(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-09-19
(54)【発明の名称】取引検証のための難読化された識別テンプレートの生成
(51)【国際特許分類】
G06T 7/00 20170101AFI20230911BHJP
G06F 21/64 20130101ALI20230911BHJP
G06V 40/16 20220101ALI20230911BHJP
【FI】
G06T7/00 350B
G06T7/00 660A
G06F21/64
G06V40/16 Z
【審査請求】未請求
【予備審査請求】未請求
(21)【出願番号】P 2022575882
(86)(22)【出願日】2021-06-22
(85)【翻訳文提出日】2022-12-09
(86)【国際出願番号】 US2021038539
(87)【国際公開番号】W WO2021262757
(87)【国際公開日】2021-12-30
(32)【優先日】2020-06-22
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
(71)【出願人】
【識別番号】519135574
【氏名又は名称】アイディー メトリクス グループ インコーポレイテッド
(74)【代理人】
【識別番号】100102978
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100160923
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100188433
【氏名又は名称】梅村 幸輔
(74)【代理人】
【識別番号】100128048
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100205707
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100114340
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100214396
【氏名又は名称】塩田 真紀
(74)【代理人】
【識別番号】100121072
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】フーバー リチャード オースティン ジュニア
【テーマコード(参考)】
5L096
【Fターム(参考)】
5L096CA02
5L096DA02
5L096HA11
(57)【要約】
識別検索および認証のための識別テンプレートのための、コンピュータ記憶媒体上に符号化されたコンピュータプログラムを含む、方法、システム、および装置を開示する。いくつかの実装形態では、取引の当事者を識別する物理的文書を表す第1のデータを取得し;訓練されたセキュリティ特徴識別器層である少なくとも1つの隠れ層を含む機械学習モデルへと、第1のデータを入力として提供し;機械学習モデルが第1のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成されたアクティベーションデータを取得し;取得されたアクティベーションデータに基づいて、取引が拒否されるべきであると判定し;かつ、取引が拒否されるべきであると判定したことに基づき、コンピュータによって処理された場合にコンピュータに、取引が拒否されるべきであることを示すデータを出力させる、コンピュータによる出力のための通知を生成する。
【特許請求の範囲】
【請求項1】
取引検証のためのシステムであって、
1つまたは複数のプロセッサと、
該1つまたは複数のプロセッサによって実行されると、該1つまたは複数のプロセッサに、以下:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得すること;
物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の存在、または物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成されたアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ取得されたアクティベーションデータに基づいて判定すること;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成すること
を含む動作を行わせる、命令
を含む、1つまたは複数の記憶デバイスと
を含む、システム。
【請求項2】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ前記取得されたアクティベーションデータに基づいて判定することが、
前記取得されたアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第2のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項1記載のシステム。
【請求項3】
前記動作が、
異なる取引の異なる当事者を識別する物理的文書の少なくとも一部分を表す第3のデータを、1つまたは複数のコンピュータにより取得すること;
前記機械学習モデルへと、該第3のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
前記機械学習モデルが該第3のデータを処理したことに基づいて前記セキュリティ特徴識別器層によって生成された異なるアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきではないと、該1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定すること;および
該取引が拒否されるべきはないと判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきではないことを示すデータを出力させる、通知
を生成すること
をさらに含む、請求項1記載のシステム。
【請求項4】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定することが、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第4のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が認められるべき実体に対応する、判定すること
を含む、請求項3記載のシステム。
【請求項5】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定することが、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶されたデータと一致しないと、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項3記載のシステム。
【請求項6】
前記動作が、
前記機械学習モデルが前記第1のデータを処理したことに基づいて前記機械学習モデルによって生成された出力データを、前記1つまたは複数のコンピュータにより取得することであって、正規の物理的文書の少なくとも一部分を描写する画像を前記第1のデータが表している可能性を、該出力データが示す、取得すること
をさらに含む、請求項1記載のシステム。
【請求項7】
前記セキュリティ特徴識別器層が、前記機械学習モデルの隠れ層である、請求項1記載のシステム。
【請求項8】
前記機械学習モデルが、1つまたは複数のニューラルネットワークを含む、請求項1記載のシステム。
【請求項9】
前記動作が、
取引の当事者を識別する物理的文書の少なくとも一部分を表す第2のデータを、前記セキュリティ特徴識別器層により受け取ることと;
前記セキュリティ特徴識別器層を使用して、アクティベーションデータを生成することであって、
該第2のデータ内の1つもしくは複数のセキュリティ特徴の存在または該第2のデータ内の1つもしくは複数のセキュリティ特徴の欠如を表すデータを、前記セキュリティ特徴識別器層を使用して符号化すること
を含む、生成することと
をさらに含む、請求項1記載のシステム。
【請求項10】
前記第2のデータが、前記第1のデータと同じである、請求項9記載のシステム。
【請求項11】
前記第2のデータが、前記第1のデータと異なる、請求項9記載のシステム。
【請求項12】
前記第2のデータが、前記機械学習モデルの入力層から受け取られる、請求項9記載のシステム。
【請求項13】
前記第2のデータが、前記機械学習モデルの先行する隠れ層から受け取られる、請求項9記載のシステム。
【請求項14】
前記セキュリティ特徴が、物理的文書の正当性を示す該物理的文書の属性である、請求項1記載のシステム。
【請求項15】
前記セキュリティ特徴が、(i)前記第1のデータによって表される物理的文書のプロファイル画像内の顔の顔の向き、(ii)前記第1のデータによって表される物理的文書の材料、(iii)前記第1のデータによって表される物理的文書のテキスト特徴、(iv)2D PDF-417符号化、バーコード、もしくはQRコード、または(v)ドロップシャドウを含む、請求項1記載のシステム。
【請求項16】
セキュリティ特徴が、複数の他のセキュリティ特徴間の空間的関係を含む、請求項1記載のシステム。
【請求項17】
取引検証のための方法であって、以下の工程:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得する工程;
物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の存在、または物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供する工程;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成されたアクティベーションデータを、該1つまたは複数のコンピュータにより取得する工程;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ取得されたアクティベーションデータに基づいて判定する工程;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成する工程
を含む、方法。
【請求項18】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ前記取得されたアクティベーションデータに基づいて判定する工程が、
前記取得されたアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第2のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項17記載の方法。
【請求項19】
異なる取引の異なる当事者を識別する物理的文書の少なくとも一部分を表す第3のデータを、1つまたは複数のコンピュータにより取得する工程;
前記機械学習モデルへと、該第3のデータを入力として、該1つまたは複数のコンピュータにより提供する工程;
前記機械学習モデルが該第3のデータを処理したことに基づいて前記セキュリティ特徴識別器層によって生成された異なるアクティベーションデータを、該1つまたは複数のコンピュータにより取得する工程;
該取引が拒否されるべきではないと、該1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定する工程;および
該取引が拒否されるべきはないと判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきではないことを示すデータを出力させる、通知
を生成する工程
をさらに含む、請求項17記載の方法。
【請求項20】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定する工程が、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第4のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が認められるべき実体に対応する、判定すること
を含む、請求項19記載の方法。
【請求項21】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定する工程が、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶されたデータと一致しないと、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項19記載の方法。
【請求項22】
前記機械学習モデルが前記第1のデータを処理したことに基づいて前記機械学習モデルによって生成された出力データを、前記1つまたは複数のコンピュータにより取得する工程であって、正規の物理的文書の少なくとも一部分を描写する画像を前記第1のデータが表している可能性を、該出力データが示す、取得する工程
をさらに含む、請求項17記載の方法。
【請求項23】
前記セキュリティ特徴識別器層が、前記機械学習モデルの隠れ層である、請求項17記載の方法。
【請求項24】
前記機械学習モデルが、1つまたは複数のニューラルネットワークを含む、請求項17記載の方法。
【請求項25】
取引の当事者を識別する物理的文書の少なくとも一部分を表す第2のデータを、前記セキュリティ特徴識別器層により受け取る工程と;
前記セキュリティ特徴識別器層を使用して、アクティベーションデータを生成する工程であって、
該第2のデータ内の1つもしくは複数のセキュリティ特徴の存在または該第2のデータ内の1つもしくは複数のセキュリティ特徴の欠如を表すデータを、前記セキュリティ特徴識別器層を使用して符号化すること
を含む、生成する工程と
をさらに含む、請求項17記載の方法。
【請求項26】
前記第2のデータが、前記第1のデータと同じである、請求項25記載の方法。
【請求項27】
前記第2のデータが、前記第1のデータと異なる、請求項25記載の方法。
【請求項28】
前記第2のデータが、前記機械学習モデルの入力層から受け取られる、請求項25記載の方法。
【請求項29】
前記第2のデータが、前記機械学習モデルの先行する隠れ層から受け取られる、請求項25記載の方法。
【請求項30】
前記セキュリティ特徴が、物理的文書の正当性を示す該物理的文書の属性である、請求項17記載の方法。
【請求項31】
前記セキュリティ特徴が、(i)前記第1のデータによって表される物理的文書のプロファイル画像内の顔の顔の向き、(ii)前記第1のデータによって表される物理的文書の材料、(iii)前記第1のデータによって表される物理的文書のテキスト特徴、(iv)2D PDF-417符号化、バーコード、もしくはQRコード、または(v)ドロップシャドウを含む、請求項17記載の方法。
【請求項32】
セキュリティ特徴が、複数の他のセキュリティ特徴間の空間的関係を含む、請求項17記載の方法。
【請求項33】
1つまたは複数のコンピュータによって実行可能な命令を含むソフトウェアを記憶している、非一時的コンピュータ可読媒体であって、
該命令が、そのような実行時に、該1つまたは複数のコンピュータに、以下:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得すること;
物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の存在、または物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成されたアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ取得されたアクティベーションデータに基づいて判定すること;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成すること
を含む動作を行わせる、
非一時的コンピュータ可読媒体。
【請求項34】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ前記取得されたアクティベーションデータに基づいて判定することが、
前記取得されたアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第2のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項33記載のコンピュータ可読媒体。
【請求項35】
前記動作が、
異なる取引の異なる当事者を識別する物理的文書の少なくとも一部分を表す第3のデータを、1つまたは複数のコンピュータにより取得すること;
前記機械学習モデルへと、該第3のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
前記機械学習モデルが該第3のデータを処理したことに基づいて前記セキュリティ特徴識別器層によって生成された異なるアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきではないと、該1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定すること;および
該取引が拒否されるべきはないと判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきではないことを示すデータを出力させる、通知
を生成すること
をさらに含む、請求項33記載のコンピュータ可読媒体。
【請求項36】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定することが、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第4のデータと一致すると、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が認められるべき実体に対応する、判定すること
を含む、請求項35記載のコンピュータ可読媒体。
【請求項37】
前記取引が拒否されるべきではないと、前記1つまたは複数のコンピュータにより、かつ前記取得された異なるアクティベーションデータに基づいて判定することが、
前記取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶されたデータと一致しないと、前記1つまたは複数のコンピュータにより判定することであって、実体レコードの該データベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定すること
を含む、請求項35記載のコンピュータ可読媒体。
【請求項38】
前記動作が、
前記機械学習モデルが前記第1のデータを処理したことに基づいて前記機械学習モデルによって生成された出力データを、前記1つまたは複数のコンピュータにより取得することであって、正規の物理的文書の少なくとも一部分を描写する画像を前記第1のデータが表している可能性を、該出力データが示す、取得すること
をさらに含む、請求項33記載のコンピュータ可読媒体。
【請求項39】
前記セキュリティ特徴識別器層が、前記機械学習モデルの隠れ層である、請求項33記載のコンピュータ可読媒体。
【請求項40】
前記機械学習モデルが、1つまたは複数のニューラルネットワークを含む、請求項33記載のコンピュータ可読媒体。
【請求項41】
前記動作が、
取引の当事者を識別する物理的文書の少なくとも一部分を表す第2のデータを、前記セキュリティ特徴識別器層により受け取ることと;
前記セキュリティ特徴識別器層を使用して、アクティベーションデータを生成することであって、
該第2のデータ内の1つもしくは複数のセキュリティ特徴の存在または該第2のデータ内の1つもしくは複数のセキュリティ特徴の欠如を表すデータを、前記セキュリティ特徴識別器層を使用して符号化すること
を含む、生成することと
をさらに含む、請求項33記載のコンピュータ可読媒体。
【請求項42】
前記第2のデータが、前記第1のデータと同じである、請求項41記載のコンピュータ可読媒体。
【請求項43】
前記第2のデータが、前記第1のデータと異なる、請求項41記載のコンピュータ可読媒体。
【請求項44】
前記第2のデータが、前記機械学習モデルの入力層から受け取られる、請求項41記載のコンピュータ可読媒体。
【請求項45】
前記第2のデータが、前記機械学習モデルの先行する隠れ層から受け取られる、請求項41記載のコンピュータ可読媒体。
【請求項46】
前記セキュリティ特徴が、物理的文書の正当性を示す該物理的文書の属性である、請求項41記載のコンピュータ可読媒体。
【請求項47】
前記セキュリティ特徴が、(i)前記第1のデータによって表される物理的文書のプロファイル画像内の顔の顔の向き、(ii)前記第1のデータによって表される物理的文書の材料、(iii)前記第1のデータによって表される物理的文書のテキスト特徴、(iv)2D PDF-417符号化、バーコード、もしくはQRコード、または(v)ドロップシャドウを含む、請求項33記載のコンピュータ可読媒体。
【請求項48】
セキュリティ特徴が、複数の他のセキュリティ特徴間の空間的関係を含む、請求項33記載のコンピュータ可読媒体。
【請求項49】
取引検証のためのシステムであって、
1つまたは複数のプロセッサと、
該1つまたは複数のプロセッサによって実行されると、該1つまたは複数のプロセッサに、以下:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得すること;
該当事者の顔画像を表す第2のデータを、該1つまたは複数のコンピュータにより取得すること;
正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供することであって、該機械学習モデルが、文書の文書セキュリティ特徴の存在または該文書セキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む、提供すること;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第1のアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該機械学習モデルへと、該第2のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
該機械学習モデルが該第2のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第2のアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとに基づいて、判定すること;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成すること
を含む動作を行わせる、命令
を含む、1つまたは複数の記憶デバイスと
を含む、システム。
【請求項50】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとに基づいて、判定することが、
(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとの間の類似度レベルを、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定したことに基づき、前記取引が拒否されるべきであると判定することと
を含む、請求項49記載のシステム。
【請求項51】
取引検証のための方法であって、以下の工程:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得する工程;
該当事者の顔画像を表す第2のデータを、該1つまたは複数のコンピュータにより取得する工程;
正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供する工程であって、該機械学習モデルが、文書の文書セキュリティ特徴の存在または該文書セキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む、提供する工程;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第1のアクティベーションデータを、該1つまたは複数のコンピュータにより取得する工程;
該機械学習モデルへと、該第2のデータを入力として、該1つまたは複数のコンピュータにより提供する工程;
該機械学習モデルが該第2のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第2のアクティベーションデータを、該1つまたは複数のコンピュータにより取得する工程;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとに基づいて、判定する工程;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成する工程
を含む、方法。
【請求項52】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとに基づいて、判定する工程が、
(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとの間の類似度レベルを、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定したことに基づき、前記取引が拒否されるべきであると判定することと
を含む、請求項51記載のシステム。
【請求項53】
1つまたは複数のコンピュータによって実行可能な命令を含むソフトウェアを記憶している、非一時的コンピュータ可読媒体であって、
該命令が、そのような実行時に、該1つまたは複数のコンピュータに、以下:
取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、該1つまたは複数のコンピュータにより取得すること;
該当事者の顔画像を表す第2のデータを、該1つまたは複数のコンピュータにより取得すること;
正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、該第1のデータを入力として、該1つまたは複数のコンピュータにより提供することであって、該機械学習モデルが、文書の文書セキュリティ特徴の存在または該文書セキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む、提供すること;
該機械学習モデルが該第1のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第1のアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該機械学習モデルへと、該第2のデータを入力として、該1つまたは複数のコンピュータにより提供すること;
該機械学習モデルが該第2のデータを処理したことに基づいて該セキュリティ特徴識別器層によって生成された第2のアクティベーションデータを、該1つまたは複数のコンピュータにより取得すること;
該取引が拒否されるべきであると、該1つまたは複数のコンピュータにより、かつ(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとに基づいて、判定すること;および
該取引が拒否されるべきであると判定したことに基づき、該1つまたは複数のコンピュータにより、
コンピュータによって処理された場合に該コンピュータに、該取引が拒否されるべきであることを示すデータを出力させる、通知
を生成すること
を含む動作を行わせる、
非一時的コンピュータ可読媒体。
【請求項54】
前記取引が拒否されるべきであると、前記1つまたは複数のコンピュータにより、かつ(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとに基づいて、判定することが、
(i)前記取得された第1のアクティベーションデータと(ii)前記取得された第2のアクティベーションデータとの間の類似度レベルを、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定することと、
該類似度レベルが所定の閾値を満たさないと、前記1つまたは複数のコンピュータにより判定したことに基づき、前記取引が拒否されるべきであると判定することと
を含む、請求項53記載のコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その全体が参照により本明細書に組み入れられる、2020年6月22日に出願された、「GENERATING OBFUSCATED IDENTIFICATION TEMPLATES FOR TRANSACTION VERIFICATION」という名称の米国特許出願第63/042,476号の米国特許法第119条(e)による恩典を主張するものである。
【背景技術】
【0002】
背景
人は様々な理由で偽造文書を作成する可能性がある。そのような偽造文書の検出は、多くの中でも特に、金融サービス機関、小売店、政府機関を含む多くの実体にとって重要な業務である。
【発明の概要】
【0003】
概要
本開示の1つの革新的な局面によれば、取引検証のための方法が開示される。一局面では、方法は、以下の動作:取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得すること;物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の存在または物理的文書の少なくとも一部分の画像を表すデータ内の1つもしくは複数のセキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む機械学習モデルへと、第1のデータを入力として、1つまたは複数のコンピュータにより提供すること;機械学習モデルが第1のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成されたアクティベーションデータを、1つまたは複数のコンピュータにより取得すること;取引が拒否されるべきであると、1つまたは複数のコンピュータにより、かつ取得されたアクティベーションデータに基づいて判定すること;および取引が拒否されるべきであると判定したことに基づき、1つまたは複数のコンピュータにより、コンピュータによって処理された場合にコンピュータに、取引が拒否されるべきであることを示すデータを出力させる通知を生成することを含むことができる。
【0004】
他のバージョンは、コンピュータ可読記憶デバイス上に符号化された命令によって定義された方法の動作を実行するか、または他の態様で実現するための対応するシステム、装置、およびコンピュータプログラムを含むことができる。
【0005】
上記その他のバージョンは、任意で以下の特徴のうちの1つまたは複数を含んでいてもよい。例えば、いくつかの実装形態では、取引が拒否されるべきであると、1つまたは複数のコンピュータにより、かつ取得されたアクティベーションデータに基づいて判定する工程は、取得されたアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第2のデータと一致すると、1つまたは複数のコンピュータにより判定することであって、実体レコードのデータベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定することを含むことができる。
【0006】
いくつかの実装形態では、方法は、異なる取引の異なる当事者を識別する物理的文書の少なくとも一部分を表す第3のデータを、1つまたは複数のコンピュータにより取得する工程;機械学習モデルへと、第3のデータを入力として、1つまたは複数のコンピュータにより提供する工程;機械学習モデルが第3のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成された異なるアクティベーションデータを、1つまたは複数のコンピュータにより取得する工程;取引が拒否されるべきではないと、1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定する工程;および取引が拒否されるべきはないと判定したことに基づき、1つまたは複数のコンピュータにより、コンピュータによって処理された場合にコンピュータに、取引が拒否されるべきではないことを示すデータを出力させる通知を生成する工程をさらに含むことができる。
【0007】
いくつかの実装形態では、取引が拒否されるべきではないと、1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定する工程は、取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第4のデータと一致すると、1つまたは複数のコンピュータにより判定することであって、実体レコードのデータベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が認められるべき実体に対応する、判定することを含むことができる。
【0008】
いくつかの実装形態では、取引が拒否されるべきではないと、1つまたは複数のコンピュータにより、かつ取得された異なるアクティベーションデータに基づいて判定する工程は、取得された異なるアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶されたデータと一致しないと、1つまたは複数のコンピュータにより判定することであって、実体レコードのデータベース内の各実体レコードが、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する、判定することを含むことができる。
【0009】
いくつかの実装形態では、方法はまた、機械学習モデルが第1のデータを処理したことに基づいて機械学習モデルによって生成された出力データを、1つまたは複数のコンピュータにより取得する工程であって、正規の物理的文書の少なくとも一部分を描写する画像を第1のデータが表している可能性を、出力データが示す、取得する工程も含むことができる。
【0010】
いくつかの実装形態では、セキュリティ特徴識別器層は、機械学習モデルの隠れ層である。
【0011】
いくつかの実装形態では、機械学習モデルは、1つまたは複数のニューラルネットワークを含むことができる。
【0012】
いくつかの実装形態では、方法は、取引の当事者を識別する物理的文書の少なくとも一部分を表す第2のデータを、セキュリティ特徴識別器層により受け取る工程と;セキュリティ特徴識別器層を使用して、アクティベーションデータを生成する工程とをさらに含むことができる。いくつかの実装形態では、アクティベーションデータを生成する工程は、第2のデータ内の1つもしくは複数のセキュリティ特徴の存在または第2のデータ内の1つもしくは複数のセキュリティ特徴の欠如を表すデータを、セキュリティ特徴識別器層を使用して符号化することを含むことができる。
【0013】
いくつかの実装形態では、第2のデータは、第1のデータと同じである。
【0014】
いくつかの実装形態では、第2のデータは、第1のデータと異なる。
【0015】
いくつかの実装形態では、第2のデータは、機械学習モデルの入力層から受け取られる。
【0016】
いくつかの実装形態では、第2のデータは、機械学習モデルの先行する隠れ層から受け取られる。
【0017】
いくつかの実装形態では、セキュリティ特徴は、物理的文書の正当性を示す物理的文書の属性である。
【0018】
いくつかの実装形態では、セキュリティ特徴は、(i)第1のデータによって表される物理的文書のプロファイル画像内の顔の顔の向き、(ii)第1のデータによって表される物理的文書の材料、(iii)第1のデータによって表される物理的文書のテキスト特徴、(iv)2D PDF-417符号化、バーコード、もしくはQRコード、または(v)ドロップシャドウを含むことができる。
【0019】
いくつかの実装形態では、セキュリティ特徴は、複数の他のセキュリティ特徴間の空間的関係を含むことができる。
【0020】
本開示の別の局面によれば、取引検証のための別の方法が開示される。一局面では、方法は、取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得する工程;当事者の顔画像を表す第2のデータを、1つまたは複数のコンピュータにより取得する工程;正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、第1のデータを入力として、1つまたは複数のコンピュータにより提供する工程であって、機械学習モデルが、文書の文書セキュリティ特徴の存在または文書セキュリティ特徴の欠如を検出するように構成されたセキュリティ特徴識別器層を含む、提供する工程;機械学習モデルが第1のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成された第1のアクティベーションデータを、1つまたは複数のコンピュータにより取得する工程;機械学習モデルへと、第2のデータを入力として、1つまたは複数のコンピュータにより提供する工程;機械学習モデルが第2のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成された第2のアクティベーションデータを、1つまたは複数のコンピュータにより取得する工程;取引が拒否されるべきであると、1つまたは複数のコンピュータにより、かつ(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとに基づいて、判定する工程;および取引が拒否されるべきであると判定したことに基づき、1つまたは複数のコンピュータにより、コンピュータによって処理された場合にコンピュータに、取引が拒否されるべきであることを示すデータを出力させる通知を生成する工程を含むことができる。
【0021】
他のバージョンは、コンピュータ可読記憶デバイス上に符号化された命令によって定義された方法の動作を実行するための対応する装置、方法、およびコンピュータプログラムを含む。
【0022】
上記その他のバージョンは、任意で以下の特徴のうちの1つまたは複数を含んでいてもよい。例えば、いくつかの実装形態では、取引が拒否されるべきであると、1つまたは複数のコンピュータにより、かつ(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとに基づいて、判定する工程は、(i)取得された第1のアクティベーションデータと(ii)取得された第2のアクティベーションデータとの間の類似度レベルを、1つまたは複数のコンピュータにより判定することと、類似度レベルが所定の閾値を満たさないと、1つまたは複数のコンピュータにより判定することと、類似度レベルが所定の閾値を満たさないと、1つまたは複数のコンピュータにより判定したことに基づき、取引が拒否されるべきであると判定することとを含むことができる。
【0023】
添付の図面および以下の説明において本発明の1つまたは複数の態様の詳細を示す。本発明の他の特徴および利点は、それらの説明、図面、および特許請求の範囲を読めば明らかになるであろう。
【図面の簡単な説明】
【0024】
【
図1】識別テンプレートを生成するためのシステムの一例のコンテキスト図である。
【
図2】識別テンプレートを生成するためのプロセスの一例のフローチャートである。
【
図3】識別テンプレートを使用してユーザの身元を認証するためのシステムの一例のコンテキスト図である。
【
図4】識別テンプレートを使用してユーザを認証するためのプロセスの一例のフローチャートである。
【
図5】識別テンプレートを実装、生成および使用するために使用することができるシステムの構成要素のブロック図である。
【0025】
種々の図面中の同様の符番および名称は、同様の要素を示す。
【発明を実施するための形態】
【0026】
詳細な説明
本開示は、ユーザ認証動作に使用することができる難読化されたユーザ識別テンプレートを生成するための方法、システム、およびコンピュータプログラムを対象とする。いくつかの実装形態では、ユーザ識別テンプレートは、正規の物理的文書の少なくとも一部分を、画像を表す入力データが描写している可能性を判定するように訓練されている機械学習モデルの隠れ層によって出力されたアクティベーションデータを含むことができる。機械学習モデルが物理的文書の画像を表す入力データを処理するときに機械学習モデルの隠れ層によって生成されるアクティベーションデータ自体を使用して、機械学習モデルによって処理された入力データによって表される画像によって描写されている物理的文書にリンクされた人物を一意に識別することができる。識別テンプレートはセキュアであり、機械学習モデルによって機械学習モデルの隠れ層にアクティベーションデータを生成させるように処理された物理的文書の画像を、復号して明らかにすることはできない。よって、この識別テンプレートは、顧客または取引検証プラットフォームを横断した顧客情報の共有を含むことができるアプリケーションにおいて大きなセキュリティ上の利点を提供する。
【0027】
難読化されたユーザ識別テンプレートは、難読化されたユーザ身元テンプレートがコンピューティングプラットフォームを横断して共有される場合に物理的文書にリンクされた人物の身元を隠すことができるが、難読化されたユーザ識別テンプレートは「暗号化データ」ではないことに留意することが重要である。そのような暗号化データは、典型的には、ターゲットデータに暗号化アルゴリズムを適用してターゲットデータの内容を隠すことによって生成される。これが重要なのは、暗号化アルゴリズムを使用して暗号化されたターゲットデータは、暗号解読アルゴリズム、秘密鍵など、またはそれらの何らかの組み合わせのうちの1つまたは複数を使用して解読することができるからである。対照的に、本開示のユーザ識別テンプレートは、正規の物理的文書の少なくとも一部分を、画像を表す入力データが描写している可能性を判定するように訓練された機械学習モデルの隠れ層によって出力されたアクティベーションデータを使用して生成される。このアクティベーションデータは、例えば、たとえ機械学習モデルを所有していても、機械学習モデルによって機械学習モデルの隠れ層にアクティベーションデータを生成させるように処理された物理的文書の画像を、復号して明らかにすることはできない。このことにより、本明細書に記載される難読化されたユーザ識別テンプレートは、アクティベーションデータを生成するように処理された物理的文書にリンクされた人物の身元を保護しながら、顧客または取引の認証/検証プラットフォームを横断して共有するのに理想的なものになる。
【0028】
本開示の一局面によれば、機械学習モデルは、正規の物理的文書の少なくとも一部分を、物理的文書の少なくとも一部分の画像を表す入力データが描写している可能性を判定するように訓練することができる。正規の物理的文書は、正規の偽造防止アーキテクチャに準拠するように作成された文書である。偽の物理的文書は、正規の偽造防止アーキテクチャに準拠せずに作成された文書である。正規の偽造防止アーキテクチャは、本明細書では「偽造防止アーキテクチャ」と呼ばれる場合もあり、物理的文書の画像内のその集合的な有無が物理的文書の正当性のしるしを提供する2つ以上の偽造防止セキュリティ特徴のグループを含むことができる。本開示の目的では、物理的文書は、運転免許証、パスポート、または物理的身分証明の形態によって識別された人物の顔画像を含む任意の形態の物理的身分証明を含むことができる。偽造防止アーキテクチャの「セキュリティ特徴」は、物理的文書の画像内のその有無を本開示に従って訓練された機械学習モデルによって検出することができる偽造防止アーキテクチャの特徴を指す用語である。
【0029】
いくつかの実装形態では、機械学習モデルのセキュリティ特徴識別器層を使用して、文書のセキュリティ特徴の存在、文書セキュリティ特徴の欠如、誤ったセキュリティ特徴、または異常なセキュリティ特徴を検出することができる。本開示によれば、セキュリティ特徴は、物理的文書の正当性を示す物理的文書の任意の属性とすることができる。セキュリティ特徴には、自然な背景、人工的な背景、自然照明、人工照明、自然な影、人工的な影の存在、欠如、または配置、ドロップシャドウなどのフラッシュシャドウの欠如、頭部サイズ異常、頭部縦横比異常、頭部平行移動異常、異常な色温度、異常な着色、位置合わせおよび構成されたフラッシュ照明、オフアングル照明、焦点面異常、焦点面の二等分、固定焦点レンズの使用、再量子化に関連するイメージング効果、圧縮に関連するイメージング効果、異常な頭部傾斜、異常な頭部姿勢、異常な頭部回転、非正面顔効果、眼鏡、帽子、頭部スカーフ、または他のカバー類などの顔のオクルージョンの存在、異常な頭部形状動力学、眼間距離に対する異常な頭部縦横比、前景と背景の間の異常な露出補正、異常な焦点効果、異なるデジタルソースを示す画像スティッチング効果、不適切な生体認証セキュリティ特徴の印刷、不適切なOVD、OVI、ホログラム、顔または文書の他の部分の上の他の二次的なセキュリティ特徴のオーバーレイなどの不適切なセキュリティ特徴の層化、顔の近く、顔の上、または文書の他の部分の上の不適切な触覚セキュリティ特徴配置、不適切な最終顔印刷、不適切なレーザの白黒、不適切なカラーレーザ、不適切な層化インク印刷、不適切な印刷技術、不適切な印刷層順序付け、物理的文書を構築するために使用される不適切な材料、物理的文書の閾値レベルの材料劣化(例えば、傷、切れ目、曲がり、退色、色のにじみなど)、物理的文書のテキスト特徴(例えば、氏名、住所、経歴情報、または別のテキスト)、2D PDF-417符号化、他の形態のバーコードまたはQRコード、2D PDF-417/バーコード/QRコードの配置などを含めることができる。いくつかの実装形態では、セキュリティ特徴は、2つ以上のセキュリティ特徴間の空間的関係などの関係を含み得る。このセキュリティ特徴のリストは網羅的ではなく、本開示の範囲内に入る他のタイプのセキュリティ特徴も存在し得、または作成することができる。
【0030】
図1は、識別テンプレートを生成するためのシステム100の一例のコンテキスト図である。システム100は、ユーザデバイス110、ネットワーク112、およびサーバ120を含むことができる。ユーザデバイス110は、例えば、スマートフォンとすることができる。ユーザデバイス110は、1つまたは複数のネットワーク112を使用してサーバ120と通信することができる。サーバ120は、抽出モジュール130、ベクトル生成モジュール140、機械学習モデル150、取引検証モジュール170、善良行為者リスト172、悪質行為者リスト174、および通知モジュール180を含むことができる。システム100の構成要素の各々は、単一のコンピュータ上でホストされることもでき、または1つもしくは複数のネットワークを使用して互いに通信するように構成された複数のコンピュータを横断してホストされることもできる。本明細書の目的では、「モジュール」は、本開示によって「モジュール」に帰せられる機能を実行するように構成されたソフトウェア、ハードウェア、またはそれらの任意の組み合わせを含むことができる。システム100は、段階Aから段階Bまでのプロセスとして説明されている。
【0031】
図1の例を参照すると、ユーザデバイス110は、段階Aでカメラ105を使用して物理的文書102の画像115を取り込むことができる。画像115は、物理的文書102の画像の少なくとも一部分を描写している第1の部分115a、および物理的文書102の画像115が取り込まれたときの周囲環境の一部分を描写している第2の部分115bを含むことができる。ユーザデバイス110は、ネットワーク112を使用してサーバ120に画像115を送ることができる。ネットワーク112は、有線ネットワーク、無線ネットワーク、LAN、WAN、セルラーネットワーク、インターネット、またはそれらの任意の組み合わせを含むことができる。
【0032】
図1の例は、スマートフォンの形態のユーザデバイス110が画像115を取り込むために使用されていることを示しているが、本開示はそのように限定されるべきではない。例えば、スマートフォンの代わりに、音声通話機能のないカメラを使用して画像115を取り込むことができる。次いで、カメラは、ネットワーク112を使用してサーバ120に画像115を送ることができる。他の実装形態では、音声通話機能のないカメラが、画像115を取り込み、画像115を別のコンピュータに通信することができる。これは、ブルートゥース短波無線ネットワークなどの1つもしくは複数のネットワークを介して、または例えばUSBCケーブルを使用したコンピュータへの直接接続を介して達成される。次いで、そのような実装形態では、コンピュータを使用して、ネットワーク112を使用してサーバ120に画像115を送ることができる。さらに別の実装形態では、カメラを、各々がカメラおよび画像送信デバイスを装備し得る、タブレット、ラップトップ、スマートグラスなどといった別のユーザデバイスの一部とすることができる。一般に、画像を取り込むことができる任意のデバイスを、画像115などの画像を取り込むために使用することができる。
【0033】
サーバ120は、画像115を受け取り、画像115を抽出モジュール130へと入力として提供することができる。抽出モジュール130は、画像115から画像物理的文書の第1の部分115aを抽出し、画像115の第2の部分115bを廃棄することができる。この機能は、物理的文書102の一部分を描写していない画像115の部分を除去するという目的を果たすことができる。しかしながら、他の実装形態では、抽出モジュール130を、画像115の第1の部分115aの部分のみを抽出するために使用することができる。例えば、抽出モジュール130は、画像115の第1の部分115aから人物の顔のプロファイル画像のみを抽出するように構成することができる。実際、抽出モジュールは、本明細書に記載される識別テンプレートを生成する際に使用するために、物理的文書102の少なくとも一部分を描写している画像115の第1の部分115aの任意の部分を抽出するように構成することができる。本明細書では、画像115の第1の部分115aを画像115aと呼ぶ場合もある。
【0034】
サーバ120は、画像115の抽出部分をベクトル生成モジュール140に提供することができる。
図1の例を参照すると、画像115の抽出部分は、画像115の第1の部分115aを含む。この例では、画像115の抽出部分は、画像115の第2の部分115bが除去された後の物理的文書102の画像を含む。ベクトル生成モジュール140は、画像115aの抽出部分を処理し、画像115aの抽出部分を数値的に表すベクトル142を生成することができる。例えば、ベクトル142は、画像115aの抽出部分の画素に各々対応する複数のフィールドを含むことができる。ベクトル生成モジュール140は、画像115aの抽出部分の対応する画素を記述するフィールドの各々の数値を決定することができる。フィールドの各々決定された数値は、画像115aの抽出部分によって描写されている物理的文書102の偽造防止アーキテクチャのセキュリティ特徴を、生成されたベクトル142に符号化するために使用することができる。生成されたベクトル142は、画像115aの抽出部分を数値的に表し、機械学習モデル150へと入力として提供される。
【0035】
機械学習モデル150は、例えば1つまたは複数のニューラルネットワークなどの複数の層を介してデータを処理する任意の機械学習モデルを含むことができる。機械学習モデル150は、いくつかの層を含む。これらの層は、入力データ、例えば入力ベクトル142を受け取るために使用される入力層152、入力層152を介して受け取られた入力データを処理するために使用される1つまたは複数の隠れ層154a、154b、または154c、およびソフトマックス層などの出力層156を含むことができる。機械学習モデル150の各隠れ層154a、154b、または154cは、1つまたは複数の重みまたは他のパラメータを含むことができる。それぞれの隠れ層154a、154b、または154cの重みまたは他のパラメータは、訓練されたモデルが各訓練データセットに対応する所望のターゲットベクトルを生成するように調整することができる。各隠れ層154a、154b、または154cの出力は、アクティベーションデータを含むことができる。いくつかの実装形態では、このアクティベーションデータを、隠れ層によって生成された数値を各々表す複数のフィールドを含むアクティベーションベクトルとして表すことができる。それぞれの隠れ層によって出力されたアクティベーションベクトルは、モデルの後続の層を介して伝播させ、出力層によって出力データ157を生成するために使用することができる。いくつかの実装形態では、出力層156は、ニューラルネットワーク出力データ157を生成するために、最終隠れ層154cから受け取られたアクティベーションベクトルに対して追加の計算を行うことができる。
【0036】
図1の例は3つの隠れ層154a、154b、154cのみを示しているが、本開示はそのように限定されない。1つまたは複数の隠れ層は、機械学習モデル150内の隠れ層の完全な配列を構成し得る。よって、隠れ層の数は、
図1に示される3つの隠れ層よりも少なくてもよく、これと等しくてもよく、これより多くてもよい。
【0037】
機械学習モデル150は、隠れ層154a、154b、または154cのうちの1つまたは複数をセキュリティ特徴識別器層として機能するよう構成するように訓練することができる。セキュリティ特徴識別器層は、セキュリティ特徴識別器を含むように訓練されているディープニューラルネットワークの1つまたは複数の隠れ層を含むことができる。各セキュリティ特徴識別器を、偽造防止アーキテクチャの特定のセキュリティ特徴の有無を検出するように構成することができる。偽造防止アーキテクチャの特定のセキュリティ特徴の有無を検出することは、単一のセキュリティ特徴の有無を検出することを含むことができる。いくつかの実装形態では、特定のセキュリティ特徴の有無を検出することは、複数の異なるセキュリティ特徴間の空間的関係などの関係を検出することを含むことができる。よって、セキュリティ特徴識別器層のセキュリティ特徴識別器は、セキュリティ特徴として、1つまたは複数のセキュリティ特徴のグループが物理的文書の特定の位置内に個別にまたは1つもしくは複数の他のセキュリティ特徴を参照して配置されているか否かを検出するように訓練することができる。1つまたは複数の隠れ層154a、154b、または154cは、自己符号化プロセスを使用してセキュリティ特徴識別器層を含むように訓練することができる。
【0038】
自己符号化は、ディープニューラルネットワーク出力層が、ディープニューラルネットワークによって処理されたラベル付き入力データを、入力データのラベルによって指定された特定のクラスに正確に分類するニューラルネットワーク出力データを駆動し始めるまで、ディープニューラルネットワーク層の重みまたは他のパラメータを調整するためのフィードバックループを使用する1つまたは複数のディープニューラルネットワーク層を生成するための訓練プロセスである。いくつかの実装形態では、出力データは類似度スコアを含むことができる。出力類似度スコアは次いで、入力データのクラスを決定するために出力類似度スコアに1つまたは複数の閾値を適用することなどによって評価することができる。
図1を参照すると、画像115aを表すベクトル142は、機械学習モデル150の入力層152に入力され、機械学習モデル150の各層を介して処理され、出力データ157がベクトル142の機械学習モデル150の処理に基づいて生成される。
【0039】
セキュリティ特徴識別器層としての1つまたは複数の隠れ層154a、154b、154cの自己符号化は、訓練データベースから物理的文書の少なくとも一部分を描写している訓練画像を取得することを複数反復実行し、機械学習モデル150の訓練に使用するための訓練画像の一部分を抽出し(訓練画像の関連部分がまだ抽出されていない場合)、訓練画像の抽出部分に基づいて入力ベクトルを生成し、機械学習モデル150を使用して、生成された入力ベクトルを処理し、機械学習モデル150によって生成された出力と、機械学習モデル150によって処理された入力データベクトルで表された訓練画像に対応する訓練画像のラベルとの関数である損失関数を実行することによって達成することができる。システム100は、誤差逆伝播などによる確率的勾配降下法などの技術を使用して損失関数を最小化する目的で、各反復における損失関数の出力に基づいて機械学習モデル150のパラメータの値を調整することができる。損失関数の出力に基づく機械学習モデル150のパラメータの値の反復調整は、出力データが、所定の誤差量内で、出力データを生成するために機械学習モデル150によって処理された入力データベクトルに対応する画像の訓練ラベルと一致し始めるまで、隠れ層154a、154b、154cのうちの1つまたは複数の重みまたは他のパラメータの値を調整するフィードバックループである。
【0040】
図1に示される例では、アクティベーションデータ160は隠れ層154bの出力として示されている。アクティベーションデータ160は、隠れ層154bが受け取った入力データを処理したことに基づいて隠れ層154bによって生成された出力アクティベーションデータである。本開示において、隠れ層154bは、文書の文書セキュリティ特徴の存在または文書セキュリティ特徴の欠如を検出するように訓練されたセキュリティ特徴識別器層である。区別のポイントとして、隠れ層154b(例えば、セキュリティ特徴識別器層)から取得されたアクティベーションデータ160は、隠れ層154b(例えば、セキュリティ特徴識別器層)によって生成され、隠れ層154b(例えば、セキュリティ特徴識別器層)によって出力される。アクティベーションデータ160は、機械学習モデル150の出力層156の出力157ではない。
【0041】
セキュリティ特徴識別器層は、抽出画像部分115aの表現を受け取って処理することができる。いくつかの実装形態では、セキュリティ特徴識別器層が受け取って処理する抽出画像部分115aの表現は、直接または入力層152などの先行層の出力としてセキュリティ特徴識別器層に提供することができる入力ベクトル142を含むことができる。いくつかの実装形態では、セキュリティ特徴識別器層によって受け取られ処理される抽出画像部分115aの表現は、隠れ層154aなどの別の隠れ層の出力を含むことができる。その正確な起源、形態、またはフォーマットにかかわらず、セキュリティ特徴識別器層によって受け取られ処理される入力データは、抽出画像部分115aを表す。
【0042】
セキュリティ特徴識別器層が抽出画像部分115aを表す入力データを処理したことに基づいてセキュリティ特徴識別器層(例えば、隠れ層154b)によって生成される出力データは、アクティベーションデータ160である。セキュリティ特徴識別器層(例えば、隠れ層154b)によるアクティベーションデータ160の生成は、セキュリティ特徴識別器層(例えば、隠れ層154b)により、セキュリティ特徴識別層によって処理された入力データに対応する物理的文書の画像(例えば、抽出画像部分115a)に描写されている偽造防止アーキテクチャのセキュリティ特徴の有無を表すデータを符号化することを含む。
【0043】
アクティベーションデータ160は、その少なくとも一部分が抽出画像部分115aによって描写されており、入力ベクトル142によって表されている物理的文書102のための難読化された識別テンプレートとして使用することができる。いくつかの実装形態では、アクティベーションデータ160は、特定の隠れ層(例えば、セキュリティ特徴識別器層)によって生成されたデータを含むことができる。特定の隠れ層によって生成されたこのデータは、特定の隠れ層が抽出画像部分115aを表す入力データを処理したことに基づいて、特定の隠れ層(例えば、セキュリティ特徴識別器層)のニューロンなどの処理要素によって生成されたパラメータのセットを表すことができる。例として、パラメータのセットは、隠れ層の1つまたは複数のニューロンの出力、そのような出力に関連する重みなど、またはそれらの任意の組み合わせを含むことができる。一実装形態では、例えば、アクティベーションデータ160、および本明細書にて論述する他のアクティベーションデータは、入力ベクトル142によって表されている特定の画像データの抽出されたバイナリ、抽出されたバイナリに関連する隠れ層(例えば、セキュリティ特徴識別器層)のそれぞれのニューロンによって生成された重みもしくは値、またはそれらの組み合わせとすることができる。そのような実装形態では、バイナリ値は、抽出画像部分115aを表す処理データに基づいてセキュリティ特徴識別器層の特定の実装形態によって認識される抽出画像部分115asの特定の特徴に対応することができ、セキュリティ特徴識別器層によって処理される抽出画像部分115aを表すデータに特定のセキュリティ特徴が存在するか否かなどの情報を含むことができる。
【0044】
セキュリティ特徴識別器層(例えば、隠れ層154a、154b、または154c)によって出力されたアクティベーションデータ160は、セキュリティ特徴識別器層が訓練された特定の偽造防止アーキテクチャの1つまたは複数のセキュリティ特徴の各々が、セキュリティ特徴識別器層によって処理された抽出画像部分115aを表す入力データに存在するか否かを示すデータで符号化されている。セキュリティ特徴識別器層による、特定の偽造防止アーキテクチャのセキュリティ特徴の有無の、アクティベーションデータ160への符号化により、抽出画像部分115aに対応する物理的身分証明書を表す難読化された識別テンプレートが作成される。
【0045】
難読化された識別テンプレートは、特定の物理的身分証明書(例えば、物理的文書102)を一意に識別することができ、物理的文書のセキュリティ特徴のわずかな差異でさえも、アクティベーションベクトルの異なる符号化をもたらす。例えば、訓練されたセキュリティ特徴識別器層は、物理的文書の画像内のプロファイル画像の異なる頭部位置、物理的文書の画像内の異なる照明条件、物理的文書の画像内のセキュリティ特徴の異なる空間的関係、物理的文書の画像内のテキスト/グラフィック/画像の異なるインク特性、物理的文書の第1の画像内のバーコードの存在および物理的文書の第2の画像内のバーコードの欠如などといった捉え難い区別に基づいて、物理的文書のそれぞれの画像について異なるアクティベーションベクトルを生成することができる。これらの例がここに提示されているが、これらは限定することを意図するものではない。むしろ、これらの例は、異なる物理的文書の画像内のセキュリティ特徴の存在、欠如、配置(例えば、1つもしくは複数のセキュリティ特徴の空間的配置)または品質(例えば、インク品質、印刷品質、材料品質など)の任意の区別を、セキュリティ特徴識別器層によって検出し、これによりセキュリティ特徴識別器層に、異なるアクティベーションデータ160のセットを出力として生成させることができ、よって、アクティベーションデータ160が特定の物理的文書に対応する難読化された識別テンプレートとして使用されることが可能になるポイントを例示するために提供されている。
【0046】
いくつかの実装形態では、アクティベーションデータ160を、教師なし学習技術を使用して生成することができる。例えば、教師なし学習の使用により、抽出画像部分115aを表す入力ベクトル142の、機械学習モデル150による処理の間に、隠れ層154bによって生成されるアクティベーションデータ160などの生成されるアクティベーションデータの重み付けおよび構成は、抽出画像部分115aを表す入力ベクトル142が機械学習モデル150によって以降処理されるたびに、隠れ層154bによって生成されたアクティベーションデータの別のセットの所定の誤差範囲内になる。よって、追加の訓練、再訓練、またはそれらの組み合わせなしで、機械学習モデル150の隠れセキュリティ特徴識別器層154bは、物理的文書102の識別テンプレートとして使用することができるアクティベーションデータを確実に生成することができる。
【0047】
このアクティベーションデータ160は、取引の当事者によって示された特定の物理的文書を一意に識別することができる。アクティベーションデータの固有の識別特性は、抽出画像部分115aに描写されているような物理的文書102のセキュリティ特徴の符号化の結果として生じる。例えば、いくつかの実装形態では、隠れ層154bは、例えば、本明細書に記載される自己符号化プロセスを使用して、抽出画像部分115aによって描写されているような物理的文書102のセキュリティ特徴のうちのセキュリティ特徴の有無を検出するように訓練されている。その結果、隠しセキュリティ特徴識別器層154bによって生成された、この例でアクティベーションベクトルとして示されているアクティベーションデータ160は、抽出画像部分115aによって描写されている物理的文書102のセキュリティ特徴の存在、欠如、配置、または品質を表すデータの符号化を表すことになる。
【0048】
いくつかの実装形態では、符号化データは、セキュリティ特徴が存在するが低品質のものであることを示すことができる。あるいは、いくつかの実装形態では、低品質のセキュリティ特徴(例えば、プロファイル画像の不十分な照明)の検出は、セキュリティ特徴(例えば、適切な照明条件)の欠如としてアクティベーションデータに符号化され得る。同様に、プロファイル画像内の適切な照明条件の検出は、セキュリティ特徴(例えば、適切な照明条件)の存在としてアクティベーションデータに符号化され得る。同様に、そのような実装形態では、符号化データは、1つまたは複数のセキュリティ特徴が適切な方法で空間的に配置されなかったことを示すこともできる。あるいは、いくつかの実装形態では、1つまたは複数のセキュリティ特徴の不適切な空間的配置の検出は、セキュリティ特徴の欠如(例えば、2D PDF-417が期待される場所に存在しない)としてアクティベーションデータに符号化され得る。同様に、1つまたは複数のセキュリティ特徴の適切な空間的位置を、セキュリティ特徴の存在(例えば、2D PDF-417が期待される場所に存在する)としてアクティベーションデータに符号化することもできる。
【0049】
アクティベーションデータ160は、取引検証モジュール170へと入力として提供することができる。取引検証モジュール170は、物理的文書102を提示した実体によって要求された取引が許可されるべきか拒否されるべきかを判定することができる。取引検証モジュール170は、生成された入力ベクトル142の機械学習モデル150による処理に基づいて機械学習モデル150の隠れ層154bによって生成されたアクティベーションデータ160が、善良行為者リスト172に記憶されている、悪質行為者リスト174に記憶されている、または善良行為者リスト172にも悪質行為者リスト174にも記憶されていない対応するベクトルと一致するかどうかを判定することによってこの判定を行うことができる。
【0050】
善良行為者リスト172は、取引が認められるべきである1人または複数人の当事者を記述するデータを含むデータベース、データ構造、または他のデータ編成を含むことができる。当事者は、何回かの期限内の支払いまたは他の正規の取引活動を達成するなどのいくつかの理由で、善良行為者リストに追加され得る。善良行為者リスト172は、実装形態に応じて、ローカルな取引ネットワーク内の所与の組織によって排他的に使用されてもよく、またはより広く他の状況もしくは組織に提供されてもよい。いくつかの実装形態では、取引が認められるべき当事者を記述するデータは、機械学習モデル150の隠れ層154bまたは機械学習モデル150と同様に訓練されている別の機械学習モデルの隠れ層によって事前に生成されたアクティベーションデータを含むことができる。このアクティベーションデータは、
図1に示されるアクティベーションデータ160と同様のこれらの機械学習モデルのうちの1つの隠れ層の出力とすることができる。
【0051】
この記憶されたアクティベーションデータは、取引が事前検証されている実体と関連付けられた物理的文書の身元テンプレートとして機能することができる。いくつかの実装形態では、取引が認められるべきである1人または複数人の当事者を記述するデータは、90日間などの所定の時間量にわたってのみ善良行為者リストに記憶され得る。そのような実装形態では、取引検証モジュール170または善良行為者リスト維持モジュールなどの他のモジュールを使用して、善良行為者リスト172に記憶された識別テンプレートの作成日と関連付けられたタイムスタンプを監視し、そのそれぞれのタイムスタンプが、身元テンプレートが善良行為者リスト172に記憶されることを認められている所定の時間量を満たしているかまたは超えている作成日を示す、各識別テンプレートを、削除することができる。
【0052】
悪質行為者リスト173は、取引が拒否されるべきである1人または複数人の当事者を記述するデータを含むデータベース、データ構造、または他のデータ編成を含むことができる。当事者は、所与の取引、取引のセット、または所定の時間量についての特定の閾値を超えるリスク要因と関連付けられているなど、いくつかの理由で悪質行為者リストに追加され得る。例として、多額のローンを求める要求、貸し出された金銭または資産の返済不能、購入と関連付けられた商品の受け取りおよび保管後の、該購入のためのクレジットカード取引の取り消しなどの指標が挙げられる。悪質行為者リスト174は、実装形態に応じて、ローカルな取引ネットワーク内の所与の組織によって排他的に使用されてもよく、またはより広く他の状況もしくは組織に提供されてもよい。いくつかの実装形態では、取引が拒否されるべき当事者を記述するデータは、機械学習モデル150の隠れ層154bまたは機械学習モデル150と同様に訓練されている別の機械学習モデルの隠れ層によって事前に生成されたアクティベーションデータを含むことができる。このアクティベーションデータは、
図1に示されるアクティベーションデータ160と同様のこれらの機械学習モデルのうちの1つの隠れ層の出力とすることができる。
【0053】
この記憶されたアクティベーションデータは、取引拒否の事前フラグがたてられている実体と関連付けられた物理的文書の身元テンプレートとして機能することができる。いくつかの実装形態では、取引が拒否されるべきである1人または複数人の当事者を記述するデータは、90日間などの所定の時間量にわたってのみ悪質行為者リストに記憶され得る。そのような実装形態では、取引検証モジュール170または悪質行為者リスト維持モジュールなどの他のモジュールを使用して、悪質行為者リスト174に記憶された識別テンプレートの作成日と関連付けられたタイムスタンプを監視し、そのそれぞれのタイムスタンプが、身元テンプレートが悪質行為者リスト174に記憶されることを認められている所定の時間量を満たしているかまたは超えている作成日を示す、悪質行為者リスト内の各識別テンプレートを、削除することができる。
【0054】
実体の物理的身分証明書の画像の代わりに、善良行為者リスト172または悪質行為者リスト174に記憶された識別テンプレートを使用することにより、大きなセキュリティ上およびプライバシー上の利益が提供され、実際、このシステムを使用して実体識別情報をセキュアな方法でプライベートに記憶および共有することが可能になる。暗号化アルゴリズムでさえも本開示のセキュリティおよびプライバシーのレベルを達成することはできず、というのは、暗号化データは解読されることが少なくともあり得るからである。
【0055】
取引検証モジュール170は、アクティベーションデータ160が取引検証モジュール170によって受け取られたことに応答して、善良行為者リスト172、悪質行為者リスト174、またはその両方の組み合わせを検索することによって取引検証を実行することができる。例えば、取引検証モジュール170は、善良行為者リスト172の検索を実行することができる。ある事例では、取引検証モジュール170は、アクティベーションデータ160が、特定の誤差閾値内で、善良行為者リスト内の所与の識別テンプレートと一致すると判定することができる。そのような事例では、取引検証モジュール170は、入力ベクトル142によって表されている、取引検証文書の一部として物理的文書102を提供した実体が認証されており、当事者の取引が承認されるべきであると判定することができる。あるいは、他の事例では、取引検証モジュール170は、アクティベーションデータ160が特定の誤差閾値内で一致しないと判定することができ、次いで、取引検証モジュール170は、取引検証プロセスを継続して、悪質行為者リスト174の検索を実行することができる。
【0056】
善良行為者リスト172が検索された後で、取引検証モジュール170は悪質行為者リスト174の検索を実行することができる。ある事例では、取引検証モジュール170は、アクティベーションデータ160が、特定の誤差閾値内で、悪質行為者リスト内の所与の識別テンプレートと一致すると判定することができる。そのような事例では、取引検証モジュール170は、入力ベクトル142によって表されている、取引検証文書の一部として物理的文書102を提供した実体が、取引を完了することを認められていないと判定することができる。そのような実装形態では、取引検証モジュール170は、通知モジュール180に、取引が拒否されるべきであることを示す通知182を生成するよう命令することができる。そのような事例では、サーバ120は、要求元ユーザデバイス110に、取引が拒否されるべきであることを示す、状態Bでユーザデバイスの表示デバイスに表示するための通知182を、送ることができる。
【0057】
あるいは、他の事例では、取引検証モジュール170は、アクティベーションデータ160が悪質行為者リスト174内のいかなる識別テンプレートとも一致しないと判定することができる。このシナリオでは、取引検証モジュール170によって受け取られたアクティベーションデータ160は、アクティベーションデータ160が、特定の誤差閾値内で、善良行為者リストまたは悪質行為者リスト内のいかなる識別テンプレートとも一致しないと判定している。そのようなシナリオでは、取引検証モジュール170は、入力ベクトル142によって表されている、取引検証文書の一部として物理的文書102を提供した実体が、要求された取引を完了することを認められていると判定することができる。そのような実装形態では、取引検証モジュール170は、通知モジュール180に、取引が認められており、許可されるべきであることを示す通知182を生成するよう命令することができる。そのような事例では、サーバ120は、要求元ユーザデバイス110に、取引が許可されるべきであることを示す、状態Bでユーザデバイスの表示デバイスに表示するための通知を、送ることができる。
【0058】
図1の例では、画像115を取り込んで画像115をサーバ120に送るのと同じユーザデバイスが通知182の受け取りも行う。しかしながら、本開示はそのように限定される必要はない。代わりに、いくつかの実装形態では、画像115を取り込み、サーバ320に提供するために第1のユーザデバイスを使用することができ、サーバ320は通知382を別の異なるユーザデバイスに送ることができる。
【0059】
上記の例では、取引検証モジュールは、取引が拒否されるべきか許可されるべきかを判定するために使用されている。しかしながら、本開示はそのように限定される必要はない。代わりに、いくつかの実装形態では、取引検証モジュール170は、取引が拒否されるべきかどうか、または取引が拒否されるべきでないかどうかを判定することができる。取引の最終的な承認/不承認は他の要因による可能性もあるので、取引が拒否されるべきではないと判定することは、取引を実際に許可することとは異なる。したがって、取引検証モジュール170は、実行時識別テンプレートが善良行為者リスト上で見つかった場合には明確な承認を与え、実行時識別テンプレートが悪質行為者リスト上で見つかった場合には明確な拒否を与えることができる。しかしながら、いくつかの実装形態では、実行時識別テンプレートが善良行為者リストまたは悪質行為者リストのどちらでも見つからない場合、取引検証モジュール170は、通知モジュール180に、取引が拒否されるべきではないことを示す通知を生成するように命令するだけであり得る。とは言え、他の実装形態が、実行時識別テンプレートが善良行為者リストまたは悪質行為者リストのどちらでも見つからないシナリオを、許可されるべき取引を示すものとして扱うように構成されてもよい。最終的な構成は、システム100を実装する顧客のビジネスモデルに基づいて決定することができる。
【0060】
上記のように、(i)当事者によって提示された物理的文書102に基づいて実行時に生成されたアクティベーションデータ160などの識別テンプレートを、(ii)善良行為者リスト、悪質行為者リスト、またはその両方に記憶された以前に生成された識別テンプレートと比較するときに、誤差閾値量が使用される。これは、それぞれの身元テンプレートが正確には一致しない可能性があるためである。代わりに、各識別テンプレートは、各識別テンプレートが基づくアクティベーションデータを使用して、ベクトル空間内の特定のベクトルを表すことができる。そのようなシナリオでは、実行時に生成された識別テンプレートと善良行為者リストまたは悪質行為者リストの識別テンプレートとの比較は、新たに生成された識別テンプレートのアクティベーションデータと記憶された各識別テンプレートのアクティベーションデータとの間の隔たりを評価することによる。2つの識別テンプレート間の隔たりが所定の誤差閾値を満たす場合には、2つの識別テンプレートは一致すると判定することができる。
【0061】
ある事例では、「識別テンプレート」という用語は、物理的文書102などの物理的文書の表現を記述するために使用される。加えて、「アクティベーションデータ」または「アクティベーションベクトル」という用語は、機械学習モデル150の隠れ層の出力を記述するために使用される。しかしながら、いくつかの実装形態では、「識別テンプレート」、「アクティベーションデータ」、または「アクティベーションベクトル」の間にいかなる差異も存在しない場合があることに留意されたい。そのような実装形態では、隠れ層154bによって出力されるアクティベーションデータはアクティベーションデータ160であり、そのアクティベーションデータ160のベクトル表現を識別テンプレートとして使用することができる。他の実装形態では、異なるデータ処理システムにおけるそれぞれの使用を容易にするために、アクティベーションデータ160と、アクティベーションデータ160に対応するアクティベーションベクトルと、アクティベーションデータ160に対応する識別テンプレートとの間に比較的小さなフォーマットの差異が生じる場合がある。例えば、アクティベーションデータを記憶のために識別テンプレートにするときに、アクティベーションベクトルにヘッダフィールドなどのデータフィールドが追加される場合がある。いずれにせよ、同義的にアクティベーションベクトルまたは実行時識別テンプレートと呼ぶことができる新たに生成されたアクティベーションデータ160と、記憶された識別テンプレートとの間の比較が、本明細書に記載されるように訓練された機械学習モデル150の隠れ層154bによって出力されたアクティベーションデータを評価することによって行われる。
【0062】
図2は、識別テンプレートを生成するためのプロセス200の一例のフローチャートである。プロセス200は、1つまたは複数の電子システム、例えば
図1のシステム100によって実行され得る。
【0063】
システム100は、取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを、1つまたは複数のコンピュータにより取得することによってプロセス200の実行を開始することができる(210)。いくつかの実装形態では、取得された第1のデータは、取引の当事者を識別する物理的文書の少なくとも部分を表す入力ベクトルを含むことができる。入力データベクトルは、スマートフォンなどのユーザデバイスによって生成され、ユーザデバイスによってサーバに送られた取引の当事者を識別する物理的文書の画像に基づいて生成することができる。画像は、LAN、WAN、セルラーネットワーク、インターネット、またはそれらの組み合わせなどの1つまたは複数の有線ネットワークまたは無線ネットワークを介して受け取ることができる。取り込まれた画像は、取引の当事者を識別する物理的文書の全部または一部分を描写することができる。
【0064】
システム100は、プロセス200の実行を継続して、正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、第1のデータを入力として提供することができる(220)。いくつかの実装形態では、機械学習モデルは、機械学習モデルが訓練されている偽造防止アーキテクチャの1つまたは複数のセキュリティ特徴の有無を検出するように訓練されている隠れセキュリティ特徴識別器層を含むことができる。いくつかの実装形態では、段階210で取得された入力ベクトルを、段階220で機械学習モデルに入力することができる。
【0065】
プロセス200は、機械学習モデルが第1のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成されたアクティベーションデータを取得することを含む(230)。いくつかの実装形態では、セキュリティ特徴識別器層は、機械学習モデルの入力層と機械学習モデルの出力層との間に配置された機械学習モデルの隠れ層とすることができる。取得されたアクティベーションデータが、所定の誤差閾値内で、実体レコードのデータベースに記憶された第2のデータと一致すると、1つまたは複数のコンピュータにより判定することであって、ここで、実体レコードのデータベース内の各実体レコードは、少なくとも所定の時間量にわたって取引が拒否されるべき実体に対応する。
【0066】
システム100は、プロセス200の実行を継続して、取得されたアクティベーションデータに基づいて、取引が拒否されるべきかどうかを判定することができる(240)。例えば、システム100は、取引が許可されるべき実体を表す他の取引の他の当事者についての1つまたは複数の物理的文書を表す以前に生成されたアクティベーションデータを記憶している善良行為者リスト、取引が拒否されるべき他の取引の他の当事者についての1つまたは複数の物理的文書を表す以前に生成されたアクティベーションデータを記憶している悪質行為者リスト、またはその両方の組み合わせを検索して、取得されたアクティベーションデータが、善良行為者リスト、悪質行為者リスト、またはその両方に記憶されたアクティベーションデータのインスタンスのいずれかの所定の誤差量内にあるかどうかを判定することによって、取引が拒否されるべきかどうかを判定することができる。
【0067】
取引が拒否されるべきであると判定したことに基づき、システム100は、取引が拒否されるべきであることを示す通知を生成することができる(250)。システム100は、取得されたアクティベーションデータが所定の誤差量内で悪質行為者リストに記憶されたアクティベーションデータのインスタンスと一致する場合、取引が拒否されるべきであると判定することができる。通知は、ユーザデバイスに送られ、ユーザデバイスによって処理された場合に、ユーザデバイスに、取引が拒否されるべきであることを示すメッセージを出力するユーザデバイスのディスプレイ上の通知をレンダリングさせることができる。しかしながら、通知は、ユーザデバイスの画面上のグラフィック表示に限定される必要はない。代わりに、システム100は、ユーザデバイスによって受け取られ、処理された場合にユーザデバイスに、取引が拒否されるべきであることを示すオーディオメッセージを出力させる通知を、ユーザデバイスに送ることができる。いくつかの実装形態では、音声通知と表示通知の両方を提供することができる。
【0068】
他の実装形態では、システム100は、取引が承認または許可されるべきであると判定することができる。システム100は、例えば、取得されたアクティベーションデータが所定の誤差量内で善良行為者リストに記憶されたアクティベーションデータのインスタンスと一致するとシステム100が判定した場合、取引が承認されるべきであると判定することができる。そのようなシナリオでは、システム100は、取引が承認されるべきであることを示す通知を生成することができる。このシナリオでは、通知は、ユーザデバイスに送られ、ユーザデバイスによって処理された場合に、ユーザデバイスに、取引が拒否されるべきであることを示すメッセージを出力するユーザデバイスのディスプレイ上の通知をレンダリングさせることができる。しかしながら、通知は、ユーザデバイスの画面上のグラフィック表示に限定される必要はない。代わりに、システム100は、ユーザデバイスによって受け取られ、処理された場合にユーザデバイスに、取引が承認または許可されるべきであることを示すオーディオメッセージを出力させる通知を、ユーザデバイスに送ることができる。いくつかの実装形態では、音声通知と表示メッセージの両方を提供することができる。
【0069】
図3は、識別テンプレートを使用してユーザの身元を認証するためのシステム300の一例のコンテキスト図である。システム300は、物理的文書102、カメラ105、ユーザデバイス110、画像115、サーバ320、抽出モジュール130、画像の部分115a、ベクトル生成モジュール140、および機械学習モデル150など、
図1のシステム100からの同じ特徴の多くを含む。加えて、システム300はまた、識別認証モジュール370および通知モジュール380も含む。
図3の例では、プロセスは、段階Aから段階Bを経て段階Cまで示されている。
【0070】
図3の例を参照すると、ユーザデバイス110は、段階Aでカメラ105を使用して物理的文書102の画像115を取り込むことができる。画像115は、物理的文書102の画像の少なくとも一部分を描写している第1の部分115a、および物理的文書102の画像115が取り込まれたときの周囲環境の一部分を描写している第2の部分115bを含むことができる。ユーザデバイス110は、ネットワーク112を使用してサーバ320に画像115を送ることができる。ネットワーク112は、有線ネットワーク、無線ネットワーク、LAN、WAN、セルラーネットワーク、インターネット、またはそれらの任意の組み合わせを含むことができる。
【0071】
次いで、
図3の段階Bで、ユーザデバイス110は、カメラ105を使用してユーザ103の画像117を取り込むことができる。画像117は、ユーザ103の身体の少なくとも一部分を描写している。いくつかの実装形態では、画像117は、ユーザ103の顔を描写している「自撮り」画像を含むことができる。いくつかの実装形態では、画像117は、ユーザ103の身体の一部分を描写している第1の部分117a、およびユーザ103の画像117が取り込まれたときの周囲環境の一部分を描写している第2の部分117bを含むことができる。ユーザデバイス110は、ネットワーク112を使用してサーバ320に画像117を送ることができる。ネットワーク112は、有線ネットワーク、無線ネットワーク、LAN、WAN、セルラーネットワーク、インターネット、またはそれらの任意の組み合わせを含むことができる。
【0072】
いくつかの実装形態では、ユーザデバイスはスマートフォンを含むことができる。しかしながら、本開示はそのように限定される必要はない。例えば、いくつかの実装形態では、ユーザデバイス110は、画像115、117を取り込むために使用することができる音声通話機能のないカメラを含むことができる。次いで、カメラは、ネットワーク112を使用してサーバ320に画像115、117を送ることができる。他の実装形態では、音声通話機能のないカメラは、画像115、117を取り込み、画像115、117を別のコンピュータに伝達することができる。これは、ブルートゥース短波無線ネットワークなどの1つもしくは複数のネットワークを介して、または例えばUSBCケーブルを使用したコンピュータへの直接接続を介して達成することができる。次いで、そのような実装形態では、コンピュータを使用して、ネットワーク112を使用してサーバ320に画像115、117を送ることができる。さらに別の実装形態では、カメラを、各々がカメラおよび画像送信デバイスを装備し得る、タブレット、ラップトップ、スマートグラス、カメラ付きハンドヘルドデバイスなどといった別のユーザデバイスの一部とすることができる。一般に、画像を取り込むことができる任意のデバイスを、画像115、117などの画像を取り込むために使用することができる。加えて、単一のユーザデバイスが画像115、117を取り込むという要件もない。例えば、スマートフォンなどの第1のユーザデバイスが画像115を取り込むことができ、次いでスマートグラスなどの第2のユーザデバイスが画像117を取り込むこともできる。
【0073】
ユーザデバイス110は、段階Aで取り込まれた画像115を、ネットワーク112を使用してサーバ320に送る。ユーザデバイス110はまた、段階Bで撮像された画像117も、ネットワーク112を使用してサーバ320に送る。いくつかの実装形態では、ユーザデバイス110は、画像115を取り込み、画像115を送り、画像117を取り込み、次いで画像117を送る。しかしながら、本開示は、このような一連の動作に限定されない。例えば、いくつかの実装形態では、ユーザデバイス110によって、ユーザに、運転免許証や自撮り画像117などの物理的文書102の画像115の入力を促すことができる。そのような事例では、ユーザデバイス110のユーザは、物理的文書102の記憶された画像115および記憶された自撮り画像117にアクセスし、ネットワーク112を使用してサーバ320に記憶された画像115、117をアップロードすることができる。
【0074】
サーバ320は、各画像115、117のアクティベーションデータのそれぞれのインスタンスを生成するために、抽出モジュール130、ベクトル生成モジュール140、および機械学習モデル150を各画像115、117に対して別々に使用するように構成される。一般に、これらのモジュールの各々は、各画像115、117のアクティベーションデータのインスタンスを生成するために、
図1の例に関して説明されたのと同じ方法で各画像115、117に対して動作する。
【0075】
例として、
図3に関して、サーバ320は、画像115を抽出モジュール130へと入力として提供することができる。抽出モジュール130は、画像115の第1の抽出画像部分115cを抽出することができる。この例では、第1の抽出画像部分115cは、物理的文書102の画像115によって描写されている人物のプロファイル画像である。次いで、サーバ320は、第1の抽出画像部分115cをベクトル生成モジュール140へと入力として提供することができる。ベクトル生成モジュール140は、第1の抽出画像部分115cを処理して、第1の抽出画像部分115cを数値的に表す第1の入力ベクトル342-1を生成することができる。例えば、ベクトル142は、第1の抽出画像部分115cの画素に各々対応する複数のフィールドを含むことができる。ベクトル生成モジュール140は、第1の抽出画像部分115cの対応する画素を記述するフィールドの各々の数値を決定することができる。第1の抽出画像部分115cは、本明細書では画像115cまたはプロファイル画像115cと呼ばれる場合もある。
【0076】
サーバ320は、生成された第1の入力ベクトル342-1を機械学習モデル150へと入力として提供することができる。機械学習モデル150は、機械学習モデル150の各層152、154a、154b、154c、156を介して第1の入力ベクトル342-1を処理して、出力データ357-1を生成することができ、出力データ357-1は、第1の入力ベクトル342-1によって表されている物理的文書102が偽の物理的文書である可能性を含むことができる。サーバ320は、これらの出力値を廃棄することができ、代わりに、本明細書に記載される技術を使用して、セキュリティ特徴識別器層として機能するように訓練されている機械学習モデル150の隠れ層によって出力された第1のアクティベーションデータ360-1を取得する。第1のアクティベーションデータ360-1は、
図1の例でアクティベーションデータ160を生成するための技法と同じ技法を使用して生成することができる。この第1のアクティベーションデータ360-1は、第1の抽出画像115cの識別テンプレートとして働く。
【0077】
同様に、サーバ320は、画像117を抽出モジュール130へと入力として提供することができる。抽出モジュール130は、画像117の第2の抽出画像部分117cを抽出することができる。この例では、第2の抽出画像部分117cは、画像117によって描写されているユーザ103の自撮り画像である。次いで、サーバ320は、第2の抽出画像部分117cをベクトル生成モジュール140へと入力として提供することができる。ベクトル生成モジュール140は、第2の抽出画像部分117cを処理して、第2の抽出画像部分117cを数値的に表す第2の入力ベクトル342-2を生成することができる。例えば、第2の入力ベクトル342-2は、第2の抽出画像部分117cの画素に各々対応する複数のフィールドを含むことができる。ベクトル生成モジュール140は、第2の抽出画像部分117cの対応する画素を記述するフィールドの各々の数値を決定することができる。第2の抽出画像部分117cは、本明細書では画像117cまたは自撮り画像117cと呼ばれる場合もある。
【0078】
サーバ320は、生成された第2の入力ベクトル342-2を機械学習モデル150へと入力として提供することができる。機械学習モデル150は、機械学習モデル150の各層152、154a、154b、154c、156を介して第2の入力ベクトル342-2を処理して、出力データ357-2を生成することができ、出力データ357-2は、第2の入力ベクトル342-2によって表されている物理的文書102が偽の物理的文書である可能性を含むことができる。サーバ320は、これらの出力値を廃棄することができ、代わりに、本明細書に記載される技術を使用して、セキュリティ特徴識別器層として機能するように訓練されている機械学習モデル150の隠れ層によって出力された第2のアクティベーションデータ360-2を取得する。第2のアクティベーションデータ360-2は、
図1の例でアクティベーションデータ160を生成するための技法と同じ技法を使用して生成することができる。この第2のアクティベーションデータ360-2は、第2の抽出画像117cの識別テンプレートとして働く。
【0079】
図3に示される例では、機械学習モデル150の隠れセキュリティ特徴識別器層154bによって生成された、第1の入力ベクトル342-1と第2の入力ベクトル342-2とにそれぞれ対応する第1のアクティベーションデータ360-1と第2のアクティベーションデータ360-2とを、識別認証モジュール370へと入力として提供することができる。識別認証モジュール370は、物理的文書102のプロファイル画像115cとユーザ103の自撮り画像117cとが同じ人物を描写している可能性を判定することができる。
【0080】
識別認証モジュール370は、この判定を、第1のアクティベーションデータ360-1と第2のアクティベーションデータ360-2との比較に基づいて行うことができる。例えば、識別認証モジュール370は、ベクトル空間内のアクティベーションデータの各セットを評価することができる。次いで、識別認証モジュール370は、ベクトル空間内の第1のアクティベーションデータ360-1と第2のアクティベーションデータ360-2との間の隔たりを評価することができる。識別認証モジュール370が、第1のアクティベーションデータ360-1と第2のアクティベーションデータ360-2との間の隔たりが所定の誤差閾値を満たすと判定した場合には、識別認証モジュール370は、2つの識別テンプレートが一致すると判定することができる。そのような事例では、識別認証モジュールは、ユーザ103が認証されたと判定することができる。
【0081】
ユーザが認証されたと判定した後、識別認証モジュール370は、通知モジュール380に、ユーザが認証されたことを示す、ユーザデバイス110に送るための通知382を生成するよう命令することができる。通知382は、ネットワーク112を介してユーザデバイス110に送ることができる。通知382は、ユーザデバイス110によってレンダリングされた場合にユーザデバイス110に、ユーザが認証されたことをユーザデバイス110のユーザに伝達する通知をユーザデバイス110のディスプレイに表示させるレンダリングデータを含むように、構成することができる。この例では、画像115、117を取り込んだユーザデバイスに認証メッセージが返送されるが、本開示はそのように限定される必要はない。例えば、いくつかの実装形態では、1つまたは複数のユーザデバイスを使用して、画像115、117を取り込んでサーバ320に提供することができ、次いでサーバ320は通知382を別の異なるユーザデバイスに送ることができる。
【0082】
あるいは、いくつかの事例では、識別認証モジュール370が、第1のアクティベーションデータ360-1と第2のアクティベーションデータ360-2との間の隔たりが所定の誤差閾値を満たさないと判定した場合には、識別認証モジュール370は、2つの識別テンプレートが一致しないと判定することができる。そのような事例では、識別認証モジュールは、ユーザ103が認証されないと判定することができる。
【0083】
ユーザが認証されないと判定した後、識別認証モジュール370は、通知モジュール380に、ユーザが認証されないことを示す、ユーザデバイス110に送るための通知を生成するよう命令することができる。通知は、ネットワーク112を介してユーザデバイス110に送ることができる。通知は、ユーザデバイス110によってレンダリングされた場合にユーザデバイス110に、ユーザが認証されたことをユーザデバイス110のユーザに伝達する通知をユーザデバイス110のディスプレイに表示させるレンダリングデータを含むように、構成することができる。この通知は、ユーザ認証が必要とされたユーザによって求められたサービスへのアクセスの拒否など、ユーザが認証されないことまたは認証の欠如がより捉え難いものであり得ることを明示的に示し得る。この例は、画像115、117を取り込んだユーザデバイスに認証メッセージが返送されると説明しているが、本開示はそのように限定される必要はない。例えば、いくつかの実装形態では、1つまたは複数のユーザデバイスを使用して、画像115、117を取り込んでサーバ320に提供することができ、次いでサーバ320は通知382を別の異なるユーザデバイスに送ることができる。
【0084】
図4は、識別テンプレートを使用してユーザを認証するためのプロセス400の一例のフローチャートである。プロセス400は、1つまたは複数の電子システム、例えば
図3のシステム300によって実行され得る。
【0085】
システム300は、取引の当事者を識別する物理的文書の少なくとも一部分を表す第1のデータを取得することによってプロセス400の実行を開始することができる(410)。第1のデータは、例えば、ベクトル生成ユニットが物理的文書の画像から抽出された第1の画像を処理したことに基づいてベクトル生成ユニットによって生成された第1の入力ベクトルを含むことができる。
【0086】
システム300は、プロセス400の実行を継続して、当事者の顔画像を表す第2のデータを取得することができる(420)。第2のデータは、例えば、ベクトル生成ユニットがユーザデバイスのユーザの「自撮り」画像を処理したことに基づいてベクトル生成ユニットによって生成された第2の入力ベクトルを含むことができる。ユーザは、ユーザ認証が必要とされるサービスにアクセスしようとしている人を含み得る。サービスは、ブラウザまたはネイティブアプリケーションを介してアクセス可能なオンラインアプリケーションを含むことができる。例として、サービスは、ゲーム、生産性アプリケーション、電子メールアカウント、ケーブルアカウントプロファイル、携帯電話アカウントプロファイル、ケーブルアカウントプロファイル、銀行口座、公共料金アカウント、またはユーザ認証が必要とされるアクセス可能な任意の他のサービスを含むことができる。
【0087】
システム300は、プロセス400の実行を継続して、正規の物理的文書の少なくとも一部分を、入力画像を表すデータが描写している可能性を判定するように訓練されている機械学習モデルへと、第1のデータを入力として提供することができる(430)。いくつかの実装形態では、機械学習モデルは、セキュリティ特徴識別器層を含むことができる。セキュリティ特徴識別器層は、物理的文書の入力画像を表すベクトルごとに、セキュリティ特徴識別器層が訓練されている偽造防止アーキテクチャのセキュリティ特徴の有無を検出するように訓練することができる。第1のデータは、例えば、ベクトル生成ユニットが物理的文書の画像から抽出された第1の画像を処理したことに基づいてベクトル生成ユニットによって生成された第1の入力ベクトルを含むことができる。
【0088】
システム300は、プロセス400の実行を継続して、機械学習モデルが第1のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成された第1のアクティベーションデータを取得することができる(440)。第1のアクティベーションデータは、物理的文書の画像から抽出された第1の画像を表す第1の入力ベクトルの機械学習モデルによる処理中の隠れセキュリティ特徴識別器層の出力を含むことができる。
【0089】
システム300は、プロセス400の実行を継続して、第2のデータを機械学習モデルへと入力として提供することができる(450)。第2のデータは、例えば、ベクトル生成ユニットがユーザデバイスのユーザの「自撮り」画像を処理したことに基づいてベクトル生成ユニットによって生成された第2の入力ベクトルを含むことができる。
【0090】
プロセス400は、機械学習モデルが第2のデータを処理したことに基づいてセキュリティ特徴識別器層によって生成された第2のアクティベーションデータを取得することを含む(460)。例えば、第2のアクティベーションデータは、ユーザデバイスのユーザの「自撮り」画像を表す第2の入力ベクトルの機械学習モデルによる処理中の隠れセキュリティ特徴識別器層の出力を含むことができる。
【0091】
システム300は、プロセス400の実行を継続して、(i)第1のアクティベーションデータと(ii)第2のアクティベーションデータとに基づいて、取引が拒否されるべきかどうかを判定することができる(470)。取引が拒否されるべきかどうかを判定することは、例えば、ベクトル空間内の第1のアクティベーションデータと第2のアクティベーションデータとの間の隔たりを判定することを含むことができる。システム300が、第1のアクティベーションデータと第2のアクティベーションデータとの間の隔たりが所定の閾値を満たさないと判定した場合には、システム300は、取引が拒否されるべきであると判定することができる。いくつかの実装形態では、取引は、店頭購入、ユーザが加入しているサービスの機能の変更を求める要求、オンラインアカウントへのアクセスを求める要求などを含むことができる。
【0092】
取引が拒否されるべきであると判定したことに基づき、システム300は、プロセス400の実行を継続して、取引が拒否されるべきであることを示す通知を生成することができる(480)。例えば、システム300は、ユーザデバイスによってレンダリングされた場合にユーザデバイスに、ユーザが認証されないこと、取引が拒否されたこと、それらの組み合わせなどを示す情報を表示させる通知を、送ることができる。
【0093】
あるいは、いくつかの実装形態では、システム300が、第1のアクティベーションデータと第2のアクティベーションデータとの間の隔たりが所定の閾値を満たすと判定した場合には、システム300は、取引が許可されるべきであると判定することができる。
【0094】
取引が許可されるべきであると判定したことに基づき、システム300は、プロセス400の実行を継続して、取引が許可されるべきであることを示す通知を生成することができる。例えば、システム300は、ユーザデバイスによってレンダリングされた場合にユーザデバイスに、認証されたこと、取引が承認されたこと、アカウント設定へのアクセスを提供すること、ユーザアカウントと関連付けられたパラメータの値を変更することなどを示す情報を表示させる通知を、送ることができる。
【0095】
図4を参照して上述された各通知は、ユーザデバイスに通知を表示させる通知を説明している。しかしながら、通知は、ユーザデバイスの画面上のグラフィック表示に限定される必要はない。代わりに、システム300は、ユーザデバイスによって受け取られ、処理された場合にユーザデバイスに、取引が拒否されるべきかまたは許可されるべきであること、ユーザが認証されるかまたは認証されないことなどを示すオーディオメッセージを出力させる通知を、ユーザデバイスに送ることができる。いくつかの実装形態では、音声通知と表示通知の両方を提供することができる。
【0096】
図5は、識別テンプレートを実装、生成および使用するために使用することができるシステム500の構成要素のブロック図である。
【0097】
コンピューティングデバイス500は、ラップトップ、デスクトップ、ワークステーション、パーソナルデジタルアシスタント、サーバ、ブレードサーバ、メインフレーム、および他の適切なコンピュータなどの様々な形態のデジタルコンピュータを表すことが意図されている。コンピューティングデバイス550は、パーソナルデジタルアシスタント、セルラー電話、スマートフォン、および他の同様のコンピューティングデバイスなどの、様々な形態のモバイルデバイスを表すことが意図されている。加えて、コンピューティングデバイス500または550は、ユニバーサルシリアルバス(USB)フラッシュドライブも含むことができる。USBフラッシュドライブは、オペレーティングシステムおよび他のアプリケーションを記憶することができる。USBフラッシュドライブは、別のコンピューティングデバイスのUSBポートに挿入できる無線トランシーバやUSBコネクタなどの入力/出力構成要素を含むことができる。ここに示される構成要素、それらの接続および関係、ならびにそれらの機能は、例示を意図しているにすぎず、本出願において記載および/または特許請求される発明の実装形態の限定を意図するものではない。
【0098】
コンピューティングデバイス500は、プロセッサ502と、メモリ504と、記憶デバイス506と、メモリ504および高速拡張ポート510に接続する高速インターフェース508と、低速バス514および記憶デバイス506に接続する低速インターフェース512とを含む。構成要素502、504、506、508、510および512の各々は、様々なバスを使用して相互接続され、共通のマザーボード上に、または必要に応じて他の方法で搭載することができる。プロセッサ502は、高速インターフェース508に結合されたディスプレイ516などの、外部入力/出力デバイス上にGUIのグラフィック情報を表示するためのメモリ504または記憶デバイス508に記憶された命令を含む、コンピューティングデバイス500内で実行するための命令を処理することができる。他の実装形態では、複数のプロセッサおよび/または複数のバスを、必要に応じて、複数のメモリおよび複数のタイプのメモリと共に使用することができる。また、各コンピューティングデバイスが、例えば、サーババンク、ブレードサーバのグループ、またはマルチプロセッサシステムとして、必要な動作の部分を提供する、複数のコンピューティングデバイス500を接続することもできる。
【0099】
メモリ504は、コンピューティングデバイス500内の情報を記憶する。一実装形態では、メモリ504は1つまたは複数の揮発性メモリユニットである。別の実装形態では、メモリ504は、1つまたは複数の不揮発性メモリユニットである。メモリ504は、磁気ディスクや光ディスクなどの、別の形態のコンピュータ可読媒体とすることもできる。
【0100】
記憶デバイス508は、コンピューティングデバイス500に大容量記憶を提供することができる。一実装形態では、記憶デバイス508は、フロッピーディスクデバイス、ハードディスクデバイス、光ディスクデバイス、もしくはテープデバイス、フラッシュメモリもしくは他の同様のソリッドステートメモリデバイス、または、ストレージエリアネットワークもしくは他の構成におけるデバイスを含むデバイスの配列などの、コンピュータ可読媒体とすることができるか、またはコンピュータ可読媒体を含むことができる。コンピュータプログラム製品を、情報キャリアにおいて有形的に具現化することができる。コンピュータプログラム製品はまた、実行された場合に上述のような1つまたは複数の方法を実行する命令を含むこともできる。情報キャリアは、メモリ504、記憶デバイス508、またはプロセッサ502上のメモリなどのコンピュータ可読媒体または機械可読媒体である。
【0101】
高速コントローラ508はコンピューティングデバイス500のための帯域幅集約型動作を管理し、低速コントローラ512は帯域幅集約性の低い動作を管理する。そのような機能の割り振りは例示にすぎない。一実装形態では、高速コントローラ508は、メモリ504と、例えば、グラフィックスプロセッサやアクセラレータを介して、ディスプレイ516と、様々な拡張カード(図示せず)を受け入れることができる高速拡張ポート510とに結合される。この実装形態では、低速コントローラ512は、記憶デバイス508と低速拡張ポート514とに接続される。低速拡張ポートは、様々な通信ポート、例えば、USB、ブルートゥース、イーサネット、無線イーサネットを含むことができ、キーボード、ポインティングデバイス、マイクロホン/スピーカ対、スキャナなどの1つもしくは複数の入力/出力デバイスに、または、例えばネットワークアダプタを介して、スイッチやルータなどのネットワーキングデバイスに結合することができる。コンピューティングデバイス500は、図に示されるように、いくつかの異なる形で実装することができる。例えば、コンピューティングデバイス500は、標準的なサーバ520として、または多くはそのようなサーバのグループとして実装することができる。コンピューティングデバイス500は、ラックサーバシステム524の一部として実装することもできる。加えて、コンピューティングデバイス500は、ラップトップコンピュータ522などのパーソナルコンピュータに実装することもできる。あるいは、コンピューティングデバイス500の構成要素を、デバイス550などのモバイルデバイス内の他の構成要素(図示せず)と組み合わせることもできる。そのようなデバイスの各々がコンピューティングデバイス500、550のうちの1つまたは複数を含むことができ、システム全体を、互いに通信し合う複数のコンピューティングデバイス500、550で構成することができる。
【0102】
コンピューティングデバイス500は、図に示されるように、いくつかの異なる形で実装することができる。例えば、コンピューティングデバイス500は、標準的なサーバ520として、または多くはそのようなサーバのグループとして実装することができる。コンピューティングデバイス500は、ラックサーバシステム524の一部として実装することもできる。加えて、コンピューティングデバイス500は、ラップトップコンピュータ522などのパーソナルコンピュータに実装することもできる。あるいは、コンピューティングデバイス500の構成要素を、デバイス550などのモバイルデバイス内の他の構成要素(図示せず)と組み合わせることもできる。そのようなデバイスの各々がコンピューティングデバイス500、550のうちの1つまたは複数を含むことができ、システム全体を、互いに通信し合う複数のコンピューティングデバイス500、550で構成することができる。
【0103】
コンピューティングデバイス550は、構成要素の中でも特に、プロセッサ552と、メモリ564と、ディスプレイ554などの入力/出力デバイスと、通信インターフェース566と、トランシーバ568とを含む。デバイス550はまた、追加の記憶を提供するために、マイクロドライブや他のデバイスなどの記憶デバイスを備えることもできる。構成要素550、552、564、554、566および568の各々は、様々なバスを使用して相互接続され、構成要素のうちのいくつかを、共通のマザーボード上に、または必要に応じて他の方法で搭載することができる。
【0104】
プロセッサ552は、メモリ564に記憶された命令を含む、コンピューティングデバイス550内の命令を実行することができる。プロセッサは、別個の複数のアナログプロセッサおよびデジタルプロセッサを含むチップのチップセットとして実装することができる。加えて、プロセッサは、いくつかのアーキテクチャのいずれかを使用して実装することもできる。例えば、プロセッサ510は、CISC(複合命令セットコンピュータ)プロセッサや、RISC(縮小命令セットコンピュータ)プロセッサや、MISC(最小命令セットコンピュータ)プロセッサとすることもできる。プロセッサは、例えば、ユーザインターフェースの制御、デバイス550によって実行されるアプリケーション、およびデバイス550による無線通信など、デバイス550の他の構成要素の調整を提供することができる。
【0105】
プロセッサ552は、制御インターフェース558およびディスプレイ554に結合された表示インターフェース556を介してユーザと通信することができる。ディスプレイ554は、例えば、TFT(薄膜トランジスタ液晶ディスプレイ)ディスプレイ、OLED(有機発光ダイオード)ディスプレイ、または他の適切な表示技術とすることができる。表示インターフェース556は、ユーザにグラフィック情報および他の情報を提示するようディスプレイ554を駆動するための適切な回路を含むことができる。制御インターフェース558は、ユーザからコマンドを受け取り、それらのコマンドをプロセッサ552に送るために変換することができる。加えて、デバイス550と他のデバイスとの近距離通信を可能にするように、プロセッサ552と通信する外部インターフェース562を設けることもできる。外部インターフェース562は、例えば、いくつかの実装形態では有線通信を提供することができ、または他の実装形態では無線通信を提供することができ、複数のインターフェースを使用することもできる。
【0106】
メモリ564は、コンピューティングデバイス550内の情報を記憶する。メモリ564は、1つもしくは複数のコンピュータ可読媒体、1つもしくは複数の揮発性メモリユニット、または1つもしくは複数の不揮発性メモリユニットのうちの1つまたは複数として実装することができる。拡張メモリ574を設け、拡張インターフェース572を介してデバイス550に接続することもでき、拡張インターフェース572は、例えば、SIMM(シングルインラインメモリモジュール)カードインターフェースを含むことができる。そのような拡張メモリ574は、デバイス550に追加の記憶空間を提供することができ、またはデバイス550のためのアプリケーションまたは他の情報を記憶することもできる。具体的には、拡張メモリ574は、上述のプロセスを実行または補足する命令を含むことができ、セキュア情報も含むことができる。よって、例えば、拡張メモリ574は、デバイス550のためのセキュリティモジュールとして設けることができ、デバイス550のセキュアな使用を可能にする命令でプログラムすることができる。加えて、セキュアアプリケーションを、識別情報をSIMMカード上にハッキングできない方法で配置するなど、追加情報と共にSIMMカードを介して提供することもできる。
【0107】
メモリは、後述するように、例えば、フラッシュメモリおよび/またはNVRAMを含むことができる。一実装形態では、コンピュータプログラム製品が、情報キャリアにおいて有形的に具現化される。コンピュータプログラム製品は、実行された場合に上述のような1つまたは複数の方法を実行する命令を含む。情報キャリアは、例えばトランシーバ568または外部インターフェース562を介して受け取りをすることができる、メモリ564、拡張メモリ574、またはプロセッサ552上のメモリなどのコンピュータ可読媒体または機械可読媒体である。
【0108】
デバイス550は、通信インターフェース566を介して無線で通信することができ、通信インターフェース566は必要に応じてデジタル信号処理回路を含むことができる。通信インターフェース566は、中でも特に、GSM音声通話、SMS、EMS、もしくはMMSメッセージング、CDMA、TDMA、PDC、WCDMA、CDMA2000、またはGPRSなどの様々なモードまたはプロトコルの下での通信を提供することができる。そのような通信は、例えば、無線周波数トランシーバ568を介して行うことができる。加えて、近距離通信を、例えば、ブルートゥース、Wi-Fi、または他のそのようなトランシーバ(図示せず)を使用して行うこともできる。加えて、GPS(全地球測位システム)レシーバモジュール570が、デバイス550に、デバイス550上で動作するアプリケーションによって必要に応じて使用され得る、追加的なナビゲーションおよび位置特定に関連した無線データを、提供することもできる。
【0109】
デバイス550はまた、オーディオコーデック560を使用して音声で通信することもでき、オーディオコーデック560は、ユーザから音声による情報を受け取り、それを使用可能なデジタル情報に変換することができる。オーディオコーデック560は、同様に、例えば、デバイス550のハンドセット内のスピーカなどを介して、ユーザに対して可聴音を生成することもできる。そのような音は、音声通話からの音を含むことができ、録音された音、例えば、音声メッセージ、音楽ファイルなどを含むことができ、デバイス550上で動作するアプリケーションによって生成された音も含むことができる。
【0110】
コンピューティングデバイス550は、図に示されるように、いくつかの異なる形で実装することができる。例えば、コンピューティングデバイス550は、セルラー電話580として実装することもできる。コンピューティングデバイス550は、スマートフォン582、パーソナルデジタルアシスタント、または他の同様のモバイルデバイスの一部として実装することもできる。
【0111】
本明細書に記載されるシステムおよび方法の様々な実装形態を、デジタル電子回路、集積回路、専用に設計されたASIC(特定用途向け集積回路)、コンピュータハードウェア、ファームウェア、ソフトウェア、および/またはそのような実装形態の組み合わせにおいて実現することができる。これら様々な実装形態は、記憶システム、少なくとも1つの入力デバイス、および少なくとも1つの出力デバイスからデータおよび命令を受け取り、記憶システム、少なくとも1つの入力デバイス、および少なくとも1つの出力デバイスにデータおよび命令を送るように結合された、専用または汎用とすることができる、少なくとも1つのプログラマブルプロセッサを含むプログラマブルシステム上で実行可能および/または解釈可能な1つまたは複数のコンピュータプログラムにおける実装を含むことができる。
【0112】
これらのコンピュータプログラムは(プログラム、ソフトウェア、ソフトウェアアプリケーションまたはコードとも呼ばれ)、プログラマブルプロセッサのための機械命令を含み、高水準手続き型プログラミング言語および/またはオブジェクト指向プログラミング言語、および/またはアセンブリ言語/機械語で実装することができる。本明細書で使用される場合、「機械可読媒体」、「コンピュータ可読媒体」という用語は、機械命令を機械可読信号として受け取る機械可読媒体を含む、プログラマブルプロセッサに機械命令および/またはデータを提供するために使用される任意のコンピュータプログラム製品、装置および/またはデバイス、例えば、磁気ディスク、光ディスク、メモリ、プログラマブル論理デバイス(PLD)を指す。「機械可読信号」という用語は、プログラマブルプロセッサに機械命令および/またはデータを提供するために使用される任意の信号を指す。
【0113】
ユーザとの対話を提供するために、本明細書に記載されるシステムおよび技術を、ユーザに情報を表示するための表示デバイス、例えばCRT(ブラウン管)やLCD(液晶ディスプレイ)モニタと、ユーザがコンピュータに入力を提供するためのキーボードおよびポインティングデバイス、例えばマウスやトラックボールとを有するコンピュータ上で実装することができる。他の種類のデバイスを使用してユーザとの対話を提供することもでき、例えば、ユーザに提供されるフィードバックは、任意の形の感覚的フィードバック、例えば、視覚フィードバック、聴覚フィードバック、または触覚フィードバックとすることができ、ユーザからの入力を、音響、音声、または触覚入力を含む、任意の形で受け取ることができる。
【0114】
本明細書に記載されるシステムおよび技術を、例えばデータサーバとしてバックエンドコンポーネントを含むコンピューティングシステム、またはミドルウェアコンポーネント、例えばアプリケーションサーバを含むコンピューティングシステム、またはフロントエンドコンポーネント、例えば、ユーザが本明細書に記載されるシステムおよび技術の実装形態と対話するためのグラフィカルユーザインターフェースまたはウェブブラウザを有するクライアントコンピュータを含むコンピューティングシステム、またはそのようなバックエンドコンポーネント、ミドルウェアコンポーネントもしくはフロントエンドコンポーネントの任意の組み合わせにおいて実装することができる。システムの構成要素を、任意の形態または媒体のデジタルデータ通信、例えば、通信ネットワークによって相互接続することができる。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)、広域ネットワーク(「WAN」)、およびインターネットが含まれる。
【0115】
コンピューティングシステムは、クライアントとサーバとを含むことができる。クライアントとサーバとは、一般に、互いにリモートであり、通常は通信ネットワークを介して対話する。クライアントとサーバの関係は、それぞれのコンピュータ上で動作する、互いにクライアントサーバ関係を有するコンピュータプログラムによって生じる。
【国際調査報告】