(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-09-07
(54)【発明の名称】原子炉炉心システムのモジュール式製造、配送、および組み立て
(51)【国際特許分類】
G21C 5/00 20060101AFI20230831BHJP
G21C 1/08 20060101ALI20230831BHJP
G21C 1/02 20060101ALI20230831BHJP
【FI】
G21C5/00 A
G21C1/08
G21C1/02 200
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022573701
(86)(22)【出願日】2021-04-19
(85)【翻訳文提出日】2022-11-30
(86)【国際出願番号】 US2021028009
(87)【国際公開番号】W WO2022039799
(87)【国際公開日】2022-02-24
(32)【優先日】2020-08-17
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】513313945
【氏名又は名称】テラパワー, エルエルシー
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】バス,デレク
(72)【発明者】
【氏名】チーサム,ジェシー,アール.,ザ サード
(72)【発明者】
【氏名】ヘイツラー,パベル
(72)【発明者】
【氏名】ジョンソン,ブライアン,シー.
(72)【発明者】
【氏名】カネコ,カレン
(72)【発明者】
【氏名】マーティン,クリストファー,エー.
(72)【発明者】
【氏名】モジエ,ショーン
(72)【発明者】
【氏名】シュロス,フィリップ,エム.
(72)【発明者】
【氏名】スミス,ネーサン
(72)【発明者】
【氏名】ワーナー,マーク,アール.
(72)【発明者】
【氏名】カンダバロウ,ニコラス
(57)【要約】
原子炉は、炉心をオフセットすること、および/または構成要素を垂直に積み重ねることなどによって、原子炉容器内の構成要素の効率的な充填を可能にするように設計される。容器内貯蔵システムは支持円筒とは別個であってもよく、これらの構成要素は別々に製造および輸送され、建設現場において結合されてもよい。さらに、容器内貯蔵システムは、炉心の周りに円周方向に配置されるのではなく、炉心に隣接して配置されてもよく、容器内の構成要素の充填をさらに改善するために、熱交換器の下方に配置されてもよい。これらおよび他の変更により、精巧な構成要素は、製造設備で製造され、組み立てられ、輸送容器を超えることなく商業輸送オプションによって輸送され得る。
【特許請求の範囲】
【請求項1】
支持円筒と、
容器内貯蔵システムと、を備え、
前記容器内貯蔵システムは、前記支持円筒とは別個の構成要素である、原子炉容器。
【請求項2】
前記容器内貯蔵システムは、前記支持円筒の周りに円周方向に延在するリングである、請求項1に記載の原子炉容器。
【請求項3】
前記容器内貯蔵システムは、前記支持円筒と同軸ではない、請求項1に記載の原子炉容器。
【請求項4】
前記容器内貯蔵システムは、前記支持円筒の隣に設置される、請求項3に記載の原子炉容器。
【請求項5】
前記容器内貯蔵システムは、原子力建設現場において前記支持円筒に取り付けられる、請求項1に記載の原子炉容器。
【請求項6】
前記支持円筒は、輸送前に、内部構成要素と予め組み立てられている、請求項1に記載の原子炉容器。
【請求項7】
前記支持円筒は、前記原子炉容器内に設置され、前記原子炉容器の中心からオフセットされている、請求項1に記載の原子炉容器。
【請求項8】
前記容器内貯蔵システムは、1つ以上の熱交換器の少なくとも一部の垂直下方に配置される、請求項1に記載の原子炉容器。
【請求項9】
前記原子炉容器は、非円形の断面形状を有する、請求項1に記載の原子炉容器。
【請求項10】
前記支持円筒内に中央炉心領域をさらに備える、請求項1に記載の原子炉容器。
【請求項11】
熱輸送システムをさらに備える、請求項1に記載の原子炉容器。
【請求項12】
前記熱輸送システムは、前記支持円筒の外側に配置される、請求項11に記載の原子炉容器。
【請求項13】
前記原子炉容器の前記支持円筒および前記容器内貯蔵システムは、モジュール式であり、設置場所において組み立てるために陸上を経て輸送される、請求項1に記載の原子炉容器。
【請求項14】
原子炉容器モジュールと、
熱輸送モジュールと、
天板モジュールと、
保護容器モジュールと、を備え、
前記原子炉容器モジュール、前記熱輸送モジュール、前記天板モジュール、および前記保護容器モジュールのうちの1つ以上は、工場で製造され、原子炉建設現場に輸送される、モジュール式原子炉。
【請求項15】
前記原子炉容器モジュールは、炉心バレルおよび容器内貯蔵システムを備える、請求項14に記載のモジュール式原子炉。
【請求項16】
前記炉心バレルおよび前記容器内貯蔵システムは、別個の構成要素であり、別個のモジュールとして輸送される、請求項15に記載のモジュール式原子炉。
【請求項17】
前記熱輸送モジュールは、前記原子炉建設現場において前記原子炉容器モジュールに溶接される、請求項14に記載のモジュール式原子炉。
【請求項18】
炉心バレルをさらに備え、
前記炉心バレルは、前記原子炉容器モジュール内の中心から外れた位置において前記原子炉容器モジュール内に設置される、請求項14に記載のモジュール式原子炉。
【請求項19】
容器内貯蔵システムをさらに備え、
前記容器内貯蔵システムは、前記炉心バレルと同軸にならないように前記炉心バレルに結合する、請求項18に記載のモジュール式原子炉。
【請求項20】
前記容器内貯蔵システムは、前記炉心バレルの円周の50%未満を取り囲む、請求項19に記載のモジュール式原子炉。
【発明の詳細な説明】
【発明の詳細な説明】
【0001】
〔関連出願の相互参照〕
本願は、2020年8月17日に出願された「MODULAR MANUFACTURE, DELIVERY, AND ASSEMBLY OF NUCLEAR REACTOR」という名称の米国仮特許出願第63/066,778号の利益を主張するものである。その内容全体は、参照によって本明細書に援用される。
【0002】
〔背景〕
原子炉設備は大部分が現場で建設されており、このことは、厳密な公差および精巧な機器を起因とする固有の課題を生み出す。当該精巧な機器は、原子炉容器内において製造および設置されなければならない。また、それらは、原子炉の構成要素の大きさのため、設置前に原子炉の現場から離れて製造することをほとんど促進しない。
【0003】
原子炉は、設備の目標をサポートするために全てが協働しなければならない非常に複雑なシステムを多数必要とする。原子炉設備は、モジュールから構築され、システムの数を低減し、ならびにシステムを単純化し、原子炉設備のより効率的な設計、建設、および組み立てをもたらすことができれば、有利であろう。当該モジュールは、提供される効率により精巧な機器を製造および事前設置できる製造設備などにおいて製造される。
【0004】
〔概要〕
当業者は、本明細書に開示される実施形態および実施例に係る原子炉を設計および構築することの多くの長所および利益があることを容易に理解するであろう。例えば、本明細書に記載される設計、レイアウト、および構成の多くは、大部分が製造設備で製造され、その後、モジュールとして、最終組み立てのために建設現場に輸送されることができる原子炉を促進する。このようにして、原子炉は、高い公差で、かつ、製造設備によって与えられる速度および効率で構築され得、原子炉を構成する大型構成要素に必要とされる典型的な現場製造の大部分を回避できる。場合によっては、300MWth、500MWth、600MWth、またはそれよりも大きい設備に相応するサイズを有する原子炉は、大部分が製造設備で製造され、当該原子炉を構成するモジュールは、商業輸送オプションによって建設現場に輸送され得る。
【0005】
いくつかの実施形態によれば、原子炉容器は、支持円筒と、容器内貯蔵システムと、を備え、前記容器内貯蔵システムは、前記支持円筒とは別個の構成要素である。これらの構成要素を別個の構成要素として形成することによって、トラック、鉄道、船舶、または他の標準的な運搬設備などの確立された輸送ルートを通してこれらの構成要素を輸送する機会が切り開かれる。場合によっては、前記容器内貯蔵システムは、前記支持円筒の周りに円周方向に延在するリングである。他の場合には、前記容器内貯蔵システムは、前記支持円筒と同軸ではなく、むしろ、前記支持円筒の隣に設置される。
【0006】
いくつかの実施形態によれば、前記容器内貯蔵システムは、原子力建設現場において前記支持円筒に取り付けられる。それは、製造プラントなどの製造設備で製造され、建設現場で支持円筒に取り付けられるモジュールとして建設現場に輸送され、場合によっては支持円筒が適所に設置された後に輸送されてもよい。例えば、前記支持円筒は、輸送前に、内部構成要素と予め組み立てられてもよい。
【0007】
前記支持円筒は、前記原子炉容器内に設置され、前記原子炉容器の中心からオフセットされている位置に設置されてもよい。場合によっては、前記容器内貯蔵システムは、1つ以上の熱交換器の少なくとも一部の垂直下方に配置される。
【0008】
いくつかの実施例では、前記原子炉容器は、非円形の断面形状を有する。例えば、原子炉容器の断面形状は、卵形、長方形、丸みを帯びた長方形、又は他の規則的もしくは非規則的な幾何学的形状であってもよい。
【0009】
いくつかの実施例では、前記原子炉容器は、前記支持円筒内に中央炉心領域を含む。前記原子炉容器は、熱輸送システムを含んでもよい。熱輸送システムは、1つ以上の熱交換器を含んでもよく、1つ以上のポンプを含んでもよい。いくつかの実施例では、前記熱輸送システムは、前記支持円筒の外側に配置され、場合によっては、部分的に支持円筒の外側に配置される。言い換えると、熱輸送システムの一部は支持円筒の内側に配置されてもよく、一方、別の部分は支持円筒の外側に配置されてもよい。
【0010】
いくつかの実施形態では、前記原子炉容器の前記支持円筒および前記容器内貯蔵システムは、モジュール式であり、設置場所において組み立てるために陸上を経て輸送される。炉心モジュール、支持円筒モジュール、熱輸送モジュール、容器内貯蔵システムモジュール、天板モジュール、原子炉容器モジュール、保護容器モジュール、および/または保護容器外側セグメントモジュールなど、これらに限定されない、任意の数のモジュールを予め組み立てて陸上を経て輸送してもよい。建設目的地に到着すると、複数の当該モジュールは、適宜、適切に配置され、構成され、互いに結合され、適切な場合に通信状態に置かれてもよい。
【0011】
いくつかの実施形態によれば、モジュール式原子炉は、原子炉容器モジュールと、熱輸送モジュールと、天板モジュールと、保護容器モジュールと、を含み、前記原子炉容器モジュール、前記熱輸送モジュール、前記天板モジュール、および前記保護容器モジュールのうちの1つ以上は、工場で製造され、原子炉建設現場に輸送される。
【0012】
前記原子炉容器モジュールは、炉心バレルおよび容器内貯蔵システムを含んでもよい。場合によっては、前記炉心バレルおよび前記容器内貯蔵システムは、別個の構成要素であり、別個のモジュールとして輸送されてもよい。
【0013】
いくつかの実施形態によれば、前記熱輸送モジュールは、前記建設現場において前記原子炉容器モジュールに溶接される。
【0014】
いくつかの実施例では、前記原子炉は、炉心バレルをさらに含み、前記炉心バレルは、前記原子炉容器モジュール内の中心から外れた位置において前記原子炉容器モジュール内に設置される。
【0015】
いくつかの実施例は、前記炉心バレルと同軸にならないように前記炉心バレルに結合される容器内貯蔵システムを含む。例えば、前記容器内貯蔵システムは、前記炉心バレルの円周の50%未満を取り囲んでもよい。
【0016】
いくつかの実施例では、熱輸送モジュールは、原子炉容器モジュール内の容器内貯蔵システム少なくとも一部の上方に設置される。
【0017】
〔図面の簡単な説明〕
図1Aは、いくつかの実施形態に係る、原子炉容器内のシステムのレイアウトを示す、典型的なナトリウム高速炉の模式図である;
図1Bは、いくつかの実施形態に係る、ナトリウム高速炉内の構成要素のレイアウトを図示する、線A-Aに沿って得られた
図1Aの概略断面図である;
図2Aは、いくつかの実施形態に係る、原子炉の支持円筒、燃料領域を有する炉心バレル、および炉心バレルの周りに同軸に配置された容器内貯蔵システムの上面図を示す;
図2Bは、いくつかの実施形態に係る、原子炉の支持円筒を図示する;
図3Aは、いくつかの実施形態に係る、支持円筒および燃料領域と、支持円筒とは別個の容器内貯蔵システムとを図示する;
図3Bは、いくつかの実施形態に係る、支持円筒に隣接して配置された容器内貯蔵システムを伴う、
図3Aの支持円筒の上面図を示す;
図4Aは、いくつかの実施形態に係る、原子炉容器内の中心から外れて配置された炉心と、炉心に隣接して配置された容器内貯蔵システムとを有する原子炉容器の上面図を示す;
図4Bは、いくつかの実施形態に係る、例示的なレイアウトにおける原子炉容器の構成要素を示す、
図4Aの原子炉容器の斜視図を示す;
図5Aは、いくつかの実施形態に係る、炉心に隣接して配置された容器内貯蔵システムを有する原子炉容器の上面図を示す;
図5Bは、いくつかの実施形態に係る、例示的なレイアウトにおける原子炉容器の構成要素を示す、
図5Aの原子炉容器の斜視図を示す;
図6は、いくつかの実施形態に係る、原子炉容器モジュールおよび例示的な非対称レイアウトの上面図を示す;
図7は、いくつかの実施形態に係る、原子炉容器モジュールおよび例示的な非対称レイアウトの上面図を示す;
図8は、いくつかの実施形態に係る、内部流動を示す炉容器の概略断面図を示す;
図9Aは、いくつかの実施形態に係る、原子炉構成の流路の概略断面図を示す;
図9Bは、いくつかの実施形態に係る、自然循環のために構成された原子炉モジュールの代替構成の概略断面図を示す。
【0018】
〔詳細な説明〕
本開示は、概して、原子炉容器および炉心の構成要素およびアセンブリが工場などの制御された環境下で製造され、工場でパッケージングされ、建設現場に輸送され、次いで現場で組み立てられることを可能にする方法およびシステムに関する。以下の説明は、ナトリウム冷却高速炉(SFR)の設計および構成において有用であるが、本明細書に開示される概念の多くは、他の原子炉タイプにも同様に適用可能であり得る。本開示は、特に明記しない限り、SFR技術に限定されるべきではない。
【0019】
場合によっては、原子炉容器の構成要素および/または炉心の構成要素は、容器および炉心構成要素の製造および輸送を容易にするように設計および配置される。多くの場合、
結果として、原子炉容器内に容器および炉心の構成要素を充填することにより効率的な方法を提供する原子炉容器となる。
【0020】
いくつかの実施形態では、容器および炉心の構成要素は、トラック輸送、海上航行船舶、列車、または他の適切な商業輸送オプションなどの商業輸送に適合するようにサイズ決定される。例えば、場合によっては、容器の構成要素は、約20フィート未満の幅、約10フィート未満の幅、約102インチ未満の幅、または約8フィート未満の幅の基準積荷または貨物コンテナなどの輸送コンテナ内に適合可能なモジュールとなるように構成される。
【0021】
容器構成要素は、例えば、炉心モジュール、支持円筒モジュール、容器内貯蔵システムモジュール、ポンプモジュール、熱交換器モジュール、天板モジュール、保護容器モジュール、および保護容器外側セグメントモジュールなどのサブモジュールに、とりわけ細分され得る。建設目的地に到着すると、複数の当該モジュールは、適宜、適切に配置され、構成され、互いに結合され、適切な場合に通信状態に置かれてもよい。
【0022】
場合によっては、容器内貯蔵システム(in-vessel storage system:「IVS」)は、内側円筒とは別個の(分かれた)構成要素として製造され、そして、これは現場で組み立てられる原子炉の輸送可能な構成要素になる。IVSは、原子炉アセンブリの高精度の一構成要素であり、この構成要素を製造設備で製造し、部分的に組み立て、サブアセンブリとして輸送し、次いで現場で最終組み立てを行うことができるため、原子炉の構造及び設置に大きな利点をもたらす。
【0023】
いくつかの実施例では、図示するように、IVSは1つ以上の熱交換器の下方に配置され得る。構成要素を分離しモジュール化することによって、構成要素を垂直に積み重ねる(例えば、IVSを1つ以上の小型熱交換器(compact heat exchanger:CHX)の下方に置く)こと等により、それらを固有の位置に配置することができる。
【0024】
いくつかの実施例では、原子炉容器は、非円形の幾何学的形状を採用してもよい。場合によっては、円形以外の幾何学的形状が原子炉容器内の構成要素およびアセンブリのより緊密な充填を可能にする。
【0025】
図1Aおよび
図1Bは、炉心102、容器内貯蔵システム(IVS)104、および4つの電磁ポンプ106を有する原子炉容器100を示す。これは、炉心102が炉心フォーマリング、炉心バレル、IVS104、およびシールドを収容する支持円筒108を含み得、典型的には炉心102の周りに同軸に分配される他の容器システムと共に容器100内の中央に配置される、典型的な構成であり得る。特に、IVS104は、典型的には製造中に炉心バレルに結合され、炉心アセンブリの変更(例えば、燃料補給、シャフリングなど)をサポートするための貯蔵空間を提供する。いくつかの実施形態では、炉心アセンブリは、IVS内に嵌合し、選択的に炉心内に挿入され、炉心から除去される、燃料ピン、制御棒、中性子反射体、中性子吸収体、または他の構成要素を含む。
【0026】
場合によっては、原子炉容器100は、31.5フィートのオーダーの外径を有し、支持円筒は、16フィートのオーダーの外径を有する。これらの構成要素のせん断寸法および容積は、これらの構成要素を製造し、建設現場に輸送することを困難にする。典型的には、これらの構成要素は、現場および/またはその場で製造される。そのため、炉心および炉心内部構造を形成する精巧な構成要素を精密に製造し、組み立てるのに多大な熟練労力が必要となる。
【0027】
いくつかの実施形態によれば、上記構成要素は、工場で製造され、地上輸送などによって建設現場に輸送される。例えば、所定の輸送容器内に適合する別個の構成要素として製造することによって、構成要素の大きさを縮小することによって、いくつかの典型的な構成要素を排除して原子炉設計を単純化することによって、ならびに本明細書に記載される他の手段によって、上記構成要素は輸送されてもよい。
【0028】
図2Aおよび
図2Bを参照すると、典型的には炉心の一部を形成し得る支持円筒108が示されている。支持円筒108は、典型的には、支持円筒108の内側(炉心内部)に、炉心、炉心成形リング(core former ring)、炉心バレル、IVS104、およびシールドを備える。典型的な原子炉では、これらの炉心内部の構成要素は、単一のモジュールとして一体的に形成される。それらは、直径16フィート以上のサイズを有し得るため、これらの炉心内部構造は、製造設備で製造されて建設現場に輸送されることを促進せず、むしろ、現場で大部分が製造される。
【0029】
いくつかの実施形態によれば、IVS104は、炉心バレルおよび支持円筒108とは別個の構成要素として形成されてもよい。これらの場合、IVS104は、製造設備で製造され、組み立てられ、モジュールとして建設現場に輸送されてもよい。それは、支持円筒、炉心バレルおよび/または他の構成要素に結合されてもよい。従来の原子炉設計では、IVSおよび炉心バレルを単一部品として形成しており、通常、構成要素のサイズおよび/または精巧さのために輸送することができなかった。これらを別個のモジュールとして形成することにより、構成要素を製造し、現場での最終的な組み立てのために建設現場に輸送することができる。
【0030】
図3Aおよび
図3Bを参照すると、いくつかの実施形態では、支持円筒308は、炉心モジュール310を形成するために炉心バレル302と一体的に形成される。なお、IVS304は、支持円筒308内になく、炉心バレル302と一体的に結合されない。IVS304は、自身のハウジング312を有してもよく、上部支持体314および下部支持体316を含んでもよい。ハウジング312、上部支持体314、および下部支持体316は、製造設備内で製造され、IVSモジュール304として建設現場に輸送されてもよい。いくつかの実施形態では、IVSモジュール304は、輸送容器に適合する。
【0031】
本明細書で使用される「輸送容器(shipping envelope)」という用語は、広義の用語であり、商業輸送のために利用可能な最大の大きさ、容積、または質量を指すために使用される。輸送容器は、海上輸送船、航空貨物、および/または陸上輸送車両(例えば、列車、トラック、バンなど)の任意の適合する輸送方法を指してもよい。いくつかの実施形態では、輸送容器は、陸上トラック輸送などにおいては、約36,48,53フィート、またはそれ以上の長さ、8.5フィートの幅、および13.5フィートの高さ(または望ましい経路に応じて14フィートの高さ、または14.6フィートの高さ、またはそれ以上)であり、約47000ポンド(車両および積載を組み合わせた質量を含む80000ポンド)まで至る質量を有する。場合によっては、輸送容器は、より大きくてもよく、追加の規制を遵守することによって陸上で輸送され得る過大荷重と見なされてもよい。いずれにしても、本明細書の実施形態によって説明される利点の1つは、構成要素の全サイズおよび/または個数を低減するだけでなく、輸送容器内に適合するモジュールをもたらし、モジュールが製造設備内で大部分製造され、組み立てのために建設現場に(例えば陸上輸送で)輸送されることを可能にする、原子炉設計である。
【0032】
例えば、
図3Aおよび
図3Bを参照して説明したように、原子炉モジュール310は、製造設備で製造することができ、原子炉モジュール310を建設現場に輸送する前に、予め設置された支持円筒308、炉心バレル、炉心、および他の精巧な原子炉内部構造を含んでもよい。これは、製造設備において行うよりも質の制御が著しく困難である建設現場において、精巧な原子炉内部構造を別々に組み合わせ、輸送し、製作し、組み立てる必要性を回避する。
【0033】
IVSモジュール304は、同様に、製造設備で製造され、精巧な内部構造がすでに設置された別個の構成要素として輸送されてもよい。建設現場では、IVSモジュール304は、溶接、ボルト、ファスナ、接着剤、クリップ、ストラップ、キー溝、フランジ、または他の適切な結合手段もしくは結合手段の組み合わせといった、任意の適切な技法により炉心モジュール310に結合され得る。IVSモジュール304は、高精度の構成要素であり、歴史的に、これらの構成要素に要求される公差で製造するために、建設現場では多大な労力と設備を必要としてきた。本明細書に記載される原子炉を設計することにより、IVSモジュール304の構成及び製造の大部分は、工場に移すことができる。工場においては、モジュールはより速く、より高い交差で、より高い精度で、そしてより良好な品質で、製造することができる。本明細書に記載されるように、実施形態により、IVSモジュール304が製造設備で製造され、それが原子炉バレルおよび/または原子炉容器に設置および結合され得る建設現場に輸送されることが可能になる。
【0034】
組み立てられたモジュールの輸送をさらに容易にするため、輸送のために構成されたモジュールとしての原子炉を設計することに加えて、当該モジュールは、モジュール自体のサイズの低減を提供し得る。例えば、いくつかの実施形態によれば、
図2Bの支持円筒108は約16フィート径であり、
図3Bの支持円筒308は約13フィート径である。これは、モジュールを出荷するときの有意差である。多くの場合、16フィート径の支持円筒108は陸上で輸送することができず、一方、
図3Bの支持円筒は陸上で輸送することができる。これにより、炉心モジュール310は、製造設備において、輸送前に炉心内部構造が炉心モジュール310内に予め構成され、組み立てられ、設置された状態で製造されることが可能になる。いったん原子炉の現場に配送されると、IVSモジュール304を炉心モジュール310に結合することなどによって、モジュールを組み立てることができる。
【0035】
図4Aおよび
図4Bは、原子炉容器100内の構成要素のレイアウトを示す例示的な実施形態を図示する。ここで、いくつかの実施形態では、炉心モジュール310は、原子炉容器100に対して中心から外れて配置される。場合によっては、炉心モジュール310を原子炉容器100に対して中心から外れて配置することにより、追加の原子炉容器の構成要素を原子炉容器100内により効率的に充填することが可能になる。したがって、潜在的に、反応炉容器100の全体のサイズを低減するか、追加の構成要素を反応炉容器100内に配置することが可能になるか、またはその両方が可能になる。他の利点は本開示を検討すれば、当業者であれば容易に明らかになるであろう。
【0036】
図示のように、炉心モジュール310は原子炉容器100の中心から外れて配置され、2つのポンプ402は炉心モジュール310に隣接して配置されてもよく、熱交換器404は原子炉容器100内に配置されてもよい。従来の原子炉容器100とは対照的に、レイアウトは非対称である。場合によっては、当該レイアウトは、原子炉容器100内の構成要素の効率的な充填を可能にするように設計される。場合によっては、これにより、原子炉容器の構成要素の対照的な分布と比較して、原子炉容器のサイズを低減することを可能にする。
【0037】
さらに、IVSモジュール304と炉心モジュール310との間において炉心アセンブリを選択的に移動させるように当該炉心アセンブリを操作する容器内取扱機(in-vessel handling machine:IVHM)(図示せず)が設けられてもよい。IVHMは、炉心モジュール310とIVSモジュール304との間の境界付近の位置に配置されてもよい。IVHMアームは、IVMから最も遠い、炉心モジュール310およびIVSモジュール304内の炉心アセンブリに到達するように構成され得る。言い換えれば、IVHMアームは、炉心モジュール310の反対側に到達し、IVSモジュール304の反対側にも到達するように構成され得る。
【0038】
図5Aおよび
図5Bは、原子炉容器100内の構成要素レイアウトの追加の実施形態を図示する。炉心モジュール310は、原子炉容器100の中心に配置され、IVSモジュール304は、炉心モジュール310に隣接して配置され、特に、いくつかの実施形態において、炉心モジュール304と同心ではない。IVSモジュール304は、炉心モジュール310の一部の周りに延在し得る。いくつかの実施形態では、IVSモジュール304は、炉心モジュール310の円周の周りに50%未満、約40%未満、約30%未満、または約25%未満延在する。IVHM(図示せず)は、炉心モジュール310内の炉心アセンブリの装填および取出しを容易にするために、炉心モジュール310およびIVSモジュール304の上方に配置され得る。
【0039】
場合によっては、1つ以上の熱交換器404は、IVSモジュール304の上方に配置されてもよい。典型的には、IVHMは、IVSモジュール304の上方に空間を必要とする。それは、IVSモジュール304の高さに、IVHMがIVSモジュール304から炉心アセンブリを持ち上げ、炉心アセンブリを炉心モジュール310内に位置付ける(逆も同様である)ことを可能にするクリアランスを加えたものにほぼ等しい。場合によっては、炉心アセンブリは約12フィートの長さであり、IVHMは、炉心アセンブリを持ち上げ、再配置するために、炉心モジュール310およびIVSモジュール304の上方に十分な空間を必要とする。最も典型的な原子炉の構成は、IVSモジュール304から半径方向外側に熱交換器を配置し、それと垂直に整列させないものである。しかしながら、
図5Bに示されるように、1つ以上の熱交換器404は、IVSモジュール304の真上に配置されてもよい。場合によっては、小型熱交換器(CHX)を利用して、原子炉容器100への高さの影響を最小限に抑えてもよい。さらに、複数のCHX404間で熱負荷を共有および分配するために、複数のCHX(例えば、3つ、4つ、6つ、8つ、またはそれ以上のCHX404)が利用されてもよい。
【0040】
いくつかの例では、IVSモジュール304を熱交換器404の下方に配置することにより、原子炉容器100の径の低減(例えば、約8%、約10%、または約12%以上の低減)が可能である。原子炉容器100の径を低減することにより、材料コスト、建設コスト、必要なシールド、掘削、労力をさらに低減し、原子炉容器100をより容易に輸送に適したピースに分割することが可能となるので、当該径の低減は重要である。
【0041】
場合によっては、IVSモジュール304を1つ以上の熱交換器404の下方に配置するには、原子炉容器100の高さを増加させる必要がある。支持円筒のような他の構成要素は、原子炉容器の直径の変化に対応するためにサイズ変更される必要はない。
【0042】
上述のように、原子炉の主要な構成要素を工場で製造し、モジュールに組み立て得る構成要素を最終的な組み立ておよび設置のために建設現場に輸送することには利点及び利益がある。いくつかの実施形態によれば、原子炉および炉心のモジュールは、例えば20フィート未満の断面寸法を有するモジュールを製造することによって、輸送可能であるように設計される。例えば、実質的に円筒形のモジュールの場合、それらは、約20フィート未満の径を有するように設計され得る。長方形、卵形、または他の規則的もしくは非規則的形状などの他の断面形状のモジュールの場合、それらは、最大断面寸法が約20フィート未満であるように設計され得る。
【0043】
場合によっては、モジュールは、サブモジュールを形成するために断面的にスライスされ得る。例えば、支持円筒は、断面線に沿って支持円筒を分離することによって、2つ以上のセグメントにスライスされてもよい。当該セグメントは、溶接、ボルト締め、または他の適切な構造などによって、建設現場で互いに結合されてもよい。
【0044】
図6を参照すると、原子炉600は、原子炉容器モジュール602と、1つ以上の熱輸送モジュール604とを含み得る。原子炉容器モジュール602は、炉心、炉心バレル、支持円筒、IVS、および他の構成要素を含み得る。場合によっては、原子炉容器モジュール602は、約20フィート未満の径を有するように設計され得る。この寸法決めにより、原子炉容器モジュール602の輸送が容易となり、場合によっては、原子炉容器モジュール602は、輸送前に、製造設備で製造および組み立てることができる。これにより、輸送前に、精巧な炉心の内部構造を製造し、原子炉容器モジュール602内に設置することができる。原子炉容器モジュール602は、いったん建設現場に到着すると、設置され、必要に応じて他のモジュールおよび構成要素に結合され得る。これは、より高品質な構成要素を提供しつつ原子炉を建設する時間を改善する。また、これは、精巧な現場製造ではなくモジュール式組立技術のみを必要とする。
【0045】
熱輸送モジュール604はそれぞれ、1つ以上のポンプ606および1つ以上の熱交換器608を含み得る。熱輸送モジュール604は、建設現場に輸送する前に製造設備で組み立てられ、いったん現場で原子炉容器モジュール602に結合され得る。熱輸送モジュール604は、溶接、ボルト締め、または任意の他の適切な取り付け構造もしくは機構、または技術の組合せなどによって、原子炉容器モジュール602に機械的に結合され得る。熱輸送モジュール604はさらに、原子炉容器モジュール602に流体的に結合され得る。これにより、当該モジュール間の流体連通が可能となる。熱輸送モジュール604は同様に、約20フィート未満の最大断面寸法を有するように構成されてもよく、これにより、熱輸送モジュールを工場で製造して組み立て、組み立てられたモジュールを建設現場に輸送することが容易になる。
【0046】
天板802(
図8)は、別個の構成要素として製造および輸送され、原子炉容器モジュール602および1つ以上の熱輸送モジュール604の頂部に設置され得る。
【0047】
したがって、輸送可能な反応炉モジュールは、サブモジュールを建設現場に輸送し、サブモジュールを一緒に組み立てて原子炉モジュールを形成する前に、工場でサブモジュールとして製造され得る。いくつかの実施形態では、原子炉モジュールは、原子炉容器モジュール602、1つ以上の熱輸送モジュール604、天板802、保護容器、および外側保護容器といったサブモジュールを含む。いくつかの例では、保護容器および/または外側保護容器(または他のモジュール)は、必要に応じて、輸送に適した多数の部品に分割され、現場で組み立てられ得る。
【0048】
図7に関して、原子炉700は、原子炉容器モジュール702と、1つ以上の熱輸送モジュール704と、天板802と、保護容器708と、外側保護容器710とを含み得る。本明細書の他の場所に記載されるように、モジュールは、建設現場に輸送されることを容易にするために、約20フィート未満の最大断面寸法を有するように構成されてもよい。
図7の一例において、製造および組み立てステップを単純化するために、(回転成形または圧延(spin forming or rolling)とは対照的に)平板構造を使用することによって、より簡単な製造および最終的な組み立てのためのモジュールが設計されている。その結果、モジュールを組み立てるために必要な最小限のフィールド製造ステップのみを伴う、大部分を工場で製造可能な原子炉が得られる。その結果、大部分を工場で製造したモジュール式反応炉が得られ、モジュールは、建設現場に輸送され、建設現場で組み立てられる。
【0049】
図8は、原子炉容器モジュール804および熱輸送モジュール806を通る液体流動を示す、(
図6および
図7に示すような)原子炉容器800の概略断面図を示す。原子炉容器モジュール804は、場合によっては炉心808および受け部(receptacle)810を含み、熱輸送モジュール806と流体連通している。熱輸送モジュール806は、1つ以上のポンプ812と、1つ以上の熱交換器814と、排出プレナム816と、様々な配管とを含む。上部内部構造(Upper Internal Structure:UIS)818はまた、制御棒、ドライブライン、および計器のための案内、ならびに炉心808を出る冷却用流路を提供するために提供されてもよい。
【0050】
反応器モジュールが組み立てられると、流体は
図8の矢印によって示されるようにモジュールを通って流れ、例えば、1つ以上のポンプ812によって駆動され、炉心808の底部に入り、原子炉容器804を通って上昇し、熱交換器814に入り、ポンプ812に戻ってもよい。もちろん、2つ以上のポンプ、追加の熱交換器などの他の構成要素が存在してもよい。
【0051】
流体連通のさらなる詳細は、
図9Aおよび
図9Bに示される。
図9Aおよび
図9Bは、代替構成を示す炉心モジュール900の断面図を示す。
図9Bと
図9Aとで比較して図示されるように、
図9Bの構成は典型的な内部流動構造およびプール分離構造の大部分を排除し、
図9Aに図示される一次ナトリウムポンプ設計から嵌合シールを効果的に排除する。
図9Bに示される構成はまた、
図9Aと比較してはるかに大きい冷却プール容積を提供する。これは安全性に寄与し、ならびに電力動作および自然循環の両方のための簡略化された流路を提供する。
【0052】
加えて、
図9Bのポンプタンク構造およびポンプ抽出は、厳密な許容侵入のナビゲーションなしに達成することができ、ポンプ排出プレナムの漏れまたは故障の場合に、冷却プールから高温プールへのバイパスの可能性を低減または排除する。ポンプタンクはまた、電磁ポンプの代わりに機械式ポンプの使用を提供してもよい。場合によっては、ポンプタンクは、専用タンクナトリウム空間を通るポンプ長さの変化に、より容易に適応することができる。
【0053】
原子炉構成要素のモジュール化は例えば、プール分離プレート入口プレナム、ポンププレナムに対する支持円筒、およびプール分離プレートのような、現場での組み立ておよび溶着を必要とするのであろう構成の低減によって改善される。工場製造は、内部部品に対してより容易に達成され、最終的な組み立ておよび溶接のために現場に輸送され得る。
【0054】
図9Aを参照すると、流体は、炉心902内で加熱され、自然循環、ポンプ入力流動、またはその両方により、高温プール904に上昇する。流体レベルは、ガス空間906を流体レベルより上方に維持するように調整される。高温プール904からの流体は、熱交換器908に入り、熱交換器908の出口において冷却プール910へと下方に流れる。中間プール911は、冷却プールに近接する比較的停滞した部位であり、冷却プール910に容積を部分的に寄与する。冷却された流体は、一次ナトリウムポンプ914の吸引プレナム912に入り、一次ナトリウムポンプ914を通って吸い上げられ、ナトリウムポンプ914の頂部から高圧-低圧インターフェース916に出る。高圧-低圧インターフェース916は、高温プール904との混合に対して密閉(シール)される。高圧-低圧インターフェース916は、高温プールと冷却プールとの間の混合を抑制する重要な構成要素である。シールのいかなる漏れも、原子炉の運転を劣化させるだろう。原子炉の運転、効率、または安全性に影響を及ぼすこのような重要な構成要素は、現場で製造することが非常に困難である。同様に、一次ナトリウムポンプ914から高圧プレナム920に流体を運ぶ配管918のような長い内部配管は、故障および漏れの可能性を増大させる。
【0055】
図9Bは、重要な構成要素の故障の機会を低減または排除する改善および簡略化を図示する。流体は、炉心902内で加熱されると、
図9Aの同様に高温プール904内に上昇し、1つ以上の熱交換器908内に流れる。流体は、熱交換器908の底部から出ると、冷却プール910に入る。冷水プール910は、はるかに大きく、中間プールの使用を回避する。
図9Aと比較して分かるように、吸引プレナム912は排除されており、一次ナトリウムポンプ914は、冷却プール910から頂部入口に流体を直接引き込むことができる。吸引プレナム912を排除することは、内部構成要素の複雑さおよび製造コストを低減する。さらに、一次ナトリウムポンプ914を頂部入口924および底部出口926に向けることにより、当該ポンプは、通常のように重力に対してポンピングするのではなく、重力と協働することができる。
【0056】
ポンプタンク922は、ドローダウン容積を提供し、高温プール904と冷却プール910との間の従来のシール面を排除し、したがって、設計および構成をさらに単純化する。冷却プール910の開放性により、流路は簡略化され、製造される構成要素は低減し、ナトリウム容積は改善される。一次ナトリウムポンプ914の構成により、原子炉容器900内の構成要素の工場製造およびモジュール性がさらに可能となる。
【0057】
本開示は、例示的な実施形態を提示するものである。それゆえ、本開示は、いかなる点においても、本開示の実施形態の範囲および添付した特許請求の範囲を限定することを意図するものではない。特定された機能およびそれらの関係の実装を示す機能構成ブロックの助けを借りつつ、実施形態を上述してきた。本明細書において、これらの機能的構成要素の境界は、説明の便宜上、任意に定められている。特定された機能およびそれらの関係が適切に実施される程度に、代替的な境界が定められてもよい。
【0058】
本開示の実施形態の一般的性質は、本開示の実施形態の一般的思想から逸脱することなく、当業者の知識を適用することで、様々な応用のために特定の実施形態を他者が過度の実験なしに容易に修正および/または適合し得る程度に十分に、かかる特定の実施形態の前述した説明によって明らかとなるだろう。それゆえ、かかる適合および修正は、本明細書に提示された教示および導きに基づいて、開示された実施形態の均等物の意味および範囲の中にあることが意図されている。本明細書における語法または用語は、本明細書に提示された教示および導きに照らして、当該本明細書の用語または語法が当業者によって解釈されるように説明することを目的とするものであって、限定を目的とするものではない。
【0059】
本開示の実施形態の広さおよび範囲は、上述した例示的実施形態のいずれの実施形態によっても限定されるべきではなく、以下の特許請求の範囲およびその均等物に従ってのみ画定されるべきである。
【0060】
別段の定めのない限り、または、使用された文脈内で別様に理解されない限り、とりわけ「し得る」、「し得るだろう」、「してもよいだろう」または「してもよい」等の、条件に関する語は概して、特定の実装形態が特定の特徴、要素および/または動作を含み得る一方で、他の実装形態が特定の特徴、要素および/または動作を含まないことを伝えることを意図したものである。このように、かかる条件に関する語は概して、特徴、要素および/もしくは動作が何らかの形で、1もしくは複数の実装形態に求められることを意図するものではなく、または、これらの特徴、要素および/もしくは動作が、任意の特定の実装形態に含まれるものなのか、あるいは、これらの特徴、要素および/もしくは動作が、任意の特定の実装形態において実行されるべきものなのかを判定するための論理が、ユーザ入力もしくはプロンプトの有無とは無関係に、1もしくは複数の実装形態に必ず含まれることを意図するものではない。
【0061】
明細書および図面には、原子炉のモジュールを製造設備内で製造し、モジュールが組み立てられる製造現場に輸送し、それによって現場での製造の煩雑さおよび費用を大幅に低減することができる、システム、装置、デバイスおよび技術の例が開示されている。さらに、原子炉のシステムは、簡略化され、現場製造の代わりに工場製造を行うことをさらに促進する。
【0062】
当業者は、本明細書に開示される任意のプロセスまたは方法が多くの方法で修正され得ることを認識するであろう。本明細書に記載および/または図示された工程の工程パラメータおよび配列は単なる例として与えられており、所望に応じて変更することができる。例えば、本明細書で図示および/または説明される工程は特定の順序で示され、または説明され得るが、これらの工程は必ずしも図示または説明される順序で実行される必要はない。
【0063】
本明細書で説明および/または図示された様々な例示的な方法は、本明細書で説明または図示されたステップのうちの1つ以上のものを省略することもでき、または開示されたステップに加えて追加のステップを備えることもできる。さらに、本明細書で開示される任意の方法の工程は、本明細書で開示される任意の他の方法の任意の1つ以上の工程と組み合わせることができる。
【0064】
勿論、本開示の様々な特徴を説明する目的のために、要素および/または方法の考えられる全ての組合せについて述べることは不可能である。しかしながら、当業者には、開示された特徴のさらなる多数の組合せおよび置換が可能であることが認識される。したがって、本開示の範囲または趣旨から逸脱することなく、本開示に対して様々な修正が行われ得る。さらに、明細書および添付した図面について考察することで、また、本明細書に提示された、開示された実施形態を実施することで、本開示のその他の実施形態が明らかとなり得る。本明細書および添付した図面において提示された実施例は、あらゆる点において、限定的なものではなく、例示的なものであるとみなされるべきである。本明細書には特定の用語が用いられているが、それらの用語は一般的かつ説明的な意味においてのみ使用されており、限定を目的として使用されたものではない。
【0065】
特に断らない限り、明細書で使用される用語「接続される」および「結合される」(およびそれらの派生語)は直接的および間接的(すなわち、他の要素または構成要素を介して)接続の両方を可能にするものとして解釈されるべきである。さらに、明細書で使用される用語「a」または「an」は「のうちの少なくとも1つ」を意味するものとして解釈されるべきである。最後に、使用を容易にするために、明細書で使用される用語「含む」および「有する」(およびそれらの派生語)は、単語「備える」と交換可能であり、同じ意味を有するものとする。
【0066】
以上から、および添付の図面から、本明細書には特定の実装形態が例示の目的で記載されているが、添付した特許請求の範囲の趣旨および範囲ならびに特許請求の範囲において列挙された要件から逸脱せずに、様々な修正が行われ得ることが理解されるだろう。加えて、特定の態様が特定の特許請求の形態において以下に提示されているが、本発明者らは、利用可能な任意の特許請求の形態において、様々な態様を想定している。例えば、一部の態様のみが特定の構成において具現化されるものとして目下、説明がなされ得る一方で、その他の態様が同様に、そのようにして具現化され得る。本開示の利益を得る当業者には明らかであろうような様々な修正および変更が行われ得る。全てのかかる修正および変更を包含することが意図されている。したがって、限定的な意味ではなく、むしろ例示的な意味において、上記の説明が考察されるべきである。
【図面の簡単な説明】
【0067】
【
図1A】いくつかの実施形態に係る、原子炉容器内のシステムのレイアウトを示す、典型的なナトリウム高速炉の模式図である。
【
図1B】いくつかの実施形態に係る、ナトリウム高速炉内の構成要素のレイアウトを図示する、線A-Aに沿って得られた
図1Aの概略断面図である。
【
図2A】いくつかの実施形態に係る、原子炉の支持円筒、燃料領域を有する炉心バレル、および炉心バレルの周りに同軸に配置された容器内貯蔵システムの上面図を示す。
【
図2B】いくつかの実施形態に係る、原子炉の支持円筒を図示する。
【
図3A】いくつかの実施形態に係る、支持円筒および燃料領域と、支持円筒とは別個の容器内貯蔵システムとを図示する。
【
図3B】いくつかの実施形態に係る、支持円筒に隣接して配置された容器内貯蔵システムを伴う、
図3Aの支持円筒の上面図を示す。
【
図4A】いくつかの実施形態に係る、原子炉容器内の中心から外れて配置された炉心と、炉心に隣接して配置された容器内貯蔵システムとを有する原子炉容器の上面図を示す。
【
図4B】いくつかの実施形態に係る、例示的なレイアウトにおける原子炉容器の構成要素を示す、
図4Aの原子炉容器の斜視図を示す。
【
図5A】いくつかの実施形態に係る、炉心に隣接して配置された容器内貯蔵システムを有する原子炉容器の上面図を示す。
【
図5B】いくつかの実施形態に係る、例示的なレイアウトにおける原子炉容器の構成要素を示す、
図5Aの原子炉容器の斜視図を示す。
【
図6】いくつかの実施形態に係る、原子炉容器モジュールおよび例示的な非対称レイアウトの上面図を示す。
【
図7】いくつかの実施形態に係る、原子炉容器モジュールおよび例示的な非対称レイアウトの上面図を示す。
【
図8】いくつかの実施形態に係る、内部流動を示す炉容器の概略断面図を示す。
【
図9A】いくつかの実施形態に係る、原子炉構成の流路の概略断面図を示す。
【
図9B】いくつかの実施形態に係る、自然循環のために構成された原子炉モジュールの代替構成の概略断面図を示す。
【国際調査報告】