IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングの特許一覧

特表2023-538593電気モジュールおよび/または電子モジュールのための磁気部品
<>
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図1
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図2
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図3
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図4
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図5
  • 特表-電気モジュールおよび/または電子モジュールのための磁気部品 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-09-08
(54)【発明の名称】電気モジュールおよび/または電子モジュールのための磁気部品
(51)【国際特許分類】
   H01F 38/30 20060101AFI20230901BHJP
【FI】
H01F38/30
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023512067
(86)(22)【出願日】2021-07-19
(85)【翻訳文提出日】2023-04-04
(86)【国際出願番号】 EP2021070146
(87)【国際公開番号】W WO2022037871
(87)【国際公開日】2022-02-24
(31)【優先権主張番号】102020210580.4
(32)【優先日】2020-08-20
(33)【優先権主張国・地域又は機関】DE
(81)【指定国・地域】
(71)【出願人】
【識別番号】591245473
【氏名又は名称】ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
【氏名又は名称原語表記】ROBERT BOSCH GMBH
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(72)【発明者】
【氏名】ブラ,デニス
(72)【発明者】
【氏名】プルム,トーマス
【テーマコード(参考)】
5E081
【Fターム(参考)】
5E081AA06
5E081AA16
5E081CC03
5E081DD05
5E081EE07
(57)【要約】
電気モジュールおよび/または電子モジュールのための磁気部品(1)であって、磁心(10)およびこの磁心(10)を取り囲む導電体(6)を含む、磁気部品(1)であり、この磁心(10)にブリッジ要素(20)が配置されており、このブリッジ要素(20)の少なくとも一部分が測定導電体(30)によって取り囲まれており、この測定導電体(30)は、磁心(10)を取り囲む導電体(6)内の電流ゼロクロスを測定するために形成されている、磁気部品(1)が提案される。
【特許請求の範囲】
【請求項1】
電気モジュールおよび/または電子モジュールのための磁気部品(1)であって、磁心(10)および前記磁心(10)を取り囲む導電体(6)を含む、磁気部品(1)において、
前記磁心(10)にブリッジ要素(20)が配置されており、前記ブリッジ要素(20)の少なくとも一部分が測定導電体(30)によって取り囲まれており、前記測定導電体(30)が、前記磁心(10)を取り囲む前記導電体(6)内の電流ゼロクロスを測定するために形成されていることを特徴とする磁気部品(1)。
【請求項2】
前記ブリッジ要素(20)の材料が、500超、とりわけ1000超、好ましくはとりわけ2000超の相対透磁率を有することを特徴とする請求項1に記載の磁気部品。
【請求項3】
前記磁心(10)が、軸方向(A)および中心のリング開口部(18)を有し、かつ前記磁心(10)には第1のリング状表面(11)および前記第1のリング状表面(11)に背を向けた第2のリング状表面(12)が形成されていることを特徴とする請求項1または2に記載の磁気部品。
【請求項4】
前記磁心(10)内に少なくとも1つの隙間(15)が形成されており、前記磁心(10)内の前記隙間(15)が前記ブリッジ要素(20)によって橋絡されており、前記測定導電体(30)が、前記隙間(15)の領域内で前記ブリッジ要素(20)の少なくとも一部分を取り囲むことを特徴とする請求項1~3のいずれか一項に記載の磁気部品。
【請求項5】
前記隙間(15)が、前記軸方向(A)および前記軸方向(A)に垂直な径方向(R)に延びることを特徴とする請求項3および4に記載の磁気部品。
【請求項6】
前記磁心(10)に隣接する前記ブリッジ要素(20)が、前記磁心(10)の前記第1のリング状表面(11)に配置されており、とりわけ前記磁心(10)の前記第1のリング状表面(11)に載ることを特徴とする請求項3~5のいずれか一項に記載の磁気部品。
【請求項7】
前記ブリッジ要素(20)がフィルムまたは小板として形成されていることを特徴とする請求項1~6のいずれか一項に記載の磁気部品。
【請求項8】
前記隙間(15)の領域での前記ブリッジ要素(20)内に孔(25)が形成されており、前記測定導電体(30)が前記ブリッジ要素(20)内の前記孔(25)を通って走ることを特徴とする請求項4から7のいずれか一項に記載の磁気部品。
【請求項9】
前記ブリッジ要素(20)が、前記測定導電体(30)によって取り囲まれている領域では細くされていることを特徴とする請求項1~8のいずれか一項に記載の磁気部品。
【請求項10】
前記磁気部品(1)が、前記磁心(10)を取り囲むさらなる導電体をさらに含み、前記磁心(10)が、前記導電体(6)および前記さらなる導電体と一緒に変圧器を構成することを特徴とする請求項1~9のいずれか一項に記載の磁気部品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気モジュールおよび/または電子モジュールのための磁気部品に関する。
【背景技術】
【0002】
現今のスイッチング回路部、例えば能動整流段(いわゆる力率改善段またはPFC段)は、受動コンポーネントの設置寸法を縮小するため、数百kHzの高いスイッチング周波数で動作される。同時に高い効率を保証するため、パワー半導体がソフトスイッチングされる。いわゆる「ゼロ電圧スイッチング」(ZVS)のことである。同時にZVSを保証しながらのこのようなシステムの調節は大きな技術的挑戦である。
【0003】
両方の要求を同時に満たすには、ここでは、チョーク電流の電流ゼロクロスの検出「ゼロ電流検出」(ZCD)が特に有益であることが分かっている。例えば電流測定用シャントのような古典的な電流測定方法は、低い測定電圧およびノイズの存在に基づいて、この目的には非常に限定的にしか用いられ得ない。
【0004】
スイス国特許出願公開第701847号明細書は、電流ゼロクロスの検出のための代替的なアプローチを示している。高透磁性コアが2つの巻線で巻き付けられる。一方は測定されるべき有効電流、もう一方はセンス巻線である。電流ゼロクロスの範囲ではコアは飽和しておらず、かつこの部品は古典的な変圧器のように挙動し、つまり変圧された出力電圧がセンス巻線で検出される。負荷回路内の電流が上昇するとすぐにコア材料が飽和し、センス巻線での電圧が落ち込む。電流ゼロクロスの範囲でのこのパルスを介して、非常に高いノイズ耐性をもつ信号が生成され得る。適切な評価回路が、このパルスを調節ハードウェア内で直接的にさらに処理することを可能にする。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】スイス国特許出願公開第701847号明細書
【発明の概要】
【課題を解決するための手段】
【0006】
本発明により、電気モジュールおよび/または電子モジュールのための磁気部品が提案される。この磁気部品は、磁心およびこの磁心を取り囲む導電体を含む。本発明によれば、磁心にブリッジ要素が配置されており、このブリッジ要素の少なくとも一部分が測定導電体によって取り囲まれており、この測定導電体は、磁心を取り囲む導電体内の電流ゼロクロスを測定するために形成されている。
【0007】
本発明の利点
現況技術に対して本発明による磁気部品は、電流ゼロクロスを測定するために独立した部品が必要とされないという利点を有し、この独立した部品は、2つのガルバニック絶縁された巻線を有しなければならない。ZCD変圧器を独立した部品として増備する代わりに、既存の磁気部品、例えばチョークコイルまたは変圧器にZCD変圧器が組み込まれる。このために、例えばチョークコイルまたは変圧器として形成されていてもよい磁気部品の空隙が、高透磁性ブリッジ要素によって橋絡される。高透磁性ブリッジ要素には、測定導電体、いわゆるセンス巻線が巻き付けられている。これに関し磁心の空隙は、磁気部品の磁心内の不連続な隙間であり得、この隙間によって磁心が断絶されている。しかし空隙は、不連続ではない、いわゆる分散した空隙であってもよい。小さな負荷電流に対しては、磁束が少なくとも部分的にはブリッジ要素を経て流れ、空隙を経ては流れない。ブリッジ要素内の磁束の変化により、この段階では測定導電体内で電圧が誘導される。電流ゼロクロスの際に特徴的な電圧ピークが生じる。磁束がより大きくなると、ブリッジ要素が飽和し、磁束は磁心の空隙を経て流れる。これにより、ブリッジ要素内では磁束のさらなる変化は少ししかまたはまったく起こらなくなり、測定導電体内では電圧が誘導されないかまたは非常に低い電圧しか誘導されない。電流ゼロクロスは、測定導電体での電圧ピークとして検出され得る。適切な評価回路により、測定導電体内で誘導された電圧信号が、電子機器の制御ユニットに送られ得る。
【0008】
本発明による磁気部品は、ゼロクロスを検出するための測定導電体が組み込まれている有利にコンパクトな部品である。本発明に基づいて磁気部品に測定導電体を組み込むことにより、追加的な導電体の巻線が必要とされない。付加されたブリッジ要素は、非常に小さな体積しか有せず、したがって必要な設置空間および費用が明らかに減少している。
【0009】
さらに本発明による磁気部品は、現況技術に対して磁心損失が大きく減少しているので、有利に効率的である。本発明による磁気部品により、とりわけ現今のPFC段での使用時に発生する高い磁心損失が有利に回避される。PFC段は、非常に高いスイッチング周波数で動作されると同時に、材料が双方向に深い飽和まで動作される。現況技術に比べて減少した磁心損失により、磁気部品内で発生する熱がより少なく、したがって磁気部品から排出されなければならない熱が有利により少なく、よって全体として必要とされる設置空間がより小さい。
【0010】
本発明のさらなる有利な形態および変形形態は、従属請求項に提示した特徴によって可能になる。
有利な1つの例示的実施形態によれば、ブリッジ要素の材料は、500超、とりわけ1000超、好ましくはとりわけ2000超の相対透磁率を有することが企図されている。このように高透磁性のブリッジ要素により、磁気部品の空隙がブリッジ要素によって有利に良好に橋絡され得、したがって導電体内の負荷電流が小さい場合には、磁束がブリッジ要素を通って流れ、磁気部品の空隙を経ては流れない。つまりこの段階では、電圧も測定導電体(センス巻線)内で誘導される。電流ゼロクロスに特徴的な電圧ピークが生じる。磁束がより大きくなると、ブリッジ要素が飽和し、磁束は空隙を経て流れる。これにより、測定導電体(センス巻線)内では電圧が誘導されないかまたは低い電圧しか誘導されない。
【0011】
有利な1つの例示的実施形態によれば、磁心は、軸方向および中心のリング開口部を有し、かつ磁心には第1のリング状表面および第1のリング状表面に背を向けた第2のリング状表面が形成されていることが企図されている。
【0012】
有利な1つの例示的実施形態によれば、磁心内に少なくとも1つの隙間が形成されており、この磁心内の隙間がブリッジ要素によって橋絡されており、測定導電体は、隙間の領域内でブリッジ要素の少なくとも一部分を取り囲むことが企図されている。測定導電体は、隙間の領域内に有利に良好に配置され、少なくとも部分的には隙間内を走り得る。磁心内の不連続な隙間により、ブリッジ要素としては、隙間を覆うように磁心上に配置され得る1枚の平らな小板またはフィルムが使用され得る。隙間はこの場合、ブリッジ要素の周りの1つまたは複数の測定導線巻線のための場所を十分に提供し得る。同時に、隙間の両側ではブリッジ要素と磁心の接触が維持され続ける。
【0013】
有利な1つの例示的実施形態によれば、隙間は、軸方向および軸方向に垂直な径方向に延びることが企図されている。
有利な1つの例示的実施形態によれば、磁心に隣接するブリッジ要素は、磁心の第1のリング状表面に配置されており、とりわけ磁心の第1のリング状表面に載ることが企図されている。ブリッジ要素は、例えば第1のリング状表面に有利に良好に適合されていてもよく、かつ大きな面積で第1のリング状表面に隣接でき、したがって、磁心とブリッジ要素の間では有利に大きな面積が接触している。
【0014】
有利な1つの例示的実施形態によれば、ブリッジ要素はフィルムまたは小板として形成されていることが企図されている。このように形成されたブリッジ要素は、電流ゼロクロスの検出に適した有利に単純で安価な部品である。
【0015】
有利な1つの例示的実施形態によれば、隙間の領域でのブリッジ要素内に孔が形成されており、測定導電体はこのブリッジ要素内の孔を通って走ることが企図されている。つまりブリッジ要素が孔の領域では細くされることが有利である。孔は、ブリッジ要素を例えば2つの小道に分ける。これに関し測定導電体は、小道の一方に巻き付けられており、ブリッジ要素内の孔を貫通し、こうして電流ゼロクロスを検出するためのセンス巻線を構成する。第2の小道は、機械的安定性に役立ち得るにすぎず、電磁的機能を有し得ない。
【0016】
有利な1つの例示的実施形態によれば、ブリッジ要素は、測定導電体によって取り囲まれている領域では細くされていることが企図されている。ブリッジ要素の細くされる程度により、測定導電体の巻数に伴って、測定導体において電圧信号がどのくらい降下するか、および発生するパルスがどのくらいの幅かが調整され得る。ブリッジ要素が細くされることにより、測定導体内で有利に狭い信号が生成され得、したがって電流ゼロクロスが有利に正確に決定され得る。
【0017】
有利な1つの例示的実施形態によれば、磁気部品が、磁心を取り囲むさらなる導電体をさらに含み、この磁心は、導電体およびさらなる導電体と一緒に変圧器を構成することが企図されている。これにより、変圧器でも測定導体を使って磁化電流のゼロクロスが決定され得ることが有利である。したがって磁心は、1つより多くの耐荷重性巻線、詳しくは第1の導電体だけでなく少なくとも1つの第2の導電体を含む。これは、適切なトポロジーでは、ZVSおよび調節での利点をさらにもたらし得る。
【0018】
本発明の1つの例示的実施形態を図面に示しており、以下の説明においてより詳しく解説する。
【図面の簡単な説明】
【0019】
図1】磁気部品の1つの例示的実施形態を示す図である。
図2】磁気部品の例示的実施形態のブリッジ要素の平面図である。
図3】磁気部品の例示的実施形態の軸方向に平行な平面での縦断面図である。
図4】磁気部品の例示的実施形態の磁心の高さで軸方向に垂直な平面での横断面図である。
図5】磁気部品の例示的実施形態のブリッジ要素の高さで軸方向に垂直な平面でのさらなる横断面図である。
図6】磁気部品1の電流ゼロクロスの測定の例示的な測定曲線を示すグラフである。
【発明を実施するための形態】
【0020】
図1図5は、磁気部品1の1つの例示的実施形態を示す。磁気部品1は、磁心10およびこの磁心10を取り囲む少なくとも1つの導電体6を含む。導体6は磁心10に巻き付けられている。磁心10に1つの導電体6が巻き付けられている場合、磁気部品1はチョークコイルであり得る。磁気部品1は、導電体6に加え、磁心10を取り囲むもう1つのさらなる、図には示していないさらなる導電体を含み得る。このさらなる導電体は磁心10に巻き付けられ得る。第1の導電体6と共にさらなる導電体が設けられている場合、磁気部品1は変圧器として形成されていてもよい。
【0021】
磁心10は、例えばリングまたはトロイドの形状で形成されている。リングは、例示的実施形態でのように円環として形成されていてもよい。しかしリングは、例えば角張ったリングとしても形成されていてもよい。磁心10は軸方向Aを有する。磁心10は中心のリング開口部18を有する。磁心10には第1のリング状表面11および第2のリング状表面が形成されている12。第1のリング状表面11は、第2のリング状表面12に背を向けている。リング状表面11、12は、中心のリング開口部18の周りにリング状に延びる。図に示した例示的実施形態では、リング状表面11、12は、4つの隙間15によって断絶されている。したがってリング状表面11、12は、中心のリング開口部18の周りを完全に一周しているのではなく、隙間15による断絶を有する。リング状表面11、12は、磁心10の高さにより、軸方向Aに互いから離隔されている。リング状表面11、12は、この例示的実施形態では平らに形成されており、例えば互いに対して平行平面に形成されている。リング状表面11、12は互いに対して合同である。リング状表面11、12は、トロイド状に形成された磁心10を軸方向Aで画定する。
【0022】
磁心10は、例えばフェライトから、巻磁心または薄鉄板として形成されていてもよい。磁心10は低い実効透磁率を有する。磁心10の透磁率は、図に示されるように1つまたは複数の不連続な隙間15によって低下させ得る。磁心10内の隙間15は、磁心10の空隙を構成し、空隙は磁心10の透磁率を低下させる。図に示された例示的実施形態では、磁心10内に4つの隙間15が形成されている。隙間15が磁心10を断絶する。この例示的実施形態では、隙間15は平面的に、軸方向Aおよびそれぞれ軸方向Aに垂直な1つの径方向Rに延びる。
【0023】
磁心10の透磁率はしかし、例えばいわゆる分散した空隙によっても低下させることができ、この分散した空隙は、図に示された例示的実施形態でのように磁心10内の不連続な隙間15としては形成されていない。このような分散した空隙を有する磁心10の場合、透磁率は本質的に低い。このような磁心10は、例えば多数の互いに分離したフェロ磁性粒子からなり、したがって分散した空隙を構成する圧粉磁心として形成されていてもよい。分散した空隙を有する磁心は、例えばセンダスト、MPP、カルボニル鉄粉、または鉄粉から形成されていてもよい。
【0024】
磁心10だけでなく、磁気部品1は導電体6をさらに含む。導電体6は、例えば磁心10に巻き付けられており、磁心10を一巻きまたは複数巻きで取り囲む。導電体6は磁心10と一緒に、例えば円環コイルまたはリングコイルなどとも呼ばれるトロイダルコイルを構成し得る。導電体6は、例えば導線として、例えば絶縁された銅線として形成されている。導電体6を通って電流が流れ、この電流の電流ゼロクロスがブリッジ要素20および測定導電体30によって確定される。この電流ゼロクロスは、導電体6を通る電流Iが符号を反転する時点を意味する。したがって、電流Iが符号反転する零点が電流ゼロクロスと呼ばれる。
【0025】
磁気部品1は導電体6に加えて、図には示されていないさらなる導電体をさらに含み得る。このさらなる導電体も、例えば磁心10に巻き付けられてもよく、磁心10を一巻きまたは複数巻きで取り囲み得る。さらなる導電体も、例えば導線として、例えば絶縁された銅線として形成されている。磁心10、導電体6、およびさらなる導電体が、一緒に変圧器を構成し得る。
【0026】
図1に示されたように、磁気部品1はブリッジ要素20および測定導電体3をさらに含む。この例示的実施形態では、測定導電体30が、ブリッジ要素20の一部分を取り囲む。このために、測定導電体30はブリッジ要素20の一部分に巻き付けられている。この例示的実施形態では、測定導電体30はブリッジ要素20の一部分を1つの巻線で取り囲む。しかし測定導電体30がブリッジ要素20の一部分を複数の巻線で取り囲んでもよい。ブリッジ要素20内の磁束が変化すると、測定導電体30内で電圧が誘導される。
【0027】
ブリッジ要素20は磁心10に配置されている。これに関し、ブリッジ要素30は例えば直接的または間接的に磁心10に隣接する。ブリッジ要素20は、磁束のための追加的な磁束経路を提供し、したがって磁心10の空隙を橋絡する。よってブリッジ要素20は、電気線6において負荷電流の際に構成する磁束のための磁束バイパス路を構成する。ブリッジ要素20は高い透磁率を有するので、磁心10の空隙はブリッジ要素20によって橋絡され得る。このためにブリッジ要素20は、例えば相対透磁率が500超、とりわけ1000超、好ましくはとりわけ2000超の材料から形成されている。ブリッジ要素20は例えばフェライトから形成されていてもよい。
【0028】
ブリッジ要素20は、例えばフィルムまたは小板として形成されていてもよい。ブリッジ要素20の横断面は磁心10の横断面に比べて小さいのが典型的である。軸方向Aにおけるブリッジ要素20の厚さは、例えば1.5mm未満を有し得、例えば1mmに達し得る。ブリッジ要素20の幾何的寸法は、適切な機械的安定性を保証しなければならない。ブリッジ要素20のうち測定導電体30によって取り囲まれる部分の横断面積により、測定導電体30の巻数に伴って、測定導電体30において電圧信号がどのくらい降下するか、および発生するパルスがどのくらいの幅かが調整され得る。
【0029】
図に示された例示的実施形態では、リングコア10内に少なくとも1つの隙間15が形成されている。ブリッジ要素20は、リングコア10内の隙間15がブリッジ要素20によって橋絡されているように、磁心10に配置されている。この例示的実施形態では、ブリッジ要素20は、第1の接触領域21、第2の接触領域22、および第1の接触領域21と第2の接触領域22の間に配置されたブリッジ領域23を有する。第1の接触領域21および第2の接触領域22は磁心10に載る。ブリッジ要素20のブリッジ領域23は、隙間15の領域に配置されており、磁心20には載らない。ブリッジ要素20のブリッジ領域23は、第1の接触領域21から隙間15の上を通って第2の接触領域22へと延びる。したがってブリッジ要素20は、磁心10のうち隙間15によって分離された2つの部分領域を相互につなぐ。ブリッジ要素20は、例えば径方向Rに垂直で軸方向Aに垂直な方向で、隙間15の上を通って延びる。
【0030】
ブリッジ要素20の形状は、図に示された例示的実施形態でのように、磁心10の形状に適合されていてもよい。リング状表面11、12を備えた磁心を備えたこの例示的実施形態では、ブリッジ要素20も、リングセグメントの形状で形成されている。これによりブリッジ要素20は、例えば磁心10の第1のリング状表面11に有利に良好に載せられ、ブリッジ要素の接触領域21、22は第1のリング状表面11と大きな面積で接触している。
【0031】
図に示されたように、ブリッジ要素20は、隙間15を橋絡している領域で細くされて形成されていてもよい。これによりブリッジ領域23は、第1の接触領域21および/または第2の接触領域22に比べて細くされた横断面を有する。ブリッジ要素20は、横断面が細くされた領域がちょうど隙間15の上にあるように、磁心10上に配置されている。
【0032】
この例示的実施形態では、ブリッジ要素20内に孔25が形成されている。孔25は、ブリッジ要素20を軸方向Aにおいて貫通する。この孔25は、ブリッジ要素20のブリッジ領域23を2つの小道26に分離する。測定導電体30は孔25を貫通する。測定導体30は、この例示的実施形態では、測定導電体30が小道26の一方の周りに巻き付けられているように、したがってその小道26を取り囲むように、孔25を貫通する。ブリッジ要素20は、複数の孔25および小道26も有してもよい。しかしブリッジ要素20は孔25を有しなくてもよい。
【0033】
図に示された例示的実施形態では、ブリッジ要素20は、磁心10の第1のリング状表面11に配置されている。ブリッジ要素20、したがって追加的な磁束経路の配置は、原則的には磁心10のすべての面で行われ得る。注意を払うべきは、ブリッジ要素によって構成される追加経路のインピーダンスが、空隙インピーダンスの大きさの中にあることだけである。これにより、小さな電流の際には磁束の主な部分がブリッジ要素20内の追加的な経路を経て流れ、これにより有意な信号が生成され得ることが保証されている。磁心10およびブリッジ要素20は、同じ作業過程において、例えば磁心10の圧縮成形の際に作製され得る。このような1つの例示的実施形態では、磁心10はブリッジ要素20と一体的に形成されている。こうして、磁心10にブリッジ要素20を取り付ける費用が節約できることが有利であり、かつ磁気部品1が有利にコンパクトかつ安定的に形づくられ得る。
【0034】
磁心10内に磁心10の空隙としての不連続な隙間15が形成されているのではなく、磁心10が分散した空隙を有し、つまり磁心10自体が相応に低透磁性に形成されている場合、このような磁心10に、測定導線30を備えた高透磁性ブリッジ要素20が配置されていてもよい。このように形成された磁気部品1内でも、小さな負荷電流に対する磁束は高透磁性ブリッジ要素20を通って流れるであろうし、それにより測定導電体30内で電圧を、いわゆるセンス電圧を生成するであろう。ブリッジ要素20が飽和するとすぐに、測定導電体内では電圧が誘導されなくなる。
【0035】
測定導電体30はブリッジ要素20を取り囲む。このために測定導体30は例えばブリッジ要素20の一部分の周りに巻き付けられている。このために測定導電体30はブリッジ要素20の一部分の周りに一巻きで巻き付けられていてもよい。しかし測定導電体30はブリッジ要素20の一部分の周りに複数巻きで巻き付けられていてもよい。測定導電体30は隙間15の領域に配置されている。測定導体30は隙間の領域にあるブリッジ要素20の一部分を取り囲み、そこでは、ブリッジ要素20が磁心10内の隙間15を橋絡する。この領域内で、測定導体30がブリッジ要素20の一部分に巻き付けられている。これに関し測定導体は、図に示した例示的実施形態でのように、部分的に隙間15内に配置されていてもよい。
【0036】
測定導体30は、図に示されたように、孔25を貫通し、ブリッジ要素20の一部分の周りに、とりわけブリッジ要素20の一方の小道26の周りに配置され、とりわけ巻き付けられていてもよい。測定導電体30は、導線として形成されており、例えば絶縁された銅線として形成されていてもよい。
【0037】
測定導電体30は例えばセンス巻線とも呼ばれる。測定導電体30はリングコア10を取り囲む導電体6内の電流ゼロクロスを測定するために形成されている。導電体6内の小さな負荷電流に対しては、より小さな磁気インピーダンスに基づいて磁束が少なくとも部分的にはブリッジ要素20を経て流れ、空隙を経ては流れない。ブリッジ要素20内の磁束の変化により、この段階では測定導電体30内で電圧が誘導される。電流ゼロクロスの際に特徴的な電圧ピークが生じる。磁束がより大きくなると、ブリッジ要素20が飽和し、磁束が磁心10の空隙を経て流れる。これにより、ブリッジ要素20内では磁束のさらなる変化が少ししかまたはまったく起こらなくなり、測定導電体30内では電圧が誘導されないかまたは低い電圧しか誘導されない。適切な評価回路により、測定導電体30内で誘導された電圧信号が、電子機器の制御ユニットに送られ得る。
【0038】
図6は、磁気部品1の電流ゼロクロスの例示的な測定曲線を示し、この測定曲線では、磁心1に巻き付けられた導電体6に矩形波電圧Uが印加され、ブリッジ要素20に巻き付けられた測定導線30で電圧Uが測定された。同時に導電体6内の電流Iが測定された。電流Iは交流であり、つまり電流方向が反転し、代わる代わる正および負の値になる。電流ゼロクロスは、導電体6を通る電流Iが符号を反転する時点を意味する。測定導線30での電圧Uは、電流Iのゼロクロスの範囲で特徴的な電圧ピークを示す。
【0039】
もちろん、さらなる例示的実施形態も、示した例示的実施形態の混合形態も可能である。
図1
図2
図3
図4
図5
図6
【国際調査報告】