IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルコン インコーポレイティドの特許一覧

特表2023-538816光コヒーレンストモグラフィ誘導ロボット眼科処置
<>
  • 特表-光コヒーレンストモグラフィ誘導ロボット眼科処置 図1A
  • 特表-光コヒーレンストモグラフィ誘導ロボット眼科処置 図1B
  • 特表-光コヒーレンストモグラフィ誘導ロボット眼科処置 図2
  • 特表-光コヒーレンストモグラフィ誘導ロボット眼科処置 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-09-12
(54)【発明の名称】光コヒーレンストモグラフィ誘導ロボット眼科処置
(51)【国際特許分類】
   A61B 3/10 20060101AFI20230905BHJP
   A61F 9/008 20060101ALI20230905BHJP
   A61F 9/007 20060101ALI20230905BHJP
【FI】
A61B3/10 100
A61F9/008 130
A61F9/007 200C
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2023505417
(86)(22)【出願日】2021-08-23
(85)【翻訳文提出日】2023-01-25
(86)【国際出願番号】 IB2021057710
(87)【国際公開番号】W WO2022043853
(87)【国際公開日】2022-03-03
(31)【優先権主張番号】63/071,716
(32)【優先日】2020-08-28
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】319008904
【氏名又は名称】アルコン インコーポレイティド
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100160705
【弁理士】
【氏名又は名称】伊藤 健太郎
(74)【代理人】
【識別番号】100227835
【弁理士】
【氏名又は名称】小川 剛孝
(72)【発明者】
【氏名】スティーブン ティー.チャールズ
【テーマコード(参考)】
4C316
【Fターム(参考)】
4C316AA03
4C316AA06
4C316AA07
4C316AA08
4C316AA09
4C316AB02
4C316AB11
4C316FA06
4C316FC12
(57)【要約】
本明細書に記載されたシステム及び方法は、OCT誘導ロボット眼科処置のための改善された技術を提供する。方法は、眼のOCTスキャン中に、対応するガルバノメータスキャナに結合された複数のアブソリュート及びインクリメンタルエンコーダから複数のガルバノメータスキャナの位置データを受信することを含む。方法は、眼の1つ以上の組織に関連するスキャンデータを受信することを更に含む。方法は、第1の3D座標系における眼の1つ以上の組織の第1の位置のセットを判定することを更に含む。方法は、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定することを更に含む。方法は、ロボットデバイスに手術機器を第2の3D座標系における位置に移動させることを含む。
【特許請求の範囲】
【請求項1】
光コヒーレンストモグラフィ(OCT)システムであって、
複数のガルバノメータスキャナと、
複数のアブソリュートエンコーダの各々の1つ及び複数のインクリメンタルエンコーダの各々の1つが、前記複数のガルバノメータスキャナのうちの少なくとも1つに結合されている、前記複数のアブソリュートエンコーダ及び前記複数のインクリメンタルエンコーダと、
前記複数のアブソリュートエンコーダ及び前記複数のインクリメンタルエンコーダに結合されたコントローラであって、
プロセッサと、
前記プロセッサに結合され、且つ記憶された命令を有するメモリであって、前記命令が、前記プロセッサによって実行されると、前記コントローラに、
眼の光コヒーレンストモグラフィ(OCT)スキャン中に、前記複数のガルバノメータスキャナの対応するガルバノメータスキャナに結合された前記複数のアブソリュートエンコーダ及び前記複数のインクリメンタルエンコーダから前記複数のガルバノメータスキャナの位置データを受信させ、
前記OCTスキャン中に、前記眼の1つ以上の組織に関連するスキャンデータを受信させ、
前記受信位置データ及び前記スキャンデータに基づいて、第1の3次元(3D)座標系における前記眼の前記1つ以上の組織の第1の位置のセットを判定させ、
前記第1の位置のセット、及び前記第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の前記第2の3D座標系における位置を判定させ、
前記ロボットデバイスに前記手術機器を前記第2の3D座標系における前記位置に移動させる、メモリと、を含む、コントローラと、
を備える、光コヒーレンストモグラフィ(OCT)システム。
【請求項2】
前記プロセッサが、前記コントローラに更に、
前記眼の前記OCTスキャンの開始を示すメッセージの受信に応じて、前記眼の前記OCTスキャンを開始させ、
前記OCTスキャンに基づいて、前記第1の3D座標系における前記眼のリアルタイム3D画像を生成させる、請求項1に記載のOCTシステム。
【請求項3】
前記位置を判定することが、
前記眼の前記1つ以上の組織のうちの第1の組織に対応する前記リアルタイム3D画像における場所の選択を受信することと、
前記第1の位置のセット、及び前記第1の3D座標系と第2の3D座標系との間の前記マッピングに基づいて、前記場所を前記第2の3D座標系における前記判定された位置へマッピングすることと、を含む、請求項2に記載のOCTシステム。
【請求項4】
前記プロセッサが、前記コントローラに更に、
ユーザに表示するために前記眼の前記リアルタイム3D画像を提供させる、請求項2に記載のOCTシステム。
【請求項5】
前記複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダが、サイン-コサインエンコーダである、請求項1に記載のOCTシステム。
【請求項6】
前記複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダが、ホログラフィックエンコーダである、請求項1に記載のOCTシステム。
【請求項7】
前記複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナが、第1の方向にスキャンするように構成され、前記複数のガルバノメータスキャナのうちの少なくとも1つの他のガルバノメータスキャナが、第2の方向にスキャンするように構成されている、請求項1に記載のOCTシステム。
【請求項8】
前記第1の方向が、前記第2の方向に対して垂直である、請求項7に記載のOCTシステム。
【請求項9】
前記複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナが、可動磁石ガルバノメータスキャナである、請求項1に記載のOCTシステム。
【請求項10】
ロボットデバイスを誘導する方法であって、
眼の光コヒーレンストモグラフィ(OCT)スキャン中に、複数のガルバノメータスキャナの対応するガルバノメータスキャナに結合された複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダから前記複数のガルバノメータスキャナの位置データを受信することであって、前記複数のアブソリュートエンコーダの各々の1つ及び前記複数のインクリメンタルエンコーダの各々の1つが、前記複数のガルバノメータスキャナのうちの少なくとも1つに結合されている、ことと、
前記OCTスキャン中に、前記眼の1つ以上の組織に関連するスキャンデータを受信することと、
前記受信位置データ及び前記スキャンデータに基づいて、第1の3次元(3D)座標系における前記眼の前記1つ以上の組織の第1の位置のセットを判定することと、
前記第1の位置のセット、及び前記第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、前記ロボットデバイスに結合された手術機器の前記第2の3D座標系における位置を判定することと、
前記ロボットデバイスに前記手術機器を前記第2の3D座標系における前記位置に移動させることと、
を含む、方法。
【請求項11】
前記眼の前記OCTスキャンの開始を示すメッセージの受信に応じて、前記眼の前記OCTスキャンを開始することと、
前記OCTスキャンに基づいて、前記第1の座標系における前記眼のリアルタイム3D画像を生成することと、を更に含む、請求項10に記載の方法。
【請求項12】
前記位置を判定することが、
前記眼の前記1つ以上の組織のうちの第1の組織に対応する前記リアルタイム3D画像における場所の選択を受信することと、
前記第1の位置のセット、及び前記第1の3D座標系と第2の3D座標系との間の前記マッピングに基づいて、前記場所を前記第2の3D座標系における前記判定された位置へマッピングすることと、を更に含む、請求項11に記載の方法。
【請求項13】
ユーザに表示するために前記眼の前記リアルタイム3D画像を提供することを更に含む、請求項11に記載の方法。
【請求項14】
前記複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダが、サイン-コサインエンコーダである、請求項10に記載の方法。
【請求項15】
前記複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダが、ホログラフィックエンコーダである、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、概して、眼科処置のための方法及び装置に関し、より具体的には、光コヒーレンストモグラフィ(OCT)誘導ロボット眼科処置のための方法及び装置に関する。
【背景技術】
【0002】
OCT誘導ロボット眼科処置は、患者ケアを改善することができる。例えば、OCT誘導ロボット網膜硝子体手術は、患者の眼の関心のある組織の正確な切開、より一貫した手術処置をもたらし、手術処置中のヒューマンエラーを防ぐことができる。真のOCT誘導ロボット眼科処置を安全に実施するために、眼の様々な組織の位置に関する正確なデータをロボットデバイスに提供する必要がある。
【0003】
既存のOCTシステムは、眼のOCTスキャンを実行し、眼の様々な組織を検出するように構成され得る。既存のOCTシステムは、OCTスキャンの実行中にIR損失により、ガルバノメータスキャナの加熱から発生する熱に敏感になり得る。そのような熱は、既存のOCTシステムの1つ以上の構成要素(例えば、ガルバノメータスキャナ、アナログ容量性角度センサなど)の熱ドリフトをもたらす場合がある。熱ドリフトにより、OCTシステムの1つ以上のスキャン構成要素が予想される位置からのドリフトを引き起こし得る。同様に、一部の既存のOCTシステムの一部の可動構成要素のベアリングによって引き起こされる摩擦もまた、OCTシステムの1つ以上の構成要素が予想される位置からのドリフトを引き起こす熱ドリフトをもたらす場合がある。
【0004】
一般に、ガルバノメータスキャナは角度が制限されたロータリアクチュエータであるため、熱ドリフトにより、OCTシステムのガルバノメータスキャナの角度位置エラーをもたらす可能性がある。角度位置エラーは、ユーザによって選択された組織平面から最大100ミクロン離れた眼内の組織をシステムが誤って標的とさせ得る並進エラーをもたらす場合がある。加えて、ガルバノメータスキャナに結合されたアナログ容量性角度センサは、そのような熱ドリフトを補正することができず、100ミクロンの範囲のエラーを無効にすることができない。
【0005】
したがって、特定の既存のOCTシステムは、OCTシステムによってスキャンされている眼内の組織の空間における位置及び向きを正確に判定することができない。このように、そのような既存のOCTシステムは、ロボット眼科処置を正確に誘導することができない。
【発明の概要】
【課題を解決するための手段】
【0006】
本開示は、概して、OCT誘導ロボット眼科処置のための方法及び装置に関する。
【0007】
特定の実施形態では、光コヒーレンストモグラフィ(OCT)システムは、複数のガルバノメータスキャナと、複数のアブソリュートエンコーダと、複数のインクリメンタルエンコーダと、を含み、複数のアブソリュートエンコーダの各々の1つ及び複数のインクリメンタルエンコーダの各々の1つが、複数のガルバノメータスキャナのうちの少なくとも1つに結合されている。OCTシステムは、複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダに結合されたコントローラを更に含む。コントローラは、プロセッサと、プロセッサに結合され、且つ記憶された命令を有するメモリと、を含み、命令が、プロセッサによって実行されると、コントローラに、眼の光コヒーレンストモグラフィ(OCT)スキャン中に、対応するガルバノメータスキャナに結合された複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダから複数のガルバノメータスキャナの位置データを受信させる。プロセッサはまた、コントローラに、OCTスキャン中に、眼の1つ以上の組織に関連するスキャンデータを受信させる。プロセッサはまた、コントローラに、受信位置データ及びスキャンデータに基づいて、第1の3次元(3D)座標系における眼の1つ以上の組織の第1の位置のセットを判定させる。プロセッサはまた、コントローラに、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定させる。プロセッサはまた、コントローラに、ロボットデバイスに手術機器を第2の3D座標系における位置に移動させる。
【0008】
特定の実施形態では、方法は、一般に、眼の光コヒーレンストモグラフィ(OCT)スキャン中に、対応するガルバノメータスキャナに結合された複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダから複数のガルバノメータスキャナの位置データを受信することであって、複数のアブソリュートエンコーダの各々の1つ及び複数のインクリメンタルエンコーダの各々の1つが、複数のガルバノメータスキャナのうちの少なくとも1つに結合されている、ことを含む。方法は、OCTスキャン中に、眼の1つ以上の組織に関連するスキャンデータを受信することを更に含む。方法は、受信位置データ及びスキャンデータに基づいて、第1の3次元(3D)座標系における眼の1つ以上の組織の第1の位置のセットを判定することを更に含む。方法は、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定することを更に含む。方法は、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定することを更に含む。
【0009】
本開示の態様は、本明細書に記載の方法を実行するための、装置、プロセッサ、及びコンピュータ可読媒体のための手段を提供する。
【0010】
上記で列挙した本開示の特徴を詳細に理解できるように、上記で簡潔に要約した本開示のより詳細な説明は、実施形態を参照することによって得られ得、そのいくつかを添付図面に示す。しかしながら、添付図面は、例示的な実施形態を示すにすぎないため、その範囲を限定するとみなされるべきではなく、他の同様に効果的な実施形態が認められ得ることに留意すべきである。
【図面の簡単な説明】
【0011】
図1A図1Aは、本開示の特定の実施形態による、例示的なOCT誘導ロボット眼科手術システムの選択された構成要素のブロック図を示す。
図1B図1Bは、本開示の特定の実施形態による、ガルバノメータスキャナの斜視図を示す。
図2図2は、本開示の特定の実施形態による、OCTコントローラの選択された構成要素のブロック図を示す。
図3図3は、本開示の特定の実施形態による、眼科処置のためにロボットデバイスを誘導するための例示的な方法のフローチャートを示す。
【発明を実施するための形態】
【0012】
理解を容易にするため、可能な場合、複数の図に共通する同一の要素を示すために同一の参照符号が使用される。1つの実施形態の要素及び特徴は、更に記述することなく他の実施形態に有益に組み込まれ得ることが考えられる。
【0013】
本開示は、概して、OCT誘導ロボット眼科処置のための方法及び装置に関する。
【0014】
本明細書で説明されるように、ロボット眼科処置は、ユーザから受信したユーザ入力に基づいて、ロボットデバイスによって実行される眼科処置であり得る。ユーザ入力には、眼科処置の選択、標的組織の選択、選択された処置を実行するための命令などが含まれ得る。
【0015】
既存のOCTシステムは、眼をスキャンするように構成することができ、外科医は、立体デジタル視覚化と組み合わせられた眼のスキャンからのスキャンデータに基づいて生成された画像上で、眼の1つ以上の組織を識別することができる。しかしながら、既存のOCTシステムは、一般に、眼の1つ以上の組織の正確な位置又は場所を提供するように構成されていない。例えば、OCTシステムは、一般に、アナログ容量性角度センサに結合されたガルバノメータスキャナで構成されている。しかしながら、OCTシステムの一部の構成要素(例えば、ガルバノメータスキャナ)から発生する熱、及び/又はOCTシステムの構成要素の動作からのベアリング摩擦により、OCTシステムのガルバノメータスキャナの角度位置を判定する際に角度エラーを引き起こし得る熱ドリフトをもたらす可能性がある。そのような熱ドリフトは、眼内の組織の位置を判定する際に、一般に100ミクロンの範囲の並進エラーをもたらす可能性がある。そのような熱ドリフトは、OCT画像生成に対して最小限の影響しか与えないかもしれないが、熱ドリフトを補正及び/又は除去することなく、座標系において眼の様々な組織の位置及び/又は場所を判定しようとするのは危険であり得る。それゆえ、既存のOCTシステムでは、ロボット眼科処置を正確に誘導することができない。
【0016】
したがって、本開示のいくつかの実装形態は、眼内の1つ以上の組織の位置を判定し、手術機器を眼内の組織まで移動させるようにロボットデバイスを効果的に誘導する際に、OCTシステムの精度を向上させる様々なシステム及び技術を提供する。本開示のいくつかの実装形態は、ユーザ(例えば、外科医など)からスキャンされた眼の1つ以上の標的組織に関連する入力を受信するようにOCTシステムを構成し、且つOCTシステムの座標系における眼の1つ以上の標的組織の位置又は場所を判定するようにOCTシステムを構成する、様々なシステム及び技術を提供する。本開示のいくつかの実施態様は、ロボットデバイスに、ロボットデバイスの座標系における眼の1つ以上の標的組織の位置又は場所を提供し、且つロボットデバイスに結合された手術機器又は別の医療機器を、提供された位置又は場所に基づいてロボットデバイスに1つ以上の標的組織に移動させるようにOCTシステムを構成する、様々なシステム及び技術を提供する。
【0017】
図1Aは、例示的な光コヒーレンストモグラフィ(OCT)誘導ロボット眼科手術システム10の選択された構成要素のブロック図を示している。OCT誘導ロボット眼科手術システム10は、OCTシステム100、及びロボットデバイス120を含む。OCTシステム100は、OCTスキャナ102、OCTコントローラ104、画像化システム106、及びディスプレイ108を含む。OCTシステム100は、ロボットデバイス120及び外部ディスプレイ110に通信可能に結合され得る。
【0018】
OCTスキャナ102は、複数のOCT構成要素及び/又は機器(図1Aでは別個に図示せず)を含み得る。OCT構成要素及び/又は機器は、様々なタイプのものであってもよく、OCTスキャナ102は、OCT構成要素及び/又は機器のタイプに基づいて異なって構成され得る。OCTスキャナ102は、患者の眼130のOCTスキャンを実行する。OCTスキャナ102は、眼130上への1つ以上のサンプルビーム(図示せず)の出力を制御し、且つ眼130から反射して戻される1つ以上の測定ビーム(図示せず)を受け取ることによって、OCTスキャンを実行することができる。1つ以上の測定ビームは、眼130内の組織と相互作用するサンプルビームの光子に応じて、眼130から反射して戻され得る。いくつかの実装形態では、OCTスキャナ102は、時間領域OCT(TD-OCT)として構成され得る。いくつかの実装形態では、OCTスキャナ102は、周波数領域OCT(FD-OCT)として構成され得る。いくつかの実装形態では、OCTスキャナ102は、スイープ源OCT(SS-OCT)として構成され得る。
【0019】
OCTスキャナ102は、複数のガルバノメータスキャナ(図1Aでは別個に図示せず)を含んでもよく、ガルバノメータスキャナを使用して眼130上への1つ以上のサンプルビームの出力を制御することができる。いくつかの実装形態では、OCTスキャナ102は、デュアルガルバノメータスキャナを含み得る。OCTスキャナ102の各ガルバノメータスキャナは、特定の方向にスキャンするように構成され得る。例えば、OCTスキャナ102の1つのガルバノメータスキャナは、第1の方向にスキャンするように構成することができ、OCTスキャナ102の別のガルバノメータスキャナは、第2の方向にスキャンするように構成することができる。いくつかの実装形態では、第1の方向と第2の方向は、異なる方向であり得る。いくつかの実装形態では、第1の方向は、第2の方向に対して垂直であり得る。いくつかの実装形態では、OCTスキャナ102の1つのガルバノメータスキャナは、第1のスキャン平面上で第1の方向にスキャンすることができ、OCTスキャナ102の別のガルバノメータスキャナは、第2のスキャン平面上で第2の方向にスキャンすることができる。いくつかの実装形態では、第1のスキャン平面は、第2のスキャン平面に対して垂直であり得る。
【0020】
各ガルバノメータスキャナは、アブソリュートエンコーダ(図1Aでは別個に図示せず)及びインクリメンタルエンコーダ(図1Aでは別個に図示せず)に結合され得る。例えば、OCTスキャナ102が2つのガルバノメータスキャナを含む場合、第1のアブソリュートエンコーダ及び第1のインクリメンタルエンコーダを、第1のガルバノメータスキャナに結合することができ、第2のアブソリュートエンコーダ及び第2のインクリメンタルエンコーダを、第2のガルバノメータスキャナに結合することができる。いくつかの実装形態では、OCTスキャナ102のガルバノメータスキャナに結合されたアブソリュートエンコーダは、光学ロータリアブソリュートエンコーダであり得る。いくつかの実装形態では、OCTスキャナ102のガルバノメータスキャナに結合されたインクリメンタルエンコーダは、光学ロータリインクリメンタルエンコーダであり得る。いくつかの実装形態では、アブソリュートエンコーダ及びインクリメンタルエンコーダは、ガルバノメータスキャナの1つ以上の要素(例えば、ミラー)に接続されたシャフトに結合され得る。アブソリュートエンコーダは、ガルバノメータスキャナの要素(例えば、ミラー)に接続されたシャフトの回転に基づいて、ガルバノメータスキャナの絶対的な又は真の角度位置を測定するように構成され得る。インクリメンタルエンコーダは、ガルバノメータスキャナの要素(例えば、ミラー)に接続されたシャフトの回転に基づいて、ガルバノメータスキャナの角度位置の変化を測定するように構成され得る。
【0021】
OCTスキャナ102のガルバノメータスキャナに結合されたアブソリュートエンコーダは、任意の電力中断又は熱ドリフトの後に初期化又は再初期化するための帰還プロセスを実行することなく、対応するガルバノメータスキャナの絶対的な又は真の角度位置を判定するように構成され得る。OCTスキャナ102のガルバノメータスキャナに結合されたアブソリュートエンコーダ及びインクリメンタルエンコーダは、高い角度分解能を有するように構成され得る。OCTスキャナ102のガルバノメータスキャナに結合されたインクリメンタルエンコーダは、OCTスキャナ102のガルバノメータスキャナに結合されたアブソリュートエンコーダよりも高い角度分解能を有するように構成され得る。したがって、アブソリュートエンコーダ及びインクリメンタルエンコーダの組み合わせを利用することは、アブソリュートエンコーダが、任意の熱ドリフト又は電力中断の後に帰還プロセスを実行することなく、ガルバノメータスキャナの絶対的な又は真の角度位置をOCTコントローラ104などのコントローラに提供することができ、角度分解能がより高いインクリメンタルエンコーダが、ガルバノメータスキャナの角度位置における小さな変化でさえも正確に検出でき、且つガルバノメータスキャナの角度位置の変化を正確に追跡することができるため、有利である。いくつかの実装形態では、OCTスキャナ102のガルバノメータスキャナに結合されたアブソリュートエンコーダ及びインクリメンタルエンコーダは、ビット分解能、例えば、典型的には16ビット分解能以上で分解能値を測定することができる。
【0022】
各アブソリュートエンコーダは、アブソリュートエンコーダが結合されているガルバノメータスキャナの各位置に対して固有の構成のビットを含む出力を生成するように構成され得る。アブソリュートエンコーダによって生成される固有の構成のビットは、アブソリュートエンコーダが接続されている対応するガルバノメータスキャナの位置データを示す。いくつかの実装形態では、各インクリメンタルエンコーダの出力は、スキャン角度のサイン-コサインに比例するアナログである。インクリメンタルエンコーダの出力は、インクリメンタルエンコーダが結合されているガルバノメータスキャナの位置を示す。
【0023】
OCTスキャナ102に含まれる各アブソリュート及びインクリメンタルエンコーダは、アブソリュート及びインクリメンタルエンコーダが結合されている対応するガルバノメータスキャナの角度位置データをキャプチャし、その位置データをOCTコントローラ104に送信することができる。いくつかの実装形態では、アブソリュートインクリメンタルエンコーダは、位置データをリアルタイム及び/又はほぼリアルタイムでOCTコントローラ104に送信するように構成され得る。いくつかの実装形態では、1つのアブソリュートエンコーダ及び1つのインクリメンタルエンコーダを、単一のエンコーダデバイスに統合することができる。アブソリュートエンコーダ及びインクリメンタルエンコーダの追加の詳細については、図1Bを参照して以下に説明する。
【0024】
対応するガルバノメータスキャナの位置データは、患者の眼(例えば、眼130)のOCTスキャン中の、ガルバノメータスキャナのミラーの位置を示すことができる。例えば、第1のスキャン平面上で第1の方向にスキャンするように構成された、ガルバノメータスキャナに結合されたアブソリュートエンコーダからの位置データは、眼130のOCTスキャン中に第1のスキャン平面上で第1の方向に回転しているガルバノメータスキャナのミラーの位置を示すことができる。同様に、第2のスキャン平面上で第2の方向にスキャンするように構成された、ガルバノメータスキャナに結合されたアブソリュートエンコーダからの位置データは、眼130のOCTスキャン中に第2のスキャン平面上で第2の方向に回転しているガルバノメータスキャナのミラーの位置を示すことができる。上述のように、いくつかの実装形態では、第1のスキャン平面は、第2のスキャン平面に対して垂直であり得る。上述のように、いくつかの実装形態では、第1の方向は、第2の方向とは異なり得る。上述のように、いくつかの実装形態では、第1及び第2の方向は、同じ方向であり得る。
【0025】
ガルバノメータスキャナの一例を、図1Bに示す。図1Bに示されるガルバノメータスキャナは、可動磁石ガルバノメータスキャナである。図1Bは、ガルバノメータスキャナ150の斜視図を示している。ガルバノメータスキャナ150は、ミラー156及び1つ以上の磁石164を含み得る。ミラー156及び1つ以上の磁石164は、シャフト162を介して互いに接続され得る。いくつかの実装形態では、シャフト162は、スチールシャフトであり得る。ガルバノメータスキャナ150は、コイル152a~152bを含み得る。コイル152a~152bは、図1Bに示されるように、1つ以上の磁石164を取り囲み得る。
【0026】
エンコーダデバイス160は、アブソリュートエンコーダ及びインクリメンタルエンコーダを含むことができ、エンコーダデバイス160は、ガルバノメータスキャナ150に結合され得る。例えば、図1Bに示されるように、エンコーダデバイス160は、シャフト162を介してミラー156及び1つ以上の磁石164に接続され得る。患者の眼のOCTスキャン中に、ミラー156は、1つ以上の磁石164によるコイル電流Iによって誘発されるローレンツ力に応じて回転することができる。ミラー156が回転すると、ミラー156の異なる角度位置がエンコーダデバイス160によってキャプチャ及び/又は測定される。ミラー156の角度位置は、本明細書ではミラー156の機械的角度と呼ばれ得る。エンコーダデバイス160のアブソリュートエンコーダは、ミラー156の各角度位置又は機械的角度に対して固有の構成のビットを生成するように構成され得る。エンコーダデバイス160のインクリメンタルエンコーダは、ミラー156が回転すると、ミラー156の角度位置又は機械的角度の変化を追跡するように構成され得る。上述のように、OCTスキャン中のガルバノメータスキャナのミラーの機械的角度は、本明細書に記載のガルバノメータスキャナの位置を示すことができる。したがって、OCTスキャン中のミラー156の様々なキャプチャ及び/又は測定された機械的角度は、OCTスキャン中のガルバノメータスキャナの様々な位置を示す。
【0027】
エンコーダデバイス160は、アブソリュートインクリメンタルエンコーダの出力を、ガルバノメータスキャナ150の位置としてOCTコントローラ104に送信することができる。上述のように、特定の実装形態では、アブソリュートエンコーダ及びインクリメンタルエンコーダの出力は、アブソリュートエンコーダ及びインクリメンタルエンコーダが結合されているガルバノメータスキャナ(例えば、ガルバノメータスキャナ150)の位置データを示すことができ、又は本明細書ではその位置データを示すものとして参照され得る。OCTスキャン中、エンコーダデバイス160は、アブソリュートエンコーダ及びインクリメンタルエンコーダの出力をOCTコントローラ104に送信することができる。
【0028】
いくつかの実装形態では、エンコーダデバイス160のアブソリュートエンコーダは、サイン-コサインエンコーダであり得る。いくつかの実装形態では、エンコーダデバイス160のアブソリュートエンコーダは、ホログラフィックエンコーダであり得る。いくつかの実装形態では、エンコーダデバイス160のアブソリュートエンコーダは、エンコーダデバイス160のアブソリュートエンコーダ上に取り付けられた格子及び/又はホログラフィック光学要素(別個に図示せず)を有し得る。特定の実装形態では、エンコーダデバイス160のアブソリュートエンコーダと共に動作するインクリメンタルエンコーダは、ホログラフィックである。
【0029】
OCTスキャン中、1つ以上のサンプルビーム154は、ミラー156に方向付けされ得る。OCTスキャン中にミラー156が回転すると、ミラー156の回転により、1つ以上のサンプルビーム154の偏向角度が変化し得る。1つ以上のサンプルビーム154の偏向角度は、本明細書では、1つ以上のサンプルビーム154の光学角度と呼ばれ得る。いくつかの実装形態では、OCTスキャナ102は、OCTコントローラ104に送信されるスキャンデータの一部として及び/又はスキャンデータと共に、1つ以上のサンプルビーム154の異なる光学角度を送信することができる。
【0030】
図1Aに戻ると、OCTスキャナ102は、眼130の様々な深さで眼130をスキャンするように構成され得る。例えば、OCTスキャナ102は、眼130の完全な眼スキャンのために、眼130の深さ全体をスキャンするように構成され得る。同様に、OCTスキャナ102は、眼130の網膜など、眼130の任意の部分をスキャンするように構成され得る。いくつかの実装形態では、OCTスキャナ102は、異なる分解能で眼130の異なる深さをスキャンすることができる。例えば、OCTスキャナ102は、より低い分解能で眼130の深さ全体をスキャンすることができ、より高い分解能で眼130の網膜などの眼130の一部をスキャンすることができる。
【0031】
OCTスキャナ102は、眼から反射して戻る1つ以上の測定ビームに基づいてスキャンデータを生成するように構成され得る。スキャンデータは、スキャンされた組織の深さプロファイルを表すことができる。いくつかの実装形態では、OCTスキャナ102によって生成されたスキャンデータは、ラインスキャン(Bスキャン)の2次元(2D)スキャンデータを含み得る。いくつかの実装形態では、OCTスキャナ102によって生成されたスキャンデータは、エリアスキャン(Cスキャン、正視)の3次元(3D)スキャンデータを含み得る。OCTスキャナ102は、生成されたスキャンデータをOCTコントローラ104に送信するように構成され得る。いくつかの実装形態では、OCTスキャナ102は、生成されたスキャンデータをリアルタイム又はほぼリアルタイムで送信するように構成され得る。いくつかの実装形態では、OCTスキャナ102は、スキャン動作全体がOCTスキャナ102によって完了した後に、生成されたスキャンデータを送信するように構成され得る。
【0032】
OCTスキャナ102は、OCTコントローラ104からのコマンド及び/又は命令の受信に応じて、眼130のスキャンを開始するように構成され得る。OCTコントローラ104は、眼のスキャンを開始するために外科医などのユーザからの指示の受信に応じて、スキャン開始コマンドをOCTスキャナ102に送信するように構成され得る。OCTコントローラ104は、ユーザインターフェース(例えば、グラフィカルユーザインターフェース(GUI))及び/又は入力デバイス(図示せず)を介して眼のスキャンを開始するための指示を受信するように構成され得る。入力デバイスは、画像化システム106に通信可能に結合され、及び/又は組み込まれてもよい。入力デバイスの例には、キーパッド、キーボード、タッチ入力を受け取るように構成されたタッチスクリーンデバイスなどが含まれるが、これらに限定されない。
【0033】
いくつかの実施態様では、ユーザからの指示は、スキャンのための眼の深さ及び/又は場所に関連する情報を提供することができ、OCTコントローラ104は、受信した眼の深さ及び/又は場所関連情報をOCTスキャナ102に提供するよう構成され得る。例えば、OCTコントローラ104によって受信された指示は、完全な眼のOCTスキャンを示すことができ、OCTコントローラ104は、完全な眼のOCTスキャンを示す命令をOCTスキャナ102に送信することができる。同様に、OCTコントローラ104によって受信された指示は、眼の網膜のOCTスキャンを示すことができ、OCTコントローラ104は、眼の網膜のOCTスキャンを示す命令をOCTスキャナ102に送信することができる。
【0034】
OCTコントローラ104は、1つ以上の電気及び/又は通信インターフェースを介して、OCTスキャナ102に通信可能に結合され得る。いくつかの実装形態では、1つ以上の電気及び/又は通信インターフェースは、OCTコントローラ104がOCTスキャナ102からリアルタイム又はほぼリアルタイムでデータを受信し得るように、OCTスキャナ102から高い送信レートでデータ(例えば、OCTスキャナ102によって生成されたスキャンデータ)を送信するように構成され得る。
【0035】
OCTコントローラ104は、OCTスキャナ102から受信した、生成されたスキャンデータに基づいて、1つ以上のOCT画像を生成するように構成され得る。例えば、OCTコントローラ104は、ラインスキャンの生成された2Dスキャンデータに基づいて、2D画像又はBスキャン画像を生成するように構成され得る。同様に、OCTコントローラ104は、エリアスキャンの生成された3Dスキャンデータに基づいて、3D画像又はCスキャンを生成するように構成され得る。OCTコントローラ104は、画像生成及び/又は画像処理をリアルタイム及び/又はほぼリアルタイムで実行するように構成され得る。
【0036】
OCTコントローラ104は、生成されたOCT画像において眼の1つ以上の組織層を検出及び/又は自動セグメント化するために、1つ以上の組織検出及び/又は自動セグメント化アルゴリズムを用いて構成され得る。OCTコントローラ104が検出及び/又は自動セグメント化するように構成され得る眼の組織の例には、角膜の前面、網膜、角膜、虹彩、瞳孔、水晶体の前面及び後面に加えて、水晶体の位置、内境界膜(ILM)などが含まれるが、これらに限定されない。OCTコントローラ104は、OCTスキャナ102から受信したスキャンデータ及び/又は生成されたOCT画像に対して、1つ以上の組織検出及び/又は自動セグメント化アルゴリズムを適用して、スキャンされた眼の1つ以上の組織を検出及び/又は自動セグメント化するように構成され得る。
【0037】
OCTコントローラ104は、ガルバノメータスキャナに結合されたアブソリュート及びインクリメンタルエンコーダから受信したガルバノメータスキャナの位置データ、及び位置データが受信したときに受信されたスキャンデータに基づいて、眼の各検出された組織に対する3次元(3D)座標系における位置のセットを判定するように構成され得る。例えば、OCTスキャン中、OCTコントローラ104は、ガルバノメータスキャナの位置データ、及び網膜の表面(例えば、ILM)に関連するデータを含むスキャンデータを受信することができ、OCTコントローラ104は、受信したスキャンデータに基づいて網膜の表面を検出し、網膜の表面に関連するデータを含むスキャンデータが受信したときに受信された位置データに基づいて、3D座標系における網膜の表面の位置を判定することができる。
【0038】
いくつかの実装形態では、OCTコントローラ104は、検出された組織に対応するスキャンデータがOCTスキャナ102によってキャプチャ及び/又は生成されたときに、ガルバノメータスキャナの機械的角度に基づいて、3D座標系における検出された組織の位置を判定するように構成され得る。いくつかの実装形態では、OCTコントローラ104は、ガルバノメータスキャナの機械的角度を3D座標系における位置に変換するための規則及び/又は命令のセットを用いて構成され得る。例えば、ガルバノメータスキャナの初期受信位置データに対して、OCTコントローラ104は、そのデータを3D座標系の初期座標又は中心座標に関連付け、ガルバノメータスキャナの第2の受信位置データに対して、OCTコントローラ104は、そのデータを座標系の第2の座標に関連付けることができる。そのような実装形態では、OCTコントローラ104は、ガルバノメータスキャナの初期受信位置データとガルバノメータスキャナの第2の受信位置データとの間の差(例えば、最初の受信位置データの機械的角度と第2の受信位置データの機械的角度との間の差)に基づいて、第2の座標を判定することができる。
【0039】
OCTコントローラ104が検出された各組織の位置のセットを判定する座標系は、本明細書ではOCTシステム100の座標系と呼ばれ得る。眼130内の網膜の表面上の標的組織(例えば、ILM)などの、検出された組織のOCTシステム100の座標系における位置の一例は、OCTコントローラ104によって3D座標系の座標(-3、-2、-5)にあると判定することができ、ここで、第1の値(-3)はx軸上の値であり、第2の値(-2)はy軸の値であり、第3の値(-5)は3D座標系のz軸上の値である。
【0040】
いくつかの実装形態では、OCTコントローラ104によって判定された位置の値は、3D座標系の中心座標又は初期座標からのオフセットを示すことができる。いくつかの実装形態では、OCTコントローラ104は、3D座標系の他の全ての位置が中心座標からのオフセットを表すように、眼130の表面上の場所(例えば、中心点)として3D座標系の中心座標を設定するように構成することができ、第1の受信スキャンデータが眼130の表面上のその場所(例えば、中心点)に対応することができる。OCTコントローラ104は、検出された眼の組織の位置データをOCTシステム100のデータ記憶ユニットに記憶するように構成され得る。
【0041】
OCTコントローラ104は、ディスプレイ108及び外部ディスプレイ110に通信可能に結合され得る。OCTコントローラ104は、生成されたOCT画像をディスプレイ108及び/又は外部ディスプレイ110上に表示させることができる。例えば、OCTコントローラ104は、生成されたOCT画像をディスプレイ108及び/又は外部ディスプレイ110に送信することができる。いくつかの実装形態では、OCT画像は、ディスプレイ108及び/又は外部ディスプレイ110によって正視OCT画像として表示され得る。いくつかの実装形態では、OCT画像は、1つ以上の自動セグメント化組織(例えば、網膜の表面上など)を伴う半透明のOCT画像として表示することができ、ドット又はワイヤフレームアレイとして表示することができる。
【0042】
いくつかの実装形態では、OCTコントローラ104は、1つ以上の画像キャプチャデバイス(別個に図示せず)に通信可能に結合されてもよく、OCTコントローラ104は、OCTコントローラ104に通信可能に結合されている1つ以上の画像キャプチャデバイスから光学画像を受信するように構成され得る。OCTコントローラ104は、生成されたOCT画像を、受信された光学画像上にオーバーレイするように構成され得る。いくつかの実装形態では、OCTコントローラ104は、3次元光学画像を受信することができる。OCTコントローラ104は、OCT画像(例えば正視OCT画像)を3D光学画像上にオーバーレイするように構成され得る。
【0043】
光学画像上にOCT画像をオーバーレイする例は、CURVATURE OF FIELD TRANSFORMATION OF OCT IMAGES DURING VITREORETINAL SURGERYと題する、米国特許第10,398,307号明細書に開示されており、その全体の開示は、参照により本明細書に組み込まれる。正視OCT画像を生成する例は、BINOCULAR EN FACE OPTICAL COHERENCE TOMOGRAPHY IMAGINGと題する、米国特許第10,064,549号明細書に開示されており、その全体の開示は、参照により本明細書に組み込まれる。網膜硝子体手術中にOCT画像を生成する例は、RESOLUTION ENHANCEMENT OF OCT IMAGES DURING VITREORETINAL SURGERYと題する、米国特許第9,649,021号明細書に開示されており、その全体の開示は、参照により本明細書に組み込まれる。網膜硝子体手術中にOCT画像を生成する例は、RESOLUTION ENHANCEMENT OF OCT IMAGES DURING VITREORETINAL SURGERYと題する、米国特許第10,013,749号明細書に開示されており、その全体の開示は、参照により本明細書に組み込まれる。眼科手術中の正視又は3DボリューメトリックOCT画像化の例は、SUBTRACTIVE EN FACE OPTICAL COHERENCE TOMOGRAPHY IMAGINGと題する、米国特許第10,285,584号明細書に開示されている。
【0044】
ディスプレイ108及び外部ディスプレイ110は、Alcon Laboratories Inc.のNGENUITY 3D視覚化システムなどのデジタル支援眼科処置用のプラットフォームを提供する眼科視覚化システムの一部であり得る。いくつかの実施態様では、ディスプレイ108は、ユーザ(例えば、外科医など)のためのディスプレイであってもよく、ディスプレイ110は、眼科処置中に様々な人員によって観察するためのスタンドアロンモニタであってもよい。
【0045】
いくつかの実装形態では、ディスプレイ108及び/又は110は、3D視覚化システム、タッチスクリーンデバイス、液晶ディスプレイスクリーン、コンピュータモニタ、テレビ、タブレット、拡張眼鏡、観察眼鏡などとして実装され得る。ディスプレイ108及び/又は110は、ビデオグラフィックアレイ(VGA)、拡張グラフィックアレイ(XGA)、デジタルビジュアルインターフェース(DVI)、高精細マルチメディアインターフェース(HDMI(登録商標))などの、1つ以上のディスプレイ規格に準拠するよう構成され得る。特定の実装形態では、ディスプレイ108及び/又は110は、Alcon Laboratories Inc.のNGENUITY 3D視覚化システムにおいて使用される有機発光ダイオード(OLED)ディスプレイであり得る。
【0046】
いくつかの実装形態では、OCTコントローラ104は、OCTスキャナ102から受信したスキャンデータを画像化システム106に送信するように構成され得る。画像化システム106は、生成されたスキャンデータを受信し、且つスキャンデータを処理してユーザ(例えば、外科医、臨床医など)に表示するための1つ以上のOCT画像を生成するように構成され得る。画像化システム106は、生成されたOCT画像において眼の1つ以上の組織層を検出及び/又は自動セグメント化するために、1つ以上の組織検出及び/又は自動セグメント化アルゴリズムを用いて構成され得る。画像化システム106は、画像の3次元(3D)視覚化をサポートするように構成され得る。画像化システム106は、眼130の1つ以上の光学画像をキャプチャ及び/又は生成するように構成することができ、画像化システム106は、生成された1つ以上のOCT画像を、キャプチャ及び/又は生成された1つ以上の光学画像上にオーバーレイすることができる。
【0047】
例えば、画像化システム106は、OCT画像がオーバーレイされた光学画像をディスプレイ108に送信して、画像をユーザに表示させることができる。いくつかの実装形態では、画像化システム106は、OCT画像、生成されたOCT画像、及び/又はOCT画像の自動セグメント化された組織でオーバーレイされた光学画像を、OCTコントローラ104に提供するように構成され得る。例えば、画像化システム106は、OCT画像でオーバーレイされた光学画像をOCTコントローラ104に送信し、OCTコントローラ104は、OCT画像でオーバーレイされたデジタル光学画像をユーザ及び/又は他の人員に表示するために、OCT画像でオーバーレイされたデジタル光学画像を外部ディスプレイ110に送信するよう構成され得る。
【0048】
上述のように、ロボットデバイス120は、OCTシステム100に通信可能に結合され得る。ロボットデバイス120は、ロボットデバイスコントローラ122、及び手術機器124を含む。ロボットデバイスコントローラ122は、OCTコントローラ104から入力を受信するように構成され得る。OCTコントローラ104からの入力の例には、手術機器をロボットデバイス120の3D座標系における位置に移動させるための命令が含まれ得るが、これに限定されない。ロボットデバイス120の3D座標系は、眼の組織の位置が判定される3D座標系(例えば、OCTシステムの3D座標系)とは異なり得る。組織の位置の3D座標系からロボットデバイス120の3D座標系への変換の追加の詳細を以下に説明する。いくつかの実装形態では、ロボットデバイス120は、6自由度(6-DOF)で動くように構成され得る。
【0049】
ロボットデバイス120は、インターフェースを介してユーザ(例えば、外科医)と相互作用してロボットデバイス120を移動させるように構成することができ、ロボットデバイスコントローラ122は、インターフェースを介してユーザから入力を受信するように構成され得る。例えば、ロボットデバイス120は、外科医コンソールに通信可能に結合することができ、外科医などのユーザは、ロボットデバイス120の手術機器124を所望の位置まで移動させるために、外科医コンソールの6自由度(6-DOF)触覚インターフェースと相互作用することができる。ユーザ(例えば、外科医)は、触覚インターフェースを使用して、眼130内の標的組織の近くに手術ツールを位置決めすることができる。ロボットデバイスコントローラ122は、外科医コンソールの6-DOF触覚インターフェースの動作を外科医コンソールから受信し、ロボットデバイスの3D座標系における位置を判定して、手術機器124を移動させるように構成することができ、手術機器124をユーザの所望の位置まで移動させることができる。
【0050】
例えば、ディスプレイ108及び/又は110上のOCT画像に表示された眼130の所望の組織を観察した後、ユーザ(例えば、外科医など)は、ロボットデバイス120と相互作用して、手術機器を眼130の近くの位置まで移動させることができる。例えば、ユーザは、手術機器を眼の標的組織の近くに位置決めさせることができる。ロボットデバイスコントローラ122は、手術機器の位置をOCTコントローラ104に送信することができる。
【0051】
ユーザは、ディスプレイ108及び/又は110上で組織を選択し、ユーザがロボットデバイス120に実行させたいタスクを示すことができる。例えば、ユーザは、ディスプレイ108及び/又は110上のOCT画像がオーバーレイされた光学画像内に表示された網膜の表面上の標的場所をタッチして、網膜の表面上の標的場所を手術すべき標的組織として選択することができ、ユーザはまた、ロボットデバイス120が実行すべき膜(例えば、ILM)の除去などのタスクを選択することができる。いくつかの実装形態では、ユーザは、ロボットデバイス120に実行させたいタスクの動き及び/又は動作を仮想的に描くことができる。例えば、ユーザは、網膜の表面上の特定の場所を表示しているディスプレイ108及び/又は110上に円形動作を仮想的に描いて、そのような特定の場所からの膜(例えば、ILM又は網膜上膜)の除去を示すことができる。
【0052】
ディスプレイ108及び/又は110は、ユーザから受信したタスク及び/又は動作をOCTコントローラ104に送信するように構成され得る。OCTコントローラ104は、受信されたタスク及び/又は動作をユーザからロボットデバイスコントローラ122に送信するように構成され得る。ロボットデバイスコントローラ122は、手術機器124の位置をOCTコントローラ104に送信するように構成され得る。いくつかの実装形態では、ロボットデバイスコントローラ122は、ユーザからのタスク及び/又は動作の受信に応じて、手術機器124の位置をOCTコントローラ104に送信するように構成され得る。例えば、OCTコントローラ104を介してユーザからのタスク及び/又は動作情報の受信に応じて、ロボットデバイスコントローラ122は、手術機器124の位置情報を送信することができる。
【0053】
ロボットデバイスコントローラ122は、ロボットデバイス120の座標系における手術機器124の位置情報を送信することができる。OCTコントローラ104は、ロボットデバイス120の3D座標系における位置及び/又は座標を、OCTコントローラ104が検出された組織の位置を判定した3D座標系(例えば、OCTシステム100の3D座標系)における位置及び/又は座標に変換するように構成することができ、逆も同様である。OCTコントローラ104は、1つ以上の変換技術を適用して、1つの座標系から別の座標系に位置を変換するように構成され得る。例えば、OCTコントローラ104は、1つの座標系の座標を他の座標系の座標に変換するために、ヤコビアン変換をそれらの座標に適用するように構成することができる。
【0054】
いくつかの実装形態では、OCTコントローラ104は、OCTコントローラ104が組織の位置を判定する座標系の座標とロボットデバイス120の座標系との間のマッピングを用いて構成され得る。マッピングに基づいて、OCTコントローラ104は、第1の座標系の座標を第2の座標系の座標に変換するように構成され得る。例えば、1つの3D座標系における位置(-3、-2、-5)の場合、マッピングは、その位置が別の3D座標系における(2、1、4)に変換されることを示すことができる。
【0055】
受信された組織の選択に基づいて、OCTコントローラ104は、OCTシステム100の3D座標系における組織の位置を識別することができる。OCTコントローラは、変換技術、及び/又はOCTシステム100の座標系とロボットデバイス120との間のマッピングを利用して、ロボットデバイス120の3D座標系における組織の位置を判定することができる。例えば、ユーザが標的組織(例えば、網膜の表面上の特定の場所、又は眼内の別の場所)を選択し、OCTシステム100の3D座標系における標的組織の位置が(-3、-2、-5)である場合、OCTコントローラ104は、変換技術及び/又は2つの3D座標系間のマッピングを利用して、ロボットデバイス120の3D座標系における眼130内の標的組織の位置を判定することによって、ロボットデバイス120の3D座標系における標的組織の位置を判定することができる。特定の実施形態では、OCTシステム100とロボットデバイス120のベースとの堅固で精密な機械的取り付けが必要であるか、又は少なくとも有利である。
【0056】
OCTコントローラ104は、ユーザが選択した標的組織のロボットデバイス120の3D座標系において判定された位置をロボットデバイス120に送信し、ロボットデバイス120に手術機器をその位置に移動させることができる。例えば、OCTコントローラ104は、ロボットデバイス120の3D座標系における標的組織の位置(例えば、網膜の表面上の場所)をロボットデバイスコントローラ122に送信することができ、これに応じて、ロボットデバイスコントローラ122は、手術機器をOCTコントローラ104から受信した位置に移動させることができる。
【0057】
手術機器が、ユーザが選択した組織の位置まで移動された後、ロボットデバイス120は、ユーザによって選択されたタスクを実行するように構成され得る。例えば、ユーザが標的組織から膜を除去するタスクを選択した場合、ロボットデバイスコントローラ122は、手術機器にその膜を除去させることができる。同様に、ユーザが組織上で実行する動作又はタスクを仮想的に描いた場合、OCTコントローラ104は、その動作又はタスクに関連する情報をロボットデバイスコントローラ122に送信することができ、ロボットデバイスコントローラ122は、手術機器にその動作又はタスクを実行させることができる。
【0058】
図2は、図1を参照して上述したOCTコントローラ104などの、OCTコントローラの実装形態の選択された構成要素のブロック図を示している。図2に示されるように、OCTコントローラ104は、プロセッサ201、バス202、ディスプレイインターフェース204、メモリ210、及び通信インターフェース220を含む。
【0059】
プロセッサ201は、バス202を介して、メモリ210、ディスプレイインターフェース204、及び通信インターフェース220に通信可能に結合され得る。OCTコントローラ104は、プロセッサ201及び通信インターフェース220を介して、OCTシステム(例えば、OCTシステム100)の様々な外部構成要素(例えば、OCTスキャナ102、画像化システム106、ディスプレイ108、外部ディスプレイ110など)とインターフェースするように構成され得る。いくつかの実装形態では、通信インターフェース220は、OCTコントローラ104がネットワーク(図示せず)に接続することを可能にするように構成され得る。いくつかの実装形態では、OCTコントローラ104は、ディスプレイインターフェース204を介して、ディスプレイ108、外部ディスプレイ110などの1つ以上のディスプレイに接続され得る。
【0060】
メモリ210には、永続的、揮発性、固定、取り外し可能、磁気、及び/又は半導体媒体が含まれ得る。メモリ210は、1つ以上の機械可読コマンド、命令、データ、及び/又は同様のものを記憶するように構成され得る。いくつかの実装形態では、図2に示されるように、メモリ210は、オペレーティングシステム212、スキャン制御アプリケーション214などの、命令の1つ以上のセット及び/又はシーケンスを含み得る。オペレーティングシステム212の例には、Express Logicが提供するThreadX、WinD Riverが提供するVxWorks、Green Hillsが提供するIntegrity、QNXなどの、リアルタイムオペレーティングシステムが含まれ得るが、これらに限定されない。
【0061】
スキャン制御アプリケーション214は、眼のスキャンの開始、OCT画像の生成、OCT画像処理、アブソリュートエンコーダからのガルバノメータスキャナの位置データを受信すること、スキャンデータを受信すること、第1の3D座標系(例えば、OCTシステム100の3D座標系)における眼の1つ以上の組織の位置を判定すること、第1の3D座標系における組織の位置に基づく第2の3D座標系(例えば、ロボットデバイス120の3D座標系)における位置を判定すること、通信可能に結合されたロボットデバイス(例えば、ロボットデバイス120)に第2の3D座標系における位置までの手術機器を移動させること、などに関連する動作を含むがこれに限定されない、本明細書に記載されたOCTコントローラ動作を実行するように構成され得る。
【0062】
図3は、本開示の特定の実施形態による、眼科処置のためにロボットデバイスを誘導するための例示的な方法のフローチャートを示している。動作300は、例えば、OCTコントローラ(例えば、OCTシステム100のOCTコントローラ104)によって実行され得る。動作300は、1つ以上のプロセッサ(例えば、プロセッサ201)上で実行される及び実行するソフトウェア構成要素として実装され得る。
【0063】
動作300は、眼のOCTスキャン中に、OCTコントローラ104が複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダから複数のガルバノメータスキャナの位置データを受信する302において開始することができ、複数のアブソリュートエンコーダの各アブソリュートエンコーダ及び複数のインクリメンタルエンコーダの各インクリメンタルエンコーダは、複数のガルバノメータスキャナのうちの少なくとも1つに結合されている。
【0064】
304において、OCTコントローラ104は、OCTスキャン中に、眼の1つ以上の組織に関連するスキャンデータを受信する。306において、OCTコントローラ104は、受信位置データ及びスキャンデータに基づいて、第1の3次元(3D)座標系における眼の1つ以上の組織の第1の位置のセットを判定する。
【0065】
308において、OCTコントローラ104は、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定する。310において、OCTコントローラ104は、ロボットデバイスに手術機器を第2の3D座標系における位置に移動させる。
【0066】
いくつかの実施態様では、OCTコントローラ104は、眼のOCTスキャンの開始を示すメッセージの受信に応じて、眼のOCTスキャンを開始し、そのOCTスキャンに基づいて、第1の3D座標系における眼のリアルタイム3D画像を生成する。いくつかの実装形態では、第2の3D座標系における位置を判定するために、OCTコントローラ104は、眼の1つ以上の組織のうちの第1の組織に対応するリアルタイム3D画像における場所の選択を(例えば、ユーザから)受信し、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、その位置を第2の3D座標系における判定された位置へマッピングする。
【0067】
いくつかの実装形態では、OCTコントローラ104は、ユーザに表示するために眼のリアルタイム3D画像を提供する。いくつかの実装形態では、複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダは、サイン-コサインエンコーダである。いくつかの実装形態では、複数のアブソリュートエンコーダのうちの少なくとも1つのアブソリュートエンコーダは、ホログラフィックエンコーダである。いくつかの実装形態では、複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナは、第1の方向にスキャンするように構成され、複数のガルバノメータスキャナのうちの少なくとも1つの他のガルバノメータスキャナは、第2の方向にスキャンするように構成されている。いくつかの実装形態では、第1の方向は、第2の方向に対して垂直である。いくつかの実装形態では、複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナは、可動磁石ガルバノメータスキャナである。
【0068】
上述の方法及び装置は、眼のOCTスキャン中に生成及び/又はキャプチャされたデータを使用して、眼科処置のためにロボットデバイスを誘導するための新規のシステム及び方法を提供する。例えば、説明されたシステム及び方法は、ガルバノメータスキャナに結合されたアブソリュート及びインクリメンタルエンコーダから受信したガルバノメータスキャナの位置データに基づいて、座標系における検出された組織の位置を判定し、これにより、座標空間における眼の様々な検出された組織の位置を判定する精度を向上し、ロボット駆動型手術機器を眼科処置のためにユーザが選択した組織まで移動させる精度を向上させることができる。
【0069】
上記は、本開示の実施形態に関するが、その基本的な範囲から逸脱せずに本開示の他の及び更なる実施形態が考案され得、その範囲は、以下の特許請求の範囲によって判定される。
【0070】
例示的な実施形態
実施形態1:方法であって、眼の光コヒーレンストモグラフィ(OCT)スキャン中に、複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダから複数のガルバノメータスキャナの位置データを受信することであって、複数のアブソリュートエンコーダの各々の1つ及び複数のインクリメンタルエンコーダの各々の1つが、複数のガルバノメータスキャナのうちの少なくとも1つに結合されている、ことと、OCTスキャン中に、眼の1つ以上の組織に関連するスキャンデータを受信することと、受信位置データ及びスキャンデータに基づいて、第1の3次元(3D)座標系における眼の1つ以上の組織の第1の位置のセットを判定することと、第1の位置のセット、及び第1の3D座標系と第2の3D座標系との間のマッピングに基づいて、ロボットデバイスに結合された手術機器の第2の3D座標系における位置を判定することと、ロボットデバイスに手術機器を第2の3D座標系における位置に移動させることと、を含む、方法。
【0071】
複数のガルバノメータスキャナのうちの少なくとも1つが、第1の方向にスキャンするように構成され、複数のガルバノメータスキャナのうちの少なくとも別の1つが、第2の方向にスキャンするように構成されている、実施形態1に記載の方法。
【0072】
第1の方向が、第2の方向に対して垂直である、実施形態1に記載の方法。
【0073】
複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナが、可動磁石ガルバノメータスキャナである、実施形態1に記載の方法。
【0074】
複数のガルバノメータスキャナのうちの少なくとも1つのガルバノメータスキャナが、光学ガルバノメータスキャナである、実施形態1に記載の方法。
【0075】
複数のアブソリュートエンコーダ及び複数のインクリメンタルエンコーダが、単一のデバイスに統合されている、実施形態1に記載の方法。
図1A
図1B
図2
図3
【国際調査報告】