IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セレス インテレクチュアル プロパティー カンパニー リミテッドの特許一覧

<>
  • 特表-電気化学セルスタック 図1
  • 特表-電気化学セルスタック 図2
  • 特表-電気化学セルスタック 図3
  • 特表-電気化学セルスタック 図4
  • 特表-電気化学セルスタック 図5A
  • 特表-電気化学セルスタック 図5B
  • 特表-電気化学セルスタック 図6A
  • 特表-電気化学セルスタック 図6B
  • 特表-電気化学セルスタック 図6C
  • 特表-電気化学セルスタック 図7
  • 特表-電気化学セルスタック 図8
  • 特表-電気化学セルスタック 図9
  • 特表-電気化学セルスタック 図10
  • 特表-電気化学セルスタック 図11
  • 特表-電気化学セルスタック 図12
  • 特表-電気化学セルスタック 図13
  • 特表-電気化学セルスタック 図14
  • 特表-電気化学セルスタック 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-09-08
(54)【発明の名称】電気化学セルスタック
(51)【国際特許分類】
   H01M 8/2465 20160101AFI20230901BHJP
   H01M 8/2432 20160101ALI20230901BHJP
   H01M 8/0271 20160101ALI20230901BHJP
   H01M 8/2483 20160101ALI20230901BHJP
   H01M 8/248 20160101ALI20230901BHJP
   H01M 8/12 20160101ALI20230901BHJP
   C25B 1/04 20210101ALI20230901BHJP
   C25B 1/23 20210101ALI20230901BHJP
   C25B 9/00 20210101ALI20230901BHJP
   C25B 9/65 20210101ALI20230901BHJP
   C25B 9/77 20210101ALI20230901BHJP
【FI】
H01M8/2465
H01M8/2432
H01M8/0271
H01M8/2483
H01M8/248
H01M8/12 101
H01M8/12 102A
C25B1/04
C25B1/23
C25B9/00 A
C25B9/00 Z
C25B9/65
C25B9/77
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023512097
(86)(22)【出願日】2021-08-12
(85)【翻訳文提出日】2023-04-14
(86)【国際出願番号】 EP2021072533
(87)【国際公開番号】W WO2022043087
(87)【国際公開日】2022-03-03
(31)【優先権主張番号】2013374.0
(32)【優先日】2020-08-26
(33)【優先権主張国・地域又は機関】GB
(31)【優先権主張番号】2013369.0
(32)【優先日】2020-08-26
(33)【優先権主張国・地域又は機関】GB
(81)【指定国・地域】
(71)【出願人】
【識別番号】508359550
【氏名又は名称】セレス インテレクチュアル プロパティー カンパニー リミテッド
(74)【代理人】
【識別番号】100107456
【弁理士】
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【弁理士】
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【弁理士】
【氏名又は名称】野田 雅一
(72)【発明者】
【氏名】ドマンスキー, トマシュ
(72)【発明者】
【氏名】ハリントン, マシュー
【テーマコード(参考)】
4K021
5H126
【Fターム(参考)】
4K021AA01
4K021AB25
4K021BA02
4K021BA17
4K021CA01
4K021CA03
4K021CA15
4K021DB04
4K021DB46
5H126AA15
5H126AA22
5H126AA23
5H126AA25
5H126AA28
5H126BB06
5H126DD05
5H126EE11
5H126GG02
5H126GG11
5H126JJ03
(57)【要約】
ベースプレート308及びトッププレート303を備える電気化学セルアセンブリ1400に関する。これは、ベースプレートとトッププレートとの間に、平面セルユニット306のスタック及び少なくとも1つの電気エンドプレート1402、1407が圧縮状態で配置されている。電気エンドプレートは、それぞれ異なる材料から形成された第1の層1416、1419と第2の層1417、1420とが単一の導体を形成するように互いに永久的に接続された2層構造を備える。電気エンドプレートの第1の層1416、1419は、セルアセンブリの外側電気端子301、505に電気的に接続され、電気エンドプレートの第2の層1417、1420は、第1の導電性セラミック層1418、1824が接合された外向きの側を有し、外向きの側は、隣り合うセルユニット306と面同士で当接して電気接触している。
【選択図】 図10
【特許請求の範囲】
【請求項1】
ベースプレートと、トッププレートとを備える電気化学セルアセンブリであって、
前記ベースプレートと前記トッププレートとの間に、平面セルユニットのスタック及び少なくとも1つの電気エンドプレートが圧縮状態で配置され、
前記電気エンドプレートが、それぞれ異なる材料から形成された第1の層と第2の層とが単一の導体を形成するように互いに永久的に接続された2層構造を備え、
前記電気エンドプレートの前記第1の層が、前記セルアセンブリの外側電気端子に電気的に接続され、
前記電気エンドプレートの前記第2の層が、第1の導電性セラミック層が接合された外向きの側を有し、前記第1の導電性セラミック層が、隣り合うセルユニットと面同士で当接して電気的に接触している、電気化学セルアセンブリ。
【請求項2】
前記隣り合うセルユニットが、前記電気エンドプレートの前記第1の導電性セラミック層と面同士で当接する前記側に接合された第2の導電性セラミック層を有し、前記第1の導電性セラミック層及び前記第2の導電性セラミック層が同じ材料から作られている、請求項1に記載の電気化学セルアセンブリ。
【請求項3】
前記電気エンドプレートの前記第1の導電性セラミック層が、前記少なくとも1つの電気エンドプレートと前記隣り合うセルユニットとの間の間隔が前記スタックの残りのセルユニット間の間隔と同じであるように選択された厚さを有する、請求項1又は2に記載の電気化学セルアセンブリ。
【請求項4】
前記スタックが、電気化学的に活性なセルユニットを備え、前記セルユニットのそれぞれが、セパレータプレートとセル支持金属基板プレートとを備える、請求項1~3のいずれか一項に記載の電気化学セルアセンブリ。
【請求項5】
前記電気エンドプレートの前記第2の層が、前記セパレータプレートと同じ材料から作られている、請求項4に記載の電気化学セルアセンブリ。
【請求項6】
前記電気エンドプレートの前記第2の層が、セパレータプレートと本質的に同じ構成を有する、請求項4又は5に記載の電気化学セルアセンブリ。
【請求項7】
前記電気エンドプレートの前記第2の層が、前記隣り合うセルユニットに当接するように外向きに延在する一連の突起を有する3D(3次元)輪郭構造を有し、前記第1の導電性セラミック層が、前記突起を覆って、不連続層として前記突起に接合されて延在している、請求項1~6のいずれか一項に記載の電気化学セルアセンブリ。
【請求項8】
前記第1の導電性セラミック層が、前記第1の導電性セラミック層と面同士で当接する前記隣り合うセルユニットの金属基板プレートに接合された第2の導電性セラミック層と同じ材料から作られている、請求項5~7のいずれか一項に記載の電気化学セルアセンブリ。
【請求項9】
前記隣り合うセルユニットが電気化学的に活性であり、前記第2の導電性セラミック層が、前記隣り合うセルユニットの前記金属基板プレートに接合された電気化学的に活性なセル層の最も外側の電極層を備える、請求項8に記載の電気化学セルアセンブリ。
【請求項10】
前記隣り合うセルユニットが電気化学的に不活性であり、前記第2の導電性セラミック層が、前記隣り合うセルユニットの前記金属基板プレートに接合された電極材料層である、請求項8に記載の電気化学セルアセンブリ。
【請求項11】
前記電気エンドプレートの前記第2の層が、前記セル支持金属基板プレートと同じ材料から作られている、請求項4に記載の電気化学セルアセンブリ。
【請求項12】
前記電気エンドプレートの前記第2の層が、前記セル支持金属基板プレートと本質的に同じ構成を有する、請求項4又は11に記載の電気化学セルアセンブリ。
【請求項13】
前記電気エンドプレートの前記第2の層が、連続層を備える前記第1の導電性セラミック層が接合された平坦な外向きの側を有する、請求項1~4又は11~12のいずれか一項に記載の電気化学セルアセンブリ。
【請求項14】
前記第1の導電性セラミック層が、前記第1の導電性セラミック層と面同士で当接する前記隣り合うセルユニットのセパレータプレートに接合された第2の導電性セラミック層と同じ材料から作られている、請求項4又は11~13のいずれか一項に記載の電気化学セルアセンブリ。
【請求項15】
請求項5~10のいずれか一項に規定された、前記スタックの一端にある第1の電気エンドプレートと、請求項11~14のいずれか一項に規定された、前記スタックの他端にある第2の電気エンドプレートとの両方を備える、請求項1~14のいずれか一項に記載の電気化学セルアセンブリ。
【請求項16】
ベースプレートと、トッププレートとを備える電気化学セルアセンブリであって、
前記ベースプレートと前記トッププレートとの間に、平面セルユニットのスタック、並びに少なくとも1つのプラスの電気エンドプレート及び少なくとも1つのマイナスの電気エンドプレートが、前記ベースプレートと前記トッププレートとの間に作用する圧縮手段によって圧縮状態で配置され、
前記電気エンドプレートの少なくとも1つが、電気スタッドと接続され、又は一体的に形成され、電気的に接触しており、前記電気スタッドが、前記少なくとも1つの電気エンドプレートのベース部分から延在し、前記ベースプレート及び前記トッププレートのうちの1つの開口を通って電気端子を形成し、
前記圧縮手段により、前記ベース部分と、前記ベースプレート及び前記トッププレートのうちのそれぞれ1つとの間で流体シールが維持され、その結果、前記開口を通る流体の損失が防止される、電気化学セルアセンブリ。
【請求項17】
前記ベースプレート及び前記トッププレートのそれぞれが、平面セルユニットの前記スタックのそれぞれの端部と、前記ベースプレート及び前記トッププレートそれぞれとの間に設けられた絶縁層によって、平面セルユニットの前記スタックからそれぞれ電気的に絶縁されている、請求項16に記載の電気化学セルアセンブリ。
【請求項18】
プラスの電気スタッドと接続され、又は一体的に形成され、電気的に接触している少なくとも1つのプラスの電気エンドプレートであって、前記プラスの電気スタッドが、前記少なくとも1つのプラスの電気エンドプレートのベース部分から延在し、前記ベースプレート及び前記トッププレートのうちの1つの第1の開口を通ってプラスの電気端子を形成する、少なくとも1つのプラスの電気エンドプレートと、
マイナスの電気スタッドと接続され、又は一体的に形成され、電気的に接触している少なくとも1つのマイナスの電気エンドプレートであって、前記マイナスの電気スタッドが、前記少なくとも1つのマイナスの電気エンドプレートのベース部分から延在し、前記ベースプレート及び前記トッププレートのうちの1つの第2の開口を通ってマイナスの電気端子を形成する、少なくとも1つのマイナスの電気エンドプレートと
を備える、請求項16又は17に記載の電気化学セルアセンブリであって、
前記圧縮手段により、各ベース部分と前記ベースプレート及び前記トッププレートのうちのそれぞれ1つとの間で流体シールが維持され、その結果、それぞれの各開口を通る流体の損失が防止される、電気化学セルアセンブリ。
【請求項19】
前記プラスの電気スタッドが、前記トッププレート及び前記ベースプレートのうちの一方の前記第1の開口を通り、前記マイナスの電気スタッドが、前記トッププレート及び前記ベースプレートのうちの他方である前記第2の開口を通る、請求項18に記載の電気化学セルアセンブリ。
【請求項20】
前記プラスの電気スタッド及び前記マイナスの電気スタッドが両方とも、前記ベースプレート又は前記トッププレートのいずれかのそれらのそれぞれの第1の開口及び第2の開口を通る、請求項18に記載の電気化学セルアセンブリ。
【請求項21】
前記プラスの電気スタッド及び前記マイナスの電気スタッドのうちの1つが、バスバーによってそのスタッドと同じ極性の追加の電気エンドプレートに電気的に接続され、任意選択で、バスバーへの前記接続が、前記バスバー及び前記接続された電気エンドプレートよりも可撓性のある少なくとも1つのタブを介している、請求項20に記載の電気化学セルアセンブリ。
【請求項22】
平面セルユニットの前記スタックのセルユニットが、少なくとも1つのポートを備え、前記それぞれのポートの位置が合って、前記スタックを通って延在するそれぞれの内部マニホールドを形成するように互いに積み重ねられ、そのそれぞれの開口を通って延在する前記電気スタッドもまた、前記それぞれの内部マニホールドと位置が合い、その結果、前記それぞれの内部マニホールドをシールするように前記圧縮手段によって及ぼされる圧縮力がまた、前記それぞれの開口をシールするように作用する、請求項16~21のいずれか一項に記載の電気化学セルアセンブリ。
【請求項23】
前記それぞれの電気エンドプレートの前記ベース部分が、前記それぞれの内部マニホールドを横切るように延在してそれを塞ぐ、請求項22に記載の電気化学セルアセンブリ。
【請求項24】
前記スタックを通って延在する第1及び第2のそれぞれの内部マニホールドと、
前記マイナスの電気エンドプレートと接続され、又は一体的に形成され、電気的に接触し、前記第1のそれぞれの内部マニホールドと位置合わせされたマイナスの電気スタッドと、
前記プラスの電気エンドプレートと接続され、又は一体的に形成され、電気的に接触し、前記第2のそれぞれの内部マニホールドと位置合わせされたプラスの電気スタッドと
を備える、請求項22又は23に記載の電気化学セルアセンブリ。
【請求項25】
前記マイナスの電気スタッド及び前記プラスの電気スタッドが両方とも、前記ベースプレート又は前記トッププレートのうちのいずれかのそれらのそれぞれの開口を通り、前記マイナスの電気スタッド及び前記プラスの電気スタッドのうちの1つが、バスバーによって追加の電気エンドプレートに電気的に接続されている、請求項24に記載の電気化学セルアセンブリ。
【請求項26】
前記第1の内部マニホールド及び前記第2の内部マニホールドを備える第1の流体容積部が、前記ベースプレート及び前記トッププレートのうちの別のものの流体入口開口及び流体出口開口によってそれぞれ供給及び排出される、請求項25に記載の電気化学セルアセンブリ。
【請求項27】
前記マイナスの電気スタッド及び前記プラスの電気スタッドが両方とも、前記ベースプレート又は前記トッププレートのいずれかのそれらのそれぞれの開口を通り、前記電気スタッドの一方がまた、他方のスタッドと接続され、又は一体的に形成され、電気的に接触している前記電気エンドプレートに設けられた開口を通る、請求項24に記載の電気化学セルアセンブリ。
【請求項28】
前記プラスの電気エンドプレート及び前記マイナスの電気エンドプレートのうちの少なくとも1つが、前記スタック内の第1の流体容積部と第2の流体容積部とを隔てる、請求項16~27のいずれか一項に記載の電気化学セルアセンブリ。
【請求項29】
前記圧縮手段が、前記ベースプレートと前記トッププレートとの間で張力をかけた状態で取り付けられたスカートを備え、前記スカートが、少なくとも平面セルユニットの前記スタックを囲む、請求項16~28のいずれか一項に記載の電気化学セルアセンブリ。
【請求項30】
ベースプレートと、トッププレートとを備える電気化学セルアセンブリであって、
前記ベースプレートと前記トッププレートとの間に、平面セルユニットのスタック、並びに少なくとも1つのプラスの電気エンドプレート及び少なくとも1つのマイナスの電気エンドプレートが、前記ベースプレートと前記トッププレートとの間に作用する圧縮手段によって圧縮状態で配置され、
少なくとも1つの電気エンドプレートが、スタッドのベース部分から延在する電気スタッドと接続され、又は一体的に形成され、電気的に接触し、
前記電気スタッドが、前記ベースプレート及び前記トッププレートのうちの1つの開口を通って電気端子を形成し、
前記セルユニットのそれぞれが、少なくとも1つのポートを備え、前記セルユニットが、前記それぞれのポートの位置が合って、前記スタックを通って延在するそれぞれの内部マニホールドを形成するように互いに積み重ねられ、
前記それぞれの開口を通って延在する前記電気スタッドもまた、前記それぞれの内部マニホールドと位置が合い、その結果、前記それぞれの内部マニホールドをシールするように前記圧縮手段によって及ぼされる圧縮力がまた、前記開口をシールするように作用する、電気化学セルアセンブリ。
【請求項31】
前記外側電気端子の一部分が、前記ベースプレート及び前記トッププレートのうちの1つの開口を通って延在して、前記電気エンドプレートの前記第1の層に電気的に接続し、任意選択で、前記電気エンドプレートが、請求項16~30のいずれか一項に記載したようなものである、請求項1~15のいずれか一項に記載の電気化学セルアセンブリ。
【請求項32】
前記電気化学セルが、平面の固体酸化物形燃料電池ユニット又は固体酸化物形電解セルユニットを備える、請求項1~31のいずれか一項に記載の電気化学セルアセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学セルスタック、特に燃料電池スタック及び電解セルスタックに関し、また、それらの電気エンドプレートの設計に関する。本発明のセルスタックとしては、固体酸化物、高分子電解質膜、及び溶融炭酸塩のセルが含まれる。本発明は、より詳細には、固体酸化物形燃料電池(SOFC:solid oxide fuel cell)スタック及び固体酸化物形電解セル(SOEC:solid oxide electrolyser cell)スタックに関し、これらは、金属支持固体酸化物形燃料電池(MS-SOFC:metal-supported solid oxide fuel cell)又は金属支持固体酸化物形電解セルスタック(MS-SOEC:metal-supported solid oxide electrolyser cell)を含んでもよい。
【背景技術】
【0002】
いくつかの燃料電池ユニットは、燃料を酸化させて電気を生成する電気化学的変換プロセスを用いることによって電気を生成することができる。いくつか燃料電池ユニットは、その代わりに、例えば、水から水素と酸素、又は二酸化炭素から一酸化炭素と酸素を分離するために、電解燃料電池ユニットとしてしばしば知られる再生燃料電池(又は可逆燃料電池)ユニットとして動作することもできる。これらは、管状又は平面状の構成の場合がある。平面状の燃料電池ユニットは、個々の燃料電池ユニットが電気的に直列に配置されたスタック構成で、例えば、100~200個の燃料電池ユニットをスタックにして、互いに積み重ねて配置される場合がある。
【0003】
固体酸化物形燃料電池(SOFC)は、マイナスの酸素イオンをカソードから電解質の反対がわに配置されたアノードへ導く固体酸化物電解質に基づいて電気を生成する。このため、燃料又は改質燃料はアノード(燃料極)に接触し、空気又は酸素富化流体などの酸化剤はカソード(空気極)に接触する。従来のセラミック支持(例えば、アノード支持)SOFCは、機械的強度が低く、破損しやすい。したがって、近年、金属基板上に支持された活性燃料電池構成部品層を有する金属支持SOFCが開発されている。これらのセルでは、セラミック層は電気化学的機能を果たすだけなので、非常に薄くすることができる。すなわち、セラミック層は自立しておらず、むしろ、金属基板上に敷かれ、金属基板によって支持された薄いコーティング/フィルムである。このような金属支持SOFCスタックは、セラミック支持SOFCよりも頑丈で、低コストで、熱特性に優れ、従来の金属溶接技術を用いて製造することができる。
【0004】
固体酸化物形電解セル(SOEC)は、SOFCと同じ構造を有してもよいが、本質的には、SOFCを逆に、すなわち再生モードで動作させ、電気エネルギーの入力、及び固体酸化物電解質の使用によって、水及び/又は二酸化炭素の電気分解を行って、水素ガス及び/又は一酸化炭素と酸素とを生成するものである。
【0005】
本発明は、繰り返し電気化学セルユニットのスタックを対象とし、それらの電気エンドプレート(電力取出又は送出)の設計に関する。したがって、これは、例えば、固体酸化物電解質、高分子電解質膜、又は溶融電解質に基づく様々なタイプの燃料電池及び電解セルに適用可能である。便宜上、「セルユニット」は、燃料電池ユニット又は電解セルユニットを含む「電気化学セルユニット」を指すために使用される。
【0006】
燃料電池によって生成される(又は電解セルへ入力される)電気エネルギーは、セルユニットのスタックを通って伝達され、(反対の電気極性の)2つの電気スタッド、及びスタッドとスタックの端部との間を電気的に接触させる関連する電気エンドプレートを使用してスタックから(又はスタックへ)伝達することができる。電気スタッド及び電気エンドプレートは、プラスとマイナスの「電力取出部」と呼ばれることもあるが、この用語は、(燃料電池の場合のように)電力が取り出されるか、(電解セルの場合のように)電力が送出されるかにかかわらず、便宜上使用される。
【0007】
スタックは、典型的には、容器内に入れられて流体容積部を形成し、以て、スタック内で使用する、又はスタックから排出する流体(燃料又は空気、及び/又は排出ガス)のうちの1つを保持する。電気スタッドは、典型的には、スタックと、スタックの外部の負荷又は電源との間で電気エネルギーを伝達することができるようにするために、容器内を通る(電気スタッド又はボルトは、外部との接続のために容器の開口を通り、容器の外部のスタッドの(遠位)部分は端子を形成してもよい)。容器によって囲まれる流体容積部を完全な状態に維持するために、典型的には、電力取出部と容器との間で流体シールを維持することが必要である。セルスタックが450~650℃の範囲で動作する(例えば、中温固体酸化物形燃料電池IT-SOFC(intermediate-temperature solid oxide fuel cell))燃料電池(例えばSOFC)システムを動作させると、流体シールを維持しながらスタックへ/スタックから電気エネルギーを伝達する際に、一連の困難な技術問題が生じる。
【0008】
特開平05-326000号公報は、自己支持する電気化学的に活性な燃料電池層を有する燃料電池スタックに関するものである。集電プレートは、燃料電池スタックの各端部に配置され、電気エンドプレートとして機能する。集電プレートは、金属プレート(SUS310)上にアンダーコート及び薄く重ねたセラミックを有する。アンダーコート及びセラミックは、溶射によって金属プレート上に積層される。特開平05-326000号公報は、いかなる電気スタッドも開示しておらず、スタック及び集電プレートが入った容器が存在するかどうかも開示していない。したがって、特開平05-326000号公報は、電力取出部と容器との間の流体シールを維持しながら、スタックから電気エネルギーを伝達する方法については説明していない。
【0009】
米国特許出願公開第2016/102410号は、エンドプレートと、自己支持MEAセルユニットを備えるスタックとの間に配置されたスタックカバープレートを有する燃料電池システムに関する。スタックカバープレートは、両方ともステンレス鋼から形成された、接触プレートとセパレータハーフプレートの2層構造を有する。接触プレートは、プラスチックのエンドプレートを通過する導体を備えて、スタックとシステムの外部との間を接続する。エンドプレート及びスタックカバープレートはまた、ガス又は冷却剤を送出するためのチャネルを備える。エンドプレートのリング状の凹部がチャネルを取り囲み、その中にシールリングが設けられる。圧縮されていない状態では、シールリングはエンドプレートから突出する。エンドプレートと接触プレートが互いに接触するようにシールリングを圧縮するために積層方向に圧縮する。
【0010】
図1は、米国特許出願公開第2001/0046619号から引用している。図1は、ハウジング23内に入れられた燃料電池スタック20を示す。内部入口マニホールド6は燃料流4の送出を行い、内部出口マニホールド7は燃料流4の除去を行う。外部マニホールド9は、入口チャンバ41への酸化剤流3の送出を行い、外部マニホールド8は、出口チャンバ33からの酸化剤流3の除去を行う。燃料電池スタック20のマイナス極30、すなわちアノード端は、絶縁スペーサ31によってハウジング23から隔てられている。電力取出端子32は、燃料電池スタック30の下から延在し、ハウジング23の出口チャンバ33内に延在する。導電性バスバー34は、ハウジング23の外側に電力取出端子32に隣り合って配置される。絶縁スペーサ35は、バスバー34とハウジング23との間に配置される。導電性締結具36は、ハウジング23に形成された開口37を通って電力取出端子32をバスバー34に接続する。絶縁スペーサ38は、ハウジング23を貫通して延在する開口37の表面から締結具36を絶縁する。燃料電池スタック20のプラス極21、すなわちカソード端は、ハウジング23と密接に電気的に接触している。導電性バスバー39は、ハウジング23の外側に配置され、導電性締結具40によってハウジング23に取り付けられている。燃料電池スタック20内で生成された電気は、燃料電池スタック20のマイナス極30から電力取出端子32及びバスバー34を通って外部の電気回路に流れ、電気器具又は電気機械に電力を供給することができる。電流は、バスバー39及びハウジング23を通って、燃料電池スタック20のプラス極21に戻ることができる。
【0011】
米国特許出願公開第2001/0046619号では、導電性締結具36、40は、ハウジング23をシールするために(したがって、チャンバ33内の流体容積部を維持するために)張力を受けており、例えばセラミックプレートなどの絶縁スペーサ38によってシールを維持することができる。
【0012】
図2は、国際公開第2007/001189号から引用している。図2は、壁45、並びに第1のエンドプレート42及び第2のエンドプレート48を備えるハウジングを示す図である。燃料電池スタック3は、エンドプレート42とエンドプレート48との間で圧縮される。エンドプレート42は、電気エンドプレートとしても機能し、電気エンドボルト50に接続される。セルスタック43は、前記電気エンドプレート42と第2の電気エンドプレート46との間に配置される。電気エンドプレート46は、電気ボルト51に接続され、ハウジング内に挿入され、ハウジングから電気的に絶縁される。この絶縁は、ボルト51とエンドプレート48との間の絶縁リング49、及び電気絶縁性の弾性パッド47によって達成される。弾性パッド47は、電気エンドプレート46とエンドプレート48との間に配置される。ボルト50及び51は、国際公開第2007/001189号に「電気ボルト」であると記述されており、したがって、スタック43からの電力取出部として機能する。弾性パッド47は、電気ボルト51の周りをシールし、電気エンドプレート46をハウジング(エンドプレート48及び壁45を含む)から絶縁する。電気ボルト50は、エンドプレート42、壁45、及びエンドプレート48と電気的に接触している電力取出部である。(ボルト421とは反対の極性の、したがって42、45、48とも反対の極性の)電気ボルト51間の電位差は、セルスタック43の両端間の電位差と等しい。したがって、エンドプレート48と電気ボルト51との間で電気火花及び短絡が生じる可能性が高い。
【0013】
国際公開第2007/001189号では、空間44は「空きスペース」として記述されている。国際公開第2007/001189号では、スタック43がどのように圧縮されるのか、燃料と酸化剤(及びそれぞれの排出)の容積部がどのように分離されるのか、それらの容積部が外部コネクタとどのように連通しているのかについては説明されていない。
【0014】
米国特許出願公開第2001/0046619号の構成では、シールを維持し、以て、流体容積部を画定するために、電力取出用のサブアセンブリは張力がかけられている。中温固体酸化物形燃料電池を含む電気化学セルは、比較的高温で動作し、そのような温度でシールを維持するために、典型的には、セラミックシールを必要とし、これは、効果的にするためには、それ自体高い圧縮荷重を必要とする。このような環境で高い圧縮荷重を維持することは困難であり、張力を受ける構成品は、クリープに耐えるためにインコネルなどの高価な材料から製造される必要がある。このような部品がクリープすると圧縮荷重が減少し、シール性が失われることによって電気化学セルシステムの故障につながる(構成部品間のシールに必要な最小限の圧縮力よりも圧縮力が減少することによるか、又はクリープを受けた構成部品が壊滅的に損傷することによるか、どちらかによる)。同様の欠点は、国際公開第2007/001189号に記述された電気化学セルに対しても明らかである。
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明は、従来技術の欠点の少なくとも1つに対処し、それを克服し、又は軽減しようとするものである。
【課題を解決するための手段】
【0016】
第1の態様では、
ベースプレート及びトッププレートを備える電気化学セルアセンブリが提供され、ベースプレートとトッププレートとの間に、平面セルユニットのスタック、並びに少なくとも1つのプラスの電気エンドプレート及び少なくとも1つのマイナスの電気エンドプレートが、ベースプレートとトッププレートとの間に作用する圧縮手段によって圧縮状態で配置され、
電気エンドプレートの少なくとも1つは、電気スタッドと接続され、又は一体的に形成され、電気的に接触しており、電気スタッドは、少なくとも1つの電気エンドプレートのベース部分から延在し、ベースプレート及びトッププレートのうちの1つの開口を通って電気端子を形成し、
本圧縮手段により、ベース部分と、ベースプレート及びトッププレートのそれぞれ1つとの間で流体シールが維持され、その結果、開口を通る流体の損失が防止される。
【0017】
アクセスしやすくするために電気端子を電気化学セルアセンブリの外側に配置するには、アセンブリに開口が必要である。しかしながら、アセンブリ内から流体が開口を通して失われてはいけない。開口をシールするための従来技術の解決策は、しばしばクリープを受けて、シールを弱め、システムの故障につながる。特許請求の範囲の電気化学セルアセンブリは、平面セルユニットのスタックの圧縮を維持するために使用される圧縮手段を使用して、(ベース部分への圧縮手段の作用によって)開口をシールすることが有利である。
【0018】
電気エンドプレートとそれぞれの電気スタッドは、溶接によって接続される別々の構成部品であることが好ましい。これに代えて、電気エンドプレート及びそれぞれの電気スタッドは一体であってもよいし、電気エンドプレートを完全には貫通しない電気エンドプレートのねじ付き凹部に電気スタッドをねじ込むことによって接続される別々の構成部品であってもよい(後者の場合、電気スタッドはその位置で溶接されてもよい)。スタッドと電気エンドプレートが一緒に接合される別々の構成部品である場合、ベース部分はいずれかの構成部品の一部であってもよい。
【0019】
トッププレート及びベースプレートは、スタックの外側に配置されるプレートを指し、それらの間に圧縮を加えるために使用される。「トッププレート」及び「ベースプレート」という名称は、便宜上使用されているだけで、これらは入れ替えてもよく、アセンブリの向きを限定するものとして解釈すべきではない。圧縮手段は、例えば、圧縮プレート又はスカートとして、これらのプレートの間に(例えば、張力をかけた状態で)接続されてもよく(すなわち、その内側に配置されてもよく)、又は、圧縮手段は、これらのプレートを互いの方へ締める及び圧縮する従来の圧縮ボルト及び締結具を含んでもよい。
【0020】
プラスの電気エンドプレートとマイナスの電気エンドプレートは、平面セルユニットのスタックの反対がわの端部と電気的に接触していてもよい。電気スタッドは、それぞれの電気エンドプレートと電気的に接触していてもよい。プラス及びマイナスの電気エンドプレートのそれぞれと電気的に接触している1つ以上の電気スタッドが存在してもよい。(電気エンドプレートから離れる)スタッドの遠位端は、電気端子と呼ばれることがあり、端子は、スタッド(以て、スタック)が外部接続する箇所である。電気スタッドは、電気化学セルアセンブリが燃料電池として動作するときには、平面セルユニットのスタックから電力を伝達するための電力取出スタッドと呼ばれることがある。電気スタッドは、電気化学セルアセンブリが電解セルとして動作するときには、平面セルユニットのスタックに電力を伝達するための電力供給スタッドと呼ばれることがある。いくつかの場合には、プラス及びマイナスの電気エンドプレートは、それぞれエンドポール及びモノポールと呼ばれることもある。
【0021】
ベースプレート及び/又はトッププレートの開口は、ベースプレート又はトッププレートを完全に貫通する孔又は開口であってもよく、任意の断面であってもよい。開口は、電気スタッドがベースプレート又はトッププレートの一方の側から他方の側まで通過するのに十分な大きさの開口である。電気スタッドは、ベースプレート及び/又はトッププレートの開口を通って、平面セルユニットのスタックに外部(スタック、及びベースプレート及びトッププレートによって少なくとも一部が形成されたそのエンクロージャに対して外部の)の電気接続部を提供する。
【0022】
本圧縮手段は、電気化学セルアセンブリの製造時に加えられたベースプレートとトッププレートとの間の圧縮(すなわち、圧縮力)を維持することができる。圧縮により、スタックの平面セルユニット(繰り返しユニットとも呼ばれる)のそれぞれの間、電気エンドプレートと隣り合う平面セルユニットとの間の電気接触が良好になり、ベースプレートとトッププレートとの間の流体シールにおける圧縮が維持される。シールはガスケットによって形成されてもよく、例えば、ガスケットは、スタックの長さに沿って(すなわち、積み重ね方向に)セルユニットと交互に配置され、ガスケットは、各セルユニット内の流体容積部に流体を送出するための内部マニホールドをシールし、以て、第1の流体容積部と第2の流体容積部(例えば燃料容積部と酸化剤容積部)とを隔てる。
【0023】
電気エンドプレートの一方又は両方と、ベースプレート及びトッププレートのそれぞれとの間の流体シールは、圧縮手段によって維持される。これはまた、ベースプレート及び/又はトッププレートの開口が、(電気スタッドが開口を通ることを可能にしながら)圧縮手段によってシールされることも意味する。これは、電気スタッドが通る開口のシールを電気スタッド自体が維持する必要がないことを意味する。言い換えれば、電気スタッドはそれ自体が締結具又はボルトではなく、開口のシールを維持するために張力を受ける必要がない。燃料電池又は電解セルの環境で張力を受ける構成部品は、動作条件の範囲(例えば、約20℃の大気温度から、それよりはるかに高温の少なくとも400℃の動作温度までの温度範囲)にわたってクリープに耐えるために、通常、高価な耐クリープ性材料から製造しなければならないので、張力を受ける構成部品の数を減らすことは有利である。張力を受けるいかなる構成部品も、広い温度範囲にわたって適切なシール力を提供すべきであるが、セルユニットの寿命期間中、多くの熱サイクルにわたってもシール力を提供するべきであり、シールがなくなると、電気化学セルシステムの故障を引き起こす可能性がある。インコネルは、そのような耐クリープ性材料の1つである。しかしながら、電気スタッドが通る開口をシールするために本圧縮手段を使用することは、電気スタッドの関連部品が張力を受ける必要がないことを意味し、以て、クリープ問題が除去され、電気スタッドが耐クリープ性材料から製造される必要がなく、その代わりに、その材料は、その電気特性によって選択することができることを意味する。
【0024】
さらに、電気スタッドは、温度の変化とともに(電気スタッドが通るベースプレート又はトッププレートに対して)自由に膨張及び収縮することができる。したがって、電気スタッド(及び関連の構成部品、例えば電気エンドプレート)の熱膨張は、ベースプレート及び/又はトッププレートの開口のシールには必ずしも影響を与えない。(ベースプレート及び/又はトッププレートとそれぞれの電気エンドプレートとの間の)ベースプレート及び/又はトッププレートの開口のシールは、開口を通るガスがアセンブリから漏れることを防止する(このガスは、典型的には、例えば酸化剤用の第2の流体容積部のガス、内部マニホールド、及びセルユニットの支持プレートとセパレータプレートとの間の容積部を含む、例えば燃料用の第1の流体容積部のガスを含む)。ガスケットは、電気エンドプレートと、それぞれのベースプレート又はトッププレートとの間に配置されて、それらの間のシールを維持することができる。
【0025】
ベースプレート及びトッププレートのそれぞれは、平面セルユニットのスタックのそれぞれの端部と、ベースプレート及びトッププレートそれぞれとの間に設けられたそれぞれの絶縁層(複数の場合あり)によって、平面セルユニットのスタックからそれぞれ電気的に絶縁されている(したがって、平面セルユニットのスタックのいずれかの端部と同じ電位にはない)ことが好ましい。したがって、本圧縮手段はまた、絶縁プレートに作用する。この好ましい場合では、ベースプレート、トッププレート、及び圧縮手段は、平面セルユニットのスタックのいずれの端部とも同じ電位になく、したがって、電気スタッド(複数の場合あり)と同じ電位にない。言い換えれば、電気スタッド(複数の場合あり)はベースプレート、トッププレート、及び圧縮手段と電気的に接触していないので、それらの電位は電気スタッド(複数の場合あり)に対して浮遊状態にある。したがって、電気スタッドがベースプレート又はトッププレートを通る場合、電気スタッドとベースプレート又はトッププレートとの間の電位差は比較的低い場合があり(これは、それらの間の隙間が小さい場合でも、それらの間の電位勾配は低いことを意味する)、したがって電気スタッド(複数の場合あり)とベースプレート及び/又はトッププレートとの間での短絡の危険性は最小限となる。
【0026】
一例では、電気スタッドは、ベースプレート又はトッププレートの開口との間に空隙を有して、ベースプレート又はトッププレートの開口を通る。したがって、電気スタッドはベースプレート又はトッププレートと電気的に連通していない。言い換えれば、ベースプレート及び/又はトッププレートは、スタック及び電気スタッドと同じ電位になく、電気スタッド(複数の場合あり)に対して浮遊電位にある。
【0027】
代替の例では、電気スタッドは、ベースプレート又はトッププレートの開口との間に電気絶縁性のスリーブを有して、ベースプレート又はトッププレートの開口を通る。スリーブ(カラーと呼ばれることもある)は、マイカ又はセラミック材料から製造されてもよい。
【0028】
電気絶縁シートは、マイカ又はセラミック材料であってもよく、これは、電気エンドプレートとそれぞれのベースプレート又はトッププレートとの間の電気的な絶縁を改善する。電気エンドプレートと電気絶縁シートとの間、及び電気絶縁シートとベースプレート及び/又はトッププレートとの間には、アセンブリの他の場所で使用されるのと同じタイプのガスケットが配置されてもよい。ガスケットは、それぞれのプレート/シートの間に良好な流体シールを形成する。アセンブリ全体で同じタイプ(例えば、厚さ、平面寸法、及び材料)のガスケットを使用すること(すなわち、平面セルユニットのスタックと電気エンドプレートとの間、及び電気エンドプレートとそれぞれのベースプレート又はトッププレートとの間に同じタイプのガスケットを使用すること)は、部品点数を減らし、以て、コストを下げ、アセンブリを通して圧縮を一貫して伝達することを確実にする。ガスケットは、予め形成されたガスケットであってもよいし、インサイチュ(in-situ)で形成されてもよい。ガスケットは、適切な流体シールを提供し、且つ電気化学セルアセンブリの温度環境及び化学環境に耐えることができる(そして、ガスケットの劣化によってセルユニットのスタックを汚染しない)適切な非導電性の材料で形成することができる。追従性のある材料は、平行度、表面仕上げ、及び表面間の間隔が変わる表面(例えば、それぞれのプレートの表面)に容易に適合し、それらに対してシールすることができるので、ガスケットは、追従性(例えば、可撓性及び圧縮性)をもたせて、いくつかの場合には、圧縮力に対する要件を下げた良好なシールを提供することが好ましい。ガスケットは、マイカガスケットであってもよい。ガスケットは、追従性があり比較的安価なバーミキュライトガスケットであることがより好ましい。本アセンブリは、電気スタッドの外側端部を取り囲み、ベースプレート又はトッププレートの外面に接触する電気絶縁座金をさらに備えてもよい。座金は、マイカ又はセラミック材料から製造されてもよい。外部接続手段(例えば、ねじ部分)は、電気ボルトの外部端部の一部を形成して、(燃料電池として動作させる場合に)アセンブリに負荷を接続する、又は(電解セルとして動作させる場合に)アセンブリに電力を供給することができる。カラー及び/又は座金は、(例えば、アセンブリの取り扱い時、又は電気スタッドへの外部接続時に)電気スタッドに機械的安定性を提供することができ、いかなる異物が開口を通ってアセンブリへ侵入することも防止することができる。
【0029】
本アセンブリは、プラスの電気スタッドと接続され、又は一体的に形成され、電気的に接触している少なくとも1つのプラスの電気エンドプレートであって、プラスの電気スタッドが、少なくとも1つのプラスの電気エンドプレートのベース部分から延在し、ベースプレート及びトッププレートのうちの1つの第1の開口を通ってプラスの電気端子を形成する、少なくとも1つのプラスの電気エンドプレートと、マイナスの電気スタッドと接続され、又は一体的に形成され、電気的に接触している少なくとも1つのマイナスの電気エンドプレートであって、マイナスの電気スタッドが、少なくとも1つのマイナスの電気エンドプレートのベース部分から延在し、ベースプレート及びトッププレートのうちの1つの第2の開口を通ってマイナスの電気端子を形成する、少なくとも1つのマイナスの電気エンドプレートとを備え、圧縮手段により、各ベース部分とベースプレート及びトッププレートのうちのそれぞれの1つとの間で流体シールが維持され、その結果、それぞれの各開口を通る流体の損失が防止されることが好ましい。
【0030】
この好ましい場合では、プラス及びマイナスの電気スタッドの両方は、ベースプレート及びトッププレートのうちの一方又は他方の開口を通る。
【0031】
プラスの電気スタッドは、トッププレート及びベースプレートのうちの一方の第1の開口を通り、マイナスの電気スタッドは、トッププレート及びベースプレートのうちの他方である第2の開口を通ることが好ましい。この場合、プラスの電気スタッドとマイナスの電気スタッドは、アセンブリの反対がわの端部に配置される。この場合、繰り返しユニットは、アセンブリ内(例えば、ベースプレート、トッププレート、及びスカートの範囲内、又は、装置のフードの範囲内)の容積のより大きな割合を占めることができ(平面面積に関して、例えば、バスバーがないことによる)、したがって、より高い電力密度を提供する。
【0032】
これに代えて、プラスの電気スタッド及びマイナスの電気スタッドは両方とも、ベースプレート又はトッププレートのいずれかのそれらのそれぞれの第1の開口及び第2の開口を通る。プラス及びマイナスの電気スタッドの両方が、スタックの同じ端部に配置されることが好都合であり、それによりアセンブリの電気的接続及び設置が便利になる。この場合、プラスの電気スタッド及びマイナスの電気スタッドのうちの1つは、バスバーによってそのスタッドと同じ極性の追加の電気エンドプレートに電気的に接続されてもよい。これにより、アセンブリの電気的接続が便利になる。任意選択で、バスバーへの接続は、バスバー及び接続された電気エンドプレートよりも可撓性のある少なくとも1つのタブを介する。タブの可撓性は、バスバーと平面セルユニットのスタックとの間の熱膨張差を受け持つ。タブは、バスバー、並びに/或いは電気エンドプレート及び追加の電気エンドプレートと同じ材料から製造されてもよく、その場合、その可撓性は、これらの構成部品よりも薄くすることによって増大する。これに代えて、バスバーは、(例えば、より薄くすることによって)タブ、並びに電気エンドプレート及び追加の電気エンドプレートよりも可撓性をもたせ、その結果、バスバーは、バスバーと平面セルユニットのスタックとの間の熱膨張差を受け持つように撓む。
【0033】
平面セルユニットのスタックのセルユニットは、少なくとも1つのポートを備え、それぞれのポートの位置が合って、スタックを通って延在するそれぞれの内部マニホールドを形成するように互いに積み重ねられ、そのそれぞれの開口を通って延在する電気スタッドもまた、それぞれの内部マニホールドと位置が合い、その結果、それぞれの内部マニホールドをシールするように圧縮手段によって及ぼされる圧縮力はまた、それぞれの開口をシールするように作用することが好ましい。内部マニホールドは、セルユニットによって画定される平面視領域内にある。いくつかの場合には、内部マニホールドはチムニーと呼ばれることがある。内部マニホールドは、セルユニット間の流体連通を可能にする。各セルユニット及び内部マニホールドの内部容積部は、第1の流体容積部を形成することができる。燃料電池の用途では、第1の流体容積部は燃料容積部であってもよい。第1の流体容積部への供給のための第1の内部マニホールドと、第1の流体容積部からの排出のための第2の内部マニホールドとの2つの内部マニホールドが設けられてもよい。ベースプレート及び/又はトッププレートは、セルユニットのポート(複数の場合あり)に対応する(例えば、それと位置合わせされた)ポート(複数の場合あり)を備えてもよく、それらは内部マニホールド(複数の場合あり)の一部を形成し(すなわち、第1の流体容積部の内部マニホールド化)、第1の流体容積部への供給及び/又は第1の流体容積部からの排出を可能にする。2つ以上の、例えば、内部入口マニホールド、又は、実際、2つ以上の内部出口マニホールドが存在してもよい。
【0034】
それぞれの電気エンドプレートのベース部分は、それぞれの内部マニホールドを横切るように延在してそれを塞ぐ(すなわち、それぞれの内部マニホールドを塞ぐ)ことが好ましい。電気エンドプレートのベース部分は、内部マニホールド内のシールに関連する高い圧縮力が、有利にも開口をシールするために使用されるように、それぞれの内部マニホールドを塞いで流体的にシールすることができる。プラス及びマイナスの電気エンドプレートは、平面セルユニットと実質的に同じ平面領域を覆うようにスタックの平面領域を横切って延在することができる。これにより、電気エンドプレートは、平面セルユニットの範囲にわたって、平面セルユニットのスタックに圧縮を伝達することができる。言い換えれば、ベース部分は、開口を横切る、及び/又は、開口と位置合わせされた内部マニホールドを横切る流体シールを形成し、この流体シールは、圧縮手段によって及ぼされる圧縮力によって維持される。
【0035】
本アセンブリは、スタックを通って延在する第1及び第2のそれぞれの内部マニホールドと、マイナスの電気エンドプレートと接続され、又は一体的に形成され、電気的に接触し、第1のそれぞれの内部マニホールドと位置合わせされたマイナスの電気スタッドと、プラスの電気エンドプレートと接続され、又は一体的に形成され、電気的に接触し、第2のそれぞれの内部マニホールドと位置合わせされたプラスの電気スタッドとを備えることが好ましい。電気スタッド及び開口は、それぞれの内部マニホールドと部分的に又は完全に位置合わせされてもよく(すなわち、同軸であってもよく)、その結果、電気スタッドは、それぞれの内部マニホールドを塞ぐ電気エンドプレートの領域から開口を通る(実際の開口の幅は、内部マニホールドの幅より大きくても小さくてもよいが、電気スタッドの部分が開口を通るように、内部マニホールドの幅と少なくとも重なる必要がある)。そのように位置合わせされると、圧縮が最大限伝達され、問題となる曲がる力が回避される。特に、電気スタッドは、内部マニホールド、並びにベースプレート及びトッププレートのうちの1つのそれぞれの開口と同軸であることが好ましい(例えば、ベースプレート及び/又はトッププレートの開口は内部マニホールドの連続部であってもよい)。電気絶縁シートはまた、それがある場合、(それぞれの内部マニホールドと部分的又は完全に位置合わせされる(すなわち同軸である)ことによって)それぞれの内部マニホールドの連続部を形成するそれぞれのポートを備える。
【0036】
マイナスの電気スタッド及びプラスの電気スタッドは両方とも、ベースプレート又はトッププレートのうちのいずれかのそれらのそれぞれの開口を通り、マイナスの電気スタッド及びプラスの電気スタッドのうちの1つは、バスバーによって追加の電気エンドプレートに電気的に接続されていることが好ましい。プラス及びマイナスの電気スタッドの両方が、スタックの同じ端部に配置されることが好都合であり、それによりアセンブリの電気的接続及び設置が便利になる。この場合、プラスの電気スタッド及びマイナスの電気スタッドのうちの1つは、バスバーによって、そのスタッドと同じ極性の追加の電気エンドプレートに電気的に接続されてもよい。これにより、アセンブリの電気的接続が便利になる。任意選択で、バスバーへの接続は、この場合も、少なくとも1つのタブを介し、タブ又はバスバーは、上記のようなものであってもよい。
【0037】
この場合、第1の内部マニホールド及び第2の内部マニホールドを備える第1の流体容積部は、ベースプレート及びトッププレートのうちの別のものの流体入口開口及び流体出口開口によってそれぞれ供給及び排出されてもよい。これにより、両方のスタッドがベースプレート及びトッププレートのうちの一方の開口を通り、第1の流体容積部のための入口及び排出の両方がベースプレート及びトッププレートのうちの他方に配置されるため、アセンブリの電気接続及び流体接続が便利になる。一例では、プラスの電気スタッド及びマイナスの電気スタッドのうちの一方は、第1の流体容積部の入口及び出口の内部マニホールドのうちの一方と位置合わせされ、プラスの電気スタッド及びマイナスの電気スタッドのうちの他方は、第1の流体容積部の入口及び出口の内部マニホールドのうちの他方と位置合わせされる。
【0038】
この場合、マイナスの電気スタッド及びプラスの電気スタッドは両方とも、ベースプレート又はトッププレートのいずれかのそれぞれの開口を通ることができ、電気スタッドの一方はまた、他方のスタッドと接続され、又は一体的に形成され、電気的に接触している電気エンドプレートに設けられた開口を通ることもできる。これにより、電気スタッドのうちの1つが通る開口を有する電気エンドプレートは、他の電気エンドプレート及びセルユニットと同じ平面視領域又は範囲を有することができる。これは、両方のマニホールド(及びその連続部)が同じ構成部品から形成され、圧縮が最大限伝達され、問題となる曲がる力が回避されることを意味する。スタッドが通る、電気エンドプレートに設けられた開口は、空隙によってスタッドから隔てられており、また、絶縁材料のカラーによって隔てられてもよい。
【0039】
一例では、プラスの電気スタッド及びマイナスの電気スタッドは両方とも、トッププレートのそれぞれの開口を通ってもよく、マイナスの電気スタッドは、プラスの電気エンドプレートとトッププレートとの間に配置されたマイナスの電気エンドプレートに直接電気的及び機械的に接続され、追加の電気エンドプレートは平面セルユニットのスタックとベースプレートの間に配置され、追加の電気エンドプレートはバスバーによりマイナスの電気エンドプレートに電気的及び機械的に接続されている。この場合、プラスの電気エンドプレートは、スタックのその端部(すなわち、プラスの電気エンドプレートに近位のスタックの端部)で内部マニホールドのすべてを塞ぐことができる。その結果、マイナスの電気エンドプレートは、第1の流体容積部に曝されず、プラスの電気エンドプレートよりも薄くすることができ(同じ材料から製造される場合)、及び/又は、プラスの電気エンドプレートとは異なる材料から製造することができる。電気的に絶縁し流体的にシールするガスケットは、マイナスの電気エンドプレートとプラスの電気エンドプレートとの間に配置されて、その間を電気的に絶縁し、内部マニホールドの連続部をシールすることができる。電気絶縁プレートは、マイナスの電気エンドプレートとプラスの電気エンドプレートとの間に配置されて、その間の電気絶縁を改善することができる。電気絶縁プレートは、マイカ又は電気絶縁性セラミック材料から製造することができる。電気的に絶縁し流体的にシールするガスケットは、各プレート間に配置されてもよい。マイナス及びプラスは便宜上使用されており、プラスの電気エンドプレートは、これに加えて、又はこれに代えて、同様の態様でバスバーを介して追加の電気エンドプレートに接続されてもよい。
【0040】
プラスの電気エンドプレート及びマイナスの電気エンドプレートのうちの少なくとも1つは、スタック内の第1の流体容積部と第2の流体容積部とを隔てることが好ましい。電気エンドプレートは、内部マニホールド(複数の場合あり)によって画定された容積部と、各セルユニットの支持プレートとセパレータとの間の容積部とを含む第1の流体容積部を第2の流体容積部からシールしてもよい。各セルユニットのアノードと流体連通している場合がある第1の流体容積部への供給及びそれからの排出のために、それぞれの内部マニホールドが存在してもよい。第2の流体容積部は、アセンブリを画定するエンクロージャ内の(例えば、トッププレート、ベースプレート、圧縮手段、並びにベースプレート及び/又はトッププレートの開口の周りのシールの中の、及びそれらによって含まれる)残りの容積部を含んでもよい。燃料電池としての動作の場合、第1の流体容積部は典型的には燃料用であり、第2の流体容積部は酸化剤用である。
【0041】
圧縮手段は、ベースプレートとトッププレートとの間で張力をかけた状態で取り付けられたスカートを備え、スカートは少なくとも平面セルユニットのスタックを囲むことが好ましい。
【0042】
スカートはまた、プラス及びマイナスの電気エンドプレート、並びに、バスバー及び追加の電気エンドプレート(ある場合)を囲むことが好ましい。スカートは、フードとも呼ばれることがある。任意選択で、スカートは、第2の流体容積部と呼ばれる気密性の流体容積部、例えば、酸化剤マニホールド容積部を形成する。この場合、スカートは、ベースプレート及びトッププレートの周囲で(例えば、ガスシール溶接によって)ベースプレート及びトッププレートにシール可能に取り付けられる。スカート(圧縮手段)、ベースプレート、及びトッププレートは、スタックから電気的に絶縁されており、これは、スカートを金属から製造することができ、スカートを(例えば、ガスシール溶接によって)ベースプレート及びトッププレートに簡単で便利に取り付けることができることを意味する。電気的に絶縁されていることは、スカートが電気的に活性ではなく、運転中の燃料電池スタックの修理又は保守を行う人、或いはその周りにいる人を両方とも保護するとともに、製品において、簡単に構成部品をアースすることができることを意味する。
【0043】
燃料入口から排出燃料出口までの第1の流体流路、例えば燃料流路は、内部でマニホールド化されることが好ましく、すなわち、第1の流体流路内では、平面セルユニットのスタック内に少なくとも1つの内部マニホールド又はチムニーがあり(例えば、入口チムニー又は出口チムニーが設けられ)、このチムニーは、チムニー自体に設けられたシールが、PTO開口をシールするためにも使用されるように、PTO開口と位置合わせされることが好ましい。酸化剤入口から排出出口までの第2の流体流路、例えば酸化剤流路は、外部にマニホールド化されてもよく、その経路に、平面セルユニットのスタックの外部にマニホールド化された少なくとも1つの部分を含んでもよい。平面セルユニットのスタックの外部、及び電気化学セルアセンブリの内部でマニホールド化されることがより好ましい。容積部は、ベースプレート、トッププレート、スカート、及び平面セルユニットのスタックの間に画定されることがより好ましい。このような容積部は、第2の流体マニホールド容積部であると考えることができる。
【0044】
いくつかのセルアセンブリでは、酸化剤入口から排出出口までの第2の流体流路、例えば酸化剤流路は、内部的にマニホールド化されてもよく、すなわち、第2の流体流路内では、平面セルユニットのスタック内に少なくとも1つの内部マニホールド又はチムニーがあり(例えば、入口チムニー又は出口チムニーが設けられ)、このチムニーは、チムニー自体に設けられたシールが、PTO開口をシールするためにも使用されるように、PTO開口と位置合わせされることが好ましい。
【0045】
代替の圧縮手段、例えば、平面セルユニットのスタックによって画定された容積部の内側又は外側のタイバーなどが使用されてもよく、これらは、気密性のある流体容積部を形成するスカートに加えて使用されてもよい。
【0046】
インターコネクトプレート、又はマイナスの電気エンドプレートに形成された3D輪郭構造、又は追加の電気エンドプレート(ある場合)に形成された3D輪郭構造、又は平面セルユニットのスタックの最も外側のセルユニットに形成された3D輪郭構造は、それぞれの電気エンドプレートと平面セルユニットのスタックとの間に電流を伝達するためにそれらの間を電気接触させることが好ましい。インターコネクトプレート又は3D輪郭構造により、電気化学セルアセンブリ内のプレート間の電気接触は良好になる。圧縮手段は、インターコネクトプレート又はディンプルを介して、プレートを通して平面セルユニットのスタックに(及び、スタック内、各セルユニット間及び各セルユニット内で)圧縮を与え、以て、電気化学セルアセンブリ全体にわたって良好な電気的接続を確実にする。
【0047】
3D輪郭構造は、例えば、流体の流れを制御するために、間隔を空けたチャネルとリブのパターン、又は間隔を空けたディンプルのパターンを備える。
【0048】
上記で詳述した第1の態様によるアセンブリは、以下で詳述する代替の第1の態様について概説する特徴のいずれか、及び/又は、以下で詳述する第2の態様の特徴と組み合わされてもよい。
【0049】
代替の第1の態様によれば、
ベースプレート及びトッププレートを備える電気化学セルアセンブリが提供され、ベースプレートとトッププレートとの間に、平面セルユニットのスタック、並びに少なくとも1つのプラスの電気エンドプレート及び少なくとも1つのマイナスの電気エンドプレートが、ベースプレートとトッププレートとの間に作用する圧縮手段によって圧縮状態で配置され、
少なくとも1つの電気エンドプレートは、スタッドのベース部分から延在する電気スタッドと機械的及び電気的に接続され、又は一体的に形成され、
電気スタッドは、ベースプレート及びトッププレートのうちの1つの開口を通って電気端子を形成し、
セルユニットのそれぞれは、少なくとも1つのポートを備え、セルユニットは、それぞれのポートの位置が合って、スタックを通って延在するそれぞれの内部マニホールドを形成するように互いに積み重ねられ、
それぞれの開口を通って延在する電気スタッドもまた、それぞれの内部マニホールドと位置が合い、その結果、それぞれの内部マニホールドをシールするように圧縮手段によって及ぼされる圧縮力はまた、開口をシールするように作用する。
【0050】
このように、それぞれの内部マニホールド(通常、セルユニットと、間に挟まれたマニホールド(例えば環状)のガスケットとを交互に配置して形成される)をシールするために必然的に高い、マニホールドの近傍で圧縮手段によって及ぼされる圧縮力は、開口をシールするためにも使用することができる。内部マニホールドは、開口と概ね又は正確に位置合わせされ(すなわち、同軸であり)、その結果、連続した通路として開口から延在する。
【0051】
この代替の第1の態様によるアセンブリは、上記の第1の態様について概説した特徴のいずれか、及び/又は、以下に詳述する第2の態様の特徴と組み合わされてもよい。したがって、電気スタッドは、通常、少なくとも1つの電気エンドプレートの一部を形成する、又はそれに接続されたさらなるプレート(これもベースプレートとトッププレートとの間で圧縮された状態にある)の一部を形成するスタッドのベース部分から延在してもよい。シールは、スタッドのベース部分によって提供され、少なくとも1つの電気エンドプレート(又はさらなるプレート)と、ベースプレート及びトッププレートのそれぞれとの間をシールすることができる。スタッドのベース部分は、内部マニホールドを塞ぐように内部マニホールドに完全にまたがって延在することが好都合であり、2つの雰囲気条件に耐えるのに十分な厚さである必要があり得る。
【0052】
第2の態様によれば、
ベースプレート及びトッププレートを備える電気化学セルアセンブリが提供され、ベースプレートとトッププレートとの間に、平面セルユニットのスタック及び少なくとも1つの電気エンドプレートが圧縮状態で配置され、
電気エンドプレートは、それぞれ異なる材料から形成された第1の層と第2の層とが単一の導体を形成するように互いに永久的に接続された2層構造を備え、
電気エンドプレートの第1の層は、セルアセンブリの外側電気端子に電気的に接続され、
電気エンドプレートの第2の層は、第1の導電性セラミック層が接合された外向きの側を有し、外向きの側は、隣り合うセルユニットと面同士で当接して電気的に接触している。
【0053】
第1の層(又はプレート)とは異なる材料及び異なる厚さの層とすることができ、セラミック層が接合された第2の層(又はプレート)を使用することは、良好な電気的接続を提供する一方、セラミック層の剥離が起こりにくいことが分かった。少なくとも1つの電気エンドプレートは、平面セルユニットのスタック(の端部)と、スタックのその端部に配置されたベースプレート及びトッププレートのうちのどちらかとの間に配置され、電気的に連通している隣り合うセルユニットを介してスタックから電力を供給する又は取り出す。典型的には、第1の層と第2の層は、(個別又は別々のプレートとして形成され、)溶接によって永久的に接続されるが、任意の適切な接続方法を使用して、これらの層(又はプレート)の間を永久的に電気的に接続することができる。典型的には、第1の層と第2の層は、第1の層と第2の層との間の容積部との流体連通を防止するように、その周囲で、及び、電気エンドプレートを貫通して設けられた任意のポートの周囲で永久的に接続される。
【0054】
隣り合うセルユニットは、電気エンドプレートの第1の導電性セラミック層と面同士で当接する側に接合された第2の導電性セラミック層を有し、第1の導電性セラミック層及び第2の導電性セラミック層は同じ材料から作られることが好ましい。
【0055】
第1の導電性セラミック層と第2の導電性セラミック層を同じ材料から形成することは、(例えば、2つの異なる材料間の接触抵抗と比較して接触抵抗が減ることによって、)その間の良好な電気的な接触を確実にし、したがって、電気エンドプレートと隣り合うセルユニットとの間も良好な電気的な接触を確実にする。以て、燃料電池又は電解セルとして動作するアセンブリの効率が改善される。
【0056】
電気エンドプレートの第1の導電性セラミック層は、少なくとも1つの電気エンドプレートと隣り合うセルユニットとの間の間隔がスタックの残りのセルユニット間の間隔と同じであるように選択された厚さを有することが好ましい。
【0057】
このように、スタックのセルユニットが(例えば圧縮可能な)ガスケットによって隔てられる場合、同じタイプのガスケット(例えば、同じ材料で同じ厚さのガスケット)を使用して、少なくとも1つの電気エンドプレートと、隣り合うセルユニットとを隔てることができることが好都合である。これにより、アセンブリ内の複数の場所で同じ構成要素が使用されるので、コストが削減され、異なる材料の数が削減され、アセンブリを通じた圧縮力の一貫した伝達が確実になる。
【0058】
スタックは、電気化学的に活性なセルユニットを備え、セルユニットのそれぞれは、セパレータプレートとセル支持金属基板プレートとを備えることが好ましい。
【0059】
電気化学的に活性なセルユニットでは、金属基板プレートは、そこに接合された活性な電気化学的なセル層(すなわち、動作時に電気化学的反応が起きるセル層)を支持し、そのセル層は、コーティング、積層、又はその他の方法で金属基板プレートに取り付けられてもよい。しかしながら、スタックのいずれか又は両方の端部では、国際公開第2015/136295号に記載されているように、電気化学的に活性でない1つ以上の「ダミー」セルが設けられてもよい。したがって、隣り合うセルユニットは、電気化学的に活性であってもよく、これは、動作条件において電気化学セルの機能を実行することを意味する。これに代えて、隣り合うセルユニットは、電気エンドプレートと燃料電池スタックの残りの部分との間の電気的接続を依然として形成しながら、電気化学的に不活性であってもよい。例えば、隣り合うセルユニットは、セパレータプレート及び金属基板プレートを備えてもよく、後者は、任意選択で、電気化学的に活性なセルユニットのカソードに使用される材料と同じ材料であるカソード材料の層を支持する。
【0060】
典型的には、隣り合うセルユニットは、金属基板プレート及びセパレータプレートのうちの少なくとも1つを備える。典型的には、セルユニットは金属支持セルユニットである。セパレータプレートは、スタックの各セルユニットにおいて酸化剤流体容積部を燃料流体容積部から隔て、通常、流体の流れを制御するために、例えば、間隔を空けたチャネルとリブのパターン、又は間隔を空けたディンプルのパターンを備える3D輪郭構造を備える。
【0061】
典型的には、隣り合うセルユニットは、セパレータプレート又は金属基板プレートのいずれかが、電気エンドプレートの第2の層の最も外側の面と面同士で当接しているように配置されてもよい。典型的には、金属基板プレート及びセパレータプレートのうちの一方又は両方は、電気エンドプレートの第2の層と同じ材料から作られてもよい。典型的には、この材料は鉄を含み、より典型的には、この材料は鋼であり、さらにより典型的には、ステンレス鋼であり、さらにより典型的には、フェライト系ステンレス鋼である。金属のタイプによって限定されることなく、適切な基板及び/又はセパレータ材料の例としては、SS441、SS444、Crofer22が含まれる。
【0062】
典型的には、セパレータプレートは、電気エンドプレートと面同士で当接する側に、一連の隆起領域(例えば、流体の流れを制御するための、間隔を空けたチャネルとリブのパターン、又は間隔を空けたディンプルのパターン)を有することになる。第2の電子伝導性セラミック層が、隣り合うセルユニットのセパレータプレートに接合される場合、セラミック層は、典型的には、セパレータプレートのこれらの隆起領域を覆う。
【0063】
金属基板が電気エンドプレートと面同士で当接する場合、金属基板はまた、第1の導電性セラミック層と面同士で当接する側に接合された第2の導電性セラミック層を有してもよい。典型的には、第1のセラミック層と第2のセラミック層は電気的に接触している。
【0064】
典型的には、第1のセラミック層は、固体酸化物形燃料電池のカソードに使用するのに適した材料を含む。本発明者らは、固体酸化物形燃料電池のカソードに使用するのに適した材料は、電気エンドプレートと、隣り合う燃料電池ユニットとの間の電気接続を良好にすることを見出した。セラミックのタイプによって限定されることなく、適切な材料の典型的な例としては、LSCF、LCN、BSCFが含まれる。典型的には、第2のセラミック層は、固体酸化物形燃料電池のカソードに使用するのに適した材料を含む。さらにより典型的には、第1のセラミック層と第2のセラミック層は、実質的に同じ成分を有する。
【0065】
電気エンドプレートの第2の層は、セパレータプレートと同じ材料から作られることが好ましい。これにより、アセンブリに使用される異なる材料の数が削減される。それは、電気エンドプレートの第2の層が、セルユニット及び第1の導電性セラミック層と化学的に適合することを確実にし、電気エンドプレートの第2の層が、アセンブリの化学的環境に適合する(すなわち、燃料及び酸化剤の場合がある第1及び/又は第2の流体容積部に化学的に耐えることができる)ことを確実にする。
【0066】
電気エンドプレートの第2の層は、セパレータプレートと本質的に同じ構成を有することが好ましい。電気エンドプレートの第2の層は、セルユニットのスタックのセルユニットのセパレータプレートと同じ材料から作られることが好都合であり、また、セパレータプレートと本質的に同じ構成(例えば、形状及び向き)を有し(例えば、電気エンドプレートとしての機能を行うために異なる(例えば、周囲)特徴を必要とするところを除く)、すなわち第2の層はそれ自体がプレート(例えば、自己支持剛体プレート)であることが好ましい。したがって、本質的に、第2の層は、スタックの残りのセパレータプレートと同じセパレータプレート(又は、非常に類似した構成部品)から形成することができ、隣り合うユニットセルへの電気的接続及び機械力が、隣り合うセルユニット間と酷似しているという利点があり、第1の導電性セラミック層は、したがって、スタックの他のセパレータプレートと同様に、隣り合うユニットセルの金属基板と面同士で当接している。
【0067】
電気エンドプレートの第2の層は、隣り合うセルユニットに当接するように外向きに延在する一連の突起を有する3D輪郭構造を有し、第1の導電性セラミック層は、突起を覆って、不連続層として接合されて延在することが好ましい。3D輪郭構造は、例えば、間隔を空けたチャネルとリブのパターン、又は間隔を空けたディンプルのパターンを備えて、電気エンドプレートと隣り合うセルユニットとの間に容積部を提供することができ、これは、隣り合うセルユニットへの流体の供給及びその流体の流れの制御を可能にする。突起は、隣り合うセルユニットと当接(例えば接触)し、電気エンドプレートと隣り合うセルユニットとの間を電気的に接続し、以て、電気エンドプレートがセルユニットのスタックの端部に、又は端部から電力を伝達することができる。
【0068】
第1の導電性セラミック層は、第1の導電性セラミック層と面同士で当接する隣り合うセルユニットの金属基板プレートに接合された第2の導電性セラミック層と同じ材料から作られることが好ましい。
【0069】
第1の導電性セラミック層と第2の導電性セラミック層を同じ材料で形成することは、(例えば、2つの異なる材料間の接触抵抗と比較して接触抵抗が減ることによって、)その間の良好な電気的な接触を確実にし、したがって、電気エンドプレートと隣り合うセルユニットとの間も良好な電気的な接触を確実にする。以て、燃料電池又は電解セルとして動作するアセンブリの効率が改善される。
【0070】
一例では、隣り合うセルユニットは電気化学的に活性であり、第2の導電性セラミック層は、隣り合うセルユニットの金属基板プレートに接合された電気化学的に活性なセル層の最も外側の電極層を備える。
【0071】
電気化学的に活性なセルユニットでは、金属基板プレートは、そこに接合された活性な電気化学的なセル層(すなわち、動作時に電気化学的反応が起きるセル層)を支持し、そのセル層は、コーティング、積層、又はその他の方法で金属基板プレートに取り付けられてもよい。一例では、電気化学的に活性なセル層の最も外側の電極層はカソード層である。この場合、第1の導電性セラミック層は、カソード層に使用されているのと同じ材料を含む。
【0072】
代替の例では、隣り合うセルユニットは電気化学的に不活性であり、第2の導電性セラミック層は、隣り合うセルユニットの金属基板プレートに接合された電極材料層である。第2の導電性セラミック層は、隣り合うセルユニットの金属基板プレートに直接接合されてもよい電極材料層である。
【0073】
国際公開第2015/136295号に記載されているように、電気化学的に活性でない1つ以上の電気化学的に不活性なセル(「ダミー」セルとも呼ばれる)が設けられてもよい。この場合、隣り合うセルユニットは、電気エンドプレートと燃料電池スタックの残りの部分との間を依然として電気的に接続しながら、電気化学的に不活性であってもよい。例えば、隣り合うセルユニットは、電気化学的に活性なセルユニットのカソードに使用される材料と同じ材料であるカソード材料の層を支持する金属基板プレートを有してもよい。1つ以上の電気化学的に不活性なセルは、電気エンドプレートとセルユニットのスタックの電気化学的に活性なセルユニットとの間を電気的に接続する。
【0074】
電気エンドプレートの第2の層が、セパレータプレートと同じ材料から作られる場合の代替例では、電気エンドプレートの第2の層は、セル支持金属基板プレートと同じ材料から作られる。
【0075】
これにより、アセンブリに使用される異なる材料の数が削減される。それは、電気エンドプレートの第2の層が、セルユニット及び第1の導電性セラミック層と化学的に適合することを確実にし、電気エンドプレートの第2の層が、アセンブリの化学的環境に適合する(すなわち、燃料及び酸化剤の場合がある第1及び/又は第2の流体容積部に化学的に耐えることができる)ことを確実にする。
【0076】
この場合、電気エンドプレートの第2の層は、セル支持金属基板プレートと本質的に同じ構成を有することが好ましい。
【0077】
電気エンドプレートの第2の層は、セルユニットのスタックのセルユニットのセル支持金属基板プレートと同じ材料から作られることが好都合であり、また、セル支持金属基板プレートと本質的に同じ構成を有し(例えば、電気エンドプレートとしての機能を行うために異なる特徴を必要とするところを除く)、すなわち第2の層はそれ自体がプレート(例えば、自己支持剛体プレート)であることが好ましい。したがって、本質的に、第2の層は、スタックの残りのセル支持金属基板プレートと同じセル支持金属基板プレート(又は、非常に類似した構成部品)から形成することができ、隣り合うユニットセルへの電気的接続及び機械力が、隣り合うセルユニット間と酷似しているという利点があり、第1の導電性セラミック層は、したがって、スタックの他のセル支持金属基板プレートと同様に、隣り合うユニットセルのセパレータプレートと面同士で当接している。
【0078】
この場合、電気エンドプレートの第2の層は、連続層が備える第1の導電性セラミック層が接合された平坦な外向きの側を有することが好ましい。第1の導電性セラミック層は、第1の導電性セラミック層と面同士で当接する隣り合うセルユニットのセパレータプレートに接合された第2の導電性セラミック層と同じ材料から作られてもよい。
【0079】
第1の導電性セラミック層と第2の導電性セラミック層を同じ材料から形成することは、(例えば、2つの異なる材料間の接触抵抗と比較して接触抵抗が減ることによって、)その間の良好な電気的な接触を確実にし、したがって、電気エンドプレートと隣り合うセルユニットとの間も良好な電気的な接触を確実にする。以て、燃料電池又は電解セルとして動作するアセンブリの効率が改善される。
【0080】
第1の導電性セラミック層は、隣り合うセルユニットの電気化学的なセル層の厚さに等しい厚さを有してもよい。このように、スタックのセルユニットが(例えば圧縮可能な)ガスケットによって隔てられる場合、同じタイプのガスケット(例えば、同じ材料で同じ厚さのガスケット)を使用して、少なくとも1つの電気エンドプレートと、隣り合うセルユニットとを隔てることができることが好都合である。これにより、アセンブリ内の複数の場所で同じ構成要素が使用されるので、コストが削減され、異なる材料の数が削減され、アセンブリを通じた圧縮力の一貫した伝達が確実になる。
【0081】
本アセンブリは、スタックの一端にある第1の電気エンドプレートであって、この電気エンドプレートの第2の層が、セパレータプレートと同じ材料から作られた、第1の電気エンドプレートと、スタックの他端にある第2の電気エンドプレートであって、この電気エンドプレートの第2の層が、セル支持金属基板プレートと同じ材料から作られた、第2の電気エンドプレートとの両方を備える。第1及び第2の電気エンドプレートは、スタックとそれぞれの電気端子との間を電気的に接続する。
【0082】
外側電気端子の一部分は、ベースプレート及びトッププレートのうちの1つの開口を通って延在して、電気エンドプレートの第1の層に電気的に接続することが好ましい。任意選択で、電気エンドプレートは、上記の第1の態様に明記したようなものである。
【0083】
例えば、開口(複数の場合あり)は(スタックの各セルユニットを通るポートによって形成された)内部マニホールドと位置合わせされてもよく、電気端子(電気スタッドとも呼ばれる)も内部マニホールドと位置合わせされてもよい。ガスケットは各プレートを隔てることができ、内部マニホールドを形成するようにポートと開口の周りに配置される。
【0084】
典型的には、電気エンドプレートの第1及び第2の層は鉄含有層である。より典型的には、これらの層は鋼であり、より典型的には、ステンレス鋼であり、さらにより典型的には、フェライト系ステンレス鋼である。金属のタイプによって限定されることなく、第1の層の適切な材料の例としては、SS441、Crofer22が含まれ、第2の層の適切な材料の例としては、SS441、SS444、及びCrofer22が含まれる。
【0085】
典型的には、電気エンドプレートの第1の層は、少なくとも0.5mm、より典型的には、0.5mm~5mm、さらにより典型的には、0.5~2mm、さらにより典型的には、1~2mmの厚さを有する。言い換えれば、電気エンドプレートの第1の層はそれ自体がプレートであり、自己支持剛体プレートとも呼ばれる。
【0086】
典型的には、第1及び第2のセラミック層の厚さは、50~200マイクロメートルであり、80~150マイクロメートルが好ましく、90~100マイクロメートルがより好ましい。
【0087】
典型的には、基板(支持プレート、金属基板プレート、又はセル支持金属基板プレートとも呼ばれる)の厚さは、50~250マイクロメートルであり、50~150マイクロメートルが好ましく、100マイクロメートルがより好ましい。
【0088】
上記で詳述した態様のいずれかの電気化学セルは、平面の固体酸化物形燃料電池ユニット又は固体酸化物形電解セルユニットを備えることが好ましい。本電気化学セルアセンブリは、燃料電池及び/又は電解セル、或いは電気化学的反応が可能な任意の他の変形例として使用することができる。平面セルユニットのスタックは、固体酸化物電解質、高分子電解質膜、又は溶融電解質のうちの1つ、或いは電気化学的反応が可能な任意の他の変形例に基づいてもよい。一例では、電気化学セルは、固体酸化物電解質を有する複数の平面セルユニット(例えば、数10~数100セルユニット)に基づいており、したがって、電気化学セルは固体酸化物形燃料電池(SOFC)及び固体酸化物形電解セルと呼ばれることがある。固体酸化物電解質は箔によって支持されてもよく、その場合、金属支持セル、特に、金属支持固体酸化物形燃料電池(MS-SOFC)又は金属支持固体酸化物形電解セルと呼ばれることがある。
【0089】
本スタックは、電気化学的に活性なセルユニットを備えることができ、セルユニットのそれぞれは、セパレータプレートとセル支持金属基板プレートとを備える。電気化学的に活性なセルユニットでは、金属基板プレートは、そこに接合された活性な電気化学的なセル層(すなわち、動作時に電気化学的反応が起きるセル層)を支持し、そのセル層は、コーティング、積層、又はその他の方法で金属基板プレートに取り付けられてもよい。しかしながら、スタックのいずれか又は両方の端部では、国際公開第2015/136295号に記載されているように、電気化学的に活性でない1つ以上の「ダミー」セルが設けられてもよい。したがって、電気エンドプレートに隣り合うセルユニットは、電気化学的に活性であってもよく、これは、動作条件において電気化学セルの機能を実行することを意味し、電気エンドプレートは、セルユニットのスタックの端部でそれぞれの電気化学的に活性なセルと接触してもよい。これに代えて、隣り合うセルユニットは、電気エンドプレートと燃料電池スタックの残りの部分との間を依然として電気的に接続しながら、電気化学的に不活性であってもよい。例えば、隣り合うセルユニットは、電気化学的に活性なセルユニットのカソードに使用される材料と同じ材料であるカソード材料の層を支持する金属基板プレートを有してもよい。いずれの場合も、電気エンドプレートは、スタックの端部に配置された隣り合うセルユニットと電気的に接触していると説明することができる。
【0090】
典型的には、隣り合うセルユニットは、金属基板プレート及びセパレータプレートのうちの少なくとも1つを備える。典型的には、セルユニットは金属支持セルユニットである。セパレータプレートは、スタックの各セルユニットにおいて酸化剤流体容積部を燃料流体容積部から隔て、通常、流体の流れを制御するために、例えば、間隔を空けたチャネルとリブのパターン、又は間隔を空けたディンプルのパターンを備える3D輪郭構造を通常設けられる。
【0091】
上記のように、「セルユニット」又は「セルスタック」は、「電気化学セルユニット」又は「電気化学セルスタック」を指すために用いられる。
【図面の簡単な説明】
【0092】
図1】従来技術のセルスタック構成体の概略図である。
図2】従来技術のセルスタック構成体の概略図である。
図3】本発明の第1の態様によるセルスタック構成体の断面図である。
図4】第1の態様によるセルスタック構成体の断面図である。
図5A】第1の態様によるセルスタック構成体の断面図である。
図5B図5Aのセルスタック構成体の一部分の拡大図である。
図6A】第1の態様によるセルスタック構成体の断面図である。
図6B図6Aのセルスタック構成体の一部分の拡大図である。
図6C図6Aのセルスタック構成体の一部分の拡大図である。
図7】第1の態様による第1の電気エンドプレート及び第2の電気エンドプレートの平面図である。
図8】第1の態様による図5Aに示したセルスタック構成体の分解斜視図である。
図9】第1の態様による図6Aに示したセルスタック構成体の分解斜視図である。
図10】本発明の第2の態様によるセルスタック構成体の断面図である。
図11図10に示したセルスタック構成体の分解斜視図である。
図12】第2の態様による第1の電気エンドプレートの分解図である。
図13】第2の態様による第2の電気エンドプレートの分解図である。
図14】第2の態様によるセルスタック構成体の一部分の断面図である。
図15】第2の態様によるセルスタック構成体の一部分の断面図である。 以下の図及び説明では、異なる図における同様の要素には同様の参照符号が使用される。
【第1の態様の詳細な説明】
【0093】
図3を参照すると、電気化学セルスタック構成体300の断面図が示されており、断面は右側で切られ、内部マニホールド(チムニー)、電気スタッド、及び電気エンドプレートの詳細を示している。電気化学セルスタックを形成する5つの繰り返しセルユニット306のスタックが示されており、セルユニットの数は、例示の目的のために少なくしているが、典型的にはこれよりはるかに多い(例えば、30~200個)。セルユニット306は、基板(又は金属支持プレート)306a及びセパレータ(又はインターコネクト)306bを備え、本出願人の先の特許出願の国際公開第2015/136295号に記述したものと同様であってもよい。基板306aは、金属支持プレート(例えば、鋼板又は箔)上に(例えば、薄いコーティング/フィルムとして)それぞれ積層され、それに支持されたそれぞれのアノード、電解質、及びカソード層を備える電気化学的に活性な層(又は活性燃料電池構成部品層、図示せず)を保持し、この電気化学的に活性な層は隣り合うセルユニット306のセパレータ306bに面する。金属支持プレート306aは、非多孔質領域に囲まれた多孔質領域(図示せず)を有し、活性層は多孔質領域に積層させられており、その結果、気体は、金属支持プレート306aの一方の側から反対がわに細孔を通って、金属支持プレート306aにコーティングされた活性層にアクセスすることできる。図3に示すように、各セルユニット306は、金属支持プレート306a及びセパレータプレート306bの2枚のプレート又は層を備える(が、スペーサプレートが、金属支持プレート306aとセパレータプレート306bとの間に挟まれていてもよい)。各セルユニット306はまた、これらのプレートに設けられた流体ポート(酸化剤用及び/又は燃料用)を有し、これらのプレートは互いに積み重ねられ、溶接(融着)されて、金属支持プレート306aとセパレータプレート306bとの間に設けられた空間によって画定された中間の流体容積部を有する単一の金属支持された繰り返しセルユニット306を形成する。燃料電池スタックの繰り返し層306の金属構成部品は、互いに電気的に接触しており、それらの間の電子の流れは主に融着/溶接経路を経由しており、以て表面同士の接触の抵抗損失を回避している。
【0094】
国際公開第2015/136295号で論じたように、多孔質領域は、アノード(又は、電気化学的に活性な層の極性の向きによってはカソード)に重なる位置(金属支持プレート306aの下に位置する)に、金属支持プレート306aを貫通して延在する小さな開口(金属箔基板を貫通する穿孔)(図示せず)を備える。これらは、流体容積部が、小さな開口を介して支持プレート306aの下側の電気化学的に活性な層と流体連通するように、金属支持プレート306aとセパレータプレート306bとの間の大きな空間又は開口(スペーサプレートによって画定される場合がある)に配置される。
【0095】
セパレータプレート306bには、上下方向の波形部が、この燃料電池ユニット上に積み重ねられた後続の(又は隣接の)燃料電池ユニットのカソード(又は、電気化学的に活性な層の極性の向きによってはアノード)に上向きに延在し、それ自体の燃料電池ユニット306の金属支持プレート306aに下向きに延在するように設けられる。したがって、これにより、スタックの隣り合う燃料電池ユニット306間は電気的に接続されて、スタックの電気化学的に活性な層(通常は各燃料電池ユニットに1つ)は互いに直列に配置される。
【0096】
図3のセルユニット306のスタックは、隣接するセルユニット306間にガスケット304を配置して積み重ねられる。各ガスケット304は、セルユニットの流体ポートを取り囲み、電気的に絶縁している。セルユニット306のスタックは、それぞれのガスケット304を備え、セルユニット306の対応する流体ポートが位置合わせされて、セルユニットのスタックを通る内部マニホールド又はチムニーを形成するように互いに積み重ねて配置され、流体は、この内部マニホールド又はチムニーを通ってセルユニットへ送出、及びそこから排出することができる(詳細には、各セルユニット306の金属支持プレート306aとセパレータプレート306bの間の開口に送出及び排出することができる)。ガスケット304は、その表面と当接面の表面との間を流体的にシールする。ガスケット304は、予め形成されたガスケットであり、導電性ではない。ガスケットは、例えば、バーミキュライト(例えば、サーミキュライト)製であってもよく、これは、シールに必要な負荷を大幅に低くしながら、マイカ又はセラミックと比較して優れたシール性能を提供する。
【0097】
セルユニット306の金属支持プレート306a及びセパレータプレート306bの一方又は両方は、流体ポートを取り囲む領域(すなわち、チムニーを取り囲む領域)で、ガスケット304に沿って金属支持プレート306a及びセパレータプレート306bの他方の方へ突出し接触するディンプル(図3には示されていない)又は他の3D突起を備えてもよい。ディンプルは、セルユニットのスタックを通して圧縮を伝達し、セルユニットの上下に配置されたガスケット(ポートガスケット、すなわちポートを囲むガスケットであり、ガスケットは典型的には円形断面のポートを取り囲む環状である)304によってセルユニットに加えられる圧縮を支え、単一のセルユニット306の金属支持プレート306aとセパレータプレート306bとの間の間隔(隙間)を維持する。ディンプルは、(図5及び図6に関してさらに説明するように)ポートの周りにリング状に配置されてもよく、ディンプルにより、セルユニット306の金属支持プレート306aとセパレータプレート306bとの間の隙間に第1の流体が入る、又はそこから出ることができる。
【0098】
この実施形態では、セルユニットのスタックの各端部に配置されるのは、電力取出アセンブリ及びトッププレート又はベースプレートである。第1の電気エンドプレート302及び電気スタッド301を備える電力取出アセンブリは、セルユニットのスタックの上端に配置され、第1の電気エンドプレート302はセルユニットのスタックの上部に配置される。第1の電気エンドプレート302は、スタックのセルユニット306間に使用される(ポート)ガスケットと同一の(ポート)ガスケット304によってスタックの端部から隔てられている。第1の電気エンドプレート302は、以下にさらに論じるように、ベース部分(電気スタッドはここから垂直に延在する)によってチムニーを塞ぎ、その結果、流体は第1の電気エンドプレート302を通ることができない。第1の電気エンドプレート302は、セルユニット306のスタックの上端のセルユニット306と電気的に接触している。第1の電気エンドプレート302は、セルユニット306のスタックの上端のセルユニット306から電気スタッド301に電位を伝達し、電気スタッド301は、電位をセルスタック構成体300の外部に伝達し、このスタッドは電気端子として作用する。第1の電気エンドプレート302と電気スタッド301は一体であってもよいし、それに代えて、それらは、互いに溶接、ろう付け、ねじ止め、又はその他の方法で取り付けられた2つの別々の構成部品であってよい。
【0099】
第1の電気エンドプレート302の上方に(すなわち外側に)配置されているのは第1の電気絶縁プレート305aであり、その結果、第1の電気エンドプレート302は、第1の電気絶縁プレート305aとセルユニットのスタックとの間に配置される。第1の電気絶縁プレート305aは、少なくとも下にある積み重ねられたセルユニットと同じ範囲にスタックを横切って延在し、スタックのセルユニット306間に使用されるガスケットと同一の(ポート)ガスケット304によって第1の電気エンドプレート302から隔てられることが好ましい。ガスケット304は、電気スタッド301が通過する必要のある、スタックを通るチムニー(又は内部マニホールド)と同軸である(及び、チムニーの連続部を形成する)第1の電気絶縁プレート305aの開口を取り囲む。
【0100】
第1の電気絶縁プレート305aの上方に配置されるのはトッププレート303であり、その結果、第1の電気絶縁プレート305aは、トッププレート303と第1の電気エンドプレート302との間に配置される。第1の電気絶縁プレート305aは、スタックのセルユニット306間に使用されるガスケットと同一の(ポート)ガスケット304によってトッププレート303から隔てられる。ガスケット304は、電気スタッド301が通過する、スタックを通るチムニーと同軸である(及び、チムニーの連続部を形成する)トッププレート303の開口を取り囲む。第1の電気絶縁プレート305aは、電気エンドプレート302とトッププレート303との間を電気的に絶縁する。第1の電気絶縁プレート305aは、マイカ又は非導電性セラミック材料から製造されてもよい。
【0101】
セルユニットのスタックの下方に(すなわち、第1の電気エンドプレート302、第1の電気絶縁プレート305a、及びトッププレート303を有するスタックの反対がわの端部に)配置されるのは、第2の電気エンドプレート310、第2の電気絶縁プレート305b、及びベースプレート308である。第2の電気エンドプレート310は、スタックのセルユニット306間に使用される(ポート)ガスケットと同一のガスケット304によってスタックの端部から隔てられている。第2の電気エンドプレート310は、セルユニット306を通るポートと位置合わせされ、流体が通ることができるポートを備え、したがって、チムニーの一部を画定する。第2の電気エンドプレート310は、セルユニット306のスタックの下端のセルユニット306と電気的に接触しており、第1の電気エンドプレートと反対の極性を有する。第2の電気エンドプレート310は、セルスタック構成体300から電気エネルギーを伝達するために、第2の電気スタッド(図示せず)と電気的に接触していてもよい。
【0102】
第2の電気エンドプレート310の下方に配置されているのは第2の電気絶縁プレート305bであり、その結果、第2の電気エンドプレート310は、第2の電気絶縁プレート305bとセルユニットのスタックとの間に配置される。第2の電気絶縁プレート305bは、スタックのセルユニット306間に使用されるガスケットと同一のガスケット304によって第2の電気エンドプレート310から隔てられる。ガスケット304は、流体が通ることができる、スタックを通るチムニーと同軸である(及び、チムニーの一部を形成する)第2の電気絶縁プレート305bの開口を取り囲む。
【0103】
第2の電気絶縁プレート305bの下方に配置されるのはベースプレート308であり、その結果、第2の電気絶縁プレート305bは、ベースプレート308と第2の電気エンドプレート310との間に配置される。ベースプレート308は、スタックのセルユニット306間に使用されるガスケットと同一のガスケット304によって第2の電気絶縁プレート305bから隔てられる。ガスケット304は、流体が通ることができる、スタックを通るチムニーと同軸である(及び、チムニーの一部を形成する)ベースプレート308の開口であって、チムニーへ流体を送出、又はチムニーから流体を排出する、以て、スタックへ流体を送出、又はスタックから流体を排出するためのポートを提供する開口を取り囲む。第1の電気絶縁プレート305aと同様の第2の電気絶縁プレート305bは、電気エンドプレート310とベースプレート308との間を電気的に絶縁する。第2の電気絶縁プレート305bは、マイカ又は非導電性セラミック材料から製造されてもよい。
【0104】
圧縮手段307は、製造時に加えられた圧縮を維持するために設けられる。圧縮手段307は、ベースプレート308とトッププレート303との間に設けられ、それらの間の構成部品(すなわち、ガスケット304、電気絶縁プレート305a、305b、第1及び第2の電気エンドプレート302、310、並びにセルユニット306)の圧縮を維持する。図3の圧縮手段307は、製造時にベースプレート308とトッププレート303との間に外部圧縮が加えられる間、ベースプレート308及びトッププレート303に溶接又はその他の方法で永久的に取り付けることができるスカートとして示されている。外部圧縮力が取り除かれると、スカートの引張力が、ベースプレート308及びトッププレート303を介してスタックの圧縮荷重を維持する。溶接路は、ベースプレート308及びトッププレート303を一周し、ベースプレート308、トッププレート303、及びスカート307によって画定される、スタックが入っている(流体)容積部を流体的にシールするために流体シールを形成することができる。ベースプレート308及びトッププレート303は、比較的剛性の高いプレートであり(構成体の他のプレートのいずれよりも、例えば金属支持プレート、セパレータプレート、セルユニット全体、及び電気エンドプレートよりも剛性が高く、必ずしも本質的により剛性の高い材料で作ることによって剛性が高いのではなく、例えばより厚くすることによってより剛性が高い)、これによって、スタックの平面領域にわたって(少なくともガスケット304に接触する領域、及び電気化学的に活性な層の領域に沿う領域にわたって)圧縮荷重が広げられる。この圧縮手段は、スタックの繰り返しユニット(セルユニットを含む)間を良好に電気的に接触させる圧縮力を維持する。圧縮手段はまた、本出願人の先の特許出願の国際公開第2019/002829号で記述したように、チムニーをシールするためにシール、例えば(ポート)ガスケット304の圧縮を維持し、スタックの構造的完全性を維持する。その結果、チムニー、及び、各セルユニット306の金属支持プレート306aとセパレータ306bとの間の空間に第1の流体容積部が画定される。第1の流体容積部から流体的にシールされる第2の流体容積部が、ベースプレート308、トッププレート303、及びスカート(圧縮手段)307によって画定される容積部内の残りの容積部によって画定される。したがって、この場合、圧縮手段は、流体容積部(すなわち、第2の流体容積部)を画定しシールするというさらなる目的を果たす。第1の流体容積部は電気化学的に活性な層のアノードと流体連通することができ、第2の流体容積部は電気化学的に活性な層のカソードと流体連通することができ、電気化学セル層の積み重ね方に応じてはその逆も可能である。
【0105】
代替案として、圧縮手段307は、開口を通って(固定手段、例えばロックナットで固定される)、又は開口にねじ込まれてベースプレート308とトッププレート303とを接続するように配置されたタイバーを備えてもよく、これにより、ベースプレート308とトッププレート303との間でセルスタック構成体に加えられる圧縮力が維持される。この場合、圧縮手段は、流体容積部を画定及びシールをせず、むしろ、第2の流体容積部は、構成体300が配置される容器によって含まれてもよい。
【0106】
一例では、第1の電気エンドプレート302は、セルユニットのスタックの最も上側のセルユニット306の最も外側の層(例えばアノード層)と電気的に接触しており、第2の電気エンドプレート310は、セルユニットのスタックの最も下側のセルユニット306のカソード層と電気的に接触している(積み重ねられたセルユニットは直列接続である)。アノードは、第1の流体容積部と流体連通することができ、カソードは、第2の流体容積部と接触することができる。燃料電池として動作させると、燃料は第1の流体容積部に供給され、酸化剤は第2の流体容積部に供給され、第1の電気エンドプレート302と第2の電気エンドプレート310との間に電位差が生じ、それらの間に負荷を接続することができる。この場合、第1の電気エンドプレート302はモノポール、第2の電気エンドプレート310はエンドポールと呼ばれることがある。
【0107】
電解セルとして動作させると、電位差が、第1の電気エンドプレート302と第2の電気エンドプレート310との間に加えられて、水素ガス及び/又は一酸化炭素と酸素との生成を駆動する。
【0108】
図4を参照すると、セルスタック構成体400の断面図が示されている。セルスタック構成体400は、図3のセルスタック構成体300の変形例である。図4に示す変形例では、セルユニット(繰り返しユニット)406は、金属支持プレート406a及びセパレータプレート406bを含む。この変形例では、セルユニットのスタックのセルユニット406間に、予め形成された(ポート)ガスケットは不要である。(予め形成された)ガスケットの代わりに、金属支持プレート406aの流体ポートを取り囲む環状部が、そのセルユニットのセパレータプレート406bから離れて、隣接するセルユニットのセパレータプレートの方へ突出するように環状部を形成することによって(図では下向きに)隆起されている。
【0109】
インサイチュシール、すなわちシーラント材409のリングが環状部に形成され、この材料はスタックの組み立て中に塗布されてもよい。シーラント材409は、硬化したときに、燃料電池の動作環境に耐えるように設計された任意の従来のシーラント材とすることができる。シーラント材409は、必要に応じて(予め形成された)ガスケットに置き換えることもできるが、インサイチュシールの使用は、ガスケットを注意深く配置することがもはや不要になるため、部品数を低減し、コストを削減し、組み立てを簡略化するという大きな利点を有する。
【0110】
この構成では、シーラント材の厚さは、予め形成されたガスケットに一般的に必要とされる厚さよりも大幅に薄くすることができる。電気絶縁シール又はインサイチュシールは、隣り合う燃料電池ユニットの当接面(例えば、隆起環状部と、隣り合う燃料電池ユニットのセパレータプレートとによって形成されるハードストップ面を形成する)の一方又は両方に使用されて、隣り合う燃料電池ユニット間で、当接面を介して電気接触することを防止することができる。
【0111】
環状溝(図を見やすくするために示さず)もまた環状部に設けられてもよく、環状溝は、インサイチュシール材を収容するために、そのセルユニットのセパレータプレート406bの方へ突出している。ここでは、環状溝が一定の深さで一様な円を形成してもよいが、半径及び深さの両方がそれほど一様でない溝にすることも可能である。しかし、簡単にするために、一様な半径及び深さが設けられる。環状溝は、ある量の(又はビードの)シーラント材を収容し、隣り合うセルユニット306のセパレータプレート306bに接触し、したがって、図3のガスケット304のように機能する。
【0112】
図3のガスケット304の厚さは、空気又は燃料の流れのために、隣り合う燃料電池ユニット間に空間を提供するのに役立った。その空間を保持するために、金属支持プレート406aの環状部分に成形ポート特徴部を設けることができる。これにより、電気化学的に活性な層の外面が、隣り合うセルユニット406のセパレータプレート406bに正しく接触することができるように、ガスケットシール材の頂部の最終的な高さがそれでもなお正しい高さであることが確実になる。
【0113】
隆起環状部は、図4では金属支持プレート406aの一部として示されているが、その代わりに、各セルユニット406のセパレータプレート406bに設けられてもよい。
【0114】
この後に説明する実施形態において次に例示するように、図3及び図4の構成体で説明したように、金属支持プレート406aに設けられた成形特徴部及び成形外周フランジ(これによってセルユニットは2部品セルとして溶接される)のいずれか又はすべては、その代わりに、セパレータプレート406bに設けることができる。
【0115】
図5Aを参照すると、セルスタック構成体500の断面図が示され、図5Bを参照すると、図5Aの円に囲まれた領域の拡大図が示されている。図8は、図5の構成体500の分解斜視図である。
【0116】
セルスタック構成体500は、上記のセルユニット306と同様のセルユニット306のスタックを備える。図5Aは、それぞれ、金属支持プレート306aに(例えば、薄いコーティング/フィルムとして)積層され、それによって支持されたそれぞれのアノード、電解質、及びカソードの層を備える電気化学的に活性な層506を示す。図5Aはまた、セルユニット306の金属支持プレート306a、及び隣り合う(隣接する)セルユニット306の電気化学的に活性な層506の最も外側の層に接触するセパレータプレート306bの上下方向の突起を示す。
【0117】
電気スタッド301及び第1の電気エンドプレート302は、上記のものと同様である。この場合、電気絶縁スリーブ503(カラーとも呼ばれる)が電気スタッド301を取り囲む。電気スタッド301、並びに第1の電気絶縁プレート305a及びトッププレート303を貫通する開口は、断面が円形であってもよく、その場合、スリーブ503は、中空の円柱である。スリーブ503は、マイカ又はセラミックなどの(電気)絶縁材料から形成される。スリーブ503は、スタック構成体500を取り扱うとき、及びスタッド301に負荷を接続するときに、電気スタッド301に機械的安定性を与える。スリーブ503はまた、トッププレート303の開口を通って異物(例えば、ごみ)がスタック構成体500に侵入するのを防止する。さらなる機械的安定性は、スリーブ503(及びスタッド301)を取り囲み、トッププレート303の外面に着座する座金504によって与えられる。座金504の外面は、スリーブ503の外側端部より上にあり(すなわち、トッププレート303の外面からスリーブ503の外側端部の位置よりさらに突出し)、その結果、スタッドに加わるいかなる機械的力も、スリーブ503を通って、又はスタッド301を通って第1の電気エンドプレート302に伝達されるのではなく、座金504を通ってトッププレート303に伝達される。座金は、セラミック又はマイカなどの任意の適切な(電気)絶縁材料から形成されてもよい。図5bで分かるように、バスバー509が、スタック構成体500の外部で、座金504に接触して、ナット508によってスタッド301に取り付けられてもよい。
【0118】
第1の電気エンドプレート302のさらなる詳細は、図5Aで明らかである。第1の電気エンドプレート302は、第1の電気エンドプレート302に(例えば、薄いコーティング/フィルムとして)積層され、又は取り付けられ、それによって支持された材料の層510を備える(ことが好ましい)。材料の層510は、導電性セラミック材料であり、電気化学的に活性な層506のカソードと同様の成分を有してもよく、例えば、それはLSCF、LCN、BSCF、例えばLCN60であってもよい。材料の層510は、セルユニット306の電気化学的に活性な層506の厚さに相当する厚さを有することが有利であり、これは、最も外側(図5Aでは最も上側)のセルユニット306のセパレータプレート306bの突起が材料の層510の面に接触することを意味する。これはまた、すべてのガスケット304を同様の厚さにすることができることが好都合である。これにより、セルユニット306のスタックを第1の電気エンドプレート302に接続するために特別な構成部品が不要になるので、スタック構成体500に必要な異なる構成部品の数が少なくなる。材料の層510は、セルユニットのスタックの最も外側(図5Aでは最も上側)のセルユニットのセパレータプレート306bの(上向きの)突起に接触し、そのセパレータプレートを第1の電気エンドプレート302に電気的に接続して、その間の電気エネルギーの伝達を可能にする。電気エンドプレート302は、材料の層510が取り付けられた、コーティングされた、又は積層された単一のプレートとして示されているが、第2の態様で説明するように、2つ(又はそれ以上)の部品構造、例えば、図10の電気エンドプレート1402であってもよい。
【0119】
第2の電気スタッド505は、図5Aに示されており、上記の電気スタッド301と同様であるが、反対の極性を有する。第2の電気スタッド505は、第2の電気エンドプレート507に接続され、第2の電気絶縁プレート305b及びベースプレート308の開口を通る。第2の電気スタッド505は、第1の電気スタッド301と同様に、スリーブ503、座金504、バスバー、及びナットを備えるが、トッププレート303ではなくベースプレート308に関連する。
【0120】
第2の電気エンドプレート507のさらなる詳細は、図5Aで明らかである。第2の電気エンドプレート507は、セルユニットのスタックの方へ延在する突起を備えて、セルユニットのスタックの最も外側(図5Aでは最も下側)のセルユニット306の電気化学的に活性な層506の最も外側の電極(例えば、カソード)に接触する。突起は、隣り合うセルユニット306の電気化学的に活性な層506の方へ(上方に)突出するセパレータプレート306bの突起と同じ高さを有する。これにより、第2の電気エンドプレート507とセルユニットのスタックとの間に配置されるガスケット304が、セルユニットのスタックの隣り合うセルユニット306の間で使用されるものと同じ厚さのもの(実際に、同じガスケットである)とすることができることが有利である。
【0121】
第2の電気エンドプレート507の突起は、セルユニットのスタックの最も外側のセルユニットの電気化学的に活性な層(例えばカソード)の最も外側(図5Aでは最も下側)の面に接触し、その電気化学的に活性な層のその面を第2の電気エンドプレート507に電気的に接続して、その間の電気エネルギーの伝達を可能にする。電気エンドプレート507は、一体の突起を有する単一のプレートとして示されているが、第2の態様で説明するように、2つ(又はそれ以上)の部品構造、例えば、図10の電気エンドプレート1407であってもよい。
【0122】
電気スタッド301と第2の電気スタッド505は、セルユニットのスタックの反対がわの端部に配置されていることに留意されたい。2つのチムニーが構成体500に存在し、電気スタッドがそれぞれのチムニーと位置合わせされる(例えば、それぞれのチムニーと同軸であることが好ましい)。チムニーは、ガスケット304、セルユニット306を通るポートと、第1の電気エンドプレート302、第1の電気絶縁プレート305a、及びトッププレート303、又は第2の電気エンドプレート507、第2の電気絶縁プレート305b、及びベースプレート308を通るポートとによって画定/形成される。第1の電気エンドプレート302は、第1のチムニー(図5Aの左側)を(ベース部分(電気スタッドはここから垂直に延在する)によって)塞ぎ、第2の電気エンドプレート507は、第2のチムニー(図5Aの右側)を(ベース部分(電気スタッドはここから垂直に延在する)によって)を塞ぐ。
【0123】
図5Aの矢印で示すように、第1のチムニーは第1の流体容積部への第1の流体の送出に使用され、第2のチムニーは第1の流体容積部からの排出に使用される。第1の流体容積部は、セルユニット306の金属支持プレート306aとセパレータプレート306bとの間に囲まれ、チムニーによって供給/排出される。第2の流体容積部は、セルユニット及びチムニーを取り囲み、スカート、ベースプレート、及びエンドプレートによって囲まれ、電気化学的に活性な層506の最も外側の電極と流体連通するように設けることができる。第2の流体容積部の供給及び排出のためのポートは、ベースプレート及び/又はエンドプレートに設けることができる(図5Aには示されていない)。
【0124】
さらに図5Aには、プレート302の電力取出部と第1の電気絶縁プレート305aとの間、第1の電気絶縁プレート305aとトッププレート303との間、第2の電気エンドプレート507と第2の電気絶縁プレート305bとの間、及び第2の電気絶縁プレート305bとベースプレート308との間に設けられた支持層511が示されている。支持層511は、電気化学的に活性な層506(及びセパレータプレート306bの突起)の範囲に対応する(一致し、平面図では対応する平面視面積を覆う)範囲を有する。支持層511は、ベースプレート308とトッププレート303との間に加えられる圧縮力の一部を、セルユニットのスタックを通して伝達する。これにより、(例えば、平面視領域にわたってさえ)セルユニット306内、及びセルユニットのスタック内の隣り合うセルユニット間の良好な電気接触(すなわち、セパレータプレート306bの下向き突起と、同じセルユニット306の金属支持プレート306aとの間の良好な電気接触、及びセパレータプレート306bの上向き突起と、セルユニットのスタックの隣り合う、又は隣接するセルユニット306の電気化学的に活性な層506の最も外側の電極との間の良好な電気接触)が確実になる。当然ながら、支持層511を介した同じ圧縮力によって、第1及び第2の電気エンドプレート302、507とセルユニットのスタックの最も外側のセルユニットとの間で良好な電気接触が得られる。支持層511は、圧縮力をスタックに伝達することができる任意の導電性又は非導電性の弾性材料、例えば、メッシュ又はエキスパンデッドメタル箔から形成されてもよい。
【0125】
図8を参照すると、図を見やすくするため、スカート307の一部分が示されている。スカート307は、さらに2つの側壁を含んで、図示のスカート構成部品307の縁を接続することができ、その結果、スカートがスタックを取り囲むことは理解されよう。金属支持プレート306aとセパレータ306bは分解して示しておらず、したがって、この図ではセパレータ306bのみが見えることにも留意されたい。セルユニット306の金属支持プレート306aとセパレータ306bとは、それらの周囲で互いに溶接されるか又はその他の方法で取り付けられる。
【0126】
燃料電池としての使用では、電気負荷は、構成体500の電気スタッド301と第2の電気スタッド505との間に接続することができる。アノードが、金属支持プレート306aに最も近い電気化学的に活性な層である例では、第1の流体は燃料である。燃料は、第1のチムニー、金属支持プレート306aとセパレータ306bとの間の隙間、及び金属支持プレート306bの多孔質領域を通ってアノードに供給され、燃料排出生成物は、アノードから、金属支持プレート306aとセパレータ306bとの間の隙間を通って第2のチムニーに導かれる。第2の流体は酸化剤であり、第2の流体容積部を通ってカソードに供給される。
【0127】
電解セルとしての使用では、電位差は、電気スタッド301と第2の電気スタッド505との間に、構成体500に電気エネルギーを供給するために与えることができる。関連する流体は、第1及び第2の流体容積部に供給され、そこから排出される。
【0128】
図6Aを参照すると、セルスタック構成体600の断面図が示されている。セルスタック構成体600は、図5Aのセルスタック構成体500の変形例である。図6B及び図6Cは、図6Aのセルスタック構成体600の拡大された領域を示す。図7は、それぞれがスタッドを有するセルスタック構成体600の第1及び第2の電気エンドプレート602、606の平面図である。図9は、図6及び図7の構成体600の分解斜視図である。構成体600(セルユニットのスタックのセルユニット306を含む)は、図5に示した構成体500に対して180度回転されて示されていることに留意されたい。
【0129】
図6に示す構成体600では、スタッド601を有する第1の電気エンドプレート602は、追加のバスバー612を介して追加の電気エンドプレート607に接続され、これにより、両方の電気スタッド601及び605は、スタック構成体600の同じ端部に配置することができる。また、これにより、第1の流体容積部の流体入口及び出口をスタック構成体600の同じ端部に配置することができる(流体入口及び出口は、電気スタッド601、605とは反対がわのスタック構成体600の端部に配置される)。ガスケット304は、構成体600の追加の構成部品のそれぞれの間に設けられて、チムニー又はその連続部を画定する。
【0130】
第2の電気スタッド605及び関連する第2の電気エンドプレート606は、(以下に概説する理由で)第2の電気スタッド605が追加の電気絶縁プレート613の開口を通り、第1の電気エンドプレート602を通ることを除いて、構成体500の第2の電気スタッド505及び第2の電気エンドプレート507と同様である。したがって、第2の電気エンドプレート606は、セルユニットのスタックの最も外側のセルユニット306の最も外側の層(電気化学的に活性な層506のうちの最も外側の層の電気化学的に活性な層の場合がある)に向かって、それと接触する突起614を備える。第2の電気エンドプレート606は、一体の突起を有する単一のプレートとして示されているが、第2の態様で説明するように、2つ(又はそれ以上)の部品構造、例えば図10の電気エンドプレート1407であってもよい。
【0131】
支持層511は、スタックの電気化学的に活性な領域内の圧縮を維持するために、第2の電気エンドプレート606と追加の電気絶縁プレート613との間で、第2の電気エンドプレート606の突起の反対がわに配置される。
【0132】
第1の電気スタッド601は、構成体500の電気スタッド301及び第1の電気エンドプレート302と同様に、第1の電気エンドプレート602に接続される、又はそれと一体である。構成体500とは異なり、第1の電気エンドプレート602にはコーティング又は積層された導電性セラミック層510はない。第1の電気エンドプレート602は、バスバー612に電気的に接続され、このバスバーは、追加の電気エンドプレート607に電気的に接続され、その結果、2つの電気エンドプレートは同じ極性であり、両方とも、特にチムニーの近傍で、圧縮手段によって及ぼされる圧縮力を受ける。追加の電気エンドプレート607は、セルユニットのスタックの、第1の電気プレート602とは反対がわの端部に配置される。追加の電気エンドプレート607は、第1の電気エンドプレート607に(例えば、薄いコーティング/フィルムとして)積層され、又は取り付けられ、それによって支持された材料の層510を備える。材料の層510は、それ以外では、図5を参照して上で説明したものと同様である。
【0133】
第1の電気プレート602は、追加の電気絶縁プレート613とスタック構成体600のトッププレート303との間に配置される。第1の電気プレート602は、支持層511及びガスケット304によって追加の電気絶縁プレート613から隔てられる。言い換えれば、第1の電気プレート602は、追加の電気絶縁プレート613の、第2の電気エンドプレート606から反対がわに配置される。したがって、追加の電気絶縁プレート613は、第1の電気プレート602と第2の電気エンドプレート606との間を電気的に絶縁する。同様に、追加の電気エンドプレート607は、支持層511及びガスケット304によって第1の電気絶縁プレート305aから隔てられる。
【0134】
バスバー612は、バスバー612、並びに/或いは、第1の電気エンドプレート602及び追加の電気エンドプレート607の端部のタブを介して、第1の電気エンドプレート602及び追加の電気エンドプレート607に溶接又はその他の方法で取り付けられる(且つ、電気的に接続される)。バスバーは、セルユニットのスタックの一方の側に、セルユニットのスタックとスカートの間に配置され、セルユニットの積み重ね方向とほぼ平行である。タブは、バスバー612、第1の電気エンドプレート602、及び追加の電気エンドプレート607よりも可撓性があり(例えば、より薄いため)、それは、スタックとバスバーとの間の熱膨張差がタブの可撓性によって受け持たれ、したがって、バスバー612、第1の電気エンドプレート602、及び追加の電気エンドプレート607には最小限の応力しか伝わらないことを意味する。
【0135】
追加の電気エンドプレート607は、材料の層510が取り付けられた、コーティングされた、又は積層された単一のプレートとして示されているが、第2の態様に関して説明するプレートと同様の、2つ(又はそれ以上)の部品構造、例えば、図10の電気エンドプレート1407であってもよい。
【0136】
図6Aに示す例では、第2の電気エンドプレート606はチムニーの両方を横切って延在し、したがって、両方のエンドプレートは、左手側のチムニーを塞ぎ、そのチムニーにおける圧縮力によって圧縮されることに留意されたい。この場合、第1の電気プレート602は、第2の電気エンドプレート606と同じ材料から製造されてもよいが、チムニー内の流体(燃料電池用途では典型的には燃料)に曝されないので、第2の電気エンドプレート606よりも薄くてもよい。したがって、2つの電気エンドプレートがあるが、一方がスタック内の2つの雰囲気(2つの異なる流体)に曝され、他方が単一の雰囲気(1つの流体)に曝される場合、後者のプレートは、前者のプレートよりも耐腐食性の低い材料で作られてもよく、及び/又は、腐食保護コーティングが少なくてもよく、又は全くなくてもよく、及び/又は、薄く作られてもよい。これに代えて、第2の電気エンドプレート606が図6Aの左手側のチムニーをさらに塞がない場合、第1の電気プレート602と第2の電気エンドプレート606は、両方とも同様の(2つの)化学環境に曝されるので、同じ材料から製造されて同じ厚さであってもよい。
【0137】
図9に示す構成体600の部分分解図を参照すると、図を見やすくするため、スカート307の一部分が示されている。スカート307は、さらに2つの側壁を含んで、図示のスカート構成部品307の縁を接続することができ、その結果、スカートがスタックを取り囲むことは理解されよう。金属支持プレート306aとセパレータ306bは分解して示しておらず、したがって、この図では金属支持プレート306aのみが見えることにも留意されたい。セルユニット306の金属支持プレート306aとセパレータ306bとは、それらの周囲で互いに溶接されるか又はその他の方法で取り付けられる。追加の電気エンドプレート607、バスバー612、及び第1の電気エンドプレート602は、それらが組み立てられた(例えば、溶接、ろう付け、又はその他の方法で一緒に取り付けられた)形態で示されており、破線は、プレート607及びプレート602が占める分解された構成体における位置を示すことにさらに留意されたい。これらのプレートがスタックの定位置になったとき(好ましくは、スタックに圧縮が加わったとき)のみ、バスバー612はプレート607及びプレート602に取り付けることができる。さらに、導電性セラミック層510は、追加の電気エンドプレート607とは別に示されているが、しばしば、導電性セラミック層510が追加の電気エンドプレート607にコーティング又は積層されることが理解されよう。
【0138】
燃料電池としての使用では、電気負荷は、構成体600の電気スタッド601と第2の電気スタッド605との間に接続することができる。アノードが、金属支持プレート306aに最も近い電気化学的に活性な層である例では、第1の流体は燃料であり、第1の流体容積部内の流れは図6Aの矢印によって示されている。燃料は、第1のチムニー、金属支持プレート306aとセパレータ306bとの間の隙間、及び金属支持プレート306bの多孔質領域を通ってアノードに供給され、排出生成物は、アノードから、金属支持プレート306aとセパレータ306bとの間の隙間を通って第2のチムニーに導かれる。第2の流体は酸化剤であり、第2の流体容積部を通ってカソードに供給される。
【0139】
電解セルとしての使用では、電位差は、電気スタッド601と第2の電気スタッド605との間に、構成体600のスタックに電気エネルギーを供給するために与えることができる。関連する流体は、第1及び第2の流体容積部に供給され、そこから排出される。
【0140】
この構成体600により、すべての電気接続部が構成体の一端に配置され、すべての流体接続部が他端に配置されるので、セルスタック構成体600が配置されるシステムへの電気接続及び流体接続が便利になり得る。
【0141】
図7は、図6の第1の電気エンドプレート602及び第2の電気エンドプレート606の平面図である。第1の電気エンドプレート602は、セルスタック構成体600の第1のチムニーと位置が合うように電気スタッド601を備える。第1の電気エンドプレート602は、第2の電気スタッド605及び関連するスリーブ503が通る開口704を備える。電気スタッド601に最も近い第1の電気エンドプレート602の端部は、バスバー612への取付けを容易にするために直線状であってもよい。
【0142】
第2の電気エンドプレート606は、セルスタック構成体600の第2のチムニーと位置が合うように第2の電気スタッド605を備える。セルユニットのスタックの最も外側のセルユニットの電気化学に活性な層の最も外側の電極の方へ突出する複数の突起614が設けられて、スタックから第2の電気エンドプレート606に電力を伝達する。ポート706は、任意選択で、第2の電気エンドプレート606を貫通して設けられてもよい。ポート706が設けられている場合、ポートは第1のチムニーの一部を形成し、ポートが設けられていない場合、第2の電気エンドプレート606は第1のチムニーを塞ぐ。後者の場合、第2の電気エンドプレート606は両方のチムニーを塞ぐ。
【第2の態様の詳細な説明】
【0143】
図10を参照すると、セルスタック構成体1400の断面図が示されている。セルスタック構成体1400は、図5のセルスタック構成体500の変形例である。図11は、図10の構成体1400の分解斜視図である。圧縮手段(例えばスカート307)は、図を見やすくするため、構成体1400に示されていないことに留意されたい。
【0144】
図12は、セルスタック構成体1400の第1の電気エンドプレートの分解図である。図13は、セルスタック構成体1400の第2の電気エンドプレートの分解図である。
【0145】
構成体1400には、第1の電気エンドプレート1402が示されており、これは、上記の第1の電気エンドプレートと実質的に同様に機能することができる。第1の電気エンドプレート1402は、第1の層1416が第2の層1417に溶接(又はその他の方法で接続)された2層構造を備える(溶接経路は、図11及び図12において破線1621で示されている)。第1の層1416は平面プレートである。第1の層1416は、セルスタック構成体のチムニーの1つを塞ぎ(電気スタッド301は、その塞がれたチムニーの連続部を通ってセルスタック構成体を出る)、第1の流体容積部の流体の送出又は排出のための別のチムニーの一部を形成するポートを備える。
【0146】
第2の層1417は平面プレートであることが分かる。第2の層1417は、セルユニットのスタックのセルユニット306の金属支持プレート306aと同様である。第2の層1417は、セルユニットのスタックの金属支持プレート306aと同じように、(同様に配置された)ポートを備える。導電性セラミック層1418が、第2の層1417の、第1の層1416に面する面とは反対がわの面に接合(例えば、取り付け又は積層)される。導電性セラミック層1418は、先に説明した導電性セラミック層510と同様であってもよく、燃料電池のカソードでの使用に適したタイプの材料、例えばLSCF、LCN、BSCF、例えばLCN60であってよい。導電性セラミック層1418の厚さは、セルユニットのスタックのセルユニット306の電気化学的に活性な層506の厚さと同様である。これは、第2の層1417をセルユニットのスタックの隣接する(最も外側又は最も上側の)セルユニット306のセパレータプレート306bから隔てるガスケット304を、構成体1400の他の場所で用いられるガスケット304と同じにすることができることを意味する。
【0147】
導電性セラミック層1418の、第2の層1417とは反対がわの面は、セルユニットのスタックの隣接する(最も外側又は最も上側の)セルユニット306のセパレータプレート306bの突起に接触する。セパレータプレート306bの突起は上下方向に交互に配置され、上向きの突起は、導電性セラミック層1418の方を向いてそれに接触し、同じセルユニット306の金属支持プレート306aから離れ、下向きの突起は導電性セラミック層1418から離れるように、同じセルユニット306の金属支持プレート306aの方を向いてそれに接触する。セパレータプレート306bの下向きの突起は、金属支持プレート306aに接触し、したがって、電気化学的に活性な層であり得る層506に電気的に接続され、その場合、セパレータプレートの下向きの突起は、金属支持プレート306aに最も近い電気化学的に活性な層(それらの電気化学的に活性な層は基板の他の側にある)の電極(典型的にはアノード)に電気的に接続される。その電気的な接続は、金属支持プレート306aとセパレータプレート306bとがそれらの周囲で溶接されていることにより強化される。その結果、電気スタッド301は、第1の層1416、第2の層1417、及び導電性セラミック層1418を介して、セルユニットのスタックに電気的に接続される。
【0148】
構成体1400はまた、図10に示すように、第2の電気エンドプレート1407を含み、これは、上記の第1の電気エンドプレート1402と実質的に同様に機能することができる。第2の電気エンドプレート1407は、第1の層1419が第2の層1420に溶接(又はその他の方法で接続)された2層構造を備える(溶接経路1722は、図11及び図13において破線で示されている)。第1の層1419は、平面プレートである。第1の層1419は、セルスタック構成体のチムニーの1つを塞ぎ(電気スタッド505は、その塞がれたチムニーの連続部を通ってセルスタック構成体を出る)、第1の流体容積部の流体の送出又は排出のための別のチムニーの一部を形成するポートを備える。
【0149】
第2の層1420は、セルユニットのスタックのセルユニット306のセパレータプレート306bと同様である。第2の層1420は、セルユニットのスタックのセパレータプレート306bと同じように、(同様に配置された)ポートを備える。第2の層1420は、その周囲で第1の層1419に溶接又はその他の方法で接続される(ポートの周りで溶接されてもよい)。第2の層1420は、起伏のあるプレートである(すなわち、3D特徴部を有する)ことが分かる。第2の層1420は、上下方向に交互に配置された突起を備え、上向きの突起は、セルユニットのスタックの隣接する(図では最も下側の)セルユニット306の層506(電気化学的に活性な層であってもよい)の方を向いてそれに接触し、電気エンドプレート1407の第1の層1419から離れ、下向きの突起はセルユニットのスタックの隣接する(図では最も下側の)セルユニット306から離れるように、電気エンドプレート1407の第1の層1419の方を向いてそれに接触する。第2の層1420の上向きの突起は、セルユニットのスタックの隣接する(図では最も下側の)セルユニット306の層506に接触し、したがって、隣接する(図では最も下側の)セルユニット306の電極(典型的にはカソード)に電気的に接続される。その結果、電気スタッド505は、第1の層1419及び第2の層1420を介して、セルユニットのスタックに電気的に接続される。電気スタッド301、505は、上記の第1の態様に関して説明したのと同様の態様で、それぞれの電気エンドプレートのベース部分において取り付けられ又はその他の方法で接続され、ベース部分は、それぞれのチムニーにおける圧縮力を受ける。
【0150】
電気エンドプレート(1402、1407)の第1の層(1416、1419)及び第2の層(1417、1420)は鉄含有層であり、例えばこれらの層は鋼(典型的には、ステンレス鋼又はフェライト系ステンレス鋼)である。第1の層に適切な材料の例としては、SS441及びCrofer22が含まれ、第2の層に適切な材料の例としては、SS441、SS444、及びCrofer22が含まれる。第1の層と第2の層は、異なる金属から形成され、永久的に接続される。電気エンドプレートの第1の層は、少なくとも0.5mm、例えば0.5mm~5mm、又は0.5~2mm、又は1~2mmの厚さを有する。
【0151】
図10の構成体1400は、第1の態様の図6の構成体600に関して説明したように、バスバー及び追加の電気プレートを使用することによって、スタックの同じ端部に第1の電気スタッド301及び第2の電気スタッド505の両方を設けるように変えることができる。
【0152】
図12は、第1の電気エンドプレート1402の(人為的な)分解図である。図12において、第1の層1416及び第2の層1417は自己支持剛体プレートである。溶接経路1621は破線で示され、第1の電気エンドプレート1402の第2の層1417の周囲を辿る。流体が、それぞれのポートによって形成されたチムニーから、第1の電気エンドプレート1420の第1の層1416と第2の層1417との間の空間へ流入することを防止するために、流体ポートの周囲にさらなる溶接経路(複数の場合あり)(図示せず)も存在してもよい。
【0153】
図13は、第2の電気エンドプレート1407の(人為的な)分解図である。図13において、第1の層1419及び第2の層1420は自己支持剛体プレートである。溶接経路1722は破線で示され、第2の電気エンドプレートの第1の層1419及び第2の層1420の周囲を辿る。また、図13には、第2の電気エンドプレート1407の第2の層1420の上下方向の突起1723が示されている。流体が、それぞれのポートによって形成されたチムニーから、第2の電気エンドプレート1407の第1の層1419と第2の層1420との間の空間へ流入することを防止するために、流体ポートの周囲にさらなる溶接経路(複数の場合あり)(図示せず)も存在してもよい。
【0154】
図14を参照すると、セルスタック構成体の一部分の断面図が示されている。セルスタック構成体のこの一部分は、図10のセルスタック構成体1400の電気スタッド505、第2の電気エンドプレート1407、及びセルユニットのスタックの隣接する(図10では最も下側の)セルユニット306の変形例である。
【0155】
図14に示す変形例では、セルユニットのスタックの隣接するセルユニット306の層506の方へ向けられた第2の電気エンドプレート1407の第2の層1420の突起1723は、導電性セラミック層1824を備える。セルユニットのスタックの隣接するセルユニット306の電気化学的に活性な層の方へ向けられた、各セルユニット306のセパレータプレート306bの突起も、導電性セラミック層1824を備える。導電性セラミック層1824は、前記突起に接合又は積層される。
【0156】
導電性セラミック層1824は、セルユニットのスタックの隣接するセルユニット306の層506と面同士で接触し、突起(したがって、セパレータプレート306b又は第2のプレート1420)と層506との間の電気接触を改善する。層506がセルユニットの電気化学的に活性な層であるとき、隣接するセルユニットの最も外側の電極は、典型的にはカソードであり、LSCF、LCN、BSCFなどのカソードタイプの材料が、導電性セラミック層1824に使用される。
【0157】
図15は、セルスタック構成体1900の一部として、第2の電気エンドプレート1407及び導電性セラミック層1824を示す。セルスタック構成体1900は、図10の構成体1400の変形例である。図15は、さらに、第1の電気エンドプレート1402の導電性セラミック層1418に接触するセルユニットのスタックの最も上側のセルユニット306のセパレータプレート306bの上向きの突起に接合又は積層された導電性セラミック層1824を示す。これらの導電性セラミック層1824により、第1の電気エンドプレート1402と、セルユニットのスタックの隣接する(図15では最も上側の)セルユニットとの間の電気接続が良好になる。
【0158】
本発明は、上記の例だけに限定されず、他の例も、添付の請求項の範囲から逸脱することなく当業者には容易に明らかとなる。
【0159】
本発明のこれら及び他の特徴は、純粋に例示として上で説明した。特許請求の範囲内で、本発明に対して細かな変更を行うことができる。
図1
図2
図3
図4
図5A
図5B
図6A
図6B
図6C
図7
図8
図9
図10
図11
図12
図13
図14
図15
【国際調査報告】