充電パルスの初期周波数の選択によって、バッテリセル404へのエネルギーの供給を開始するようにしてもよい。特定の一実施態様において、回路コントローラ210は、バッテリセル404の履歴データ、他のバッテリセルの履歴データ、回路コントローラ210の履歴データ、または他のバッテリ再充電データに基づいて、充電パルスの初期周波数を求めるようにしてもよい。たとえば、回路コントローラ210は、バッテリセル404または他のバッテリセルの過去の再充電セッションを解析するようにしてもよい。この解析に基づいて、回路コントローラ210は、バッテリセルの実数インピーダンス値が最小となるバッテリセル404の周波数fMinを推定するようにしてもよい。再充電セッションの解析数が増えるほど、充電パルスの初期周波数に対する最良の推定値がバッテリセル404の推定最小実数インピーダンス値に対応するように決定され得る。初期選択周波数は、バッテリセル404の充電状態の実際の最小実数インピーダンス値に対応していなくてもよく、むしろ、対象とするバッテリセルまたはその他任意のバッテリセルの1つまたは複数の履歴的な実数インピーダンス測定結果に基づいていてもよい。
【0033】
選択された充電パルスの初期周波数によって、回路コントローラ210は、充電回路400のパルス制御信号入力416および/またはPWM信号入力426を制御することにより、バッテリセル404の高調波充電パルスを生成するようにしてもよい。特に、回路コントローラ210は、パルス制御信号416を供給することにより、第1の期間にわたって第1のトランジスタ412を駆動するようにしてもよい。第1のトランジスタ412の駆動によって、電源レール442からバッテリセル404にエネルギーパルスを伝えるようにしてもよい。フィルタ回路406の第1のインダクタ410は、電源レール422から受信するパルス(たとえば、方形波パルス)の急速な増大に対する抵抗となって、バッテリセル404に送られる角度付きの前縁(たとえば、正弦波パルスの前縁)を出力するようにしてもよい。また、充電信号パルスの継続時間は、第1のトランジスタ412が駆動されて導通する第1の期間に対応していてもよい。さらに、パルスの大きさは、電源402により供給される信号の大きさ(潜在的に、VCONT434により制御される)および/またはパルス制御信号416により制御されるようなパルス信号の継続時間に対応していてもよい。特に、第1のトランジスタ412が導通する継続時間は、バッテリセル404に供給されるエネルギーパルスの継続時間に対応する。多くの場合、回路コントローラ210は、第1のトランジスタ412の駆動/停止制御を繰り返すことにより、エネルギーパルスの周期的な繰り返しパターンをバッテリセル404に供給するようにしてもよい。
【0034】
前縁およびパルス継続時間のほか、入力成形回路420の制御によって、バッテリセル404に供給されるエネルギーパルスの変更が実行されるようになっていてもよい。特に、第2のトランジスタ422へのPWM信号426の供給によって、トランジスタを急速に駆動および停止することにより、入力成形回路420がパルスからエネルギーを抜出し、パルスの継続時間中の任意のタイミングでパルスの大きさを低減するようにしてもよい。PWM信号426の周波数によって、エネルギーパルス信号から抜出されるエネルギー量を制御することにより、プロファイルをさらに変更するようにしてもよい。PWM信号426の精密な制御によって、パルスの大きさの(パルスからのエネルギーの取り出しによる)低減または(入力成形回路420によってパルスからエネルギーが取り出されることのないようにするためのトランジスタ422の停止による)増大により、バッテリセル404を充電するための成形済みパルスを生成するようにしてもよい。
【0035】
パルス制御信号416および/またはPWM信号426等の回路400への入力の制御によって、回路コントローラ210は、
図3Aの波形314と同様に、選択初期周波数でバッテリセル404を充電するための正弦波パルスを生成するようにしてもよい。ただし、前述の通り、バッテリセル404における最小実数インピーダンスは、バッテリの充電中に変化し得る。たとえば、バッテリセル404の充電状態および温度によって、最小実数インピーダンス特性が変化し得る。バッテリの現在の状態におけるバッテリセル404の最小実数インピーダンスに対応する周波数となるようにパルス充電信号の周波数を調整することによって、バッテリを充電する際の効率化の利益が得られる。したがって、回路コントローラ210は、動作506において、異なる周波数でバッテリセルのインピーダンスを測定することにより、異なる周波数におけるバッテリセルの実数インピーダンス値の関数を求めるようにしてもよい。一実施態様において、回路コントローラ210は、異なる周波数の1つまたは複数のテスト信号をバッテリセル404に印加することによって、バッテリセル404の測定最小実数インピーダンスに対応する充電信号周波数を決定するようにしてもよい。テスト信号の周波数は、ある範囲のテスト信号をバッテリセル404に供給するように、回路コントローラ210によって予め決定されていてもよい。各テスト信号について、バッテリセル404における対応する実数インピーダンス値が決定および/または格納されるようになっていてもよい。多くの周波数の使用のほか、定電流間欠滴定法(GITT)が用いられるようになっていてもよい。一般的に、GITTでは、(スペクトル上の正弦波周波数の合計である)方形波パルスの特性を使用して、バッテリセル404のインピーダンスの決定に使用され得る複素インピーダンスを表す。
【0036】
動作508においては、測定テストインピーダンスの最小実数インピーダンス値が決定されるようになっていてもよい。たとえば、回路コントローラ210は、受信したテスト結果から最も小さな実数インピーダンス値を最小インピーダンス値として選択するようにしてもよい。別の例において、回路コントローラ210は、受信した実数インピーダンス値を解析して、値の外挿により最小実数インピーダンス値を決定するようにしてもよい。たとえば、測定値は、一連のテスト周波数の上昇に対して実数インピーダンス値が小さくなった後、次の一連のテスト周波数の上昇に対して大きくなることを示し得る。回路コントローラ210は、バッテリセル404の最小実数インピーダンス値が第1の一組の上昇するテスト周波数と第2の一組の上昇するテスト周波数との間の周波数に対応するものと判定するようにしてもよい。この状況において、回路コントローラ210は、測定値間のバッテリセル404の最小実数インピーダンス値を推定するようにしてもよい。動作510において、回路コントローラ210は、バッテリセル404に対して決定された最小実数インピーダンス値に対応する周波数を決定するようにしてもよい。たとえば、テスト信号の周波数326に対するバッテリセル404の実数インピーダンス値324のグラフ334が生成され、このグラフから、最小実数インピーダンス値330が決定されるようになっていてもよい。また、グラフ334から、最小実数インピーダンス値330に対応する周波数が決定されるようになっていてもよい。一般的に、対応する周波数の決定には、最小実数インピーダンス値となるバッテリセル404への入力信号の周波数を決定するための任意の相関アルゴリズムが利用されるようになっていてもよい。
【0037】
動作512において、回路コントローラ210は、測定テストインピーダンスの最小実数インピーダンス値に対応する周波数が、充電パルスが供給される過去に選択された周波数と異なるかを判定するようにしてもよい。回路コントローラ210は、バッテリセル404へのテスト信号の印加により得られた対応する周波数が、充電パルスが供給されている周波数と異なるものと判定した場合、動作514において、充電信号の付加的なパルスの対応する周波数を選択するようにしてもよい。さらに、回路コントローラ210は、動作504に戻り、入力信号を生成して成形回路に供給することにより、決定された対応する周波数となるようにバッテリセルの充電パルスの周波数を調整するようにしてもよい。対応する周波数が、充電パルスが供給されている周波数と異ならない場合、回路コントローラ210は、動作514において、付加的な充電パルスの周波数を維持するとともに、動作504において、対応する制御信号を成形回路に供給するようにしてもよい。このように、
図5の方法500により、バッテリセル204の再充電用に生成された正弦波充電パルスに対して、バッテリセルの最小実数インピーダンス値に対応する周波数が選択されるようになっていてもよい。
【0038】
正弦波充電信号を使用することの潜在的な欠点として、このような信号は、方形波充電信号と比較して、再充電のためにバッテリセルに供給する電力が少なくなってしまう可能性がある。この潜在的な欠点は、最短時間で最大量のエネルギーをバッテリセルに供給しようとする高速充電の状況において、特に顕著となり得る。
図6のグラフ602は、この潜在的な欠点を示している。特に、
図6は、バッテリ充電信号の方形波パルス612、614および正弦波パルス608、610を重ね合わせた入力電圧値604の時間606に対するグラフ602である。一般的に、各パルスの下側の面積は、再充電のためにバッテリに供給され得る電荷量を示す。パルスの下側の面積は、利用可能な電荷量を表すことが認識されるものとする。上述の通り、バッテリおよび充電の特性上、一般的には、方形波パルスの全エネルギーがセルの充電のために送達されるわけではない。それにも関わらず、方形波パルス612、614および正弦波パルス608、610によって供給される電荷量の差をハッチングエリア616、618に示している。図示のように、正弦波パルス608、610は、上述の選択高調波周波数の推定によってバッテリのインピーダンスを低減する一方、方形波パルス612、614よりもパルス当たりのバッテリへの充電量が少なくなり得る。したがって、最小インピーダンス周波数に基づく充電によれば、他のシステムに対して充電が改善され得る。ただし、さらなる改良および最適化も利用可能と考えられる。
【0039】
最小実数インピーダンス値に対応する選択高調波で同様の電荷量をバッテリに供給する潜在的な方法として、充電パルス608、610を大きくすることが挙げられる。ただし、多くのバッテリの特性では、充電信号の大きさに上側閾値が課されるため、正弦波パルスの大きさを増大するだけでは、バッテリセルの急速充電に有益とならない可能性もある。たとえば、多くのバッテリの電解質は、電圧閾値と相関する特定の電力レベルで絶縁破壊が始まり、このような化学反応の不可逆性のため、バッテリの寿命が短くなる。また、このような電解質の絶縁破壊は、バッテリの電極に印加される再充電電力信号の急激な変化において発生する場合がある。再充電電力信号の急激な印加によって、バッテリの他の構成要素にも絶縁破壊あるいは損傷が発生する可能性がある。たとえば、大電力信号によって、リチウムイオンバッテリの固体電解質相間(SEI)層を横切る1つまたは複数の永久チャネルが形成され、アノード全体が永久に空間的不均質となる場合もある。また、SEI層は、大電力信号に応答して厚さが増すため、バッテリの効率が低下する可能性もある。さらに、再充電電力信号の大きさを増大させると、バッテリは放熱よりも高速に発熱するため、潜在的にバッテリが損傷を受け、熱暴走のリスクが高くなる可能性もある。このため、付加的な充電のためにパルス608、610を大きくするだけでは、再充電中のバッテリが損傷を受ける可能性がある。
【0040】
正弦波パルス608、610による充電を増大させる代替方法として、正弦波パルスが正常に小さくなり始めるパルスピークまたはその近傍でのパルスを維持しつつ、高調波を組み合わせるとともに、目標の実数インピーダンス最小周波数(および/または、以下により詳しく論じるような目標の虚数インピーダンス)となるようにパルスのピークの拡幅および/または前縁の調節を行う。一例において、本明細書に論じる方法および回路は、バッテリセルの1つまたは複数の最小実数インピーダンス値に対応する周波数の範囲の決定に適用され、これら識別周波数の範囲内の高調波を含む充電信号をバッテリセルに供給するようにしてもよい。たとえば、
図7Aは、バッテリセルに印加された充電信号の対応する周波数706に対するバッテリセルの測定実数インピーダンス値714のグラフ702である。値は、リアルタイムに測定されたものであってもよいが、測定および格納されたもの(つまり、リアルタイムには測定されていないもの)であってもよいし、他の情報から特性化または導出されたものであってもよいし、周期的にしか測定されていないものであってもよく、周波数は、何らかの初期値に設定された後、フィードバックループにおいて調整されるようになっていてもよい、等が認識されるものとする。また、当然のことながら、虚数インピーダンス値、アドミッタンス値、および/またはサセプタンス値等、バッテリセルの他の要素についても同様に、測定または推定され、充電パルスの成形に用いられるようになっていてもよい。このグラフは、許容最小インピーダンス値間を範囲とする最高周波数710および最低周波数708を示しているが、最小インピーダンス周波数値については厳密ではない。
図7Aのグラフ702は、バッテリセルの実数インピーダンス値対バッテリに供給される充電信号の周波数のプロットを表す点において、上述の
図3Bのグラフ322に類似する。ただし、本例においては、最小実数インピーダンス値330に対応する周波数f
Min332を決定するのではなく、バッテリセルを充電するための許容インピーダンス値の範囲に基づいて、最低周波数f
RMin708および最高周波数f
RMa710により規定される周波数の範囲がバッテリの最小実数インピーダンス値712の近傍で決定されるようになっていてもよい。最低周波数f
RMin708および最高周波数f
RMa710が選択され、生成されたバッテリ充電信号パルスに含められることにより、パルスのプロファイルが拡幅され、各パルスにおいてバッテリセルに送られる電荷が増大するようになっていてもよい。許容インピーダンス値での周波数の範囲に基づいて、再充電電力信号の充電パルスに複数の高調波を含めることにより、充電パルスを受けるバッテリセルのインピーダンスをより小さく維持しつつ、バッテリセルの再充電のために単一の高調波正弦波から利用できる電荷を増やすことができる。
【0041】
図7Bは、一実施形態に係る、バッテリセルの実数インピーダンス値に基づく最高周波数f
RMax710および最低周波数f
RMin708に対応する複数の周波数を含むバッテリセル充電パルスの信号
図722である。信号
図722は、入力電圧724対時間726を示しており、最高電圧閾値730を上回るとバッテリが損傷を受ける可能性がある。特に、
図722の充電パルス728は、
図7Aのグラフ702に示す周波数の範囲に基づいて生成されたものであってもよい。たとえば、
図7Bの充電パルス728には、最低周波数f
RMin708と最高周波数f
RMax710との間に存在する高調波の範囲を含んでいてもよい。一例において、最低周波数f
RMin708および最高周波数f
RMax710は、バッテリセルに対して決定された最小実数インピーダンス値712に対応する周波数f
Min711が最低周波数f
RMin708と最高周波数f
RMax710との間に含まれ得るように、最小実数インピーダンス値712の周りの範囲に基づいていてもよい。充電パルス728内の選択された高調波周波数ごとに、当該周波数でのバッテリの対応する実数インピーダンス値に基づいて、対応する大きさが決定されるようになっていてもよく、これにより充電パルスがいくらか不均一になる。ただし、選択された大きさがいずれも、再充電中のバッテリセルの損傷の可能性またはバッテリの熱暴走の可能性がある上側電圧または電力閾値730を超えない場合がある。最小実数インピーダンス値712に対応する周波数の範囲を含めることによって充電パルスを拡大することにより、バッテリの低インピーダンスを維持しつつ、バッテリを再充電するための電荷の適用量を増やすことができる。このように、バッテリセルの再充電に多電荷・低インピーダンス充電信号を使用することにより、方形波再充電信号と比較して効率を向上させるようにしてもよい。
【0042】
図8は、一実施形態に係る、バッテリの最大・最小実数インピーダンス値に対応する異なる周波数の範囲に基づいてバッテリセルの充電信号を生成するための方法を示したフローチャートである。上述の通り、類似する方法の実行によって、虚数インピーダンス値、アドミッタンス値、および/またはサセプタンス値等、バッテリセルの他の要素に基づいてバッテリセルの充電信号を生成するようにしてもよい。
図5の方法500と同様に、
図8の方法800の動作は、回路コントローラ210により実行されるようになっていてもよく、特に、電源402、フィルタ回路406、および/または入力成形回路420への制御信号の供給によって、
図4の回路400の様々な構成要素を制御する。また、他の回路設計および構成要素が回路コントローラ210による制御によって、方法500の動作のうちの1つまたは複数を実行するようにしてもよい。したがって、本明細書においては
図4の回路400に関して記載しているものの、方法500の動作は、任意数のハードウェアコンポーネント、ソフトウェアプログラム、またはハードウェアおよびソフトウェアコンポーネントの組み合わせにより実行されるようになっていてもよい。
【0043】
動作802を起点として、回路コントローラ210は、バッテリセルの最小実数インピーダンス値を求めるようにしてもよい。最小実数インピーダンス値を求めることは、回路コントローラ210が充電信号の異なる周波数でバッテリのインピーダンスを測定可能または受信可能である点において上記に類似し得る。また、最小実数インピーダンス値は、ループ処理または回路コントローラ210駆動処理により決定されるようになっていてもよい。たとえば、回路コントローラ210は、異なる周波数(たとえば、ある周波数範囲)で回路のバッテリを充電し、バッテリセル204の最小インピーダンス値が見つかるまでバッテリセル204のインピーダンスを測定するようにしてもよい。このような測定は、バッテリセルのアクティブ充電時に行われるようになっていてもよいし、実行およびメモリへの格納の上、探索されるようになっていてもよい。いくつかのバッテリに関しては、インピーダンス測定結果対充電信号周波数が
図7Aのグラフ702に類似し得る。グラフ702と同様に、回路コントローラ210は、複数のインピーダンス測定結果に基づいて、バッテリセルの最小実数インピーダンス値712を決定するようにしてもよい。また、インピーダンス測定プロセスでは、異なる周波数でのインピーダンス値を取得して格納するようにしてもよい(たとえば、最低周波数となる周波数f
Min711より高い周波数および低い周波数でのインピーダンス測定結果を取得するようにしてもよい)。
【0044】
動作804において、回路コントローラ210は、許容インピーダンス値の対応する範囲の上側実数インピーダンス値720を選択するようにしてもよい。特に、回路コントローラ210は、充電信号の印加に基づいて、バッテリセルの許容インピーダンス値716を決定するようにしてもよいし、許容インピーダンス値716が与えられるようになっていてもよい。許容インピーダンス値716は、最小インピーダンス値を上回り、最小インピーダンスとなる周波数fMin711よりも低い周波数および高い周波数で発生する1つの許容インピーダンス値として図示および説明する。許容インピーダンス値716は、最小インピーダンスよりも高い周波数または低い周波数に対して同じでなくてもよいことが認識されるものとする。さらに、許容インピーダンス716は、充電の進展、セル温度の変化とともに変わる場合もあるし、充電の電流レベル等に基づいていてもよい。許容インピーダンス値716は、上記決定の最小インピーダンス値712より大きくてもよい。たとえば、回路コントローラ210は、充電信号の許容インピーダンス値として、インピーダンス値716を決定するようにしてもよいし、インピーダンス値716が与えられるようになっていてもよい。一般的に、許容インピーダンス値716は、再充電中のバッテリセルのいかなるインピーダンスであってもよい。ただし、充電信号の印加時のバッテリセル全体のインピーダンスを制限するため、小さな許容インピーダンス値716が選択または決定されるようになっていてもよい。さらに、この範囲の上側インピーダンス値720は、最低周波数fMin711となる周波数とは異なる周波数または周波数の組み合わせにて発生するインピーダンス値であってもよい。多くの場合、最小インピーダンスが発生する周波数fMin711の上下に、最小インピーダンス712を上回り、許容インピーダンス716を下回る周波数の範囲が存在することになる。たとえば、この範囲の許容インピーダンスは、最小インピーダンスが発生する周波数よりも高い周波数fRMax710で発生するものであってもよい。したがって、回路コントローラ210は、許容インピーダンス値716に達するまで、最小インピーダンス値712から右側へ(または、高周波側へ)インピーダンス値のプロット曲線714をたどることにより、許容範囲に対する上側インピーダンス値720を決定または選択するように構成されていてもよい。ただし、他の実施態様においては、この範囲の上側インピーダンス値720が最小インピーダンス値712からの設定差分(プログラム的には、バッテリ充電、温度等の他の因子を考慮して演算される最小値からの設定差分)であってもよい。たとえば、この範囲の上側インピーダンス値720は、最小インピーダンス値712の2倍または最小インピーダンス値の他の倍数として決定されるようになっていてもよい。
【0045】
図7Aにおいては滑らかな曲線として示しているが、インピーダンス値のプロット曲線714の形状には、異なる周波数のノイズ等の影響の様々な事象を含んでいてもよい。たとえば、プロットされるインピーダンス値714は、特に高調波が大きくなるほど高い周波数で沈降を含み得るように、様々な信号の大きさで生成されるようになっていてもよい。したがって、プロット714は、高調波電力の異なる増分とそれぞれ関連付けられた複数の異なるプロットの総和であってもよい。このような状況において、最小インピーダンス712に対応する周波数f
Min711は、インピーダンス値が急速に上昇し始める特定の値まで高調波が大きくなる間、相対的に一定を保っていてもよい。
【0046】
さらに、寄生容量損失および寄生誘導損失によって、パック中のセルの物理的配向(並列接続であるか直列接続であるか等)がインピーダンス曲線の形状に影響を及ぼし得る。たとえば、特定の周波数帯域においてエネルギーがあるセルから別のセルへと空中の短い距離を飛び越えるようになり、バッテリパック構造内のセルを効果的に迂回して、その時点での電流の流れをさらに阻害または促進する場合がある。これらの周波数での測定インピーダンスは、パック内のセルが省略されることでインピーダンスが低く現れるインピーダンス曲線またはエリアの沈降が生じ得るため、特に高周波側のいくつかの高調波について、局所的な最小インピーダンス値が決定される場合もある。ただし、これらの高い周波数でバッテリセルまたはパックを充電しても、上記説明した理由から、バッテリセルの充電の効率は向上しない可能性がある。このため、最小インピーダンス712に対応する周波数fMin711の決定には、バッテリパック内の寄生損失に起因する高周波でのインピーダンス値の沈降または比較的ノイズの多い帯域を除外する動作を含んでいてもよい。このような高周波の除外は、インダクタ値410(または、フィルタ回路406、418)の選択により実現されるようになっていてもよいし、回路400中の充電信号の経路に付加的な高周波フィルタを含むようにしてもよい。一実施態様において、コントローラ210は、実数および虚数インピーダンス、アドミタンス等、バッテリセルまたはパックの複数のパラメータを比較することにより、局所的な最小インピーダンス値を含む一方、高周波であるため除外すべき領域を区別するようにしてもよい。さらに、コントローラ210は、バッテリパック内の寄生損失に起因するインピーダンスの沈降が小さな周波数範囲と関連付けられる可能性があることから、検出された最小インピーダンス値と関連付けられた周波数の範囲を決定するようにしてもよい。
【0047】
また、セル間でエネルギーが飛び越えるパックにより得られたインピーダンス曲線プロット714をコントローラ210が利用して、パックの構成の特徴付けまたは識別を行うようにしてもよい。たとえば、セルが直列に接続された第1のバッテリパック構成は、セルが並列に接続された第2のバッテリパック構成と異なるインピーダンスプロットを有し得る。また、セル数または配向が異なるパック間の検出可能な差異が同様に用いられるようになっていてもよい。このため、コントローラ210は、(コンダクタンスおよび/またはサセプタンス等、バッテリパックの他の要素のプロットのほか)バッテリパックのインピーダンスプロットを取得し、取得したプロットをインピーダンスプロットのデータベースと比較するようにしてもよい。インピーダンスプロットのデータベースは、各プロットを特定のバッテリパック構成またはバッテリセル種類と相関させることにより、取得したインピーダンスプロットと格納プロットとの比較によって、コントローラ210が充電対象のバッテリパックの構成またはセル種類を決定または推定できるようにしていてもよい。そして、コントローラ210は、推定したバッテリパック構成に基づいて、充電パルスをさらに調整または成形するようにしてもよい。
【0048】
この範囲の上側インピーダンス値720が決定される方法に関わらず、回路コントローラ210は、動作806において、上側インピーダンス値720の対応する周波数fRMax710を決定するようにしてもよい。前述の通り、バッテリセルの電極におけるインピーダンスは、電極に印加される充電信号の周波数に基づいて変化し得る。このため、周波数fRMax710は、許容範囲の選択された上側インピーダンス値720に対応し得る。回路コントローラ210は、選択された上側インピーダンス値720に対応する周波数fRMax710を決定するようにしてもよい。
【0049】
また、動作808において、回路コントローラ210は、バッテリに関して取得した最小インピーダンス値716に基づいて、許容インピーダンス値の対応する範囲の下側インピーダンス値718を選択するようにしてもよい。この範囲の上側インピーダンス値720と同様に、下側インピーダンス値718は、許容インピーダンス値716に基づいて選択または決定されるようになっていてもよく、また、最小インピーダンス値712が発生する周波数fMin711よりも低い周波数fRMin708であってもよい。言い換えると、回路コントローラ210は、許容インピーダンス値716に達するまで、最小インピーダンス値712が発生する周波数fMin711から左側へ(または、低周波側へ)インピーダンス値のプロット曲線714をたどることにより、許容インピーダンス値の範囲に対する下側インピーダンス値718を決定または選択するように構成されていてもよい。このため、上側インピーダンス値720および下側インピーダンス値718は場合により等しい(この範囲の許容インピーダンス値716等)が、充電信号の異なる周波数(たとえば、最小インピーダンスの周波数fMin711の上下)で発生し得る。別の実施態様において、このインピーダンス値の範囲の下側インピーダンス値718は、この範囲の上側インピーダンス値720と同様に、最小インピーダンス値712からの指定差分であってもよい。上側インピーダンス値720が決定される方法に関わらず、回路コントローラ210は、動作810において、下側インピーダンス値の対応する周波数fRMin708を決定するようにしてもよい。一般的に、対応する周波数fRMin708は、最小インピーダンス値712の対応する周波数fMin711よりも低い周波数である。いくつかの例において、充電パルスを生成するための許容範囲または一組の高調波は、この範囲の周波数fRMax710とこの範囲の周波数fRMin708との間に含まれる周波数の範囲に基づいていてもよく、この範囲には周波数fMin711も含む。
【0050】
さらに他の実施態様において、回路コントローラ210は、上側インピーダンス値720または下側インピーダンス値718の一方または両方を決定しなくてもよい。むしろ、回路コントローラ210は、インピーダンス値の範囲の周波数fRMax710および周波数fRMin708を選択する(たとえば、テーブルの探索等を行う)ようにしてもよい。場合によっては、上側および下側周波数値の一方または両方が最小インピーダンス周波数fMin711に基づいていてもよく、これは、過去のモデリング、過去の測定結果からの外挿等に基づいて測定されるようになっていてもよいし、メモリから取得されるようになっていてもよい。最小インピーダンス周波数fMin711等に基づいて周波数fRMax710および/または周波数fRMin708を選択することにより、回路コントローラ210は、充電信号の周波数範囲または帯域幅を制御するようにしてもよい。さらに、周波数範囲は、当該周波数範囲内の対応するインピーダンス値が、バッテリセルの測定インピーダンス値またはバッテリセルもしくは他のバッテリセルの履歴測定結果に基づいてバッテリセルを充電するための(1つまたは複数の)許容閾値716を下回り続けるように選択されるようになっていてもよい。
【0051】
動作812において、回路コントローラ210は、周波数fRMax710および周波数fRMin708により規定される周波数の範囲内の複数の周波数に対応する大きさの値を求めるようにしてもよい。一実施態様においては、範囲内の周波数に対応する大きさが、当該周波数において測定または推定されたインピーダンスに比例していてもよい。たとえば、周波数fRMax710の充電パルスに含むように求められた大きさは、当該周波数における実数インピーダンス値720に比例していてもよい。同様に、周波数fRMin711の充電パルスに含むように求められた大きさは、当該周波数における実数インピーダンス値712に比例していてもよい。したがって、範囲内の各周波数は、当該周波数におけるインピーダンス値714に対応して関連する大きさを有していてもよい。ただし、各高調波のインピーダンスは、必ずしも波形の他の高調波の大きさと無関係ではないことに留意する。
【0052】
動作814において、回路コントローラ210は、充電回路400のパルス制御信号およびPWM信号を制御することにより、バッテリセル404の成形済み充電パルスを生成するようにしてもよい。上述の通り、
図4の回路400は、充電中のバッテリセル404への充電信号のパルスの生成に利用されるようになっていてもよい。特に、フィルタ回路406および/または入力成形回路420の制御によって、上記決定の周波数範囲に対応する1つまたは複数の周波数または高調波を含む充電パルス列となるように、上側レール442からの電力を成形するようにしてもよい。一例において、フィルタ回路406は、周波数f
RMax710または周波数f
RMin708の正弦波信号に対応する前縁を生成するように制御され得る。さらに、パルス制御信号416の継続時間によって充電パルスの高調波の範囲が決まり、パルス制御信号416の長い継続時間は、幅広な充電パルス(または、充電パルスの幅広な帯域幅)に対応し得る。また、入力成形回路420は、PWM信号426による制御によって、信号の特定の事象または高調波における充電パルスの大きさを変更するようにしてもよい。このように、回路コントローラ210は、1つまたは複数の入力を回路400に与えることにより、周波数f
RMax710および周波数f
RMin708により規定される周波数の決定範囲に基づく複数の高調波を含むように充電パルスを成形し得る。
図8の方法800によって、回路コントローラ210は、バッテリセルの電極におけるインピーダンスを維持または低減しつつ最適な電荷量をバッテリ404に供給する一連の成形済み充電パルスを生成するようにしてもよい。
【0053】
決定された周波数範囲およびこの周波数範囲に基づいて生成された充電信号は、
図5の方法500に従って使用されるようになっていてもよい。特に、回路コントローラ210は、第1の一組の測定インピーダンス値に基づく周波数の範囲から充電信号を生成して、バッテリセルの充電を開始するようにしてもよい。
図5に関して論じた反復プロセスにより、バッテリセルの再充電セッション中に第2の一組の測定インピーダンス値が取得されるようになっていてもよい。その後、第2の測定インピーダンス値に基づいて第2の周波数範囲が決定され、これに応じて充電信号が調整されるようになっていてもよい。このように、バッテリセルのインピーダンス値の付加的な測定結果に基づいてバッテリセルの再充電中に充電信号のパルスを調整または変更する反復プロセス(充電信号に含まれる周波数または高調波の範囲の再計算を含む)が実施されるようになっていてもよい。
【0054】
図9Aは、一実施形態に係る、バッテリ充電回路から生成された成形済み充電パルス列902の信号
図902である。一例において、回路400は、コントローラ210に基づいて、成形済みパルス914、916を生成するようにしてもよい。信号
図902は、充電信号のパルス914、916について、電流制御ハードウェア回路の場合の入力電圧904または入力電流対時間906を示している。図に見られるように、各パルス914、916は、前縁912が後縁910に対して異なるように成形された非対称である。一例において、パルス914、916は、バッテリセルの電極において見られる最小インピーダンス値に対応する高調波または最小インピーダンス値と関連する高調波の組み合わせにより規定されていてもよい。特に、充電信号パルス914、916は、バッテリセルの最小インピーダンス値に関連する選択周波数に対応する前縁部912を含んでいてもよい。たとえば、パルス914の前縁912の形状は、バッテリセルの最小実数インピーダンス値における周波数として回路コントローラ210により識別された高調波f
Min332に対応していてもよい。一例において、前縁912の形状は、最小インピーダンスの周波数の対応する正弦波の前縁に基づいていてもよい。別の例において、パルス914の前縁912の形状は、高調波f
RMax710または高調波f
RMin708に対応していてもよい。最小インピーダンス周波数の識別は、とりわけ(1つまたは複数の)測定結果、バッテリ特性に単独または組み合わせにて基づいていてもよい。選択周波数に関わらず、パルス914の前縁912は、再充電電力信号のより効率的な印加のため、バッテリセルに見られるインピーダンスを最小化または低減する高調波の正弦波充電信号の一部の前縁と同じになるように成形されていてもよい。
【0055】
選択高調波のパルス908の前縁912を生成するため、回路コントローラ210は、上述のフィルタ回路406のうちの1つまたは複数を制御するようにしてもよい。たとえば、パルス908の前縁912の形状は、第1のインダクタ410のインダクタンス値と相関していてもよい。特に、第1のインダクタ410は、当該インダクタを通る電流がゆっくりと立ち上がって時間とともに増大するように、電流の急速な伝導に対する抵抗となる。インダクタを流れる電流に対する抵抗は、第1のインダクタ410のインダクタンス値によって決まる。したがって、充電信号のパルス914の前縁912を成形するため、回路コントローラ210は、(パルス制御信号416による)第1のトランジスタ412の駆動によって、電流がインダクタ410を流れ始めてバッテリセル404に到達するようにしてもよい。この電流の流れは、ゆっくりと始まり、時間とともに増大するようになっていてもよく、充電信号の電圧が充電信号の電流と関連することから、電圧が電流に追従して、
図9Aに示すようなパルス914の前縁912を形成していてもよい。一般的に、第1のインダクタ410を流れる電流の増大率は、インダクタのインダクタンス値に基づいていてもよく、充電信号のパルス914、916に前縁912の形状を与え得る。したがって、前縁912の高調波は、第1のインダクタ410のインダクタンス値に対応していてもよい。目標の高調波を前縁912に適用するため、回路コントローラ210は、複数のフィルタ回路406、418または第1のインダクタからの選択によって、最小実数インピーダンスの決定された高調波に対応する前縁912に対する傾斜を生成するようにしてもよい。さらに、電流の急速な増大に対する第1のインダクタ410の抵抗によって、充電信号のパルスの前縁が急峻にならず、方形波入力の適用時にバッテリセル404で発生し得る高周波の高調波が抑えられる。
【0056】
パルス制御信号416による第1のトランジスタ412の駆動によって、回路コントローラ210は、電流が第1のトランジスタ412を流れる際の選択高調波のパルス914の前縁912を生成するようにしてもよい。パルス914の後ろの方の時間に、パルスの大きさは、パルス914の最上部の定電圧908に対応する電源レール442の上側電圧または浮遊電圧に達し得る。パルス908の継続時間は、回路コントローラ210によって、第1のインダクタ410および第1のトランジスタ412を介して電力がバッテリセル404に供給されるように第1のトランジスタ412の導通状態を維持することにより制御されるようになっていてもよい。このように、パルス制御信号416は、充電信号のパルス914の継続時間すなわち幅を制御可能である。
【0057】
場合により、回路400は、パルス914の鋭い後縁910を含むように制御され得る。回路コントローラ210は、第1のトランジスタ412を停止して電源レール442からバッテリセル404を分離することにより、パルスの鋭い後縁910を生成するようにしてもよい。特に、回路コントローラ210は、パルス制御信号416を停止することにより、第1のトランジスタ412の導通を停止させるようにしてもよい。上記説明の通り、第1のトランジスタ412が非導通となった場合に第1のインダクタ410を流れる電流は、フライバックダイオード414を通じて電源レール442に戻されるようになっていてもよい。このような第1のトランジスタ412の制御によって、パルス914の鋭い後縁910が生じ得る。さらに、鋭い後縁910は通常、大きな高調波成分に対応し得るものの、鋭い後縁910の後には、電流および電圧の大きさがバッテリ404全体でゼロ(電圧の場合にはゼロ過電位)に接近または等しくなるため、このような高調波によってバッテリセル404に損傷を与えるようなインピーダンスは増大しないと考えられる。
図12を参照して以下により詳しく説明する通り、充電電流がゼロに達するのに要する時間を短縮するため、電圧の大きさが一時的にバッテリの浮遊電圧(たとえば、充電電流を受けていない場合のバッテリ電圧)を下回る限り、大きな高調波と損傷を与えるようなインピーダンスとの間の分離は維持される。このように、フィルタ回路406の制御によって、バッテリセル404の最小インピーダンス値に対応する高調波の正弦波前縁912と、上側の大きさ908での継続時間と、バッテリの電極での低インピーダンスを維持しつつ十分な電荷をバッテリセル404に供給する鋭い後縁910と、を含む成形済み充電パルス418が生成されるようになっていてもよい。
【0058】
一般的に、回路400は、充電信号のパルスの生成または任意の形状への成形を行うように制御され得る。たとえば、
図9Bは、一実施形態に係る、バッテリ充電回路400から生成された第2の成形済み充電パルス列924、932の信号
図922である。本例において、各パルス926、932の前縁928は、
図9Aに関して上述した前縁912に類似していてもよい。特に、充電パルス924、932の前縁912は、上述のフィルタ回路406のうちの1つまたは複数の制御により生成されるようになっていてもよい。ただし、本例においては、成形済み立ち上がり縁部928後のパルスの継続時間において電圧レベル908が平坦なパルスではなく、回路コントローラ210は、充電回路400の入力成形回路420、428のうちの1つまたは複数の制御によって、パルス924をさらに成形するようにしてもよい。図示の例において、前縁928に続くパルス924の部分926は、鋭い後縁930まで不均一に低下する電圧(または、電流)を含んでいてもよい。低下レベル(または、傾斜)926を直線的に示しているが、これは必須ではなく、パルス924は、多くの形態を含むように成形されていてもよい。一実施態様において、回路コントローラ210は、入力成形回路420の第2のトランジスタ422にPWM信号426を供給するようにしてもよい。上記説明の通り、PWM信号426は、導通状態(または、「オン」状態)と非導通状態(または、「オフ」状態)との間で第2のトランジスタ422を入れ替える高周波スイッチング信号であってもよい。第2のトランジスタ422の急速な入れ替え動作によって、パルス924からの電流が第2のインダクタ424に流れ得る。このパルス924からの電流の抜出により電流が除去されるため、下方傾斜部926が得られる。一般的には、PWM信号426のデューティサイクルによって、パルス926から引き出される電流の量が制御され得るが、このデューティサイクルは、回路コントローラ210によって、パルス924の傾斜926を生成するように構成されていてもよい。さらに、上記説明の通り、PWM信号426のオフ部は、充電パルスから抜出されたエネルギー信号が接続部446を介してグランドにほとんどまたは一切伝達されないように、トランジスタ422を急速に閉じるようにしてもよい。むしろ、抜出エネルギーは、フライバックダイオード430を介して上側レール442に送られ、充電回路400による再利用のため蓄電キャパシタ432に蓄積されるようになっていてもよい。
【0059】
充電パルス924の期間の最後に、回路400は、
図9Aに関して上述したような鋭い後縁930を規定するように、さらに制御され得る。特に、回路コントローラ210は、第1のトランジスタ412を停止して電源レール442からバッテリセル404を分離することにより、パルスの鋭い後縁910を生成するようにしてもよい。特に、回路コントローラ210は、パルス制御信号416を停止することにより、第1のトランジスタ412の導通を停止させるようにしてもよい。さらに他の例においては、入力成形回路420のPWM信号426による駆動によって、後縁930での電流を抜出することにより、パルス924の後縁をさらに成形するようにしてもよい。当然のことながら、
図9Bに示す充電パルス924、932は、充電回路400の制御によって生成され得る成形済み充電信号の一例に過ぎない。特に、回路コントローラ210は、フィルタ回路406および/または入力成形回路420の制御により、必要に応じて様々な形状の充電パルスを生成するようにしてもよい。このように、
図3A、
図7B、および/または
図9Aに示すような充電信号の他の形状が回路400により生成されるようになっていてもよい。
【0060】
バッテリの電極における実数インピーダンス値に関して上述したものの、バッテリの電極におけるインピーダンスのリアクタンスすなわち虚数部は、充電信号の成形時にも考慮され得る。また、アドミッタンス値および/またはサセプタンス値等の他の要素が考慮されるようになっていてもよい。特に、
図10Aは、バッテリセルを再充電する充電電流1006の生成に用いられる正弦波電圧信号1004を示した信号図である。一般的に、バッテリセルで測定される充電電流1006は、印加される電圧信号1004と同じ形状を有し得る。ただし、バッテリのインピーダンスのため、バッテリに印加される充電電流1006は、電圧信号1004に対して小さく、時間遅延しているものと考えられる。バッテリにおける電圧信号1004と電流1006との間の大きさの定性的な差は、実数インピーダンスZ
R1008の測定結果をZ
R=(dV/dI)または(ΔV/ΔI)として示すものである。上述の方法および回路のうちの1つまたは複数では、バッテリを再充電するための充電信号のパルスの成形に際して、この実数成分を考慮に入れる。電圧信号1004とバッテリにおける電流1006の印加との間の時間遅延をZ
I1010として示すが、これは、バッテリインピーダンスのリアクタンスすなわち虚数成分に起因する。インピーダンスの実数成分と同様に、インピーダンスのリアクタンス部1010によっても、充電セッション中のバッテリへの充電信号の印加が非効率となる。たとえば、充電波形の期間は一般的に、充電電圧または電流によるバッテリの再充電の開始から、電圧がゆっくりとゼロ過電位に戻って(端子の電圧がバッテリの浮遊電圧に一致)、バッテリに充電電流が流れなくなる(ゼロアンペア)までとして測定される。ただし、バッテリセルのインピーダンスのリアクタンス部を無視した充電システムでは、バッテリへの電圧およびその結果としての充電電流波形が同じタイミングで開始および停止するものと想定し得る。ただし、インピーダンスのリアクタンス部を考慮すると、バッテリセルでの電圧と電流の波形間に容量性または誘導性の時間遅延が生じ、充電信号の電圧と電流との間の遅延によって、パルス当たりの充電期間が長くなることが示される。これにより、パルスの充電期間全体での平均電流が小さくなって、バッテリセルにおける充電パルスの非効率性が高くなると考えられる。また、リアクタンスレベルに応じて、リアクタンス成分は、バッテリ内に蓄積された化学的エネルギーではなく、熱の生成にエネルギーを振り向ける可能性がある。リアクタンスが問題になって、導電経路(ケーブル、ワイヤー、および配線基板のトレース等)およびセル自体に熱が生じる可能性もある。また、リアクタンスが高いと、電極のエリア全体で電気化学的活性が不均質となり、集電体、電気活性物質、およびバッテリセル内の他の構成要素全体でのオーミックドロップが深刻になり得る。
【0061】
このバッテリセルへの充電パルスの印加における潜在的な非効率性に対処するため、このシステムでは、バッテリセルのインピーダンスの決定または推定リアクタンス成分にパルスが対応する充電信号を生成するようにしてもよい。特に、バッテリセルを再充電するための充電信号のパルスの形状および全体期間は、インピーダンスの虚数成分のほか、インピーダンスの実数成分に対応するように調整されていてもよい。たとえば、バッテリのインピーダンス1024の様々な成分対バッテリに印加された充電信号の周波数1026のグラフ1022を示す
図10Bをここで参照する。特に、グラフ1022は、実数インピーダンス値1028のプロット、虚数インピーダンス値1032のプロット、および計算された規準インピーダンス値1030のプロットを含む。本明細書に論じる方法によって、最小実数インピーダンス値に対応する周波数f
Zr1034が決定され、これを利用することにより、上記周波数またはこれを上回るある周波数範囲および/もしくはこれを下回るある周波数範囲内の高調波をパルスが含む充電信号を生成するようにしてもよい。ただし、グラフ1022に示すように、最小実数インピーダンス値に対応する周波数f
Zr1034は、バッテリ電極における比較的高い虚数インピーダンス値1032と関連付けられていてもよい。このため、実数インピーダンスを考慮に入れるだけでは、虚数インピーダンスおよびそれが充電効率に及ぼす影響までは考慮されず、最適な充電ソリューションは得られない。このため、本明細書に記載の回路および方法のいくつかの実施態様では、バッテリセルにおけるインピーダンスの虚数および実数の両成分の周波数の理解等、程度の差こそあれ、虚数および実数の両インピーダンスを考慮することによって、パルス形状を規定するための周波数およびこのようなパルスを適用する全体的な充電信号の期間を最適化するようにしてもよい。さらに他の実施態様では、バッテリセルにおける測定実数インピーダンスおよび/または測定虚数インピーダンスから計算されるアドミッタンス値および/またはサセプタンス値を使用するようにしてもよい。
【0062】
一例において、回路コントローラ210は、実数インピーダンス値および虚数インピーダンス値の組み合わせを計算あるいは取得して、充電信号のパルスを生成する周波数および高調波を選択するようにしてもよい。このような組み合わせには、実数および虚数インピーダンス値の規準計算結果を含んでいてもよい。インピーダンス規準値1030のプロットを
図10Bのグラフ1022に示す。また、バッテリのインピーダンスの両成分の他の組み合わせを回路コントローラ210により計算または決定して、充電信号のパルスの成形に使用可能である。たとえば、実数インピーダンス値および虚数インピーダンス値の一方または両方が不均衡(実数インピーダンス値に20%の重み付け、虚数インピーダンス値に80%の重み付け等)または比例的に重み付けされるようになっていてもよく、また、充電パルスの前縁または幅等、充電信号のパルスの様々な要素の決定に用いられるようになっていてもよい。上記と同様に、回路コントローラ210は、最小インピーダンス規準値および対応する周波数(グラフ1022では、周波数f
ZMod1036として示す)を決定するようにしてもよい。グラフ1022に見られるように、周波数f
ZMod1036の高調波を有する充電パルスを生成することによって、他の周波数(特に、f
Zrと比較)よりもバッテリに誘導される実数インピーダンスが高くなる一方、虚数インピーダンス成分は最小化または低減され得る。このため、バッテリセルにおけるインピーダンスの両成分(実数インピーダンス1028および虚数インピーダンス1032)を考慮することによって、より効率的な充電信号が生成され得る。バッテリセルにおけるインピーダンスの両成分を考慮することは、複数のセル間の接続によってインピーダンスが付加される複数セルのシステムにおいて特に有用となり得る。
【0063】
場合により、回路コントローラ210は、最小実数インピーダンス値に対応する周波数fZr1034とも最小規準インピーダンス計算結果に対応する周波数fZMod1036とも異なる充電信号の周波数を選択するようにしてもよい。むしろ、回路コントローラ210は、充電信号に選択する周波数が周波数fZr1034と周波数fZMod1036との間となり得るように、実数インピーダンス値および虚数インピーダンス値の均衡によって、充電信号の高調波を決定するようにしてもよい。
【0064】
特定の一実施態様においては、2つ以上のインピーダンス測定結果に基づいて、充電信号のパルスの別個の部分が回路コントローラ210により成形されるようになっていてもよい。たとえば、
図11は、一実施形態に係る、バッテリ再充電回路から生成された2つ以上の周波数に対応するバッテリセル充電信号1102の成形済みパルス1108の信号図である。
図9を参照して上述した電力信号パルスと同様に、パルス1108には、最小実数インピーダンス値に対応する高調波として構成された前縁部1110を含んでいてもよい。たとえば、パルス1108の前縁部1110の形状は、高調波f
Zr1034に対応していてもよい。ただし、パルス1108の第2の部分1112には、周波数f
Zr1034と異なる別の周波数に基づく高調波を含んでいてもよい。たとえば、前縁部1110および第2の部分112は一体的に、最小規準インピーダンス計算結果1030に対応する一次高調波f
ZMod1036を含んでいてもよい。最小規準インピーダンス計算結果に対応する高調波f
ZMod1036の適用によりパルス1108の第2の部分1112の継続時間を決定することによって、再充電電力信号の印加によるバッテリの電極における虚数インピーダンスを低減するようにしてもよい。バッテリの実数インピーダンス成分のみならず、虚数インピーダンス成分にも基づく高調波の決定および適用によって、バッテリセルの充電により効率的な再充電電力信号を使用可能となる。
【0065】
充電信号のパルスのさらに他の要素が回路400により制御されるようになっていてもよい。特に、充電信号のパルスの後縁の制御によって、バッテリセルの充電時の効率に関する利点が得られる。
図12Aおよび
図12Bは、一実施形態に係る、バッテリセル全体の印加/測定電圧1208およびバッテリセルの測定充電電流1210対時間1206のプロットである。上述の通り、充電信号には、バッテリセルへの充電信号1212を除去する鋭い後縁を含み得る。ただし、
図12Aのプロットに見られるように、バッテリに印加される電圧がゼロに設定された場合でも、電流Iは、直ちにゼロまで降下するのではなく、ゼロに達する前にいくらか遅延する。ただし、パルス間の時間は、電流がゼロに達する(セルが脱分極する)まで次のパルスが開始とならないように設定されていてもよい。このため、一例において、回路400は、バッテリセルの潜在的な損傷あるいは完全な脱分極の前にセルの分極を開始することによる非効率な充電を防止するため、バッテリセル404の電流がゼロに達してから充電信号の次のパルスが開始となるまで待機するように制御され得る。充電はパルスにおいてのみ生じ得ることから、パルス間の時間を短縮または最小化すると、他の条件を同じものとした場合の全体的な充電時間が短くなる。電圧制御の回路400の場合は、充電信号の電流成分1210が電圧成分1208に遅れる可能性がある。より詳細には、
図12Aに示すように、バッテリの電圧1208が除去された後にバッテリの電流1210がゼロに戻るまでには、ある程度の時間を要し得る。このバッテリの電流がゼロに戻るまでの遅延によって、充電パルスの効率がさらに低下する可能性がある。したがって、いくつかの実施態様においては、
図12Bのプロット1222に示すように、
図12のプロット1222で線1206として表すゼロ電流に対応する遷移電圧を下回るように充電信号の電圧1208が制御され得る。一般的に、遷移電圧1206は、バッテリへの電流の流れが反転する充電信号の電圧であって、バッテリセルの浮遊電圧に類似し得る。特に、パルスの後縁1212に続くある期間(期間T
T1216として示す)にわたって電圧1208が遷移電圧1206を下回るようにすると、急降下がないパルスと比較して、電流1210がより高速にゼロアンペアに達し得る。ゼロ電流に対応する遷移電圧を下回るように電圧制御充電回路400の電圧1208が制御される継続時間T
T1216は、回路コントローラ210によって、バッテリセル404の電流1210がゼロアンペアに戻る時間を最小限に抑えるように決定または設定され得る。一例においては、バッテリセルの電極が劣化しないように、電圧の沈降がバッテリセルの推奨セル電圧最小値を下回らないように制御され得る。また、電圧沈降の大きさは、遷移電圧に対して、充電パルスの大きさのある割合となるように制御され得る。さらに、電圧の遷移電圧までの復帰は、バッテリセル内の電荷が均衡を保つ限り、電流をゼロアンペアに維持する速度に制御されるようになっていてもよい。電流1210が特定の休止期間にわたってゼロアンペアに戻った場合は、別の充電パルス1202がバッテリセル404に印加されるようになっていてもよい。このように、バッテリセル404の電流1210がゼロに戻るのに要する時間を短縮することによって、充電パルスがバッテリセルの充電に適用され得る速度を増すことができる。
【0066】
一般的に電力制御回路として上述したものの、当然のことながら、充電回路400は、電圧制御または電流制御であってもよいし、異なる状況においてそれぞれを利用するようにしてもよい。両手法とも、バッテリセル404全体の電圧降下を測定するとともに、バッテリセル404と直列に接続された電流検知抵抗により電流を測定することによって、同様に制御される。制御方式間の主な違いは、電流検知ハードウェア(電流検知抵抗等)が電源回路(電源回路402の電力増幅器等)の外部であるか内部であるかと、バッテリセル404全体の電圧降下および電流検知抵抗のいずれが最初に処理されるかと、に基づく。電圧制御電源の場合は、最初の電圧測定がバッテリセル404全体で行われ得る一方、外部電流検知抵抗の対応する電圧降下が次に測定され、オームの法則の利用等により、バッテリセル404の電流が計算され得る。これにより、充電信号の電圧を精密に制御可能となる一方、電流の計算は、バッテリセル404全体の電圧が最初に測定された後、バッテリセルの電流が計算されることになる。
【0067】
電圧制御充電回路は場合により、
図12に示すような成分を有する充電信号を供給するように制御され得る。特に、充電信号1202の電圧は、上述のような正弦波前縁1214の後、パルスのその他の部分で平坦な電圧を供給するように制御され得る。電圧制御充電信号は、上述のような利益を充電パルスにもたらし得る。また、電圧がバッテリセル404のゼロ電流に対応する遷移電圧を下回る部分1216を含む後縁1212が電圧制御回路400から与えられるようになっていてもよい。同じく
図12に示すように、バッテリセル404の電流1210が制御電圧1208に遅れることから、電流の計算が電圧1208の制御に後続することが分かる。電圧信号1208の制御によって、回路1210は、付加的な充電パルスが同様にしてバッテリセル404に供給される前に、ゼロアンペアに戻り得る。電圧制御回路400の別の利点として、精密な制御によりバッテリセル404の熱力学的閾値を超えることがなく、バッテリセル404の電解質が絶縁破壊し始める電圧未満の維持等、バッテリセル404の絶縁破壊の特性が防止される。
【0068】
また、本明細書に論じる回路および方法は、電流制御電源を利用して実現されていてもよい。回路400の電源が電流制御の場合は、電源回路内の予備校正検知抵抗を流れる電流がバッテリセル404を流れる電流によって決まり得るため、この抵抗が最初の測定結果を与えるようにしてもよい。このため、充電電流を精密に把握することによって、バッテリセル全体の電圧降下を把握することなく、バッテリセル404への充電電流を精密に制御可能となる。本実施態様においては、(電流検知抵抗において測定されるような)バッテリセル404への電流が(検知抵抗での予備校正電圧によって)本来的に把握され得る一方、バッテリセル404の電圧は、この印加電流の結果として測定される。
図13は、一実施形態に係る、バッテリセルに印加された充電信号1304に応答するバッテリセルでの電流検知抵抗全体の測定電流1314および電圧1310対時間1306のプロットである。プロット1302に示すように、バッテリセル404への電流は、おそらくバッテリセル404の最小インピーダンス値に対応する正弦波前縁1314および後続の一定電流を有する上述と同様のパルスを生成するように制御され得る。また、電流がバッテリセル404の安定遷移電圧に対応するゼロアンペアを下回る部分1316を含む後縁1312が電流制御回路400から与えられるようになっていてもよい。同じく
図13に示すように、バッテリセル404の電圧応答1310が制御電流1308に遅れることから、電圧が主制御因子ではなくフィードバック応答として作用することが分かる。
【0069】
簡素な構成要素を使用可能な用途または充電中の機器の既存の電力ハードウェアによってプロセスが制約される用途においては、電流制御が既定のメカニズムであってもよい。あるいは、コントローラの応答時間およびバッテリの過渡応答の両方が高速な実施態様においては、電圧制御法および電流制御法が同様の挙動となり得る。ただし、周波数の上昇および/またはバッテリのリアクタンスが高レベルとなる場合、これら2つの方法の挙動が乖離し得るため、実用的な制御を考慮することが必要となり得る。
【0070】
上述の実施態様には、充電信号のパルスの少なくとも一部の周波数成分を決定するため、バッテリセル204のインピーダンス(実数および/または虚数)の測定あるいは取得を伴う。バッテリセル204のインピーダンス値は、多様な手法または方法で取得されるようになっていてもよい。一実施態様において、バッテリセル204のインピーダンスは、充電パルスのバッテリセルへの印加に際してリアルタイムに測定または推定されるようになっていてもよい。たとえば、バッテリセル204における充電信号の電圧および電流波形の大きさおよび時間成分の要素が測定および/または推定されるようになっていてもよい。また、電圧および電流波形の測定された大きさおよび時間成分間の差分がバッテリセル204の実数インピーダンス、虚数インピーダンス、または近似インピーダンスの決定または推定に用いられるようになっていてもよい。たとえば、前縁は、単一の既知の高調波により構成され、電圧および電流波形の大きさの差分は、縁部の一貫した最小値および最大値で取得され得るため、実数インピーダンス値および虚数インピーダンス値は、充電パルスの前縁から決定されるようになっていてもよい。同様に、充電パルスの後縁の電圧および電流波形の大きさの測定結果からインピーダンスの要素が近似されるようになっていてもよい。さらに他の実施態様においては、充電信号の電圧および電流波形の様々な測定結果に加えられる加重値に基づいて、当該測定結果が調整されるようになっていてもよい。一般的には、充電信号の電圧および電流波形の複数の要素の決定または測定によって、バッテリセル204のインピーダンスを決定または推定するようにしてもよい。別の実施態様においては、デジタル処理システムによって、電圧および電流波形の数百または数千もの測定結果が取得・解析されるようになっていてもよい。一般的には、波形の忠実度の向上および/または測定結果の増加によって、バッテリセル204に印加される波形のインピーダンスがより正確に解析され得るため、最小インピーダンス値が発生する充電信号の高調波成分または波形がバッテリセル204に及ぼす影響の他の要素をより十分に決定して、充電信号のパルスの形状を決定することができる。
【0071】
図14は、上記開示のネットワークの実施形態の実現に使用可能なコンピュータ機器またはコンピュータシステム1400の一例を示したブロック図である。特に、
図14のコンピュータ機器は、上述の動作のうちの1つまたは複数を実行する回路コントローラ210の一実施形態である。コンピュータシステム(システム)は、1つまたは複数のプロセッサ1402~1406を具備する。プロセッサ1402~1406は、1つまたは複数の内部レベルのキャッシュ(図示せず)と、プロセッサバス1412との相互作用を指示するバスコントローラまたはバスインタフェースユニットと、を具備していてもよい。プロセッサバス1412は、ホストバスまたはフロントサイドバスとしても知られるが、プロセッサ1402~1406のシステムインタフェース1414との結合に用いられるようになっていてもよい。システムインタフェース1414は、プロセッサバス1412に接続され、システム1400の他の構成要素をプロセッサバス1412とインタフェース接続させていてもよい。たとえば、システムインタフェース1414は、メインメモリ1416をプロセッサバス1412とインタフェース接続させるメモリコントローラ1418を具備していてもよい。メインメモリ1416は通常、1つもしくは複数のメモリカードならびに制御回路(図示せず)を具備する。また、システムインタフェース1414は、1つまたは複数の入出力(I/O)ブリッジまたはI/Oデバイスをプロセッサバス1412とインタフェース接続させるI/Oインタフェース1420を具備していてもよい。図示のように、I/Oコントローラ1428およびI/Oデバイス1430等の1つまたは複数のI/Oコントローラおよび/またはI/OデバイスがI/Oバス1426と接続されていてもよい。
【0072】
また、I/Oデバイス1430は、情報および/またはコマンド選択をプロセッサ1402~1406に伝達するための英数字および他のキーを含む英数字入力デバイス等の入力デバイス(図示せず)を含んでいてもよい。別の種類のユーザ入力デバイスとしては、方向情報およびコマンド選択をプロセッサ1402~1406に伝達し、表示装置上のカーソル移動を制御するマウス、トラックボール、またはカーソル方向キー等のカーソル制御が挙げられる。
【0073】
システム1400は、プロセッサバス1412に結合され、プロセッサ1402~1406により実行される情報および命令を格納する動的記憶装置(メインメモリ1416と称する)またはプロセッサバス1412に結合されたランダムアクセスメモリ(RAM)等のコンピュータ可読デバイスを具備していてもよい。また、メインメモリ1416は、プロセッサ1402~1406による命令の実行中のテンポラリ変数または他の中間情報の格納にも使用可能である。システム1400は、プロセッサバス1412に結合され、プロセッサ1402~1406に対する静的情報および命令を格納するリードオンリーメモリ(ROM)および/または他の静的記憶装置を具備していてもよい。
図14に示すシステムは、本開示の態様に従って採用可能または構成可能なコンピュータシステムの考えられる一例に過ぎない。
【0074】
一実施形態によれば、上記技術は、メインメモリ1416に含まれる1つまたは複数の命令の1つまたは複数のシーケンスのプロセッサ1404による実行に応答して、コンピュータシステム1400により実行されるようになっていてもよい。これらの命令は、記憶装置等の別の機械可読媒体からメインメモリ1416に読み込まれるようになっていてもよい。メインメモリ1416に含まれる命令シーケンスの実行によって、プロセッサ1402~1406は、本明細書に記載のプロセスステップを実行するようにしてもよい。代替実施形態においては、ソフトウェア命令の代替またはソフトウェア命令との組み合わせとして、回路が用いられるようになっていてもよい。したがって、本開示の実施形態は、ハードウェアおよびソフトウェアの両コンポーネントを含んでいてもよい。
【0075】
機械可読媒体には、機械(たとえば、コンピュータ)が読み取れる形態の情報(たとえば、ソフトウェア、処理アプリケーション)を格納または伝送する任意のメカニズムを含む。このような媒体は、不揮発性媒体および揮発性媒体の形態であってもよいが、これらに限定されない。不揮発性媒体には、光ディスクまたは磁気ディスクを含む。揮発性媒体には、メインメモリ1416等のダイナミックメモリを含む。機械可読媒体の共通形態としては、磁気記憶媒体(たとえば、フロッピーディスケット)、光学記憶媒体(たとえば、CD-ROM)、光磁気記憶媒体、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、消去・プログラム可能メモリ(たとえば、EPROMおよびEEPROM)、フラッシュメモリ、または電子的命令の格納に適した他の種類の媒体が挙げられるが、これらに限定されない。
【0076】
バッテリ給電型電子システムは、充電中にも動作可能であるのが望ましいと考えられる。したがって、たとえば、バッテリ給電型工具が充電中にも動作可能であれば都合が良い。同様に、電子システムは、充電中に様々な状態で動作するようになっていてもよい。たとえば、携帯電話、タブレット、ラップトップコンピュータ等は、充電中にフル動作可能であってもよいし、充電中に様々な低電力モードで動作するようになっていてもよいし、充電中に何らかの制限機能が動作可能であってもよい。本開示の態様によれば、電気化学装置(たとえば、バッテリセル)の電極での充電波形あるいはエネルギー束を制御する回路と同期または協調して、降圧変換器または昇圧変換器等の電力変換器が動作するようになっていてもよい。充電波形には、充電対象の電気化学装置の最小あるいは低インピーダンス(その実数および/もしくは虚数成分またはこれらの何らかの組み合わせを含む)と関連付けられた周波数成分ならびに/または1つもしくは複数の高調波を含んでいてもよい。このシステムは、電力信号を含む充電信号を負荷に合わせることで充電波形の形状または構成を阻害しないように制御され得る。充電信号が意図的に制御されるため、その形態または構成を変えないのが好都合である。特に、このシステムは、充電パルスの高調波成形済み前縁を阻害しないように電力信号を制御し得る。したがって、たとえば、どんな負荷であれ電力を供給しつつ、充電形態の高調波規定前縁は維持される(たとえば、歪まない)。別の例において、このシステムは、充電信号の成形ならびに/またはリサイクル機能との併用もしくは代用のため、電力変換器の動作を調整する。また、バッテリからの放電(電力信号)が放電インピーダンスに基づいて周波数/高調波成分により調節されるようになっていてもよく、このインピーダンスは、充電波形の周波数/高調波成分の調節に用いられる充電インピーダンスと同じであってもよいし、異なっていてもよい。いずれにしろ、放電信号の要素が調節されるようになっていてもよい。
【0077】
図15は、充電中のセルのインピーダンス(または、サセプタンス等の他の測定結果)に基づいて成形済み波形を生成する回路トポロジ1500の考えられる一例を示した回路図である。このシステムは、
図4に対して導入した構成要素を具備するため、
図4と
図15とでは、同じ参照番号が同じ構成要素を表す。一般的に言えば、この回路は、1つもしくは複数の高調波ならびにそれぞれがインピーダンスに及ぼす影響に基づいて、波形(たとえば、充電パルスの前縁)を単独または協調的に成形し得るフィルタ回路406、418を具備する。上述の通り、フィルタ回路部はそれぞれ、成形インダクタ410を具備していてもよい。フィルタ回路部は、同じ値または異なる値のインダクタを具備していてもよい。
図4に示す回路とは対照的に、
図15の回路は、電気化学セル404と負荷1504との間に結合された電力変換器1502を具備する。一例において、電力変換器は、降圧変換器1506である。一般的に言えば、降圧変換器は、電源の電圧を負荷が必要とする電圧まで下げる。別の例において、電力変換器は、昇圧変換器1508である。一般的に言えば、昇圧変換器は、電源の電圧を負荷が必要とする電圧まで上げる。別の例においては、昇圧および降圧の両変換器が並列に設けられ、1つまたは複数の負荷の動作状態または種類に応じて動作するようになっていてもよい。また、降圧および昇圧の動作は、電圧出力を最高バッテリ電圧と最低バッテリ電圧との間に維持するように調整され得る。以下により詳しく論じる通り、代替的な出力パルス制御を可能にする1つまたは複数の降圧および/または昇圧並列回路を含むことも可能である。
【0078】
降圧および昇圧回路トポロジの考えられる様々な例が存在する。
図16は、電気化学セルと負荷との間に結合された降圧変換器を採用した充電回路の一例を示している。この回路は、
図4等を参照して上述したようなフィルタ回路406を具備しており、これは、コントローラ(たとえば、コントローラ210)からフィルタトランジスタへの「パルス」と表示した制御信号により制御される。この回路は、降圧変換器1600をさらに具備する。降圧変換器は、バッテリ404と結合されている。降圧変換器は、バッテリに結合され、コントローラにより生成された制御信号「降圧」により制御されるトランジスタを具備する。
図17は、電気化学セルと負荷との間に結合された昇圧変換器1700を採用した充電回路の一例を示している。
図16と同様に、この回路は、
図4等を参照して上述したようなフィルタ回路406を具備しており、これは、コントローラ(たとえば、コントローラ210)からフィルタトランジスタへの「パルス」と表示した制御信号により制御される。昇圧変換器は、バッテリ404と結合されている。降圧変換器は、バッテリに結合され、コントローラにより生成された制御信号「昇圧」により制御されるトランジスタを具備する。また、
図4および
図15に示す回路の他の特徴が
図16および
図17に示す回路の一方または両方に含まれていてもよい。さらに、他の降圧または昇圧トポロジが採用されるようになっていてもよい。
【0079】
図18は、
図15~
図17の様々な回路の制御の一例を示している。これらの制御および充電パルスは、
図15の回路に関連する。ただし、これらの概念は、構成要素の少ない
図16および
図17に示すような回路またはより複雑な回路にも適用可能である。
図18Aは、調節済み充電パルスの電圧成分(上図)および電流成分(下図)を示している。本明細書に示す他のパルスと同様に、この回路は、充電対象のセルの比較的低いインピーダンスまたは最も低いインピーダンスと関連付けられた周波数および/または高調波(それぞれの実数部および/または虚数部を含む)に適合するように前縁を成形するように制御され得る。また、上記例において使用するインピーダンスとともに、アドミッタンスまたはそのサセプタンスおよびコンダクタンスの成分等、他の尺度が用いられるようになっていてもよい。本明細書における使用の通り、インピーダンス(impedance)という用語は、その逆数のアドミッタンスを含み得る。上述の通り、インピーダンスは、電気化学セルの充電状態、温度、経年、および/またはサイクル数等に基づいて経時的に変化し得る。このため、波形についても同様に、プログラムによる変更またはフィードバックおよびインピーダンス測定結果に基づく動的な変更が可能である。一例においては、充電信号の前縁を成形するインダクタの異なる組み合わせを採用するようにフィルタリング回路の異なる組み合わせを駆動することによって、成形が実行され得る。また、充電状態、温度、経年等に基づいて様々な高調波でのセルのインピーダンスを特性化すること、ならびに、インピーダンスの実際の測定結果ではなく、このような任意の特性化単独またはその組み合わせに基づいて充電波形を変更するようにフィルタ回路の駆動の組み合わせをプログラム的に変更することも同様に可能である。
【0080】
いずれにしろ、充電中に何らかの電力を負荷に印加することが必要となり得るシステムにおいて、この電力の印加は、充電波形の形状および周波数/高調波特性ならびに/または成分を阻害せず、準最適なインピーダンスと関連付けられた波形あるいは充電波形の制御に影響を及ぼす波形の適用の回避に役立つように行われ得る。ただし、以下により詳しく論じる例から当然のことながら、場合によっては、フィルタ回路との何らかの組み合わせによって降圧または昇圧回路を駆動することにより充電パルスを成形するようにしてもよい。いずれにしろ、一例においては、前縁の形状ならびに/または波形の形状もしくは成分の制御の阻害を回避するため、充電パルスの少なくとも一部において降圧または昇圧が「オン」とならないように、降圧または昇圧変換器の動作に充電コントローラの動作がインターリーブされるようになっていてもよい。一例において、電力変換器は、充電パルスがオフとなった後にのみオンされる。別の例において、電力変換器は、充電パルスがオンの間、前縁が当該成形済み前縁に続くパルスの第2の「本体」部へと遷移した後にのみオンされるようになっていてもよい。別の例において、電力変換器は、充電パルスがオンの場合にオフされる。別の例において、電力変換器は、充電パルスがオンとなる前のいくらかの時間にわたってオフされる。
【0081】
図18Bは、
図15の回路の様々な構成要素への印加によって、電力変換器の駆動により
図18Aの充電パルスを形成して送達するとともに、電力を負荷に送達可能な制御パルスを示している。より詳細に、
図18Bには、調節済み充電信号パルスの形成および供給と関連する3つの異なる制御信号パルスを示している。これらのパルスは、シーケンス状の実行、何らかの周波数もしくはデューティサイクルでの規定、ならびに所望の充電パルスの形状に応じた様々な異なる構成での供給が可能である。本例の規定は、本明細書に論じる様々な概念の説明に過ぎず、何ら限定的なものとして解釈されるべきではない。「ソフトパルス」という表示の最初のパルスがスイッチ412に印加されるが、これは、スイッチ412のパルス制御信号416である。そして、「ハードパルス」という表示の2番目のパルスがフィルタ回路N 418のスイッチに印加される。充電パルスに望ましい形状に応じて、1つまたは複数の2番目のパルスがN個のフィルタ回路のうちの1つまたは複数に印加されるようになっていてもよい。さらに、最初の「ソフトパルス」が充電パルスの成形に十分であれば、2番目のパルスは除外可能である。そして、3番目の「リサイクル」パルスがリサイクル信号としてスイッチ422に印加される。1番目および2番目のパルスの組み合わせによって、パルスの前縁が成形される。任意所与のフィルタ回路のインダクタンス値および前縁の所望の高調波特性に応じて、フィルタ回路が考えられる様々な組み合わせで駆動されるようになっていてもよく、本明細書に論じる1番目および2番目のシーケンスは一例に過ぎない。同様に、考えられる種々実施態様においては、同一または異なるインダクタ値を有する1つまたは複数のフィルタ回路を採用し、様々な制御方式を様々なフィルタ回路に適用して充電パルスの前縁を制御するようにしてもよいし、充電パルスの他の特性を規定するようにしてもよいし、パルスであろうとなかろうと、充電信号を大略規定するようにしてもよい。また、目標とする充電パルス形状に従って所望のインダクタンス値を与えるため、フィルタ回路のどのような組み合わせによる駆動であってもインダクタの並列組み合わせによってインダクタンス値が実現されるように、様々なフィルタ回路が並列に同期して駆動されるようになっていてもよい。また、フィルタ回路内のインダクタの直列または並列での直接接続によって、考えられる様々な値を付与するようにしてもよい。
【0082】
最後に、回路が降圧分枝を含むか昇圧分枝を含むか、ならびに、負荷の動作モードに依らず降圧機能を要するか昇圧機能を要するかに応じて、降圧/昇圧パルスが降圧回路部または昇圧回路部に印加される。上述の通り、いくつかの実施態様においては、降圧型電力変換器または昇圧型電力変換器のいずれかを設ければ十分と考えられるが、他の実施態様においては、降圧型および昇圧型の両方が含まれていてもよい。これらの例示的な制御パルスは、このようなパルス列(たとえば、パルス幅変調(PWM)信号)の一部である離散パルスの例であり、通常は、電荷列の一部として高周波で印加されることにより、電気化学装置を充電するための電荷列を生成する。本開示によれば、フィルタ回路(たとえば、ソフトまたはハード)、リサイクル機能、昇圧および降圧回路(たとえば、降圧回路1600または昇圧回路1700の各トランジスタにおけるPWM「降圧」または「昇圧」制御信号)の制御に対して制御信号(PWM信号であってもよい)を離散的かつ考えられる様々な組み合わせで同期的に使用することによって、本明細書に論じるような考えられる様々な充電および/または放電機能を実現可能であることが認識されるものとする。
【0083】
図18A、
図18B、および
図15を参照して、ソフトパルスの最初の立ち上がり縁部が時間T0で発生してスイッチ412をオンすると、電流が電気化学装置404に流れ始めるとともに、電圧が負荷の端子ノード440で立ち上がることが分かる。時間T1においては、ハードパルスの立ち上がり縁部がソフトパルスに続く一方、ソフトパルスは依然として高い(そして、回路406は依然として動作中である)。時間T1においては、回路406からスイッチ412を通る電流との組み合わせにて、フィルタ回路N 418からの電流が負荷に流れ始める。このように、充電パルス(前縁の形状)は、フィルタ回路406および回路N 418の組み合わせによって支配される。
【0084】
本例において、最初のパルスを「ソフト」パルスと表示しているのは、大きなインダクタほど、電流の立ち上がりが相対的に遅くなるため、比較的大きなインダクタで回路を駆動することによりパルスの前縁の立ち上がり時間が低速になるためである。本例において、2番目のパルスを「ハード」パルスと表示しているのは、相対的に小さなインダクタほど、電流の立ち上がりが相対的に速くなるため、比較的小さなインダクタで回路を駆動することによりパルスの前縁の立ち上がり時間が高速になるためである。図示の例においては、2つのフィルタ回路を並べて組み合わせることにより、時間T0を起点とする充電パルスの立ち上がり縁部形状を形成している。また、付加的な組み合わせの採用によって、正弦波立ち上がり縁部を模倣した立ち上がり縁部を成形するようにしてもよい(たとえば、付加的なフィルタ回路および/またはフィルタ回路のスイッチの微調整により前縁を滑らかにして、正弦波パルスの前半と同様に成形することも可能である)。様々な回路N 418に異なるインダクタ値を与えることも可能であり、考えられる任意の組み合わせ間の制御の調整によって、パルスの前縁の形状を規定することができる。
【0085】
V2に達した時点では、ソフトパルスおよびハードパルスが依然として高いレベルである一方、回路N 418の電流の流れは、端子ノード440の電圧が最大に達した場合に最大となり、本質的には、レール電圧からフィルタ回路406および418のスイッチ間の電圧降下を差し引いたものになる。バッテリの負荷に流せる電流の量は端子の電圧により規定され、所与の電圧では時間の経過とともに電流量が減少する傾向にあるため、端子の電圧が相対的に一定である間は、バッテリへの充電電流がV2およびV3と表示する時間に減少する。
【0086】
時間T3においては、ハードパルスおよびソフトパルスの両方がゼロまで低下して、回路406および回路N 418の両方からの充電電流が停止となる。この時点では、リサイクルパルスがスイッチ422に印加されることにより、回路のリサイクル部が駆動されていてもよい。上述の通り、リサイクルパルスの活性化によって、端子ノードの電荷を蓄電キャパシタ432に向かわせることで電流を急速にゼロへ戻すことができる。
【0087】
上記の追加または代替として、電力変換器(降圧回路および/または昇圧回路を含んでいてもよい)のオンにより、ソースエネルギーを負荷1504に供給するようにしてもよい。上記導入の通り、バッテリの充電と同時に負荷(たとえば、電動工具、携帯電話、車両の機能等)に給電することが望ましいと考えられる。また、上記導入の通り、場合によっては負荷の動作に昇圧が必要となり、他の場合には負荷の動作に降圧が必要となり得る。
【0088】
図18Bに示すように、昇圧スイッチまたは降圧スイッチをそれぞれ駆動する昇圧/降圧パルスは、充電パルスが活性化されていない間にも発生している。本例において、降圧回路または昇圧回路のいずれかが充電パルス間に有効な場合は、バッテリが降圧回路または昇圧回路ひいては負荷の電源となる。いくつかの例において、電力変換器が動作していない場合は、リサイクル機能の使用によって、電圧V3と関連付けられた時間に充電パルスがオフとなった後、可能な限り素早く、端子における充電パルス電圧をゼロに戻すようにしてもよい。一例においては、リサイクルパルスの印加によって、リサイクルスイッチ426が駆動される。電力変換器の機能が存在して動作している場合、この電力変換器は、リサイクルパルスの代替として作用するようになっていてもよいし、リサイクルパルスと協調するようになっていてもよい。
【0089】
降圧回路または昇圧回路は、充電パルスが非活性状態で動作するものとして示しているが、充電パルスが活性状態で動作してパルスをさらに成形することも可能である。ただし、一例において、このような動作は、立ち上がり縁部の形状を歪ませないように、立ち上がり縁部の後または少なくとも立ち上がり縁部の初期部分の後に行われる。また、本例における降圧または昇圧の動作によって、成形回路428の機能を置き換えるようにしてもよい。同様に、降圧または昇圧は、また、充電パルスを素早くゼロに戻すリサイクル機能の代わりに作用するものであって、降圧または昇圧が、負荷への給電のためにバッテリからエネルギーを引き出すよりも、または引き出すことと関連して、初期エネルギーをリサイクルするエネルギーをリサイクルするのではない可能性がある。動的な充電の可能性がある場合に、成形および調節済み充電波形の機能との協調のための降圧回路または昇圧回路の様々な使用に対して、1つまたは複数のキャパシタを降圧分枝または昇圧分枝において使用することにより、負荷の安定した電圧を維持可能であることが認識されるものとする。
【0090】
電力変換器を通じた負荷への電力送達の制御のほか、本開示の態様には、電気化学装置から負荷に送達される出力パルスを成形するための電力変換器の制御も含む。このようなパルスの成形は、充電と併せて行われるようになっていてもよいし、独立して行われるようになっていてもよい。したがって、出力パルスの成形は、充電機能とは別に、降圧回路または昇圧回路によって、単独または考えられる様々な組み合わせにて実行されるようになっていてもよい。一例においては、電気化学装置から負荷への出力パルスの成形によって、少なくとも電気化学装置への充電パルスの前縁の成形等、入力充電波形の高調波成形あるいは調節により実現されるのと同様な利益がもたらされ得る。一例において、出力波形の形状は、低インピーダンスまたは最低インピーダンスによるバッテリからの電力送達と関連付けられていてもよい。場合により、出力インピーダンスは、電気化学装置の同じ条件下(たとえば、バッテリの充電状態、温度、寿命等)において、入力インピーダンスと同一または略同一になることが想定され得る。他の場合に、出力インピーダンスは、異なる条件下で入力インピーダンスとは異なるように測定または特性化され、これらの異なる測定結果または特性化の使用により、最適な出力周波数特性が選択されるようになっていてもよい(高調波であってもよい)。インピーダンス測定回路408の使用によって、バッテリ404への入力インピーダンスの測定に対して上述したのと同様に、負荷からの出力インピーダンスを異なる周波数で測定するようにしてもよい。いずれにしろ、様々な例において、バッテリから負荷への出力波形(たとえば、調節済みパルス)が成形され、特定の例においては、周波数に対応する特定の形状への出力パルスの前縁の調節および/または高調波成形が行われるようになっていてもよい。最適な高調波または周波数特性は、充電を論じるか放電(電気化学装置からの電力送達)を論じるかに応じて、電気化学装置への電流の流れまたは電気化学装置からの電流の流れを表す値と関連付けられる。
【0091】
最適な周波数または高調波は、電気化学装置に対する入力または出力インピーダンスが最小となるなら何でも関連付け可能である。ただし、任意所与の状況においては、システムが最小値に近い値を選択したり、最小値まで反復しながら値を選択したりするため、絶対的な最小インピーダンスとならない場合がある。他の状況においては、フィードバックループおよび動的システムの性質として、システムが最小値の周りのある範囲あるいは最小値と関連付けられたある範囲の値を選択する場合もある。たとえば、特性化されたシステムにおいても、充電状態、寿命、温度、または他の条件すべてについてバッテリが完全に特性化されていない場合があり、充電または放電波形のある部分を規定する(たとえば、放電または充電パルスの前縁を成形する)ための高調波成分または周波数の選択に際して、特性化による妥当な外挿および仮定がなされ得る。したがって、電気化学装置への電流の流れまたは電気化学装置からの電流の流れを表すインピーダンス等の値、高調波(周波数)、または本明細書で論じる他の尺度の文脈における「最適」の使用は、最小インピーダンス値が把握されていること、または、当該最小値を与える高調波または周波数がシステムにより把握されていることを必ずしも意味しない。また、本明細書の他の場所に記載の通り、電力、アドミッタンス、またはそのサセプタンスおよびコンダクタンスの成分等、他の尺度が用いられるようになっていてもよい。アドミッタンスの場合、最適値は、充電または放電時に最大のアドミッタンスあるいは最大アドミッタンスの何らかの範囲内の値を与える高調波と関連付けられていてもよい。
【0092】
一例において、バッテリから出るパルスの前縁は、降圧回路または昇圧回路のスイッチの制御により成形されるようになっていてもよい。たとえば、
図16の降圧回路のスイッチ(たとえば、トランジスタ)は、可変デューティサイクルまたは可変周期のパルス列を降圧入力に印加することで制御されるようになっていてもよい。あるいは、
図17に示す昇圧回路の昇圧スイッチは、可変デューティサイクルまたは可変周期のパルス列を昇圧入力に印加することで制御されるようになっていてもよい。ある周波数の正弦波形状を有するように、電気化学装置から出るパルスの前縁を高調波成形するため、このシステムは、前縁部において、降圧スイッチまたは昇圧スイッチを駆動するPWM信号のデューティサイクルまたは期間を制御した後、パルスのその他の継続時間に対して、デューティサイクルまたは期間を維持するようにしてもよい。
【0093】
また、電気化学装置のインピーダンス(または、他の値)と一致するように充電または放電信号の高調波、前縁等を調整して、充電または放電相互作用と電気化学装置への影響との組み合わせを最適化することも可能である。たとえば、このシステムは、バッテリの充電率とサイクル寿命(たとえば、バッテリ容量がある閾値(たとえば、75%(25%の容量損失))まで低下するまでの充電および/または放電サイクル数)とを均衡させるように動作可能である。場合により、このシステムは、最も高い充電率に対する高調波を決定するようにしてもよいが、当該充電率を実現するための信号の印加がサイクル寿命に対して最適とはならない場合もある。したがって、このシステムは、可能なものよりも低い充電率を適用するようにしてもよいが、このような低い充電率の適用はインピーダンスに影響を及ぼし得ることから、充電信号の高調波成分が変化する可能性もある。他の場合に、このシステムは、デューティサイクル、(たとえば、充電パルスの)周波数、および/または全期間の周波数(たとえば、充電および休止の組み合わせ)の組み合わせを制御して高調波調整済み充電または放電パルスを印加することにより、充電率等の考えられる様々なリアルタイムのバッテリ特性および/またはサイクル寿命等のより長期的なバッテリ特性間の均衡を図るようにしてもよい。たとえば、充電または放電電流が相対的に大きいとセルのインピーダンスが小さくなり、一般的に言えば、これは充電率または放電率に有利である一方、充電率または放電率が高いと、本明細書に論じる複雑なインピーダンスフィードバックによって高調波最適化されている場合であっても、バッテリの充放電と同様に、サイクル寿命に何らかの影響が及ぶことが了解される。デューティサイクルは、ピーク電流に大きな影響を及ぼす。一方、電流RMSが固定の場合、最小インピーダンスの周波数によれば、充電率は低下するものの、サイクル寿命にとっては利益となり得る。したがって、このシステムは、異なる因子間の均衡を最適化するように充電または放電を行うようにしてもよい。言い換えると、本開示の態様は、従来技術に対して充電率または放電率を改善するように作用し得るものであり、このような改良は、上記条件下でのサイクル寿命の最適化等、他の望ましい結果に配慮しつつ実行され得る。このようないくつかの場合に、充電率または放電率は、従来のシステムに対して改善された状態を維持していてもよいが、最大値よりも低いレベルでの運用によって、他の因子を均衡させるようにしてもよい。
【0094】
図19は、バッテリからの出力信号(成形済みパルス列であってもよい)の高調波成形済み(たとえば、正弦波)前縁を生成する1つの方法を示している。すなわち、充電パルスの成形部において、制御パルス幅が変動し得る。たとえば、
図19Aおよび
図19Dに示すように(
図19Aの降圧/昇圧トランジスタ制御シーケンスのデューティサイクルが変化する部分のエリアを強調している)、制御パルス幅が相対的に短い(略オフ)パルス幅から相対的に長い(略オン)パルス幅へと変化することにより、離散パルスごとに同じ期間にわたって、電圧/電流が最初、比較的ゆっくりと立ち上がった後、比較的より高速に立ち上がる前縁を形成するようにしてもよく、これは(バッテリからの)放電パルスの正弦波前縁の形状を模擬する。デューティサイクルは、考えられる多様な形状をもたらすように、均一に増大するものであってもよいし、不均一に制御されるようになっていてもよい。あるいは、各離散パルスについて同じパルス幅(割合)を採用する一方、期間をパルスごとに変更してもよい。
【0095】
いずれにしろ、
図19Aに示す制御シーケンスまたはその類似物は、
図19Bに示す各離散降圧または昇圧パルスにおいて適用されるようになっていてもよい。一例においては、
図19Aの可変デューティサイクルあるいは制御シーケンスによって、
図19Cに示すような高調波成形済み前縁を有する電気化学装置からの出力パルス列が生成される。デューティサイクルまたは期間は、いかなる周波数においてもセルの最適な出力インピーダンスに適合するようにシステムが決定する(または、特性化される)前縁を形成するように制御される。また、デューティサイクルまたは期間制御の適用の長さは、出力パルスを成形するように制御され得る。
図19Cの例においては、成形済み前縁の期間において、出力パルスを形成するようにデューティサイクルが制御される。その後、パルスの本体部においては、パルス幅のその他の部分に対してデューティサイクルが一定となる。
【0096】
降圧回路または昇圧回路のPWM制御によって、バッテリから負荷への出力電流は、いくらか「階段」状に漸増すると考えられる。これらの階段は、電気化学装置の出力におけるフィルタリングによって平滑化されるようになっていてもよい。これは、電力変換器に組み込まれていてもよいし、電力変換器の前段であってもよい。
【0097】
また、制御パルスのデューティサイクルまたは期間の制御は、充電パルスの成形に適用されるようになっていてもよい。このようなデューティサイクルの制御は、単独で行われるようになっていてもよいし、上述の方法と組み合わせて実行されるようになっていてもよく、これにより、各フィルタ回路のインダクタ410のインダクタンス値およびそれが前縁の成形に及ぼす影響に少なくとも部分的に基づいて、何らかの周波数プロファイルに適用するようにフィルタ回路およびフィルタ回路の組み合わせ(たとえば、フィルタ回路406および418)が選択される。
図19Aおよび
図19Bを再び参照して、
図19Aの最初の可変デューティサイクル制御信号は、
図19Bの「ソフト」パルスの破線ボックス部に示すように、スイッチ412のパルス制御信号416として印加されるようになっていてもよい。上述するとともに
図19Bに示すように、いわゆるハードパルスを組み合わせて使用することにより、たとえば
図18Aに示すように、充電パルスの前縁を成形するようにしてもよい。デューティサイクルの制御によって、フィルタ回路の様々な組み合わせの選択のほか、付加的な制御機能がもたらされ、使用時、前縁をより細かく調整可能となる。
【0098】
電力変換器の機能の議論に戻って、
図20A/
図20Cおよび
図20B/
図20Dに示すように、1つまたは複数の並列の昇圧または降圧回路を採用することも可能である。いずれの場合も、1つまたは複数の並列の降圧または昇圧トポロジの追加により、数ある利点の中でもとりわけ、単一の電力変換器の設計に対して効率を最適化する機会が与えられ、電力変換器の代替経路が与えられ、各並列経路における構成要素の小型化によって熱損失が抑えられるとともにスイッチング効率が向上し得る。図示の例において、並列回路中の昇圧または降圧インダクタは同じものではなく、各対の一方の回路のインダクタ値を小さくすることによって、インダクタが比較的大きな並列回路よりも効率が潜在的に高くなる。一方または両方の場合にインダクタが同じであってもよく、様々な例においては、付加的な並列の降圧または昇圧回路が採用されていてもよい。一例においては、各回路が負荷に給電する2つ以上の並列の電力変換回路が並行に(たとえば、降圧または昇圧)動作していてもよい。別の例においては、たとえば最適な出力インピーダンスを与える高調波に適合するように出力パルスの前縁を形成するため、または、同じ目的でパルスの期間を変化させるため、並列の各電力変換回路において、図示のように変化するデューティサイクルを使用するようにしてもよい。さらに別の例においては、特に最初の給電電流を小さくするため、回路の一方が最初、パルスの前縁を成形するデューティサイクルで動作し、より大きな電流および/または安定した出力電流が望まれる場合には、1つまたは複数の付加的な並列回路を動作させて、単一の電力変換器では利用できない電流を供給するようにしてもよい。場合によっては、電気化学装置からの出力電流の形状および量の両方を注意深く制御して、付加的な並列電力変換器を単独またはパルス成形制御との組み合わせにて提供することにより、制御を柔軟にするのが望ましいと考えられる。
【0099】
以上、本開示の種々実施形態について詳しく論じた。特定の実施態様について論じたが、これは、説明を目的としているに過ぎないことが了解されるものとする。当業者であれば、本開示の趣旨および範囲から逸脱することなく、他の構成要素および構成を使用可能であることが認識されよう。したがって、上記説明および図面は例示であり、何ら限定的なものとして解釈されるべきではない。多くの具体的詳細の説明によって、本開示を十分に理解できるようにしている。ただし、特定の場合には、説明が不明瞭にならないように、周知の詳細または従来の詳細を記載していない。本開示における一実施形態またはある実施形態に関する言及は、同じ実施形態または任意の実施形態に関する言及でもあり得る。そして、このような言及は、これらの実施形態のうちの少なくとも1つを意味する。
【0100】
「一実施形態」または「ある実施形態」に関する言及は、当該実施形態に関して記載の特定の特徴、構造、または特性が本開示の少なくとも1つの実施形態に含まれることを意味する。本明細書の様々な箇所における表現「一実施形態」の出現は、必ずしもすべてが同じ実施形態を表すわけでもなければ、他の実施形態を相互に除外する別個または代替の実施形態を表すわけでもない。さらに、様々な特徴を説明したが、これらは、いくつかの実施形態により示される一方、他の実施形態では示されていなくてもよい。
【0101】
本明細書に使用の用語は一般的に、本開示の文脈および各用語が用いられる特定の文脈において、当技術分野におけるそれぞれの通常の意味を有する。また、本明細書に論じる用語のうちのいずれか1つまたは複数については、代替表現および同意語を使用可能であり、ある用語が本明細書において詳しく述べられている否かに特別な意味を持たせないものとする。場合によっては、特定の用語の同意語が与えられる。1つまたは複数の同意語の列挙が他の同意語の使用を除外することはない。本明細書に論じる任意の用語の例を含めて、本明細書のあらゆる場所における例の使用は、例示に過ぎず、本開示または任意の例示的な用語の範囲および意味をさらに限定する意図はない。同様に、本開示は、本明細書において与える種々実施形態に限定されない。
【0102】
本開示の範囲を制限する意図なく、本開示の実施形態に係る器具、装置、方法、およびそれぞれの関連する結果の例を示している。なお、各例においては、読者の便宜のため、タイトルまたはサブタイトルを使用している場合もあるが、これらは何ら本開示の範囲を制限するものではない。別段の定めのない限り、本明細書に使用の技術用語および科学用語は、本開示が関連する当業者が通常理解する意味を有する。矛盾が生じた場合は、定義を含めて本明細書が優先する。
【0103】
本開示の実施形態は、本明細書に記載の様々なステップを含む。これらのステップは、ハードウェアコンポーネントにより実行されるようになっていてもよいし、機械実行可能命令において具現化されていてもよく、これを使用することにより、命令がプログラムされた汎用または専用プロセッサが各ステップを実行する。あるいは、これらのステップは、ハードウェア、ソフトウェア、および/またはファームウェアの組み合わせにより実行されるようになっていてもよい。
【0104】
本発明の範囲から逸脱することなく、記載の例示的な実施形態に対して、種々改良および追加が可能である。たとえば、本明細書に記載の実施形態は特定の特徴に言及するものの、本発明の範囲には、特徴の異なる組み合わせを有する実施形態および記載の特徴のすべてを含むわけではない実施形態も含む。したがって、本発明の範囲は、このようなすべての代替例、改良例、および変形例をそれぞれのすべての同等物と併せて包含することが意図される。
【国際調査報告】