(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-10-04
(54)【発明の名称】パルス電界アブレーションのための輪郭成形電極、ならびにそのシステム、デバイス、および方法
(51)【国際特許分類】
A61B 18/12 20060101AFI20230927BHJP
A61B 18/14 20060101ALI20230927BHJP
【FI】
A61B18/12
A61B18/14
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023515668
(86)(22)【出願日】2021-09-08
(85)【翻訳文提出日】2023-04-27
(86)【国際出願番号】 US2021049410
(87)【国際公開番号】W WO2022055961
(87)【国際公開日】2022-03-17
(32)【優先日】2020-09-08
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】506192652
【氏名又は名称】ボストン サイエンティフィック サイムド,インコーポレイテッド
【氏名又は名称原語表記】BOSTON SCIENTIFIC SCIMED,INC.
(74)【代理人】
【識別番号】100105957
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【氏名又は名称】恩田 博宣
(74)【代理人】
【識別番号】100142907
【氏名又は名称】本田 淳
(72)【発明者】
【氏名】ビスワナサン、ラジュ
【テーマコード(参考)】
4C160
【Fターム(参考)】
4C160KK03
4C160KK12
4C160KK38
4C160KK39
4C160MM33
(57)【要約】
組織(例えば、心臓組織)を切除するためにパルス電界を送達するためのシステム、デバイス、および方法が、本明細書で提供される。アブレーションデバイスは、アブレーションデバイスの絶縁部材上に配置された輪郭成形されたエッジを有する1つまたは複数の輪郭成形電極を含むことができる。輪郭成形電極は、輪郭成形電極と絶縁部材との間の界面における電界強度および/または電界強度の降下を低減するように構成することができる。
【特許請求の範囲】
【請求項1】
装置であって、
長手方向軸およびルーメンを画定する第1のシャフトと、
前記ルーメン内に配置されるとともに、前記第1のシャフトの遠位端から延びる遠位部分を有する第2のシャフトと、
組織を切除するための電界を生成するように構成された複数の電極と、
スプラインのセットと
を備え、前記スプラインのセットの各スプラインは、該スプライン上に形成された前記複数の電極のうちの一組の電極を含み、各組の電極は、輪郭成形電極を含み、各輪郭成形電極は、
近位エッジおよび遠位エッジ
を含み、前記近位エッジおよび前記遠位エッジのうちの少なくとも1つは、輪郭成形されたエッジであり、前記輪郭成形されたエッジは、少なくとも1つの凹状部分または凸状部分を有し、
前記スプラインのセットは、前記スプラインのセットが前記第1のシャフトの前記長手方向軸から半径方向外向きに曲がる拡張構成に移行するように構成されている、装置。
【請求項2】
各輪郭成形電極は、該輪郭成形電極の前記輪郭成形されたエッジと、該輪郭成形電極が形成された前記スプラインとの間の界面における電界強度を低減するように構成されている、請求項1に記載の装置。
【請求項3】
各輪郭成形電極は、該輪郭成形電極が形成された前記スプラインの長手方向軸に沿って、該輪郭成形電極の前記輪郭成形されたエッジから離れて延びる方向における電界強度の降下を低減するように構成されている、請求項2に記載の装置。
【請求項4】
各輪郭成形電極は、該輪郭成形電極が形成された前記スプライン上の最遠位電極である、請求項1~3のいずれか一項に記載の装置。
【請求項5】
各輪郭成形電極の前記遠位エッジが、前記輪郭成形されたエッジである、請求項4に記載の装置。
【請求項6】
各輪郭成形電極の前記近位エッジは、輪郭成形されたエッジではなく、単一平面内にある、請求項4に記載の装置。
【請求項7】
前記輪郭成形されたエッジは、単一の凹状部分および単一の凸状部分を有し、各輪郭成形電極の前記輪郭成形されたエッジの前記凸状部分は、該輪郭成形電極が形成された前記スプラインの、前記第2のシャフトから離れる側に配置されている、請求項1~6のいずれか一項に記載の装置。
【請求項8】
前記輪郭成形されたエッジは、周期的パターンを有している、請求項1~7のいずれか一項に記載の装置。
【請求項9】
前記少なくとも1つの凹状部分または凸状部分は、複数の凹状部分または凸状部分を含む、請求項1~8のいずれか一項に記載の装置。
【請求項10】
前記少なくとも1つの凹状部分または凸状部分の曲率半径は、少なくとも約10μmであり、かつ約50,000μm未満である、請求項1~9のいずれか一項に記載の装置。
【請求項11】
第1の凹状部分または凸状部分の曲率半径は、第2の凹状部分または凸状部分の曲率半径と異なっている、請求項1~10のいずれか一項に記載の装置。
【請求項12】
装置であって、
長手方向軸を画定する線形シャフトと、
前記線形シャフトの遠位部分に配置された複数の電極と
を備え、前記複数の電極は、組織を切除するための電界を生成するように構成されており、前記複数の電極は、
前記線形シャフトの遠位端に配置された先端電極であって、第1の輪郭成形されたエッジを含む先端電極と、
前記先端電極の近位に配置された近位電極のセットと
を含み、前記近位電極のセットは、第2の輪郭成形されたエッジを有する輪郭成形電極を含み、前記第1および第2の輪郭成形されたエッジは、各々、少なくとも1つの凹状部分または凸状部分を有している、装置。
【請求項13】
前記第1および第2の輪郭成形されたエッジの各々は、該輪郭成形されたエッジと前記線形シャフトとの間の界面における電界強度を低減するように構成されている、請求項12に記載の装置。
【請求項14】
前記第1および第2の輪郭成形されたエッジの各々は、前記線形シャフトの長手方向軸に沿って該輪郭成形されたエッジから離れて延びる方向における電界強度の降下を低減するように構成されている、請求項13に記載の装置。
【請求項15】
前記第1の輪郭成形されたエッジは、前記先端電極の近位エッジであり、前記第2の輪郭成形されたエッジは、前記近位電極のセットのうち、前記先端電極に最も近い近位電極の遠位エッジである、請求項12~14のいずれか一項に記載の装置。
【請求項16】
前記第1および第2の輪郭成形されたエッジの各々は、複数の山および谷を有している、請求項15に記載の装置。
【請求項17】
前記第1の輪郭成形されたエッジの前記複数の山および谷のうちの1つまたは複数は、前記第2の輪郭成形されたエッジの前記複数の山および谷のうちの1つまたは複数と整列されている、請求項16記載の装置。
【請求項18】
遠位にある前記先端電極が、第1の極性で通電されるように構成され、かつ前記複数の近位電極が、前記第1の極性とは反対の第2の極性で通電されるように構成されて、前記電界を生成するための電極対を形成する、請求項12~17のいずれか一項に記載の装置。
【請求項19】
前記線形シャフトの一部を覆うように配置可能なスリーブをさらに備え、前記スリーブは、前記近位電極のサブセットを使用して前記電界を生成することができるように、少なくとも前記近位電極のセットのサブセットを露出させるように前記線形シャフトに対して移動可能である、請求項12~18のいずれか一項に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に記載される実施形態は、概して、治療電気エネルギー送達のための医療デバイスに関し、より詳細には、輪郭成形電極を有するとともにそのようなデバイスを使用してパルス電界を生成する組織アブレーションデバイス(例えば、アブレーションカテーテル)のためのシステム、装置、および方法に関する。
【背景技術】
【0002】
高電圧パルスの印加を利用するパルス電界アブレーションは、心臓組織ならびに他のターゲット生体構造の迅速かつ効果的なアブレーションに好適であることが実証されている。心臓の場合、パルス電界アブレーションは、不可逆的なエレクトロポレーション(例えば、細胞膜を破壊して細胞死をもたらす)を駆動するように構成された局所的に高い電界を生成し得る。例えば、フォーカルアブレーション用に構成されたアブレーションカテーテルを使用して、不可逆的なエレクトロポレーションを介してパルス電界アブレーションを心臓組織に送達することができる。しかしながら、流体媒体(例えば、血液)内の高電圧パルスは、電気分解および/またはそれに伴う気泡の発生をもたらし得る。例えば、電極のエッジ付近の電界は、気泡内の電気絶縁破壊を駆動し、局所的なフラッシュアーク放電を発生させるのに十分な大きさであり得る。電極エッジにおける関連する高い電流密度は、比較的大きな気泡サイズをもたらす可能性もある。心臓組織アブレーションを含む臨床用途では、気泡およびフラッシュアーク放電は望ましくない。
【発明の概要】
【0003】
本明細書では、不可逆的なエレクトロポレーションを通して組織を切除するためのシステム、デバイス、および方法が説明される。いくつかの実施形態では、装置は、長手方向軸およびルーメンを画定する第1のシャフトと、ルーメン内に配置されるとともに、第1のシャフトの遠位端から延びる遠位部分を有する第2のシャフトと、組織を切除するための電界を生成するように構成された複数の電極と、スプラインのセットとを備え、スプラインのセットの各スプラインは、該スプライン上に形成された複数の電極のうちの一組の電極を含み、各組の電極は、輪郭成形電極を含み、各輪郭成形電極は、近位エッジおよび遠位エッジを含み、近位エッジまたは遠位エッジのうちの少なくとも1つは、輪郭成形されたエッジであり、輪郭成形されたエッジは、少なくとも1つの凹状部分または凸状部分を有し、スプラインのセットは、スプラインのセットが第1のシャフトの長手方向軸から半径方向外向きに曲がる拡張構成に移行するように構成されている。
【0004】
いくつかの実施形態では、装置は、長手方向軸を画定する線形シャフトと、線形シャフトの遠位部分に配置された複数の電極とを備え、複数の電極は、組織を切除するための電界を生成するように構成されており、複数の電極は、線形シャフトの遠位端に配置された先端電極であって、第1の輪郭成形されたエッジを含む先端電極と、先端電極の近位に配置された近位電極のセットとを含み、近位電極のセットは、第2の輪郭成形されたエッジを有する輪郭成形電極を含み、第1および第2の輪郭成形されたエッジは、各々、少なくとも1つの凹状部分または凸状部分を有している。
【0005】
いくつかの実施形態では、方法は、アブレーションデバイスに結合される信号生成器を使用してパルス波形を生成することであって、アブレーションデバイスは、アブレーションデバイスの遠位部分上に配置された複数の電極を含み、アブレーションデバイスの遠位部分は、患者の心臓内に配置される、生成すること、アブレーションデバイスの遠位部分付近の組織を切除するためにパルス電界を生成するために一組の電極のサブセットが反対の極性で通電されるように、パルス波形を複数の電極のうちの一組の電極に送達することを含み、一組の電極は、アブレーションデバイスの可撓性部材上に配置される少なくとも1つの輪郭成形電極を含み、各輪郭成形電極は、輪郭成形されたエッジを有し、輪郭成形されたエッジは、(1)輪郭成形されたエッジと可撓性部材との間の界面における電界の強度、および(2)輪郭成形されたエッジから離れて延びる方向における強度の降下を低減する。
【図面の簡単な説明】
【0006】
【
図1】
図1は、実施形態による、アブレーションのためのシステムのブロック図である。
【
図2】
図2は、実施形態による、組織アブレーションのための方法のフロー図である。
【
図3】
図3は、実施形態による、輪郭成形電極の概略図である。
【
図4】
図4は、実施形態による、輪郭成形電極の斜視図である。
【
図5A】
図5Aは、実施形態による、輪郭成形電極の側面図である。
【
図5B】
図5Bは、実施形態による、展開された輪郭成形電極の側面図である。
【
図6】
図6は、実施形態による、展開された輪郭成形電極の側面図である。
【
図8】
図8は、実施形態による、展開された輪郭成形電極の側面図である。
【
図9A】
図9A~
図9Eは、実施形態による、2つの輪郭成形されたエッジを有する展開された電極の図である。
【
図9B】
図9A~
図9Eは、実施形態による、2つの輪郭成形されたエッジを有する展開された電極の図である。
【
図9C】
図9A~
図9Eは、実施形態による、2つの輪郭成形されたエッジを有する展開された電極の図である。
【
図9D】
図9A~
図9Eは、実施形態による、2つの輪郭成形されたエッジを有する展開された電極の図である。
【
図9E】
図9A~
図9Eは、実施形態による、2つの輪郭成形されたエッジを有する展開された電極の図である。
【
図10】
図10は、実施形態による、輪郭成形電極を有する線形シャフトを有するアブレーションデバイスの遠位端を概略的に描写する図である。
【
図11】
図11は、実施形態による、輪郭成形電極を有する拡張可能構造を有するアブレーションデバイスの遠位端を概略的に描写する図である。
【
図12】
図12は、実施形態による、
図11に描写されるアブレーションデバイスの、展開された輪郭成形電極の側面図である。
【
図13】
図13は、実施形態による、輪郭成形電極を含むとともに、バスケット形状を有するアブレーションデバイスの遠位端を概略的に描写する図である。
【
図14】
図14は、実施形態による、
図13に描写されるアブレーションデバイスの輪郭成形電極を概略的に描写する図である。
【
図15A】
図15Aおよび
図15Bは、それぞれ、実施形態による、輪郭成形電極を有しない、および有する、アブレーションデバイスのスプラインまたはシャフトの概略側面図である。
【
図17A】
図17Aおよび
図17Bは、実施形態による、輪郭成形されたエッジを有する2つの隣接する電極を有するアブレーションデバイスのスプラインまたはシャフトを概略的に描写する図である。
【
図17B】
図17Aおよび
図17Bは、実施形態による、輪郭成形されたエッジを有する2つの隣接する電極を有するアブレーションデバイスのスプラインまたはシャフトを概略的に描写する図である。
【
図18】
図18は、実施形態による、互いに向かい合う輪郭成形されたエッジを有しない、および有する電極を有するシャフトまたはスプラインまたはアブレーションデバイスと、シャフトの側面に沿った電界強度のグラフとを概略的に描写する図である。
【発明を実施するための形態】
【0007】
本明細書に記載されるのは、不可逆的なエレクトロポレーションによって組織を切除する(ablate)ためにパルス電界を送達するためのシステム、デバイス、および方法である。いくつかの実施形態では、本明細書に記載されるシステム、デバイス、および方法は、例えば、本明細書に説明されるような電極エッジの好適な輪郭成形(contouring)によって、電極エッジにおいて改善された(例えば、低減された)局所電界および電流密度を伴うパルス電界を生成するために使用されてよい。本明細書に開示されるシステム、デバイス、および方法は、所定の組織領域において安全レベル未満の電界値を維持しながら、不可逆的なエレクトロポレーションを駆動するのに十分な局所電界を組織領域において生成することができる。
【0008】
本明細書で使用される「エレクトロポレーション(electroporation)」という用語は、細胞外環境に対する細胞膜の透過性を変化させるための、細胞膜への電界の印加を指す。本明細書で使用される「可逆的なエレクトロポレーション(reversible electroporation)」という用語は、細胞外環境に対する細胞膜の透過性を一時的に変化させるための、細胞膜への電界の印加を指す。例えば、可逆的なエレクトロポレーションを受けた細胞は、その細胞膜に、電界の除去時に閉鎖する1つまたは複数の孔の一時的および/または断続的形成を観察することができる。本明細書で使用される「不可逆的なエレクトロポレーション(irreversible electroporation)」という用語は、細胞外環境に対する細胞膜の透過性を恒久的に変化させるための、細胞膜への電界の印加を指す。例えば、不可逆的なエレクトロポレーションを受けた細胞は、その細胞膜に、電界の除去時に持続する1つまたは複数の孔の形成を観察することができる。
【0009】
いくつかの実施形態では、電極は、改善された空間均一性を有する電界を生成するように構成されている。例えば、アブレーションデバイスは、輪郭成形電極(contoured electrode)のセットを含んでもよい。いくつかの実施形態では、カテーテルシャフトを含むアブレーションデバイスは、本明細書に記載される電極のうちの1つまたは複数を含んでいてよい。いくつかの実施形態では、線形カテーテルアブレーションデバイスは、カテーテルシャフトおよび遠位キャップを含んでいてよい。遠位キャップは、本明細書に記載される電極のうちのいずれかに対応する1つまたは複数の遠位キャップ電極を含んでいてよい。いくつかの実施形態では、心臓アブレーションのためのカテーテルデバイスは、ポリマー材料から作製されたカテーテルシャフト上に取り付けられた円筒状のリングの形態の電極を用いて作ることができる。いくつかの実施形態では、拡張可能な構造体を有するバルーンアブレーションデバイスまたは他のアブレーションデバイスは、バルーンまたは拡張可能な構造体上に形成された輪郭成形電極を有する、遠位に位置する膨張可能なバルーンまたは拡張可能な構造体を有していてよい。
【0010】
システム
組織の切除を生成するように構成されたシステムおよびデバイスが本明細書に開示される。概して、高電圧パルス波形を用いて組織を切除するためのシステムが、本明細書に説明される。本開示で説明されるシステム、方法、および実装形態は、同期または非同期アブレーション送達に適用される。さらに、本明細書に説明されるように、システムおよびデバイスは、心不整脈を治療するために、心内膜に、および/または心外膜に配備され得る。
【0011】
本明細書に開示されるのは、不可逆的なエレクトロポレーションをもたらす、組織アブレーションを支援するための電圧パルス波形の選択的かつ迅速な印加を介した組織アブレーションのために構成されたシステムおよびデバイスである。概して、本明細書に説明される組織を切除するためのシステムは、信号生成器と、エレクトロポレーションを駆動するための直流(DC)電圧の選択的かつ迅速な印加のための1つまたは複数の電極を有するアブレーションデバイスとを含んでいてよい。本明細書に説明されるように、システムおよびデバイスは、心不整脈を治療するために、心外膜に、および/または心内膜に配備され得る。パルス電界アブレーション治療を送達するために、アノードおよびカソード電極選択のための独立したサブセットを選択することにより、電極の選択された対のサブセットに電圧を印加することができる。実施形態では、対の電極サブセットを予め決定することができる。いくつかの実施形態では、心臓刺激のためのペーシング信号が生成され、かつペーシング信号と同期して信号生成器によってアブレーションパルス波形を送達するために使用されてもよい。
【0012】
概して、本明細書に説明されるシステムおよびデバイスは、心臓の組織(例えば、心臓の左心房)を切除するように構成された1つまたは複数のカテーテルを含む。カテーテルは、凸状部分および凹状部分を含む輪郭を有する少なくとも1つのエッジを有する電極を含むことができる。いくつかの実施形態では、1つまたは複数の電極は、カテーテルシャフト上のリング電極として具現化され得る。いくつかの実施形態では、1つまたは複数の電極は、例えば、線形カテーテルアブレーションデバイスの遠位キャップ電極を含む、他の形態で具現化されてもよい。
【0013】
図1は、電圧パルス波形を送達するように構成されたアブレーションシステム100を示す。システム100は、信号生成器122と、プロセッサ124と、メモリ126と、任意選択で心臓刺激器128とを含む装置120を含んでいてよい。装置120は、アブレーションデバイス110に結合されていてよく、任意選択でペーシングデバイス130に結合されていてもよい。
【0014】
信号生成器122は、例えば、肺静脈口などの組織の不可逆的なエレクトロポレーションのためのパルス波形を生成するように構成されていてよい。例えば、信号生成器122は、電圧パルス波形生成器であってよく、パルス波形をアブレーションデバイス110に送達し得る。プロセッサ124は、メモリ126から受信したデータを組み込んで、信号生成器122によって生成されるパルス波形のパラメータ(例えば、振幅、幅、デューティサイクルなど)を決定することができる。メモリ126は、パルス波形生成および/または心臓ペーシング同期など、システム100に関連付けられたモジュール、プロセス、および/または機能を信号生成器122に実行させる命令をさらに格納していてよい。例えば、メモリ126は、それぞれ、パルス波形生成および/または心臓ペーシングのためのパルス波形および/または心臓ペーシングデータを格納するように構成されていてよい。
【0015】
いくつかの実施形態では、アブレーションデバイス110は、以下により詳細に説明されるパルス波形を受信および/または送達するように構成されることができる。例えば、アブレーションデバイス110は、心腔(例えば、左心房)の心内膜空間に導入されるとともに、1つまたは複数の肺静脈口に1つまたは複数の電極112を位置付けるように配置され、次いで、パルス波形を送達し、組織を切除し得る。アブレーションデバイス110は、1つまたは複数の電極112を含んでいてよく、いくつかの実施形態では、独立してアドレス指定可能な電極の少なくとも1つのセットを含んでいてもよい。各電極は、その対応する絶縁体の絶縁破壊なしに少なくとも約700Vの電位を維持するように構成された、絶縁された電気リード線を含んでいてよい。いくつかの実施形態では、各電気リード線上の絶縁体は、絶縁破壊することなく、その厚さにわたって約200V~約4,000Vの電位差を維持することができる。例えば、電極112は、例えば、1つのアノードおよび1つのカソードを含むサブセット、2つのアノードおよび2つのカソードを含むサブセット、2つのアノードおよび1つのカソードを含むサブセット、1つのアノードおよび2つのカソードを含むサブセット、3つのアノードおよび1つのカソードを含むサブセット、3つのアノードおよび2つのカソードを含むサブセット、および/または同様のものなどの、1つまたは複数の対のサブセットまたはアノード-カソードサブセット(例えば、反対の極性を有するように構成された複数の電極を有するサブセット)にグループ化されてもよい。
【0016】
いくつかの実施形態では、アブレーションデバイス110は、長手方向軸を画定するカテーテルを含む。カテーテルは、カテーテル遠位端と、カテーテル遠位端の遠位に配置された遠位部分と、少なくとも1つのスプラインとを含むことができる。スプラインは、スプライン近位端およびスプライン遠位端を含むことができ、スプライン近位端は、カテーテル遠位端に結合され、スプライン遠位端は、遠位部分に結合される。さらに、スプラインは、スプラインの表面の一部を覆って配置された第1の電極を含むことができ、第1の電極は、近位境界および遠位境界を有する表面を備えている。近位境界および遠位境界は閉曲線を含むことができ、遠位境界はスプライン遠位端のより近くに位置し、近位境界はスプライン近位端のより近くに位置している。さらに、スプラインは、第1の電極よりもスプライン近位端の近くに位置する第2の電極を含むことができる。
【0017】
いくつかの実施形態では、電極112は、1つまたは複数の輪郭成形電極114を含んでいてよい。輪郭成形電極114は、1つまたは複数の輪郭成形されたエッジ(contoured edge)を含む。輪郭成形されたエッジは、以下でさらに説明するように、少なくとも1つの山(peak)または少なくとも1つの谷(valley)を含む電極エッジを含むことができる。
【0018】
ペーシングデバイス130は、患者(図示せず)に適切に結合され、心臓刺激のために装置120の心臓刺激器128によって生成される心臓ペーシング信号を受信するように構成されていてよい。ペーシング信号の指示(indication)は、心臓刺激器128によって信号生成器122に送信され得る。ペーシング信号に基づいて、アブレーション電圧パルス波形は、プロセッサ124によって選択され、計算され、および/または他の方法で特定され、信号生成器122によって生成され得る。いくつかの実施形態では、信号生成器122は、ペーシング信号の指示と同期して(例えば、共通不応ウィンドウ内で)パルス波形を生成するように構成されている。例えば、いくつかの実施形態では、共通不応ウィンドウは、心室ペーシング信号の実質的に直後(または非常に小さい遅延の後)に開始し、その後約250ミリ秒以下の持続時間にわたって持続してもよい。そのような実施形態では、パルス波形全体が、この持続時間内に送達されてもよい。代替実施形態では、アブレーションパルス波形は、ペーシング信号なしで、すなわち非同期的に送達されてもよく、したがって、ペーシングデバイスは、必要でない場合がある。
【0019】
プロセッサ124は、命令またはコードのセットを起動および/または実行するように構成された任意の適切な処理デバイスであり得る。プロセッサは、例えば、汎用プロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、および/または同様のものであってよい。プロセッサは、システムおよび/またはそれに関連付けられたネットワーク(図示せず)に関連付けられたアプリケーションプロセスおよび/または他のモジュール、プロセスおよび/または機能を起動および/または実行するように構成されていてよい。基礎となるデバイス技術は、様々なコンポーネントタイプ、例えば、相補型金属酸化膜半導体(CMOS)のような金属酸化膜半導体電界効果トランジスタ(MOSFET)技術、エミッタ結合ロジック(ECL)のようなバイポーラ技術、ポリマー技術(例えば、シリコン-共役ポリマーおよび金属-共役ポリマー-金属構造)、混合アナログおよびデジタルなどで提供され得る。
【0020】
メモリ126は、データベース(図示せず)を含むことができ、例えば、ランダムアクセスメモリ(RAM)、メモリバッファ、ハードドライブ、消去可能プログラマブル読取り専用メモリ(EPROM)、電気的消去可能読取り専用メモリ(EEPROM)、読取り専用メモリ(ROM)、フラッシュメモリなどであってよい。メモリ126は、パルス波形生成および/または心臓ペーシングなど、システム100に関連付けられたモジュール、プロセス、および/または機能をプロセッサ124に実行させる命令を格納していてよい。
【0021】
システム100は、例えば、各々が任意のタイプのネットワークであり得る1つまたは複数のネットワークを介して、他のデバイス(図示せず)と通信し得る。無線ネットワークは、任意の種類のケーブルによって接続されていない任意のタイプのデジタルネットワークを指し得る。しかしながら、無線ネットワークは、インターネット、他のキャリア音声およびデータネットワーク、ビジネスネットワーク、およびパーソナルネットワークとインターフェースするために有線ネットワークに接続することができる。有線ネットワークは、通常、銅ツイストペア、同軸ケーブル、または光ファイバケーブルで伝送される。ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、ローカルエリアネットワーク(LAN)、キャンパスエリアネットワーク(CAN)、インターネットのようなグローバルエリアネットワーク(GAN)、および仮想プライベートネットワーク(VPN)を含む多くの異なるタイプの有線ネットワークが存在する。以下、ネットワークは、統合されたネットワーキングおよび情報アクセスソリューションを提供するために、典型的にはインターネットを介して相互接続される、結合された無線、有線、パブリック、およびプライベートデータネットワークの任意の組み合わせを指す。
【0022】
図3は、様々な実施形態による、シャフトまたはスプライン318上に配置された輪郭成形されたエッジ313および315を有する輪郭成形電極314の概略図である。シャフトまたはスプライン318は、例えば、上記で説明されるようなアブレーションデバイス110などのアブレーションデバイスに属していてよい。アブレーションデバイスは、スプラインまたはシャフトの長さに沿った別個の位置に配置された複数の電極(輪郭成形電極314を含む)を有する1つまたは複数のスプラインまたはシャフト318を含むことができる。いくつかの場合には、シャフト318は、実質的に一定である断面を含むことができる。例えば、シャフト318は、実質的に円形、楕円形などの断面を有することができる。代替的に、シャフト318は、異なる断面を有するセクションを含むことができる。
【0023】
各輪郭成形電極314は、少なくとも1つの輪郭成形されたエッジ313,315を有する、第1および第2のエッジを有することができる。例えば、輪郭成形電極314は、単一の輪郭成形されたエッジ313を有することができる。代替的に、輪郭成形電極314は、2つの輪郭成形されたエッジ313,315を有することができる。輪郭成形されたエッジ313,315は、シャフト318の幅に沿って視る場合、少なくとも1つの山と少なくとも1つの谷とを含むエッジであってよい。例えば、シャフト314は、長手方向軸302および横方向軸304(すなわち、シャフト314の幅に沿って延びる軸)を有することができる。直線状または輪郭成形されていないエッジ(non-contoured edge)は、軸304に平行に延びるエッジであってよく、一方、輪郭成形されたエッジ(例えば、エッジ313または315)は、軸304に対して角度を付けられた(または角度を付けられた単位接線を有する)少なくとも1つの部分を有するエッジであってよい。いくつかの実施形態では、輪郭成形されたエッジは、複数の山および谷を有する周期的曲線を有することができるが、他の実施形態では、輪郭成形されたエッジは、単一の山および単一の谷を有することができる。
【0024】
図4は、実施形態による、第1のエッジ413および第2のエッジ415を備える電極414の斜視図である。電極414は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極414は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。第1のエッジ413は、第2のエッジ415の反対側にあってよい。例えば、第1のエッジ413は近位エッジであってよく、第2のエッジ415は遠位エッジであってよく、またはその逆であってもよい。電極414は、例えば、略円筒状または環状(例えば、リング状)の形状であってよい。いくつかの実施形態では、電極414は、円形、楕円形、扁平楕円、または長円形の断面を含んでいてよい。
【0025】
いくつかの実施形態では、エッジ413,415は、非直線状の形状を含むことができる。例えば、エッジ413,415は、概ね波状のパターンを含んでいてよい。
図4に示すように、エッジ413,415は、山および谷を有する波形に成形された(例えば、輪郭成形された)輪郭成形されたエッジであってよい。いくつかの実施形態では、エッジ413,415は、1つまたは複数のパターンを含んでいてよい。いくつかの実施形態では、エッジパターンは、正弦波または曲線のうちの1つまたは複数であってよい。いくつかの変形例では、エッジパターンは、周期的であってよい。いくつかの実施形態では、エッジ413,415は、丸みを帯びていてもよく(例えば、滑らかであってよく)、または角を含んでいてもよい。
【0026】
いくつかの実施形態では、エッジ413,415は、それ自体または他のエッジに対して対称であってもよく、または対称でなくてもよい。いくつかの実施形態において、エッジは、他のエッジに対して同一であってもよく、または異なっていてもよい。いくつかの実施形態では、エッジは、電極の円周に沿って延びていてよい。いくつかの実施形態では、輪郭は、電極の円周の一部に沿って延びていてもよい。
【0027】
図5Aは、実施形態による電極501の一例を示す。電極601は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極501は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。電極501は、第1のエッジ513および第2のエッジ515を含んでいてよい。第1のエッジ513は近位エッジであってよく、第2のエッジ515は遠位エッジであってよく、またはその逆であってもよい。例示的な実施形態では、断面503は、一定の形状(長手方向軸に沿った一定の断面)であってよい。遠位エッジ513は、(例えば、波状に)輪郭成形されていてよいが、近位エッジ515は、輪郭成形されていなくてもよい(本明細書では、そのようなエッジは、輪郭成形されていないエッジ、直線状のエッジ、平坦なエッジ、または面内エッジと称される)。輪郭成形されていないエッジ515は、電極501の長手方向軸505に垂直な単一の平面内にあってよい。
【0028】
図5Bおよび
図6は、軸505に平行な方向に切断され、展開された(例えば、平坦化された)電極501の図を示す。このレンダリングでは、近位エッジ515は直線であり、遠位エッジ513は、山522および谷524のセットを含む。電極501の表面は、領域525によって表される。種々の実施形態では、領域525は、生体適合性を有する任意の適切な導電性材料(例えば、金属)から作製されていてよい。
図5Aに示すように、選択された横断面514は、電極501と交差し、電極またはスプライン軸505に垂直である。断面503は、横断面514内にある。いくつかの実施形態では、電極501は、円形、楕円形、扁平楕円、または長円形の断面503を含んでいてよい。
【0029】
様々な実施形態において、山522は凸状部分であってよく、谷524は凹状部分であってよい。例えば、遠位エッジ513の1つまたは複数の凸状部分(例えば、山部分522)は、その凸状部分上の任意の2つの点を接続する線上の点が、電極501の境界によって囲まれた領域の内側にあるように、外側に膨らむように構成されていてよい。同様に、1つまたは複数の凹状部分(例えば、谷524)は、その凹状部分上の任意の2つの点を接続する線上の点が、電極501の境界によって囲まれた領域の外側にあるように構成されていてよい。凸状部分および凹状部分は、各々、1つまたは複数の概ね曲線的な部分を含んでいてよい。
【0030】
図6に示すように、電極501は、関連する周方向D1および関連する長手方向D2を有することができる。例示的な実施形態では、エッジ513の山(ピーク)点P
Pからエッジ515の関連する最も近い点p
1までの距離H
Pは、エッジ513の谷点P
Vからエッジ515の関連する最も近い点p
2までの距離H
Vよりも大きい。例示的な実施形態では、H
Pは、エッジ513および515の最も近い点の間の最大距離であってよく、H
Vは、エッジ513および515の最も近い点の間の最小距離であってよい。
図6に示すように、H
Pは、エッジ513の山とエッジ515の関連する最も近い点との間の距離に対応し、H
Vは、エッジ513の谷とエッジ515の関連する最も近い点との間の距離に対応する。
【0031】
輪郭成形されたエッジ513は、波長およびピーク高さまたは波深さによって特徴付けられる波形を有することができる。
図6に示すように、H
PとH
Vとの差は、波の深さに対応し、H
P-H
V=H
PVで与えられる。追加的に、輪郭成形されたエッジ513は、所定の波長Lによって特徴付けられてもよい。いくつかの実施形態では、H
PV(すなわち、波の深さ)のH
P(すなわち、その長手方向軸に沿った最大電極長さ)に対する比は、約0.05~約0.75であってよく、その間のすべての値および部分範囲を含む。
【0032】
様々な実施形態では、輪郭成形されたエッジ513の山の数は、(1)アブレーションデバイスのスプラインまたはシャフトの円周に対応することができるエッジ513の幅W、および(2)波長Lに依存し得る。例えば、山の数NPは、NP~W/Lによって与えられる。本明細書に記載の実施形態では、エッジ513は、関連する数の谷と共に、約1つ、約2つ、約3つ、約4つ、約5つ、約6つ、約7つ、約8つ、約9つ、約10個、またはそれ以上の山を有していてよい。
【0033】
図7Aおよび
図7Bは、実施形態による、第1のエッジ613および第2のエッジ615を含む電極601(例えば、リング電極)の展開された(例えば、開かれた)図を示す。電極601は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極601は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。第1のエッジ613は近位エッジであってよく、第2のエッジ615は遠位エッジであってよく、またはその逆であってもよい。第1のエッジ613は、輪郭成形されたエッジであり、かつ波形を有していてよく、一方、第2のエッジ615は、輪郭成形されていないエッジであり、かつこの展開されたレンダリングにおいて直線状であってよい。第1のエッジ613は、山624(例えば、凸状の山)および谷625(例えば、凹状の谷)のセットを含んでいてよい。いくつかの実施形態では、各谷625は、同じ第1の長さL
Vを有してもよく、各山624は、同じ第2の長さL
Pを有していてよい。いくつかの実施形態では、第1の長さL
Vは、第2の長さL
Pと異なっていてもよい。
図7Aに示すように、第1および第2の長さは、
図6を参照して上述したように、円周方向に測定される。
【0034】
代替的に、いくつかの実施形態では、第1の長さLVは、第2の長さLPと同じであっても(またはそれより小さくても)よい。LV=LPである場合、そのような実施形態は、対称な実施形態と呼ばれる。代替的に、いくつかの実施形態では、1つまたは複数の山624は、等しくない長さを有していてもよく、および/または1つまたは複数の谷625は、等しくない長さを有していてもよく、例えば、谷の長さおよび山の長さは、概して異なり得る。そのような実施形態では、波を、非対称な波と呼ぶことができる。いくつかの実施形態では、電極601は、単一の山624および単一の谷625を有することができ、代替的な実施形態では、電極601は、複数の山624および/または複数の谷625を有することができる。
【0035】
いくつかの実施形態では、電極601の横断面の最長寸法(例えば、電極601の直径)は、約0.5mm~約6mmであってよく、その間のすべての値および部分範囲を含む。いくつかの実施形態では、電極長さは、約0.5mm~9mmであってよく、その間のすべての値および部分範囲を含む。いくつかの実施形態では、第1のエッジ613の山の長さは、約20μm~約20,000μmであってよく、その間のすべての値および部分範囲を含む。いくつかの実施形態では、第1のエッジ613の谷の長さは、約20μm~20,000μmであってよく、その間の全ての値および部分範囲を含む。
【0036】
谷625および山624は、関連する曲率によって特徴付けら得る。例示的な実施形態では、谷は、
図7Bに示されるように、第1の曲率中心633を有していてよい。第1の曲率中心633は、
図7Bに示されるように、電極601の境界によって囲まれた領域の外側にあってよく、関連する第1の曲率半径634を含み得る。第2の曲率中心635は、山625に対応していてよい。第2の曲率中心635は、
図7Bに示されるように、電極601の境界によって囲まれた領域の内側にあってよく、関連する第2の曲率半径636を含み得る。
【0037】
いくつかの実施形態では、谷625の凹状部分637の最小曲率半径634は、少なくとも約10μmであってよい。いくつかの実施形態では、山624の凸状部分638の最小曲率半径636は、少なくとも約10μmであってよい。いくつかの実施形態では、1つまたは複数の凹状部分637の最大曲率半径634は、約50,000μm未満であってよい。いくつかの実施形態では、1つまたは複数の凸状部分638の最大曲率半径636は、約500μm未満であってよい。いくつかの実施形態では、電極601のエッジ613の凸状部分638および凹状部分637のうちの1つまたは複数は、円弧を含むか、または円弧として成形されていてよい。いくつかの実施形態では、少なくとも1つの凸状の円弧の曲率半径に対する少なくとも1つの凹状の円弧の曲率半径の比は、約10より大きくてもよい。
【0038】
いくつかの実施形態では、接線不連続点は、電極の輪郭成形されたエッジの山または谷として含まれいてよい。
図8は、実施形態による、第1のエッジ713および第2のエッジ715を含む電極701(例えば、円筒形リング電極)の展開されたレンダリングにおける側面図である。電極701は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極701は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。第1のエッジ713は、第2のエッジ715の反対側にあってよい。例えば、第1のエッジ713は近位エッジであってよく、第2のエッジ715は遠位エッジであってよく、またはその逆であってもよい。第1のエッジ713は、部分730,734などの一組の凹状部分を含んでいてよい。いくつかの実施形態では、第1のエッジ713は、隣接する凹状部分730と734との間に1つまたは複数の接線不連続部を有していてよく、これは、電極701の山732であってよい。すなわち、山732は、接線不連続点であってよい。
【0039】
図9A~
図9Eは、様々な実施形態による、輪郭成形された第1のエッジ811A~811Eおよび輪郭成形された第2のエッジ812A~812Eを有する例示的な電極801~805を示す。示されるように、輪郭成形されたエッジ811A~811E,812A~812Eは、波長および/または波深さにおいて対称であり、かつ/または異なっていてよい。電極801~805は、
図9A~9Eにおいて展開されて(例えば、開かれて)示されている。電極801~805は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極801~805は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。
【0040】
図9Aに示される例示的な実施形態では、電極801のエッジ811A,811Bは、反射で互いに対して対称であってよく、例えば、エッジ812Aは、エッジ812Aの山がエッジ811Aの谷と整列するように、エッジ811Aに対して反射対称性を有することができる。特に、
図9Aに示されるように、山P
Aは谷V
Aと並んでいる。代替的に、
図9Bに示される例示的な実施形態では、電極802のエッジ811B,812Bは、並進で互いに対して対称であってよく、例えば、エッジ812Bは、谷V1
Bが谷V2
Bと整列し、山P1
Bが山P2
Bと整列するように、エッジ811Bに対して並進対称性を有することができる。代替的に、
図9Cは、エッジ811Cと同じ山および谷を有するが、所定の値φだけ位相シフトされたエッジ812Cによって特徴付けられる位相シフトパターンを形成する輪郭成形されたエッジ811Cおよび812Cを有する電極803を示す。代替的に、
図9Dは、輪郭成形されたエッジ811Dおよび812Dの振幅が異なる電極804を示す。例えば、エッジ812Dは、エッジ811Dに対してより小さい山の振幅または波の深さを有することができる。代替的に、
図9Eは、異なる波長および波深さを有する輪郭成形されたエッジ811Eおよび812Eを有する電極805の実施形態を示す。例えば、エッジ812Eは、エッジ811Eよりも小さい波長を有することができ、したがって、より多くの数の山および谷を有することができる。
【0041】
図9Aおよび
図9Eは、2つの輪郭成形されたエッジを有する電極の異なる変形例を示しているが、任意のエッジ構成を任意の適切な方法で組み合わせてもよいことを理解されたい。例えば、振幅変動パターン(
図9Dおよび
図9E)は、位相シフトパターン(
図9C)と組み合わせられてもよい。
【0042】
図10は、実施形態による、例示的なアブレーションデバイス910の遠位端を示す。アブレーションデバイス910は、例えば、
図1を参照して説明されるアブレーションデバイス110を含む、本明細書に説明される他のアブレーションデバイスと構造的および/または機能的に類似していてよい。アブレーションデバイス910は、線形アブレーションデバイスの一例であってよい。例えば、アブレーションデバイス910は、シャフト905と、シャフト905に沿って配置された複数の電極906,907,908とを含む。いくつかの実施形態では、複数の電極906,907,908は、パルス電界アブレーションまたは不可逆的なエレクトロポレーションのための高電圧電気パルスを含む、アブレーション治療を送達するように構成されていてよい。スリーブまたはシース930は、任意選択で、シャフト905の一部を覆って配置され得る。シース930およびシャフト905は、互いに対して移動して、シャフト905に沿って配置された電極のより多くの数または部分を露出させるように構成することができる。このように、スリーブ930は、スリーブ930の外側に露出され、アブレーションを送達するために利用可能である電極の数を減少または増加させるために使用されることができる。線形アブレーションデバイスの好適な例は、2020年6月16日に出願され、「SYSTEMS, DEVICES, AND METHODS FOR FOCAL ABLATION」と題された国際出願(PCT/US2020/037948)に説明されており、その内容は、参照によりその全体が本明細書に組み込まれる。
【0043】
いくつかの実施形態では、アブレーションデバイス910は、例えば、プルワイヤ912などの適切な撓み制御機構によって操縦され、または撓ませられるように構成されてもよい。いくつかの実施形態では、シャフト905の1つまたは複数の部分は、可撓性であるように構成されてもよく、撓み制御機構912を介して屈曲可能であってもよい。追加的に、または代替的に、電極906,907,908が配置される部分などの、シャフト905の1つまたは複数の部分は、剛性であってもよい。
【0044】
いくつかの実施形態では、アブレーションデバイス910の遠位端は、例えば、遠位キャップ電極として実装される、遠位先端電極908を含んでいてもよい。電極906および907は、遠位先端電極908の近位に配置することができる。いくつかの実施形態では、電極907および908は、概して、近位エッジおよび遠位エッジを有する円筒形状(例えば、リング形状)であってよい。例えば、電極906および907は、それぞれのエッジ916,918および920,922を有していてよい。遠位先端電極908は、単一のエッジ924を有していてよい。いくつかの実施形態では、エッジ916,918,920,922,924のうちの1つまたは複数は、輪郭成形されたエッジであってよい。例えば、
図10に示されるように、電極907の遠位エッジ922および遠位先端電極908の近位エッジ924は、各々、本明細書でさらに説明されるように、輪郭成形された(例えば、波、曲線)形状を有していてよい。いくつかの実施形態では、輪郭成形されたエッジ922および924の1つまたは複数の山または谷は、アブレーションデバイス910の長手方向軸に沿って(例えば、一列に)整列されてもよい。追加的に、または代替的に、輪郭成形されたエッジ922および924の1つまたは複数の山または谷は、互いに整列されていなくてもよい。
【0045】
図11は、実施形態による、例示的なアブレーションデバイス1000の遠位端を示す。アブレーションデバイス1000は、例えば、
図1を参照して説明されるアブレーションデバイス110を含む、本明細書に説明される他のアブレーションデバイスと構造的および/または機能的に類似していてよい。アブレーションデバイス1000は、拡張可能または膨張可能な構造を有するバルーンアブレーションデバイスまたは他のアブレーションデバイスの例であってよい。例えば、アブレーションデバイス1000は、カテーテルシャフト1010と、アブレーションデバイス1000の遠位部分に配置される膨張可能部材1011(例えば、バルーン)とを含むことができる。例えば、フォーカルアブレーションのためのバルーンアブレーションデバイスの好適な例は、2018年9月12日に出願され、「SYSTEMS, APPARATUSES, AND METHODS FOR VENTRICULAR FOCAL ABLATION」と題され、国際出願公報WO2019/055512として公開された国際出願(PCT/US18/50660)に説明されており、その内容は、参照によりその全体が本明細書に組み込まれる。
【0046】
いくつかの実施形態では、アブレーションデバイス1000は、遠位先端1012を含んでいてよい。いくつかの実施形態では、膨張可能部材1011は、膨張可能部材1011の表面上に配置された1つまたは複数の電極1013および1014を含んでいてよい。例えば、膨張可能部材1011は、ポリマー材料から構成されていてよく、電極1013および1014は、膨張可能部材1011上に堆積された金属膜から構成されていてよい。
図11に示されるように、電極1013および1014は、本明細書に説明されるように輪郭成形されていてよく、1つまたは複数のエッジに沿って1つまたは複数の凸状部分および凹状部分を含んでいてよい。例えば、電極1013は、凹状部分1026,1027,1028、および凸状部分1025,1029を有するエッジを含む。
【0047】
いくつかの実施形態では、シャフト1010は、ガイドワイヤ(図示せず)が摺動可能に配置されるように構成されたルーメンを画定し得る。例えば、ガイドワイヤは、患者内の所定の位置へのアブレーションデバイス1000のオーバーザワイヤでの送達のために構成されていてよい。
図11には示されていないが、いくつかの実施形態では、カテーテルシャフト1010は、本明細書に記載される構造のうちの任意のものを有する輪郭を有する1つまたは複数の輪郭成形電極を含んでいてもよい。
【0048】
様々な実施形態では、電極1013および1014は、伸縮可能または拡張可能であるように構成されている。伸縮可能な電極(例えば、伸縮可能かつ可撓性の基板に埋め込まれた(またはそれを覆うように配置された)金属ナノワイヤなどの導電性の重なり合うフィラメントのネットワークを使用して形成された電極)を形成するために、任意の適切な手法を使用することができる。いくつかの場合において、伸縮可能な電極は、伸縮可能な電極が1つまたは複数の方向に伸びることを可能にするために展開するように構成された折り畳まれた導電性要素のネットワークから形成されていてよい。
【0049】
いくつかの実施形態では、
図11に示される電極1013,1014などの電極は、等しくない長さおよび/または曲率半径を有する、複数の凹状部分および/または複数の凸状部分(例えば、複数の波)を含んでいてよい。電極は、
図11に関して描写されるように、バルーンアブレーションカテーテル上に配置されてよく、あるいは、電極は、線形アブレーションカテーテルまたはバスケットアブレーションカテーテルのシャフトまたはスプライン上に配置されてもよい。例えば、
図12は、等しくない長さおよび/または曲率半径を有する複数の凹状部分および/または複数の凸状部分(例えば、複数の波)を含む輪郭成形されたエッジ1113を有する展開された構成のリング電極1101の例示的な図を示す。電極1101は、それぞれ
図1および
図3に関して上述したように、輪郭成形電極114,314の例であってよい。例えば、電極1101は、アブレーションデバイス(例えば、アブレーションデバイス110)のスプラインまたはシャフト(例えば、シャフト318)上に配置することができる。
【0050】
電極1101は、第1のエッジ1113および第2のエッジ1115を含む。例えば、第1のエッジ1113は、概して非対称かつ不均一な波形状を有していてよく、一方、第2のエッジ1115は、直線状であってよい(すなわち、輪郭成形されていない)。第1のエッジ1113は、山1102,1110および谷1103,1104,1112のセットを含んでいてよい。山1102,1110は、凸状部分であってよく、谷1103,1104,1112は、凹状部分であってよい。第1のエッジ1113は、概して非対称の波を含んでいてよい。
【0051】
いくつかの実施形態では、第1の曲率中心1105は、谷1112に対応する。第1の曲率中心1105は、電極1101の境界によって囲まれた領域の外側にあってよく、関連する第1の曲率半径1106を含み得る。第2の曲率中心1107は、谷1103に対応する。第2の曲率中心1107は、電極1101の境界によって囲まれた領域の外側にあってよく、関連する第2の曲率半径1108を含み得る。第1の曲率半径1106は、第2の曲率半径1108と異なっていてよい。いくつかの実施形態では、谷は異なる長さを有していてよい。例えば、谷1104は、第1の長さ1109を有していてよく、谷1103は、第2の長さ1111を有していてよい。
【0052】
図13は、実施形態による、電極1311~1316を有するアブレーションデバイス1301を示す。アブレーションデバイス1301は、例えば、
図1を参照して説明されるアブレーションデバイス110を含む、本明細書に説明される他のアブレーションデバイスと構造的および/または機能的に類似していてよい。アブレーションデバイス1301は、バスケットアブレーションデバイスまたは他のタイプの拡張可能なアブレーションデバイスの例であってよい。
【0053】
アブレーションデバイス1301は、
図13に示されるように、デバイス1301の近位端におけるシャフト1310と、ガイドワイヤルーメン1317と、遠位先端1307と、1つまたは複数のスプライン1302,1303とを含む。ガイドワイヤルーメン1317は、シャフト1310内に配置されるとともに、遠位先端1307まで延在するように構成されていてよい。ガイドワイヤ(図示せず)は、ガイドワイヤルーメン1317内に摺動可能に配置されるように構成されていてよい。例えば、ガイドワイヤは、患者内の所定の位置へのアブレーションデバイス1301のオーバーザワイヤでの送達のために構成されていてよい。
【0054】
いくつかの実施形態では、スプライン1302,1303のうちの1つまたは複数は、その長さに沿って配置される1つまたは複数の電極(例えば、リング電極)を含んでいてよい。例えば、電極1311,1313,1315は、スプライン1303上に配置することができ、電極1312,1314,1316は、スプライン1302上に配置することができる。遠位先端1307は、組織への外傷を低減するために、傷つけない形状を含んでいてよい。スプライン1302,1303のセット(または1つのスプラインのみが使用される場合、単一のスプライン)の近位端は、カテーテルシャフト1310の遠位端に結合されていてよく、スプライン1302,1303のセット(または1つのスプラインのみが使用される場合、単一のスプライン)の遠位端は、デバイス1301の遠位先端1307に結合されていてよい。
【0055】
アブレーションデバイス1301は、スプライン1302,1303上に配置された電極1311~1316を介してパルス波形を組織に送達するように構成されていてよい。例示的な実施形態では、任意の適切な数のスプラインを使用することができる(例えば、1、2、3、4、5、6、7、8、9、10個などのスプラインがあり得る)。例示的な実施形態では、アブレーションデバイス1301は、3~20個以上のスプラインを含み、その間の全ての値および部分範囲を含む。いくつかの場合、アブレーションデバイス1301は、20個を上回るスプラインを含んでいてもよい。
【0056】
スプライン1302および1303は、スプライン1302,1303の表面上に形成された1つまたは複数の一緒に配線された、または独立してアドレス指定可能な電極1311~1316を含んでいてよい。各電極(例えば、電極1311~1316)は、その対応する絶縁体の絶縁破壊なしに少なくとも約700Vの電位を維持するように構成された、絶縁された電気リード線を含んでいてよい。いくつかの実施形態では、各電気リード線上の絶縁体は、絶縁破壊することなく、その厚さにわたって約200V~約4,000Vの電位差を維持することができる。各スプライン1302,1303は、そのスプライン1302,1303の本体上に(例えば、スプラインのルーメン内に)形成されるそれらの電極の絶縁された電気リード線を含むか、または含有することができる。単一のスプライン上の電極が一緒に配線される場合、単一の絶縁されたリード線は、スプライン上の異なる電極に接続するストランドを担持していてよい。
【0057】
いくつかの実施形態では、遠位電極1315,1316(および/または電極のうちの任意のもの)は、それぞれ、本明細書に説明されるような輪郭成形された形状を有する、遠位エッジ1338,1339を含んでいてよい。いくつかの実施形態では、本明細書に記載の実施形態によれば、異なるスプラインは、異なる輪郭を有する電極を含むことができ、かつ/または各スプライン上の遠位電極および近位電極は、異なる輪郭を有する電極を含むことができる。各スプライン1302,1303上の電極は、遠位電極(すなわち、電極1315,1316)および近位電極のセット(すなわち、電極1311,1312,1313,1314)にグループ分けすることができる。いくつかの実施形態では、近位電極1311,1312,1313,1314は、サイズおよび形状が実質的に同様であってよい。近位電極1311および1313(ならびに同様に近位電極1312および1314)は、第1の距離だけ互いから離隔されていてよく、近位電極1313の遠位エッジおよび遠位電極1315の近位エッジ(ならびに同様に近位電極1314の遠位エッジおよび遠位電極1316の近位エッジ)は、第2の距離だけ互いから離隔されていてよい。いくつかの実施形態では、第1の距離と第2の距離とは異なっていてよい。例えば、第2の距離は、第1の距離よりも大きくてよい。代替的に、第1の距離と第2の距離とは同じであってもよい。電極の特定の間隔および配置が本明細書で説明されるが、電極のサイズ、形状、および間隔は、本開示の範囲から逸脱することなく異なっていてもよいことを理解することができる。
【0058】
様々な実施形態では、スプライン1302および1303は、可撓性であってよい。いくつかの実施形態において、アブレーションデバイス1301は、アブレーションデバイス1301のハンドル(図示せず)に配置された作動機構によってガイドワイヤルーメン1317を引っ張ることによって展開されるように構成されていてよい。ガイドワイヤルーメン1317がシャフト1310に沿って引き込まれると、スプライン1302,1303は、拡張された構成で(例えば、バスケット状の形状で)外向きに曲がるように構成されていてよい。いくつかの実施形態では、アブレーションデバイス1301は、ガイドワイヤルーメンを有していなくてもよく、代わりに、アブレーションデバイス1301を所定の解剖学的ターゲットに向かって操縦するための撓み機構(例えば、プルワイヤ)を含んでいてもよい。いくつかの場合、スプライン1302,1303は、スプライン1302,1303がアブレーションデバイス1301の長手方向軸に実質的に平行に配置される第1の構成(例えば、非展開構成)と、スプライン130,1303がアブレーションデバイス1301の長手方向軸(またはシャフト1310の長手方向軸)から半径方向外向きに曲がる第2の構成(例えば、拡張または展開構成)との間で変形するように構成されていてよい。いくつかの実施形態では、第2の構成におけるスプライン1302,1303は、バスケットの一端(例えば、遠位端)がバスケットの他端(例えば、近位端)よりも球状であるように、その長さに沿って非対称な形状を有するバスケットを形成することができる。
【0059】
いくつかの実施形態では、好適に展開されると、スプラインは、ほぼ平面的な花弁様構成(例えば、フラワー構成)を形成するように、またはバスケットを形成するように構成されていてよい。例えば、本明細書に開示されるアブレーションデバイスは、2017年9月21日に出願され、「SYSTEMS DEVICES, AND METHODS FOR DELIVERY OF PULSED ELECTRIC FIELD ABLATIVE ENERGY TO ENDOCARDIAL TISSUE」と題された米国特許第10,172,673号、および2020年4月3日に出願され、「SYSTEMS, DEVICES, AND METHODS FOR FOCAL ABLATION」と題された米国特許第10,660,702号に説明されるものと同様の構造的および/または機能的構成要素を含んでいてよく、その各々の内容は、参照によりその全体が本明細書に組み込まれる。
【0060】
一実施形態では、近位電極1311,1312,1313,1314は、第1の極性を有するように構成することができ、遠位電極1315,1316は、第1の極性とは反対の第2の極性を有するように構成することができる。そのような場合、近位電極1311,1312,1313,1314と、遠位電極1315,1316のサブセットとは、対になったアノード-カソードサブセットとして機能するように構成することができる。代替的に、電極の異なる組み合わせを選択して、アノード-カソードサブセットとして機能させることもできる。対になったアノード-カソードサブセットは、上述の
図1を参照して説明したように、パルス電界アブレーションを組織に送達するように構成され得る。
【0061】
遠位電極1315,1316の輪郭成形をより具体的に参照すると、これらの遠位電極は、輪郭成形されたエッジ1338,1339をそれぞれ有することができ、これらは、輪郭成形されたエッジ1338,1339の近傍で電界強度を目標値未満に低減するように選択される。電界強度のそのような低減は、アブレーションデバイス1301が配置される媒体内(例えば、血液などの液体媒体内)の電気分解および/または関連する気泡の発生を軽減し得る。
【0062】
図14は、アブレーションデバイス1301の電極1315の拡大図である。示されるように、電極1315は、第1のエッジ1338および第2のエッジ1336を含む。第1のエッジ1338は、第2のエッジ1336の反対側にあってよい。例えば、第1のエッジ1338は、遠位エッジであってよく、第2のエッジ1336は、近位エッジであってよく、またはその逆であってもよい。電極1315は、例えば、略円筒状(例えば、リング状)の形状であってよい。いくつかの実施形態では、電極1315は、円形、楕円形、扁平楕円、または長円形の断面を含んでいてよい。
【0063】
上述したように、第1のエッジ1338は、輪郭成形されたパターンを含むことができる。例えば、エッジ1338は、少なくとも1つの山および少なくとも1つの谷を有していてよい。例えば、エッジ1338上に位置する山点PPとエッジ1336上に位置する最も近い点p2との間の距離HPは、エッジ1338上に位置する谷点PVとエッジ1336上に位置する関連する最も近い点p1との間の対応する距離HVよりも大きい。一実施形態では、点PPおよび点PVは、不連続のない滑らかな曲線によって接続することができるが、代替実施形態では、点PPおよび点PVは、1つまたは複数の不連続を含む曲線によって接続することができ、かつ/または点PPおよび点PVの一方または両方は、不連続点であってもよい。
【0064】
図14に示すようなエッジ1336および1338は例示に過ぎず、他の輪郭成形されたエッジを使用してもよい。例えば、エッジ1336は、エッジ1338と同様に輪郭成形されていてもよい。いくつかの実施形態では、エッジ1336および1338の輪郭は、複数の山および谷を含んでいてもよい。例えば、エッジ1338の輪郭は、例えば、正弦波パターンなどの繰り返しパターンを含んでいてよい。いくつかの実施形態では、エッジ1336および1338は、互いに対して対称であっても対称でなくてもよく、かつ/またはエッジ1336および1338の異なる部分は、エッジ1336および1338の他の部分に対して対称であってもよい。
【0065】
電界に対する輪郭成形電極の局所的な効果を説明するために、
図15Aおよび15Bは、電極の2つの配置(例えば、隣接スプライン上)を描いている。
図15Aは、それぞれの平行スプライン1211A,1211B上に配置された電極1210A,1210Bの概略図である(例えば、平行スプライン1211Aおよび1211Bは、バスケット構成のアブレーションデバイス110のスプラインの近似であってよい)。電極1210A,1210Bはリング電極であってよい。第1の電極1210Aは、第1のスプライン1211A上に取り付けられていてよく、第2の電極1210Bは、第2のスプライン1211B上に取り付けられていてよい。いくつかの実施形態では、スプライン1211Aおよび1211Bは、ポリマー材料から構成されていてよい。電極によって生成される電界の計算モデルを実証する際に、電極は、血液プールによって囲まれ、約1kVの電位差が、電極1210A,1210Bにわたって印加されていてよい。
図15Aおよび
図15Bでは、電極1210A,1210Bの直径および長さ(長手方向軸1201Aおよび1201Bに沿った)はそれぞれ同じである。図示のように、電極1210A,1210Bは、輪郭成形されたエッジを含んでいない。特に、電極1210Aは、輪郭成形されていない第1のエッジ1213Aおよび第2のエッジ1215Aを含み、電極1210Bは、輪郭成形されていない第1のエッジ1213Bおよび第2のエッジ1215Bを含む。
【0066】
図15Bは、平行スプライン1221A,1221B上に配置された電極1220A,1220Bの概略図である(例えば、平行スプライン1221Aおよび1221Bは、バスケット構成のアブレーションデバイス110のスプラインの近似であってよい)。電極1220Aは、上側エッジ輪郭(第1のエッジ)1223Aを有し、電極1220Bは上側エッジ輪郭(第1のエッジ)1223Bを有している。エッジ1223A,1223Bの各々は、単一の谷と、例示目的のために、山における接線不連続とを有することができる。他の実施形態では、エッジ輪郭は、山において連続的であり得る。電極1220A,1220Bは、輪郭成形されていない下側エッジ1225A,1225Bを有している。
図15Bでは、電極1220A,1220Bの直径および電極1220A,1220Bの長さ(各スプライン1221A,1221Bの長手方向軸に沿った)は、2つの電極1220A,1220Bについてそれぞれ同じである。電極によって生成される電界の計算モデルを実証する際に、電極1220A,1220Bは、血液プールによって囲まれ、約1kVの電位差が、電極1220A,1220Bにわたって印加されていてよい。
【0067】
図16は、
図15Aおよび
図15Bの線1201A,1201Bに沿った電界強度を示すグラフである。線1201Aは、スプライン1211Aの長手方向軸に平行に延びる想像線であってよく、線1201Bは、スプライン1221Aの長手方向軸に平行に延びる想像線であってよい。線1201A,1201Bは、長さが等しく、約600μmであってよい。上述のように、電極によって生成される電界を実証するために、電極1210A,1210B,1220A,1220Bが、導電性媒体(例えば、血液プール)内に配置され、約1kVの電位差が、対としての電極1210A,1210Bの間に、かつ対としての電極1220A,1220Bの間に印加されると仮定することができる。
図16は、異なる電極形状の結果として、線1201A,1201Bに沿った電界強度の差を示す。
図16において、水平軸は、電極とスプラインの材料との間の界面(例えば、電極-ポリマー界面)から始まり、各スプラインのポリマー表面に平行に長手方向に延びている。
【0068】
図16に示すように、プロット線1220は、輪郭成形されていないエッジ1213Aおよび1213Bを有する電極1210Aおよび1210Bの電界強度を表し、プロット線1222は、輪郭成形されたエッジ1223Aおよび1223Bを有する電極1221Aおよび1221Bの電界強度を表す。
図16に示すように、輪郭成形電極は、電極-スプライン界面(例えば、電極-ポリマー界面)付近で、輪郭成形されていない電極よりも小さい電界強度を有している。さらに、電界強度の勾配または降下(drop-off)は、輪郭成形電極については、輪郭成形されていない電極よりも急ではない。この関係は、概して、輪郭成形されていない電極の幾何学形状に対する、本明細書に説明されるような他の輪郭成形されたエッジの幾何学形状に適用される。したがって、
図16に描写されるように、輪郭成形されたエッジを有する電極を含む、本明細書に記載のシステム、デバイス、および方法は、電極の輪郭成形されたエッジにおける電界強度を低減することができ、電界強度の降下を低減することができ、その両方が、医療用途(例えば、心臓アブレーション処置)における不可逆的なエレクトロポレーションの安全な送達を改善することができる。
【0069】
いくつかの実施形態では、シャフトまたはスプライン上に配置された複数の電極は、各々が輪郭成形されたエッジを有する電極を有することができる。
図17Aおよび17Bは、実施形態による、それぞれの電極1711,1712,および1711’,1712’を有するアブレーションデバイス1701および1701’の例を示す。使用時、パルス電界アブレーションを送達するために、電極1711,1712を電極対として通電することができ、同様に、電極1711’,1712’を電極対として通電することができる。電極1711,1712,1711’,1712’は、輪郭成形されたエッジを含んでいてよい。
図17Aに描写されるように、電極1711,1712は、同期している輪郭成形されたエッジを有していてよく、すなわち、電極1711の谷(例えば、谷V
1)は、方向1730に沿って電極1712の山(例えば、山P
1)と同期していてよい。代替的な構成では、電極1711’,1712’は、
図17Bに示されるように、非同期である輪郭成形されたエッジを有していてよく、すなわち、電極1711’の谷(例えば、谷V
2)は、方向1730’に沿って電極1712’の山(例えば、山P
2)と同期している。
【0070】
図18は、輪郭成形されたエッジを有する、および有しない隣接する電極と、隣接する電極間のそれぞれの電界強度のプロットとを概略的に示す。特に、それぞれの輪郭成形されていないエッジ1521Aおよび1521Bを有する2つの隣接する電極1510Aおよび1510Bは、シャフトまたはスプライン1501A上に配置され、それぞれの輪郭成形されたエッジ1523Aおよび1523Bを有する2つの隣接する2つの隣接する電極1511Aおよび1511Bは、シャフトまたはスプライン1501B上に配置されている。プロット線1530および1532は、隣接する電極1510A,1510B,1511A,1511Bの間の空間におけるシャフト1501A,1501Bの長手方向軸に沿った電界強度の差を例示的に示す。示されるように、輪郭成形電極1511A,1511Bは、電極-ポリマー界面付近で、輪郭成形されていない電極1510A,1510Bよりも小さい電界強度を有することができる。さらに、電界強度の勾配または降下は、輪郭成形電極1511A,1511Bについては、輪郭成形されていない電極1510A,1510Bよりも急ではない。
【0071】
方法
また、開示される実施形態に従って、組織を切除するための方法も提供される。いくつかの実施形態では、方法は、アブレーションデバイスを患者の心臓の心腔に送達すること、アブレーションデバイスを展開すること(例えば、デバイスをターゲット部位の近傍に配置すること、デバイスを展開することなど)、アブレーションデバイスが組織を切除するためのパルス電界を生成するように、パルス波形をアブレーションデバイスに送達することを含む。
【0072】
様々な実施形態では、システム100は、本明細書に記載される種々の方法を使用して、組織を切除するために使用されてよい。例示的な実施形態では、組織アブレーションは、本明細書に記載されるシステムおよびデバイスを使用して、1つまたは複数の心腔内またはその近傍で行われる。ある実施形態では、心腔は、左心房であってもよく、その関連する肺静脈を含んでいてよいが、本明細書に記載されるデバイスおよび方法は、他の心腔内でも使用することができる。概して、1つまたは複数のカテーテルは、脈管構造を通して低侵襲な方法でターゲット位置まで前進させることができる。例えば、アブレーションデバイスは、ガイドワイヤを介して脈管構造を通して、かつ撓み可能なシースを通して前進させられてもよい。シースは、撓むように構成され、脈管構造および1つまたは複数の所定のターゲット(例えば、肺静脈口)を通して、フォーカルアブレーションカテーテルを誘導することを支援してもよい。拡張器は、ガイドワイヤを介して前進させられるとともに、使用中および/または使用前の経中隔開口の形成および拡張のために構成されていてよい。本明細書に記載される方法は、アブレーションデバイス(例えば、アブレーションデバイス)を1つまたは複数の肺静脈口または腔領域(antral region)と接触させて導入および配置することを含む。任意選択的に、ペーシング信号は、心臓刺激器(例えば、心臓刺激器)を使用して心臓に送達されてもよく、および/または心臓活動を測定してもよい。アブレーションデバイスおよび組織の空間的特性(例えば、位置、向き、構成)が決定され、表示のための予想アブレーションゾーンおよび/または組織マップを生成するために使用されてもよい。パルス波形は、組織を切除するために、アブレーションデバイスの1つまたは複数の電極によって送達され得る。切除される組織および予想アブレーションゾーンを含む組織マップは、デバイスが組織を通してナビゲートされ、追加のパルス波形が組織に送達されると、ディスプレイ上においてリアルタイムで更新され得る。
【0073】
いくつかの実施形態では、アブレーションエネルギーは、心臓ペーシングと同期して送達されてもよい。いくつかの実施形態では、本明細書に説明される電圧パルス波形は、心臓の洞調律を乱さないように、心周期の不応期中に印加され得る。代替的に、アブレーションエネルギーは、非同期的に送達されてもよい。
【0074】
図2は、組織アブレーションの例示的なプロセス200である。プロセス200のオプションのステップは、
図2において破線で示されている。プロセス200は、ステップ202において、心臓の心内膜空間へのデバイス(例えば、アブレーションデバイス)の導入を含む。いくつかの実施形態では、デバイスは、肺静脈口と接触して配置されるように前進させられてもよい。例えば、アブレーションデバイスの電極は、肺静脈口における内側半径方向表面と接触して配置される電極の略円形配置を形成してもよい。いくつかの実施形態では、アブレーションデバイスの電極は、心臓の心内膜表面の近くに、またはそれに隣接して配置することができる。任意選択的に、アブレーションデバイスの一部を展開することができる(例えば、スプラインがバスケットに展開される、またはバルーンが拡張される)。任意選択的に、ステップ206において、ペーシング信号は、心臓の心臓刺激のために生成されてもよい。次いで、ステップ208において、ペーシング信号を心臓に印加することができる。例えば、心臓は、ペーシング捕捉を確実にして心周期の周期性および予測可能性を確立するために、心臓刺激器で電気的にペーシングされてもよい。心房ペーシングおよび心室ペーシングのうちの1つまたは複数が、任意選択的に印加されてもよい。ステップ210において、ペーシング信号の指示が、信号生成器に送信されてよい。次いで、1つまたは複数の電圧パルス波形を送達することができる、心周期の不応期内の時間ウィンドウが定義されてよい。いくつかの実施形態では、不応時間ウィンドウは、ペーシング信号に続いていてよい。例えば、共通の不応時間ウィンドウは、心房不応時間ウィンドウと心室不応時間ウィンドウとの両方の間にあってよい。
【0075】
パルス波形は、ペーシング信号が採用される場合、例えば、ステップ212においてペーシング信号と同期して生成されてもよい。例えば、電圧パルス波形は、不応時間ウィンドウにおいて印加されてよい。いくつかの実施形態では、パルス波形は、ペーシング信号の指示に対して時間オフセットを伴って生成されてもよい。例えば、不応時間ウィンドウの開始は、時間オフセットによってペーシング信号からオフセットされていてよい。電圧パルス波形は、対応する共通の不応時間ウィンドウにわたる一連の心拍にわたって印加されてもよい。他の実施形態では、パルス波形は、非同期的に生成および印加されてもよい。生成されたパルス波形は、ステップ214において、組織に送達されてよい。いくつかの実施形態では、パルス波形は、アブレーションデバイスのスプラインのセットのうちの1つまたは複数のスプラインを介して、患者の心臓の肺静脈口に送達されてもよい。他の実施形態では、本明細書に記載されるような電圧パルス波形は、肺静脈のアブレーションおよび隔離のために、アノード-カソードサブセットなどの電極サブセットに選択的に送達され得る。例えば、電極のグループのうちの第1の電極は、アノードとして構成されてもよく、電極のグループのうちの第2の電極は、カソードとして構成されてもよい。これらのステップは、切除されるべき所望の数の肺静脈口または腔領域(例えば、1つ、2つ、3つ、4つ、またはそれを上回る口)に対して繰り返されてもよい。代替の実施形態では、アブレーションパルス波形は、ペーシング信号なしで、すなわち非同期的に送達されてもよい。
【0076】
本開示における例および説明は、例示的な目的を果たすものであり、本発明の範囲から逸脱することなく、本明細書の教示に従って、スプラインの数、電極の数などの逸脱および変形、または線形アブレーションカテーテルなどの様々なフォーカルアブレーションデバイスを構築および展開できることを理解されたい。
【0077】
本明細書で使用される場合、「約(about)」および/または「およそ(approximately)」という用語は、数値および/または範囲と併せて使用される場合、一般に、列挙された数値および/または範囲に近い数値および/または範囲を指す。いくつかの場合において、「約」および「およそ」という用語は、記載された値の±10%以内を意味し得る。例えば、いくつかの例において、「約100[単位]」は、100の±10%以内(例えば、90~110)を意味し得る。「約」および「およそ」という用語は、互換的に使用され得る。
【0078】
本明細書で説明されるいくつかの実施形態は、様々なコンピュータ実装動作を実行するための命令またはコンピュータコードを有する非一時的コンピュータ可読媒体(非一時的プロセッサ可読媒体とも呼ばれ得る)を有するコンピュータストレージ製品に関する。コンピュータ可読媒体(またはプロセッサ可読媒体)は、一時的伝搬信号自体(例えば、空間またはケーブルなどの伝送媒体上で情報を搬送する伝搬電磁波)を含まないという意味で非一時的である。媒体およびコンピュータコード(コードまたはアルゴリズムと呼ばれることもある)は、特定の1つまたは複数の目的のために設計および構築されたものであってよい。非一時的コンピュータ可読媒体の例は、ハードディスク、フロッピー(登録商標)ディスク、および磁気テープなどの磁気ストレージ媒体、コンパクトディスク/デジタルビデオディスク(CD/DVD)、コンパクトディスク読取り専用メモリ(CD-ROM)、およびホログラフィックデバイスなどの光ストレージ媒体、光ディスクなどの光磁気ストレージ媒体、搬送波信号処理モジュール、ならびに特定用途向け集積回路(ASIC)、プログラマブル論理デバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、読取り専用メモリ(ROM)、およびランダムアクセスメモリ(RAM)デバイスのような、プログラムコードを格納および実行するように特に構成されたハードウェアデバイスを含むが、これらに限定されない。本明細書で説明される他の実施形態は、例えば、本明細書で開示される命令および/またはコンピュータコードを含み得るコンピュータプログラム製品に関する。
【0079】
本明細書で説明されるシステム、デバイス、および/または方法は、(ハードウェア上で実行される)ソフトウェア、ハードウェア、またはそれらの組み合わせによって実行され得る。ハードウェアモジュールは、例えば、汎用プロセッサ(またはマイクロプロセッサまたはマイクロコントローラ)、フィールドプログラマブルゲートアレイ(FPGA)、および/または特定用途向け集積回路(ASIC)を含んでいてよい。ソフトウェアモジュール(ハードウェア上で実行される)は、C、C++、Java(登録商標)、Ruby、Visual Basic(登録商標)、および/または他のオブジェクト指向、手続き型、または他のプログラミング言語および開発ツールを含む、種々のソフトウェア言語(例えば、コンピュータコード)で表されてもよい。コンピュータコードの例は、マイクロコードまたはマイクロ命令、コンパイラによって生成されるような機械命令、ウェブサービスを生成するために使用されるコード、およびインタープリタを使用してコンピュータによって実行される高レベル命令を含むファイルを含むが、これらに限定されない。コンピュータコードのさらなる例は、制御信号、暗号化コード、および圧縮コードを含むが、これらに限定されない。
【0080】
本明細書における特定の例および説明は、本質的に例示的なものであり、実施形態は、本発明の範囲から逸脱することなく、本明細書において教示される事項に基づいて当業者によって開発することができる。
【国際調査報告】