IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エックス デベロップメント エルエルシーの特許一覧

特表2023-542925廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム
<>
  • 特表-廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム 図1
  • 特表-廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム 図2
  • 特表-廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム 図3
  • 特表-廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム 図4
  • 特表-廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-10-12
(54)【発明の名称】廃棄物の循環経済を管理するためのエンドツーエンドプラットフォーム
(51)【国際特許分類】
   G16C 20/10 20190101AFI20231004BHJP
   C08J 11/06 20060101ALI20231004BHJP
   B29B 17/00 20060101ALI20231004BHJP
   G06Q 10/30 20230101ALI20231004BHJP
   G16C 20/70 20190101ALI20231004BHJP
   G16C 20/20 20190101ALI20231004BHJP
【FI】
G16C20/10 ZAB
C08J11/06
B29B17/00
G06Q10/30
G16C20/70
G16C20/20
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023518152
(86)(22)【出願日】2021-08-05
(85)【翻訳文提出日】2023-05-18
(86)【国際出願番号】 US2021044790
(87)【国際公開番号】W WO2022066298
(87)【国際公開日】2022-03-31
(31)【優先権主張番号】17/033,512
(32)【優先日】2020-09-25
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】516326438
【氏名又は名称】エックス デベロップメント エルエルシー
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【弁理士】
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】バナタオ,ディオスダド レイ
(72)【発明者】
【氏名】デイビス,カレン アール.
(72)【発明者】
【氏名】トリート,ニール
(72)【発明者】
【氏名】ゴンチャルク,アルテム
(72)【発明者】
【氏名】スピラキス,チャールズ
(72)【発明者】
【氏名】サンジーブ,スジット
(72)【発明者】
【氏名】マーフィー,ガロイド
(72)【発明者】
【氏名】ケ,ランス コー ティン
(72)【発明者】
【氏名】ラドコフ,レベッカ
(72)【発明者】
【氏名】ダイ,タオラン
【テーマコード(参考)】
4F401
5L049
【Fターム(参考)】
4F401CA43
4F401DB01
5L049AA16
(57)【要約】
【課題】 廃棄物材料に組み込まれた分子成分の再利用を管理するための技術を提供することである。
【解決手段】 化学的リサイクルプロセスを管理するためのシステム及び方法は、原料の特徴付けデータにアクセスすることを含み、特徴付けデータは、1つ以上の分光法に従って収集された1つ以上のスペクトルを含む。本方法は、特徴付けデータを使用して、原料に含まれる構成材料のセットを予測することを含む。本方法は、予測された構成材料のセットを使用して原料の材料組成を予測することを含む。本方法は、原料の予測された材料組成を少なくとも部分的に使用して、1つ以上の目標製品を識別することを含む。本方法は、原料の少なくとも一部を1つ以上の目標製品に変換することを可能にする化学反応スキーマのセットを生成することを含む。本方法はまた、原料の材料組成、1つ以上の目標製品、及び化学反応スキーマのセットの識別をデータストアに記憶することを含む。
【選択図】 図5
【特許請求の範囲】
【請求項1】
方法であって、
原料の特徴付けデータにアクセスすることであって、前記特徴付けデータが、1つ以上の分光法に従って収集された1つ以上のスペクトルを含む、前記特徴付けデータにアクセスすることと、
前記特徴付けデータを使用して、前記原料に含まれる構成材料のセットを予測することと、
予測された前記構成材料のセットを使用して、前記原料の材料組成を予測することと、
前記原料の予測された前記材料組成を少なくとも部分的に使用して、1つ以上の目標製品を識別することと、
前記原料の少なくとも一部の前記1つ以上の目標製品への変換を可能にする化学反応スキーマのセットを生成することと、
前記原料の前記材料組成、前記1つ以上の目標製品、及び前記化学反応スキーマのセットの識別をデータストアに記憶することと、を含む、方法。
【請求項2】
適合度関数への1つ以上の入力を識別することであって、前記1つ以上の入力が、前記化学反応スキーマのセットの化学反応スキーマを記述する、前記1つ以上の入力を識別することと、
前記1つ以上の入力を使用して、前記適合度関数の出力を生成することと、
前記適応度関数、前記1つ以上の入力、及び前記1つ以上の目標製品に従って、前記化学反応スキーマのセットから実装スキームを選択することと、を更に含む、請求項1に記載の方法。
【請求項3】
前記1つ以上の目標製品を識別することが、
製品のセットを記述するインベントリ情報にアクセスすることと、
前記インベントリ情報を使用して、前記製品のセットの不完全なサブセットを前記1つ以上の目標製品として識別することと、を含む、請求項1又は2に記載の方法。
【請求項4】
前記原料の一部分を、前記原料の前記一部分を前記1つ以上の目標製品のうちの少なくとも1つの目標製品に変換するように構成された材料リサイクル施設に向かわせることを更に含む、請求項1~3のいずれか一項に記載の方法。
【請求項5】
前記原料に含まれる前記構成材料のセットを予測することが、
前記1つ以上の分光法に対応するスペクトル及び関連メタデータのライブラリにアクセスすることと、
前記特徴付けデータの前記1つ以上のスペクトル内の帯域を識別することと、
前記帯域を前記スペクトルのライブラリのスペクトルにマッチングさせて、前記構成材料のセットの構成材料を予測することと、を含む、請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記化学反応スキーマのセットを生成することが、
化学反応インベントリにアクセスすることであって、前記化学反応インベントリが、前記1つ以上の目標製品のうちの目標製品への前記原料の変換を記述する化学反応の表現を含む、アクセスすることと、
前記化学反応インベントリから前記化学反応スキーマのセットをポピュレートすることと、を含む、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記化学反応スキーマのセットを生成することが、
機械学習モデルを使用して前記化学反応スキーマのセットの化学反応スキームの第1の構成反応をシミュレートすることと、
報酬関数の出力を推定することであって、前記機械学習モデルの出力が、前記報酬関数への入力として機能する、前記報酬関数の出力を推定することと、
前記機械学習モデルへの入力を修正することによって前記報酬関数の最大値を推定することであって、前記入力が、前記化学反応スキームにおける前記第1の構成反応に先行する第2の構成反応からの出力である、前記報酬関数の最大値を推定することと、を含む、請求項1~6のいずれか一項に記載の方法。
【請求項8】
システムであって、
コンピュータ実行可能命令を記憶するように構成されたメモリと、
1つ以上のプロセッサであって、前記メモリと通信しており、前記コンピュータ実行可能命令を実行して、
原料の特徴付けデータにアクセスすることであって、前記特徴付けデータが、1つ以上の分光法に従って収集された1つ以上のスペクトルを含む、前記特徴付けデータにアクセスすることと、
前記特徴付けデータを使用して、前記原料に含まれる構成材料のセットを予測することと、
予測された前記構成材料のセットを使用して、前記原料の材料組成を予測することと、
前記原料の予測された前記材料組成を少なくとも部分的に使用して、1つ以上の目標製品を識別することと、
前記1つ以上の目標製品への前記原料の少なくとも一部の変換を可能にする化学反応スキーマのセットを生成することと、
前記原料の前記材料組成、前記1つ以上の目標製品、及び前記化学反応スキーマのセットの識別をデータストアに記憶することと、を行うように構成されている、1つ以上のプロセッサと、を備える、システム。
【請求項9】
前記コンピュータ実行可能命令が、前記1つ以上のプロセッサに、
適合度関数への1つ以上の入力を識別させることであって、前記1つ以上の入力が、前記化学反応スキーマのセットの化学反応スキーマを記述する、前記1つ以上の入力を識別させることと、
前記1つ以上の入力を使用して、前記適合度関数の出力を生成させることと、
前記適応度関数、前記1つ以上の入力、及び前記1つ以上の目標製品に従って、前記化学反応スキーマのセットから実装スキームを選択させることと、を更に行わせる、請求項8に記載のシステム。
【請求項10】
前記1つ以上の目標製品を識別することが、
製品のセットを記述するインベントリ情報にアクセスすることと、
前記インベントリ情報を使用して、前記製品のセットの不完全なサブセットを前記1つ以上の目標製品として識別することと、を含む、請求項8又は9に記載のシステム。
【請求項11】
前記コンピュータ実行可能命令を実行することが更に、前記1つ以上のプロセッサに、前記原料の一部分を、前記原料の前記一部分を前記1つ以上の目標製品のうちの少なくとも1つの目標製品に変換するように構成された材料リサイクル施設に向かわせる、請求項8~10のいずれか一項に記載のシステム。
【請求項12】
前記原料に含まれる前記構成材料のセットを予測することが、
前記1つ以上の分光法に対応するスペクトル及び関連メタデータのライブラリにアクセスすることと、
前記特徴付けデータの前記1つ以上のスペクトル内の帯域を識別することと、
前記帯域を前記スペクトルのライブラリのスペクトルにマッチングさせて、前記構成材料のセットの構成材料を予測することと、を含む、請求項8~11のいずれか一項に記載のシステム。
【請求項13】
前記化学反応スキーマのセットを生成することが、
化学反応インベントリにアクセスすることであって、前記化学反応インベントリが、前記1つ以上の目標製品のうちの目標製品への前記原料の変換を記述する化学反応の表現を含む、前記化学反応インベントリにアクセスすることと、
前記化学反応インベントリから前記化学反応スキーマのセットをポピュレートすることと、を含む、請求項8~12のいずれか一項に記載のシステム。
【請求項14】
前記化学反応スキーマのセットを生成することが、
機械学習モデルを使用して前記化学反応スキーマのセットの化学反応スキームの第1の構成反応をシミュレートすることと、
報酬関数の出力を推定することであって、前記機械学習モデルの出力が、前記報酬関数への入力として機能する、前記報酬関数の出力を推定することと、
前記機械学習モデルへの入力を修正することによって前記報酬関数の最大値を推定することであって、前記入力が、前記化学反応スキームにおける前記第1の構成反応に先行する第2の構成反応からの出力である、前記報酬関数の最大値を推定することと、を含む、請求項8~13のいずれか一項に記載のシステム。
【請求項15】
コンピュータ実行可能命令を記憶するコンピュータ可読媒体であって、前記コンピュータ実行可能命令が、コンピュータシステムの1つ以上のプロセッサによって実行されるときに、前記コンピュータシステムに、
原料の特徴付けデータにアクセスすることであって、前記特徴付けデータが、1つ以上の分光法に従って収集された1つ以上のスペクトルを含む、前記特徴付けデータにアクセスすることと、
前記特徴付けデータを使用して、前記原料に含まれる構成材料のセットを予測することと、
予測された前記構成材料のセットを使用して、前記原料の材料組成を予測することと、
前記原料の予測された前記材料組成を少なくとも部分的に使用して、1つ以上の目標製品を識別することと、
前記1つ以上の目標製品への前記原料の少なくとも一部の変換を可能にする化学反応スキーマのセットを生成することと、
前記原料の前記材料組成、前記1つ以上の目標製品、及び前記化学反応スキーマのセットの識別をデータストアに記憶することと、を含む動作を実行させる、コンピュータ可読媒体。
【請求項16】
前記コンピュータ実行可能命令が、コンピュータシステムの1つ以上のプロセッサによって実行されると、前記システムに、
適合度関数への1つ以上の入力を識別することであって、前記1つ以上の入力が、前記化学反応スキーマのセットの化学反応スキーマを記述する、前記1つ以上の入力を識別することと、
前記1つ以上の入力を使用して、前記適合度関数の出力を生成することと、
前記適応度関数、前記1つ以上の入力、及び前記1つ以上の目標製品に従って、前記化学反応スキーマのセットから実装スキームを選択することと、を含む動作を更に実行させる、請求項15に記載のコンピュータ可読媒体。
【請求項17】
前記1つ以上の目標製品を識別することが、
製品のセットを記述するインベントリ情報にアクセスすることと、
前記インベントリ情報を使用して、前記製品のセットの不完全なサブセットを前記1つ以上の目標製品として識別することと、を含む、請求項15又は16に記載のコンピュータ可読媒体。
【請求項18】
前記インベントリ情報が、
変換に利用可能な前記原料の量、
変換に利用可能な前記原料の品質、
変換に利用可能な前記原料の市場データ、
地理的領域において利用可能な前記1つ以上の目標製品のうちの目標製品の数量、
地理的領域において利用可能な前記1つ以上の目標製品のうちの目標製品の品質、又は
地理的領域において利用可能な前記1つ以上の目標製品のうちの目標製品の市場データ、のうちの1つ以上を含む、請求項17に記載のコンピュータ可読媒体。
【請求項19】
前記原料に含まれる前記構成材料のセットを予測することが、
前記1つ以上の分光法に対応するスペクトル及び関連メタデータのライブラリにアクセスすることと、
前記特徴付けデータの前記1つ以上のスペクトル内の帯域を識別することと、
前記帯域を前記スペクトルのライブラリのスペクトルにマッチングさせて、前記構成材料のセットの構成材料を予測することと、を含む、請求項15~18のいずれか一項に記載のコンピュータ可読媒体。
【請求項20】
前記化学反応スキーマのセットを生成することが、
機械学習モデルを使用して、前記化学反応スキーマのセットの化学反応スキームの第1の構成反応をシミュレートすることと、
報酬関数の出力を推定することであって、前記機械学習モデルの出力が、前記報酬関数への入力として機能する、前記報酬関数の出力を推定することと、
前記機械学習モデルへの入力を修正することによって前記報酬関数の最大値を推定することであって、前記入力が、前記化学反応スキームにおける前記第1の構成反応に先行する第2の構成反応からの出力である、前記報酬関数の最大値を推定することと、を含む、請求項15~19のいずれか一項に記載のコンピュータ可読媒体。
【発明の詳細な説明】
【背景技術】
【0001】
本出願は、2020年9月25日出願の米国特許出願第17/033,512号の利益及び優先権を主張し、これは、全ての目的のために参照によりその全体が本明細書に組み込まれる。
【0002】
プラスチック製品は、主に使い捨てであり、リサイクルされないことが多い。世界的なプラスチックの年間生産量は約3億5000万トンであり、そのうち約10%はリサイクルされ、12%は焼却され、残り(78%)は埋立て地又は自然環境に蓄積され、分解するのに約500~1,000年かかる。プラスチック生産は、2030年までに2倍、2050年までに3倍になると予想される。
【0003】
機械的リサイクルは、プラスチックをリサイクルするための有力な戦略であり、プラスチック廃棄物を粉砕し、溶融し、再押出しすることを伴う。リサイクル製品において高レベルの材料性能を保持するために、リサイクル施設は、分別された材料の流れを高純度で処理するように設計されることが多いので、高い汚染率及び混合材料流は、リサイクルプロセスの低収率及び低価の主な原因である。原料の不純物は、添加剤を含む複雑な配合、並びに材料の物理的分解のために、数サイクルの機械的リサイクルの直後であっても、リサイクルの有効性を低下させる。例えば、プラスチック材料では、ポリ乳酸(PLA)は、ポリエチレンテレフタレート(PET)選別及び機械的リサイクル操作において検出されないことが多い一般的な廃プラスチックである。別の例として、塩化ポリビニル(PVC)などの塩素化化合物は、リサイクルプロセス中に腐食性化合物が生成され、これが炭化水素出力の価値を制限するので、機械的及び化学的リサイクル操作の両方において許容されない。
【発明の概要】
【0004】
廃棄物材料に組み込まれた分子成分の再利用を管理するための技術(例えば、方法、システム、1つ以上のプロセッサによって実行可能なコード又は命令を記憶する非一時的コンピュータ可読媒体)が提供される。
【0005】
特に、技術は、廃棄物流に入る構成材料の化学的又は材料的同一性を特徴付けることを対象とし得る。構成材料は、スペクトル情報、物理的特性、計算アルゴリズム、及び機械学習を含む包括的なライブラリから導出された化学フィンガープリントを使用して識別され得る。材料を目標製品に変換する化学プロセスを開発するために、材料特徴付けデータが使用され得る。目標製品及びプロセスの識別は、物流情報、市場データ、及びリアルタイム交換データによって通知することができる。例えば、目標製品は、相対的に高い市場需要に関連付けられ、かつ少なくとも1つの構成材料を使用して相対的に効率的に生産することができるものとして識別され得る。
【0006】
いくつかの実施形態では、本方法は、原料の特徴付けデータにアクセスすることを含み得る。特徴付けデータは、1つ以上の分光法に従って収集された1つ以上のスペクトルを含み得る。本方法は、特徴付けデータを使用して、原料に含まれる構成材料のセットを予測することを含み得る。本方法は、予測された構成材料のセットを使用して原料の材料組成を予測することを含み得る。本方法は、原料の予測された材料組成を使用して、1つ以上の目標製品を識別することを含み得る。本方法は、1つ以上の目標製品への原料の少なくとも一部の変換を可能にする化学反応スキーマのセットを生成することを含み得る。本方法はまた、原料の材料組成、1つ以上の目標製品、及び化学反応スキーマのセットの識別をデータストアに記憶することを含み得る。
【0007】
いくつかの実施形態では、本方法はまた、適合度関数への1つ以上の入力を識別することを含み得、1つ以上の入力は、化学反応スキーマのセットの化学反応スキームを記述する。本方法はまた、1つ以上の入力を使用して適合度関数の出力を生成することを含み得る。本方法はまた、適合度関数、1つ以上の入力、及び1つ以上の目標製品に従って、化学反応スキーマのセットから実装スキームを選択することを含み得る。1つ以上の目標製品を識別することは、製品のセットを記述するインベントリ情報にアクセスすることと、インベントリ情報を使用して、製品のセットの不完全なサブセットを1つ以上の目標製品として識別することとを含み得る。インベントリ情報は、変換に利用可能な原料の量、又は地理的領域において利用可能な1つ以上の目標製品のうちの目標製品の量のうちの1つ以上を含み得る。本方法は、原料の一部分を、原料の一部を1つ以上の目標製品のうちの少なくとも1つの目標製品に変換するように構成された材料リサイクル施設に向かわせることを更に含み得る。化学反応スキーマのセットを生成することは、化学反応インベントリにアクセスすることであって、化学反応インベントリは、1つ以上の目標製品のうちの目標製品への原料の変換を記述する化学反応の表現を含む、化学反応インベントリにアクセスすることと、化学反応インベントリから化学反応スキーマのセットをポピュレートすることとを含み得る。化学反応スキーマのセットを生成することは、機械学習モデルを使用して、化学反応スキーマのセットの化学反応スキームの第1の構成反応をシミュレートすることを含み得る。化学反応スキーマのセットを生成することは、報酬関数の出力を推定することを含み得、機械学習モデルの出力は報酬関数への入力として機能する。化学反応スキームのセットを生成することはまた、機械学習モデルへの入力を修正することによって報酬関数の最大値を推定することを含み得、入力は、化学反応スキームにおける第1の構成反応に先行する第2の構成反応からの出力である。
【0008】
いくつかの実施形態では、コンピュータシステムは、1つ以上のプロセッサと、1つ以上のプロセッサと通信するメモリとを含み、メモリは、コンピュータ実行可能命令を記憶するように構成され、コンピュータ実行可能命令を実行することは、1つ以上のプロセッサに、上で説明される方法の1つ以上の態様を行わせる。
【0009】
いくつかの実施形態では、コンピュータ可読記憶媒体は、実行されると、コンピュータシステムの1つ以上のプロセッサに、上で説明される方法の1つ以上の態様を行わせるコンピュータ実行可能命令を記憶する。
【図面の簡単な説明】
【0010】
図1】本開示のいくつかの実施形態による、原料の分子成分の再利用を管理するための例示的技術を示す。
図2】本開示のいくつかの実施形態による、原料の材料組成を予測するための例示的ワークフローを示す。
図3】本開示のいくつかの実施形態による、化学反応スキーマのセットを生成するための例示的ワークフローを示す。
図4】本開示のいくつかの実施形態による、化学的及び物流データを使用して化学反応プロセスを調整するための例示的ワークフローを示す。
図5】本開示のいくつかの実施形態による、原料の分子成分の再利用を管理するための方法を説明する例示的フローを示す。
【発明を実施するための形態】
【0011】
機械的リサイクルは、化学的汚染物質に対して非感受性であり、廃棄物材料の化学構造を改変することが不可能であり得る機械的分離及び再形成プロセスを使用することに部分的に起因して、混合された、複合的な、及び汚染された廃棄物流への適用可能性が制限される。化学的リサイクルは、廃棄物材料の化学結合をより小さな分子に破壊することによって、機械的リサイクルの制限を解決し得る。例えば、ポリマー材料の場合、化学的リサイクルは、プラスチック廃棄物原料からオリゴマー、モノマー、又は更に塩基性分子を回収する手段を提供し得る。ポリマーの場合、化学的リサイクルプロセスは、その副生成物が新しい材料のための原料にアップサイクルされ得るように、複雑なプラスチック生成物の化学組成を解重合及び解離するための操作を含み得る。
【0012】
化学的リサイクルの要素は、材料が一次原材料に繰り返し解離されることを可能にし得る。このようにして、機械的リサイクルの場合のように、化学構造及び材料一体性によって限られた数の物理的プロセスに限定されるのではなく、化学的リサイクルを「エンドツーエンド」プラットフォームに統合して、リサイクル可能材料の分子成分の再利用を容易にし得る。例えば、化学的リサイクルの製品は、塩基性モノマー(エチレン、アクリル酸、酪酸、ビニルなど)、原料ガス(一酸化炭素、メタン、エタンなど)、又は元素材料(硫黄、炭素など)を含み得る。単一のグループのリサイクル製品に限定される代わりに、投入廃棄物材料の分子構造に基づいて、化学反応によって廃棄物から生成することができる中間化学物質から合成することができる製品が識別され得る。そうすることで、エンドツーエンドプラットフォームは、廃棄物材料を1つ以上の目標製品に変換する化学反応スキームを生成することによって、廃棄物流を管理し得る。例えば、エンドツーエンドプラットフォームは、目標製品への廃棄物材料の化学変換のために、廃棄物原料を化学的リサイクル施設に向け得る。このようにして、エンドツーエンドプラットフォームは、再利用及びリサイクル戦略の実装を改善し得、廃棄からリサイクルシステムへの廃棄物材料の転用を増加させ得る。
【0013】
エンドツーエンドプラットフォームは、廃棄物材料、分子成分、及び完成品の量を記述するデータを収集し、この情報を用いて、目標製品を生産するためのリサイクルプロセスを能動的に管理し得る。化学反応スキームは、目標製品量、エンドポイント、又は化学構造を変更するために、データを使用して修正又は更新され得る。例えば、原料モノマーへの廃棄物の変換及び生ポリマーへの戻り変換が追跡され、局地的、地域的、及び/又は世界的な廃棄物リサイクル又はアップサイクルシステムに統合され得る。システムは、化学処理装置、材料リサイクル施設、廃棄物源、及び精製されたポリマー原料のエンドポイントなどのリサイクルオペレータを含み得る。次に、廃棄物源としては、産業廃棄物源、施設廃棄物源、又は家庭廃棄物源が挙げられ得るが、これらに限定されない。下流の処理装置は、別の目的の廃棄物材料を受け取ることなく、化学的リサイクルの純粋な材料製品を組み込み得る。
【0014】
本明細書に説明される化学的リサイクル処理スキームの潜在的な利点は、機械的リサイクルを通して利用不可能であり、リサイクルすることができる廃棄物材料の割合を増加させ得る廃棄物材料から製品を製造することを含む。例えば、プラスチック原料は、炭化水素ガスなどの非プラスチック材料に完全に変換され得、これは次に、新たな異なるポリマー材料に合成することができる。更に、機械学習機能を実装する、支援された化学プロセス開発は、潜在的に、プロセス開発タイムラインを減少させ、化学的リサイクルプロセスの効率性を高めることができ、その結果、大規模で実行可能であることができる。例えば、本明細書に説明される実施形態は、ベンチスケールから、パイロットスケールへ、最終的には、典型的には17年もの長さを要し得る工業スケールへ、物流ネットワークにおいてすでにアクティブである化学的リサイクルプロセスのマルチスケールシミュレーションを使用するリアルタイムプロセスへと、新たな化学反応スキームの開発タイムラインを加速することを含み得る。
【0015】
更なる利点は、典型的には、最小限の汚染物質を含む相対的に純粋な廃棄物流を処理するように考案された従来のリサイクル方法の限界に潜在的に対処し得る。本明細書に説明される技術は、改善された効率及び性能で所望の製品を生産するために、廃棄物材料を特徴付け、リサイクルスキームを管理することによって、リサイクルプロセスを改善し得る。利点としては、廃棄物材料の重量当たりの生成物の収率、エネルギー消費、リサイクルプロセスの環境への影響、又は埋立てに転用されるか若しくは水域中に処分されるリサイクル可能廃棄物の割合が挙げられ得るが、これらに限定されない。
【0016】
図1は、本開示のいくつかの実施形態による、原料の分子成分の再利用を管理するための例示的ワークフロー100を示す。概して、ワークフロー100は、廃棄物材料を特徴付け、廃棄物材料の組成を予測し、廃棄物材料のための化学的リサイクルプロトコルを開発するための1つ以上のシステムを含み得、それを通して、廃棄物材料は、1つ以上の化学的リサイクルプロセスによって目標製品に変換される原料として機能し得る。
【0017】
いくつかの実施形態では、ワークフロー100は、タブレット、スマートフォン、ラップトップコンピュータ、又は廃棄物材料111の分光、撮像、若しくは化学的特徴付けを容易にするための1つ以上のセンサツールを含み得る専用センサデバイスなどのポイントオブユースデバイスとして実装され得る、材料特徴付けシステム110を含み得る。廃棄物材料111は、リサイクルプロセスの原料として機能し得る材料であり得るか、又はそれを含み得る。例えば、廃棄物材料111は、ポリエチレンテレフタレート(PET)などの一般的にリサイクルされる材料であり得るか、又はそれを含み得、その結果、廃棄物材料111は、リサイクルプロセスのための原料として特徴付けられる前にラベル付けされ得る。場合によっては、廃棄物材料111はまた、以下でより詳細に説明されるように、特徴付けシステム110による分析によって識別され得、原料としての廃棄物材料111の使用を通知し得る、汚染物質又は添加剤を含むことができる。場合によっては、廃棄物材料111は、ワークフロー100の一部として材料のその後の分析を通知するために、追加のメタデータでラベル付けされ得る。例えば、ラベルは、標準特徴付けデータが標準データのデータベースから検索又はアクセスされることを可能にし得るCAS番号であり得るか、又はそれを含み得る。
【0018】
材料特徴付けシステム110は、廃棄物材料111を記述する1つ以上のタイプの特徴付けデータ113を提供し得る。特徴付けデータ113は、1つ以上の波長の光と廃棄物材料111との相互作用を測定することによって生成される分光データを含み得る。例えば、特徴付けデータ113は、1つ以上のスペクトル範囲内の光で廃棄物材料111を照射することによって測定される、表面光反射率/吸光度データ115、透過吸光度データ117、又はハイパースペクトル画像データなどの分光法を含み得るが、それらに限定されない。場合によっては、特徴付けデータ113は、赤外線吸光度データ、赤外線反射率データ、可視吸光度若しくは反射率データ、近赤外線データ、紫外線吸光度データ、又はマイクロ波若しくはX線相互作用データ(例えば、X線蛍光)を含み得る。いくつかの実施形態では、特徴付けデータ113は、表面抵抗率データ、硬度若しくは引張特性などの物理的特徴付けデータ、又は廃棄物材料111を他のタイプの廃棄物材料から区別するための特性情報を含み得る他の物理的若しくは化学的特性を含むがこれらに限定されない物理的及び化学的特徴付けを含み得る。
【0019】
いくつかの実施形態では、廃棄物材料111は、ポリマー、プラスチック、プラスチックを含有する複合材料、非プラスチック、リグノセルロース系材料、金属、ガラス、及び/又は希土類材料を含み得るが、これらに限定されない。ポリマー材料及びプラスチック材料は、1つ以上の重合プロセスによって形成される材料を含み得、高度に架橋されたポリマー並びに線状ポリマーを含み得る。場合によっては、廃棄物材料111は、添加剤又は汚染物質を含み得る。例えば、プラスチック材料は、例えば、所望の特性を付与するか、又は形成特性を促進するために、可塑剤、難燃性材料、耐衝撃性改良剤、レオロジー改良剤、又は廃棄物材料111に含まれる他の添加剤を含み得る。場合によっては、廃棄物材料111は、広範囲の化学的リサイクルプロセスに適合しない場合がある構成化学物質又は元素を組み込むことがあり、したがって、特徴付けデータ113は、そのような化学物質に固有の情報を含むことがある。例えば、ハロゲン又は硫黄含有ポリマーの分解は、腐食性副生成物を生成する場合があり、これは、そのような元素を含む廃棄物材料111の化学的リサイクルを阻害又は損なう場合がある。ハロゲン成分を含有する廃棄物材料111の例は、ポリ塩化ビニル(PVC)である。例えば、PVCの分解は、腐食性副生成物として作用し得る塩素含有化合物を生成し得る。
【0020】
いったん収集されると、特徴付けデータ113は、ワークフロー100の1つ以上の要素を実装するコンピュータシステム120によってアクセスされ得る。いくつかの実施形態では、コンピュータシステム120は、サーバ、1つ以上のサーバ、仮想マシン、複数の仮想マシンを含み得、これらは、物理コンピュータシステム又は分散コンピュータシステム(例えば、クラウドコンピューティングシステム)において実装され得る。場合によっては、コンピュータシステム120は、ネットワーク130を介して、材料特徴付けシステム110などの1つ以上の外部システムと通信し得る。ネットワークは、インターネットなどのパブリックネットワークであり得るか、又はクライアントネットワーク、制限ネットワーク、若しくはローカルエリアネットワークなどのプライベートネットワークであり得る。
【0021】
いくつかの実施形態では、コンピュータシステム120は、廃棄物材料111に含まれる構成材料のセットを予測するためのプロセスを実行し得る。以下で図2を参照してより詳細に説明されるように、コンピュータシステム120は、1つ以上の分光法に対応するスペクトルのライブラリにアクセスし得る。例えば、データベース131は、複数の標準物質、物質の組み合わせについての分光データ、並びに現実世界の物質についての経験的な特徴付けデータを含み得る。いくつかの実施形態では、データベース131は、ネットワーク130を介してコンピュータシステム120と通信し得る。加えて、コンピュータシステム120は、スペクトルのライブラリの少なくとも一部分をコンピュータシステム120のメモリに記憶し得る。
【0022】
いくつかの実施形態では、廃棄物材料111に含まれる構成要素のセットを予測することは、材料識別アプリケーション140を実行することを含み得る。材料識別アプリケーション140は、特徴付けデータ113を受信するスペクトル分析器143を含み得る。いくつかの実施形態では、スペクトルデータ141はまた、スペクトル分析器143への入力として機能し得、これは、コンピュータシステム120のメモリ内の、又はデータベース130からのスペクトルのライブラリにアクセスすることによって提供され得る。いくつかの実施形態では、スペクトルデータ141は、シミュレートされ得るか、又は経験的に測定され得る。以下で説明されるように、材料識別アプリケーション140は、特徴付けデータ113内の1つ以上の関心対象の帯域を識別し得、廃棄物材料111の化学フィンガープリント145を生成することの一部として1つ以上の関心対象の帯域を使用し得る。概して、廃棄物材料111の化学フィンガープリント145は、特徴付けデータ113から導出された特性情報のセットを記述し、これは、例えば、化学的リサイクルプロセスに原料として導入することができる廃棄物材料111の材料成分を識別することができる。
【0023】
材料識別アプリケーション140の文脈において、化学フィンガープリント145は、少なくとも部分的に特徴付けデータ113及びスペクトルデータ141に基づいて、廃棄物材料111を構成する構成材料及び材料組成の予測を記述し得る。例えば、化学フィンガープリント145は、特徴付けデータ113によって示される主成分化合物及び添加剤又は汚染物質を記述し得る。化学フィンガープリント145はまた、例えば、特徴付けシステム110が、絶対組成法を容易にする較正された分光法を実装する場合、廃棄物材料111を構成する各構成材料の相対組成を記述し得る。いくつかの実施形態では、材料組成は、標準データに基づいて予測され得るか、又は以下の図2を参照してより詳細に説明されるように、混合材料からの情報を含むデータセットを使用して訓練された機械学習モデルの一部として予測され得る。
【0024】
図3を参照してより詳細に説明されるように、化学フィンガープリント145は、1つ以上の目標又は所望の化学的リサイクル製品の識別を可能にし得る。例えば、いくつかの実施形態では、コンピュータシステム120は、材料識別アプリケーション140を実行することの一部として、廃棄物材料111を原料として取り込む化学的リサイクルプロセスによって生成され得る一組の製品などの1つ以上の製品を記述する化学反応インベントリ情報にアクセスし得る。例えば、コンピュータシステム120は、関心対象の帯域を識別し得、そこから、コンピュータシステム120はまた、廃棄物材料111から生成することができる1つ以上の目標又は所望の生成物を提供し得る。目標製品の識別は、図3を参照してより詳細に説明されるように、検索可能なテーブル(例えば、ルックアップテーブル)におけるように、原料-製品ペアリングなどの化学的リサイクルプロセスデータにアクセスすることによって容易にされ得る。用例として、化学145を使用して、廃棄物材料111が、1つ以上の潜在的な化学的リサイクルプロセスを排除し得るか、又はリサイクル及び/若しくはリサイクルプロセスシステムにおける損耗の低減を可能にするために原料比のバランス若しくは調整をもたらし得る1つ以上の添加剤若しくは不純物を有するPETフィンガープリントであり得るか、又はそれを含み得ることを予測し得る。この情報から、コンピュータシステム120は、化学反応データにアクセスして、1つ以上の目標製品を記述する情報を提供し得る。この例では、コンピュータシステム120は、原料の化学反応データを、不純物、添加剤、及び汚染物質の化学反応データと相互参照して、目標製品が不適切に識別される可能性を低減し得る。
【0025】
追加的又は代替的に、コンピュータシステム120は、化学フィンガープリント145に基づく手動入力として、コンピュータシステム120のユーザから1つ以上の所望の製品識別を受信し得る。例えば、コンピュータシステムは、それによって1人以上のユーザがコンピュータシステム120の1つ以上のアプリケーションと相互作用し得る、ユーザインターフェース又はコンソールアプリケーションを含み得る。いくつかの実施形態では、ユーザインターフェースは、ユーザが化学フィンガープリント145を構成するデータをレビューし、潜在的な化学的リサイクル製品の検索を行い、1つ以上の所望の製品を示すことを可能にし得る。
【0026】
いくつかの実施形態では、コンピュータシステム120は、廃棄物材料111が1つ以上の目標又は所望の製品を生成するための原料として作用する1つ以上の化学的リサイクルプロセスをコンピュータシステム120がシミュレートすることを可能にし得る化学反応モデリングアプリケーション150を実行し得る。化学反応モデリングアプリケーション150は、以下で図3を参照してより詳細に説明されるように、化学反応データのデータベース151に記憶され得る、目標製品への原材料の変換を記述する化学反応の1つ以上の表現にアクセスし得る。化学反応データは、ポリマーを解重合するための、化学反応物中の共有結合を解離するための、又は廃棄物材料111を物理的又は化学的に目標製品に変換するための基本化学反応の機械検索可能なカタログとすることができるか、又はそれを含むことができる。
【0027】
いくつかの実施形態では、化学反応データのデータベース151は、図3を参照してより詳細に説明されるように、化学プロセスシミュレーションに入力される化学反応の初期セットとして機能し得る化学反応インベントリとすることができるか、又はそれを含むことができる。データベース131と同様に、化学反応データのデータベース151は、コンピュータシステム120と同じ物理的位置にあるネットワークデータストア又はメモリデバイスであり得る。場合によっては、化学フィンガープリント145は、化学反応モデリングアプリケーション150への追加の入力として機能し得る。例えば、化学フィンガープリント145は、先で説明されるように、1つ以上の原料及び生成物の相、構造、及び量を記述する情報を含み得る。このように、化学反応モデリングアプリケーション150への入力は、入力分子、出力分子、触媒、試薬、溶媒、並びに滞留時間、反応温度、反応圧力、又は混合速度及びパターンを含むがこれらに限定されない化学処理パラメータであり得るか、又はこれらを含み得る。
【0028】
いくつかの実施形態では、化学反応モデリングアプリケーション150は、化学反応のスキーム153の構成反応をシミュレートするために実装され得る1つ以上の単位操作モデルであり得るか、又はそれを含み得る。化学反応モデリングアプリケーション150は、複数の化学反応スキーマ153を生成し得、これらは、異なる構成反応プロセスを含むか、又は異なる反応生成物を記述し得る。いくつかの実施形態では、化学反応モデリングアプリケーション150は、深層学習特徴、「ブラックボックス」最適化技法、教師あり学習、強化学習、又は他の標準機械学習アプローチを実装する人工ニューラルネットワークなどの機械学習モデルを使用して、単位操作モデルのうちの1つ以上をシミュレートし得る。このようにして、化学反応スキーム153が、一連の単位操作モデルで表されるような複数の構成反応を含む場合、化学反応モデリングアプリケーション150は、第1のモデルの出力が第2のモデルの入力として機能する1つ以上の機械学習モデルを実装し得る。図3を参照してより詳細に説明されるように、化学反応モデリングアプリケーション150は、報酬関数を通してモデルチューニングプロトコルを実装し得、報酬関数は、モデルを最適化又は改善するために、単位操作モデルの1つ以上のパラメータを反復的に修正することを可能にし得る。いくつかの実施形態では、モデルを調整することは、化学反応モデリングアプリケーション150によって計算された1つ以上の値の関数として報酬関数の出力を推定することと、報酬関数の出力を最大化するように1つ以上のモデルパラメータを修正することとを含み得る。報酬関数に加えて、化学反応モデリングアプリケーション150の一部として実装される機械学習モデルの訓練が、以下でより詳細に説明される。
【0029】
いくつかの実施形態では、1つ以上の単位操作モデルは、機械学習アプローチではなく、第1の原理に基づき得る。用例として、ポリマー触媒分解単位操作などの化学的リサイクルプロセスは、例えば、先行する単位操作モデルによって、又はテーブルルックアップからのヒューリスティックスによって入力変数が供給され得る化学反応速度式によってシミュレートされ得る。このようにして、化学反応モデリングアプリケーション150によってシミュレートされる一連の単位操作モデルは、機械学習モデル及び第1の原理モデルの両方を含み得る。いくつかの実施形態では、材料特徴付けシステム110が材料分類プロセスの一部としてオンラインセンサシステムを含む場合、化学反応モデリングアプリケーション150は、化学フィンガープリント145データに漸進的にアクセス又は受信し得、更新された情報の受信に応答して反応スキーマ153を更新し得る。化学反応シミュレーションのリアルタイム更新は、コンピュータシステム120によって管理される化学的リサイクルプロセスの性能を改善し得る。例えば、廃棄物材料111は、化学反応スキーマ153に対する更新に続いて、最初の受取先から別の受取先にリダイレクトされ得、これは、以下に説明される1つ以上の性能因子を改善し得る。
【0030】
いくつかの実施形態では、化学反応スキーマ153又は構成化学単位操作は、コンピュータシステム120によって実行される1つ以上の選択操作によってフィルタリングされ得る。例えば、以下で図3図4を参照しながらより詳細に説明されるように、それによって実装スキームが選択され得る適合度関数が定義され得る。適合度関数は、予測入力量、出力量、エネルギー入力値、冷却水需要、材料コスト、又は廃棄物材料111の輸送に関与する物流作業による燃料消費を含むことができるが、これらに限定されない複数の入力を有するオブジェクトモデルであり得る。いくつかの実施形態では、適合度関数は、反応収率、変換効率、化学反応選択性、熱収支値、エネルギー消費、又は環境影響を含むが、これらに限定されない、導出された値を入力として受け取り得る。環境への影響は、温室効果ガス、化学廃液、又はガラス化スラグを含むがこれらに限定されない規制された副産物の生成を説明し得る。例えば、「グリーン度」法を使用して、環境への影響及び提案された反応条件の持続可能性の包括的な定量的測定を可能にする統合指標を確立することができる。同様に、「グリーンケミストリーの原則及びライフサイクルアセスメント」を使用して、有害物質の生成を最小限に抑える安全なプロセスを促進することができる。いくつかの実施形態では、適合度関数に提供される各パラメータは、所与の化学反応スキーム153又は構成化学単位操作の好ましさに影響を及ぼし得る重みを与えられ得る。
【0031】
化学反応モデリングアプリケーション150は、化学反応スキーマ153を含む出力を最適化エンジン160に提供し得る。最適化エンジン160は、機械学習モデルであり得るか、又は機械学習モデルを含み得、化学反応モデリングアプリケーション150、化学フィンガープリント145、又はインベントリ情報163によって生成されるものを含むが、これらに限定されない入力に基づいて、化学反応スキーマ153のリアルタイム修正又は選択を容易にし得る。いくつかの実施形態では、インベントリ情報163は、リサイクル情報161のネットワーク化されたシステムからアクセスされ得る。リサイクル情報161は、リアルタイムなどで漸進的に更新されるデータベースに記憶され得、データベースは、材料サプライチェーンを詳述し得、分解及びその後の新しい材料への再合成を通じて廃棄物原料を追跡し得る。例えば、インベントリ情報163は、地理的領域に対応し得る物流ネットワークにおいて利用可能な原料の量又は品質を含むことができる。同様に、インベントリ情報163は、地理的領域内で利用可能な目標製品のインベントリ情報を含み得る。
【0032】
いくつかの実施形態では、最適化エンジン160は、インベントリ情報163を使用して、化学反応モデリングアプリケーション150への入力として機能する目標又は所望の製品を修正し得る。例えば、コンピュータシステム120は、インベントリ情報163にアクセスし得る。インベントリ情報163を使用して、コンピュータシステム120は、生成される化学反応スキーマ153の数を制限するために、より多数の目標製品のサブセットを識別し得る。用例として、廃棄物材料111は、複数の可能な反応生成物を提供するいくつかの化学的リサイクル方法のための潜在的な原料として識別され得る。可能な反応生成物に対応するインベントリ情報163にアクセスすることを通して、可能な反応生成物のうちの1つ以上の選択が、供給が制限される目標製品に対して行われ、すでに普及している製品の過剰供給を回避するか、又は消費が高い需要の可能性を反映する製品を生成し得る。いくつかの実施形態では、以下で図4を参照してより詳細に説明されるように、リアルタイム交換は、リサイクル業者、化学会社、及びリサイクル可能な材料の他の消費者又は生産者を接続し得る。リアルタイム交換は、インベントリ計画、供給及び需要管理、リサイクル製品市場、及び物流管理を実装し得る。例えば、コンピュータシステム120は、廃棄物材料111又は廃棄物材料111の一部分を材料リサイクル施設又は他の処理操作に向け得、そこで廃棄物材料111は、1つ以上の目標製品に変換され得る。廃棄物材料111を方向付ける例は、受取人施設及び差出人施設を識別することと、受取人施設又は差出人施設に提供され得る物流情報を生成することとを含み得る。
【0033】
廃棄物材料111のための化学リサイクルプロセスを実装することの一部として、コンピュータシステム120は、化学反応スキーマ153、モデル出力、化学フィンガープリント145、特徴付けデータ113、又はコンピュータシステム120によって生成、処理、若しくはアクセスされる他の情報のうちの1つ以上を外部コンピュータシステム170に提供し得る。外部コンピュータシステム170は、材料リサイクル施設における制御サーバであり得るか、又はそれを含み得る。例えば、コンピュータシステム120は、複数のセンサ及びプローブを含むオンサイト特徴付けシステム110から特徴付けデータ113を受信し得、上で説明されるように化学反応スキーマ153を生成し得、化学反応スキーマ153及び/又は実装スキーマを外部コンピュータシステム170に提供して、材料リサイクル施設の化学プロセスユニットを使用して実行し得る。このようにして、外部コンピュータシステム170は、ネットワーク130を介してコンピュータシステム120から情報を受信し得る。
【0034】
いくつかの実施形態では、コンピュータシステム120は、データベース131又は化学反応インベントリデータベース151などのデータストアに同じ又は同様の情報を記憶し得る。例えば、コンピュータシステム120は、反応の全ての化学入力及び出力、並びに関与する触媒及び反応条件の表現を記憶することによって、化学反応インベントリを管理し得る。次いで、化学反応インベントリに記憶された情報を使用して、既知の広く使用されている反応を最適化し、プラスチック廃棄物を分解するのに適用可能であり得る新規の触媒及び反応条件の探索及び発見を支援し得る。同様に、材料識別アプリケーション140によって開発された関心対象の帯域は、以下で図2を参照してより詳細に説明されるように、材料フィンガープリントアプローチの訓練及び改善のために記憶され得る。
【0035】
図2は、本開示のいくつかの実施形態による、原料の材料組成を予測するための例示的なワークフロー200を示す。原料(例えば、図1の廃棄物材料111)として機能する廃棄物のための化学リサイクルプロセスを開発及び管理することの一部として、ワークフロー200は、多様なデータセット、データ処理技法、及び分析動作を組み込み得る。ワークフロー200を実装するシステムは、図1を参照して説明されるコンピュータシステム(例えば、図1のコンピュータシステム120)であり得るか、若しくはそれを含み得るか、又はスペクトル分析アプリケーション(例えば、図1の材料識別アプリケーション140)をホストするクライアントデバイスなどの通信システムであり得る。ワークフロー200の出力データは、例えば、上で図1を参照して説明された他の使用の中でも、目標製品を識別し、候補化学反応単位操作を選択し、又は物流ネットワークからインベントリ情報を収集するために使用され得る化学フィンガープリントデータを生成することによって、以下で説明されるように、化学反応スキーマの予測を容易にし得る。
【0036】
ワークフロー200の動作は、1つ以上のデータ取り込み及び処理動作を含み得る。いくつかの実施形態では、図1のデータベース131の一例とすることができるスペクトルデータベース210は、スペクトル分析240システムによる実験材料及び組成物の識別の一部として、スペクトルデータ220及び関連データ230を記憶及び処理し得る。スペクトルデータ220は、スペクトル分析システム240による化学フィンガープリントデータ250の生成を容易にするために準備された較正済み又は未較正の分光データであり得るか、又はそれを含み得る。スペクトルデータ220は、純粋な対照221の分光学的特徴付けデータを含み得る。純粋な対照は、ポリプロピレン、ポリエチレン、ポリスチレン、高密度ポリウレタン、低密度ポリウレタン、ポリエチレンテレフタレート、アクリロニトリルブタジエンスチレン、ポリカーボネート、若しくはポリアミドであり得るか、又はそれらを含み得るいくつかの個々のフィルムについて、分光標準とも称される、添加剤又は汚染物質を含まないベースポリマーフィルムを含み得る。加えて、純粋な対照221の分光学的特徴付けデータは、限定されないが、既知の量の添加剤を有する対照ポリマーフィルム、又は更に添加剤単独の分光学的データを含み得る。スペクトルデータの多様なセットはまた、上記のように、電磁エネルギースペクトル(X線蛍光、無線周波数、近赤外線、短波赤外線、中波赤外線、THz、又はmm範囲)にわたる複数のモダリティを使用して、対照サンプルについて生成され得る。対照物質の分子成分及び元素成分も特徴付けられ、純粋な対照221の分光学的特徴付けデータに含まれ得る。
【0037】
いくつかの実施形態では、スペクトルデータ220は、廃棄物材料又はそれらの構成要素のサンプルに適用される1つ以上の分光技術によって生成されたデータを含み得る、材料サンプル223の分光特性とすることができるか、又はそれを含むことができる。例えば、分解技術は、ガスクロマトグラフィー質量分析(gas chromatography mass spectrometry、GCMS)、レーザー誘起破壊分光法(laser induced breakdown spectroscopy、LIBS)、又は非破壊法(non-destructive method、ATR-FTIR)のような破壊的方法を使用することによって、廃棄物材料に関するグラウンドトゥルース情報を更に推定するために適用され得る。スペクトルデータ220は、リサイクルネットワークから収集され、スペクトルデータベース210に漸進的に提供される材料サンプル221の分光学的特徴付けを含み得る。例えば、材料リサイクル施設のネットワークは、廃棄物材料の取り込み又は分類プロセスの一部として材料特徴付けデータ(例えば、図1の特徴付けデータ113)を収集し得、ネットワークにわたる化学的リサイクルの管理の実装の一部としてスペクトルデータベース210にデータを提供し得る。
【0038】
スペクトルデータ220は、例えば、名称データ231、式データ233、又は他のメタデータ235によるスペクトルデータのラベル付けを通して、関連データ230と調整され得る。場合によっては、関連データ230は、スペクトルデータ220に対応して、スペクトル分析システム240によって実装されるスペクトル分析技術を容易にし得、スペクトル分析技術は、以下で説明されるモデル訓練技術を含むが、これに限定されない。スペクトルデータ220及び関連データ230は、ネットワークを介してスペクトルデータベース210に接続された別個のデータストアに記憶され得る。例えば、スペクトルデータ220は、抽出、変換、及びロード(extract, transform, and load、ETL)プロセスなどの分散データシステム動作の一部として、スペクトルデータベース210によってアクセスされ得る。同様に、関連データ230は、1つ以上の物理的位置に配置された1つ以上のデータベースに収集され得、スペクトルデータベース210によってアクセス又は受信され得る。
【0039】
後続のデータ処理に備えて、スペクトルデータ220及び関連データ230にデータ取り込み211動作が適用され得る。例えば、データ取り込み211は、データのフォーマット又は表現を修正し得るETL処理などの1つ以上のデータ変換を含み得る。例えば、スペクトルデータ220からのスペクトルファイル213は、標準化されたフォーマット217でスペクトルデータエントリを生成するために、データ取り込み211の一部として関連付けられた関連データ215と結合され得る。これは、スペクトルファイル213を、コンマ区切り値フォーマットなどの標準データフォーマットからキー値ペアフォーマットに変換することを含み得る。キーは、一意の識別子などの検索可能データベースラベルであり得るか、又はそれを含み得る。標準化フォーマット217は、サンプルの化学組成に関するラベルなどの関連データ215のためのフィールドを含み得る。ラベルの例としては、名称データ231、式データ233、分子量データ、並びにSMILES文字列データ、MOLファイルデータ、CAS番号、又は構造表現などの関連メタデータ235を挙げることができるが、これらに限定されない。
【0040】
図2に示すように、スペクトル分析システム240は、化学フィンガープリントデータ250の生成の一部として、標準化フォーマット217のデータにアクセスし得る。スペクトル分析システム240は、標準対照材料及び特徴付けられた廃棄物材料の化学フィンガープリントデータ250を生成し得、自動及び手動分析技術の両方を組み込み得る。例えば、スペクトル分析システム240は、視覚化ツール241のセットを実装し得、化学フィンガープリントデータ250を開発することの一部として、機械学習方法又は他の計算スペクトル分析245技術を実装し得る。視覚化ツール241は、特定の材料、添加剤、又は汚染化学物質について関連スペクトルを照会するために使用され得る。いくつかの実施形態では、視覚化ツール241は、人間の目による、又は機械画像分析による(例えば、スペクトルを分類するように訓練された畳み込みニューラルネットワークによる)比較のために、サンプルスペクトルを表示し、1つ以上の対照スペクトルと整列させ得る。視覚化ツール241は、異常スペクトルの迅速な分析、並びに訓練セットとして機械学習に使用されるスペクトルデータセットの手動キュレーションを可能にし得る。視覚化ツール241は、強化された学習において訓練セットを精緻化するために使用されるときのように、サンプルスペクトルのキュレートされたラベリングを可能にし得る。
【0041】
いくつかの実施形態では、スペクトルデータセットは、モジュール正規化アプローチを含むデータ前処理243を通して正規化され得る。例えば、強度正規化は、関心対象の帯域251を識別することの一部として、例えば、ピーク又は帯域などの主要特徴の識別に基づいて、未加工スペクトルデータに適用され得る。以下に説明されるように、関心対象の帯域251は、分光プローブを構成することによって材料特徴付けシステムを誘導するように機能し得、追加的に又は代替的に、広帯域特徴付け技術によって検出されたラベル付けされていないスペクトルを識別する際に使用され得る。例えば、透過率スキャナの関心対象の帯域251は、正規化又は他のデータ処理が優先的にそこに適用され得るように、1350~2450nmのうちの1620~1787nmとすることができるか、又はそれを含むことができる。同様に、反射率スキャナの関心対象の帯域251は、900~1700nmのうちの1117~1261nmとすることができるか、又はそれを含むことができる。正規化は、強度正規化を指し得、分光センサデバイスが強度較正されていない場合を含むが、それに限定されない状況において適用され得る。
【0042】
データ処理243は、ベースライン及び他の補償技術を含み得る。例えば、スペクトルファイルにおけるベースラインが検出され得、これは、測定されたサンプルに起因しない生のスペクトルにおけるバックグラウンド信号又は一般的な傾向に対応し得る。場合によっては、正規化は、ベースライン減算、及び各帯域で得られた強度データを全ての差の和で除算することによって実施される強度正規化を含むが、これらに限定されない複数のオペレーションを含み得る。このようにして、処理されたスペクトルデータは、異なる材料の厚さ及び透明度にわたって正規化され得る。正規化されたスペクトルは、その後の計算スペクトル分析245を改善するために平滑化され得る。
【0043】
いくつかの実施形態では、処理されたスペクトルデータは、計算スペクトル分析245の一部として実装される機械学習モデルのための訓練データ247として機能し得る。例えば、機械学習モデルは、サポートベクターマシン(support vector machine、SVM)分類器であり得るか、又はそれを含み得る。機械学習モデルは、ラベル付けされる場合又はされない場合がある正規化スペクトルデータの少なくとも一部分を使用して、教師あり学習又は強化学習を含むがこれらに限定されないモデル訓練249技術によって訓練され得る。いくつかの実施形態では、モデル訓練249は、サブ帯域データを使用して実装され得、これは、完全なスペクトルを使用する訓練に対して改善された分類精度を提供し得る。モデル訓練249は、計算スペクトル分析245の一部として実装される機械学習モデルを訓練し得る、弁別器などの敵対的学習アプローチを実装し得る。
【0044】
正規化されたスペクトルデータは、訓練された機械学習モデル、又は手続き型若しくはルールベースのモデルなどの他の計算方法によって処理されて、材料シグネチャ253、添加剤若しくは汚染物質シグネチャ255、又は化学タイプ、組成、形態、構造、若しくは純度を示す他の情報に関連する信号内のパターンを探し得る。材料リサイクル施設によって受け取られたものなどの、多様な可塑剤を含む異なる形態のリサイクルされたPET物体のユニットなど、複数の異なる添加剤、汚染物質、又は不純物を主材料に組み込んだ材料では、材料のピーク信号をカバーする複数の領域が、関心対象の帯域251として識別され得る。いくつかの実施形態では、リサイクル原材料の全ての形態にわたって共通であり得るあまり有益でない帯域を除外して、30~40もの関心対象の帯域251が選択され得る。用例では、材料を分類するように訓練されたSVMを実装する分類器に、データ取り込み211中に含まれるスペクトルのラベルに基づいて、廃棄物材料サンプルの関心対象の帯域251が提供され得る。
【0045】
いくつかの実施形態では、化学フィンガープリントデータ250は、フィンガープリントデータベース260に記憶され得る。フィンガープリントデータベースは、例えば、ネットワークを介して、又はスペクトル分析システム240と同じ物理的位置で、スペクトル分析システム240と通信し得る。計算スペクトル分析245を実施することの一部として、スペクトル分析システム240は、フィンガープリントデータベース260に記憶された化学フィンガープリントデータ250にアクセスし得る。例えば、図3を参照して以下に説明されるように、モデル訓練249によって訓練されたSVMは、ポリマーなどの広範なクラスの材料についての関心対象の帯域251及び材料シグネチャ253へのアクセスを用いて、異なるポリマー構造、側鎖、骨格、又は潜在的な目標製品の識別に影響を及ぼし得る他の情報、並びにスペクトルデータが潜在的な目標製品に分類されている材料を変換する化学反応の定式化を区別するのに十分な精度で分類を提供し得る。
【0046】
図3は、本開示のいくつかの実施形態による、化学反応スキーマのセットを生成するための例示的なワークフロー300を示す。化学的リサイクルプロセスを管理することの一部として、コンピュータシステム(例えば、図1のコンピュータシステム120)は、単位操作シミュレーション310の一部として1つ以上の化学的リサイクル単位操作をシミュレートし得る。単位操作シミュレーション310は、上で説明されるように、化学的リサイクルプロセスを導くためのプラットフォームの一部として、材料識別及び特徴付けアプリケーションによって生成されたデータを受信し得る。ワークフロー300は、原料を目標製品に変換するための化学プロセスを記述する一連の反応条件を生成することの一部として、機械学習並びにルールベースモデルの実装を含み得る。原料は、材料リサイクル施設によって受け取られる廃棄物材料であり得る。目標製品は、ワークフロー300の一部としてコンピュータシステムによって識別され得、追加的又は代替的に外部入力によって指定され得る。
【0047】
単位操作シミュレーション310は、廃棄物材料についての材料識別データ320(例えば、図2の化学フィンガープリントデータ250)を受信又はアクセスし得、そのために廃棄物材料の識別及び組成は、入力321として機能し得る。材料識別データ320は、図4を参照して以下で説明される交換システムなどを介して外部システムによって提供され得る所望の入力323を含み得る。単位操作シミュレーション310はまた、化学反応インベントリ330から入力を受信し得る。化学反応インベントリ330は、関与する反応の全ての化学入力333及び出力335、触媒337、並びに反応条件331の埋め込みなどの表現を記憶し得る。反応モデル339はまた、化学反応インベントリ330の一部として記憶され得、これは、単位操作シミュレーション310が、誘導化学的リサイクル350定式化の一部として、機械学習アプローチに加えて、ルールベースの反応モデルを含むことを可能にし得る。入力333及び出力335は、化学反応インベントリ330において相互参照され得、その結果、材料識別データ320は、以下で説明されるように、最適化され得る化学反応スキーマの初期セットを定義するように機能し得る潜在的な目標製品と対にされ得る。
【0048】
最適化された反応条件340を生成することの一部として、単位操作シミュレーション310は、既知の広く使用されている反応を修正し、廃棄物材料を分解するために適用可能であり得る新規の触媒、試薬、又は溶媒343及び反応条件341の探索及び発見を支援し得る。いくつかの実施形態では、単位操作シミュレーション310は、化学反応インベントリ330に以前は存在しなかった新しい触媒データ337を定式化するために、触媒又は試薬の既知のセットに、密度関数理論及び分子動力学のような分子モデリング技術を組み込み得る。様々なクラスタリング方法、ガウス混合モデル、因子分析、及びディープニューラルネットワーク(Deep Neural Network、DNN)を通じた学習反応埋め込みを含む教師なしMLアルゴリズムを、化学反応インベントリ330からのデータに適用することができる。いくつかの実施形態では、回帰モデル又はDNNなどの教師ありMLアルゴリズムを使用して、化学反応モデル339を改善することができる。スペクトル分析(例えば、図2のスペクトル分析システム240)の文脈で説明したように、単位操作シミュレーション310の一部として実施される機械学習アプローチは、化学反応インベントリ330からのデータセットを使用して訓練され得、これは、訓練データを選択し、MLモデルの開発を導くためのラベル付け、キュレーション、又は他のアプローチなどの1つ以上の前処理ステップを含み得る。
【0049】
推奨される触媒及び化学反応を検索する際に、複数のアプローチを誘導化学的リサイクル350シミュレーションに組み込んで、最適化された反応条件340を生成し得る。いくつかの実施形態では、1つ以上の化学プロセスは、一連の反応モデル353a~nとしてシミュレートされ得、各々は、入力351a~nを受け取り、出力355a~nを生成する。各反応モデル353は、化学的リサイクルプロセスの段階を形成する化学単位操作を表し得る。場合によっては、最終反応モデル335nは、化学反応インベントリ330から識別されるように、目標製品を表し得る最終出力を出力し得る。
【0050】
いくつかの実施形態では、中間反応条件を表すシミュレーション結果をオンライン学習アルゴリズムに提供して、モデル及びシミュレーション技術を微調整し得る。オンライン学習アルゴリズムは、反応又は反応スキームの成功を示し得る報酬関数360を組み込み得る。いくつかの実施形態では、報酬関数360は、入力351又は出力355などの1つ以上の化学プロセスパラメータを表す閾値基準を生成し得、それによって全体的な誘導化学的リサイクルシミュレーション350の最適性が判断され得る。例えば、1つ以上の入力351又は出力355は、各反復において報酬関数360に提供され得、単位操作シミュレーション310は、報酬関数360の出力が、誘導化学的リサイクル350からの反応条件が最適化されたことを示し得る閾値を超えるなど、所望の結果が達成されるまで、それらの入力351又は出力355を増分し得る。いくつかの実施形態では、報酬関数360の出力は閾値と交差し、これは、誘導化学的リサイクル350からの反応条件が最大レベルにあるのではなく最小許容レベルを上回ることを示し得る。
【0051】
場合によっては、結果は、プラスチックを所望の一連の分子に効率的に分解するための、熱分解プロセスなどの最適化された化学反応スキームであり得るか、又はそれを含み得る。別の実施形態では、報酬関数360は、フィッシャー・トロプシュ反応における一酸化炭素及び水素の入力が与えられると、圧力、温度、及び触媒レベルを受け取って、プラスチックの原料となり得る液体炭化水素を生成し得る。報酬関数360は、入力351及び出力355の増分を導くために、最急降下などの一般的な最適化アルゴリズムであり得るか、又はそれを含み得る。所望の入力/出力データ、又は最適化を必要とする条件に応じて、化学反応問題の各タイプに特有のアルゴリズムも含まれ得る。例えば、熱分解などの十分なプロセスデータが利用可能な熱化学プロセスのシミュレーションは、強化学習のような異なる最適化技術を使用し得る。報酬関数360は、強化学習又はブラック/グレーボックス最適化技術などのワークフロー300のMLフレームワークの一部を形成し得、学習プロセスを誘導し、学習結果を評価するために使用され得る。
【0052】
報酬関数360は、反応モデル353への入力351として含まれるもの以外の多数の入力を受信し得る。例えば、収率、選択性、実現可能性、エネルギー使用量、又は環境影響などの導出された値は、報酬関数360への入力として機能し得る。一例として、収率は、どれだけのプラスチックポリマーがその構成モノマーに成功裏に変換され得るか、及びどれだけが使用不可能な副生成物に変換され得るかを決定するために使用され得る。同様に、選択性は、所望されない反応生成物に対する所望されるモノマー生成物の比を表し得る。実現可能性は、提案された反応条件が、設定又は実行するために実現可能/実用的であるかどうかの概念を取り込むために使用され得、これは、報酬関数360へのいくつかの入力が、非物理的基準に基づく質的評価であり得ることを実証する。報酬関数360のパラメータへの入力に重みを割り当てて、報酬関数(及び学習プロセス)を特定の目標又は目的に向けてバイアスすることができる。例えば、特定の反応タイプに対する選択性に制約がある場合、閾値基準の計算において、選択性により高い重みを割り当てることができる。他の場合には、収率がより重要であり、より高い重みを割り当て得る。
【0053】
ワークフロー300は、最適化された反応条件に加えて複数の出力を含み得、これにより、化学的リサイクルプロセスの実装及び採用並びに性能を改善し得る。例えば、最適化された反応条件340は、マルコフ過程シミュレーション370として視覚化され得、それによって化学反応スキーム345の様々な段階がマルコフ過程におけるステップとして視覚化される。
【0054】
マルコフ過程は、一般論として、それぞれのノード間の接続の重みの視覚的又は定量的な表示を伴う、方向矢印によって接続されたノードとして、物流又はプロセスチェーンにおける異なる段階を表す。このようにして、マルコフ過程シミュレーション370は、反応スキーム345の動的視覚化を生成及び/又は提示して、リサイクルパイプライン全体に対する反応スキーム345の構成反応の微調整の全体論的効果を実証し得る。したがって、マルコフ過程シミュレーション370は、以下で図4を参照してより詳細に説明されるように、材料リサイクルサプライチェーンを記述する物流データを入力として受信し得る。
【0055】
図4は、本開示のいくつかの実施形態による、化学データ及び物流データを使用して化学反応プロセスを調整するための例示的なワークフロー400を示す。ワークフロー400の要素は、前の図で説明した物流ネットワーク及びデータベースによって提供されるデータを含み得、これらは共に、最適化エンジン410への入力として機能し得る。最適化エンジン410は、以下で説明されるように、材料インベントリレベル、物流制約、又は消費傾向などのネットワーク要因とより良好に整合するように、前述の図のシステムによってシミュレートされる化学的リサイクルプロセスを修正又は調整するために、1つ以上のアプローチを実装し得る。ワークフロー400の出力は、例えば、図3の単位操作シミュレーション310の反復中に、先行するシステムのうちの1つ以上に入力として返され得る。
【0056】
いくつかの実施形態では、最適化エンジン410は、材料識別データ420(例えば、図2の化学フィンガープリントデータ250)又は最適化された反応条件430(例えば、図3の最適化された反応条件340)などの化学的リサイクルプロセスデータと、材料インベントリ440データ、利用データ450、又はリアルタイムデータ460などの物流データとに大まかに分類することができるデータを受信し得る。最適化エンジン410は、1つ以上の計算アプローチを適用して、最適化された反応条件430の態様を修正し、最適化されたデータ470を出力し得る。いくつかの実施形態では、最適化エンジンは、交換ソフトウェア480によって提供される追加の入力を受信し得、交換ソフトウェアは、原材料を生産し、製品を消費し、又は触媒、溶媒、若しくは他の消耗品を含むが、これらに限定されない、化学的リサイクル中間材料を生産するエンティティ490のネットワークとの相互作用のためのプラットフォームを提供し得る。
【0057】
材料インベントリデータ440は、分子441を記述するインベントリデータを含み得るが、これに限定されず、これは、生成物、又は副生成物、原材料443、化学薬品445、例えば、消耗品、触媒、又は他の反応物質、又は一般材料447を記述し得る。一般的な材料は、化学的リサイクルプロセスを動作させる際に使用され得る他の材料(例えば、電気、冷却用水、加熱燃料、又は圧縮ガス)を含み得るが、これらに限定されない。このようにして、材料インベントリ440は、最適化された化学反応条件430において識別される化学的リサイクルプロセスの動作に対する1つ以上の制約を表し得る。したがって、材料インベントリ440に反映される情報は、例えば、律速触媒の供給が利用不可能であるときに、最適化された反応条件を潜在的に逆に示す場合がある。
【0058】
同様に、利用データ450は、反応スキーム(例えば、図3の反応スキーム345)を昇格又は降格させ得る化学的リサイクルインフラストラクチャにおける局所的又は地域的傾向を反映し得る。例えば、利用データ450は、下流需要451、上流供給453、市場データ453、又は物流データ455を反映するデータを含み得るが、これらに限定されない。そのような供給、要求、及び市場因子は、反応モデル及び熱化学的最適化によって反映される物理的及び化学的因子に加えて、経済的因子を反映するために、最適化エンジンが化学的リサイクルプロセスシミュレーションの1つ以上のパラメータを調整することを可能にし得る。例えば、反応スキームは、その供給がすでに需要を超えており、物流ネットワークにおいて倉庫容量が不足している製品を生成し得る。そのような場合、最適化エンジン410は、反応スキームを降格させ得るか、又は目標製品471のサブセットを識別し得る。次に、目標製品471のサブセットを化学プロセスシミュレーション(例えば、図3のワークフロー300)に戻して、最適化された反応条件430を調整し得る。
【0059】
最適化された反応条件430は、図3を参照して説明されるように、単一の化学反応スキームのための特定の条件を記述し得る。そうではあるが、最適化エンジン410は、図1を参照して説明したように、実装スキーム又は複数の実装スキーマを選択することの一部として、複数の化学反応スキーマを同時に受信又はアクセスし得る。例えば、目標製品471のサブセットを識別することは、目標製品471のサブセットを生成する実装スキームの選択を可能にし得る。
【0060】
同様に、最適化エンジン410は、最適化された物流データを出力し得、これは、原料443の供給源及び最適化された反応条件430によって生成された製品の受取人を記述し得る。例えば、物流データは、限定ではないが、材料リサイクル施設(MRF)461の動作、分散収集463の動作、サプライチェーン465の状態、又はマテリアル特徴付けセンサデータ467を記述するデータを含み得るリアルタイムデータ460を含み得、最後のデータは、MRF処理に到着する材料をリアルタイムで記述し得る。対照的に、分散収集463データは、産業、商業、機関、及び家庭の供給源などの廃棄物原料の多様な供給源を記述し得る。交換ソフトウェア480からの入力と結合されたリアルタイムデータ460は、(例えば、エンティティのネットワーク490を通じて)化学的リサイクルネットワークに参加しているエンティティのための製品の受取人及び原料のソースを最適化エンジン410が指定することを可能にし得る。
【0061】
最適化エンジン410は、ルールベースモデル又は機械学習モデルなどの1つ以上の計算技術を含む適合度関数を実装して、複数のタイプの化学リサイクルプロセスデータ及び利用可能な物流データを入力し、最適化反応条件430の適合度値を生成し得る。図3を参照して説明した報酬関数(図3の報酬関数360)と同様に、最適化エンジン410は、重み付けされた入力を受信し得、その重みは、人間のオペレータ又は自律システムによって外部から規定され得るか、又は機械学習アプローチが採用される場合に最適化エンジン410を訓練することによって開発され得る。例えば、最適化エンジンは、所与の化学的リサイクルプロセスのために収集された履歴動作データから開発され得る訓練データのセットに対して訓練された人工ニューラルネットワークを含み得る。訓練は、最適化エンジンが、例えば、材料インベントリ440又は市場データ455などの様々なし得る物流データに対するプロセス感度に対応する入力のための重みを開発することを可能に。例えば、律速触媒についてのインベントリデータは、化学反応スキームの実現可能性に有意な影響を及ぼし得る。そのような場合、触媒の供給を記述する入力に対する重みは、影響の少ない入力の重みよりも高くあり得る。損失関数の文脈では、最適化エンジンは、化学的リサイクルプロセスデータ及び物流データを受信する機械学習モデルの出力として定義される損失関数の値を最小化することによって動作し得る。
【0062】
図5は、本開示のいくつかの実施形態による、原料の分子成分の再利用を管理するための方法500を説明する例示的フローを示す。図1図4を参照して説明したように、方法500を構成する1つ以上の動作は、特徴付けシステム、ネットワークインフラストラクチャ、データベース、及びユーザインターフェースデバイスを含むがこれらに限定されない追加のシステムと通信するコンピュータシステム(例えば、図1のコンピュータシステム120)によって実行され得る。いくつかの実施形態では、方法500は、コンピュータシステムが原料の特徴付けデータにアクセスする動作510を含む。特徴付けデータ(例えば、図1の特徴付けデータ113)は、上で説明されるように、1つ以上の波長モダリティにおいて、反射分光法、透過分光法、又は蛍光分光法などの原位置分光技術によって生成され得る。更に、特徴付けデータは、1つ以上の異なる技術に基づく物理的又は化学的情報を含み得、その例としては、硬度、引張特性、又は熱位相特性が挙げられる。特徴付けデータは、ネットワーク(例えば、図1のネットワーク130)を介してコンピュータシステムに提供され得る。
【0063】
いくつかの実施形態では、方法500は、コンピュータシステムが原料に含まれる構成材料のセットを予測する動作520を含む。コンピュータシステムは、化学フィンガープリントデータ(例えば、図2の化学フィンガープリントデータ250)を識別するために、図2を参照してより詳細に説明されるように、スペクトル分析アプローチを実装し得る。これは、スペクトルのデータベース(例えば、図1のデータベース131)から標準及び制御データを受信することを含み得る。更に、動作520は、データ変換動作(例えば、図2のデータ取り込み211)、機械学習モデルの1つ以上の実装形態を含み得、機械学習モデルは、正規化、ベースライン減算、又は平滑化を含むがこれらに限定されないスペクトル分析技術を使用して準備された前処理済み訓練データ(例えば、図2の訓練データ247)を使用して訓練され得る。
【0064】
いくつかの実施形態では、方法500は、コンピュータシステムが原料の材料組成を予測する動作530を含む。原料の材料組成は、構成材料とは対照的に、原料における相対的な優勢度についての情報を含み得る。例えば、図2を参照して説明されるスペクトル分析は、材料シグネチャ(例えば、図2の材料シグネチャ253)又は添加剤シグネチャ(例えば、図2の添加剤シグネチャ255)などのスペクトル特徴に基づいて、いくつかの構成材料を識別し得る。しかしながら、そのようなスペクトル分析は、例えば、センサが強度較正されていないとき、主成分と不純物とを区別することができない場合がある。したがって、場合によっては、スペクトルフィンガープリントを対照データと相互参照すること、又は機械学習モデルを組成データで訓練することにより、原料の重量組成などの予測組成を提供し得る。
【0065】
いくつかの実施形態では、方法500は、コンピュータシステムが1つ以上の目標製品を識別する動作540を含む。目標製品の識別は、化学反応インベントリ(例えば、図3の化学反応インベントリ330)によって容易にされ得、化学反応インベントリは、コンピュータシステムが原料の候補製品のセットを識別することを可能にし得る。例えば、材料組成は、ポリマー材料であり得る主成分についての情報を含み得、その化学反応インベントリは、原料の化学的リサイクルによって生成することができる多数の出力(例えば、図3の出力335)を記述し得る。同様に、触媒(例えば、図3の触媒337)を記述する情報は、触媒を汚染する場合があり、したがって、候補生成物のセットからそれぞれの化学反応及びその製品を排除する場合がある汚染物質を記述し得る。上で説明されるように、ハロゲン含有プラスチック(例えば、塩素及びフッ素含有プラスチック)は、ある種の化学的リサイクルからそれらを排除し得る腐食性副生成物を生成し得る。上で説明されるように、候補製品のセットは、物流データ(例えば、図4の材料インベントリ440)を使用して、1つ以上の方法で精緻化され得、これは、目標製品の限定された数又は不完全なサブセットの識別を可能にし得る。
【0066】
いくつかの実施形態では、方法500は、コンピュータシステムが化学反応スキーマのセットを生成する動作550を含む。材料組成及び目標製品に基づいて、コンピュータシステムは、上で図3を参照して説明される技術(例えば、図3のワークフロー300)を)を使用して、調整された反応スキーマを生成し得る。例えば、化学的リサイクルプロセスは、反応モデル(例えば、図3の反応モデル353a~n)として表される一連の単位操作としてシミュレートされ得る。いくつかの場合において、反応モデルは、単位操作がプロセスフローにおける段階を形成する場合のように、入力としてシリーズの先行する反応モデルの出力を受信し得る。図3を参照してより詳細に説明されるように、単位操作シミュレーション(例えば、図3の単位操作シミュレーション310)は、複数の要因が調整中に所与の反応スキームの操作に影響を及ぼすことを可能にし得る報酬関数(例えば、図3の報酬関数360)によって調整され得る。例えば、報酬関数は、入力として、冷却水源容量、燃料消費情報、環境影響パラメータ、又は構成プロセスユニット反応モデルの動作に直接影響を及ぼし得る他の入力などの化学的及び物理的情報を受信し得る。加えて、報酬関数は、単位操作シミュレーションが、収率、選択性、又は効率を含むがこれらに限定されない導出された値について最適化することを可能にし得る。
【0067】
いくつかの実施形態では、方法500は、コンピュータシステムが、原料の材料組成、1つ以上の目標製品、及び化学反応スキーマのセットの識別を記憶する、動作560を含む。コンピュータシステムによって生成される出力は、反応スキーマ、視覚化情報(例えば、図3のマルコフ過程シミュレーション370)、並びに材料組成、構成材料、及び他の予測及び生成されたデータを含み得るが、これらに限定されない。いくつかの実施形態では、このように生成されたデータは、コンピュータシステムによってデータストアに記憶され得るか、外部コンピュータシステム(例えば、図1の外部コンピュータシステム170)に送信され得るか、又はシミュレーションの反復中にフィードバックデータとして返され得る。更に、材料識別データ、反応スキーマデータ、目標製品データ、又は他の生成された情報は、方法500の1つ以上の段階におけるモデル訓練において後で使用するために記憶され得る。
【0068】
以上の説明では、様々な実施形態について説明した。説明の目的で、実施形態の完全な理解を提供するために、特定の構成及び詳細が記載されている。しかしながら、実施形態が特定の詳細なしに実施され得ることも当業者には明らかであろう。更に、周知の特徴は、説明されている実施形態を不明瞭にしないために省略又は簡略化されている場合がある。本明細書に説明される例示的な実施形態は、ポリマー材料を中心とするが、これらは、非限定的な例示的な実施形態を意味する。本開示の実施形態は、そのような材料に限定されず、むしろ、幅広い材料が材料リサイクル及び/又はアップサイクルプロセスのための潜在的な原料として役立つ材料処理動作に対処することが意図される。そのような材料には、金属、リグノセルロース系材料などのバイオポリマー、粘弾性材料、希土類含有材料などの鉱物、並びに複雑な複合材料又はデバイスが含まれ得るが、これらに限定されない。
【0069】
本開示のいくつかの実施形態は、1つ以上のデータプロセッサを含むシステムを含む。いくつかの実施形態では、システムが、1つ以上のデータプロセッサ上で実行されたときに、1つ以上のデータプロセッサに、本明細書に開示された1つ以上の方法の一部若しくは全部及び/又は1つ以上のプロセス及びワークフローの一部又は全部を実施させる命令を含む、非一時的コンピュータ可読記憶媒体を含む。本開示のいくつかの実施形態は、非一時的機械可読記憶媒体で明確に具現化されたコンピュータプログラム製品を含み、1つ以上のデータプロセッサに、本明細書に開示された1つ以上の方法の一部若しくは全部及び/又は1つ以上のプロセスの一部若しくは全部を実施させるように構成された命令を含む。
【0070】
用いられている用語及び表現は、説明の用語として使用され、限定するものではなく、示され、説明された特徴の任意の等価物、又はその一部分を除外するそのような用語及び表現の使用における意図は存在しないが、特許請求の範囲の本発明の範囲内で様々な修正が可能であることが認識されている。したがって、特許請求される本発明は、実施形態及び任意選択的な特徴により具体的に開示されているが、本明細書に開示される概念の修正及び変形が、当業者によって行われ得、そのような修正及び変形は、添付の特許請求の範囲によって定義される本発明の範囲内にあるとみなされることを理解されたい。
【0071】
説明は、好ましい例示的な実施形態のみを提供し、本開示の範囲、適用性、又は構成を限定することを意図されない。むしろ、好ましい例示的な実施形態の以下の説明は、様々な実施形態を実装するための有効な説明を当業者に提供することになる。添付の特許請求の範囲に記載の趣旨及び範囲から逸脱することなく、要素の機能及び配置において様々な変更がなされ得ることが理解される。
【0072】
具体的な詳細は、実施形態の完全な理解を提供するために、説明において与えられる。しかしながら、これらの具体的な詳細なしで実施形態が実施され得ることが理解されるであろう。例えば、特定の計算モデル、システム、ネットワーク、プロセス、及び他の構成要素は、不必要な詳細で実施形態を不明瞭化しないために、ブロック図の形態で構成要素として示され得る。他の事例では、周知の回路、プロセス、アルゴリズム、構造、及び技術は、実施形態を不明瞭化することを回避するために、不必要な詳細なしで示され得る。
図1
図2
図3
図4
図5
【国際調査報告】